
Pattern Mathing and Membership forHierarhial Message Sequene ChartsBlaise Genest and Ana MushollLIAFA, Université Paris VII 2, pl. Jussieu, ase 7014 F-75251 Paris edex 05 e-mail:{genest,musholl}�liafa.jussieu.frAbstrat. Several formalisms and tools for software development usehierarhy for system design, for instane stateharts and diagrams inUML. Message sequene harts (MSCs) are a standardized notation forasynhronously ommuniating proesses. The norm Z.120 inludes alsohierarhial HMSCs in form of High-level MSCs (HMSC). Algorithms onMSCs rarely take into aount all possibilities overed by the norm. Inpartiular, hierarhy is not taken into aount sine the model usuallyonsidered are MSC-graphs that orrespond to the unfolding of (hier-arhial) HMSCs. However, omplexity an inrease exponentially byunfolding. The aim of this paper is to show that basi algorithms an bedesigned suh that they avoid the ostly unfolding of hierarhial MSCsand HMSCs. We onsider the membership and the pattern mathingproblem to illustrate the way to proeed. We show that the membershipproblem for hierarhial HMSCs is PSPACE-omplete. Seond, we de-sribe a polynomial-time algorithm for the pattern-mathing problem onhierarhial MSCs.1 IntrodutionIt is ommon to use maros to write a program or to speify the behavior of asystem. Maros or hierarhial spei�ations allow a modular design of omplexsystems and have the advantage of being more suint and user-friendly. Severalformalisms and tools for software development use hierarhy for system design.One of the most prominent examples is the formalism of stateharts [11℄, whih isa omponent of several objet-oriented notations, suh as the Uni�ed ModelingLanguage (UML). Besides stateharts, UML widely uses several kinds of dia-grams (ativity, interation diagrams et), all based on the ITU standard Z.120of message sequene harts (MSCs). While stateharts extend �nite state ma-hines by hierarhy and ommuniation mehanisms, MSCs are a visual notationfor asynhronously ommuniating proesses. The usual appliation of MSCs inteleommuniation is for apturing requirements of ommuniation protools inform of senarios in early design stages. MSCs usually represent inomplete spe-i�ations, obtained from a preliminary view of the system that abstrats awayseveral details suh as variables or message ontents. High-level MSCs (HMSCs)ombine basi MSCs using hoie and iteration, thus desribing possibly in�niteolletions of senarios. For abstrat spei�ations as with HMSCs, hierarhy



is of primary importane. Sine a senario orresponds to a spei�ation levelwhih an be very abstrat, a designer should be able to merge di�erent spei-�ation ases yielding the same abstrat senario and to use this senario as amaro. By using maros designers may identify sub senarios whih have to bere�ned at a later stage.Algorithms on MSCs rarely take into aount the whole spetrum of theHMSC standard de�nition. In partiular, hierarhy is not taken into aountsine the models usually onsidered are MSC-graphs, that orrespond to the un-folding of (hierarhial) HMSCs. However, omplexity an inrease exponentiallyby unfolding. The aim of this paper is to show that this exponential blow-upis avoidable in many ases, by avoiding the expensive unfolding and using thehierarhy for omputing the desired results in a modular way. We use tehniquesstemming from ombinatoris on ompressed texts, sine hierarhial MSC de�-nitions an be seen as a kind of ompression by means of Straight-Line Programs(SLP).In this paper we onsider two fundamental problems for hierarhial HM-SCs, that are alled here nested high-level MSCs (nHMSCs for short): member-ship problem and pattern mathing. However, we think the tehniques desribedhere an be used to solve other algorithmi problems on nHMSCs as well. Themembership problem is a basi question, asking for instane whether a negativesenario ours in a system spei�ation, or asking whether a positive senariois redundant, sine already overed by the spei�ation. Without hierarhy, themembership problem for HMSCs has been shown to be NP-omplete, [1℄. Thereason for this omplexity blow-up (ompared to �nite-state mahines) is thatMSCs are partial-order models. We show that hierarhy yields a small inreasein omplexity, preisely we show that the membership problem for nHMSCs isPSPACE-omplete. Surprisingly, hierarhy alone is the soure of the omplex-ity. We show namely that the membership problem for hierarhial automata isalready PSPACE-omplete. This result shows a di�erene between membershipand reahability, sine reahability for ommuniating hierarhial automata isalready EXPSPACE-omplete [12℄.The seond problem onsidered in this paper is pattern mathing for nMSCs.Given two nMSCsM,N , we want to know whetherM ours as a pattern ofN . Apolynomial time solution for this problem is not immediate. We apply some nieombinatorial tehniques stemming from pattern mathing on ompressed textsand we obtain an algorithm of time O(|CM |2 · |M |2 · |N |2), where |M |, |N | denotethe sizes of the desription of M and N , and |CM | is the number of onnetedomponents in the ommuniation graph of M . This question subsumes the testof equality of two nMSC, and shows that equality is deidable in PTIME as well.Related work. Regarding the omplexity of extended �nite state mahines,[12℄ onsiders the reahability and trae equivalene problems for ommuniat-ing FSMs (Finite States Mahines). Model-heking hierarhial FSMs againstLTL and CTL properties is the topi of [4℄. The paper [3℄ ombines hierar-hy and onurreny, analyzing the omplexity of several problems (reahability,equivalene et.) for ommuniating, hierarhial FSMs.2



Several veri�ation problems on MSCs andMSC-graphs have been onsideredreently, e.g. deteting raes [2, 18℄, model-heking [5℄, pattern mathing withgaps [19℄, inferene [1℄ and realizability [17, 9, 14℄, model-heking against partial-order logis [16, 21℄. Hierarhial MSCs have been also onsidered in [5℄ for themodel-heking problem. We note however that our de�nition of nested HMSCsaptures a larger lass of MSC spei�ations than [5℄.An extended abstrat of this paper was presented at LATIN'02 [8℄. As ad-ditional result we show here how to extend the polynomial time algorithm forpattern mathing nMSCs to the ase where the pattern is not onneted.2 Syntax and Semantis of Nested MSCsWe adopt the de�nition of (basi) message sequene harts (MSC for short), asdesribed in the ITU-standard [13℄.De�nition 1. (Message Sequene Charts.) A message sequene hart is atuple M = 〈P,E, C, ℓ,m,<〉 where:� P is a �nite set of proesses,� E is a �nite set of events,� C is a �nite set of names for messages and loal ations,� ℓ : E → T = {i!j(a), i?j(a), i(a) | i 6= j ∈ P, a ∈ C} labels eah event withits type: on proess i ∈ P , the type is either a send i!j(a) of message a toproess j, or a reeive i?j(a) of message a from proess j, or a loal event
i(a). The labeling ℓ partitions the set of events by type (send, reeive, orloal), E = S ·

⋃
R ·

⋃
L, and by proess, E = ·

⋃
i∈P Ei. We denote by P (e) theproess of event e (i.e., P (e) = i i� e ∈ Ei).� m : S → R is a bijetion mathing eah send to the orresponding reeive. If

m(s) = r, then ℓ(s) = i!j(a) and ℓ(r) = j?i(a) for some proesses i, j ∈ Pand some message name a ∈ C. We denote the events s, r as mathing eventsand the pair (s, r) as message.� < ⊆ E × E is an ayli relation between events onsisting of:
• a total order on Ei, for every proess i ∈ P , and
• s < r, whenever m(s) = r.The upper left part of Figure 1 depits an MSC M on three proesses withtwo messages and four events. Eah vertial line orresponds to a proess, withtime inreasing from top to bottom.For the questions onsidered here, message names are irrelevant. Thus, sendevents will be of type i!j and reeive events of type i?j. Moreover, whenever werefer to an MSC in this paper, we mean atually its isomorphism lass, wherean isomorphism on the set of events E is a bijetion that is ompatible with thetype funtion ℓ and the message funtion m.For ommuniation protools it is natural to assume that eah ommunia-tion hannel delivers messages �rst-in-�rst-out (FIFO). We assume the FIFOondition throughout the paper. That is, for all messages (ek, fk), k = 1, 2, suh3



that ℓ(e1) = ℓ(e2) and ℓ(f1) = ℓ(f2) we require that e1 < e2 i� f1 < f2. There�exive-transitive losure ≤ of the ayli relation < is a partial order alledvisual order. Every total order on E extending ≤ is then alled linearization of
M . A on�guration (pre�x) C of an MSC M is a downward losed subset ofevents, that is, if e < f ∈ E with f ∈ C, then e ∈ C.Note that with the FIFO message order, any total order on a set of events
E de�nes at most one MSC. We obtain this MSC from the event sequene bymathing the n-th send from i to j with the n-th reeive on j from i, for eahpair of distint proesses i, j.A speial ase of the pattern mathing problem onsidered in the paper is theequality test of two (nested) MSCs. In order to hek the equality of two MSCs
M,N (i.e., up to isomorphism) one an hoose any linearization ofM and hekwhether it is a linearization of N , too. An alternative approah, that will beused in our algorithms, is to hek equality on eah proess. Thus, for an MSC
M = 〈P,E, C, ℓ,m,<〉 and a proess i ∈ P we let M |i denote the projetionof M on the set Ei of events loated on i. We have M = N if and only if
M and N have the same set of proesses, that is P (M) = P (N) = P , and iftheir projetion on any proess is equal, that is M |i = N |i for eah i ∈ P (up toisomorphism). Note that both tests rely on the FIFO order of messages. Withoutthe FIFO order, a linearization (or the projetions on proesses) does not su�efor reovering the MSC. For example, the linearization s1s2r1r2 where s1, s2 aresends and r1r2 are reeives from proess 1 to proess 2, an produe two MSCs,one where m(s1) = r1,m(s2) = r2 and one where m(s1) = r2,m(s2) = r1.We follow the ITU norm and de�ne nested MSCs (nMSC for short) by al-lowing the reuse of an already de�ned MSC in a de�nition. The de�nition wegive below aims at preserving the visual harater of MSCs (see also Figure 1).De�nition 2. (Nested MSC, nMSC.) A nested MSC M = (Mq)

n
q=1 is a�nite sequene of maros of the form Mq = 〈Pq, Eq, Bq, ϕq, C, ℓq,mq, <q〉.Eah maro Mq onsists of:� A �nite set Eq of events.� A �nite set Pq of proesses.� A �nite set Bq of referenes (boxes) used by Mq.� A funtion ϕq that assoiates eah referene b ∈ Bq with an index q <

ϕq(b) ≤ n. Thus, referene b refers to the maro Mϕq(b).We require that
Pϕq(b) ⊆ Pq.� The type funtion ℓq : Eq −→ T , that assoiates eah event with a type
i!j, i?j or i(a), with i, j ∈ Pq, i 6= j and a ∈ C. The labeling ℓ partitionsthe set of events by type (send, reeive, or loal), Eq = Sq

·
⋃
Rq

·
⋃
Lq, andby proess, Eq = ·

⋃
i∈P Eq,i. We denote by P (e) the proess of event e (i.e.,

P (e) = i i� e ∈ Eq,i).� The message funtion mq : Sq −→ Rq that maps eah (send) event of type
i!j with a (reeive) event of type j?i, for all i 6= j.� The ayli relation <q over the set of events and referenes Eq∪Bq, de�nedby: 4



• For eah proess k ∈ Pq, the relation <q is a total order over the set Eq,kof events loated on k and the set of referenes b ∈ Bq with k ∈ Pϕq(b).
• e <q f whenever mq(e) = f in Mq.The nesting depth of M is the maximal d suh that there exists some sequene

q1 < · · · < qd+1 with ϕqj
(b) = qj+1 for some b ∈ Bqj

, for all 1 ≤ j ≤ d.We de�ne the indies suh that the lowest levels of hierarhy, whih standsfor levels whih do not use referenes to other level, orresponds to small indies.
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Fig. 1. An nMSC P using two referenes, S and M .Example 1. Consider the nMSC P in Figure 1. It uses three referenes, BP =
{b1, b2, b3} that orrespond to ϕP (b1) = ϕP (b3) = S and ϕP (b2) = M . Thenesting depth of P is 2. The visual order <P of P requires on proess 1 theorder b1 <P e <P b2 <P b3. Notie that the de�nition of a nMSC forbids (f, e)to be a message, with f the send and e the reeive, sine this would ontraditthe ayliity of <P , even in the ase where M would be empty.The semantis of an nMSC is the MSC de�ned by replaing eah refereneof M by the orresponding MSC. Indutively it su�es to de�ne the semantisof nMSCs of nesting depth one. Let M = (Mq)

n
q=1 be an nMSC of nesting5



depth one, withMq = 〈Pq , Eq, Bq, ϕq, C, ℓq,mq, <q〉. For simplifying the notationbelow, we write instead of ϕ1(b) just b.The MSC 〈P,E, C, ℓ,m,<〉 de�ned by M = (Mq)
n
q=1 is given by P = P1,

E = ·
⋃

b∈B1
Eb

·
⋃
E1, ℓ = ∪n

q=1ℓq and m = ∪n
q=1mq. The visual order < is de�nedby e < f if and only if either m(e) = f , or P (e) = P (f) and one of the followingonditions holds:� e, f ∈ E1 and e <1 f ,� e, f ∈ Eb and e <b f ,� e ∈ E1, f ∈ Eb and e <1 b,� e ∈ Eb, f ∈ E1 and b <1 f ,� e ∈ Eb, f ∈ Eb′ and b <1 b

′,where b, b′ ∈ B1. For simpliity, we denote the MSC de�ned by M = (Mq)
n
q=1as M , too.Example 2. For the nMSC P in Figure 1, the lower right part of the pitureshows the MSC de�ned by S. Note that event g ∈ EM ours twie in S � forsimpliity, we denote both ourrenes as g.Note also that the semantis requires that b1 <1 e, but this does not meanthat all events of S = ϕP (b1) must happen before e ∈ EP . For instane, the�rst ourrene of g in S preedes event e of P , but the seond ourrene isonurrent with e.Obviously, a syntatially orret nMSCM might not yield an MSC beauseof the FIFO order. For example, the message (e, f) of P would violate the FIFOondition ifM would ontain a message from proess 1 to proess 3. Fortunately,it an be veri�ed easily (polynomial time) whether an nMSC satis�es the FIFOondition. To test for the FIFO ondition, it su�es to test that there is no

e < g < h < f and no e < b < f with b ontaining a send from i to j, where
(e, f), (g, h) are two messages from i to j.Size of nMSC. For omplexity estimations we will denote by ℘ the overallnumber of proesses. The size of an nMSC M is denoted as |M |. It representsthe size of the syntatial desription of M , where an event is of size one andthe size of a referene is the number of its proesses.3 Nested High-Level MSCAn MSC an only desribe a �nite senario. For speifying more omplex behav-iors, in partiular in�nite sets of senarios, the ITU norm proposes to omposeMSCs in form of MSC-graphs, by using hoie and iteration.De�nition 3. (MSC-graph) An MSC-graph is given as a tuple G = 〈V,E, s, f, ϕ〉,where:� (V,E) is a direted graph with starting vertex s ∈ V and �nal vertex f ∈ V .� Eah vertex v is labeled by the MSC ϕ(v).6



In the same way as we de�ned nested MSCs from (�at) MSCs we an gen-eralize MSC-graphs to hierarhial HMSCs (or nested high-level MSCs, nHMSCfor short).De�nition 4. (Nested high-level MSC.) An nHMSC is a �nite sequene
G = (Gq)

n
q=1, where eah Gq is either a labeled graph or an nMSC. A labeledgraph Gq is a tuple 〈Vq , Eq, ϕq, sq, fq〉 onsisting of:� A direted graph (Vq, Eq) with starting vertex sq and �nal vertex fq.� A funtion ϕq that assoiates eah vertex v with a referene q < ϕq(v) ≤ n,representing Gϕq(v).Thus, a node in an nHMSC an be mapped either to some graph or to annMSC. This de�nition ombines hierarhial automata as de�ned in [4℄ with ourde�nition of nMSC. The speial ase where there is only one proess (i.e., noonurreny) yields the hierarhial automata used in [4℄1.We �rst need to de�ne the omposition of two MSCs N1N2 with Nk =

〈Pk, Ek, Ck, ℓk,mk, <k〉. Intuitively, we just glue together the two diagrams proess-wise. Let N1N2 = 〈P,E, C, ℓ,m,<〉 with E = E1 ·
⋃
E2, P = P1∪P2, C = C1∪C2,

ℓ = ℓ1 ∪ ℓ2, m = m1 ∪m2 and
< = <1 ∪<2 ∪

⋃

i∈P

E1,i × E2,i.The semantis of an nHMSC G = (Gq)
n
q=1 is a (possibly in�nite) set of MSCs

L(G) de�ned reursively. If Gq is an nMSC, then L(Gq) is a singleton onsistingof the MSC de�ned by Gq. Let us onsider a labeled graph Gq. Then L(Gq) isthe set of MSCs assoiated with the aepting paths of Gq, that is, paths startingin sq and ending in fq. With a path v1, . . . , vn in Gq we assoiate the set of allMSCsM1 · · ·Mn, whereMi ∈ L(Gϕq(vi)) for all 1 ≤ i ≤ n. The set of exeutionsof G is de�ned as L(G) = L(G1).As in [1℄ we also onsider a weaker semantis for nHMSCs, that does not usethe omposition of MSCs (alled weak losure in [1℄). This semantis is basedon taking the produt of the sequential behaviors of single proesses. Severalalgorithmi problems an be solved more e�iently for the weak losure of MSC-graphs. This makes it interesting to ompare it with the usual semantis also inthe setting of nHMSCs.Weak losure of nHMSC. Let G be an nHMSC. Then Lw(G) denotes the setof MSCsM suh that for eah proess i there is some MSC N ∈ L(G) suh that
M |i is equal to N |i. Note that L(G) ⊆ Lw(G) and that the inlusion is strit, ingeneral (see [1℄).1 Atually, [4℄ allows several �nal nodes in eah automaton, whih ounts for theomplexity of their algorithms. 7
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iFig. 2. An nHMSC Gi+1 generating (a + b)2

i
−1 with G1 = ǫ.4 Membership ProblemCheking the membership of an MSCM in an MSC-graph G is used typially forheking that no bad senario an our in a given spei�ation. Another applia-tion is heking whether a good senario is already overed by the spei�ation.Cheking membership is not an easy task already beause of the onurrenyimplied by the MSC omposition, all the more in the presene of hierarhy. TheMSC membership problem M

?
∈ L(G) with M an MSC and G an MSC-graphwas onsidered in [1℄, together with the weak membership problemM

?
∈ Lw(G).The results of [1℄ an be summarized as follows:� The MSC membership problem is NP-omplete. A deterministi algorithmof time O(|G| · |M |℘) solves it2, where ℘ is the number of proesses.� The weak MSC membership problem is solvable in time O(|G| · |M |).So the MSC membership problem is solvable in polynomial time if we �x thenumber of proesses.4.1 Hierarhial Membership ProblemThe membership problem seems a priori more di�ult for an nMSC M againstan nHMSC G, sine the naive approah of guessing a path of G and hekingequality with M is too expensive (both the path of G and the MSC de�nedby M an be of exponential size). However, it is easy to show that we an testmembership in polynomial spae:Theorem 1 (Hierarhial MSC Membership Problem) Given an nMSC

M and an nHMSC G, we an deide whether M ?
∈ L(G) in polynomial spae.2 This is a slightly improved runtime ompared to the result stated in [1℄.8



Proof. The idea of the algorithm is straightforward: we guess an MSC in
L(G) and we math it against the nMSC M , however expanding neither M nor
G. Reall that for testing equality of two MSCs M,N , it su�es to hoose onelinearization of N and hek whether it is a linearization of M . Hene, we anhoose the linearization of the MSC in G (as long as we do not exlude anyMSC in L(G), that is as long as we do not exlude every linearization of oneMSC). We onsider only the linearizations in Lin0(G), where Lin0(G) is de�nedreursively. If Gq is an nMSC, then Lin0(Gq) is the set of linearization of Gq.With a path v1, . . . , vn in Gq we assoiate the set of all linearizations u1 · · ·un,where ui ∈ Lin0(Gϕq(vi)) for all 1 ≤ i ≤ n. Let us onsider a labeled graph Gq.Then Lin0(Gq) is the set of linearizations assoiated with the aepting paths of
Gq, that is, paths starting in sq and ending in fq. We de�ne Lin0(G) = Lin0(G1).Intuitively, it means that we do not onsider linearizations uavbw of path v1 · · · vnwhere a belongs to a node vi and b to vj with j < i, that is every node needs tobe fully exeuted before the next node an be onsidered.We need to store a on�guration of M , orresponding to the events alreadymathed with the events from G. Sine a on�guration is a downward losed setof events, it an be stored as a tuple of ℘ events (remind that ℘ is the number ofproesses), representing the last event of the on�guration on eah proess. Suha tuple is of linear size w.r.t. the size ofM . Eah event e ofM = (Mq)

n
q=1 will berepresented by a sequene b1, . . . , bm of referenes orresponding to the unfoldingof referenes yielding e. That is, we indutively remind bm for e ∈ Eϕ(bm) where

bm is a referene of ϕ(bm−1), plus the position of e in Mϕ(bm). Thus, eah eventan be stored using linear-size memory. In our �gure 1, the �rst ourrene of gin P orresponds to (b1, b4, g), the seond ourrene to (b1, b5, g), and so on.Similarly, we an store the urrent on�guration of the linearization in Lin0(G)in spae polynomial in |G| (an event of G is represented by a sequene of nodesthen of referenes). Sine a new node is started only when the previous node isfully exeuted, the last event for every proess belongs to the same node. Thenon-deterministi algorithm onsists in guessing a suessor on�guration of G,obtained by extending the urrent on�guration by an event e suh that the newon�guration is still a pre�x of some linearization in Lin0(G). Then we hekthat e an extend the urrent linearization of M as well. The algorithm stopswhen the on�guration that orresponds to the path being guessed in G is equalto M and the path of G is aepting.
2Theorem 2 below shows that PSPACE is the lowest omplexity we an obtainfor the hierarhial membership problem. The lower bound holds even if there isonly one proess (Theorem 2), or if the graph G is not hierarhial (Theorem 3),but not both (Theorem 4). This shows also that �xing the number of proessesdoes not lower the omplexity of the problem, unlike in the non hierarhial ase.We show the PSPACE lower bound for the following problem: given a straight-line program W (see below) and a hierarhial automaton A, test whether

W ∈ L(A). This question orresponds to the hierarhial membership problem9



with a single proess. Notie also that the weak membership problemM
?
∈ Lw(G)[1℄ an be redued to this question.Straight-line programs. A straight-line program (SLP for short) over thealphabet Σ is a ontext-free grammar with variables V = {X1, . . . , Xk}, initialvariable X1 and rules from V × (V ∪ Σ)+. The rules are suh that there isexatly one rule for eah left-hand side variable and if Xi −→ α, then eah Xjin α satis�es j > i.The onstraints on the rules make that any variable Xi generates a uniqueword. For onveniene, we denote the word generated by the variable Xi alsoas Xi. The length of a variable Xi represents the length of the word generatedby Xi and is denoted as ||Xi||. Clearly, ||Xi|| an be at most exponential in thenumber of rules. The size |Xi| of an SLP is the sum of the sizes of the rules.Without loss of generality, we an assume that rules are of size 2, that is of theform X −→ Y Z with Y, Z ∈ V ∪Σ.Sine any MSC M is determined by its projetions (M |i)i∈P , an nMSC Man be identi�ed with ℘ SLPs L1, . . . , L℘. The SLP Li generates the projetion

M |i of M on the set of events of proess i ∈ P . We denote the variables usedby Li as X |i, where X ∈ {Mq | q = 1 · · ·n}. The initial variable of eah Liis Mn|i. Atually, the SLPs are not in Chomsky normal form to preserve thisrepresentation of nMSCs.Example 3. For the nMSC P is Figure 1 we have the following SLP generatingthe projetion on proess 1: P |1 → S|1eM |1S|1, S|1 →M |1hM |1 and M |1 → k.Theorem 2 It is PSPACE-omplete to hek whether W ∈ L(A) for some SLP
W and hierarhial automaton A. If the alphabet is unary, then the membershipproblem is NP-omplete.Remark 1 The NP-hardness result in the unary ase follows also from [23℄.Proof. We �rst redue (1-in-3) SAT to the unary membership problem, sinewe use this redution in the general ase, too. This problem is NP-omplete, see[24, 6℄.Let ϕ = ∧m

j=1C(αj , βj , γj) be an instane of (1-in-3) SAT over n variables
(xi)i=1,n. Here, a lauseC(αj , βj , γj) is true i� exatly one of the literals αj , βj , γjis true. We use the unary alphabet {a}. Note that any word x ∈ a∗ is uniquelyde�ned by its length.We assoiate with eah lause Cj = C(αj , βj , γj) the word wj ∈ a∗ of length
4j . This word an be de�ned by an SLP of polynomial size. LetW = w1 · · ·wm ∈
a∗ be the word of length ∑m

j=1 4j . The automaton A onsists of a sequene ofhoies with transitions labeled by ti and fi, for i varying from 1 to n, where
ti =

∑
j∈Ri

4j and Ri = {j | xi ∈ {αj , βj, γj}}. In the same way, fi =
∑

j∈Si
4jand Si = {j | (¬xi) ∈ {αj, βj , γj}}. 10
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nAny path ρ of A orresponds to a valuation σ where eah variable xi is trueif the path hooses ti, and false if it hooses fi. Let nj be the number of literalsof Cj that are set true by σ. Reall that σ satis�es the formula ϕ i� nj = 1 forall j. It is easy to see that ρ is labeled by the word L ∈ a∗ of length ∑m
j=1 nj4

j .Notie that sine eah lause has three literals, nj ∈ {0, 1, 2, 3} for all j. Thelength of L in base 4 is thus (nmnm−1 . . . n10)4. We haveW = L i� (11 . . .10)4 =
(nmnm−1 . . . n10)4, thus i� nj = 1 for all j. That is, there is a path in A labeledby W i� there is a valuation satisfying ϕ, whih implies that the membershipproblem for hierarhial automaton on a unary alphabet is NP-hard.We now show the �rst statement of Theorem 2. We redue the (1-in-3) QBF(one-in-three quanti�ed boolean formula) to the hierarhial membership prob-lem. Let ϕ be an instane of (1-in-3) QBF of the form ϕ = Qnxn · · ·Q1x1ψ,where Qi ∈ {∃, ∀} and the formula ψ is of the form ∧m

j=1C(αj , βj , γj). As before,a lause C(αj , βj , γj) is true i� exatly one literal is true. The PSPACE-hardnessof this problem is shown in [24, 6℄.The idea is to make the valuations of the variables orrespond to paths inthe hierarhial automaton (Ai)i=0,n and to validate the valuations using theSLPs (Wi)i=0,n. We de�ne the automata Ai and the SLPs Wi by indution on
i = 0, . . . , n. Here, we use the binary alphabet {a, b}. The letter a will have thesame meaning as in the NP-ase, and the letter b will be used as a delimitingsymbol.We de�ne the words wj , ti, fi ∈ a∗ with respet to ψ as before. That is,eah wj is assoiated with lause Cj and ti, fi are assoiated with variable xi.Moreover, we assoiate with eah variable xi the word wi+m ∈ a∗ of length
4i+m. Let W0 = w1 · · ·wn+m be the word of a∗ of length ∑n+m

j=1 4j , and let A0be an automaton onsisting of one ǫ-transition from its initial state to its �nalstate. Let also S0 be an automaton onsisting of one transition labeled by b. TheSLP-ompressed words (Wi)i=1,n, are de�ned by:� Wi −→Wi−1, if Qi = ∃,� Wi −→Wi−1 bWi−1, if Qi = ∀.The reursive de�nition of the automata (Ai)i=1,n and (Si)i=0,n−1 is illus-trated in the �gure below. Transitions are either labeled by ǫ, or by xti = tiwi+mor xfi = fiwi+m. The automaton on the left de�nes Ai when Qi = ∀, the au-tomaton in the middle de�nes Ai when Qi = ∃, and the automaton on the rightde�nes Si. Note that the symbol b is only generated by S0. In the �gure we reallits position by marking a b aside eah Si.11
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The overall idea is as follows. The values of xi+1, . . . , xn are already hosenwhen an automaton alls Ai (from a higher hierarhy level). The automaton Aion the left sets xi true, then uses Sn−i to reover the �xed values of xi+1, . . . xn,and �nally it sets xi false. The automaton Ai in the middle guesses whether xi istrue (by taking the transition labeled by xti) or false (by hoosing the transitionlabeled by xfi). If it hooses both transitions labeled by xti, xfi or none of them,then the word labeling this path will not be equal to Wn beause Wn ontainsexatly one ourrene of wi+m between any two onseutive b's. We illustratehow Ai works on �gure 3, that shows the unfolding of the automaton A2 for
ϕ = ∀x2∀x1ψ on the left and for ϕ = ∃x2∀x1ψ on the right.To illustrate how Sn−i reovers the values of xi+1, . . . , xn, we show Sn−i for
n = 9, i = 7 in the �gure below.
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Ai and Si are designed so that any path of Ai is labeled by at most one xtiand at most one xfi between any two onseutive b's, for eah i (for onveniene,we suppose that eah automaton starts and ends with a �tive b transition).That is, a path an be labeled by xti and xfi, but not by two xfi or two xti. Byontradition, assume that there are two onseutive b's in Ai suh that there isa path from one to another labeled by two xtj (the ase xfj is symmetri). Wetake the minimal Ai whih ensures this. By the minimality of Ai, this an onlyhappen either beause of the �rst xtj transition of Ai, or between Sn−i and oneof the two Ai−1. Sine in Sn−i all xtk our after the (unique) b, there is no xtj12
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Fig. 3. Unfolding of A2 for Q2x2Q1x1 = ∀x2∀x1 on the left, and on the right, unfoldingof A2 for Q2x2Q1x1 = ∃x2∀x1
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in Ai−1 before its �rst b (if any). It already shows a ontradition in the asewhere Qi = ∃. Consider now the ase Qi = ∀. For the same reason as before,there an be at most one xtj between the last b of Ai−1 and the b in Sn−i, forall k < i. Finally, between the b of Sn−i and the �rst b of the seond Ai−1 therean be at most one xtk with k > i (from Sn−i) and at most one xtk with k < i(from Ai−1). Thus, in all ases we ontradit the assumption on Ai.Let us prove that Wn ∈ L(An) i� there exists a satisfying valuation tree V Tfor ϕ. A valuation tree V T is a binary tree of height n + 1 suh that its root(level n) is labeled by xn and all nodes on level l are labeled by xl. The leaves areon level 0, and are unlabeled. A node v labeled by xi orresponds to a valuation
σ(v) of the variables xi+1, . . . , xn. For instane, if the valuation for a node is xnis true, then its hildren must evaluate xn to true, and evaluate xn−1 either totrue or false. Moreover, a node on level k have two hildren if xk is universallyquanti�ed (one hild evaluate xk to true and the other one to false), and onehild if xk is existentially quanti�ed. We say that a valuation tree satis�es a QBFformula ϕ = Qnxn · · ·Q1x1ψ if for every valuation of every leaf, ψ is true.Using the property we just showed, we an note that between any two on-seutive b's of any path of An, there are at most three wj and two wi+m for any
1 ≤ j ≤ m, 1 ≤ i ≤ n. Thus our oding in base four for determining whether alause is true, is still appliable. Hene, a path ρ of An is labeled by Wn i� forall 1 ≤ k ≤ n+m there is exatly one wk between any two onseutive b's.Assume that V T is a valuation tree showing that ϕ is true. A valuation σ(v)de�nes two words T (v), F (v) as follows: the word T (v) is the onatenation ofall xtj where j > i and xj is true in σ(v). The word F (v) is the onatenationof all xfj where j > i and xj is false in σ(v). Let v be a node of V T labeledby xi. We de�ne the word ρ(v) = T−1(v)WiF

−1(v). We reall that T (v), F (v)are words over a∗, hene T−1(v)WiF
−1(v) is the word that results from Wi bydeleting |T (v)| many a's in the pre�x and by deleting |F (v)| many a's in thesu�x.Let us show by indution on level i that ρ(v) is in L(Ai) for any node v of

V T on level i.If v is a leaf of V T , then it de�nes an aepting valuation for ψ, hene
T (v)F (v) = W0 using the same argument as in the NP-hardness ase. Hene
ρ(v) = W0W

−1
0 = ǫ ∈ L(A0).Consider an internal node v labeled by xi with Qi = ∀. Let v1, v2 be thehildren of v, with v1 orresponding to xi true, and v2 to xi false. By indutionlet us suppose that ρ(v1), ρ(v2) are in L(Ai−1). Then,

ρ(v) = T−1(v)WiF
−1(v) = T−1(v)Wi−1bWi−1F

−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)bT (v2)ρ(v2)F (v2)F
−1(v)

= xtiρ(v1)F (v1)bT (v2)ρ(v2)xfiWe used in the equations above T−1(v)T (v1) = xti for the positive hild v1 of
v and F−1(v)F (v2) = xfi for the negative hild v2 of v. Moreover, F (v1)bT (v2) =14



F (v)bT (v) ∈ L(Sn−i) sine the indies of false variables in σ(v1) and of truevariables in σ(v2) form a partition of {i+1, . . . , n}. This shows that ρ(v) ∈ L(Ai).Consider an internal node v that is labeled by xi with Qi = ∃. Assume bysymmetry that v1 is the hild of v in V T (thus, xi is true). By indution weassume that ρ(v1) is in L(Ai−1). It is easy to show now that ρ(v) ∈ L(Ai) using:
ρ(v) = T−1(v)WiF

−1(v) = T−1(v)Wi−1F
−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)F
−1(v)

= xtiρ(v1)For the reverse diretion the arguments are similar. From a wordW = Wn of
A = An, we obtain subwords ρ(v) in L(Ai) as above, labeled by T−1(v)WiF

−1(v).For eah leaf v this means that σ(v) satis�es exatly one literal per lause.
2Theorem 2 shows immediately that the hierarhial membership problem isPSPACE-hard even with one proess, by enoding the alphabet {a, b} by loalations on a single proess. Similar arguments an be used for the ase where Gis an MSC-graph with no hierarhy, as shown in the following theorem.Theorem 3 The hierarhial MSC membership problemM

?
∈ L(G) is PSPACE-omplete. The lower bound holds even if G is an MSC-graph, or if there is onlyone proess.Proof. The problem we redue from is (1-in-3)QBF. Let F be an instane of(1-in-3)QBF of the form F = (Qnxn) . . . (Q1x1)ϕ, where Qi ∈ {∃, ∀} and theformula ϕ is of the form ∧j=1...mR(αj,1, αj,2, αj,3), with αj,k literals.The idea is to let valuations of the variables to orrespond to paths of G andto validate the valuations using the nMSC M . We de�ne the graph G and thenMSC M by indution on F = Fn. Let Fi = (Qixi)Fi−1, with F0 = ϕ. Eah Fiwill determine Gi,Mi.The proesses used in the onstrution are SC1, . . . , SCm and RC1, . . . ,RCm,plus VY1, . . . ,VNn and VN1, . . . ,VNn. Here V means a variable and C a lause,

S stands for �send�, R for �reeive�, Y for �yes� and N for �no�.For all i, let MYi be the MSC onsisting of a message from VYi to VNi,then bak from VNi to VYi, and a message from SCj to RCj for all j suhthat xi ∈ {αj,1, αj,2, αj,3}. Symmetrially, let MNi be the MSC onsisting of amessage from VNi to VYi, then bak from VYi to VNi, and a message from SCjto RCj for all j suh that ¬xi ∈ {αj,1, αj,2, αj,3}.
M0 is an MSC onsisting of one message from SCj to RCj , for all j. TheMSC-graph G0 onsists of 4n verties, labeled by MYi, MNi, or ∅. The graphhooses between MYi and MNi for all i, as depited below:15
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nNote that all messages de�ned above ommute, exept for the ones betweenVYi and VNi. Let ai be the message from VYi to VNi, and bi the message fromVNi to VYi. We will use the order between ai, bi as follows: The sequene aibimeans that xi is true, while biai means that xi is false.Assume now that Gi−1,Mi−1 are already de�ned, and that there are f uni-versal quanti�ers in Fi−1. For simpliity, we denote a = ai and b = bi. Note thatin a valuation tree for F showing that F is true, eah value 0 or 1 assigned to thevariable xi is used by 2f leaves. A valuation tree is de�ned as usual, by assigningeah universally quanti�ed variable two hildren labeled 0 and 1, respetivelyeah existentially quanti�ed variable one hild labeled 0 or 1.If Fi = ∀xiFi−1, then let Mi = (ab)2
f

Mi−1Si(ba)
2f

Mi−1 (see Figure 4.1).The MSC Si is used for synhronizing proesses ourring in Mi. It ontainsa message between eah (ordered) pair of proesses of Mi (in some arbitraryorder). Note that using the hierarhy we an desribe (ab)2
f , and thus Mi, byan expression of polynomial size.LetGi = (Vi, Ei), where Vi = Vi−1∪{e0} and Ei = Ei−1∪{(Fin, e0), (e0, In)}.The initial node In (the �nal node Fin, respetively) of Gi is the same as for

Gi−1. The vertex e0 is labeled by the synhronization MSC Si.
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abThe de�nition of Mi, Gi an be explained intuitively as follows. Let ρ be apath of Gi labeled by Mi. Note that the MSC Si ourring in Mi has to maththe MSC Si of e0. Thus ρ = ρ1e0ρ2, with ρ1 an aepting path of Gi−1 labeled by
(ab)2

f

Mi−1 and ρ2 an aepting path of Gi−1 labeled by (ba)2
f

Mi−1. Eah time
ρj goes through G0 (whih happens 2f times), ρj onsumes either ab of MYior ba of MNi, so ρj onsumes all ourrenes of a, b in (ab)2

f . In partiular, allourrenes onsumed by ρ1 are of the form ab, whih ensures that the valuationof xi assoiated with ρ1 is onsistent (xi is true). The same holds for the path
ρ2, where the value of xi is fored to be false.16



Suppose now that Fi = ∃xiFi−1. LetMi = (ab)2
f

(a)Mi−1, and Gi = (Vi, Ei),where Vi = Vi−1∪{e0, e1, e2, e3}. LetEi = Ei−1∪{(e0, In), (Fin, e3), (e0, e1), (e1, In),
(Fin, e2), (e2, e3)}, where as above In is the initial vertex and Fin is the �nal ver-tex of Gi−1. The initial and �nal verties of Gi are e0 et e3. We label e1 and e2with a, and e0 et e3 with ∅.
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iThe underlying idea in this ase is that the additional ourrene of a in
Mi must be mathed by e1 or e2 (nowhere else there is an a). If it is e1, everytime the path ρ goes through G0, it must hoose ba, hene it goes through VNi.The orresponding value for xi is then fored to be false. If it is e2, then ρ musthoose ab, hene it goes through VYi. The rest of the proof is easy, see the proofof theorem 2.

2However, if there is only one proess and hierarhy is not allowed for thegraph G (or the MSC/word M), then our lower bound proof does not workanymore. Indeed, we show below that in the ase where the word W or theautomaton A are �at, the membership problem is solvable in polynomial time.Theorem 4 1. Let W be a word de�ned by an SLP and let A be an NFA.Deiding whether W ∈ L(A) an be ahieved in time O(|W | · |A|3).2. Let W be a word and let A be a hierarhial automaton (hNFA for short).Deiding whether W ∈ L(A) an be ahieved in time O(|W |3 · |A|3).For the �rst statement in the theorem above a similar result (for Lempel-Zivompressed words and regular expressions) has been shown in [23℄.The polynomial time algorithms for Theorem 4 are stated below. The �rstalgorithm omputes in a dynami programming way the set TX of pairs (a, b) ofstates of a NFA A between whih a path labeled by X exists, for eah variable
X of the SLP. A variable X is on the lowest level, if the rule assoiated with Xis terminal.Membership ((Xi)i=1,n SLP-ompressed word, A=(V,E,a0,af) NFA)For eah variable Xi in the lowest level:TXi

= { (a,b) ∈ V × V | a Xi−→ b };17



For i = 1 · · · n:Let TXi
= ∅;Let Y,Z s.t. Xi → Y Z;For all verties a,b, ∈ V:If (a,b) ∈ TY and (b,) ∈ TZ:TXi

= TXi
∪ {(a,)};Return (a0,af) ∈ TX1

;The seond algorithm omputes for eah sub-automaton B of a hNFA A theset TB of fators Wi · · ·Wj of a word W that it aepts. This algorithm usesanother dynami programming algorithm alulating for eah fator Wi · · ·Wjthe set Ti,j of pairs (a, b) of states of B between whih a path labeled byWi · · ·Wjexists. For onveniene, we assume without loss of generality that every transitionis a subautomaton, but those on the lowest level of the hierarhy (else, we justreplae every transition labeled by a by a subautomaton in the lowest level ofthe hierarhy with a unique transition from the initial to the �nal state labeledby a.). We use the fat that (a, b) ∈ Ti,j if either there is a transition from a to
b labeled by a subautomaton C aepting Wi · · ·Wj , or else the path labeled by
Wi · · ·Wj an be deomposed as a, c and c, b, and then there exists 0 < e < j− isuh that (a, c) ∈ Ti,i+e and (c, b) ∈ Ti+e,j . We thus ompute �rst the lowerlevels of hierarhy, and we ompute �rst the sets Tk,k+d for small d, whih allowsus not to use a ostly �x point algorithm.Membership (W word, A=(V,E,a0,af) hNFA)For eah sub-automaton B of A in the lowest level of hierarhy:TB = {(i,j) | Wi · · · Wj is aepted by B};For eah sub-automaton B of A, by inreasing hierarhial level:For d = 0, . . . , |W |, for i = 1, . . . , |W | − d,Di,i+d = { (a, b) | ∃ subaut. C s.t. a

C
−→ band (i, i+ d) ∈ TC};For eah e < d and every a, b, c verties of B,If (a,b) ∈ Di,i+e and (b,) ∈ Di+e,i+d:Di,i+d = Di,i+d ∪ {(a,)};TB= {(i,j) | (a0,af) ∈ Di,j};Return (1, |W |) ∈ TAThe �gure below summarizes the omplexities of the di�erent variants forthe hierarhial MSC membership problem as onsidered in this setion. Thelast two olumns orrespond to the ase of a single proess (word ase) and tothe general MSC ase, respetively. The fat that the membership problem isNP-omplete for an MSCM and an nHMSC G is easy to show sine it is alreadyNP-hard for H an HMSC [1℄, and it su�es to guess a path of G of the size of

M , whih is polynomial, and hek whether it is labeled by M .18



M G words MSCFlat Nested P NP-ompleteNested Flat P PSPACE-ompleteNested Nested PSPACE-omplete PSPACE-ompleteFig. 4. Complexity of membership problems.5 Pattern Mathing of nMSCsThe aim of this setion is to show that pattern mathing on nMSCs an beahieved in polynomial time, i.e., without unfolding the nMSCs. We �rst onsidera speial ase of pattern mathing, namely testing equality of nMSCs. Then wedesribe �rst a pattern mathing algorithm when the pattern nMSC is onneted,and seond the additional work to do when the pattern is not onneted.5.1 Equality of nMSCsReall �rst that the FIFO message order allows testing the equality of two MSCs
M and N proess-wise, whih amounts to testing the equality of ℘ pairs of words(over the type alphabet T ). In the hierarhial ase we already used in Setion4.1 the representation of an nMSC M by ℘ straight-line programs Li, where theSLP Li generates the projetion M |i of M on proess i.Thus, for testing the equality of two nMSCs in polynomial time, we an usediretly the following result:Theorem 5 ([22℄) Let P be an SLP, and A,B be two variables of P . We andetermine whether A and B generate the same word in time O(|P |5 log(|P |)).The theorem above provides an algorithm for testingM = N of timeO((|M |+
|N |)5 log(|M | + |N |)). We an improve the running time by using the patternmathing algorithm desribed in the next setion.5.2 Pattern Mathing nMSCsDe�nition 5. The pattern mathing problem for two MSCsM and N = 〈P,E, C,
ℓ,m,<〉 onsists in knowing whether there exists some subset F ⊆ E of eventsof N suh that the restrition of the mappings ℓ,m to F equals M . Moreover,we require that F is onvex, that is if e, f ∈ F and e < g < f , then g ∈ F .In partiular, the message mapping m must be one-to-one between the send andreeive events in F . We all suh an event set F an ourrene of M in N . If
M,N are nMSCs, then M ours as a pattern in N if the MSC de�ned by M isa pattern in the MSC de�ned by N , and we write M ⊆ N in this ase.It is easy to see that for an MSCM to be a pattern of an MSC N it does notsu�e to have eah M |i a pattern of N |i. Of ourse, this ondition is neessary.Before to onsider the hierarhial ase, we show a simple algorithm for thenon-hierarhial ase: 19



Theorem 6 Let M,N be two MSCs. We an hek whether M is a pattern of
N in linear time.Proof. The main idea omes from pattern mathing in trae monoids, [15℄.Weneed the linear time algorithm of Knuth-Morris-Pratt for determining ourreneofM |i in N |i, for all i ∈ P . We searh for tuples of ourrenes of (M |i)i∈P thatform a fator of N . Thus, we look for a on�guration of N suh that on eahproess i, we haveM |i as a su�x. This is done by reording the set J of proesses
i satisfying this ondition and progressing one event at a time on proesses j /∈ J .If this is not possible, the next event on every i /∈ J is a reeive from some j ∈ J ,while the orresponding send from j to i in N has not been seen yet. We thenprogress on j, and update J by using Knuth-Morris-Pratt algorithm to knowwhether j ∈ J or j /∈ J . The overall omplexity of the algorithm is linear, bytaking are that eah event in N is onsidered at most one. 2De�nition 6. Let N = (Ni)

n
i=1 be an nMSC (or an SLP), and i, j ≤ n.1. We write Ni < Nj whenever Ni is used in the de�nition of Nj or in thede�nition of Z with Z < Nj . We write Ni ≤ Nj when i = j or Ni < Nj .2. We say that Ni ours literally in Nj when Ni is used as a referene (variableresp.) in the de�nition of Nj , and we write Ni ∈ Nj if it is the ase.The strategy we will use for nMSC pattern mathing is to ompute an im-pliit representation of all positions where M |i ours as a pattern in N |i. In aseond step we ompute all positions where the projetionsM |i form a fatorM .The basis of our algorithm is a pattern mathing algorithm for SLP-ompressedwords, that was proposed in [20℄ (see also [22℄):Theorem 7 ([20℄) Let P be an SLP and let A,B be two variables of P . Onean determine all ourrenes of the word de�ned by A in the word de�ned by Bin time O(|A|2|B|2).

V
Y u u u

X X

i V i+1arithmeti progression O(X,Y, V i)The idea of the algorithm in [20℄ is based on word ombinatoris. Let X bea variable of A and suppose that X ours in B, i.e. (the word de�ned by) X isa fator of (the word de�ned by) B. Suppose that X does not appear as a fatorinside any variable Y of B with rule Y → α ∈ Σ∗. Then X ours in a variable
Y with Y −→ V 1 · · ·V k. Let i be suh that V i is the �rst symbol (variable orletter) that this ourrene of X overlaps, and the ourrene ends beyond V i(see also �gure above). In partiular, Y is the lowest variable that ontains thisourrene ofX . We let O(X,Y, V i) denote the set of positions of Y at whih anourrene of X starts within V i and ends beyond V i, or starts and ends within
V i if V i is in the lowest level of the hierarhy. Let O(X,Y ) =

⋃
i O(X,Y, V i).20



Using a ombinatorial argument (lemma of Fine and Wilf, [7℄), it is shownin [20℄ that O(X,Y, V i) is an arithmeti progression that an be omputed bydynami programming in polynomial time. Therefore, O(X,Y ) onsists of atmost |Y | arithmeti progressions, preisely at most one for eah i (and |V i| for
V i on the lowest level of the hierarhy). That is, we an represent O(X,Y, V i)by a triple of numbers (n, s, k) where n and n + s are the positions in Y ofthe two �rst ourrenes of X in O(X,Y, V i), and k = #O(X,Y, V i) is thenumber of ourrenes of X in O(X,Y, V i). That is, we have Y = Y1XY2with ||Y1|| = n + is, for all 0 ≤ i < k. As an example, onsider the words Y =
aaabababababb and X = ababab. The arithmeti progression whih orrespondsto the ourrenes of X in Y is (2, 2, 3) (the �rst position in a word being 0).Remark 2 Using the algorithm of [20℄ we immediately obtain that the equalityof two SLPs M,N an be heked in time O(|M |2|N |2), whih improves theomplexity provided by the algorithm proposed by Plandowski in [22℄.Throughout the setion we denote ourrenes of projetions M |i using su-persripts. That is, M |1i will orrespond to a given starting position of M |i aspattern of N |i. Suppose that M i is a fator of N |i for all i ∈ P . We say that
(M i)℘

i=1 forms a fator of N if there exists M a fator of N suh that M |i = M ifor all i ∈ P .5.3 Pattern Mathing for Conneted PatternsWe turn now to the pattern mathing problem for nMSCs M , N where thepattern M is onneted. That is, we suppose in this setion that M annot bewritten asM1M2, whereM1,M2 are non-empty MSCs with no ommon proess.De�nition 7. Let M |1i and M |2j be ourrenes of M |i in N |i, resp. of M |j in
N |j . We say that M |1i and M |2j are ompatible, if the �rst send (resp. reeive)between the proesses i and j onM |1i mathes the �rst reeive (resp. send) onM |2j(if i, j ommuniate in M). More generally, we all the indies orresponding to
M |1i , M |2j in a given arithmeti progression ompatible.Lemma 1. Let (M |0i )

℘
i=1 be ourrenes of M |i in N |i. Then (M |0i )

℘
i=1 forms afator of N i� (M |0i )

℘
i=1 are pairwise ompatible.As in the previous setion we will denote by O(M,Y ) the set of our-renes M0 of M in Y suh that M0 does not our in any Z < Y . We denoteby O(M,Y, V ) ⊆ O(M,Y ) those ourrenes that start within V (endingbeyond V ), where V ∈ Y is a referene ourring literally in Y . It means thatone event of the ourrene has to our in V and one (not neessarily on thesame proess) has to our not in V . Obviously, no event may our before V .Our searh for ompatible ourrenes uses the following properties, that areeasily shown using the fat that M is onneted:21



Fat 1 1. Let Y be a variable of N and h 6= j two proesses. Then for eah
M |0h ∈ O(M |h, Y ) there an be at most one ourrene M |0j in Y that isompatible with M |0h.2. For eah ourrene M0 in O(M,Y, V ) there exists some proess h suhthat M0|h ∈ O(M |h, Y, V ). We all suh a proess h a leading proess for
M0. Thus, any pairwise ompatible tuple (M0|k)k 6=h ⊆ Y is determined bythe ourrene M0|h, beause of Fat 1.1.Example 4. For the nMSC P in Figure 1 and the pattern N in Figure 5 we haveO(N,P ) = ∅ and O(N,S) is a singleton, orresponding to the unique our-rene ofN in S. The leading proesses are 1 and 3, sine e.g. O(N |3, S|3) = {0}.Note that O(N |2, S|2) = ∅ and O(N |2,M |2) = {0} is the arithmeti progres-sion (0, 0, 0).

N

1 2 3

Fig. 5. Pattern MSC NAn index i = n + js, j < k, of an arithmeti progression (n, s, k) in Y isalled external , if it is either the �rst or the last index of the progression, thatis i = n (j = 0) or i = n+ (k− 1)s (j = k− 1). Any non external index is alledan internal index.The next proposition provides the main argument that the searh for a pair-wise ompatible tuple of ourrenes (M |i)i∈P an be done in polynomial time.Intuitively, we must show that the ourrenes of (M |i)i∈P an be loated inthe same variable Y of N , up to polynomially many exeptions. Without thisproperty we would have to onsider di�erent variables Y i for di�erent proesses
i ∈ P . We reall that for every message (e, f) in an nMSC N = (Nq)

n
q=1 theevents e and f appear literally in the same maro Nq.Proposition 1 Assume thatM0 ∈ O(M,Y, V ) withM0|i ∈ O(M |i, Y i, V i),where Y, Y i, V i are variables of N . Then we have one of the following two ases:1. Y i = Y and V i = V for all i. 22



2. For some leading proess h for M0 (i.e., V h = V and Y h = Y ), the our-rene M0|h is an external index of O(M |h, Y h, V h).Proof. Suppose that there is no leading proess h suh thatM0|h is an exter-nal index of O(M |h, Y h, V h). Assume also that there is a message from proess
i to proess j inM . We deomposeM |i = Ai,jB

s
i,jCi,j suh that Bs

i,j begins withthe �rst send from i to j, and ends with the last one. Similarly, we deompose
M |j = Aj,iB

r
j,iCj,i suh that Br

j,i begins with the �rst reeive on j from i, andends with the last one. We need the next lemma to infer that if an ourrene
M0 is suh thatM0|i ∈ O(M |i, Y i, V i) andM0|j ∈ O(M |j , Y j , V j) are bothinternal indies, then we have Y i = Y j and V i = V j . This will allow �nishingthe proof of the proposition.Lemma 2. Let π = O(M |i, Y, V ) be an arithmeti progression onsisting ofat least three indies. Then eah Bs

i,j assoiated with some internal index of πbelongs to O(Bs
i,j , Y, V ).Proof of lemma: SineM |i belongs to an arithmeti progression onsistingof at least three indies, M |i is of the form (a1 · · · an)d(a1 · · · am), where d ≥ 2and m < n.By assumption, there is a message from i to j in M |i, hene ak = i!j forsome k. Sine Ai,j and Ci,j have no i!j, we obtain Ai,j = a1 · · ·ak−1 and Ci,j =

al+1 · · · ana1 · · · am, with l > m.In partiular, we have |Ai,j | < n and |Ci,j | < n. Sine eah M |i ontainsthe last position of the word generated by V , the subword Bs
i,j also ontainsthis position, exept possibly for the �rst and the last Bs

i,j . Hene, every Bs
i,jassoiated with an internal index of π is in O(Bs

i,j , Y, V ).
A B C1 1 1

n

Y

M|
1

V

2Let now h be a leading proess, thus Y h = Y and V h = V . Let also j 6= h suhthat j, h ommuniate in M . Sine M0|h is an internal index of O(M |h, Y, V )we an apply Lemma 2 and we obtain that Bs,0
h,j ∈ O(Bs

h,j , Y, V ). Hene, wealso have Br,0j, h ∈ O(Br
j,h, Y, V ), sine mathing sends and reeives alwaysappear literally in the same variable. Reall that M0|j ∈ O(M |j , Y

j , V j) with
Y j ≤ Y . Using Br,0

j,h ∈ O(Br
j,h, Y, V ) we obtain that Y ≤ Y j , hene Y j = Y .Applying the lemma again to M0|j we obtain also V j = V , that is j is a leadingproess too. The result follows for all proesses j, due to M being onneted. 2Theorem 8 Let M,N be two nMSCs with M onneted. We an hek whether

M ours in N in time O(|M |2|N |2). 23



Pattern-Mathing (nMSC M, N)For eah variable X on the lowest level of hierarhy:If M ⊆ X at position pos then return (X, pos);For all variables Y , V of N with V ∈ Y :Compute O(M |1, Y , V ), . . ., O(M |p, Y , V );For every variable Y of N:For every proess h:For every pos(h) at the beginning or end of anarithmeti progression of O(M |h, Y ):Let (M |h)pos(h) be the orresponding ourrene of M |h:If there exists ((M |k)pos(k))k 6=h ompatible with (M |h)pos(h)where for all k, pos(k) ∈ O(M |k, Zk) with Zk ≤ Y :Return (Y , (pos(k))k ∈ P ;For every V ∈ Y s.t. ∀i, πi = O(M |i, Y , V ) 6= ∅:For eah i, let πi = (ni, si, ki);Let (t1, . . . , tp, e1, . . . , ep) = Periods(Redue(π1, . . . , πp));Let π′
i = (ni + tisi, siei, (ki − ti)/ei)If (π′
i)i 6= ∅ then return (Y , (π′

i)i)Notie that we have to restrit pos(k) to be inside Y for every k to ensure that
h is leading, whih ensures the uniqueness of pos(k) for every k. For simplifyingthe presentation of the algorithm we will assume below that every proess i in
M sends at least one message to every other proess j > i. The algorithm �rstomputes the ourrenes M |i proess wise. Then, in the third for-loop, it �rstonsiders external indies, orresponding to the seond ase of Proposition 1. Ifno pattern is found, the algorithm looks for an ourrene orresponding to the�rst ase of Proposition 1, whereM0|i ∈ O(M |i, Y, V ) for every proess i. Thearithmeti progression O(M |i, Y, V ) is denoted by πi = (ni, si, ki) above. Wedenote by ui the word onsisting of the si �rst symbols of M |i. By assumption,eah ui ontains both symbols i!j and i?j, for all j > i. For eah i < j we denoteby mi,j the number of sends from i to j in ui, and by mj,i the number of reeivesfrom i to j in uj .We desribe now the subroutines Redue and Periods and show that ouralgorithm returns only ourrenes of M whih are indeed fators of N . Thesubroutine Redue restrits the arithmeti progressions (π1, . . . , πp) by addingan o�set to eah arithmeti progression πi. This is done suh that for all pairsof distint proesses i, j there exists a send to proess j and a reeive from jin every ourrene from πi, suh that the mathing event belongs to πj . Forinstane, in the example below the arithmeti progression π1 will start after aall of Redue with u0

1, sine the two opies of u1 before have no send to proess2 suh that the mathing reeive belongs to π2. Thus, the �rst two ourrenes of
u1 in π1 will not be used for looking for ompatible ourrenes. It also reduesthe number of ourrenes of arithmeti progressions. Redue takes a quadratitime by omputing for every pair of proesses i, j the �rst and the last event on
i that sends or reeives a message from an ourrene of πj . We then omputethe events whih ful�lls every onstraint.24
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Let π1, . . . , π℘ be arithmeti progressions of ourrenesof M |1, . . . ,M |℘, suh that for eah pair i 6= j there existsa message between i, j from eah ui in πi to some uj in πj ,and vie-versa. That is, π1, . . . , π℘ is the result of a all ofRedue. Let u0
i be the �rst index of eah arithmeti progres-sion. The only problem that remains for deiding whetherthere exist ompatible ourrenes M |i,M |j is that the ex-istene of messages from ui in πi to uj in πj does not meanthat the events math orretly w.r.t. M . We will look fortuples of ourrenes of the M |i that are pairwise ompatibleby onsidering sub progressions of the πi.From now on we want to determine all tuples (u1, . . . , u℘)orresponding to the starting positions of pairwise ompati-ble tuples ((M |1)0, . . . , (M |℘)0). As we show later, suh tuplesour periodially, hene we just need to determine some pe-riods (µ1, . . . , µ℘) ∈ N

℘ and the �rst positions (u1
1, . . . , u

1
℘)from whih we an apply these periods.For all i < j let zi,j < mi,j be the number of events i!j in u0

i before the �rstone that has a mathing reeive in πj . Let zj,i < mj,i be the number of j?i in
u0

j before the �rst that has a mathing send in πi. In the �gure aside, m1,2 = 2,
m2,1 = 3, z1,2 = 1 and z2,1 = 0. Let z0

i,j be suh that after reading the �rst
z0

i,j + zi,j sends from πi to πj we arrive at a message onsisting of the �rst i!jof some ui and the �rst j?i of some uj. In the example, we marked as z0 theearliest message onsisting of the �rst 1!2 of some u1 and the �rst 2?1 of some
u2, and z0

1,2 = 3. So z0
i,j + zi,j ≡ 0 (mod mi,j) and z0

i,j + zj,i ≡ 0 (mod mj,i).Using the Chinese Remainder Theorem the subroutine Periods �rst omputesthe least solutions z0
i,j modulo lm(mi,j ,mj,i) to the above equations in time

O(min(|M |i|, |M |j |)3). We perform this omputation for eah pair of proessesin overall time O(|M |3) for obtaining the new period µi and the new o�set
u1

i . Notie that µi divides lm{mi,j | i < j}. The restrition of the arithmetiprogression πi aording to µi, u
1
i is denoted π′

i.The �rst i!j of eah ui in the restrited arithmeti progression π′
i orrespondsto the �rst j?i of some uj of the unrestrited arithmeti progression πj . The �nalstep of Periods is to ompute ourrenes ofM from (π′

i)i. Let xi,j be an integerdenoting the number of uj between u1
j and the reeption of the �rst message from

u1
i . We want to ompute all tuples (ui)i=1,℘ suh that the �rst i!j of ui mathesthe �rst j?i of uj . That is, we need a solution (ti)i=1,℘ of the following systemof ℘(℘− 1) linear equations:

µimi,jti = xi,jmj,i + µjmj,itjThus, the value of t1 determines eah ti, modulo some value ei depending onthe (mi,j)i,j . We an ombine the equation for (1, i) with the equation for (i, j)to obtain a system of ℘(℘− 1) equations :
δi,jt1 = yi,j + νi,jtj25



Let j ≤ ℘. Notie that several of these equations (for di�erent i)onernsthe same t1 and tj : either all these equation are equivalent, or there exists aunique or no solution at all (we just ombine two equations by multiplying per
νi,j one and by νi′,j the other and substrating one equation with the otherone). If there is a unique solution, we stop the proedure and test this solutionin eah equation. If this is indeed a solution of the system, we return its value,else we will not �nd an ourrene of M in this level. Hene, we an assume forthe following that there is a unique equation (sine all are equivalent) for eah
j, that is we have a system of ℘ equations, where i is �xed.If gcd(δi,j , νi,j) does not divide yi,j , there is no solution to our system. Else,we an divide δi,j , yi,j , νi,j by gcd(δi,j , νi,j), and thus onsider only the ase where
gcd(δi,j , νi,j) = 1.Let γi,j be the inverse of δi,j modulo νi,j . Hene the equations are redued to
℘ trivial equations of the form t1 ≡ yi,jγi,j (mod νi,j). The subroutine Periods�nally omputes a solution (t1, . . . , tp) using again the Chinese Remainder The-orem and returns (ti + u1

i − u0
i , ei)i.Sine the intersetion of an arithmeti progression with the periodi set isstill an arithmeti progression, in the end we have arithmeti progressions ofperiods inreased by a fator of ei, that ontains only ompatible ourrenes.A all of Periods osts time O(|M |3).Remark 3 We an slightly adapt the algorithm for omputing all ourrenesof M in N . Note that the number of ourrenes might be exponential (as inthe word ase), thus the representation of all ourrenes will be impliit.5.4 Pattern Mathing for Non-Conneted PatternsWe turn now to the general ase where the nMSC patternM is not onneted. Weshow that the omplexity of the algorithm inreases just by a fator O(|CM |2) ≤

O(℘2), namely the square of the number of weakly onneted omponents ofM .It will be helpful in the following to have all proesses of N appear in M .This an be enfored by a simple modi�ation of M,N , as depited below. Foreah referene Y of N and eah proess i ∈ PN \ PM we add a loal ation loion proess i in Y before eah message or referene on i, and before the end of
Y . Let M ′ = M ·

∏
i∈PN\PM

(loi). Obviously, M ′ ours in N ′ i� M ours in
N .

Occ(M      )

1 5 5

loc5Occ(M      ){1,2} {3,4}

2 3 4 1 2 3 4

Let M,N be nMSCs. For eah referene X of M or N , let CX ⊆ 2PM be theset of maximal onneted omponents of the ommuniation graph of X (this is26



the graph with verties orresponding to proesses and edges between ommuni-ating proesses). We will denote by X |C the projetion of X over the proessesin C ∈ CX . In other words, X = (X |C)C∈CX
represents the deomposition of theMSC assoiated with X into weakly onneted nMSCs. It follows from the previ-ous setion that we an ompute in time O(|M |2|N |2) a ompat representationof all ourrenes of M |C in N , for eah C ∈ CM . The next de�nition stateswhen a tuple of ourrenes (M |C)C∈CM

of the weakly onneted omponents of
M orresponds to an ourrene of M in N .De�nition 8. Let a ∈ O(M |C , Y ), b ∈ O(M |D, Y ) be two ourrenes ofweakly onneted omponents of M , where C,D ∈ CM and C 6= D. Then a, b arealled ompatible if there is no message in Y from some proess in C to someproess in D that is sent after a and reeived before b (or vie versa).Lemma 3. Let aC ∈ O(M |C , Y ), for all C ∈ CM . Then (aC)C∈CM

is anourrene of M in Y i� aC , aD are ompatible for all C,D ∈ CM , C 6= D.Proof. The impliation from left to right follows diretly from the de�nitionof pattern. For the onverse assume that (aC)C∈CM
is not an ourrene ofM in

Y . This means that there is some hain of messages (sk, rk)m
k=1 with P (s1) ∈ C,

P (rm) ∈ D, P (rk) = P (sk+1) for all k, and suh that aC preedes s1, ri preedes
si+1, and rm preedes aD. Sine all proesses appear in M , there exist some kand C′, D′ ∈ CM suh that P (sk) ∈ C′, P (rk) ∈ D′, aC′ preedes sk and rkpreedes aD′ . But this means that aC′ , aD′ are not ompatible, ontradition. 2Let C ∈ CM . Note that the ourrenes of the weakly onneted omponents
M |C in Y are totally ordered by the visual order of Y . This justi�es the use of
min and max on ourrenes of the same weakly onneted omponent in theproposition below.Proposition 2 Let a = (aC)C∈CM

, b = (bC)C∈CM
∈ (O(M |C , Y ))C∈CM

be twoourrenes of M in Y . Then (min(aC , bC))C∈CM
and (max(aC , bC))C∈CM

arealso ourrenes of M in Y .Proof. By Lemma 3 it su�es to hek that min(aC , bC), min(aD, bD) areompatible, for all C,D ∈ CM , C 6= D. The only ase to verify is when min(aC , bC)
= aC < bC and min(aD, bD) = bD < aD. Assume by ontradition that there isa message from C to D that is sent after aC and reeived before bD. Then aCand aD > bD are not ompatible, a ontradition. The ase where a message issent after bD and reeived before aC is symmetrial. 2We desribe the pattern mathing algorithm in a simpler ase where thefollowing two onditions hold. First, we assume that every message is on thelowest hierarhial level. This means that maros either onsist of referenes (andloal ations) only, or they are MSCs. In other words, we forbid messages rossingreferenes in N . Seond, for all referenes Y, Z with Z ∈ Y and eah ourreneof M |C in Y either M |C is inluded in Z, or it has an empty intersetion with
Z. That is, we assume that no ourrene of M |C in Y is split between several27



referenes Z ∈ Y . If N satis�es these onditions w.r.t. M , then we all thepair (M,N) nie. The general ase is tehnially more involved, but it does notrequire new ideas.If M ours as a pattern of N , then Proposition 2 ensures that there is aunique minimal ourrene of M in N (minimal with respet to the omponentwise ordering of tuples from (O(M |C , N))C∈CM
. In order to �nd the mini-mal ourrene of M in a referene X of N , we look for ompatible minimalourrenes in eah referene Y ∈ X . If Y does not ontain the omplete M ,then we need more information about possible omponents M |C that are out-side Y and that are ompatible with the omponents within Y . Sine there maybe several referenes X with Y ∈ X we enode this additional information byimaginary ourrenes denoted ↓C and ↑C , for eah omponent C ∈ CM . Theourrene ↓C for omponent C means an ourrene of M |C after Y , while

↑C for C means an ourrene of M |C before Y . Thus, we let ↑C< aC <↓Cfor all aC ∈ O(M |C , Y ). For C 6= D, we say that ↑C , aD ∈ O(M |C , Y ) areompatible if there is no message from C to D that is reeived before aD in Y(symmetrially for ↓). The preise de�nition follows:De�nition 9. Let Y be a referene of N . Let E ⊆ {6=↑C,=↓C | C ∈ CM} be aset of onstraints. We de�ne MinY
E = (aC)C∈CM

as the minimal tuple satisfyingthe following onditions:1. For eah C ∈ CM , aC ∈ O(M |C , Y ) ∪ {↑C , ↓C}.2. The ourrenes (aC)C∈CM
are pairwise ompatible.3. (aC)C∈CM

satis�es the onstraint E. That is, (6=↑D) ∈ E implies that aD 6=↑Dand (=↓D) ∈ E implies that aD =↓D.
1 5
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Note that the minimal ourrene in the previous de�nition is well de�ned,sine there exists at least one tuple (aC)C∈CM
satisfying the three onditionsabove, namely aC =↓C for all C. In other words, there may always be an our-rene of M after Y .Example 5. The two extreme onstraints orrespond toMin∅ = (↑C)C∈CM

and Min(=↓C)C∈CM
= (↓C)C∈CM

.In the �gure to the right we also have:� Min{6=↑1} = (a, ↑2, e, ↑4, ↑5) = Min{6=↑1, 6=↑3}.� Min{=↓2} = (b, ↓2, e, ↑4, ↑5).� Min{6=↑4,=↓5} = (↑1, ↑2, ↑3, g, ↓5).The next lemma shows that it su�es to ompute (reursively) the tuplesMinY
E , for suitable onstraints E and referenes Y of N .Lemma 4. Let (bC)C∈CM

= MinN
( 6=↑C)C∈CM

. Then M is a pattern of N i�
bC 6=↓C, for all C ∈ CM .The problem is that we might need the tuples MinY

E for arbitrary sets E ofonstraints (and there are exponentially many). Fortunately, we an avoid the28



exponential blow-up by omputing MinY
E only for singletons E = {6=↑C} and

E = {↓C}, C ∈ CM . We �rst show that these tuples su�e for omputing inpolynomial time MinY
E for arbitrary E. In a seond step, we show that we willneed only a polynomial number of onstraints E in the reursive step.Lemma 5. Let E,F ⊆ {6=↑C,=↓C | C ∈ CM} be two sets of onstraints. ThenMinY

E∪F = max(MinY
E ,MinY

F ).Proof. Let b = (bC)C = max(MinY
E ,MinY

F ). We have of ourse MinY
E∪F ≥MinY

E and MinY
E∪F ≥ MinY

F , hene MinY
E∪F ≥ b. But MinY

E∪F is the minimaltuple that satis�es the three properties whih b satis�es, too: the tuple b haspairwise ompatible omponents bC and it satis�es the onstraints in E ∪ F .Therefore, b = MinY
E∪F . 2
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MinY 1Y 2

{6=↑5} = (a, b, c, ↑4, d).MinY 1

{6=↑5} = (a, ↓2, c, ↑4, d) = MinY 1

{=↓2, 6=↑5}.MinY 2

{6=↑2} = (↑1, b, ↑3, ↑4, ↑5).Proposition 3 Assume that the pair (M,N) is nie and onsider some refer-ene Y of N and a omponent D ∈ CM . Then MinY
{6=↑D} and MinY

{=↓D} an beomputed in time O(|Y |℘2) from the tuples (MinZ
{6=↑C})C∈CM

and (MinZ
{=↓C})C∈CM

,where Z ∈ Y .Proof. Assume that any referene Y of N that is not on the lowest hierarhylevel has exatly two subreferenes, that is Y = Y 1Y 2.We will ompute the set of omponents E↓ ⊆ CM that onsists of all C suhthatM |C has no ourrene in Y 1 whih is ompatible with the onstraints, thus29



M |C must our either in Y 2 or after Y . In order to do this, we start with E↓ = ∅and we augment E↓ as long as there exist a, b with the following properties:� (aC)C is an ourrene in Y 1 with aC =↓C i� C ∈ E↓,� (bC)C is an ourrene in Y 2 with bC =↑C i� C /∈ E↓.The algorithm for omputing MinY
{6=↑D} is desribed below (for MinY

{=↓D} thereasoning is similar):(1) Let E↓ = ∅(2) Compute (aC)C = MinY 1

E , with E = {6=↑D} ∪ {=↓C | C ∈ E↓}(3) Let E↓ = { C | aC = ↓C}// For all C ∈ E↓, M |C must be in Y 2 or after Y .(4) Compute (bC)C = MinY 2

( 6=↑C)C∈ E↓(5) Let E↓ = { C | bC 6= ↑C}. If E↓ hanges, then goto (2).(6) Let dC = bC if C ∈ E↓, and dC = aC, otherwise.(7) Return (dC)C.Note that eah time the set E↓ hanges at step (3), it inreases by at leastone omponent. Hene, we return to step (2) at most O(℘) times.For the running time let us denote by Et
↓ the value of E↓ after t iterations.The t-th iteration needs time ℘(|Et

↓| − |Et−1
↓ |), thus the overall running time isat most O(℘2).If an nMSC has more than two referenes, then we de�ne several sets Ei

↓ toexplain the minimal referene Y i where the ourrene of the projetion shouldbe. Considering that for eah step, one set Ei
↓ has to hange, the running timeis ℘2|Y |. 2Theorem 9 We an test whether M ours as pattern of N in time O(C2

M (|M |2

|N |2)).Proof. We show the theorem only for the ase where (M,N) is a nie pair.The general ase is tehnially more involved, but does not require new ideas.Theorem 8 is used for omputing �rst the impliit representation of all o-urrenes of M |C in Y , for all omponents C ∈ CM of M and all referenes Y of
N . For eah Y we need then only the position of the minimal ourrene of eah
M |C in Y (if any). We ompute then MinY

6=↑C
and MinY

=↓C
for all omponents

C ∈ CM and referenes Y of N . We apply Proposition 3 to ompute MinY
6=↑Cand MinY

=↓C
. The time osts are O(|M |2|N |2) for the onneted omponents and

O(℘3|N |) ≤ O(|M |2|N |2) for the additional algorithms looking for ompatibleomponents. The overall running time is thus O(|M |2|N |2). In the general asewe get an additional fator C2
M , where CM is the number of onneted om-ponents of M , expressing additional onstraints due to omponents M |C thatmight be split over several referenes of N . 230
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