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t. Several formalisms and tools for software development usehierar
hy for system design, for instan
e state
harts and diagrams inUML. Message sequen
e 
harts (MSCs) are a standardized notation forasyn
hronously 
ommuni
ating pro
esses. The norm Z.120 in
ludes alsohierar
hi
al HMSCs in form of High-level MSCs (HMSC). Algorithms onMSCs rarely take into a

ount all possibilities 
overed by the norm. Inparti
ular, hierar
hy is not taken into a

ount sin
e the model usually
onsidered are MSC-graphs that 
orrespond to the unfolding of (hier-ar
hi
al) HMSCs. However, 
omplexity 
an in
rease exponentially byunfolding. The aim of this paper is to show that basi
 algorithms 
an bedesigned su
h that they avoid the 
ostly unfolding of hierar
hi
al MSCsand HMSCs. We 
onsider the membership and the pattern mat
hingproblem to illustrate the way to pro
eed. We show that the membershipproblem for hierar
hi
al HMSCs is PSPACE-
omplete. Se
ond, we de-s
ribe a polynomial-time algorithm for the pattern-mat
hing problem onhierar
hi
al MSCs.1 Introdu
tionIt is 
ommon to use ma
ros to write a program or to spe
ify the behavior of asystem. Ma
ros or hierar
hi
al spe
i�
ations allow a modular design of 
omplexsystems and have the advantage of being more su

in
t and user-friendly. Severalformalisms and tools for software development use hierar
hy for system design.One of the most prominent examples is the formalism of state
harts [11℄, whi
h isa 
omponent of several obje
t-oriented notations, su
h as the Uni�ed ModelingLanguage (UML). Besides state
harts, UML widely uses several kinds of dia-grams (a
tivity, intera
tion diagrams et
), all based on the ITU standard Z.120of message sequen
e 
harts (MSCs). While state
harts extend �nite state ma-
hines by hierar
hy and 
ommuni
ation me
hanisms, MSCs are a visual notationfor asyn
hronously 
ommuni
ating pro
esses. The usual appli
ation of MSCs intele
ommuni
ation is for 
apturing requirements of 
ommuni
ation proto
ols inform of s
enarios in early design stages. MSCs usually represent in
omplete spe
-i�
ations, obtained from a preliminary view of the system that abstra
ts awayseveral details su
h as variables or message 
ontents. High-level MSCs (HMSCs)
ombine basi
 MSCs using 
hoi
e and iteration, thus des
ribing possibly in�nite
olle
tions of s
enarios. For abstra
t spe
i�
ations as with HMSCs, hierar
hy



is of primary importan
e. Sin
e a s
enario 
orresponds to a spe
i�
ation levelwhi
h 
an be very abstra
t, a designer should be able to merge di�erent spe
i-�
ation 
ases yielding the same abstra
t s
enario and to use this s
enario as ama
ro. By using ma
ros designers may identify sub s
enarios whi
h have to bere�ned at a later stage.Algorithms on MSCs rarely take into a

ount the whole spe
trum of theHMSC standard de�nition. In parti
ular, hierar
hy is not taken into a

ountsin
e the models usually 
onsidered are MSC-graphs, that 
orrespond to the un-folding of (hierar
hi
al) HMSCs. However, 
omplexity 
an in
rease exponentiallyby unfolding. The aim of this paper is to show that this exponential blow-upis avoidable in many 
ases, by avoiding the expensive unfolding and using thehierar
hy for 
omputing the desired results in a modular way. We use te
hniquesstemming from 
ombinatori
s on 
ompressed texts, sin
e hierar
hi
al MSC de�-nitions 
an be seen as a kind of 
ompression by means of Straight-Line Programs(SLP).In this paper we 
onsider two fundamental problems for hierar
hi
al HM-SCs, that are 
alled here nested high-level MSCs (nHMSCs for short): member-ship problem and pattern mat
hing. However, we think the te
hniques des
ribedhere 
an be used to solve other algorithmi
 problems on nHMSCs as well. Themembership problem is a basi
 question, asking for instan
e whether a negatives
enario o

urs in a system spe
i�
ation, or asking whether a positive s
enariois redundant, sin
e already 
overed by the spe
i�
ation. Without hierar
hy, themembership problem for HMSCs has been shown to be NP-
omplete, [1℄. Thereason for this 
omplexity blow-up (
ompared to �nite-state ma
hines) is thatMSCs are partial-order models. We show that hierar
hy yields a small in
reasein 
omplexity, pre
isely we show that the membership problem for nHMSCs isPSPACE-
omplete. Surprisingly, hierar
hy alone is the sour
e of the 
omplex-ity. We show namely that the membership problem for hierar
hi
al automata isalready PSPACE-
omplete. This result shows a di�eren
e between membershipand rea
hability, sin
e rea
hability for 
ommuni
ating hierar
hi
al automata isalready EXPSPACE-
omplete [12℄.The se
ond problem 
onsidered in this paper is pattern mat
hing for nMSCs.Given two nMSCsM,N , we want to know whetherM o

urs as a pattern ofN . Apolynomial time solution for this problem is not immediate. We apply some ni
e
ombinatorial te
hniques stemming from pattern mat
hing on 
ompressed textsand we obtain an algorithm of time O(|CM |2 · |M |2 · |N |2), where |M |, |N | denotethe sizes of the des
ription of M and N , and |CM | is the number of 
onne
ted
omponents in the 
ommuni
ation graph of M . This question subsumes the testof equality of two nMSC, and shows that equality is de
idable in PTIME as well.Related work. Regarding the 
omplexity of extended �nite state ma
hines,[12℄ 
onsiders the rea
hability and tra
e equivalen
e problems for 
ommuni
at-ing FSMs (Finite States Ma
hines). Model-
he
king hierar
hi
al FSMs againstLTL and CTL properties is the topi
 of [4℄. The paper [3℄ 
ombines hierar-
hy and 
on
urren
y, analyzing the 
omplexity of several problems (rea
hability,equivalen
e et
.) for 
ommuni
ating, hierar
hi
al FSMs.2



Several veri�
ation problems on MSCs andMSC-graphs have been 
onsideredre
ently, e.g. dete
ting ra
es [2, 18℄, model-
he
king [5℄, pattern mat
hing withgaps [19℄, inferen
e [1℄ and realizability [17, 9, 14℄, model-
he
king against partial-order logi
s [16, 21℄. Hierar
hi
al MSCs have been also 
onsidered in [5℄ for themodel-
he
king problem. We note however that our de�nition of nested HMSCs
aptures a larger 
lass of MSC spe
i�
ations than [5℄.An extended abstra
t of this paper was presented at LATIN'02 [8℄. As ad-ditional result we show here how to extend the polynomial time algorithm forpattern mat
hing nMSCs to the 
ase where the pattern is not 
onne
ted.2 Syntax and Semanti
s of Nested MSCsWe adopt the de�nition of (basi
) message sequen
e 
harts (MSC for short), asdes
ribed in the ITU-standard [13℄.De�nition 1. (Message Sequen
e Charts.) A message sequen
e 
hart is atuple M = 〈P,E, C, ℓ,m,<〉 where:� P is a �nite set of pro
esses,� E is a �nite set of events,� C is a �nite set of names for messages and lo
al a
tions,� ℓ : E → T = {i!j(a), i?j(a), i(a) | i 6= j ∈ P, a ∈ C} labels ea
h event withits type: on pro
ess i ∈ P , the type is either a send i!j(a) of message a topro
ess j, or a re
eive i?j(a) of message a from pro
ess j, or a lo
al event
i(a). The labeling ℓ partitions the set of events by type (send, re
eive, orlo
al), E = S ·

⋃
R ·

⋃
L, and by pro
ess, E = ·

⋃
i∈P Ei. We denote by P (e) thepro
ess of event e (i.e., P (e) = i i� e ∈ Ei).� m : S → R is a bije
tion mat
hing ea
h send to the 
orresponding re
eive. If

m(s) = r, then ℓ(s) = i!j(a) and ℓ(r) = j?i(a) for some pro
esses i, j ∈ Pand some message name a ∈ C. We denote the events s, r as mat
hing eventsand the pair (s, r) as message.� < ⊆ E × E is an a
y
li
 relation between events 
onsisting of:
• a total order on Ei, for every pro
ess i ∈ P , and
• s < r, whenever m(s) = r.The upper left part of Figure 1 depi
ts an MSC M on three pro
esses withtwo messages and four events. Ea
h verti
al line 
orresponds to a pro
ess, withtime in
reasing from top to bottom.For the questions 
onsidered here, message names are irrelevant. Thus, sendevents will be of type i!j and re
eive events of type i?j. Moreover, whenever werefer to an MSC in this paper, we mean a
tually its isomorphism 
lass, wherean isomorphism on the set of events E is a bije
tion that is 
ompatible with thetype fun
tion ℓ and the message fun
tion m.For 
ommuni
ation proto
ols it is natural to assume that ea
h 
ommuni
a-tion 
hannel delivers messages �rst-in-�rst-out (FIFO). We assume the FIFO
ondition throughout the paper. That is, for all messages (ek, fk), k = 1, 2, su
h3



that ℓ(e1) = ℓ(e2) and ℓ(f1) = ℓ(f2) we require that e1 < e2 i� f1 < f2. There�exive-transitive 
losure ≤ of the a
y
li
 relation < is a partial order 
alledvisual order. Every total order on E extending ≤ is then 
alled linearization of
M . A 
on�guration (pre�x) C of an MSC M is a downward 
losed subset ofevents, that is, if e < f ∈ E with f ∈ C, then e ∈ C.Note that with the FIFO message order, any total order on a set of events
E de�nes at most one MSC. We obtain this MSC from the event sequen
e bymat
hing the n-th send from i to j with the n-th re
eive on j from i, for ea
hpair of distin
t pro
esses i, j.A spe
ial 
ase of the pattern mat
hing problem 
onsidered in the paper is theequality test of two (nested) MSCs. In order to 
he
k the equality of two MSCs
M,N (i.e., up to isomorphism) one 
an 
hoose any linearization ofM and 
he
kwhether it is a linearization of N , too. An alternative approa
h, that will beused in our algorithms, is to 
he
k equality on ea
h pro
ess. Thus, for an MSC
M = 〈P,E, C, ℓ,m,<〉 and a pro
ess i ∈ P we let M |i denote the proje
tionof M on the set Ei of events lo
ated on i. We have M = N if and only if
M and N have the same set of pro
esses, that is P (M) = P (N) = P , and iftheir proje
tion on any pro
ess is equal, that is M |i = N |i for ea
h i ∈ P (up toisomorphism). Note that both tests rely on the FIFO order of messages. Withoutthe FIFO order, a linearization (or the proje
tions on pro
esses) does not su�
efor re
overing the MSC. For example, the linearization s1s2r1r2 where s1, s2 aresends and r1r2 are re
eives from pro
ess 1 to pro
ess 2, 
an produ
e two MSCs,one where m(s1) = r1,m(s2) = r2 and one where m(s1) = r2,m(s2) = r1.We follow the ITU norm and de�ne nested MSCs (nMSC for short) by al-lowing the reuse of an already de�ned MSC in a de�nition. The de�nition wegive below aims at preserving the visual 
hara
ter of MSCs (see also Figure 1).De�nition 2. (Nested MSC, nMSC.) A nested MSC M = (Mq)

n
q=1 is a�nite sequen
e of ma
ros of the form Mq = 〈Pq, Eq, Bq, ϕq, C, ℓq,mq, <q〉.Ea
h ma
ro Mq 
onsists of:� A �nite set Eq of events.� A �nite set Pq of pro
esses.� A �nite set Bq of referen
es (boxes) used by Mq.� A fun
tion ϕq that asso
iates ea
h referen
e b ∈ Bq with an index q <

ϕq(b) ≤ n. Thus, referen
e b refers to the ma
ro Mϕq(b).We require that
Pϕq(b) ⊆ Pq.� The type fun
tion ℓq : Eq −→ T , that asso
iates ea
h event with a type
i!j, i?j or i(a), with i, j ∈ Pq, i 6= j and a ∈ C. The labeling ℓ partitionsthe set of events by type (send, re
eive, or lo
al), Eq = Sq

·
⋃
Rq

·
⋃
Lq, andby pro
ess, Eq = ·

⋃
i∈P Eq,i. We denote by P (e) the pro
ess of event e (i.e.,

P (e) = i i� e ∈ Eq,i).� The message fun
tion mq : Sq −→ Rq that maps ea
h (send) event of type
i!j with a (re
eive) event of type j?i, for all i 6= j.� The a
y
li
 relation <q over the set of events and referen
es Eq∪Bq, de�nedby: 4



• For ea
h pro
ess k ∈ Pq, the relation <q is a total order over the set Eq,kof events lo
ated on k and the set of referen
es b ∈ Bq with k ∈ Pϕq(b).
• e <q f whenever mq(e) = f in Mq.The nesting depth of M is the maximal d su
h that there exists some sequen
e

q1 < · · · < qd+1 with ϕqj
(b) = qj+1 for some b ∈ Bqj

, for all 1 ≤ j ≤ d.We de�ne the indi
es su
h that the lowest levels of hierar
hy, whi
h standsfor levels whi
h do not use referen
es to other level, 
orresponds to small indi
es.
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Fig. 1. An nMSC P using two referen
es, S and M .Example 1. Consider the nMSC P in Figure 1. It uses three referen
es, BP =
{b1, b2, b3} that 
orrespond to ϕP (b1) = ϕP (b3) = S and ϕP (b2) = M . Thenesting depth of P is 2. The visual order <P of P requires on pro
ess 1 theorder b1 <P e <P b2 <P b3. Noti
e that the de�nition of a nMSC forbids (f, e)to be a message, with f the send and e the re
eive, sin
e this would 
ontradi
tthe a
y
li
ity of <P , even in the 
ase where M would be empty.The semanti
s of an nMSC is the MSC de�ned by repla
ing ea
h referen
eof M by the 
orresponding MSC. Indu
tively it su�
es to de�ne the semanti
sof nMSCs of nesting depth one. Let M = (Mq)

n
q=1 be an nMSC of nesting5



depth one, withMq = 〈Pq , Eq, Bq, ϕq, C, ℓq,mq, <q〉. For simplifying the notationbelow, we write instead of ϕ1(b) just b.The MSC 〈P,E, C, ℓ,m,<〉 de�ned by M = (Mq)
n
q=1 is given by P = P1,

E = ·
⋃

b∈B1
Eb

·
⋃
E1, ℓ = ∪n

q=1ℓq and m = ∪n
q=1mq. The visual order < is de�nedby e < f if and only if either m(e) = f , or P (e) = P (f) and one of the following
onditions holds:� e, f ∈ E1 and e <1 f ,� e, f ∈ Eb and e <b f ,� e ∈ E1, f ∈ Eb and e <1 b,� e ∈ Eb, f ∈ E1 and b <1 f ,� e ∈ Eb, f ∈ Eb′ and b <1 b

′,where b, b′ ∈ B1. For simpli
ity, we denote the MSC de�ned by M = (Mq)
n
q=1as M , too.Example 2. For the nMSC P in Figure 1, the lower right part of the pi
tureshows the MSC de�ned by S. Note that event g ∈ EM o

urs twi
e in S � forsimpli
ity, we denote both o

urren
es as g.Note also that the semanti
s requires that b1 <1 e, but this does not meanthat all events of S = ϕP (b1) must happen before e ∈ EP . For instan
e, the�rst o

urren
e of g in S pre
edes event e of P , but the se
ond o

urren
e is
on
urrent with e.Obviously, a synta
ti
ally 
orre
t nMSCM might not yield an MSC be
auseof the FIFO order. For example, the message (e, f) of P would violate the FIFO
ondition ifM would 
ontain a message from pro
ess 1 to pro
ess 3. Fortunately,it 
an be veri�ed easily (polynomial time) whether an nMSC satis�es the FIFO
ondition. To test for the FIFO 
ondition, it su�
es to test that there is no

e < g < h < f and no e < b < f with b 
ontaining a send from i to j, where
(e, f), (g, h) are two messages from i to j.Size of nMSC. For 
omplexity estimations we will denote by ℘ the overallnumber of pro
esses. The size of an nMSC M is denoted as |M |. It representsthe size of the synta
ti
al des
ription of M , where an event is of size one andthe size of a referen
e is the number of its pro
esses.3 Nested High-Level MSCAn MSC 
an only des
ribe a �nite s
enario. For spe
ifying more 
omplex behav-iors, in parti
ular in�nite sets of s
enarios, the ITU norm proposes to 
omposeMSCs in form of MSC-graphs, by using 
hoi
e and iteration.De�nition 3. (MSC-graph) An MSC-graph is given as a tuple G = 〈V,E, s, f, ϕ〉,where:� (V,E) is a dire
ted graph with starting vertex s ∈ V and �nal vertex f ∈ V .� Ea
h vertex v is labeled by the MSC ϕ(v).6



In the same way as we de�ned nested MSCs from (�at) MSCs we 
an gen-eralize MSC-graphs to hierar
hi
al HMSCs (or nested high-level MSCs, nHMSCfor short).De�nition 4. (Nested high-level MSC.) An nHMSC is a �nite sequen
e
G = (Gq)

n
q=1, where ea
h Gq is either a labeled graph or an nMSC. A labeledgraph Gq is a tuple 〈Vq , Eq, ϕq, sq, fq〉 
onsisting of:� A dire
ted graph (Vq, Eq) with starting vertex sq and �nal vertex fq.� A fun
tion ϕq that asso
iates ea
h vertex v with a referen
e q < ϕq(v) ≤ n,representing Gϕq(v).Thus, a node in an nHMSC 
an be mapped either to some graph or to annMSC. This de�nition 
ombines hierar
hi
al automata as de�ned in [4℄ with ourde�nition of nMSC. The spe
ial 
ase where there is only one pro
ess (i.e., no
on
urren
y) yields the hierar
hi
al automata used in [4℄1.We �rst need to de�ne the 
omposition of two MSCs N1N2 with Nk =

〈Pk, Ek, Ck, ℓk,mk, <k〉. Intuitively, we just glue together the two diagrams pro
ess-wise. Let N1N2 = 〈P,E, C, ℓ,m,<〉 with E = E1 ·
⋃
E2, P = P1∪P2, C = C1∪C2,

ℓ = ℓ1 ∪ ℓ2, m = m1 ∪m2 and
< = <1 ∪<2 ∪

⋃

i∈P

E1,i × E2,i.The semanti
s of an nHMSC G = (Gq)
n
q=1 is a (possibly in�nite) set of MSCs

L(G) de�ned re
ursively. If Gq is an nMSC, then L(Gq) is a singleton 
onsistingof the MSC de�ned by Gq. Let us 
onsider a labeled graph Gq. Then L(Gq) isthe set of MSCs asso
iated with the a

epting paths of Gq, that is, paths startingin sq and ending in fq. With a path v1, . . . , vn in Gq we asso
iate the set of allMSCsM1 · · ·Mn, whereMi ∈ L(Gϕq(vi)) for all 1 ≤ i ≤ n. The set of exe
utionsof G is de�ned as L(G) = L(G1).As in [1℄ we also 
onsider a weaker semanti
s for nHMSCs, that does not usethe 
omposition of MSCs (
alled weak 
losure in [1℄). This semanti
s is basedon taking the produ
t of the sequential behaviors of single pro
esses. Severalalgorithmi
 problems 
an be solved more e�
iently for the weak 
losure of MSC-graphs. This makes it interesting to 
ompare it with the usual semanti
s also inthe setting of nHMSCs.Weak 
losure of nHMSC. Let G be an nHMSC. Then Lw(G) denotes the setof MSCsM su
h that for ea
h pro
ess i there is some MSC N ∈ L(G) su
h that
M |i is equal to N |i. Note that L(G) ⊆ Lw(G) and that the in
lusion is stri
t, ingeneral (see [1℄).1 A
tually, [4℄ allows several �nal nodes in ea
h automaton, whi
h 
ounts for the
omplexity of their algorithms. 7



a b

G
i

G
iFig. 2. An nHMSC Gi+1 generating (a + b)2

i
−1 with G1 = ǫ.4 Membership ProblemChe
king the membership of an MSCM in an MSC-graph G is used typi
ally for
he
king that no bad s
enario 
an o

ur in a given spe
i�
ation. Another appli
a-tion is 
he
king whether a good s
enario is already 
overed by the spe
i�
ation.Che
king membership is not an easy task already be
ause of the 
on
urren
yimplied by the MSC 
omposition, all the more in the presen
e of hierar
hy. TheMSC membership problem M

?
∈ L(G) with M an MSC and G an MSC-graphwas 
onsidered in [1℄, together with the weak membership problemM

?
∈ Lw(G).The results of [1℄ 
an be summarized as follows:� The MSC membership problem is NP-
omplete. A deterministi
 algorithmof time O(|G| · |M |℘) solves it2, where ℘ is the number of pro
esses.� The weak MSC membership problem is solvable in time O(|G| · |M |).So the MSC membership problem is solvable in polynomial time if we �x thenumber of pro
esses.4.1 Hierar
hi
al Membership ProblemThe membership problem seems a priori more di�
ult for an nMSC M againstan nHMSC G, sin
e the naive approa
h of guessing a path of G and 
he
kingequality with M is too expensive (both the path of G and the MSC de�nedby M 
an be of exponential size). However, it is easy to show that we 
an testmembership in polynomial spa
e:Theorem 1 (Hierar
hi
al MSC Membership Problem) Given an nMSC

M and an nHMSC G, we 
an de
ide whether M ?
∈ L(G) in polynomial spa
e.2 This is a slightly improved runtime 
ompared to the result stated in [1℄.8



Proof. The idea of the algorithm is straightforward: we guess an MSC in
L(G) and we mat
h it against the nMSC M , however expanding neither M nor
G. Re
all that for testing equality of two MSCs M,N , it su�
es to 
hoose onelinearization of N and 
he
k whether it is a linearization of M . Hen
e, we 
an
hoose the linearization of the MSC in G (as long as we do not ex
lude anyMSC in L(G), that is as long as we do not ex
lude every linearization of oneMSC). We 
onsider only the linearizations in Lin0(G), where Lin0(G) is de�nedre
ursively. If Gq is an nMSC, then Lin0(Gq) is the set of linearization of Gq.With a path v1, . . . , vn in Gq we asso
iate the set of all linearizations u1 · · ·un,where ui ∈ Lin0(Gϕq(vi)) for all 1 ≤ i ≤ n. Let us 
onsider a labeled graph Gq.Then Lin0(Gq) is the set of linearizations asso
iated with the a

epting paths of
Gq, that is, paths starting in sq and ending in fq. We de�ne Lin0(G) = Lin0(G1).Intuitively, it means that we do not 
onsider linearizations uavbw of path v1 · · · vnwhere a belongs to a node vi and b to vj with j < i, that is every node needs tobe fully exe
uted before the next node 
an be 
onsidered.We need to store a 
on�guration of M , 
orresponding to the events alreadymat
hed with the events from G. Sin
e a 
on�guration is a downward 
losed setof events, it 
an be stored as a tuple of ℘ events (remind that ℘ is the number ofpro
esses), representing the last event of the 
on�guration on ea
h pro
ess. Su
ha tuple is of linear size w.r.t. the size ofM . Ea
h event e ofM = (Mq)

n
q=1 will berepresented by a sequen
e b1, . . . , bm of referen
es 
orresponding to the unfoldingof referen
es yielding e. That is, we indu
tively remind bm for e ∈ Eϕ(bm) where

bm is a referen
e of ϕ(bm−1), plus the position of e in Mϕ(bm). Thus, ea
h event
an be stored using linear-size memory. In our �gure 1, the �rst o

urren
e of gin P 
orresponds to (b1, b4, g), the se
ond o

urren
e to (b1, b5, g), and so on.Similarly, we 
an store the 
urrent 
on�guration of the linearization in Lin0(G)in spa
e polynomial in |G| (an event of G is represented by a sequen
e of nodesthen of referen
es). Sin
e a new node is started only when the previous node isfully exe
uted, the last event for every pro
ess belongs to the same node. Thenon-deterministi
 algorithm 
onsists in guessing a su

essor 
on�guration of G,obtained by extending the 
urrent 
on�guration by an event e su
h that the new
on�guration is still a pre�x of some linearization in Lin0(G). Then we 
he
kthat e 
an extend the 
urrent linearization of M as well. The algorithm stopswhen the 
on�guration that 
orresponds to the path being guessed in G is equalto M and the path of G is a

epting.
2Theorem 2 below shows that PSPACE is the lowest 
omplexity we 
an obtainfor the hierar
hi
al membership problem. The lower bound holds even if there isonly one pro
ess (Theorem 2), or if the graph G is not hierar
hi
al (Theorem 3),but not both (Theorem 4). This shows also that �xing the number of pro
essesdoes not lower the 
omplexity of the problem, unlike in the non hierar
hi
al 
ase.We show the PSPACE lower bound for the following problem: given a straight-line program W (see below) and a hierar
hi
al automaton A, test whether

W ∈ L(A). This question 
orresponds to the hierar
hi
al membership problem9



with a single pro
ess. Noti
e also that the weak membership problemM
?
∈ Lw(G)[1℄ 
an be redu
ed to this question.Straight-line programs. A straight-line program (SLP for short) over thealphabet Σ is a 
ontext-free grammar with variables V = {X1, . . . , Xk}, initialvariable X1 and rules from V × (V ∪ Σ)+. The rules are su
h that there isexa
tly one rule for ea
h left-hand side variable and if Xi −→ α, then ea
h Xjin α satis�es j > i.The 
onstraints on the rules make that any variable Xi generates a uniqueword. For 
onvenien
e, we denote the word generated by the variable Xi alsoas Xi. The length of a variable Xi represents the length of the word generatedby Xi and is denoted as ||Xi||. Clearly, ||Xi|| 
an be at most exponential in thenumber of rules. The size |Xi| of an SLP is the sum of the sizes of the rules.Without loss of generality, we 
an assume that rules are of size 2, that is of theform X −→ Y Z with Y, Z ∈ V ∪Σ.Sin
e any MSC M is determined by its proje
tions (M |i)i∈P , an nMSC M
an be identi�ed with ℘ SLPs L1, . . . , L℘. The SLP Li generates the proje
tion

M |i of M on the set of events of pro
ess i ∈ P . We denote the variables usedby Li as X |i, where X ∈ {Mq | q = 1 · · ·n}. The initial variable of ea
h Liis Mn|i. A
tually, the SLPs are not in Chomsky normal form to preserve thisrepresentation of nMSCs.Example 3. For the nMSC P is Figure 1 we have the following SLP generatingthe proje
tion on pro
ess 1: P |1 → S|1eM |1S|1, S|1 →M |1hM |1 and M |1 → k.Theorem 2 It is PSPACE-
omplete to 
he
k whether W ∈ L(A) for some SLP
W and hierar
hi
al automaton A. If the alphabet is unary, then the membershipproblem is NP-
omplete.Remark 1 The NP-hardness result in the unary 
ase follows also from [23℄.Proof. We �rst redu
e (1-in-3) SAT to the unary membership problem, sin
ewe use this redu
tion in the general 
ase, too. This problem is NP-
omplete, see[24, 6℄.Let ϕ = ∧m

j=1C(αj , βj , γj) be an instan
e of (1-in-3) SAT over n variables
(xi)i=1,n. Here, a 
lauseC(αj , βj , γj) is true i� exa
tly one of the literals αj , βj , γjis true. We use the unary alphabet {a}. Note that any word x ∈ a∗ is uniquelyde�ned by its length.We asso
iate with ea
h 
lause Cj = C(αj , βj , γj) the word wj ∈ a∗ of length
4j . This word 
an be de�ned by an SLP of polynomial size. LetW = w1 · · ·wm ∈
a∗ be the word of length ∑m

j=1 4j . The automaton A 
onsists of a sequen
e of
hoi
es with transitions labeled by ti and fi, for i varying from 1 to n, where
ti =

∑
j∈Ri

4j and Ri = {j | xi ∈ {αj , βj, γj}}. In the same way, fi =
∑

j∈Si
4jand Si = {j | (¬xi) ∈ {αj, βj , γj}}. 10
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1

1

n

nAny path ρ of A 
orresponds to a valuation σ where ea
h variable xi is trueif the path 
hooses ti, and false if it 
hooses fi. Let nj be the number of literalsof Cj that are set true by σ. Re
all that σ satis�es the formula ϕ i� nj = 1 forall j. It is easy to see that ρ is labeled by the word L ∈ a∗ of length ∑m
j=1 nj4

j .Noti
e that sin
e ea
h 
lause has three literals, nj ∈ {0, 1, 2, 3} for all j. Thelength of L in base 4 is thus (nmnm−1 . . . n10)4. We haveW = L i� (11 . . .10)4 =
(nmnm−1 . . . n10)4, thus i� nj = 1 for all j. That is, there is a path in A labeledby W i� there is a valuation satisfying ϕ, whi
h implies that the membershipproblem for hierar
hi
al automaton on a unary alphabet is NP-hard.We now show the �rst statement of Theorem 2. We redu
e the (1-in-3) QBF(one-in-three quanti�ed boolean formula) to the hierar
hi
al membership prob-lem. Let ϕ be an instan
e of (1-in-3) QBF of the form ϕ = Qnxn · · ·Q1x1ψ,where Qi ∈ {∃, ∀} and the formula ψ is of the form ∧m

j=1C(αj , βj , γj). As before,a 
lause C(αj , βj , γj) is true i� exa
tly one literal is true. The PSPACE-hardnessof this problem is shown in [24, 6℄.The idea is to make the valuations of the variables 
orrespond to paths inthe hierar
hi
al automaton (Ai)i=0,n and to validate the valuations using theSLPs (Wi)i=0,n. We de�ne the automata Ai and the SLPs Wi by indu
tion on
i = 0, . . . , n. Here, we use the binary alphabet {a, b}. The letter a will have thesame meaning as in the NP-
ase, and the letter b will be used as a delimitingsymbol.We de�ne the words wj , ti, fi ∈ a∗ with respe
t to ψ as before. That is,ea
h wj is asso
iated with 
lause Cj and ti, fi are asso
iated with variable xi.Moreover, we asso
iate with ea
h variable xi the word wi+m ∈ a∗ of length
4i+m. Let W0 = w1 · · ·wn+m be the word of a∗ of length ∑n+m

j=1 4j , and let A0be an automaton 
onsisting of one ǫ-transition from its initial state to its �nalstate. Let also S0 be an automaton 
onsisting of one transition labeled by b. TheSLP-
ompressed words (Wi)i=1,n, are de�ned by:� Wi −→Wi−1, if Qi = ∃,� Wi −→Wi−1 bWi−1, if Qi = ∀.The re
ursive de�nition of the automata (Ai)i=1,n and (Si)i=0,n−1 is illus-trated in the �gure below. Transitions are either labeled by ǫ, or by xti = tiwi+mor xfi = fiwi+m. The automaton on the left de�nes Ai when Qi = ∀, the au-tomaton in the middle de�nes Ai when Qi = ∃, and the automaton on the rightde�nes Si. Note that the symbol b is only generated by S0. In the �gure we re
allits position by marking a b aside ea
h Si.11
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b Sn-i

The overall idea is as follows. The values of xi+1, . . . , xn are already 
hosenwhen an automaton 
alls Ai (from a higher hierar
hy level). The automaton Aion the left sets xi true, then uses Sn−i to re
over the �xed values of xi+1, . . . xn,and �nally it sets xi false. The automaton Ai in the middle guesses whether xi istrue (by taking the transition labeled by xti) or false (by 
hoosing the transitionlabeled by xfi). If it 
hooses both transitions labeled by xti, xfi or none of them,then the word labeling this path will not be equal to Wn be
ause Wn 
ontainsexa
tly one o

urren
e of wi+m between any two 
onse
utive b's. We illustratehow Ai works on �gure 3, that shows the unfolding of the automaton A2 for
ϕ = ∀x2∀x1ψ on the left and for ϕ = ∃x2∀x1ψ on the right.To illustrate how Sn−i re
overs the values of xi+1, . . . , xn, we show Sn−i for
n = 9, i = 7 in the �gure below.
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bb
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xt 9

xf 9

xt 8

b b

xt 9

S1 S0

Ai and Si are designed so that any path of Ai is labeled by at most one xtiand at most one xfi between any two 
onse
utive b's, for ea
h i (for 
onvenien
e,we suppose that ea
h automaton starts and ends with a �
tive b transition).That is, a path 
an be labeled by xti and xfi, but not by two xfi or two xti. By
ontradi
tion, assume that there are two 
onse
utive b's in Ai su
h that there isa path from one to another labeled by two xtj (the 
ase xfj is symmetri
). Wetake the minimal Ai whi
h ensures this. By the minimality of Ai, this 
an onlyhappen either be
ause of the �rst xtj transition of Ai, or between Sn−i and oneof the two Ai−1. Sin
e in Sn−i all xtk o

ur after the (unique) b, there is no xtj12
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Fig. 3. Unfolding of A2 for Q2x2Q1x1 = ∀x2∀x1 on the left, and on the right, unfoldingof A2 for Q2x2Q1x1 = ∃x2∀x1
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in Ai−1 before its �rst b (if any). It already shows a 
ontradi
tion in the 
asewhere Qi = ∃. Consider now the 
ase Qi = ∀. For the same reason as before,there 
an be at most one xtj between the last b of Ai−1 and the b in Sn−i, forall k < i. Finally, between the b of Sn−i and the �rst b of the se
ond Ai−1 there
an be at most one xtk with k > i (from Sn−i) and at most one xtk with k < i(from Ai−1). Thus, in all 
ases we 
ontradi
t the assumption on Ai.Let us prove that Wn ∈ L(An) i� there exists a satisfying valuation tree V Tfor ϕ. A valuation tree V T is a binary tree of height n + 1 su
h that its root(level n) is labeled by xn and all nodes on level l are labeled by xl. The leaves areon level 0, and are unlabeled. A node v labeled by xi 
orresponds to a valuation
σ(v) of the variables xi+1, . . . , xn. For instan
e, if the valuation for a node is xnis true, then its 
hildren must evaluate xn to true, and evaluate xn−1 either totrue or false. Moreover, a node on level k have two 
hildren if xk is universallyquanti�ed (one 
hild evaluate xk to true and the other one to false), and one
hild if xk is existentially quanti�ed. We say that a valuation tree satis�es a QBFformula ϕ = Qnxn · · ·Q1x1ψ if for every valuation of every leaf, ψ is true.Using the property we just showed, we 
an note that between any two 
on-se
utive b's of any path of An, there are at most three wj and two wi+m for any
1 ≤ j ≤ m, 1 ≤ i ≤ n. Thus our 
oding in base four for determining whether a
lause is true, is still appli
able. Hen
e, a path ρ of An is labeled by Wn i� forall 1 ≤ k ≤ n+m there is exa
tly one wk between any two 
onse
utive b's.Assume that V T is a valuation tree showing that ϕ is true. A valuation σ(v)de�nes two words T (v), F (v) as follows: the word T (v) is the 
on
atenation ofall xtj where j > i and xj is true in σ(v). The word F (v) is the 
on
atenationof all xfj where j > i and xj is false in σ(v). Let v be a node of V T labeledby xi. We de�ne the word ρ(v) = T−1(v)WiF

−1(v). We re
all that T (v), F (v)are words over a∗, hen
e T−1(v)WiF
−1(v) is the word that results from Wi bydeleting |T (v)| many a's in the pre�x and by deleting |F (v)| many a's in thesu�x.Let us show by indu
tion on level i that ρ(v) is in L(Ai) for any node v of

V T on level i.If v is a leaf of V T , then it de�nes an a

epting valuation for ψ, hen
e
T (v)F (v) = W0 using the same argument as in the NP-hardness 
ase. Hen
e
ρ(v) = W0W

−1
0 = ǫ ∈ L(A0).Consider an internal node v labeled by xi with Qi = ∀. Let v1, v2 be the
hildren of v, with v1 
orresponding to xi true, and v2 to xi false. By indu
tionlet us suppose that ρ(v1), ρ(v2) are in L(Ai−1). Then,

ρ(v) = T−1(v)WiF
−1(v) = T−1(v)Wi−1bWi−1F

−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)bT (v2)ρ(v2)F (v2)F
−1(v)

= xtiρ(v1)F (v1)bT (v2)ρ(v2)xfiWe used in the equations above T−1(v)T (v1) = xti for the positive 
hild v1 of
v and F−1(v)F (v2) = xfi for the negative 
hild v2 of v. Moreover, F (v1)bT (v2) =14



F (v)bT (v) ∈ L(Sn−i) sin
e the indi
es of false variables in σ(v1) and of truevariables in σ(v2) form a partition of {i+1, . . . , n}. This shows that ρ(v) ∈ L(Ai).Consider an internal node v that is labeled by xi with Qi = ∃. Assume bysymmetry that v1 is the 
hild of v in V T (thus, xi is true). By indu
tion weassume that ρ(v1) is in L(Ai−1). It is easy to show now that ρ(v) ∈ L(Ai) using:
ρ(v) = T−1(v)WiF

−1(v) = T−1(v)Wi−1F
−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)F
−1(v)

= xtiρ(v1)For the reverse dire
tion the arguments are similar. From a wordW = Wn of
A = An, we obtain subwords ρ(v) in L(Ai) as above, labeled by T−1(v)WiF

−1(v).For ea
h leaf v this means that σ(v) satis�es exa
tly one literal per 
lause.
2Theorem 2 shows immediately that the hierar
hi
al membership problem isPSPACE-hard even with one pro
ess, by en
oding the alphabet {a, b} by lo
ala
tions on a single pro
ess. Similar arguments 
an be used for the 
ase where Gis an MSC-graph with no hierar
hy, as shown in the following theorem.Theorem 3 The hierar
hi
al MSC membership problemM

?
∈ L(G) is PSPACE-
omplete. The lower bound holds even if G is an MSC-graph, or if there is onlyone pro
ess.Proof. The problem we redu
e from is (1-in-3)QBF. Let F be an instan
e of(1-in-3)QBF of the form F = (Qnxn) . . . (Q1x1)ϕ, where Qi ∈ {∃, ∀} and theformula ϕ is of the form ∧j=1...mR(αj,1, αj,2, αj,3), with αj,k literals.The idea is to let valuations of the variables to 
orrespond to paths of G andto validate the valuations using the nMSC M . We de�ne the graph G and thenMSC M by indu
tion on F = Fn. Let Fi = (Qixi)Fi−1, with F0 = ϕ. Ea
h Fiwill determine Gi,Mi.The pro
esses used in the 
onstru
tion are SC1, . . . , SCm and RC1, . . . ,RCm,plus VY1, . . . ,VNn and VN1, . . . ,VNn. Here V means a variable and C a 
lause,

S stands for �send�, R for �re
eive�, Y for �yes� and N for �no�.For all i, let MYi be the MSC 
onsisting of a message from VYi to VNi,then ba
k from VNi to VYi, and a message from SCj to RCj for all j su
hthat xi ∈ {αj,1, αj,2, αj,3}. Symmetri
ally, let MNi be the MSC 
onsisting of amessage from VNi to VYi, then ba
k from VYi to VNi, and a message from SCjto RCj for all j su
h that ¬xi ∈ {αj,1, αj,2, αj,3}.
M0 is an MSC 
onsisting of one message from SCj to RCj , for all j. TheMSC-graph G0 
onsists of 4n verti
es, labeled by MYi, MNi, or ∅. The graph
hooses between MYi and MNi for all i, as depi
ted below:15
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G0 MY

MN

1

1

n

nNote that all messages de�ned above 
ommute, ex
ept for the ones betweenVYi and VNi. Let ai be the message from VYi to VNi, and bi the message fromVNi to VYi. We will use the order between ai, bi as follows: The sequen
e aibimeans that xi is true, while biai means that xi is false.Assume now that Gi−1,Mi−1 are already de�ned, and that there are f uni-versal quanti�ers in Fi−1. For simpli
ity, we denote a = ai and b = bi. Note thatin a valuation tree for F showing that F is true, ea
h value 0 or 1 assigned to thevariable xi is used by 2f leaves. A valuation tree is de�ned as usual, by assigningea
h universally quanti�ed variable two 
hildren labeled 0 and 1, respe
tivelyea
h existentially quanti�ed variable one 
hild labeled 0 or 1.If Fi = ∀xiFi−1, then let Mi = (ab)2
f

Mi−1Si(ba)
2f

Mi−1 (see Figure 4.1).The MSC Si is used for syn
hronizing pro
esses o

urring in Mi. It 
ontainsa message between ea
h (ordered) pair of pro
esses of Mi (in some arbitraryorder). Note that using the hierar
hy we 
an des
ribe (ab)2
f , and thus Mi, byan expression of polynomial size.LetGi = (Vi, Ei), where Vi = Vi−1∪{e0} and Ei = Ei−1∪{(Fin, e0), (e0, In)}.The initial node In (the �nal node Fin, respe
tively) of Gi is the same as for

Gi−1. The vertex e0 is labeled by the syn
hronization MSC Si.
Gi

Gi-1

MVY VN
i

Mi-1

ba

S S

VY VN

M
i-1

e0

i i i i

ii

abThe de�nition of Mi, Gi 
an be explained intuitively as follows. Let ρ be apath of Gi labeled by Mi. Note that the MSC Si o

urring in Mi has to mat
hthe MSC Si of e0. Thus ρ = ρ1e0ρ2, with ρ1 an a

epting path of Gi−1 labeled by
(ab)2

f

Mi−1 and ρ2 an a

epting path of Gi−1 labeled by (ba)2
f

Mi−1. Ea
h time
ρj goes through G0 (whi
h happens 2f times), ρj 
onsumes either ab of MYior ba of MNi, so ρj 
onsumes all o

urren
es of a, b in (ab)2

f . In parti
ular, allo

urren
es 
onsumed by ρ1 are of the form ab, whi
h ensures that the valuationof xi asso
iated with ρ1 is 
onsistent (xi is true). The same holds for the path
ρ2, where the value of xi is for
ed to be false.16



Suppose now that Fi = ∃xiFi−1. LetMi = (ab)2
f

(a)Mi−1, and Gi = (Vi, Ei),where Vi = Vi−1∪{e0, e1, e2, e3}. LetEi = Ei−1∪{(e0, In), (Fin, e3), (e0, e1), (e1, In),
(Fin, e2), (e2, e3)}, where as above In is the initial vertex and Fin is the �nal ver-tex of Gi−1. The initial and �nal verti
es of Gi are e0 et e3. We label e1 and e2with a, and e0 et e3 with ∅.
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iThe underlying idea in this 
ase is that the additional o

urren
e of a in
Mi must be mat
hed by e1 or e2 (nowhere else there is an a). If it is e1, everytime the path ρ goes through G0, it must 
hoose ba, hen
e it goes through VNi.The 
orresponding value for xi is then for
ed to be false. If it is e2, then ρ must
hoose ab, hen
e it goes through VYi. The rest of the proof is easy, see the proofof theorem 2.

2However, if there is only one pro
ess and hierar
hy is not allowed for thegraph G (or the MSC/word M), then our lower bound proof does not workanymore. Indeed, we show below that in the 
ase where the word W or theautomaton A are �at, the membership problem is solvable in polynomial time.Theorem 4 1. Let W be a word de�ned by an SLP and let A be an NFA.De
iding whether W ∈ L(A) 
an be a
hieved in time O(|W | · |A|3).2. Let W be a word and let A be a hierar
hi
al automaton (hNFA for short).De
iding whether W ∈ L(A) 
an be a
hieved in time O(|W |3 · |A|3).For the �rst statement in the theorem above a similar result (for Lempel-Ziv
ompressed words and regular expressions) has been shown in [23℄.The polynomial time algorithms for Theorem 4 are stated below. The �rstalgorithm 
omputes in a dynami
 programming way the set TX of pairs (a, b) ofstates of a NFA A between whi
h a path labeled by X exists, for ea
h variable
X of the SLP. A variable X is on the lowest level, if the rule asso
iated with Xis terminal.Membership ((Xi)i=1,n SLP-
ompressed word, A=(V,E,a0,af) NFA)For ea
h variable Xi in the lowest level:TXi

= { (a,b) ∈ V × V | a Xi−→ b };17



For i = 1 · · · n:Let TXi
= ∅;Let Y,Z s.t. Xi → Y Z;For all verti
es a,b,
 ∈ V:If (a,b) ∈ TY and (b,
) ∈ TZ:TXi

= TXi
∪ {(a,
)};Return (a0,af) ∈ TX1

;The se
ond algorithm 
omputes for ea
h sub-automaton B of a hNFA A theset TB of fa
tors Wi · · ·Wj of a word W that it a

epts. This algorithm usesanother dynami
 programming algorithm 
al
ulating for ea
h fa
tor Wi · · ·Wjthe set Ti,j of pairs (a, b) of states of B between whi
h a path labeled byWi · · ·Wjexists. For 
onvenien
e, we assume without loss of generality that every transitionis a subautomaton, but those on the lowest level of the hierar
hy (else, we justrepla
e every transition labeled by a by a subautomaton in the lowest level ofthe hierar
hy with a unique transition from the initial to the �nal state labeledby a.). We use the fa
t that (a, b) ∈ Ti,j if either there is a transition from a to
b labeled by a subautomaton C a

epting Wi · · ·Wj , or else the path labeled by
Wi · · ·Wj 
an be de
omposed as a, c and c, b, and then there exists 0 < e < j− isu
h that (a, c) ∈ Ti,i+e and (c, b) ∈ Ti+e,j . We thus 
ompute �rst the lowerlevels of hierar
hy, and we 
ompute �rst the sets Tk,k+d for small d, whi
h allowsus not to use a 
ostly �x point algorithm.Membership (W word, A=(V,E,a0,af) hNFA)For ea
h sub-automaton B of A in the lowest level of hierar
hy:TB = {(i,j) | Wi · · · Wj is a

epted by B};For ea
h sub-automaton B of A, by in
reasing hierar
hi
al level:For d = 0, . . . , |W |, for i = 1, . . . , |W | − d,Di,i+d = { (a, b) | ∃ subaut. C s.t. a

C
−→ band (i, i+ d) ∈ TC};For ea
h e < d and every a, b, c verti
es of B,If (a,b) ∈ Di,i+e and (b,
) ∈ Di+e,i+d:Di,i+d = Di,i+d ∪ {(a,
)};TB= {(i,j) | (a0,af) ∈ Di,j};Return (1, |W |) ∈ TAThe �gure below summarizes the 
omplexities of the di�erent variants forthe hierar
hi
al MSC membership problem as 
onsidered in this se
tion. Thelast two 
olumns 
orrespond to the 
ase of a single pro
ess (word 
ase) and tothe general MSC 
ase, respe
tively. The fa
t that the membership problem isNP-
omplete for an MSCM and an nHMSC G is easy to show sin
e it is alreadyNP-hard for H an HMSC [1℄, and it su�
es to guess a path of G of the size of

M , whi
h is polynomial, and 
he
k whether it is labeled by M .18



M G words MSCFlat Nested P NP-
ompleteNested Flat P PSPACE-
ompleteNested Nested PSPACE-
omplete PSPACE-
ompleteFig. 4. Complexity of membership problems.5 Pattern Mat
hing of nMSCsThe aim of this se
tion is to show that pattern mat
hing on nMSCs 
an bea
hieved in polynomial time, i.e., without unfolding the nMSCs. We �rst 
onsidera spe
ial 
ase of pattern mat
hing, namely testing equality of nMSCs. Then wedes
ribe �rst a pattern mat
hing algorithm when the pattern nMSC is 
onne
ted,and se
ond the additional work to do when the pattern is not 
onne
ted.5.1 Equality of nMSCsRe
all �rst that the FIFO message order allows testing the equality of two MSCs
M and N pro
ess-wise, whi
h amounts to testing the equality of ℘ pairs of words(over the type alphabet T ). In the hierar
hi
al 
ase we already used in Se
tion4.1 the representation of an nMSC M by ℘ straight-line programs Li, where theSLP Li generates the proje
tion M |i of M on pro
ess i.Thus, for testing the equality of two nMSCs in polynomial time, we 
an usedire
tly the following result:Theorem 5 ([22℄) Let P be an SLP, and A,B be two variables of P . We 
andetermine whether A and B generate the same word in time O(|P |5 log(|P |)).The theorem above provides an algorithm for testingM = N of timeO((|M |+
|N |)5 log(|M | + |N |)). We 
an improve the running time by using the patternmat
hing algorithm des
ribed in the next se
tion.5.2 Pattern Mat
hing nMSCsDe�nition 5. The pattern mat
hing problem for two MSCsM and N = 〈P,E, C,
ℓ,m,<〉 
onsists in knowing whether there exists some subset F ⊆ E of eventsof N su
h that the restri
tion of the mappings ℓ,m to F equals M . Moreover,we require that F is 
onvex, that is if e, f ∈ F and e < g < f , then g ∈ F .In parti
ular, the message mapping m must be one-to-one between the send andre
eive events in F . We 
all su
h an event set F an o

urren
e of M in N . If
M,N are nMSCs, then M o

urs as a pattern in N if the MSC de�ned by M isa pattern in the MSC de�ned by N , and we write M ⊆ N in this 
ase.It is easy to see that for an MSCM to be a pattern of an MSC N it does notsu�
e to have ea
h M |i a pattern of N |i. Of 
ourse, this 
ondition is ne
essary.Before to 
onsider the hierar
hi
al 
ase, we show a simple algorithm for thenon-hierar
hi
al 
ase: 19



Theorem 6 Let M,N be two MSCs. We 
an 
he
k whether M is a pattern of
N in linear time.Proof. The main idea 
omes from pattern mat
hing in tra
e monoids, [15℄.Weneed the linear time algorithm of Knuth-Morris-Pratt for determining o

urren
eofM |i in N |i, for all i ∈ P . We sear
h for tuples of o

urren
es of (M |i)i∈P thatform a fa
tor of N . Thus, we look for a 
on�guration of N su
h that on ea
hpro
ess i, we haveM |i as a su�x. This is done by re
ording the set J of pro
esses
i satisfying this 
ondition and progressing one event at a time on pro
esses j /∈ J .If this is not possible, the next event on every i /∈ J is a re
eive from some j ∈ J ,while the 
orresponding send from j to i in N has not been seen yet. We thenprogress on j, and update J by using Knuth-Morris-Pratt algorithm to knowwhether j ∈ J or j /∈ J . The overall 
omplexity of the algorithm is linear, bytaking 
are that ea
h event in N is 
onsidered at most on
e. 2De�nition 6. Let N = (Ni)

n
i=1 be an nMSC (or an SLP), and i, j ≤ n.1. We write Ni < Nj whenever Ni is used in the de�nition of Nj or in thede�nition of Z with Z < Nj . We write Ni ≤ Nj when i = j or Ni < Nj .2. We say that Ni o

urs literally in Nj when Ni is used as a referen
e (variableresp.) in the de�nition of Nj , and we write Ni ∈ Nj if it is the 
ase.The strategy we will use for nMSC pattern mat
hing is to 
ompute an im-pli
it representation of all positions where M |i o

urs as a pattern in N |i. In ase
ond step we 
ompute all positions where the proje
tionsM |i form a fa
torM .The basis of our algorithm is a pattern mat
hing algorithm for SLP-
ompressedwords, that was proposed in [20℄ (see also [22℄):Theorem 7 ([20℄) Let P be an SLP and let A,B be two variables of P . One
an determine all o

urren
es of the word de�ned by A in the word de�ned by Bin time O(|A|2|B|2).

V
Y u u u

X X

i V i+1arithmeti
 progression O

(X,Y, V i)The idea of the algorithm in [20℄ is based on word 
ombinatori
s. Let X bea variable of A and suppose that X o

urs in B, i.e. (the word de�ned by) X isa fa
tor of (the word de�ned by) B. Suppose that X does not appear as a fa
torinside any variable Y of B with rule Y → α ∈ Σ∗. Then X o

urs in a variable
Y with Y −→ V 1 · · ·V k. Let i be su
h that V i is the �rst symbol (variable orletter) that this o

urren
e of X overlaps, and the o

urren
e ends beyond V i(see also �gure above). In parti
ular, Y is the lowest variable that 
ontains thiso

urren
e ofX . We let O

(X,Y, V i) denote the set of positions of Y at whi
h ano

urren
e of X starts within V i and ends beyond V i, or starts and ends within
V i if V i is in the lowest level of the hierar
hy. Let O

(X,Y ) =

⋃
i O

(X,Y, V i).20



Using a 
ombinatorial argument (lemma of Fine and Wilf, [7℄), it is shownin [20℄ that O

(X,Y, V i) is an arithmeti
 progression that 
an be 
omputed bydynami
 programming in polynomial time. Therefore, O

(X,Y ) 
onsists of atmost |Y | arithmeti
 progressions, pre
isely at most one for ea
h i (and |V i| for
V i on the lowest level of the hierar
hy). That is, we 
an represent O

(X,Y, V i)by a triple of numbers (n, s, k) where n and n + s are the positions in Y ofthe two �rst o

urren
es of X in O

(X,Y, V i), and k = #O

(X,Y, V i) is thenumber of o

urren
es of X in O

(X,Y, V i). That is, we have Y = Y1XY2with ||Y1|| = n + is, for all 0 ≤ i < k. As an example, 
onsider the words Y =
aaabababababb and X = ababab. The arithmeti
 progression whi
h 
orrespondsto the o

urren
es of X in Y is (2, 2, 3) (the �rst position in a word being 0).Remark 2 Using the algorithm of [20℄ we immediately obtain that the equalityof two SLPs M,N 
an be 
he
ked in time O(|M |2|N |2), whi
h improves the
omplexity provided by the algorithm proposed by Plandowski in [22℄.Throughout the se
tion we denote o

urren
es of proje
tions M |i using su-pers
ripts. That is, M |1i will 
orrespond to a given starting position of M |i aspattern of N |i. Suppose that M i is a fa
tor of N |i for all i ∈ P . We say that
(M i)℘

i=1 forms a fa
tor of N if there exists M a fa
tor of N su
h that M |i = M ifor all i ∈ P .5.3 Pattern Mat
hing for Conne
ted PatternsWe turn now to the pattern mat
hing problem for nMSCs M , N where thepattern M is 
onne
ted. That is, we suppose in this se
tion that M 
annot bewritten asM1M2, whereM1,M2 are non-empty MSCs with no 
ommon pro
ess.De�nition 7. Let M |1i and M |2j be o

urren
es of M |i in N |i, resp. of M |j in
N |j . We say that M |1i and M |2j are 
ompatible, if the �rst send (resp. re
eive)between the pro
esses i and j onM |1i mat
hes the �rst re
eive (resp. send) onM |2j(if i, j 
ommuni
ate in M). More generally, we 
all the indi
es 
orresponding to
M |1i , M |2j in a given arithmeti
 progression 
ompatible.Lemma 1. Let (M |0i )

℘
i=1 be o

urren
es of M |i in N |i. Then (M |0i )

℘
i=1 forms afa
tor of N i� (M |0i )

℘
i=1 are pairwise 
ompatible.As in the previous se
tion we will denote by O

(M,Y ) the set of o

ur-ren
es M0 of M in Y su
h that M0 does not o

ur in any Z < Y . We denoteby O

(M,Y, V ) ⊆ O

(M,Y ) those o

urren
es that start within V (endingbeyond V ), where V ∈ Y is a referen
e o

urring literally in Y . It means thatone event of the o

urren
e has to o

ur in V and one (not ne
essarily on thesame pro
ess) has to o

ur not in V . Obviously, no event may o

ur before V .Our sear
h for 
ompatible o

urren
es uses the following properties, that areeasily shown using the fa
t that M is 
onne
ted:21



Fa
t 1 1. Let Y be a variable of N and h 6= j two pro
esses. Then for ea
h
M |0h ∈ O

(M |h, Y ) there 
an be at most one o

urren
e M |0j in Y that is
ompatible with M |0h.2. For ea
h o

urren
e M0 in O

(M,Y, V ) there exists some pro
ess h su
hthat M0|h ∈ O

(M |h, Y, V ). We 
all su
h a pro
ess h a leading pro
ess for
M0. Thus, any pairwise 
ompatible tuple (M0|k)k 6=h ⊆ Y is determined bythe o

urren
e M0|h, be
ause of Fa
t 1.1.Example 4. For the nMSC P in Figure 1 and the pattern N in Figure 5 we haveO

(N,P ) = ∅ and O

(N,S) is a singleton, 
orresponding to the unique o

ur-ren
e ofN in S. The leading pro
esses are 1 and 3, sin
e e.g. O

(N |3, S|3) = {0}.Note that O

(N |2, S|2) = ∅ and O

(N |2,M |2) = {0} is the arithmeti
 progres-sion (0, 0, 0).

N

1 2 3

Fig. 5. Pattern MSC NAn index i = n + js, j < k, of an arithmeti
 progression (n, s, k) in Y is
alled external , if it is either the �rst or the last index of the progression, thatis i = n (j = 0) or i = n+ (k− 1)s (j = k− 1). Any non external index is 
alledan internal index.The next proposition provides the main argument that the sear
h for a pair-wise 
ompatible tuple of o

urren
es (M |i)i∈P 
an be done in polynomial time.Intuitively, we must show that the o

urren
es of (M |i)i∈P 
an be lo
ated inthe same variable Y of N , up to polynomially many ex
eptions. Without thisproperty we would have to 
onsider di�erent variables Y i for di�erent pro
esses
i ∈ P . We re
all that for every message (e, f) in an nMSC N = (Nq)

n
q=1 theevents e and f appear literally in the same ma
ro Nq.Proposition 1 Assume thatM0 ∈ O

(M,Y, V ) withM0|i ∈ O

(M |i, Y i, V i),where Y, Y i, V i are variables of N . Then we have one of the following two 
ases:1. Y i = Y and V i = V for all i. 22



2. For some leading pro
ess h for M0 (i.e., V h = V and Y h = Y ), the o

ur-ren
e M0|h is an external index of O

(M |h, Y h, V h).Proof. Suppose that there is no leading pro
ess h su
h thatM0|h is an exter-nal index of O

(M |h, Y h, V h). Assume also that there is a message from pro
ess
i to pro
ess j inM . We de
omposeM |i = Ai,jB

s
i,jCi,j su
h that Bs

i,j begins withthe �rst send from i to j, and ends with the last one. Similarly, we de
ompose
M |j = Aj,iB

r
j,iCj,i su
h that Br

j,i begins with the �rst re
eive on j from i, andends with the last one. We need the next lemma to infer that if an o

urren
e
M0 is su
h thatM0|i ∈ O

(M |i, Y i, V i) andM0|j ∈ O

(M |j , Y j , V j) are bothinternal indi
es, then we have Y i = Y j and V i = V j . This will allow �nishingthe proof of the proposition.Lemma 2. Let π = O

(M |i, Y, V ) be an arithmeti
 progression 
onsisting ofat least three indi
es. Then ea
h Bs

i,j asso
iated with some internal index of πbelongs to O

(Bs
i,j , Y, V ).Proof of lemma: Sin
eM |i belongs to an arithmeti
 progression 
onsistingof at least three indi
es, M |i is of the form (a1 · · · an)d(a1 · · · am), where d ≥ 2and m < n.By assumption, there is a message from i to j in M |i, hen
e ak = i!j forsome k. Sin
e Ai,j and Ci,j have no i!j, we obtain Ai,j = a1 · · ·ak−1 and Ci,j =

al+1 · · · ana1 · · · am, with l > m.In parti
ular, we have |Ai,j | < n and |Ci,j | < n. Sin
e ea
h M |i 
ontainsthe last position of the word generated by V , the subword Bs
i,j also 
ontainsthis position, ex
ept possibly for the �rst and the last Bs

i,j . Hen
e, every Bs
i,jasso
iated with an internal index of π is in O

(Bs

i,j , Y, V ).
A B C1 1 1

n

Y

M|
1

V

2Let now h be a leading pro
ess, thus Y h = Y and V h = V . Let also j 6= h su
hthat j, h 
ommuni
ate in M . Sin
e M0|h is an internal index of O

(M |h, Y, V )we 
an apply Lemma 2 and we obtain that Bs,0
h,j ∈ O

(Bs

h,j , Y, V ). Hen
e, wealso have Br,0j, h ∈ O

(Br
j,h, Y, V ), sin
e mat
hing sends and re
eives alwaysappear literally in the same variable. Re
all that M0|j ∈ O

(M |j , Y

j , V j) with
Y j ≤ Y . Using Br,0

j,h ∈ O

(Br
j,h, Y, V ) we obtain that Y ≤ Y j , hen
e Y j = Y .Applying the lemma again to M0|j we obtain also V j = V , that is j is a leadingpro
ess too. The result follows for all pro
esses j, due to M being 
onne
ted. 2Theorem 8 Let M,N be two nMSCs with M 
onne
ted. We 
an 
he
k whether

M o

urs in N in time O(|M |2|N |2). 23



Pattern-Mat
hing (nMSC M, N)For ea
h variable X on the lowest level of hierar
hy:If M ⊆ X at position pos then return (X, pos);For all variables Y , V of N with V ∈ Y :Compute O

(M |1, Y , V ), . . ., O

(M |p, Y , V );For every variable Y of N:For every pro
ess h:For every pos(h) at the beginning or end of anarithmeti
 progression of O

(M |h, Y ):Let (M |h)pos(h) be the 
orresponding o

urren
e of M |h:If there exists ((M |k)pos(k))k 6=h 
ompatible with (M |h)pos(h)where for all k, pos(k) ∈ O

(M |k, Zk) with Zk ≤ Y :Return (Y , (pos(k))k ∈ P ;For every V ∈ Y s.t. ∀i, πi = O

(M |i, Y , V ) 6= ∅:For ea
h i, let πi = (ni, si, ki);Let (t1, . . . , tp, e1, . . . , ep) = Periods(Redu
e(π1, . . . , πp));Let π′
i = (ni + tisi, siei, (ki − ti)/ei)If (π′
i)i 6= ∅ then return (Y , (π′

i)i)Noti
e that we have to restri
t pos(k) to be inside Y for every k to ensure that
h is leading, whi
h ensures the uniqueness of pos(k) for every k. For simplifyingthe presentation of the algorithm we will assume below that every pro
ess i in
M sends at least one message to every other pro
ess j > i. The algorithm �rst
omputes the o

urren
es M |i pro
ess wise. Then, in the third for-loop, it �rst
onsiders external indi
es, 
orresponding to the se
ond 
ase of Proposition 1. Ifno pattern is found, the algorithm looks for an o

urren
e 
orresponding to the�rst 
ase of Proposition 1, whereM0|i ∈ O

(M |i, Y, V ) for every pro
ess i. Thearithmeti
 progression O

(M |i, Y, V ) is denoted by πi = (ni, si, ki) above. Wedenote by ui the word 
onsisting of the si �rst symbols of M |i. By assumption,ea
h ui 
ontains both symbols i!j and i?j, for all j > i. For ea
h i < j we denoteby mi,j the number of sends from i to j in ui, and by mj,i the number of re
eivesfrom i to j in uj .We des
ribe now the subroutines Redu
e and Periods and show that ouralgorithm returns only o

urren
es of M whi
h are indeed fa
tors of N . Thesubroutine Redu
e restri
ts the arithmeti
 progressions (π1, . . . , πp) by addingan o�set to ea
h arithmeti
 progression πi. This is done su
h that for all pairsof distin
t pro
esses i, j there exists a send to pro
ess j and a re
eive from jin every o

urren
e from πi, su
h that the mat
hing event belongs to πj . Forinstan
e, in the example below the arithmeti
 progression π1 will start after a
all of Redu
e with u0

1, sin
e the two 
opies of u1 before have no send to pro
ess2 su
h that the mat
hing re
eive belongs to π2. Thus, the �rst two o

urren
es of
u1 in π1 will not be used for looking for 
ompatible o

urren
es. It also redu
esthe number of o

urren
es of arithmeti
 progressions. Redu
e takes a quadrati
time by 
omputing for every pair of pro
esses i, j the �rst and the last event on
i that sends or re
eives a message from an o

urren
e of πj . We then 
omputethe events whi
h ful�lls every 
onstraint.24
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Let π1, . . . , π℘ be arithmeti
 progressions of o

urren
esof M |1, . . . ,M |℘, su
h that for ea
h pair i 6= j there existsa message between i, j from ea
h ui in πi to some uj in πj ,and vi
e-versa. That is, π1, . . . , π℘ is the result of a 
all ofRedu
e. Let u0
i be the �rst index of ea
h arithmeti
 progres-sion. The only problem that remains for de
iding whetherthere exist 
ompatible o

urren
es M |i,M |j is that the ex-isten
e of messages from ui in πi to uj in πj does not meanthat the events mat
h 
orre
tly w.r.t. M . We will look fortuples of o

urren
es of the M |i that are pairwise 
ompatibleby 
onsidering sub progressions of the πi.From now on we want to determine all tuples (u1, . . . , u℘)
orresponding to the starting positions of pairwise 
ompati-ble tuples ((M |1)0, . . . , (M |℘)0). As we show later, su
h tupleso

ur periodi
ally, hen
e we just need to determine some pe-riods (µ1, . . . , µ℘) ∈ N

℘ and the �rst positions (u1
1, . . . , u

1
℘)from whi
h we 
an apply these periods.For all i < j let zi,j < mi,j be the number of events i!j in u0

i before the �rstone that has a mat
hing re
eive in πj . Let zj,i < mj,i be the number of j?i in
u0

j before the �rst that has a mat
hing send in πi. In the �gure aside, m1,2 = 2,
m2,1 = 3, z1,2 = 1 and z2,1 = 0. Let z0

i,j be su
h that after reading the �rst
z0

i,j + zi,j sends from πi to πj we arrive at a message 
onsisting of the �rst i!jof some ui and the �rst j?i of some uj. In the example, we marked as z0 theearliest message 
onsisting of the �rst 1!2 of some u1 and the �rst 2?1 of some
u2, and z0

1,2 = 3. So z0
i,j + zi,j ≡ 0 (mod mi,j) and z0

i,j + zj,i ≡ 0 (mod mj,i).Using the Chinese Remainder Theorem the subroutine Periods �rst 
omputesthe least solutions z0
i,j modulo l
m(mi,j ,mj,i) to the above equations in time

O(min(|M |i|, |M |j |)3). We perform this 
omputation for ea
h pair of pro
essesin overall time O(|M |3) for obtaining the new period µi and the new o�set
u1

i . Noti
e that µi divides l
m{mi,j | i < j}. The restri
tion of the arithmeti
progression πi a

ording to µi, u
1
i is denoted π′

i.The �rst i!j of ea
h ui in the restri
ted arithmeti
 progression π′
i 
orrespondsto the �rst j?i of some uj of the unrestri
ted arithmeti
 progression πj . The �nalstep of Periods is to 
ompute o

urren
es ofM from (π′

i)i. Let xi,j be an integerdenoting the number of uj between u1
j and the re
eption of the �rst message from

u1
i . We want to 
ompute all tuples (ui)i=1,℘ su
h that the �rst i!j of ui mat
hesthe �rst j?i of uj . That is, we need a solution (ti)i=1,℘ of the following systemof ℘(℘− 1) linear equations:

µimi,jti = xi,jmj,i + µjmj,itjThus, the value of t1 determines ea
h ti, modulo some value ei depending onthe (mi,j)i,j . We 
an 
ombine the equation for (1, i) with the equation for (i, j)to obtain a system of ℘(℘− 1) equations :
δi,jt1 = yi,j + νi,jtj25



Let j ≤ ℘. Noti
e that several of these equations (for di�erent i)
on
ernsthe same t1 and tj : either all these equation are equivalent, or there exists aunique or no solution at all (we just 
ombine two equations by multiplying per
νi,j one and by νi′,j the other and substra
ting one equation with the otherone). If there is a unique solution, we stop the pro
edure and test this solutionin ea
h equation. If this is indeed a solution of the system, we return its value,else we will not �nd an o

urren
e of M in this level. Hen
e, we 
an assume forthe following that there is a unique equation (sin
e all are equivalent) for ea
h
j, that is we have a system of ℘ equations, where i is �xed.If gcd(δi,j , νi,j) does not divide yi,j , there is no solution to our system. Else,we 
an divide δi,j , yi,j , νi,j by gcd(δi,j , νi,j), and thus 
onsider only the 
ase where
gcd(δi,j , νi,j) = 1.Let γi,j be the inverse of δi,j modulo νi,j . Hen
e the equations are redu
ed to
℘ trivial equations of the form t1 ≡ yi,jγi,j (mod νi,j). The subroutine Periods�nally 
omputes a solution (t1, . . . , tp) using again the Chinese Remainder The-orem and returns (ti + u1

i − u0
i , ei)i.Sin
e the interse
tion of an arithmeti
 progression with the periodi
 set isstill an arithmeti
 progression, in the end we have arithmeti
 progressions ofperiods in
reased by a fa
tor of ei, that 
ontains only 
ompatible o

urren
es.A 
all of Periods 
osts time O(|M |3).Remark 3 We 
an slightly adapt the algorithm for 
omputing all o

urren
esof M in N . Note that the number of o

urren
es might be exponential (as inthe word 
ase), thus the representation of all o

urren
es will be impli
it.5.4 Pattern Mat
hing for Non-Conne
ted PatternsWe turn now to the general 
ase where the nMSC patternM is not 
onne
ted. Weshow that the 
omplexity of the algorithm in
reases just by a fa
tor O(|CM |2) ≤

O(℘2), namely the square of the number of weakly 
onne
ted 
omponents ofM .It will be helpful in the following to have all pro
esses of N appear in M .This 
an be enfor
ed by a simple modi�
ation of M,N , as depi
ted below. Forea
h referen
e Y of N and ea
h pro
ess i ∈ PN \ PM we add a lo
al a
tion lo
ion pro
ess i in Y before ea
h message or referen
e on i, and before the end of
Y . Let M ′ = M ·

∏
i∈PN\PM

(lo
i). Obviously, M ′ o

urs in N ′ i� M o

urs in
N .

Occ(M      )

1 5 5

loc5Occ(M      ){1,2} {3,4}

2 3 4 1 2 3 4

Let M,N be nMSCs. For ea
h referen
e X of M or N , let CX ⊆ 2PM be theset of maximal 
onne
ted 
omponents of the 
ommuni
ation graph of X (this is26



the graph with verti
es 
orresponding to pro
esses and edges between 
ommuni-
ating pro
esses). We will denote by X |C the proje
tion of X over the pro
essesin C ∈ CX . In other words, X = (X |C)C∈CX
represents the de
omposition of theMSC asso
iated with X into weakly 
onne
ted nMSCs. It follows from the previ-ous se
tion that we 
an 
ompute in time O(|M |2|N |2) a 
ompa
t representationof all o

urren
es of M |C in N , for ea
h C ∈ CM . The next de�nition stateswhen a tuple of o

urren
es (M |C)C∈CM

of the weakly 
onne
ted 
omponents of
M 
orresponds to an o

urren
e of M in N .De�nition 8. Let a ∈ O

(M |C , Y ), b ∈ O

(M |D, Y ) be two o

urren
es ofweakly 
onne
ted 
omponents of M , where C,D ∈ CM and C 6= D. Then a, b are
alled 
ompatible if there is no message in Y from some pro
ess in C to somepro
ess in D that is sent after a and re
eived before b (or vi
e versa).Lemma 3. Let aC ∈ O

(M |C , Y ), for all C ∈ CM . Then (aC)C∈CM

is ano

urren
e of M in Y i� aC , aD are 
ompatible for all C,D ∈ CM , C 6= D.Proof. The impli
ation from left to right follows dire
tly from the de�nitionof pattern. For the 
onverse assume that (aC)C∈CM
is not an o

urren
e ofM in

Y . This means that there is some 
hain of messages (sk, rk)m
k=1 with P (s1) ∈ C,

P (rm) ∈ D, P (rk) = P (sk+1) for all k, and su
h that aC pre
edes s1, ri pre
edes
si+1, and rm pre
edes aD. Sin
e all pro
esses appear in M , there exist some kand C′, D′ ∈ CM su
h that P (sk) ∈ C′, P (rk) ∈ D′, aC′ pre
edes sk and rkpre
edes aD′ . But this means that aC′ , aD′ are not 
ompatible, 
ontradi
tion. 2Let C ∈ CM . Note that the o

urren
es of the weakly 
onne
ted 
omponents
M |C in Y are totally ordered by the visual order of Y . This justi�es the use of
min and max on o

urren
es of the same weakly 
onne
ted 
omponent in theproposition below.Proposition 2 Let a = (aC)C∈CM

, b = (bC)C∈CM
∈ (O

(M |C , Y ))C∈CM

be twoo

urren
es of M in Y . Then (min(aC , bC))C∈CM
and (max(aC , bC))C∈CM

arealso o

urren
es of M in Y .Proof. By Lemma 3 it su�
es to 
he
k that min(aC , bC), min(aD, bD) are
ompatible, for all C,D ∈ CM , C 6= D. The only 
ase to verify is when min(aC , bC)
= aC < bC and min(aD, bD) = bD < aD. Assume by 
ontradi
tion that there isa message from C to D that is sent after aC and re
eived before bD. Then aCand aD > bD are not 
ompatible, a 
ontradi
tion. The 
ase where a message issent after bD and re
eived before aC is symmetri
al. 2We des
ribe the pattern mat
hing algorithm in a simpler 
ase where thefollowing two 
onditions hold. First, we assume that every message is on thelowest hierar
hi
al level. This means that ma
ros either 
onsist of referen
es (andlo
al a
tions) only, or they are MSCs. In other words, we forbid messages 
rossingreferen
es in N . Se
ond, for all referen
es Y, Z with Z ∈ Y and ea
h o

urren
eof M |C in Y either M |C is in
luded in Z, or it has an empty interse
tion with
Z. That is, we assume that no o

urren
e of M |C in Y is split between several27



referen
es Z ∈ Y . If N satis�es these 
onditions w.r.t. M , then we 
all thepair (M,N) ni
e. The general 
ase is te
hni
ally more involved, but it does notrequire new ideas.If M o

urs as a pattern of N , then Proposition 2 ensures that there is aunique minimal o

urren
e of M in N (minimal with respe
t to the 
omponentwise ordering of tuples from (O

(M |C , N))C∈CM
. In order to �nd the mini-mal o

urren
e of M in a referen
e X of N , we look for 
ompatible minimalo

urren
es in ea
h referen
e Y ∈ X . If Y does not 
ontain the 
omplete M ,then we need more information about possible 
omponents M |C that are out-side Y and that are 
ompatible with the 
omponents within Y . Sin
e there maybe several referen
es X with Y ∈ X we en
ode this additional information byimaginary o

urren
es denoted ↓C and ↑C , for ea
h 
omponent C ∈ CM . Theo

urren
e ↓C for 
omponent C means an o

urren
e of M |C after Y , while

↑C for C means an o

urren
e of M |C before Y . Thus, we let ↑C< aC <↓Cfor all aC ∈ O

(M |C , Y ). For C 6= D, we say that ↑C , aD ∈ O

(M |C , Y ) are
ompatible if there is no message from C to D that is re
eived before aD in Y(symmetri
ally for ↓). The pre
ise de�nition follows:De�nition 9. Let Y be a referen
e of N . Let E ⊆ {6=↑C,=↓C | C ∈ CM} be aset of 
onstraints. We de�ne MinY
E = (aC)C∈CM

as the minimal tuple satisfyingthe following 
onditions:1. For ea
h C ∈ CM , aC ∈ O

(M |C , Y ) ∪ {↑C , ↓C}.2. The o

urren
es (aC)C∈CM
are pairwise 
ompatible.3. (aC)C∈CM

satis�es the 
onstraint E. That is, (6=↑D) ∈ E implies that aD 6=↑Dand (=↓D) ∈ E implies that aD =↓D.
1 5

Occ(M )
i

2 3 4

Y

a

b

c

d

e
f

h

0g

Note that the minimal o

urren
e in the previous de�nition is well de�ned,sin
e there exists at least one tuple (aC)C∈CM
satisfying the three 
onditionsabove, namely aC =↓C for all C. In other words, there may always be an o

ur-ren
e of M after Y .Example 5. The two extreme 
onstraints 
orrespond toMin∅ = (↑C)C∈CM

and Min(=↓C)C∈CM
= (↓C)C∈CM

.In the �gure to the right we also have:� Min{6=↑1} = (a, ↑2, e, ↑4, ↑5) = Min{6=↑1, 6=↑3}.� Min{=↓2} = (b, ↓2, e, ↑4, ↑5).� Min{6=↑4,=↓5} = (↑1, ↑2, ↑3, g, ↓5).The next lemma shows that it su�
es to 
ompute (re
ursively) the tuplesMinY
E , for suitable 
onstraints E and referen
es Y of N .Lemma 4. Let (bC)C∈CM

= MinN
( 6=↑C)C∈CM

. Then M is a pattern of N i�
bC 6=↓C, for all C ∈ CM .The problem is that we might need the tuples MinY

E for arbitrary sets E of
onstraints (and there are exponentially many). Fortunately, we 
an avoid the28



exponential blow-up by 
omputing MinY
E only for singletons E = {6=↑C} and

E = {↓C}, C ∈ CM . We �rst show that these tuples su�
e for 
omputing inpolynomial time MinY
E for arbitrary E. In a se
ond step, we show that we willneed only a polynomial number of 
onstraints E in the re
ursive step.Lemma 5. Let E,F ⊆ {6=↑C,=↓C | C ∈ CM} be two sets of 
onstraints. ThenMinY

E∪F = max(MinY
E ,MinY

F ).Proof. Let b = (bC)C = max(MinY
E ,MinY

F ). We have of 
ourse MinY
E∪F ≥MinY

E and MinY
E∪F ≥ MinY

F , hen
e MinY
E∪F ≥ b. But MinY

E∪F is the minimaltuple that satis�es the three properties whi
h b satis�es, too: the tuple b haspairwise 
ompatible 
omponents bC and it satis�es the 
onstraints in E ∪ F .Therefore, b = MinY
E∪F . 2

1 5

Occ(M )
i

2 3 4

Y
a

c
d

1

b

Y2

MinY 1Y 2

{6=↑5} = (a, b, c, ↑4, d).MinY 1

{6=↑5} = (a, ↓2, c, ↑4, d) = MinY 1

{=↓2, 6=↑5}.MinY 2

{6=↑2} = (↑1, b, ↑3, ↑4, ↑5).Proposition 3 Assume that the pair (M,N) is ni
e and 
onsider some refer-en
e Y of N and a 
omponent D ∈ CM . Then MinY
{6=↑D} and MinY

{=↓D} 
an be
omputed in time O(|Y |℘2) from the tuples (MinZ
{6=↑C})C∈CM

and (MinZ
{=↓C})C∈CM

,where Z ∈ Y .Proof. Assume that any referen
e Y of N that is not on the lowest hierar
hylevel has exa
tly two subreferen
es, that is Y = Y 1Y 2.We will 
ompute the set of 
omponents E↓ ⊆ CM that 
onsists of all C su
hthatM |C has no o

urren
e in Y 1 whi
h is 
ompatible with the 
onstraints, thus29



M |C must o

ur either in Y 2 or after Y . In order to do this, we start with E↓ = ∅and we augment E↓ as long as there exist a, b with the following properties:� (aC)C is an o

urren
e in Y 1 with aC =↓C i� C ∈ E↓,� (bC)C is an o

urren
e in Y 2 with bC =↑C i� C /∈ E↓.The algorithm for 
omputing MinY
{6=↑D} is des
ribed below (for MinY

{=↓D} thereasoning is similar):(1) Let E↓ = ∅(2) Compute (aC)C = MinY 1

E , with E = {6=↑D} ∪ {=↓C | C ∈ E↓}(3) Let E↓ = { C | aC = ↓C}// For all C ∈ E↓, M |C must be in Y 2 or after Y .(4) Compute (bC)C = MinY 2

( 6=↑C)C∈ E↓(5) Let E↓ = { C | bC 6= ↑C}. If E↓ 
hanges, then goto (2).(6) Let dC = bC if C ∈ E↓, and dC = aC, otherwise.(7) Return (dC)C.Note that ea
h time the set E↓ 
hanges at step (3), it in
reases by at leastone 
omponent. Hen
e, we return to step (2) at most O(℘) times.For the running time let us denote by Et
↓ the value of E↓ after t iterations.The t-th iteration needs time ℘(|Et

↓| − |Et−1
↓ |), thus the overall running time isat most O(℘2).If an nMSC has more than two referen
es, then we de�ne several sets Ei

↓ toexplain the minimal referen
e Y i where the o

urren
e of the proje
tion shouldbe. Considering that for ea
h step, one set Ei
↓ has to 
hange, the running timeis ℘2|Y |. 2Theorem 9 We 
an test whether M o

urs as pattern of N in time O(C2

M (|M |2

|N |2)).Proof. We show the theorem only for the 
ase where (M,N) is a ni
e pair.The general 
ase is te
hni
ally more involved, but does not require new ideas.Theorem 8 is used for 
omputing �rst the impli
it representation of all o
-
urren
es of M |C in Y , for all 
omponents C ∈ CM of M and all referen
es Y of
N . For ea
h Y we need then only the position of the minimal o

urren
e of ea
h
M |C in Y (if any). We 
ompute then MinY

6=↑C
and MinY

=↓C
for all 
omponents

C ∈ CM and referen
es Y of N . We apply Proposition 3 to 
ompute MinY
6=↑Cand MinY

=↓C
. The time 
osts are O(|M |2|N |2) for the 
onne
ted 
omponents and

O(℘3|N |) ≤ O(|M |2|N |2) for the additional algorithms looking for 
ompatible
omponents. The overall running time is thus O(|M |2|N |2). In the general 
asewe get an additional fa
tor C2
M , where CM is the number of 
onne
ted 
om-ponents of M , expressing additional 
onstraints due to 
omponents M |C thatmight be split over several referen
es of N . 230



6 Con
lusionIn developing new te
hniques for algorithms on hierar
hi
al MSCs, we provedthat algorithms 
an bene�t from the redundan
y provided by the use of ma
ros.Namely, it is not a good idea to unfold the hierar
hi
al system sin
e the re-dundan
y is lost. Moreover, we use the hierar
hy to lower the running time.We showed that pattern mat
hing and membership 
an e�
iently use the hier-ar
hy, together with te
hniques stemming from 
ombinatori
s, arithmeti
s anddynami
 programming. We believe that similar results 
an be stated for manyother problems on hierar
hi
al MSCs, su
h as model-
he
king against propertiesexpressed by template MSCs [10℄.A
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