Fundamenta Informaticae XX (2007) 1-21 1
IOS Press

On communicating automata with bounded channels

Blaise Genest, Dietrich Kuske', and Anca Muscholf

Abstract. We review the characterization of communicating finiteestaaachines whose be-
haviors have universally or existentially bounded chasing&hese results rely on the theory of
Mazurkiewicz traces. We investigate the question whethannel bound conditions are decid-
able for a given communicating finite-state machine.

1. Introduction

Communicating finite-state machines (CFM for short), onemjantly, FIFO channel systems or mes-
sage passing automata, are a fundamental model for contgggtems, in which agents cooperate
via asynchronous message passing using unbounded bu@erapared with other models of true
concurrency, like Petri nets for instance, these machineg@nputationally much harder, actually
Turing equivalent [9]. Channel systems are the basic mddéleostandard ITU notation SDL (norm
Z.100), and they are widely used in the design of commuminapirotocols. Basic questions aris-
ing in formal verification, such as the reachability probjeare undecidable for CFMs (in contrast,
reachability is a famous problem in Petri nets, shown to loéddéble in [26, 19]).

Motivated by formal verification questions, an importangeliof research was devoted to identify-
ing variants of CFMs, or approximated behaviors thereaft #me amenable to algorithmic methods.
One such example are lossy FIFO systems, which assume tratalk are unreliable. On this model,
the reachability problem was shown to be decidable [1, 18&itof non-primitive recursive complex-
ity [29]. This high complexity is not the primary reason tosaer lossy FIFO systems unsatisfactory:
First, the assumption that any message can be lost, is iattiferial in practice (a more realistic as-
sumption is that message loss is ruled by probabilities, 40 Second, more advanced questions
like recurrent reachability (including model-checkingliséness properties) are again undecidable in
this model [2].

Another approach to obtain decidability of various modetaiting questions on CFMs is based
on the representation of the set of reachable configurainnkiding the channel contents) by finite
automata, see e.qg. [5, 6, 7, 10]. Often this approach rexjtaneslax the operations on channels, which
yields an over-approximation of the result.
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This paper provides a survey of recent research on subsla§€e-Ms that have been shown to
be robust w.r.t. two objectives, namely decidability of mbdhecking problems and good expressive
power. The approach taken here goes beyond regular refatsea of reachable configurations. We
use partial order methods for describing the behaviors anidéntifying robust subclasses of reliable
channel systems. Formally, the behaviors are describ&ddsgage sequence chafidSC for short),
another ITU standard (Z.120 [18]). The advantage of reagpaibout behaviors of CFMs using MSCs
is both succinctness and comprehension, since a singleadiagubsumes a set of sequential runs of
the CFM. The yardstick for expressive power used in this pegp@onadic second order logic (MSO
for short) over partial orders of MSCs.

An early line of work considered universally bounded MSQCslyo In terms of a CFM, this
amounts to saying that every run can be executed with chaofidixed size, no matter how events
are scheduled. Equivalently, there exists some (unifolwajpl on the number of transitory messages,
at any time. Since the size of the communication channelsas fiuniformly, this constraint turns a
CFM into a finite state device. Checking that a CFM is unigrdeounded is undecidable, and some
heuristics were proposed for solving this problem [22]. Bmpositive side, over universally bounded
MSCs, the rich theory of regular languages extends very: valtomata (CFMs), logic (monadic
second order) and MSC-expressions (regular MSC-grapagllagquivalent [17] (see also [20], which
extends the characterization to infinite MSCs). Moreoverdeh checking in the realm of universally
bounded MSC models is decidable, with elementary compl¢3it28].

The drawback of models with universally bounded commuimoathannels is the limited ex-
pressive power. Intuitively, universal channel boundsimregmessage acknowledgments, which can
be difficult to impose in general. For instance, basic pro®of producer-consumer type (such as
e.g. the USB protocol) are not universally bounded, sineettimmunication is one-way. Therefore, a
relaxation of this restriction on channels was proposed@n14] . The idea is to require axistential
boundon channels. This means roughly that every CFM run must bemgescheduling of events
that respects a given channel bound (other schedules migbée the bound). In other words, runs
canbe executed with bounded channels, provided that we sahdldelevents fairly. For instance,
in a producer-consumer setting, the scheduling alternageseen producer and consumer actions.
This requirement is perfectly legitimate in practice, simeal life protocols must be executable with
limited communication channels. When a channel overflovpbap, then the sender stops temporar-
ily until some message is consumed from the queue. For chagsems with existential bounds,
the fundamental Kleene-Buichi equivalence of automatic$oand regular expressions was shown to
hold in [14]. Regarding model-checking, the complexity e#ns the same as in the case of universal
bounds, [16, 14].

This survey paper is focused on the issue of expressive pow&rMs with universal and exis-
tential channel bounds, respectively. We emphasize orighierelationship that exists between CFMs
with channel bounds andazurkiewicz traces- a concurrent model introduced by A. Mazurkiewicz
in the late seventies, for describing the semantics of saffié iets. The rich theory of Mazurkiewicz
traces (see [11] for a survey) provides a powerful tool wheasoning about the behaviors of CFMs.
We survey the results obtained on the expressive power in2[1,714]. In addition, we show that in
the Blichi-like characterization obtained for CFMs withistential bounds, the non determinism of
CFMs is unavoidable. Moreover, we consider the problem sifrtg whether a CFM is existentially,
or universally bounded, respectively. We show roughly thatonly case where this problem has a
solution is when we assume that the channel bound is knowriren@FM is deadlock-free. Both
these assumptions are motivated by applications, sinceretensystems use bounded memory and
communication protocols are in general deadlock-free.
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Overview. In Section 2 we define communicating finite-state machinessatbehavior is in-
vestigated in this paper. The following Section 3 introdué@ermalisms used in this investigation
— Mazurkiewicz traces, message sequence charts and masediod order logic (MSO). In this
section we also introduce a normal form for MSCs, that cpweds to an optimal linear execution
w.r.t. channel bounds. Section 4 deals with universallynded CFMs. In this setting, it presents
the known equivalence between CFMs, MSO, and regular sétaass. As new results, we consider
the problem of deciding whether a deadlock-free CFM is usia#y bounded or not. The following
Section 5 elaborates these techniques and results funthiee setting of existentially bounded CFMs.
In particular, we show that deterministic CFMs are not sigfitin this case.

Related work Existential channel bounds appear in [21] and implicitlf1B] (called there real-
izable HCMSCs). The expressive power and model checkingss®r universally bounded channels
are considered in [3, 28, 17, 20, 23]. Without the restrictd universally bounded channels, [24, 25]
shows how to use representative executions in model clhgeijainst MSO properties and [16] does
this against MSC-graph properties. Asin [17, 25, 14] we wse the logic that talks about tipartial
order of an MSC. The paper [8] shows that the existential fragméthe@weaker MSO logic based
on the immediate successor is expressively equivalent MGHthout any restrictions.

2. Definitions

The communication framework used in our paper is based onestigl processes that exchange
asynchronously messages over point-to-point, errorfi€ channels. Lef be a finite set of
process identities that we fix throughout this paper. Funtioge, letCh = {(p,q) € P? | p # ¢}
denote the set afhannels Processes act by either sending a message, that is deggiednbeaning
that proces® sends to procesg or by receiving a message, that is denotedbtyy, meaning that
process receives from procesg For any procesp € P, we define a local alphabet (set of event
types orp) X, = {plq,p?q | ¢ € P\ {p}} and sek = Up673 ¥,. For the rest of the paper, whenever
a pair of processegs g € P communicates, we will implicitly assume that# ¢, i.e.,(p, q) € Ch.

The most natural formalism to describe (asynchronous) cemigation protocols areommuni-
cating finite-state machind€FM for short) [9]. CFMs are a basic model for distributedalthms
based on asynchronous message passing between concuooersses:

Definition 2.1. A communicating finite-state machi(@FM) is a tupleA = (C, (A, )pep, F') where
e (is a finite set oimessage contents control messages

o A, = (Sp, —p,1p) is afinite labeled transition system over the alphabei C for anyp € P
(ile.,—p €Sy x (X, x C) x Sp) with initial statec, € S),.

o ['C Hpe73 S, is a set of global final states.

The CFMA is deterministic[17] if

lgm lgm . .
® s pq—>1p s1 ands pq—>2p so impliess; = so andmy = mo

p?q,m p?q,m . .
o s —=, spands —-, sp impliess; = so.

The notion of determinism used here originates from [17]r iRstance, it can be justified in
the setting of distributed supervision, where some disteith plant is extended with a distributed
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automaton that can attach additional message contentsskages that are exchanged by components
of the plant. Thus, the controlling automaton has contrer g next state as well as over the message
content it attaches to some message. But it does not haveokastto whether the next action is
sending to or receiving from some particular channel. Iffiteat decides to execute a receive event
p?q, then the controlling automaton can only receive the firstsage of the channel, i.e., should be
prepared to receive distinct messages.

In order to describe the behavior of a CFM, one can transfarmaturally into a sequential,
potentially infinite transition system whose states cdnsis P-tuple of local states as well as the
contents of the channels. More precisely, one defines framQhM A = (C, (A,),ep, F) the
(X x C)-labeled, infinite transition systeffi4 as follows. A state of 4 consists of &-tuple of local
states and of channel contents4f i.e., it is an element(s,)pep, (Wp.q) (p.g)ecn) OF [L,ep Sp X
H(n 9)€Ch C*. For two states, an actionc 3,,, and a control message= C', we have

a,c

((3p)pe, (Wp.g) (p.gyecn) == ((5p)pePs (W o) (p.g)ecn)

a,c . - .
e s, — 5, IS atransition of the local maching, ands, = s; for ¢ # p.

e Send events: ifi = plq, thenw,, , = w, 4c (i.e., message is inserted into the channel from

to q) andwyy o = wy, ., for (p',¢') # (p, ) (i.e., all other channels are unchanged)

e Receive events: it = p?q, thenw,, = cw,, (i.e., messageis deleted from the channel from
qtop) andwy ,» = w,, , for (¢',p’) # (¢, p) (i.e., all other channels are unchanged).

A run of T4 is as usual a sequenek, (a1, c1),ds, (az,c2),. .., (an,cpn), dnt1 With d; states
of T4, a; € ¥ and¢; € C such thatd; 2% d;+1 for all suitablei. It is accepting ifd; =
((tp)per; (€)p.g)ecn) @Nddpy1 = (f, (€)(p.qccn) fOor somef € F. Finally, we definel(T4) C %*
by projecting the control messages and states out of angeptns: it is the set of words,as - - - a,,
such that there exists an accepting din(a1,c1),ds, (az,c2), ..., (an,cn), dny1.

A CFM is calleddeadlock-freeif I = [] ,.p S, and from every reachable state’0f we can

reach a state where all channels are empty.

3. Partial orders of Mazurkiewicz traces and CFMs

We consider in this section two different kinds of partiatiers, Mazurkiewicz traces and runs of
CFMs. Then we establish a relationship between these partlars, which is the basis of several
results of expressiveness and decidability for subfamiieCFMs.

3.1. Partial orders

Mazurkiewicz traces [27] have been introduced in computiense for describing the behavior of safe
Petri nets. Their essence is to describe the semantics afcairent system by a (static) relation of
independence between actions. Formallyaae alphabets a pair(£2, I) consisting of an alphabét
and a symmetric and irreflexive relatiérC Q2. The relation/ will be referred to as thmdependence
relation; its complementD = Q2 \ I is thedependence relation

A Mazurkiewicz tracés an{2-labeled partial ordefE, <, \) (up to isomorphism), with the label-
ing A : £ — Q satisfying the following conditions, for any eventsf € E:
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e if e is an immediate predecessor fofdenoted ag < f), then(A(e), A(f)) € D, and
e if e and f are incomparable, thefh(e), A(f)) € I.

Partial orders also arise naturally when we describe ru@d=ds. Instead of viewing the CFM as
an infinite transition system, we can visualize the runs bgmsef diagrams calletiessage sequence
charts(MSC for short).

We define message sequence chart¥dabeled poset$FE, <, \), and we writeP(e) for the
process on which eventis located. That is, we leP(e) = p if A(e) € X,. In addition, we define
two relations< p and<,,, on events:

o ¢ <p fiff P(e) = P(f)ande < f.

o ¢ <y fiff Me) = plg, M(f) = ¢7p, and[{e’ | A(¢/) = plg,e’ < e}| = {f' | Ae/) =
q’p, f' < f}l, for somep, q € P.

The idea is thak p describes the order of the events executed by the sequpnticésses. If
P(e) = P(f) =pande < f, we also writee <,, f. Moreover, if there is no evetwith P(g) = p
ande < g < f, then we writee <,, f. The relation<,,, describes the matching send and receive
events, under the assumption that message channels are FIFO

Definition 3.1. A message sequence chartaX-labeled posel = (E, <, \) (up to isomorphism)
satisfying

L4 S - (SP U <m)*1
e P~1(p) C Eislinearly ordered for any € P, and

o [\ Y(plg)| = |A"1(¢?p)| for any(p,q) € Ch.

An example MSC is shown in Figure 2. If we replace the last itdnthe definition above by
IAL(plg)| > [A"Y(g?p)| for any(p, q¢) € Ch, then we speak aboptefix MSC

Any linear extension of a labeled partial ordét, <, \) is called dinearizationof it. We represent
it as a wordu = u; - - - u,, over the alphabeX, if A : F — 3. Thus, the seLin(M) of linearizations
of the MSC M is a subset ok*, and the set of linearizatiorisin(¢) of a tracet is a subset of2*.
For a set (or language) of partial ordevs$, we write Lin(M) = (J ;e 0 Lin(M). For anyw € X*,

a € ¥, we denote as usual Ify|, the number of occurrences @fn w.

For MSCs, the relation between the partial order and italizations is tighter: starting with any
word w from X* that satisfiegv|,1, > |v|42, for any prefixv and every channglp, ¢) € Ch, there
exists a unique prefix MS@/ such thatw is a linearization ofd/. We denote this prefix MSC as
msc(w). If w € ¥* does not satisfy the above condition on channels, therfw) is undefined.

Runs of CFMs can be also viewed as (prefix) MSCs. Mdte a CFM, and consider the set of
labelings of rund.(74) C ¥*. It can be shown easily that for every MSC with Lin(M )N L(T4) #

() we haveLin(M) C L(T4). We denote by’ (.A) the language of the CFM, that is, the set of MSCs
associated with accepting runs df £(A) = {msc(w) | w € L(T4}. By the above remarks, we
haveLin(L(A)) = L(Ta).

Definition 3.2. Let B > 0 be an integer. A word (linearizationy € X* is called B-boundedif
[vpg — vlg7p < B, for all prefixesv of w and all (p,q) € Ch. An MSCM = (E,<,\) is
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called universally B-boundedif every linearization ofM is so. A set of MSCs is universallfs-
bounded if each of its elements is so. A CEMis universally B-bounded if every configuration
((sp)peP; (Wp.q) (p,g)ecn) Of SOMe accepting run df4 satisfiegw, ,| < B for all (p, q) € Ch.

A CFM (set of MSCs, respectively) is called universally bded if it is universallyB-bounded
for someB > 0.

From the remark above it is easy to see that a CEN$ universally B-bounded if and only if
L(A) is universallyB-bounded.

Let Linp (M) denote the set aB-bounded linearizations of an MS®, andLing (M) is to be
understood similarly for a set of MSC8!. In any casd.ing(M) C Lin(M), with equality if and
only if M is universallyB-bounded.

3.2. Traces and MSCs

We describe in this section a tight link between Mazurkiewtidces and universally3-bounded
MSCs, due to [20]. Let(2, I) be the trace alphabet with = ¥ x {0,...,B — 1}. The depen-
dence relationD C Q x Q is given by (x,i)D(y, j) if either P(z) = P(y) or {(z,i), (y,7)} =
{(p'q,n), (q¢?p,n)} for somep, ¢,n. Clearly,I = Q2 \ D is symmetric and irreflexive, hend€, I)
is a trace alphabet.

For anQ2-labeled poset = (E, <, \), letproj(t) denote the:-labeled posetE, <, 7 o A) where
7 : Q0 — X is the projection to the first component.

The encodingr(M) of an MSCM = (E, <, \) is obtained by numbering the events of the same
type moduloB: tr(M) = (E,<,X) such that\'(e) = (A(e),n) withn = [{e/ < e | A(¢/) =
A(e)}| mod B.

In general, the partial order (M) is no Mazurkiewicz trace. Consider, for instance, the MSC
M = (E, <, \) with linearization(1!2)(1!2)(271)(2?1) andB = 1. Thentr(M) = (E, <, \’) with
N(e) = (M(e),0) for anye € E. Hence, intr(M), the first occurrence df?1 and the second af!2
carry dependent labels, but these events are incomparable; (/) is indeed not a trace.

Lemma 3.1. [20] Let M = (E, <, \) be a universallyB-bounded MSC, then the partial ordef /)
is a trace over the alphabg®, D) and we havé\l = proj(tr(M)).

Note that the converse implication in the above lemma doéhaid, in general. Consider the
MSC M = (E, <, ) with (unique) linearizationv = (1!12)(112)(1!3)(371) (3!2)(273)(271)(271)
andB = 1. ThenM is not universallyl-bounded, butr(M) is a trace, since itis linearly ordered. The
reader can verify that an MSC is universalBtbounded if and only if in the partial order of()/),
between any two consecutive nodes labeledthy, n) there is a node labeled jy?p, n).

Lemma 3.1 provides the basis for a quadratic-time algorithat checks that an MSC is univer-
sally B-bounded (see also [21] for an alternative approach). [figerthat the partial ordetr (M)
satisfies the two conditions in the definition of Mazurkieavitaces and that in between any two
(plq, n)-labeled nodes, there is(a?p, n)-labeled one.

3.3. Optimal linearizations

We present in this section an algorithm to compute a linatida OPT(M) € X* of the MSC
M = (E, <, \) that isB-bounded, for the least possihi&

The algorithm computes a linearizati@®PT (M) incrementally: IfM is empty, therOPT(M) =
e. Otherwise, suppose that we have already computed theifingan of a prefix ofM, with set of



author/ short title 7

eventst’ C E. We choose now the next evente E \ F' among those events such tiat {e} is
downward closed (that is, for evefy < g with g € F U {e}, we havef € F U {e} as well). LetG
denote the set of such candidateszlI€ontains some receive eventhen we ada to F'. Otherwise,
we add toF’ a send event on a chanrigl ¢) that has the least numbgif € F | A(f) = plg}|—|{f €

F | X(f) = q?p}| of pending messages ifi from p to ¢q. Ties are broken using some fixed linear
orderC on the set of channelsh, we always take the event that involves the largest possitdanel.

Proposition 3.1. Let OPT(M) be the linearization computed by the above algorithm on M&C
LetalsoB € N be minimal such thadPT(M/) is B-bounded. Then no linearization 8f is (B —1)-
bounded.

Proof:

Let w € Lin(M) be some linearization. Let € ¥* anda € ¥ such thatra is the minimal prefix
of OPT(M) that is not(B — 1)-bounded. Then there exists, ¢) € Ch with a = plg andn, , <
B -1 = n,,forany(r,s) € Ch wheren,, = |z|.1s — |z|s7. Letzb be the minimal prefix ofv
such thatmsc(zb) is no prefix ofmsc(z) (with z € ¥* andb € X). Then alsard is a linearization of
some prefix ofd. Hence, by the choice af in the algorithm, there exigtr, s) € Ch with b = rls
andn, s > n,, = B — 1 (in particular,n, s = n,, = B — 1). Sincemsc(z) is a prefix ofmsc(x),
we have|z|s7, < |z|s2-. In addition,msc(zb) = msc(z r!s) andmsc(x) are prefixes of\/; hence
|z|71s = |x|n15. Together, this impliesz|,1s — |2|s7r > |2]p1s — 2520 = np s = np g = B — 1. Hence

zb (and therefore its extensian) is not (B — 1)-bounded. 0

Since channels are in general unbounded, th¢ &tT'(M ) | M MSC} cannot be regular. The
following proposition shows that this is the only obstagle,, if we restrict to channels of bounded
size, then the optimality of a linearization can be testedyutomaton.

Proposition 3.2. Let B > 0 be an integer. There exists a polynomial-size automatench that, for
any MSCM and anyu € Ling(M), we haveu € L(.A) if and only ifu # OPT(M).

Proof:
Note that the word: € Lin(M) doesnot equalOPT (M) iff there existv,w € ¥* anda € ¥ with
u = vaw andp, ¢,r, s € P such that- # p and (1) or (2) hold

(1) a = p!q and one of the following holds:

e b =r7sis the first action fronk, in w, and|v|,15 > |v|s2;
e b = rls is the first action from>, in w and either|v|,i; — |v|g2p > [V|r1s — |v]s2r, OF
vlptg = [vlg2p = [vlrs = [v]s2r @Nd(p, q) C (7, 5).

(2) a=p7?q, (p,q) C (r,s), b =r?sis the first action fronk, in w, and|v|,is > |v]s?.

The reason is that, in any of these cases, the algorithm wwaud preferred over a afterv. For
instance, form = plq andb = r!s, the algorithm has the choice betweeandb and prefersd, since
the channelr, s) is either less filled thaifp, ¢), or equally filled and’r, s) has higher priority than
(p,q). Forb = r?s, the condition|v|,.s > |v|s7- ensures that eventsandb are simultaneously
candidates after. To check the above conditions, the automatbguesses the processesy, r, s
and keeps track of the valugs|,, — |v|42p and|v|,1s — |v]s2-. Since we are only interested 8-
bounded linearizations, this can be done Wit - (B + 1)? many states. O
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3.4. Monadic second order logic

Logic is a classical formalism used to describe propertiegadous structures, like words, trees,
traces, graphs etc. This also applies to structures like $48 consider here monadic second order
logic, with the following syntax:

Definition 3.3. For a setR of binary relationsMSQ(R )-formulas over the alphabét are defined by
the syntax
pu=a(@) | R(@,y) |z € X [-p|oVe|IXe| Tz

whereR € R, a € T, x,y are first order variables, and is a second order variable.

An MSO(<)-formula over an alphabdt can be interpreted oh-labeled partial orderd/ =
(E,<,\) with A : E — T as usual, by letting\/ = a(z) if A(z) = aandM | =z < y if
x < y. Further relations irR used here are the message ordgy, the process ord€r,),cp, and
the immediate process successar,),cp. Such an MSQR )-formula over the alphabet can then
be interpreted on an MS®/ = (E, <, \) as expected.

For an MSQR)-formula ¢ over ¥ without free variables, le£ () denote the set of MSCs that
satisfyp. We also consider existential monadic second order logitS8). An EMSO formula is of
the form3X; ... X, with ¢ a first order formula, i.e., without second-order quantiftra

We discuss now some differences arising from the use ofrdiitepredicates frork. First, the
full logics MSO(<, <,,,) and MSQ(<,),ep, <m) are equally expressive, but the existential frag-
ment of the former could be more expressive than the exiatdragment of the latter (which is the
logic considered in [8]). From [8] (Cor. 5.7) we know that MGQ and EMSQ(<,)pep, <m)
are incomparable. Furthermore, we will show later that\ersally and existentially)3-bounded
sets of MSCs behave better, since they provide the equa@lbatween MSQ<), EMSQO(<) and

EMSO((<p)per; <m)-

4. The behavior of universally bounded CFMs

This section is devoted to universally bounded CFMs and M$@st we recall the Biichi-like char-
acterization of universal boundedness in terms of CFMs, M&Q logics. Then we present some
(un)decidability results related to universal channelrutsu

4.1. Bichi characterization of universally bounded behaviors

Let (2, 1) be a trace alphabet. A sétof traces over((2, ) is regular if its set of linearizations
Lin(L) C Q* is regular.

Lemma 4.1. Let M be a set of MSCs. [Lin(,M) is regular, then there exists a regular language of
tracesL over (2, I) such thatM = proj(L).

Proof:

SinceLin(M) is regular, there is somB > 0 such that any linearization ihin(M) is B-bounded.
In particular, anyM € M is universally B-bounded. Sef(2, ) and the mappingsr, proj as in
Section 3. Since any/ € M is universally B-bounded, thé)-labeled posetr(M) is a trace over
(Q,1I) (Lemma 3.1). LetK = {tr(M) | M is universallyB-bounded andL = {tr(M) | M € M}.
Then, certainly,M = proj(L) and it remains to show thdt is regular. For this, note that a word
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from Lin(K) is a linearization of some trace(M ) in L iff its projection viaproj is a linearization of
proj(tr(M)) = M (the right to left implication follows from the fact that tipartial orders of\/ and
tr(M) are isomorphic, cf. Lemma 3.1). By assumptibin (M) is regular, and [20, Lemmas 3.6, 3.7]
shows thalin(K) is regular. Hencd. is regular, too. 0

The next theorem provides the characterization of unillgreaunded CFMs (with given channel
bound) in terms of monadic second-order logic and of redidaarizations. For lack of space, we
have omitted a third characterization, in terms of requlttST-graphs [15], that corresponds to a
kind of regular expressions of communication events. Thalte given below were obtained in [17],
and [20] extended them to sets of infinite MSCs (and CFMs withlléd acceptance). The most
difficult part of the theorem is the construction of a detenistic CFM from a regular sdtin(M),
since it amounts to give an algorithm of distributed synithe$he original approach of [17] consists
in adapting Zielonka’s construction of deterministic adytonous automata [32] for regular trace
languages to the setting of universal3tbounded MSCs. Later, [20] made the connection between
MSCs and traces explicit (see Section 3) and gave a simptifiadtruction of deterministic CFMs,
that uses Zielonka’s construction as a black-box.

Theorem 4.1. [17, 20] Let B be a positive integer andt a set of universallyB-bounded MSCs.
Then the following assertions are equivalent:

1. Lin(M) is regular.

2. M is the language of some CFM.

3. M is the language of sonaeterministicCFM.
4. M is the language of some M$8) formula.

5. M is the language of some formula of EME8&,),cp, <m), EMSQ(<), or EMSQ <, <),
respectively.

Let us state a few ideas involved in the proof of the abovertirao It is easy to see that any
universally bounded CFMI has a regular set of linearizations. The converse, as nmaatiabove, can
be shown using Lemma 4.1 and Zielonka’s construction. Thia idaa is to simulate the execution
of a deterministic asynchronous automatdron tr()) by a deterministic CFMB on M. Since
the partial orders of\/ andtr(M/) are isomorphic, the necessary information about locatstat.A
that are visible for an event am(1/) is also available o/, by storing it in the local states @.
As for the logic part, the equivalence between MSQand the regular set of linearizations follows
without much difficulty from Lemma 4.1 together with [31, 1#jat shows a similar result for traces.
Finally, the last item in the theorem is obtained with thealsimulation of automata by EMSO. We
note that for universally3-bounded MSCs, the message relatiop can be expressed in terms of the
partial order<, hence we obtain EMSE, <,,,) = EMSQ(<). The idea is that the trace encoding of
Section 3.2 corresponds to additional existentially gfiadtset variables, one for each set of events
with trace label o, n). This allows to say that the receive matchinghy, n)-sende is the first nodef
aftere, with label (¢7p, n). In addition, we need to ensure by a formula of EMSQthat the model
is a universallyB-bounded MSC. But this is easy, see remarks after Lemma 3.1.
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4.2. Testing universal bounds

In this section we show that in general, the property of usi@kboundedness is hard to check. Itis not
very surprising that one cannot check whetheaebitrary CFM is universally bounded, since CFMs
are Turing-equivalent devices. We strengthen this obfervay showing that undecidability holds
even assuming that the CFM is deterministic and deadlask-fif we provide the boun# as input,
the problem of testing whether a deterministic CFM is urdadly B-bounded is still undecidable.
However, fordeadlock-freeCFMs we obtain decidability.

For the undecidability results, we use the following enogddf a deterministic Turing machine
TM by a deterministic and deadlock-free CFM. We will define tBFM A1y on two processes, 2.
A configuration of TM will be encoded as a sequence of messafjbscontentsmy, ..., my_1,q,
my, ..., My, Meaning that TM is in state, the tape contents is; - - - m,, and the head position is
k. With this encoding, it suffices to know three consecutivesgages of this sequence in order to
compute deterministically theth symbolm, of the next configuration.

Figure 1. Encoding a Turing machine by a deadlock-free detestic CFM.

The CFM works as follows. First, process 1 sends the initafigurationC; to process 2. Then
it resends any configuratiafl; received from process 2 back to process 2, interleavingvegvith
sends. Process 2 receives a configura@iprirom process 1 and sends the successor configuration
Cj1 to process 1, also interleaving receives with sends.

In order to obtain a deterministic CFM, process 2 awaits trst filree symbols from process 1
before it actually starts sending the next configuratiore send for each receive. Then, it finishes
by sending three messages (or two, or four, depending oretfigH ofC; ) that end the successor
configurationCj 1.

More formally, we denote bw = a;---a, ||k b1--- by, the k-delayed fair shuffle of; - - - a,,
andb; - - - b, defined asv = ajas - - - agbiagi1bs - anby_gy1---by. The language of events on
process 1is S [,-,(RGC; |1 SG), where SGmeans sending configurati@r) to proces® and RG
means receiving’; from proces2. Similarly, the language of process [~ (RC; ||3 SCi1).

Proposition 4.1. Let B > 0. It is undecidable whether a deterministic CFM is univdysdb-
bounded.

Proof:

Using the above encoding, we reduce the halting problem gotyemput for deterministic Turing
machines to the test of the univergagdboundedness of a CFM. So let TM be some deterministic
Turing machine and letlty = (C, (Ap)pep, F') be the deterministic CFM constructed above, with
F corresponding to halting configurations of TM (and wherecpss 1 stops resending the current
configuration).
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Letq,r ¢ P be two new processes. We define now the CBM (C, (Ap)pepuiq,ry, F7) with:

. Ir.c . r.c

° Aq = ({80, e 75B+1}7 —q 30) with S; q_)q Sit1 forall: < B, andsB+1 q_)q SB+1-
. rlg,c . r?q,c

o A. = ({to, S ,tBJrl}, —>r,t0) with t; —, tit1 foralli < B}, andtBH — tB+1-

o ' =F x{(sps1,tB+1)}

wherec is some fixed control message frarh

Actually, the CFMB simply adds tadty a behavior on{q, r} that consists ilB + 1 messages
from ¢ to r, that crossB + 1 messages from to g. This MSCMp is not universallyB-bounded.
HenceL(B) is obtained by simply adjoining/p to any MSC fromL(. Aty ). Hence eitheill (A) =
) = L£(B), implying that is universally B-bounded. OrZ(A) # () and B is not universallyB-
bounded. O

Proposition 4.2. It is undecidable whether a deterministic and deadlock-1e#M is universally
bounded.

Proof:

Let TM be a deterministic Turing machine. The existence ais® > 0 such that every configuration

of TM reached from the empty input is of size at ma@sts undecidable (for otherwise, we could
decide the halting problem of TM). We reduce this undeciglgbbblem to the question whether a
deterministic and deadlock-free CFM is universally bouhde

Let Arv be the deterministic CFM constructed above. It is easy talchigat if every configu-
ration of TM is of size bounded b#3, then the CFMAry is universallyB-bounded. Conversely, if
a reachable configuration is of size greater tlifrthen its associated sends (without the matching
receives) will require a channel size larger th@n Hence, Aty is universally bounded iff TM is
bounded.

We obtain that the CFM4Ty is deadlock-free by defining all states as final, togetheh wie
following modification: after sending a complete configioatC;, process 1 can stop forwarding
messages to process 2, it will only receive;RC Hence from any configuration a final state can be
reached, that isdty is deadlock-free. Notice that the CFM is still determiridtiecause process
has no choice, and the only choices of process 1 are betweeeiae and a send. O

Remark 4.1. Our definition of universally bounded CFM differs actualipri the one used in [17],
who requires that all configurations afy run of the CFM (not only accepting ones) dsebounded.
Note that for the CFM defined in Proposition 4.2 all statesfiaad, so the result also holds w.r.t. the
definition of universal boundedness used by [17]. On therdtla@d, the question considered in
Proposition 4.1 becomes decidable in the setting of [17].

For a languagd. C ¥* we denote byPref(L) the set of prefixes of.. Similarly, for a CFMA,
Pref(A) C ¥* stands folPref(L(T4)). Let B > 0, then we sePref z(.A) as the subset dPref(.A)
consisting ofB-bounded words, only. Notice that if an MSW is universallyB-bounded, then any
prefix of M is universallyB-bounded.

Proposition 4.3. Let A be a CFM, andB > 0. ThenA is universallyB-bounded if and only if every
word inPref g1 (A) is B-bounded.



12 author/ short title

Proof:
If A is universallyB-bounded, then so Bref(.4), which shows the first implication.

Conversely, assume that is not universallyB-bounded, and consider some= a; ---a, €
L(T4) thatis notB-bounded. Clearly, i,; - - - a; is K-bounded, then; - - - a;41 is (K +1)-bounded,
for any i, K. Thus there exists some< n such thata; - - - a; is not B-bounded, but belongs to
Prefpi1(A). 0

Consider now the finite transition systeﬁf defined as the transition systefy restricted to
configurations((sy)pep; (Wp,q) (p,g)ccn) Where|w, .| < B for any (p, q) € Ch. Since this transition
system is finite, its language(T'%) is regular. IfA is deadlock-free, theRref g1 (A) = L(Tff”),
where all states ifi’¥ ™! are final. Together with Proposition 4.3, this provides uthwi algorithm

to test whether the CFM is universallyB-bounded:

Proposition 4.4. The question whether a deadlock-free CFM is universBHgounded is a PSPACE-
complete problem, provided thatis given in unary.

Proof:
First, let us note thaﬂ“fJrl has an exponential number of states. Second, the set BFtlunded
linearizations of prefix MSCs is the language aeerministicautomaton with an exponential number
of states, hence its complement also has an exponentialenwohtates. We can decide the emptiness
of the intersection of two finite automata in logarithmic spahence we get a PSPACE algorithm for
the question whether every linearizationHref 51 (A) is B-bounded.

For the lower bound, it suffices to notice that a Turing magfiiM never uses more thds space
iff the CFM Aty constructed before the proof of Proposition 4.1 is uniMgrs®-bounded. Since
the problem of deciding whether a Turing machineBisspace bounded (witlB given in unary) is
PSPACE-hard, the PSPACE-hardness of our problem follows. O

5. The behavior of existentially bounded CFMs

An extension of the trace technique of Section 3 allows t@iobthe equivalence between MSO
and CFM within the larger setting of existentially bounde®®k. As stated in the introduction,
existentially bounded message channels circumvent tha ofecknowledgments that are needed in
the universally bounded case. Moreover, existential bsward a lot more realistic when modeling
one-way communication (such as e.g. in the producer-coassetting), and the existence of such
bounds amounts to the existence of some sort of fair schegbietween sends and receives, that
avoids overflow of channels. On the other hand, the lack ofsages acknowledgments makes the
proofs, in particular the CFM construction, much trickier.

The difficulty here consists in constructing a CFM that retpegs the set of all existentialls-
bounded MSCs (a nondeterministic CFM accepting the setlafr@éersally B-bounded MSCs is
easily constructed, and this set can even be accepted diaically [20, Lemma 3.14]). We do not
know whether the set of existentially-bounded MSCs can be recognized bgederministicCFM.
However we exhibit in this section an example that showsdbtrministic, existentially3-bounded
CFMs are strictly less powerful than existentialBtbounded CFMs. We end the section by a result
showing that it can be decided whether a deadlock-free CFékistentially bounded, for a given
boundB.
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5.1. Bichi characterization of existentially bounded behaviors

Informally, a CFM is existentiallyB-bounded, if the sending and receiving events can always be
scheduled in such a way that the size of the channels neveedsB. Let A be a CFM, and recall
thatTf is the restriction of the transition system associated wiitto runs where each configuration
has channels bounded B By definition, L(T%) C L(T4).

Definition 5.1. Let B be a positive integer. An MS@/ is existentiallyB-boundedf Ling (M) # .
A set of MSCsM is existentially B-bounded if everyM € M is existentiallyB-bounded. A CFM
Ais called existentially3-bounded ifmsc(L(T%)) = msc(L(T4)).

A CFM (set of MSCs, respectively) is called existentiallyubded if it is existentiallyB-bounded
for someB > 0.

For a set of MSCs\, we call X C Lin(M) a set ofrepresentativdinearizations forMif for
eachM € M, we haveX N Lin(M) # 0. In particular, if a CFMA is existentially B-bounded,
then L(T%) is a set of representative linearizations.4f Notice that if there exists a regular set of
representatives ok, then M is existentially bounded.

We start first with a characterization of existentiaBybounded MSCs. With an MS®/ = (E, <
, A) we asociate the binary relation on everts C E'x E [21] given by<p = <, UJ <p Urev,
wherereyv is given by

peEP

(r,s') € rev iff s <m 1, A(s) = A(s'), and
Hx e E|s <,z <,s,A(s) =)} =B.

That is, the relatiomev maps a receive with s <,,, r to the sends’ that is theB-th event with
A(s") = X(s) ands < & (if such an event exists). Hence, if is universally B-bounded, then
rev C <, i.e.,<z= <. Recall the encoding defined in Section 3, that numbers thetewf an MSC
M = (E,<,\) modulo B, via the labeling\’ : E — Q. Extending the definition from the case of
universally B-bounded MSCs we denote loy()/) the structurg £, <75, \').

Lemma 5.1. [21] Let B be a positive integer, antf = (E, <, \) an MSC. ThenV/ is existentially
B-bounded iff the relation< 5 is acyclic. In this case, the structung /) is a trace ove(2, I).

Figure 2 depicts the result of applying the encoding use@aii&n 3 to an existentially 2-bounded
MSC M. Note that in addition to the edges of the partial order weehan edge from the first
occurrence of(¢?p,0) to the second occurrence @flq,0), this edge is aev-edge. SinceV is
existentially2-bounded, the relatior is acyclic by Lemma 5.1 and(M) = (E, <3, \) is precisely
the trace represented in Figure 2. The reader can also ehsitk that<; is not acyclic. Notice also
that M # proj(tr(M)), unlike the universal bounded case. Here, the ttac® ) orders more events
than the MSC\V/.

The lemma below is similar to the case of the univef3dbound.

Lemma5.2. Let A be an existentiallyB-bounded CFM. Then there exists a regular language of
tracesL over (2, I) such thatC(A) = msc(proj(Lin(L)).

The next theorem provides the characterization of existignbounded CFMs (with given chan-
nel bound) in terms of monadic second-order logic and of legdinearizations. For lack of space,
we have omitted again the third characterization, in terhggabally-cooperative CMSC-graphs [16].
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Figure 2. Tracer(M) associated with an existentiatlybounded MSC.

The results given below were obtained in [14]. Again, the nadfficult part of the proof is the con-
struction of a CFM from a regular skinp(M). The proof uses the trace language from Lemma 5.2,
but an additional difficulty arises by the fact that the @drtirder of the MSCM is weaker than the
partial order of its trace structute(M ).

Theorem 5.1. [14] Let B be a positive integer and1 a set of existentially3-bounded MSCs. Then
the following assertions are equivalent:

1. Ling(M) is regular.
2. M is the language of some CFM.
3. M is the language of some M$8) formula.

4. M is the language of some formula of EM8Q ) ,cp, <mm), EMSQ(<), or EMSQ <, <,,),
respectively.

The proof of the theorem above follows the main lines of theensally bounded case. As previ-
ously, the main difficulty is the construction of the CFM frahe representative sking(M). Once
again, the idea is to apply first Zielonka’s constructionsyfrechronous automata to the trace language
obtained by Lemma 5.2. In addition, we need to solve two masblpms: first, the simulation of the
asynchronous automaton by the CFM is non-deterministicesthe information conveyed by thev-
edges in the runs of the asynchronous automaton has to bgegueg the receiver (recall that these
edges do not exist in the MSC). Second, a CFM recognizingxadtentially B-bounded MSCs must
be constructed. Both parts involve non-deterministic gegsn the CFM, and the example in the next
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section shows that non-determinism is unavoidable. Thée/algmce between the different EMSO-
logics can be shown as in the universally bounded case (skeaf &ection 4.1 or [14, Prop. 6.2]). The
only difference is the formula that expresses that the misdah existentiallyB-bounded MSC. An
MSO-formula for the set of all existentialli3-bounded MSCs is easily build (it expresses that
has to be acyclic). The EMSO formula is more involved, it ubesCFM that accepts all existentially
B-bounded MSCs.

5.2. Deterministic CFMs are strictly weaker

Let? ={0,1,2,3,4}. AllMSCs we will consider in the following send only messadem process
0 to processe$ and2, from procesd to 3, and from proces8to 4. Forp € {0,...,4} let m,(M)
denote the projection aff onto the events of procegs

Let £y consist of all MSCs such that

o (M) € [(0!1)(0!2)]*,
o m (M) € [(170)((1!13) + (113)(1!3))]*, andma (M) € [(270)((2!4) + (2!4)(2!4))]*,
o m3(M) € (371)* andmy (M) € (472)*.

Thus, proces$ will send alternately td and2. Procesd will perform one or two send actiorid3
between any two receive actiom30 and similarly for proces8. Finally, processe8 and4 will just
receive messages fromand2, respectively.

Now define the mapping : ¥* — X* by renamin@ into 1 and4 into 3. Let £ C £, consist of
all those MSCs frony where the sequence of actions of procedsard?2 are the same modulp,
i.e.,7T1(M) = ¢(7T2(M))

Proposition 5.1. The MSC languag€ can be accepted by some CFM, but not by any deterministic
CFM.

Proof:
A CFM for L is easily defined, by letting proce8glecide whether procedsand3 send one or two
messages each. Proc@ssends non-deterministically either the messade 6r the message?2” to
processed and2 each. On receiving messagg,”’processl sends precisely messages to proce3s
(and similarly for processesand4).

Now suppose thatl is a deterministic CFM that accepfs Then there are distinct MSQd; and
M, from £ such that

o (M) = mo(Ms) and

e A terminates in the same accepting global state when exgcufinand M.
Because of the first of these requirements, there exists &b MSuch that

1. mo(M) = mo(M1) = mo(Mz), m (M) = m (M), m3(M) = m3(M;), and

2. mo(M) = mo(Ms), ma(M) = 74(Ms).

Let p; andp, be the unique (and successful) runsobn M, and M5, respectively. Recall that
A is deterministic and proce$isdoes not perform any receive eventshifh or in M>. Hencep; and
p2 behave the same on procésdHence we can construct a rgrof A on M as follows:
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1. on processeg, 1, and3, it behaves likep; and
2. on processes, 2, and4, it behaves likeps.

Because of the second of the above requirements, theissuccessful, i.e)/ is accepted byl and
therefore an element af.

Since M; and M are distinct withmg(M;) = mo(Ma), we have eitherr; (M) # m(Ms)
or mo(My) # mo(Ms). We consider the case, (M) # m (M) in more detall, the other case
is dealt with similarly. Since the only actions performed fopcessl are 170 and 1!3, we obtain
w1 (M) = m (Mq) # m1(Ms), butme(M) = mo(Ms), hencery (M) # ¢(mo(M)), which contradicts
MeL. O

Theorem 5.2. Non-deterministic existentially bounded CFMs are styiatiore expressive than deter-
ministic existentially bounded CFMs.

5.3. Testing existential bounds

In this section we consider the test whether a given CFM istentially bounded. We show that the
decidability and complexity of deciding universal and éxidial channel bounds is the same, albeit
the fact that proofs are more involved in the existentiakcas

The proof of Proposition 4.1 yields quickly a similar redilt the existentially bounded case:

Proposition 5.2. Let B > 0. It is undecidable whether a deterministic CFM is existahti B-
bounded.

Proposition 5.3. It is undecidable whether a deterministic and deadloc&-fe&M is existentially
bounded.

Proof:
It suffices to reconsider the proof of Proposition 4.2, anddtice thatA4ry is actually existentially
bounded iff the Turing machine TM has a bound on the size okdshable configurations. O

We consider now the question whether a deadlock-free CFMigemtially B-bounded, for
given B. We already know from Proposition 3.1 that an M3C is existentially B-bounded iff
the optimal linearizatiorOPT (M) is B-bounded. We would like to mimic the proof of Proposi-
tion 4.4, that showed how to test (in polynomial space) wirethdeadlock-free CFM is universally
B-bounded. Notice however thRtref (A) is not the right set to deal with, since the property of being
existentially B-bounded is not inherited by prefixes. One can observe tldaghenon on an MSC
with two processeg, 2, where process 1 starts by sendiBg+ 1 consecutive messages 2o The
prefix MSC consisting of thé? + 1 sends has of course ri®-bounded linearization.

Let M be an MSC and consider a prefix= (E, <, \) of M. We define\V, as the restriction oV
to the set of matched evenis\{e € E |Vf € E: e £, fAf £m e} Of N (V. contains all receives
of N sinceN is a prefix). The seCPref(M) consists of all MSCsV,, associated with prefixed
of M. Alternatively, we can constru¢tPref (M) incrementally: For MSC3/ = (E,<,\) and N
we write M — N if there exists some maximal eventc E such that/V is the restriction of\/ to
E\ {s,r} wheres € E is the unique event with <,,, r (i.e., N is obtained from\/ by deleting some
message with maximal receive). Note that neitgmor N need to be prefixes af/.
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Lemma 5.3. CPref(M) is the least set of MSCs that contaif$ and, with Ny — Ny and Ny €
CPref(M) also containsVs.

Proof:

It is easy to see thatPref (M) is closed under—, which gives one inclusion. For the converse, let
N = (E, <, \) be a prefix ofM. ThenN, can be obtained from/ by iterating— until all maximal
receive events belong tb. O

For a set of MSCs\t we write CPref(M) for (J,,c o CPref(M), and for a CFMA we write
CPref(.A) instead ofCPref(L(A)). Finally, for B > 0 we denote byCPrefp(.A) the subset of
existentially B-bounded MSCs il€Pref(.A).

Proposition 5.4. For any MSCM we have:
e If M is existentiallyB-bounded, then everly € CPref(M) is existentiallyB-bounded.

e If M is not existentiallyB-bounded, then there exists soiNec CPref (M) that is existentially
(B + 1)-bounded, but not existentialli-bounded.

Proof:
Let w be aB-bounded linearization af/. Deleting inw all symbols that do not occur iV yields a
linearization of N which is B-bounded.

For the second statement, suppose flat (F, <, ) is not existentiallyB-bounded. We reason
by induction on the size of/. Consider two events, r of M that form a message, i.e, <,, r,
and such that is maximal inM. Then letM’ = M \ {s,r} be the restriction of\/ to the events in
E\ {s,r}. If M’ is existentiallyB-bounded, then\/ is existentially(B + 1)-bounded; in this case
we setN = M. Else, by induction we obtain somé’ € CPref(M’) that is existentially B + 1)-
bounded, but not existentialli3-bounded. With Lemma 5.3 we obta@iiPref(M’) C CPref(M),
henceN’ is the desired result. O

Corollary 5.1. Let. 4 be a CFM, and3 > 0. ThenA is existentiallyB-bounded if and only if every
MSC inCPrefp1(A) is existentially B-bounded.

Proof:

If Ais existentiallyB-bounded, then so iSPref(.A) by Proposition 5.4. Therefore we ha@ref(.A)
= CPrefp(A) = CPrefp;1(A). Conversely, if4 is not existentiallyB-bounded we obtain using
Proposition 5.4 som& € CPrefp(.A) that is not existentially3-bounded. O

Our next (intermediate) aim is to show that, provided the CRBNMs deadlock-free, the set of
(B + 1)-bounded linearizations dfPref(.A) is regular and can be accepted by an automaton with
exponentially many states.

To this aim, we first construct an infinite transition systeithw-transitionsT”(.A) for the set of
all linearizations ofCPref(.4). The idea is to add a flag for each channel. If this flag is raiaeg
sends to this channel are ignored (i.e., they give risettansitions). Otherwisef”(.A) works as the
usual transition systeffi4 associated wittA.

The states of"(A) are of the formS = ((sp)per, (Wp.q) (p.g)echs (fp.a) (p.g)ecn), Wheres,, is a
local state of4,, w,, € C* is a channel content, and the last compongntis a flag for channel
(p, q), taking valueg) or 1. The stateS is initial if s, = ¢, is locally initial, w,, , is empty, andf, , is
arbitrary; S is accepting if all channels are empty. There are three tgpaansitions: send, receive,
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ande-transitions. To define these transitions, $et= ((sp)per; (Wp.g) (p,g)ech> (fp.0) (p,9)ccn) and
S" = ((sp)pers (W, ) p.g)echs (fp.4) (p,g)ecn) be states of'(A). We have a transition from to .5’
provided thatf, ; < f; ; for all channelgr, s) € Ch and one of the following holds:

1. S % §'is areceive transitioowhenever = ¢?pand((s,)pep, (Wp.q) pg)ecn) — ((s))pep,
(wy, o) (p,g)ecn) is @ transition off 4, for some control messagec C.

2. 5 - $'is asend transitiorwhenever = plg, f,q = 0, and((s,)pep, (Wpq) pgyccn) —
((sp)peP, (W ) (p.g)ecn) IS @ transition off 4, for some control messagecs C.

3. § = S’ is ane-transition whenever there exists a chaniigl ) € Ch with f,, = 1 and

. lq,
a transition((s,)per, (Wp.q) pgjecn) — ((sh)per, (W 4)pgecn) Of T , for some control

message € C and channel content;’ .. Moreover,w, s = w; ; for all channelgr, s) € Ch.

Thus, receives ol 4 are simulated by”(.A) without any change. Send actions however, can be
transformed inte-transitions, provided that the flag is set. At any momer ftag can be raised for
any channel.

Lemma 5.4. If the CFM A is deadlock-free, thehin(CPref(A)) = L(T'(.A)), i.e., the transition
systemI”(A) accepts precisely the linearizations of element§Bfef(.A).

Proof:

Let N € CPref(A) andw € Lin(N). Then there existav € Lin(£(A)) = L(T4) such thatw
results fromu by deleting all sends that are not matched irConsider a path iff 4 that corresponds
to uv. The prefix of this path corresponding dagives rise to av-labeled path irf”(.A) (transitions
that correspond to unmatched sends get replacedtiansitions). This path ifi”(A) ends in a state
with empty channels, i.e., it is accepting. Heride(CPref(.A)) C L(T"(.A)).

For the other implication, consider some accepting patfi”ipd) for w, starting in the state
((tp)pers (€) (p.g)echs (fp.a) (p.gyecn) @and leading ta((s;,)pep; () (p.g)echs (fp.4) (p.q)ecn)- Note that
this path contains sometransitions on channels whose flag is set at some point.€Ehgansitions
correspond to “hidden sends”. Let € (X x C)* be obtained fromv by adding all these hid-
den sends at the appropriate positions, and adding theotoméssages used by the accepting path
in T'(A) . Then, in the transition systeffis, there is a path fronf(:,)pep, (€)p.g)ecn) 10 S =
((sp)peP; (Wp,q) (p,g)ecn) fOr some channel contenis, ,, labeled byu. Since the CFMA is deadlock-
free, there exists also a path7ty from S to some accepting state, labeleddby¢ (X x C)* . Thus,
wv labels an accepting path ©f;, hence the MSC associated with is in £(.A). Sincew is obtained
from the X-projection ofu by deleting all unmatched sends, this prowess Lin(CPref(A)) and
thereforeN = msc(w) € CPref(A). Hence we proved.(7'(A)) C Lin(CPref(.A)) and therefore
the equality of these two sets. O

Proposition 5.5. The question whether a deadlock-free CFM is existenti@Hgounded is a PSPACE-
complete problem, provided thatis given in unary.

Proof:
By Cor. 5.1 and Prop. 3.1, we have to check that any WoRIil'(M) from Ling,1(CPref(A)) is
B-bounded.
Restricting the transition systeffi'(.A) to those states whose channels contain at nibst
1 messages, we obtain a finite automafbn,;(.4) with exponentially many states that accepts
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Linp11(CPref(A)). Using Proposition 3.2, we can construct an automaonith exponentially
many states that accepts the intersectiohiafs;; (CPref(.A)) with the set of optimal linearizations
{OPT(M) | M MSC} (it suffices to complement the automaton of Proposition. 3\@je that there
exists adeterministicautomatorC with exponentially many states that accepts the sét-tiounded
words. Hence we can test whethigi3) C L(C) in polynomial space.

For the lower bound, we apply a similar argument as in thefggbBroposition 4.4. O

6. Conclusion

It follows from Theorem 5.1 that CFMs can be complementedtinad to the set of existentiallys-
bounded MSCs, for any bound. We do not know how to prove this explicitly without exploigj the
equivalence to MSO, which is trivially closed under negatiéd\nother consequence of Theorem 5.1
is that several interesting model checking instances arielalele. We can check 1) whether all exis-
tentially B-bounded behaviors of a CFM satisfy an MSO formula, for anyrioldB, and 2) whether
a regular set ofB-bounded linearizations is included in (intersects, retpely) the language of a
CFM.

Figure 3 summarizes the results obtained for the problenesiing channel bounds (with and
without an explicitly provided bound, respectively). Note that the undecidability results halen
for deterministic CFMs.

H vV B-bound 3 B-bound V-bound 3-bound
Arbitrary CFM undecidable  undecidable  undecidable  undecidgble
Deadlock-free CFM PSPACE PSPACE undecidable  undecidable

Figure 3. Testing boundedness
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