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On communicating automata with bounded channels

Blaise Genest∗, Dietrich Kuske†, and Anca Muscholl‡

Abstract. We review the characterization of communicating finite-state machines whose be-
haviors have universally or existentially bounded channels. These results rely on the theory of
Mazurkiewicz traces. We investigate the question whether channel bound conditions are decid-
able for a given communicating finite-state machine.

1. Introduction

Communicating finite-state machines (CFM for short), or equivalently, FIFO channel systems or mes-
sage passing automata, are a fundamental model for concurrent systems, in which agents cooperate
via asynchronous message passing using unbounded buffers.Compared with other models of true
concurrency, like Petri nets for instance, these machines are computationally much harder, actually
Turing equivalent [9]. Channel systems are the basic model of the standard ITU notation SDL (norm
Z.100), and they are widely used in the design of communication protocols. Basic questions aris-
ing in formal verification, such as the reachability problem, are undecidable for CFMs (in contrast,
reachability is a famous problem in Petri nets, shown to be decidable in [26, 19]).

Motivated by formal verification questions, an important line of research was devoted to identify-
ing variants of CFMs, or approximated behaviors thereof, that are amenable to algorithmic methods.
One such example are lossy FIFO systems, which assume that channels are unreliable. On this model,
the reachability problem was shown to be decidable [1, 13], albeit of non-primitive recursive complex-
ity [29]. This high complexity is not the primary reason to consider lossy FIFO systems unsatisfactory:
First, the assumption that any message can be lost, is ratherartificial in practice (a more realistic as-
sumption is that message loss is ruled by probabilities, [30, 4]). Second, more advanced questions
like recurrent reachability (including model-checking ofliveness properties) are again undecidable in
this model [2].

Another approach to obtain decidability of various model checking questions on CFMs is based
on the representation of the set of reachable configurations(including the channel contents) by finite
automata, see e.g. [5, 6, 7, 10]. Often this approach requires to relax the operations on channels, which
yields an over-approximation of the result.

∗IRISA/CNRS, Campus de Beaulieu, Rennes, France. Work supported by the ANR projects DocFlow and DOTS.
†Institut für Informatik, Universität Leipzig, Germany.Supported by DAAD-PROCOPE D/0333596.
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This paper provides a survey of recent research on subclasses of CFMs that have been shown to
be robust w.r.t. two objectives, namely decidability of model-checking problems and good expressive
power. The approach taken here goes beyond regular representations of reachable configurations. We
use partial order methods for describing the behaviors and for identifying robust subclasses of reliable
channel systems. Formally, the behaviors are described byMessage sequence charts(MSC for short),
another ITU standard (Z.120 [18]). The advantage of reasoning about behaviors of CFMs using MSCs
is both succinctness and comprehension, since a single diagram subsumes a set of sequential runs of
the CFM. The yardstick for expressive power used in this paper is monadic second order logic (MSO
for short) over partial orders of MSCs.

An early line of work considered universally bounded MSCs, only. In terms of a CFM, this
amounts to saying that every run can be executed with channels of fixed size, no matter how events
are scheduled. Equivalently, there exists some (uniform) bound on the number of transitory messages,
at any time. Since the size of the communication channels is fixed uniformly, this constraint turns a
CFM into a finite state device. Checking that a CFM is universally bounded is undecidable, and some
heuristics were proposed for solving this problem [22]. On the positive side, over universally bounded
MSCs, the rich theory of regular languages extends very well: automata (CFMs), logic (monadic
second order) and MSC-expressions (regular MSC-graphs) are all equivalent [17] (see also [20], which
extends the characterization to infinite MSCs). Moreover, model checking in the realm of universally
bounded MSC models is decidable, with elementary complexity [3, 28].

The drawback of models with universally bounded communication channels is the limited ex-
pressive power. Intuitively, universal channel bounds require message acknowledgments, which can
be difficult to impose in general. For instance, basic protocols of producer-consumer type (such as
e.g. the USB protocol) are not universally bounded, since the communication is one-way. Therefore, a
relaxation of this restriction on channels was proposed in [16, 14] . The idea is to require anexistential
boundon channels. This means roughly that every CFM run must havesomescheduling of events
that respects a given channel bound (other schedules might exceed the bound). In other words, runs
can be executed with bounded channels, provided that we schedule the events fairly. For instance,
in a producer-consumer setting, the scheduling alternatesbetween producer and consumer actions.
This requirement is perfectly legitimate in practice, since real life protocols must be executable with
limited communication channels. When a channel overflow happens, then the sender stops temporar-
ily until some message is consumed from the queue. For channel systems with existential bounds,
the fundamental Kleene-Büchi equivalence of automata, logics and regular expressions was shown to
hold in [14]. Regarding model-checking, the complexity remains the same as in the case of universal
bounds, [16, 14].

This survey paper is focused on the issue of expressive powerfor CFMs with universal and exis-
tential channel bounds, respectively. We emphasize on the tight relationship that exists between CFMs
with channel bounds andMazurkiewicz traces– a concurrent model introduced by A. Mazurkiewicz
in the late seventies, for describing the semantics of safe Petri nets. The rich theory of Mazurkiewicz
traces (see [11] for a survey) provides a powerful tool when reasoning about the behaviors of CFMs.
We survey the results obtained on the expressive power in [17, 20, 14]. In addition, we show that in
the Büchi-like characterization obtained for CFMs with existential bounds, the non determinism of
CFMs is unavoidable. Moreover, we consider the problem of testing whether a CFM is existentially,
or universally bounded, respectively. We show roughly thatthe only case where this problem has a
solution is when we assume that the channel bound is known andthe CFM is deadlock-free. Both
these assumptions are motivated by applications, since concrete systems use bounded memory and
communication protocols are in general deadlock-free.
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Overview. In Section 2 we define communicating finite-state machines whose behavior is in-
vestigated in this paper. The following Section 3 introduces formalisms used in this investigation
– Mazurkiewicz traces, message sequence charts and monadicsecond order logic (MSO). In this
section we also introduce a normal form for MSCs, that corresponds to an optimal linear execution
w.r.t. channel bounds. Section 4 deals with universally bounded CFMs. In this setting, it presents
the known equivalence between CFMs, MSO, and regular sets oftraces. As new results, we consider
the problem of deciding whether a deadlock-free CFM is universally bounded or not. The following
Section 5 elaborates these techniques and results further in the setting of existentially bounded CFMs.
In particular, we show that deterministic CFMs are not sufficient in this case.

Related work.Existential channel bounds appear in [21] and implicitly in[15] (called there real-
izable HCMSCs). The expressive power and model checking issues for universally bounded channels
are considered in [3, 28, 17, 20, 23]. Without the restriction of universally bounded channels, [24, 25]
shows how to use representative executions in model checking against MSO properties and [16] does
this against MSC-graph properties. As in [17, 25, 14] we use here the logic that talks about thepartial
order of an MSC. The paper [8] shows that the existential fragment of the weaker MSO logic based
on the immediate successor is expressively equivalent to CFMs without any restrictions.

2. Definitions

The communication framework used in our paper is based on sequential processes that exchange
asynchronously messages over point-to-point, error-freeFIFO channels. LetP be a finite set of
process identities that we fix throughout this paper. Furthermore, letCh = {(p, q) ∈ P2 | p 6= q}
denote the set ofchannels. Processes act by either sending a message, that is denoted by p!q meaning
that processp sends to processq, or by receiving a message, that is denoted byp?q, meaning that
processp receives from processq. For any processp ∈ P, we define a local alphabet (set of event
types onp) Σp = {p!q, p?q | q ∈ P \ {p}} and setΣ =

⋃
p∈P Σp. For the rest of the paper, whenever

a pair of processesp, q ∈ P communicates, we will implicitly assume thatp 6= q, i.e.,(p, q) ∈ Ch.
The most natural formalism to describe (asynchronous) communication protocols arecommuni-

cating finite-state machines(CFM for short) [9]. CFMs are a basic model for distributed algorithms
based on asynchronous message passing between concurrent processes:

Definition 2.1. A communicating finite-state machine(CFM) is a tupleA = (C, (Ap)p∈P , F ) where

• C is a finite set ofmessage contentsor control messages.

• Ap = (Sp,→p, ιp) is a finite labeled transition system over the alphabetΣp × C for anyp ∈ P
(i.e.,→p ⊆ Sp × (Σp × C) × Sp) with initial stateιp ∈ Sp.

• F ⊆
∏

p∈P Sp is a set of global final states.

The CFMA is deterministic[17] if

• s
p!q,m1

−→ p s1 ands
p!q,m2

−→ p s2 impliess1 = s2 andm1 = m2

• s
p?q,m
−→ p s1 ands

p?q,m
−→ p s2 impliess1 = s2.

The notion of determinism used here originates from [17]. For instance, it can be justified in
the setting of distributed supervision, where some distributed plant is extended with a distributed
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automaton that can attach additional message contents to messages that are exchanged by components
of the plant. Thus, the controlling automaton has control over its next state as well as over the message
content it attaches to some message. But it does not have control as to whether the next action is
sending to or receiving from some particular channel. If theplant decides to execute a receive event
p?q, then the controlling automaton can only receive the first message of the channel, i.e., should be
prepared to receive distinct messages.

In order to describe the behavior of a CFM, one can transform it naturally into a sequential,
potentially infinite transition system whose states consist of a P-tuple of local states as well as the
contents of the channels. More precisely, one defines from the CFM A = (C, (Ap)p∈P , F ) the
(Σ×C)-labeled, infinite transition systemTA as follows. A state ofTA consists of aP-tuple of local
states and of channel contents ofA, i.e., it is an element((sp)p∈P , (wp,q)(p,q)∈Ch) of

∏
p∈P Sp ×∏

(p,q)∈Ch C∗. For two states, an actiona ∈ Σp, and a control messagec ∈ C, we have

((sp)p∈P , (wp,q)(p,q)∈Ch)
a,c
−→ ((s′p)p∈P , (w′

p,q)(p,q)∈Ch)

if

• sp
a,c
−→p s′p is a transition of the local machineAp andsq = s′q for q 6= p.

• Send events: ifa = p!q, thenw′
p,q = wp,qc (i.e., messagec is inserted into the channel fromp

to q) andwp′,q′ = w′
p′,q′ for (p′, q′) 6= (p, q) (i.e., all other channels are unchanged)

• Receive events: ifa = p?q, thenwq,p = cw′
q,p (i.e., messagec is deleted from the channel from

q to p) andwq′,p′ = w′
q′,p′ for (q′, p′) 6= (q, p) (i.e., all other channels are unchanged).

A run of TA is as usual a sequenced1, (a1, c1), d2, (a2, c2), . . . , (an, cn), dn+1 with di states
of TA, ai ∈ Σ and ci ∈ C such thatdi

ai,ci

−→ di+1 for all suitable i. It is accepting ifd1 =
((ιp)p∈P , (ε)(p,q)∈Ch) anddn+1 = (f, (ε)(p,q)∈Ch) for somef ∈ F . Finally, we defineL(TA) ⊆ Σ∗

by projecting the control messages and states out of accepting runs: it is the set of wordsa1a2 · · · an

such that there exists an accepting rund1, (a1, c1), d2, (a2, c2), . . . , (an, cn), dn+1.
A CFM is calleddeadlock-free, if F =

∏
p∈P Sp and from every reachable state ofTA we can

reach a state where all channels are empty.

3. Partial orders of Mazurkiewicz traces and CFMs

We consider in this section two different kinds of partial orders, Mazurkiewicz traces and runs of
CFMs. Then we establish a relationship between these partial orders, which is the basis of several
results of expressiveness and decidability for subfamilies of CFMs.

3.1. Partial orders

Mazurkiewicz traces [27] have been introduced in computer science for describing the behavior of safe
Petri nets. Their essence is to describe the semantics of a concurrent system by a (static) relation of
independence between actions. Formally, atrace alphabetis a pair(Ω, I) consisting of an alphabetΩ
and a symmetric and irreflexive relationI ⊆ Ω2. The relationI will be referred to as theindependence
relation; its complementD = Ω2 \ I is thedependence relation.

A Mazurkiewicz traceis anΩ-labeled partial order(E,≤, λ) (up to isomorphism), with the label-
ing λ : E → Ω satisfying the following conditions, for any eventse, f ∈ E:
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• if e is an immediate predecessor off (denoted ase ⋖ f ), then(λ(e), λ(f)) ∈ D, and

• if e andf are incomparable, then(λ(e), λ(f)) ∈ I.

Partial orders also arise naturally when we describe runs ofCFMs. Instead of viewing the CFM as
an infinite transition system, we can visualize the runs by means of diagrams calledmessage sequence
charts(MSC for short).

We define message sequence charts asΣ-labeled posets(E,≤, λ), and we writeP (e) for the
process on which evente is located. That is, we letP (e) = p if λ(e) ∈ Σp. In addition, we define
two relations≤P and<m on events:

• e ≤P f iff P (e) = P (f) ande ≤ f .

• e <m f iff λ(e) = p!q, λ(f) = q?p, and |{e′ | λ(e′) = p!q, e′ ≤ e}| = |{f ′ | λ(e′) =
q?p, f ′ ≤ f}|, for somep, q ∈ P.

The idea is that≤P describes the order of the events executed by the sequentialprocesses. If
P (e) = P (f) = p ande < f , we also writee <p f . Moreover, if there is no eventg with P (g) = p
ande < g < f , then we writee ⋖p f . The relation<m describes the matching send and receive
events, under the assumption that message channels are FIFO.

Definition 3.1. A message sequence chartis aΣ-labeled posetM = (E,≤, λ) (up to isomorphism)
satisfying

• ≤ = (≤P ∪ <m)∗,

• P−1(p) ⊆ E is linearly ordered for anyp ∈ P, and

• |λ−1(p!q)| = |λ−1(q?p)| for any(p, q) ∈ Ch.

An example MSC is shown in Figure 2. If we replace the last itemof the definition above by
|λ−1(p!q)| ≥ |λ−1(q?p)| for any(p, q) ∈ Ch, then we speak aboutprefix MSC.

Any linear extension of a labeled partial order(E,≤, λ) is called alinearizationof it. We represent
it as a wordu = u1 · · · un over the alphabetΣ, if λ : E → Σ. Thus, the setLin(M) of linearizations
of the MSCM is a subset ofΣ∗, and the set of linearizationsLin(t) of a tracet is a subset ofΩ∗.
For a set (or language) of partial ordersM, we writeLin(M) =

⋃
M∈M Lin(M). For anyw ∈ Σ∗,

a ∈ Σ, we denote as usual by|w|a the number of occurrences ofa in w.
For MSCs, the relation between the partial order and its linearizations is tighter: starting with any

word w from Σ∗ that satisfies|v|p!q ≥ |v|q?p for any prefixv and every channel(p, q) ∈ Ch, there
exists a unique prefix MSCM such thatw is a linearization ofM . We denote this prefix MSC as
msc(w). If w ∈ Σ∗ does not satisfy the above condition on channels, thenmsc(w) is undefined.

Runs of CFMs can be also viewed as (prefix) MSCs. LetA be a CFM, and consider the set of
labelings of runsL(TA) ⊆ Σ∗. It can be shown easily that for every MSCM with Lin(M)∩L(TA) 6=
∅ we haveLin(M) ⊆ L(TA). We denote byL(A) the language of the CFMA, that is, the set of MSCs
associated with accepting runs ofA: L(A) = {msc(w) | w ∈ L(TA}. By the above remarks, we
haveLin(L(A)) = L(TA).

Definition 3.2. Let B > 0 be an integer. A word (linearization)w ∈ Σ∗ is calledB-boundedif
|v|p!q − |v|q?p ≤ B, for all prefixesv of w and all (p, q) ∈ Ch. An MSC M = (E,≤, λ) is
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called universallyB-boundedif every linearization ofM is so. A set of MSCs is universallyB-
bounded if each of its elements is so. A CFMA is universallyB-bounded if every configuration
((sp)p∈P , (wp,q)(p,q)∈Ch) of some accepting run ofTA satisfies|wp,q| ≤ B for all (p, q) ∈ Ch.

A CFM (set of MSCs, respectively) is called universally bounded if it is universallyB-bounded
for someB > 0.

From the remark above it is easy to see that a CFMA is universallyB-bounded if and only if
L(A) is universallyB-bounded.

Let LinB(M) denote the set ofB-bounded linearizations of an MSCM , andLinB(M) is to be
understood similarly for a set of MSCsM. In any caseLinB(M) ⊆ Lin(M), with equality if and
only if M is universallyB-bounded.

3.2. Traces and MSCs

We describe in this section a tight link between Mazurkiewicz traces and universallyB-bounded
MSCs, due to [20]. Let(Ω, I) be the trace alphabet withΩ = Σ × {0, . . . , B − 1}. The depen-
dence relationD ⊆ Ω × Ω is given by(x, i)D(y, j) if either P (x) = P (y) or {(x, i), (y, j)} =
{(p!q, n), (q?p, n)} for somep, q, n. Clearly,I = Ω2 \ D is symmetric and irreflexive, hence(Ω, I)
is a trace alphabet.

For anΩ-labeled posett = (E,≤, λ), let proj(t) denote theΣ-labeled poset(E,≤, π ◦ λ) where
π : Ω → Σ is the projection to the first component.

The encodingtr(M) of an MSCM = (E,≤, λ) is obtained by numbering the events of the same
type moduloB: tr(M) = (E,≤, λ′) such thatλ′(e) = (λ(e), n) with n = |{e′ < e | λ(e′) =
λ(e)}| mod B.

In general, the partial ordertr(M) is no Mazurkiewicz trace. Consider, for instance, the MSC
M = (E,≤, λ) with linearization(1!2)(1!2)(2?1)(2?1) andB = 1. Thentr(M) = (E,≤, λ′) with
λ′(e) = (λ(e), 0) for anye ∈ E. Hence, intr(M), the first occurrence of2?1 and the second of1!2
carry dependent labels, but these events are incomparable,i.e.,tr(M) is indeed not a trace.

Lemma 3.1. [20] Let M = (E,≤, λ) be a universallyB-bounded MSC, then the partial ordertr(M)
is a trace over the alphabet(Ω,D) and we haveM = proj(tr(M)).

Note that the converse implication in the above lemma does not hold, in general. Consider the
MSC M = (E,≤, λ) with (unique) linearizationw = (1!2)(1!2)(1!3)(3?1) (3!2)(2?3)(2?1)(2?1)
andB = 1. ThenM is not universally1-bounded, buttr(M) is a trace, since it is linearly ordered. The
reader can verify that an MSC is universallyB-bounded if and only if in the partial order oftr(M),
between any two consecutive nodes labeled by(p!q, n) there is a node labeled by(q?p, n).

Lemma 3.1 provides the basis for a quadratic-time algorithmthat checks that an MSC is univer-
sally B-bounded (see also [21] for an alternative approach). It verifies that the partial ordertr(M)
satisfies the two conditions in the definition of Mazurkiewicz traces and that in between any two
(p!q, n)-labeled nodes, there is a(q?p, n)-labeled one.

3.3. Optimal linearizations

We present in this section an algorithm to compute a linearization OPT(M) ∈ Σ∗ of the MSC
M = (E,≤, λ) that isB-bounded, for the least possibleB.

The algorithm computes a linearizationOPT(M) incrementally: IfM is empty, thenOPT(M) =
ε. Otherwise, suppose that we have already computed the linearization of a prefix ofM , with set of
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eventsF ⊆ E. We choose now the next evente ∈ E \ F among those events such thatF ∪ {e} is
downward closed (that is, for everyf ≤ g with g ∈ F ∪ {e}, we havef ∈ F ∪ {e} as well). LetG
denote the set of such candidates. IfG contains some receive evente, then we adde to F . Otherwise,
we add toF a send event on a channel(p, q) that has the least number|{f ∈ F | λ(f) = p!q}|−|{f ∈
F | λ(f) = q?p}| of pending messages inF from p to q. Ties are broken using some fixed linear
order⊑ on the set of channelsCh, we always take the event that involves the largest possiblechannel.

Proposition 3.1. Let OPT(M) be the linearization computed by the above algorithm on MSCM .
Let alsoB ∈ N be minimal such thatOPT(M) is B-bounded. Then no linearization ofM is (B−1)-
bounded.

Proof:
Let w ∈ Lin(M) be some linearization. Letx ∈ Σ∗ anda ∈ Σ such thatxa is the minimal prefix
of OPT(M) that is not(B − 1)-bounded. Then there exists(p, q) ∈ Ch with a = p!q andnr,s ≤
B − 1 = np,q for any (r, s) ∈ Ch wherenr,s = |x|r!s − |x|s?r. Let zb be the minimal prefix ofw
such thatmsc(zb) is no prefix ofmsc(x) (with z ∈ Σ∗ andb ∈ Σ). Then alsoxb is a linearization of
some prefix ofM . Hence, by the choice ofa in the algorithm, there exist(r, s) ∈ Ch with b = r!s
andnr,s ≥ np,q = B − 1 (in particular,nr,s = np,q = B − 1). Sincemsc(z) is a prefix ofmsc(x),
we have|z|s?r ≤ |x|s?r. In addition,msc(zb) = msc(z r!s) andmsc(x) are prefixes ofM ; hence
|z|r!s = |x|r!s. Together, this implies|z|r!s − |z|s?r ≥ |x|r!s − |x|s?r = nr,s = np,q = B − 1. Hence
zb (and therefore its extensionw) is not(B − 1)-bounded. ⊓⊔

Since channels are in general unbounded, the set{OPT(M) | M MSC} cannot be regular. The
following proposition shows that this is the only obstacle,i.e., if we restrict to channels of bounded
size, then the optimality of a linearization can be tested byan automaton.

Proposition 3.2. Let B > 0 be an integer. There exists a polynomial-size automatonA such that, for
any MSCM and anyu ∈ LinB(M), we haveu ∈ L(A) if and only if u 6= OPT(M).

Proof:
Note that the wordu ∈ Lin(M) doesnot equalOPT(M) iff there existv,w ∈ Σ∗ anda ∈ Σ with
u = vaw andp, q, r, s ∈ P such thatr 6= p and (1) or (2) hold

(1) a = p!q and one of the following holds:

• b = r?s is the first action fromΣr in w, and|v|r!s > |v|s?r;

• b = r!s is the first action fromΣr in w and either|v|p!q − |v|q?p > |v|r!s − |v|s?r, or
|v|p!q − |v|q?p = |v|r!s − |v|s?r and(p, q) ⊏ (r, s).

(2) a = p?q, (p, q) ⊏ (r, s), b = r?s is the first action fromΣr in w, and|v|r!s > |v|s?r.

The reason is that, in any of these cases, the algorithm wouldhave preferredb over a after v. For
instance, fora = p!q andb = r!s, the algorithm has the choice betweena andb and prefersb, since
the channel(r, s) is either less filled than(p, q), or equally filled and(r, s) has higher priority than
(p, q). For b = r?s, the condition|v|r!s > |v|s?r ensures that eventsa and b are simultaneously
candidates afterv. To check the above conditions, the automatonA guesses the processesp, q, r, s
and keeps track of the values|v|p!q − |v|q?p and |v|r!s − |v|s?r. Since we are only interested inB-
bounded linearizations, this can be done with|P|4 · (B + 1)2 many states. ⊓⊔
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3.4. Monadic second order logic

Logic is a classical formalism used to describe properties of various structures, like words, trees,
traces, graphs etc. This also applies to structures like MSCs. We consider here monadic second order
logic, with the following syntax:

Definition 3.3. For a setR of binary relations,MSO(R)-formulas over the alphabetΓ are defined by
the syntax

ϕ ::= a(x) | R(x, y) | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃Xϕ | ∃xϕ

whereR ∈ R, a ∈ Γ, x, y are first order variables, andX is a second order variable.

An MSO(≤)-formula over an alphabetΓ can be interpreted onΓ-labeled partial ordersM =
(E,≤, λ) with λ : E → Γ as usual, by lettingM |= a(x) if λ(x) = a and M |= x ≤ y if
x ≤ y. Further relations inR used here are the message order<m, the process order(<p)p∈P , and
the immediate process successor(⋖p)p∈P . Such an MSO(R)-formula over the alphabetΣ can then
be interpreted on an MSCM = (E,≤, λ) as expected.

For an MSO(R)-formulaϕ overΣ without free variables, letL(ϕ) denote the set of MSCs that
satisfyϕ. We also consider existential monadic second order logic (EMSO). An EMSO formula is of
the form∃X1 . . . Xnϕ with ϕ a first order formula, i.e., without second-order quantification

We discuss now some differences arising from the use of different predicates fromR. First, the
full logics MSO(≤, <m) and MSO((⋖p)p∈P , <m) are equally expressive, but the existential frag-
ment of the former could be more expressive than the existential fragment of the latter (which is the
logic considered in [8]). From [8] (Cor. 5.7) we know that MSO(≤) and EMSO((⋖p)p∈P , <m)
are incomparable. Furthermore, we will show later that (universally and existentially)B-bounded
sets of MSCs behave better, since they provide the equivalence between MSO(≤), EMSO(≤) and
EMSO((⋖p)p∈P , <m).

4. The behavior of universally bounded CFMs

This section is devoted to universally bounded CFMs and MSCs. First we recall the Büchi-like char-
acterization of universal boundedness in terms of CFMs, MSCs and logics. Then we present some
(un)decidability results related to universal channel bounds.

4.1. Büchi characterization of universally bounded behaviors

Let (Ω, I) be a trace alphabet. A setL of traces over(Ω, I) is regular if its set of linearizations
Lin(L) ⊆ Ω∗ is regular.

Lemma 4.1. Let M be a set of MSCs. IfLin(M) is regular, then there exists a regular language of
tracesL over(Ω, I) such thatM = proj(L).

Proof:
SinceLin(M) is regular, there is someB > 0 such that any linearization inLin(M) is B-bounded.
In particular, anyM ∈ M is universallyB-bounded. Set(Ω, I) and the mappingstr,proj as in
Section 3. Since anyM ∈ M is universallyB-bounded, theΩ-labeled posettr(M) is a trace over
(Ω, I) (Lemma 3.1). LetK = {tr(M) | M is universallyB-bounded} andL = {tr(M) | M ∈ M}.
Then, certainly,M = proj(L) and it remains to show thatL is regular. For this, note that a word
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from Lin(K) is a linearization of some tracetr(M) in L iff its projection viaproj is a linearization of
proj(tr(M)) = M (the right to left implication follows from the fact that thepartial orders ofM and
tr(M) are isomorphic, cf. Lemma 3.1). By assumption,Lin(M) is regular, and [20, Lemmas 3.6, 3.7]
shows thatLin(K) is regular. HenceL is regular, too. ⊓⊔

The next theorem provides the characterization of universally bounded CFMs (with given channel
bound) in terms of monadic second-order logic and of regularlinearizations. For lack of space, we
have omitted a third characterization, in terms of regular CMSC-graphs [15], that corresponds to a
kind of regular expressions of communication events. The results given below were obtained in [17],
and [20] extended them to sets of infinite MSCs (and CFMs with Muller acceptance). The most
difficult part of the theorem is the construction of a deterministic CFM from a regular setLin(M),
since it amounts to give an algorithm of distributed synthesis. The original approach of [17] consists
in adapting Zielonka’s construction of deterministic asynchronous automata [32] for regular trace
languages to the setting of universallyB-bounded MSCs. Later, [20] made the connection between
MSCs and traces explicit (see Section 3) and gave a simplifiedconstruction of deterministic CFMs,
that uses Zielonka’s construction as a black-box.

Theorem 4.1. [17, 20] LetB be a positive integer andM a set of universallyB-bounded MSCs.
Then the following assertions are equivalent:

1. Lin(M) is regular.

2. M is the language of some CFM.

3. M is the language of somedeterministicCFM.

4. M is the language of some MSO(≤) formula.

5. M is the language of some formula of EMSO((⋖p)p∈P , <m), EMSO(≤), or EMSO(≤, <m),
respectively.

Let us state a few ideas involved in the proof of the above theorem. It is easy to see that any
universally bounded CFMA has a regular set of linearizations. The converse, as mentioned above, can
be shown using Lemma 4.1 and Zielonka’s construction. The main idea is to simulate the execution
of a deterministic asynchronous automatonA on tr(M) by a deterministic CFMB on M . Since
the partial orders ofM andtr(M) are isomorphic, the necessary information about local states ofA
that are visible for an event ontr(M) is also available onM , by storing it in the local states ofB.
As for the logic part, the equivalence between MSO(≤) and the regular set of linearizations follows
without much difficulty from Lemma 4.1 together with [31, 12], that shows a similar result for traces.
Finally, the last item in the theorem is obtained with the usual simulation of automata by EMSO. We
note that for universallyB-bounded MSCs, the message relation<m can be expressed in terms of the
partial order≤, hence we obtain EMSO(≤, <m) = EMSO(≤). The idea is that the trace encoding of
Section 3.2 corresponds to additional existentially quantified set variables, one for each set of events
with trace label(σ, n). This allows to say that the receive matching a(p!q, n)-sende is the first nodef
aftere, with label(q?p, n). In addition, we need to ensure by a formula of EMSO(≤) that the model
is a universallyB-bounded MSC. But this is easy, see remarks after Lemma 3.1.
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4.2. Testing universal bounds

In this section we show that in general, the property of universal boundedness is hard to check. It is not
very surprising that one cannot check whether anarbitrary CFM is universally bounded, since CFMs
are Turing-equivalent devices. We strengthen this observation by showing that undecidability holds
even assuming that the CFM is deterministic and deadlock-free. If we provide the boundB as input,
the problem of testing whether a deterministic CFM is universally B-bounded is still undecidable.
However, fordeadlock-freeCFMs we obtain decidability.

For the undecidability results, we use the following encoding of a deterministic Turing machine
TM by a deterministic and deadlock-free CFM. We will define the CFMATM on two processes1, 2.
A configuration of TM will be encoded as a sequence of messageswith contentsm1, . . . ,mk−1, q,
mk, . . . ,mn, meaning that TM is in stateq, the tape contents ism1 · · ·mn and the head position is
k. With this encoding, it suffices to know three consecutive messages of this sequence in order to
compute deterministically thei-th symbolm′

i of the next configuration.

1

2
C2 C3

C1 C2

Figure 1. Encoding a Turing machine by a deadlock-free deterministic CFM.

The CFM works as follows. First, process 1 sends the initial configurationC1 to process 2. Then
it resends any configurationCi received from process 2 back to process 2, interleaving receives with
sends. Process 2 receives a configurationCi from process 1 and sends the successor configuration
Ci+1 to process 1, also interleaving receives with sends.

In order to obtain a deterministic CFM, process 2 awaits the first three symbols from process 1
before it actually starts sending the next configuration, one send for each receive. Then, it finishes
by sending three messages (or two, or four, depending on the length ofCi+1) that end the successor
configurationCi+1.

More formally, we denote byw = a1 · · · an ‖k b1 · · · bm the k-delayed fair shuffle ofa1 · · · an

andb1 · · · bm, defined asw = a1a2 · · · akb1ak+1b2 · · · anbn−k+1 · · · bm. The language of events on
process 1 is SC1

∏
i≥2(RCi ‖1 SCi), where SCi means sending configurationCi to process2 and RCi

means receivingCi from process2. Similarly, the language of process 2 is
∏

i≥1(RCi ‖3 SCi+1).

Proposition 4.1. Let B > 0. It is undecidable whether a deterministic CFM is universally B-
bounded.

Proof:
Using the above encoding, we reduce the halting problem on empty input for deterministic Turing
machines to the test of the universalB-boundedness of a CFMA. So let TM be some deterministic
Turing machine and letATM = (C, (Ap)p∈P , F ) be the deterministic CFM constructed above, with
F corresponding to halting configurations of TM (and where process 1 stops resending the current
configuration).
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Let q, r /∈ P be two new processes. We define now the CFMB = (C, (Ap)p∈P∪{q,r}, F
′) with:

• Aq = ({s0, . . . , sB+1},→q, s0) with si
q!r,c
−→q si+1 for all i ≤ B, andsB+1

q?r,c
−→q sB+1.

• Ar = ({t0, . . . , tB+1},→r, t0) with ti
r!q,c
−→r ti+1 for all i ≤ B}, andtB+1

r?q,c
−→r tB+1.

• F ′ = F × {(sB+1, tB+1)}

wherec is some fixed control message fromC.
Actually, the CFMB simply adds toATM a behavior on{q, r} that consists inB + 1 messages

from q to r, that crossB + 1 messages fromr to q. This MSCMB is not universallyB-bounded.
HenceL(B) is obtained by simply adjoiningMB to any MSC fromL(ATM). Hence eitherL(A) =
∅ = L(B), implying thatB is universallyB-bounded. OrL(A) 6= ∅ andB is not universallyB-
bounded. ⊓⊔

Proposition 4.2. It is undecidable whether a deterministic and deadlock-free CFM is universally
bounded.

Proof:
Let TM be a deterministic Turing machine. The existence of someB > 0 such that every configuration
of TM reached from the empty input is of size at mostB is undecidable (for otherwise, we could
decide the halting problem of TM). We reduce this undecidable problem to the question whether a
deterministic and deadlock-free CFM is universally bounded.

Let ATM be the deterministic CFM constructed above. It is easy to check that if every configu-
ration of TM is of size bounded byB, then the CFMATM is universallyB-bounded. Conversely, if
a reachable configuration is of size greater thanB, then its associated sends (without the matching
receives) will require a channel size larger thanB. Hence,ATM is universally bounded iff TM is
bounded.

We obtain that the CFMATM is deadlock-free by defining all states as final, together with the
following modification: after sending a complete configuration Ci, process 1 can stop forwarding
messages to process 2, it will only receive RCi+1. Hence from any configuration a final state can be
reached, that is,ATM is deadlock-free. Notice that the CFM is still deterministic because process2
has no choice, and the only choices of process 1 are between a receive and a send. ⊓⊔

Remark 4.1. Our definition of universally bounded CFM differs actually from the one used in [17],
who requires that all configurations ofanyrun of the CFM (not only accepting ones) areB-bounded.
Note that for the CFM defined in Proposition 4.2 all states arefinal, so the result also holds w.r.t. the
definition of universal boundedness used by [17]. On the other hand, the question considered in
Proposition 4.1 becomes decidable in the setting of [17].

For a languageL ⊆ Σ∗ we denote byPref(L) the set of prefixes ofL. Similarly, for a CFMA,
Pref(A) ⊆ Σ∗ stands forPref(L(TA)). Let B > 0, then we setPrefB(A) as the subset ofPref(A)
consisting ofB-bounded words, only. Notice that if an MSCM is universallyB-bounded, then any
prefix ofM is universallyB-bounded.

Proposition 4.3. LetA be a CFM, andB > 0. ThenA is universallyB-bounded if and only if every
word inPrefB+1(A) is B-bounded.
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Proof:
If A is universallyB-bounded, then so isPref(A), which shows the first implication.

Conversely, assume thatA is not universallyB-bounded, and consider somew = a1 · · · an ∈
L(TA) that is notB-bounded. Clearly, ifa1 · · · ai is K-bounded, thena1 · · · ai+1 is (K +1)-bounded,
for any i,K. Thus there exists somei ≤ n such thata1 · · · ai is not B-bounded, but belongs to
PrefB+1(A). ⊓⊔

Consider now the finite transition systemTB
A defined as the transition systemTA restricted to

configurations((sp)p∈P , (wp,q)(p,q)∈Ch) where|wp,q| ≤ B for any(p, q) ∈ Ch. Since this transition

system is finite, its languageL(TB
A ) is regular. IfA is deadlock-free, thenPrefB+1(A) = L(TB+1

A ),
where all states inTB+1

A are final. Together with Proposition 4.3, this provides us with an algorithm
to test whether the CFMA is universallyB-bounded:

Proposition 4.4. The question whether a deadlock-free CFM is universallyB-bounded is a PSPACE-
complete problem, provided thatB is given in unary.

Proof:
First, let us note thatTB+1

A has an exponential number of states. Second, the set of allB-bounded
linearizations of prefix MSCs is the language of adeterministicautomaton with an exponential number
of states, hence its complement also has an exponential number of states. We can decide the emptiness
of the intersection of two finite automata in logarithmic space, hence we get a PSPACE algorithm for
the question whether every linearization inPrefB+1(A) is B-bounded.

For the lower bound, it suffices to notice that a Turing machine TM never uses more thanB space
iff the CFM ATM constructed before the proof of Proposition 4.1 is universally B-bounded. Since
the problem of deciding whether a Turing machine isB-space bounded (withB given in unary) is
PSPACE-hard, the PSPACE-hardness of our problem follows. ⊓⊔

5. The behavior of existentially bounded CFMs

An extension of the trace technique of Section 3 allows to obtain the equivalence between MSO
and CFM within the larger setting of existentially bounded MSCs. As stated in the introduction,
existentially bounded message channels circumvent the need of acknowledgments that are needed in
the universally bounded case. Moreover, existential bounds are a lot more realistic when modeling
one-way communication (such as e.g. in the producer-consumer setting), and the existence of such
bounds amounts to the existence of some sort of fair scheduling between sends and receives, that
avoids overflow of channels. On the other hand, the lack of message acknowledgments makes the
proofs, in particular the CFM construction, much trickier.

The difficulty here consists in constructing a CFM that recognizes the set of all existentiallyB-
bounded MSCs (a nondeterministic CFM accepting the set of all universally B-bounded MSCs is
easily constructed, and this set can even be accepted deterministically [20, Lemma 3.14]). We do not
know whether the set of existentiallyB-bounded MSCs can be recognized by adeterministicCFM.
However we exhibit in this section an example that shows thatdeterministic, existentiallyB-bounded
CFMs are strictly less powerful than existentiallyB-bounded CFMs. We end the section by a result
showing that it can be decided whether a deadlock-free CFM isexistentially bounded, for a given
boundB.
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5.1. Büchi characterization of existentially bounded behaviors

Informally, a CFM is existentiallyB-bounded, if the sending and receiving events can always be
scheduled in such a way that the size of the channels never exceedsB. Let A be a CFM, and recall
thatTB

A is the restriction of the transition system associated withA to runs where each configuration
has channels bounded byB. By definition,L(TB

A ) ⊆ L(TA).

Definition 5.1. Let B be a positive integer. An MSCM is existentiallyB-boundedif LinB(M) 6= ∅.
A set of MSCsM is existentiallyB-bounded if everyM ∈ M is existentiallyB-bounded. A CFM
A is called existentiallyB-bounded ifmsc(L(TB

A )) = msc(L(TA)).
A CFM (set of MSCs, respectively) is called existentially bounded if it is existentiallyB-bounded

for someB > 0.

For a set of MSCsM, we callX ⊆ Lin(M) a set ofrepresentativelinearizations forMif for
eachM ∈ M, we haveX ∩ Lin(M) 6= ∅. In particular, if a CFMA is existentiallyB-bounded,
thenL(TB

A ) is a set of representative linearizations ofA. Notice that if there exists a regular set of
representatives ofM, thenM is existentially bounded.

We start first with a characterization of existentiallyB-bounded MSCs. With an MSCM = (E,≤
, λ) we asociate the binary relation on events≺B ⊆ E×E [21] given by≺B = <m ∪

⋃
p∈P <p ∪ rev,

whererev is given by

(r, s′) ∈ rev iff s <m r, λ(s) = λ(s′), and

|{x ∈ E | s <p x ≤p s′, λ(s) = λ(x)}| = B.

That is, the relationrev maps a receiver with s <m r to the sends′ that is theB-th event with
λ(s′) = λ(s) and s < s′ (if such an event exists). Hence, ifM is universallyB-bounded, then
rev ⊆ ≤, i.e.,≺∗

B= ≤. Recall the encoding defined in Section 3, that numbers the events of an MSC
M = (E,≤, λ) moduloB, via the labelingλ′ : E → Ω. Extending the definition from the case of
universallyB-bounded MSCs we denote bytr(M) the structure(E,≺∗

B , λ′).

Lemma 5.1. [21] Let B be a positive integer, andM = (E,≤, λ) an MSC. ThenM is existentially
B-bounded iff the relation≺B is acyclic. In this case, the structuretr(M) is a trace over(Ω, I).

Figure 2 depicts the result of applying the encoding used in Section 3 to an existentially 2-bounded
MSC M . Note that in addition to the edges of the partial order we have an edge from the first
occurrence of(q?p, 0) to the second occurrence of(p!q, 0), this edge is arev-edge. SinceM is
existentially2-bounded, the relation≺2 is acyclic by Lemma 5.1 andtr(M) = (E,≺∗

2, λ) is precisely
the trace represented in Figure 2. The reader can also easilycheck that≺1 is not acyclic. Notice also
thatM 6= proj(tr(M)), unlike the universal bounded case. Here, the tracetr(M) orders more events
than the MSCM .

The lemma below is similar to the case of the universalB-bound.

Lemma 5.2. Let A be an existentiallyB-bounded CFM. Then there exists a regular language of
tracesL over(Ω, I) such thatL(A) = msc(proj(Lin(L)).

The next theorem provides the characterization of existentially bounded CFMs (with given chan-
nel bound) in terms of monadic second-order logic and of regular linearizations. For lack of space,
we have omitted again the third characterization, in terms of globally-cooperative CMSC-graphs [16].
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p q

(p!q, 0)

(p!q, 1)

(p!q, 0)

(p?q, 0)

(p?q, 1)

(q!p, 0)

(q!p, 1)

(q?p, 0)

(q?p, 1)

(q?p, 0)

Figure 2. Tracetr(M) associated with an existentially2-bounded MSC.

The results given below were obtained in [14]. Again, the most difficult part of the proof is the con-
struction of a CFM from a regular setLinB(M). The proof uses the trace language from Lemma 5.2,
but an additional difficulty arises by the fact that the partial order of the MSCM is weaker than the
partial order of its trace structuretr(M).

Theorem 5.1. [14] Let B be a positive integer andM a set of existentiallyB-bounded MSCs. Then
the following assertions are equivalent:

1. LinB(M) is regular.

2. M is the language of some CFM.

3. M is the language of some MSO(≤) formula.

4. M is the language of some formula of EMSO((⋖p)p∈P , <m), EMSO(≤), or EMSO(≤, <m),
respectively.

The proof of the theorem above follows the main lines of the universally bounded case. As previ-
ously, the main difficulty is the construction of the CFM fromthe representative setLinB(M). Once
again, the idea is to apply first Zielonka’s construction of asynchronous automata to the trace language
obtained by Lemma 5.2. In addition, we need to solve two more problems: first, the simulation of the
asynchronous automaton by the CFM is non-deterministic, since the information conveyed by therev-
edges in the runs of the asynchronous automaton has to be guessed by the receiver (recall that these
edges do not exist in the MSC). Second, a CFM recognizing all existentiallyB-bounded MSCs must
be constructed. Both parts involve non-deterministic guesses in the CFM, and the example in the next
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section shows that non-determinism is unavoidable. The equivalence between the different EMSO-
logics can be shown as in the universally bounded case (see end of Section 4.1 or [14, Prop. 6.2]). The
only difference is the formula that expresses that the modelis an existentiallyB-bounded MSC. An
MSO-formula for the set of all existentiallyB-bounded MSCs is easily build (it expresses that≺B

has to be acyclic). The EMSO formula is more involved, it usesthe CFM that accepts all existentially
B-bounded MSCs.

5.2. Deterministic CFMs are strictly weaker

LetP = {0, 1, 2, 3, 4}. All MSCs we will consider in the following send only messages from process
0 to processes1 and2, from process1 to 3, and from process2 to 4. Forp ∈ {0, . . . , 4} let πp(M)
denote the projection ofM onto the events of processp.

LetL0 consist of all MSCs such that

• π0(M) ∈ [(0!1)(0!2)]∗ ,

• π1(M) ∈ [(1?0)((1!3) + (1!3)(1!3))]∗ , andπ2(M) ∈ [(2?0)((2!4) + (2!4)(2!4))]∗ ,

• π3(M) ∈ (3?1)∗ andπ4(M) ∈ (4?2)∗.

Thus, process0 will send alternately to1 and2. Process1 will perform one or two send actions1!3
between any two receive actions1?0 and similarly for process2. Finally, processes3 and4 will just
receive messages from1 and2, respectively.

Now define the mappingφ : Σ∗ → Σ∗ by renaming2 into 1 and4 into 3. LetL ⊆ L0 consist of
all those MSCs fromL0 where the sequence of actions of processes1 and2 are the same moduloφ,
i.e.,π1(M) = φ(π2(M)).

Proposition 5.1. The MSC languageL can be accepted by some CFM, but not by any deterministic
CFM.

Proof:
A CFM for L is easily defined, by letting process0 decide whether process1 and3 send one or two
messages each. Process0 sends non-deterministically either the message ”1”, or the message ”2” to
processes1 and2 each. On receiving message ”i”, process1 sends preciselyi messages to process3
(and similarly for processes2 and4).

Now suppose thatA is a deterministic CFM that acceptsL. Then there are distinct MSCsM1 and
M2 from L such that

• π0(M1) = π0(M2) and

• A terminates in the same accepting global state when executing M1 andM2.

Because of the first of these requirements, there exists an MSC M such that

1. π0(M) = π0(M1) = π0(M2), π1(M) = π1(M1), π3(M) = π3(M1), and

2. π2(M) = π2(M2), π4(M) = π4(M2).

Let ρ1 andρ2 be the unique (and successful) runs ofA on M1 andM2, respectively. Recall that
A is deterministic and process0 does not perform any receive events inM1 or in M2. Henceρ1 and
ρ2 behave the same on process0. Hence we can construct a runρ of A onM as follows:
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1. on processes0, 1, and3, it behaves likeρ1 and

2. on processes0, 2, and4, it behaves likeρ2.

Because of the second of the above requirements, the runρ is successful, i.e.,M is accepted byA and
therefore an element ofL.

SinceM1 and M2 are distinct withπ0(M1) = π0(M2), we have eitherπ1(M1) 6= π1(M2)
or π2(M1) 6= π2(M2). We consider the caseπ1(M1) 6= π1(M2) in more detail, the other case
is dealt with similarly. Since the only actions performed byprocess1 are1?0 and1!3, we obtain
π1(M) = π1(M1) 6= π1(M2), butπ2(M) = π2(M2), henceπ1(M) 6= φ(π2(M)), which contradicts
M ∈ L. ⊓⊔

Theorem 5.2. Non-deterministic existentially bounded CFMs are strictly more expressive than deter-
ministic existentially bounded CFMs.

5.3. Testing existential bounds

In this section we consider the test whether a given CFM is existentially bounded. We show that the
decidability and complexity of deciding universal and existential channel bounds is the same, albeit
the fact that proofs are more involved in the existential case.

The proof of Proposition 4.1 yields quickly a similar resultfor the existentially bounded case:

Proposition 5.2. Let B > 0. It is undecidable whether a deterministic CFM is existentially B-
bounded.

Proposition 5.3. It is undecidable whether a deterministic and deadlock-free CFM is existentially
bounded.

Proof:
It suffices to reconsider the proof of Proposition 4.2, and tonotice thatATM is actually existentially
bounded iff the Turing machine TM has a bound on the size of itsreachable configurations. ⊓⊔

We consider now the question whether a deadlock-free CFM is existentially B-bounded, for
given B. We already know from Proposition 3.1 that an MSCM is existentiallyB-bounded iff
the optimal linearizationOPT(M) is B-bounded. We would like to mimic the proof of Proposi-
tion 4.4, that showed how to test (in polynomial space) whether a deadlock-free CFM is universally
B-bounded. Notice however thatPref(A) is not the right set to deal with, since the property of being
existentiallyB-bounded is not inherited by prefixes. One can observe this phenomenon on an MSC
with two processes1, 2, where process 1 starts by sendingB + 1 consecutive messages to2. The
prefix MSC consisting of theB + 1 sends has of course noB-bounded linearization.

LetM be an MSC and consider a prefixN = (E,≤, λ) of M . We defineNc as the restriction ofN
to the set of matched eventsE\{e ∈ E | ∀f ∈ E : e 6<m f ∧f 6<m e} of N (Nc contains all receives
of N sinceN is a prefix). The setCPref(M) consists of all MSCsNc, associated with prefixesN
of M . Alternatively, we can constructCPref(M) incrementally: For MSCsM = (E,≤, λ) andN
we writeM → N if there exists some maximal eventr ∈ E such thatN is the restriction ofM to
E \{s, r} wheres ∈ E is the unique event withs <m r (i.e.,N is obtained fromM by deleting some
message with maximal receive). Note that neitherNc norN need to be prefixes ofM .
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Lemma 5.3. CPref(M) is the least set of MSCs that containsM and, withN1 → N2 andN1 ∈
CPref(M) also containsN2.

Proof:
It is easy to see thatCPref(M) is closed under→, which gives one inclusion. For the converse, let
N = (E,≤, λ) be a prefix ofM . ThenNc can be obtained fromM by iterating→ until all maximal
receive events belong toE. ⊓⊔

For a set of MSCsM we writeCPref(M) for
⋃

M∈M CPref(M), and for a CFMA we write
CPref(A) instead ofCPref(L(A)). Finally, for B > 0 we denote byCPrefB(A) the subset of
existentiallyB-bounded MSCs inCPref(A).

Proposition 5.4. For any MSCM we have:

• If M is existentiallyB-bounded, then everyN ∈ CPref(M) is existentiallyB-bounded.

• If M is not existentiallyB-bounded, then there exists someN ∈ CPref(M) that is existentially
(B + 1)-bounded, but not existentiallyB-bounded.

Proof:
Let w be aB-bounded linearization ofM . Deleting inw all symbols that do not occur inN yields a
linearization ofN which isB-bounded.

For the second statement, suppose thatM = (E,≤, λ) is not existentiallyB-bounded. We reason
by induction on the size ofM . Consider two eventss, r of M that form a message, i.e.,s <m r,
and such thatr is maximal inM . Then letM ′ = M \ {s, r} be the restriction ofM to the events in
E \ {s, r}. If M ′ is existentiallyB-bounded, thenM is existentially(B + 1)-bounded; in this case
we setN = M . Else, by induction we obtain someN ′ ∈ CPref(M ′) that is existentially(B + 1)-
bounded, but not existentiallyB-bounded. With Lemma 5.3 we obtainCPref(M ′) ⊆ CPref(M),
henceN ′ is the desired result. ⊓⊔

Corollary 5.1. LetA be a CFM, andB > 0. ThenA is existentiallyB-bounded if and only if every
MSC inCPrefB+1(A) is existentiallyB-bounded.

Proof:
If A is existentiallyB-bounded, then so isCPref(A) by Proposition 5.4. Therefore we haveCPref(A)
= CPrefB(A) = CPrefB+1(A). Conversely, ifA is not existentiallyB-bounded we obtain using
Proposition 5.4 someN ∈ CPrefB+1(A) that is not existentiallyB-bounded. ⊓⊔

Our next (intermediate) aim is to show that, provided the CFMA is deadlock-free, the set of
(B + 1)-bounded linearizations ofCPref(A) is regular and can be accepted by an automaton with
exponentially many states.

To this aim, we first construct an infinite transition system with ε-transitionsT ′(A) for the set of
all linearizations ofCPref(A). The idea is to add a flag for each channel. If this flag is raised, any
sends to this channel are ignored (i.e., they give rise toε-transitions). Otherwise,T ′(A) works as the
usual transition systemTA associated withA.

The states ofT ′(A) are of the formS = ((sp)p∈P , (wp,q)(p,q)∈Ch, (fp,q)(p,q)∈Ch), wheresp is a
local state ofAp, wp,q ∈ C∗ is a channel content, and the last componentfp,q is a flag for channel
(p, q), taking values0 or 1. The stateS is initial if sp = ιp is locally initial, wp,q is empty, andfp,q is
arbitrary;S is accepting if all channels are empty. There are three typesof transitions: send, receive,
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andε-transitions. To define these transitions, letS = ((sp)p∈P , (wp,q)(p,q)∈Ch, (fp,q)(p,q)∈Ch) and
S′ = ((s′p)p∈P , (w′

p,q)(p,q)∈Ch, (f ′
p,q)(p,q)∈Ch) be states ofT ′(A). We have a transition fromS to S′

provided thatfr,s ≤ f ′
r,s for all channels(r, s) ∈ Ch and one of the following holds:

1. S
a

−→ S′ is areceive transitionwhenevera = q?p and((sp)p∈P , (wp,q)(p,q)∈Ch)
a,c
−→ ((s′p)p∈P ,

(w′
p,q)(p,q)∈Ch) is a transition ofTA, for some control messagec ∈ C.

2. S
a

−→ S′ is asend transitionwhenevera = p!q, fp,q = 0, and((sp)p∈P , (wp,q)(p,q)∈Ch)
a,c
−→

((s′p)p∈P , (w′
p,q)(p,q)∈Ch) is a transition ofTA, for some control messagec ∈ C.

3. S
ε

−→ S′ is anε-transition whenever there exists a channel(p, q) ∈ Ch with fp,q = 1 and

a transition((sp)p∈P , (wp,q)(p,q)∈Ch)
p!q,c
−→ ((s′p)p∈P , (w′′

p,q)(p,q)∈Ch) of TA , for some control
messagec ∈ C and channel contentw′′

r,s. Moreover,wr,s = w′
r,s for all channels(r, s) ∈ Ch.

Thus, receives ofTA are simulated byT ′(A) without any change. Send actions however, can be
transformed intoε-transitions, provided that the flag is set. At any moment, the flag can be raised for
any channel.

Lemma 5.4. If the CFMA is deadlock-free, thenLin(CPref(A)) = L(T ′(A)), i.e., the transition
systemT ′(A) accepts precisely the linearizations of elements ofCPref(A).

Proof:
Let N ∈ CPref(A) andw ∈ Lin(N). Then there existsuv ∈ Lin(L(A)) = L(TA) such thatw
results fromu by deleting all sends that are not matched inu. Consider a path inTA that corresponds
to uv. The prefix of this path corresponding tou gives rise to aw-labeled path inT ′(A) (transitions
that correspond to unmatched sends get replaced byε-transitions). This path inT ′(A) ends in a state
with empty channels, i.e., it is accepting. HenceLin(CPref(A)) ⊆ L(T ′(A)).

For the other implication, consider some accepting path inT ′(A) for w, starting in the state
((ιp)p∈P , (ε)(p,q)∈Ch, (fp,q)(p,q)∈Ch) and leading to((s′p)p∈P , (ε)(p,q)∈Ch, (f ′

p,q)(p,q)∈Ch). Note that
this path contains someε-transitions on channels whose flag is set at some point. These ε-transitions
correspond to “hidden sends”. Letu ∈ (Σ × C)∗ be obtained fromw by adding all these hid-
den sends at the appropriate positions, and adding the control messages used by the accepting path
in T ′(A) . Then, in the transition systemTA, there is a path from((ιp)p∈P , (ε)(p,q)∈Ch) to S =
((s′p)p∈P , (wp,q)(p,q)∈Ch) for some channel contentswp,q, labeled byu. Since the CFMA is deadlock-
free, there exists also a path inTA from S to some accepting state, labeled byv ∈ (Σ × C)∗ . Thus,
uv labels an accepting path ofTA, hence the MSC associated withuv is inL(A). Sincew is obtained
from theΣ-projection ofu by deleting all unmatched sends, this provesw ∈ Lin(CPref(A)) and
thereforeN = msc(w) ∈ CPref(A). Hence we provedL(T ′(A)) ⊆ Lin(CPref(A)) and therefore
the equality of these two sets. ⊓⊔

Proposition 5.5. The question whether a deadlock-free CFM is existentiallyB-bounded is a PSPACE-
complete problem, provided thatB is given in unary.

Proof:
By Cor. 5.1 and Prop. 3.1, we have to check that any wordOPT(M) from LinB+1(CPref(A)) is
B-bounded.

Restricting the transition systemT ′(A) to those states whose channels contain at mostB +
1 messages, we obtain a finite automatonTB+1(A) with exponentially many states that accepts
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LinB+1(CPref(A)). Using Proposition 3.2, we can construct an automatonB with exponentially
many states that accepts the intersection ofLinB+1(CPref(A)) with the set of optimal linearizations
{OPT(M) | M MSC} (it suffices to complement the automaton of Proposition 3.2). Note that there
exists adeterministicautomatonC with exponentially many states that accepts the set ofB-bounded
words. Hence we can test whetherL(B) ⊆ L(C) in polynomial space.

For the lower bound, we apply a similar argument as in the proof of Proposition 4.4. ⊓⊔

6. Conclusion

It follows from Theorem 5.1 that CFMs can be complemented relative to the set of existentiallyB-
bounded MSCs, for any boundB. We do not know how to prove this explicitly without exploiting the
equivalence to MSO, which is trivially closed under negation. Another consequence of Theorem 5.1
is that several interesting model checking instances are decidable. We can check 1) whether all exis-
tentially B-bounded behaviors of a CFM satisfy an MSO formula, for any boundB, and 2) whether
a regular set ofB-bounded linearizations is included in (intersects, respectively) the language of a
CFM.

Figure 3 summarizes the results obtained for the problem of testing channel bounds (with and
without an explicitly provided boundB, respectively). Note that the undecidability results holdeven
for deterministic CFMs.

∀ B-bound ∃ B-bound ∀-bound ∃-bound

Arbitrary CFM undecidable undecidable undecidable undecidable

Deadlock-free CFM PSPACE PSPACE undecidable undecidable

Figure 3. Testing boundedness
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