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Abstract. We study the complexity of temporal logics over concurrgstems that can be described
by Mazurkiewicz traces. We develop a general method to pittatethe uniform satisfiability prob-
lem of local temporal logics is iPSPACE. We also demonstrate that this method applies to all
known local temporal logics.

1. Introduction

Antoni Mazurkiewicz introduced the notion ¢face to describe the behaviors of concurrent systems
[11, 12]. This had a major influence in the studies of distedusystems. Since the pioneering work of
Mazurkiewicz, trace theory has been developed by numessgsarchers and is certainly one of the most
extensively studied models of concurrency, see e.g. [5].

Temporal logics over traces have been introduced to spéwifyexpected behaviors of concurrent
systems. Indeed, for practical applications, it is of foostnimportance to have specification languages
with low complexity for the model checking or the satisfi#iiproblem. Mazurkiewicz traces are la-
beled partial orders where the ordering describes the lifyusetween events in the trace. This is exactly
what is needed to reason about concurrent systems but tfie gtrecture of traces is rather complex.
Due to that, global temporal logics [9, 14, 19, 2] which dészproperties of global configurations have
avery high complexity. The satisfiability problem is undkatle when the logic is based onanstential
until [15] or non elementary when a universal until is use@i][2

Local temporal logics specify properties of local eventthimtrace and not of global configurations.
Still, local temporal logics have a good expressive powecesithe simplest one based on (existential)
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next and (universal) until has the same expressive powersisofider logic over traces [4]. More-
over, local temporal logics have usually a low complexity,isatisfiability can be solved iPSPACE.
We cannot expect a lower complexity since already the daksmporal logid.TL over sequences is
PSPACE-complete and.TL over words is a special case of most local temporal logics taees.

Several local temporal logics were introduced [18, 1, 8,8] @each time the complexity was proved
to be inPSPACE or EXPTIME. Whenever a new local temporal logic was introduced, a n@ofjof
the complexity was needed. To circumvent this need, a gefraraework to study the complexity of
local temporal logics was introduced in [6] were it was shdhatt all local temporal logics where the
modalities are definable in monadic second order logic (M&®@decidable il?SPACE. In this result,
we assumed that the architecture of the system is not pdreafput which consists of the formula only.

Since the complexity also depends on the architecture ofystem, it is important to study the
uniformsatisfiability problem where the input is formed by the fofaand the architecture of the system.
For systems described by Mazurkiewicz traces, the ar¢hiteds given by the dependence alphabet, i.e.,
the set of actions the system might perform together witlu#épendency relation between these actions.
A more concrete view of the architecture is a set of proceasdsa mapping from each action to the set
of processes involved in this action. Here, two actions apeddent if they share a common process and
conversely any dependence alphabet can be described isgithdine concrete view based on processes.

The uniform satisfiability problem was studied in [7] for geal modalities that can be described
by MSO formulas. The complexity depends on the number ofredtens of set quantifiers in these
formulas. Unfortunately, any alternation in the set giars adds an exponent to the space complexity.
Fortunately, most local temporal logics that have beenietiid 8, 1, 4] can be defined without quantifier
alternation. Hence, from the general result of [7] we ob#a2¥ XPSPACE upper bound for the uniform
satisfiability of these logics.

In the present paper, we improve this result by 2 exponemtshi usual temporal logics. More
precisely, we prove that the uniform satisfiability probleanthe usual temporal logics is IRSPACE.

For this, we introduce a general method which is inspirechfthe proof technique used in [6]. More
precisely, we say that a modalityi®SSPACE-effective if there is #SPACE algorithm that can compute
a Bichi automaton for the modality, given the set of proesdhat defines the architecture. Then,
we show that the uniform satisfiability problem isRSPACE for all local temporal logics based on
PSPACE-effective modalities.

In Section 2 we recall some definitions on Mazurkiewicz tsaaed in the next section we introduce
local temporal logics over traces. The uniform satisfigbpiroblem is defined in Section 4 and we give
a general method to prove that this problem i®8PACE when the modalities areSPA CE-effective.

In Section 8 we show that all modalities introduced in thesigal local temporal logics [18, 1, 4] are
PSPACE-effective. Some of these results are based on the integastw notions ofieneral and special
varianceof a Buchi automaton introduced in Section 7. More pregjssdsume that we are given a (non-
deterministic) Buchi automatad for a formulay(z) with one individual free variable. We want to
construct Buchi automata for the formulés o andVx —p. The usual construction which is based on
Yz ¢ = —3dx -y uses two complement operations for the former and one congpieoperation for the
latter and therefore increases the size of the automatomdgrtone exponents, respectively. Instead, we
show that ‘universal’ automata for the formublds ¢ andVx —p can be constructed efficiently in space
O(mlog |A|) (and have therefore at mdst|°(™) many states) when the general or special variance of
A is m. We apply these results to Buchi-automata of logarithnenegal or special variance in which
case this approach improves the usual construction by almvogby one, resp.) exponent.
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This paper uses the process-based approach to Mazurkieaees where the atomic actions are
identified with the set of processes involved. The alteveatiction-based approach starts from a set of
atomic actions and declares some of them dependent and sdemendent. In Section 5, we obtain
similar results in this setting.

A question related to the uniform satisfiability problemtie general satisfiability problem. It asks
whether a property (expressed by some formula) can occult, atea, whether there exists a set of
processes such that the formula becomes satisfiable. lim®éctve show this problem undecidable for
a rather restricted local temporal logic.

2. Traces

We only give very few definitions on Mazurkiewicz traces,dbdhat are needed in this paper. We refer
the reader to [12, 5] for more details on the theory of traces.

A dependence alphabet a pair(XZ, D) whereY. is finite alphabet of actions ant C %2 is a re-
flexive and symmetric relation an calleddependence relatiorA traceover (X, D) is (an isomorphism
class of) a labeled, at most countably infinite partial order(V, <, \) such tha{V, <) is a partial order
and\ : V — Y is the labeling function satisfying for all, y € V'

o lz={zeV |z =<uz}isfinite
e (A\(z),\(y)) € Dimpliesz <yory <z
e z < yimplies(A\(x), A(y)) € D,

where<= <\ <? is the immediate successor relation. The alphabet of tige tr& alph(t) = A(V).
The sefR(3, D) contains all finite or infinite traces over the dependenchadipt(3, D).

A linearizationof a tracet = (V, <, ) is a linear ordexK on V' that extends the partial ordetand
is at most of order type (i.e., also with respect tg, any node ol dominates only finitely many other
nodes). Such a linearization can naturally be identifiedh &ifinite or infinite word ove®.. For any
linearizationw = apa; ... of t, the trace is isomorphic tow] = (V/, E*, \)with V' = {i e N | 0 <
i < |w|}, A(i) = a;, andE = {(i,j) € V" | i < j and(a;,a;) € D}.

Form € N, anm-extended tracever (X2, D) is a trace(V, <, \) together withm sets of positions
X1,...,Xm C V. The set ofm-extended traces is denot&j, (X, D). If w = apajaz--- € ¥ is a
finite or infinite word andX;, ..., X, C {i € N| 0 < < |w|}, then we denote by{w], X1,..., X))
the correspondingn-extended trace.

Alternatively, the dependence alphabet can be defined fhithntore concrete notion of processes.
Let IT be a finite set oprocess namesThe dependence alphabet inducedbig (X, D) whereX is the
set of nonempty subsets Bfand the dependence relatidhis defined by(a,b) € D iff anbd # (. We
denote byR(IT) the set of finite or infinite traces over the dependence akittab D) induced byll. We
also writeR,,, (IT) for the set ofm-extended traces ovér.

We are interested in the complexity of problems where thieitercture, i.e., the dependence alphabet,
is part of the input. Usingdl instead of the induced dependence alph@bef)) may allow an exponen-
tially more concise description of the architecture anddfure yields stronger results. Hence, we state
and prove our results with the architecture describefilbindeed, they also hold when the architecture
is presented by an arbitrary dependence alph@beb) as explained in Section 5.
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3. Local temporal logics

We fix a countably infinite se® of process namedhe syntax of a local temporal logiEL(B) is given
by a setB of modality namesvith associated arities. Then the syntax of the I6BIg B) is defined by
the grammar

ou=M(p,...,9) | p
——
arity (M)

whereM ranges oveB andp over the infinite alphabe®. The size|y| of a formulayp is the number of
its subformulas, so, e.dd/ (p, p)| = 2 since the only subformulas apeand the formula itself.

To define the semantics of a temporal logic, we associateamighmodality namé/ of arity m and
any finite set of processésa set of(m + 1)-extended tracef\M i1 C R,,,+1(II) overIl. When there is
no ambiguity, we simply writ§A/] for [M .

Lett = (V,=,)\) be a trace over some set of procesBeand ¢ be a formula ofTL(B). The
semanticsy’ of ¢ in t is the set of positions iy wherey holds. The inductive definition is as follows.
If p=pe P, thenp! ={veV|peAv)} If o= M(pi,...,pm)whereM € Bis of aritym > 0,
then

o ={veV|te,. ..o {v}) € [Mn}.

We also writet, v = ¢ for v € .

Boolean connectives The simplest modalities allow to model Boolean connectivesIl C P finite,
set

[VIn ={(V,2,A, X, Y, {z}) e Rs(I]) [ z € X UY}
[Flo ={(V.2, A, X {y}) e Ro(ID) |y ¢ X}

Then(p V v)! is the set of positions that satisfyor . Similarly, (—p)! is the set of positions inthat
do not satisfyp.

Strict universal until.  The simplest logicT'L(V, —, SU) studied in [4] uses, apart from Boolean con-
nectives, only one modalitgU of arity 2. The strict universal untip SU ¢ claims the existence of a
vertexy in the proper future of the current oasuch that) holds aty andy holds for all vertices properly
betweern: andy. This intuition is captured by the following definition ofatanguaggSU] C Rs(II):

[SUJla ={(V,=,\, X, Y, {2}) eR3(Il) | y €Y : 2 <yAVez:z2 <z <y—zecX}.

Clearly, this is a first-order definition and it was proved4ithat TL(V, —, SU) and first-order logic for
traces are equally expressive.

From the strict universal until, we can derive several igting modalities. IntuitivelyEX ¢ (exists-
nex) means that there is an immediate successor of the curneakweherep holds. Therefore, we have
EX¢ = L SU ¢ (where L means false) and the semanticEef is inherited from the semantics 6tJ.

It can also be given directly by

[EXIm ={(V,=,\, X, {y}) e Ro(Il) | Bx € X 1y <z} .
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Universal until. ¢ U v is another modality which can be defined as an abbreviatioth®formula
PV (oA (pSU)). Alternatively, in our framework, it is given by the follong languaggU]; C Rs(II):

[Un={(V,=2,\, X, Y, {z}) e Rg(l]) | Iy €Y : 2 X yAVz:z 2z <y—x € X}.

Even though the logi@'L(V, -, EX, U) is as expressive 8BL(V, =, SU) (see [4]), we do not know any
direct way to expresSU with EX andU.

The classical modalitiesventuallyandalwaysare obtained from the universal until Byy = T U ¢
andG p = = F —p.

Existential until. The temporal logic for causalitf' .C was introduced in [1]. In our framework, it
can be defined b¥'L(—, vV, EX, EY, Eco, EG, EU, ES). Intuitively, Eco ¢ claims thaty holds for some
vertex concurrent to the current one. The formulBU « holds if there is a path in the Hasse-diagram
of the trace starting in the current vertex such thatolds along the path untip holds (andy holds
somewhere along this path). SimilarBG ¢ claims the existence of a maximal such path, starting from
the current vertex, wherg always holds. FinallyEY andES are the past versions &X andEU, resp.
Then the semantics @fFL.C is obtained with the following modalities

[EY]a ={(V, 2, \, X, {y}) e Ro(Il) | Jz € X : = < y}
[Ecolit = {(V, %, A, X, {y}) € Ra(Il) | 3 € X s ~(x < yVy <)}
[EUln ={(V. =, \, XY, {z}) e Rg(I]) | In > 0,3xg < z1 < -+ < Ty :
2 =20 NT0, L1,y Tn—1 € X ANzp €Y}
[ES]a ={(V, <, A\, X, Y, {2}) € R3(I) | In > 0,Fzg > a1 > -+ > xpy :
2=2T9NTo,T1,...,Tn-1 € X Nxp €Y}
[EG]m = {(V, =2, A\, X, {y}) € Rg(II) | IP C X : P maximal path in(V, <) starting iny}

For cograph dependence alphab&sC has the same expressive power as first-order logic [3], but
due to the claim of the existence of a path in the modallEdsES or EG it can express properties that
are not expressible in first-order logic for some other ddpane alphabets.

Process-based modalities. We conclude the section by considering temporal logics e/kiee modal-
ities are linked to processes. The first such logic was inited by Thiagarajan [18] but this logic is not
pure futureand we still do not know its expressive power. An alternatiges given in [4] and shown to
be expressively complete f&tO. It is based on the modalities, andU,, for p € P. Intuitively, X, ¢
claims thaty holds on the first vertex of procegswhich is strictly abovethe current one. Hence, we
haveX, ¢ = (—p) SU (p A ¢). Similarly, ¢ U,, ¢ says that the sequence of vertices of progessich
areabovethe current one satisfy until ). Thereforepy U, ¢ = (p — ) U (p A ).

Finally, we show that the temporal logic over trad@® TL introduced by Thiagarajan [18] can also
be dealt with in our framework. It is based on modaliti@sandi/, (p € P) of arity 1 and 2 respectively.

The semantics given in [18] is that of a global temporal logitence it may come as a surprise
that we can deal with it in our framework. But actually, agaitially, formulas are evaluated arime
configurations, i.e., configurations having exactly one imakelement. By identifying a prime config-
uration with its maximal vertex we see that the logic is adyuacal. Intuitively, O, ¢ means that
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holds at the first vertex of procegswhich isnot belowthe current one. Similarlyy ¢4, 1» means that we
have until 1) on the sequence of vertices located on progemsd that areot belowthe current vertex
(actually, it is slightly more complex since the sequenaduides the last vertex of procegsvhich is
below the current one if it exists). Formally, the semaniicdefined as follows:

[Oplr ={(V, =, A, X, {y}) € Ro(Il) [ Tz € X :
pEXNz)ANT AYAVz: (z <z ApeEN?2)) — 2=y}
[l = {(V, =0 X,V {2}) e Ry(Il) | Iy € Y : p € A(y)
AVz:(peXz) Nx=<2)—x =y
AVz:(peXz)ANz<yA-32 :(peXa) A <2’ <2) —-xe X}

Since the logicITPTL is defined by FO-formulas, it is contained Hi©) but the precise expressive
power of TrPTL is still unknown.

4. Uniform satisfiability problem for local temporal logics

Let TL(B) be a local temporal logic. The uniform satisfiability prabléor TL(B) is the following:

input: a finite set of processés$ and a formulap of TL(B)
question: Is there a trace € R(II) and a vertex in t with ¢, v = ¢?

For an alphabekE andm € N, we will denoteX,, = ¥ x {0,1}". Letw = qpa;--- € ¥*° be a
word overY andX; C {j | 0 < j < |w|} be sets fol < i < m. Then(w, X,---, X,,) denotes the
word bgb . .. overY,, with b; = (a;, z}, 22, ..., 27") andz! = 1iff i € X;.

In order to decide this satisfiability problem, we need soffecveness assumptions on the modali-
ties fromB. Here, we assume that the semantics of each modality carsbelzd by a finite automaton
which can be constructed PSPACE.

We use automat® = (Q,I',1,T, F, R) accepting both finite and infinite words. Hetkis the
finite set of states]’ the input alphabet] C @ the subset of initial stated, C @ x I' x Q the (non-
deterministic) transition relationf” C () defines the acceptance condition for finite runs &d Q

defines the Biichi acceptance condition for infinite runs.silely call them Biichi automata.

Definition 4.1. A modality M of arity m is PSPACE-effective if there exists #SPACE algorithm
with the following specification

input: a finite set of processd$

output: a Blchi-automatod, 11 that accepts the word language o¥gyf; (with X the set of nonempty
subsets ofI) defined by

{(w,Xl,. .. 7Xm+1) S (2m+1)oo ’ Vo :x € Xm+1 — ([w],Xl, ey Xom, {x}) S [[M]]H} .

A temporal logicTL(B) is PSPACE-effectiveif its modalities are uniformlyPSPACE-effective (i.e.,
the automat®&,, i1 can be constructed IRSPACE on inputM andlI).



P. Gastin, D. Kuske / Uniform satisfiability for local tempblogics 7

Note that, since the automatadh;; can be constructed in polynomial space, it can have at most
2poly(I1) many states.

The atomic propositiong € P and the Boolean connectives are easy to deal with. Moregalgci
for eachp € P, there is a one state automat6p; accepting the word$w, X) € X¢° such that
X =p ={z]0<z < |wandp € \(z)}. Also, there is a one state automatdny; accepting the
words (w, X,Y) € ¥3° such thaty” = {z | 0 < z < |w|} \ X and there is a one state automatbn;
accepting the wordgw, X, Y, Z) € ¥5° suchthatZ = X U Y.

Although Definition 4.1 might look rather restricted, asutris out, all the temporal modalities
mentioned in Section 3 fall into this setting. We show thiSSiction 8 using some general results that
we prove in Section 7.

Here, we describe the general method, inspired from [6]pbeesthe uniform satisfiability problem
of the logicTL(B) when automat&,, i1 can be computed for each modality € B.

Let TL(B) be somePSPACE-effective temporal logic and Idl be some finite set of processes.
Sincell is fixed throughout the construction, we will abbreviatg i1 by Cy; for any modality name
M € B. We still denote by>: the set of nonempty subsets df For formulasy and ), we write
¢ < 9 if pis a subformula ofy (this includes the casg = ). Let¢ be a formula fromTL(B)
and letSub(§) = {p € TL(B) | ¢ < &}. Letw € X and, forp < &, let X, be sets of positions
in w. As explained above, the tuplev, (X,),<¢) can be considered as a wordover the alphabet
S =% x{0,1}5E), Fory) = M(p1,...,0m) <& 1€tWY = (0, Xpy, ...y Xy Xyp) € (Sms1)™.

The construction. For a formulay € TL(B), let top(¢) be the outermost modality name of
Formally, we setop(p) = p for p € P andtop(M (¢1,...,om)) = M. Let@ = 110<§ Qop(y) be the
set of states of the automatoly whereQ,,(, is the set of states of the BUchi-authathb(w). The

alphabet of4, is X. For a lettera € X and statep = (p,,),<¢ andg = (g,),<¢, We have a transition

p 5 qin A¢ if and only if, for all p < &, we havep,, ale, q, In the automator€y,,. Note that a
sequence of state#, p', ... defines a run ofA, for a wordw < ¥ if and only if for eachy < ¢, its
projectionp?, p, ... on ¢ is a run ofCy,, ) for the wordw|p. A run of A, is accepting if and only

if for eachy < &, its projection onCy,,(, is accepting (here we use a generalized Biichi acceptance
condition).

Lemma4.l. Letw = (w, (Xy)p<¢) € 5 . Then,w € L(A¢) if and only if for eachy < ¢ we have
X, = ol = {z | [w],z | ¢}

Proof:
Assumew € L(A¢). We show thatX,, = ¢I*! by structural induction orp < ¢. This is clear for

o =p € P. Solety = M(p1,...,0m) < & Assume by induction tha,by”} = X, holds for
1 <4 < m. Sincew is accepted by the automatofy, the wordw[y = (w, Xy, ,..., Xy, X,) IS
accepted by’,,. Hence, using the definition ¢f; and the hypothesis we get

Xy ={z| (W], Xp1, - Xoppr {2}) € [M]} = o).

For the other direction, assume that’! = X, for all ¢ < ¢. Clearly, forp = p € P, the word
wle € X{° is accepted by,. Lety = M(p1,...,0m) < & ThenX,, = <p[“’] and therefore

)
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ool = fo | ([wl ™, om’ {x}) € [MIn} = {o | ([0], Xpu, o, X, {a}) € [M]n} = X,
Sincewly = (w, Xy, ..., X,,., X,) we deduce from the definition 6%, thatw ¢ is accepted bg¢,;.
Since this holds for each < £ we obtainw € L£(Ag). O

Proposition 4.1. The formula¢ € TL(B) is satisfiable by some trace ovdrif and only if there exists
w = (w> (Xap)gpgg) € ﬁ(Ag) with Xg # 0.

Proof:
Assume that is satisfiable by some tra¢ceConsider any linearizatiom € >°° of t and a position in
w with [w],z = €. Letw = (w, (pl")),<¢) € = . By Lemma 4.1 we gewr € L(.A¢). Moreover, we
havez € vl = X, # 0.

Conversely letr = (w, (X,)o<¢) € L(Ag) with X¢ # (. By Lemma 4.1 we gelt # X = ¢ =
{z | [w],z = £}. Thereforef is satisfiable by the tradev]. O

Theorem 4.1. The uniform satisfiability problem for anySPACE-effective temporal logi¢I'L(B) is
in PSPACE.

Proof:
Let ¢ be some formula frofT'L(B) whose satisfiability irR(IT) we want to check. By Proposition 4.1,
we have to decide whethet, accepts some word = (w, (X,,),<¢) With X¢ # (0. In order to do so,
we have to store in memory a bounded number of statef @ind to decide whether there is a transition
between two such states.

Since the temporal logit'L(B) is PSPACE-effective, the number of states of any of the automata
Cyr is in 2P (1D Recall that the states of, are|¢|-tuples of states from the automatg. Hence,
a state of4, can be stored in spagg| - log(2P°¥(I1D) hence inpoly(|¢| + |TI]). Also, the transition
function ofCy, can be checked in spapely(|II|) and we deduce that the transition functionf can
also be checked in spapely(|¢| + |II|). 0

5. Action-based temporal logics

We explain now the slight changes that arise when the aothite is presented by an arbitrary depen-
dence alphabefl’, D) instead of a set of processésand its induced dependence alphabet. In this
action-based approach, we fix a countably infinite4ef action namesThe syntax of the local tempo-
ral logic TL,.(B) is defined by the grammar

o u=M(p,...,0) | a
——
arity (M)

where M ranges over the sd? of modality names and over the infinite sefd of action names. With
any modality name\/ of arity m and any dependence alphalEt D), we associate a s¢d/ ] py €
R,,+1(T', D) of (m + 1)-extended traces ovél, D). Theny! is defined as before for formulgs €
TLact(B) and traces = (V' <, \) € R(I", D). The only difference is for constanise A where we let
at={veV|Av)=al.

The uniform satisfiability problem for the temporal logit.... (B) now becomes:
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input: a dependence alphalét, D) and a formulap of TL,.(B)
question: Is there atrace € R(I", D) and a vertex in t with ¢, v = ¢?

To solve this problem efficiently in this context, we ado@ totion of aP SPACE-effective temporal
logic as follows: A modalityM of arity m is PSPACE-effective if there exists SPACE algorithm
with the following specification

input: a dependence alphahbét, D)
output: a Bilchi-automatol,, - p that accepts the language o¥g5 1 = I' x {0, 1}™*+! defined by

{(w, X1, s Xi1) € Tin1)™ | Vo1 2 € Xy < ([w], X, ., X,y {2}) € [M](r )} -

Atemporal logicTL,. (B) is PSPACE-effectiveif its modalities are uniformly°SPACE-effective, i.e.,
the automat&,, r p can be constructed IRSPACE on inputM and(T', D).

We will show that the uniform satisfiability problem for alsPACE-effective action-based tem-
poral logic can be solved in polynomial space. This is adddwy a reduction to Theorem 4.1.

First, the set of process names associated with the setiofiaemesd is P = {{a,b} | a,b € A}.

A dependence alphabé€l, D) uniquely defines a finite set of procesdés= {{a,b} | (a,b) € D}.
Note that not all finite subsets @t are induced by some dependence alphabet. Let, as b&fdre the
set of nonempty subsets Of Identifyingc € T" with the set{p € I | ¢ € p} € X, we obtainl’ C ¥ and
R(T', D) C R(II). Furthermore, a trace= (V, <, \) € R(II) is inR(T", D) iff A(v) e T'forallv € V.

Now, for each modalityM/, we infer its processsemantics from it@ction semantics:[M]n =
[M]r,p) if T is defined by some dependence alphdbet), and[M ] = @ otherwise.

Now letp € TL,(B) be a formula. The may contain subformulas of the formwith a« € A.
Fora ¢ T, replace any of these occurrences _byotherwise, replace them byp6ap A /\pen\a —p.
These replacements result in a process-based fornadl'L(B). Then it is an easy exercise to prove
that for allt € R(I', D) andv in t we havet, v = ¢ (where the modalitied/ are evaluated byM ] p))
iff t,v = @ (where the modalitied/ are evaluated bjM]).

Consider now th& SPACE-effective unary modalitgverywheravhose semantics is given by

[Elr.p) = {(Vs =, A\, X, {y}) €Ro(T, D) | Var: z € X}

Then, ¢ is satisfiable oveR(I", D) iff ¢ A E\/ . a is satisfiable oveR(I", D) iff o AE\/ rais
satisfiable oveR(II). Thus, we reduced the instange, I", D) of the uniform satisfiability problem of
TL.ct(B) to the instancép A E\/, 1 a,1T) of the uniform satisfiability problem ¢f L(B U {E}). By
Theorem 4.1, the latter can be decided in space polynomi&l|in- [¢ A E\/, . al. Since|ll| < |T|?,
we proved

Corollary 5.1. The uniform satisfiability problem of anySPACE-effective temporal logic'L,.(B)
is in PSPACE.

6. General satisfiability

Let TL(B) be a local temporal logic. The general satisfiability prabler TL(B) is the following:



10 P. Gastin, D. Kuske / Uniform satisfiability for local tempblogics

Figure 1. Shape of pointed tra¢e v)

input: a formulay of TL(B)
question: Is there a finite set of processHs a tracet € R(II) and a vertex in t with ¢,v = ¢?

We show that this general satisfiability problem of the semgmporal logicTL(V,—,SU,EY) is
undecidable. Recall that formulas of this logic can also thgederived modalities universal until,
alwaysG, and existential nexeX. For this undecidability to hold, it is important that théseno bound
on the size of the sdf.

To prove this undecidability, we reduce the halting prob(enth empty input) of Turing machines to
the general satisfiability problem. So Jet be a Turing machine with sets of statgsof tape symbol§’,
and let$ be an additional symbol. Furthermore, fix two symhondr. Now define the following sets
of processes

I, = {£} x (QUT U{$}),
I, = {r} x (QUT U{$}), and
HQZ{&T’}UHZUHT-

Consider the following formula
w0 =1A G((e e =) AEX(r AEY £) AEX(C A EYr)) .

Let IT be some set of processes, tet= (V,=<,\) € R(II) andv € V. Thent,v = ¢y if and only
if {¢,7} C II and the pointed tracg, v) has the shape indicated in Fig. 1. In that figure, solid arrows
denote the covering relation and dotted arrows its trarestiosure, i.e., the strict order. Furthermore, all
the nodes in the first row belong to procésand all those in the second to process

Now, consider the formula

=G [ £~ Vyen, (01 Agen, i ) 0 ]
AT s \/peHT (p A /\qGHgUHT\{p} —q)

Lett = (V,<,\) € R(Il) andv € V such thatt,v = ¢o A ¢1. The pointed tracét, v) has the
form described above. Moreover, the formylaexpresses that the events in the first row (fe., the
events on procesd that are in the future of encode some word frord;’ and therefore some worgd,
from (Q UT U {$})~. Similarly, the events from processhat are above encode some word, from
(QUIU{$})~.

Next, consider the following formula

o= (1,8) A G(((r,9) = EX(£,9)) A ((£,8) = EX(1,8)) ) A~((=0) SU (1,9)) .
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The first two conjuncts express that the events that are midnkéilled circles belong to procegs, $)
and(r, $), resp. By the last conjunct, none of the events betweand the next filled event on process
belongs to(r, $). Hence, again by the second conjunct, the filled events aagely those that belong
to (¢,%) and(r, $), respectively. Hence the two infinite wordgsandu, overQ UT U {$} can be written
as

upe = $udSu$u? ... andu, = $ulSul$u? ...

with u}, u!. € (Q UT)* and such thaju| = |v7| for all 4,5 > 0.
It remains to express by a formulay that

(1) «? is the initial configuration of the Turing machinef on the empty word,
@ wr =y

(3) ul Faq ult oruf = uitt, and

(4) u, contains an accepting state.

Since all this is rather standard, we leave to the interagtader the task of writing the formulay ;.

Let o = wg A w1 A o A pag. We show thatp is generally satisfiableff the Turing machineM
accepts the empty word.

Assume first that\1 accepts the empty word and tebe larger than the maximal size used by the tape
during the accepting computation 8 starting from the empty word. Lef’, u!,... ™ € (QUT)" be
words encoding the accepting computatiaf:is the initial configuration on the empty word’ - **
for 0 < i < m andu™ contains the accepting state. Uét= 11y U {po, p1,-.-,pn}. Then, there exists
a pointed tracdt,v) over II whose shape is described by Figure 1 and where the words eshaod
procesd andr are

up = up = $u$ul$ - $umSu S - - -

Note that we need the processgsp, - - - , pn t0 get the slanted arrows in Figure 1: th¢h vertices on
proces< or r after a filled node belong to process. By construction, we have v = ¢, henceyp is
generally satisfiable.
Conversely, if there exists a finite set of procesHesa tracet = (V,<,\) € R(II), and a node
v € V such that, v = ¢ then we show easily that the Turing machifé accepts the empty word.
Since the formulag can be constructed froovf, we showed

Theorem 6.1. The general satisfiability problem for the local temporajitoTL({SU,EY,A,—}) is
undecidable.

7. Universal first order quantification and Btlichi automata

Let B be a Buichi-automaton over the alphabgt= X x {0, 1}. Itis the aim of this section to construct
a “small” automaton for the language

{(w,X) e X |V :z e X « (w,{z}) € LIB)}.

We show in Section 7.4 that this is useful to prove that a nigddV is PSPACE-effective. Indeed, if
we start with an automatoli,, 11 accepting the languagé/|r; then we obtain the automatahy, 11 as
defined in Definition 4.1.
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We first show how to construct a “small” automat6rfor the universallanguage of3 defined as
Ly(B) ={w € ¥ | Vz : (w,{z}) € L(B)}. The standard approach would use the definition of the
universal quantifie = —3—-. Hence, the number of states of the resulting autom@toould be doubly
exponential in that of5. Here, we will show that a single exponential suffices in gehe

We are also interested in an automafdior the universal language of the complemenBofZy (B) =
{w € ¥ | Vz : (w,{z}) ¢ L(B)}. The standard approach yields an automatamith exponentially
many states.

Moreover, we show that if the pebbiehas only little influence (in two related senses to be made
precise below) on the behavior Bf then we can build even smaller autométandC.

7.1. Complementation of Richi automata

We first revisit the complementation construction for Bileltomata in order to infer precise bounds on
the space complexity and the number of states obtained.

LetB = (Q,%,1,T, F, R) be a Buchi-automaton. Far € ¥* andp € Q, letp - w denote the set of
states; € Q with p = ¢ in B. Also, letP - w = {J,cpp-wfor P C Q.
Proposition 7.1. LetB = (Q, X%, I, T, F, R) be a Buchi-automaton such thatw| < m foranyw € ¥*.
Then, in spac®(m log |Q]), one can compute a Buchi-automatbaverX such thatZ (C) = X\ L(B).

Proof:

This complexity result can be obtained by a careful inspacbf several constructions for the com-
plement of Biichi automata. For finite runs, we simply usedhssical subset construction yielding a
deterministic automaton. By the hypothesis, each reaetrliiset contains at moststates from) and
therefore can be encoded withlog |@Q| bits. Hence, the subset construction can be carried outicesp
O(mlog|Q).

For infinite runs, our first proof was based on alternatingmatta following the constructions of
[10, 13]. More precisely, the non-depterministic BuchicamatonB yields immediately an alternating
co-Buchi-automatoi3; for the complement. By our hypothesis, the number of distitetes that appear
at a leveli in a run-tree of53; is bounded bym. Then, B; is transformed into an equivalent weak
alternating automatofi, [10]. The key point to obtain the complexity is that we cartniesto run-trees
of By such that the number of distinct states that appear at soreki lis also bounded byh. Then, the
translation of3; to a Biichi automatod [13] yields ]Q\O(m) many states and can be performed in space
O(mlog|Q).

Another possibility is to use Safra’s determinization d¢amsgtion as suggested by an anonymous
referee. Following the construction described, e.g., B @hap. I, Sec. 9], we obtain a deterministic
Rabin automato@; whose states are labeled trees. Here the key observatioat by our hypothesis,
the set of states that label the root of a tree is of size at mo#itfollows that the Safra-trees have at most
m nodes that can be choosen from alsetf size2m. ForX C @, letT'x be the set of Safra-trees labeled
X atthe root. Then, the set of Safra-tree€irs the union of alll’y with | X| < m. Next, following the
proof of [16, Chap. I, Prop. 10.4] we gifx| < (4m)?*™. The number of subset§ of Q with at most
m elements is bounded b§|™. Hence the number of Safra-treesCnis at mosiQ|™ - (4m)*™. The
space needed to store such Safra-trees is theréforelog |)|) and the construction af; can be done
in space0(mlog |Q]). We still have to complement the acceptance condition amaktoit into a Biichi
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condition. The Rabin automatd@h has2m pairs, one for each node from. The pair associated with
nodev € V claims thatv is marked infinitely often and that it is ultimately presemiil Safra-trees of
the run. To check the complement, we guess a sulbsetV and we check that ultimately only nodes
in U are marked and that each nodelinis infinitely often not present in the Safra-trees of the run.
This multiplies the number of states by + 1)2™*! and yields a Biichi automatahwhich can still be
constructed in spaa@(m log |Q)]). 0

7.2. Universal language and general variance

Now let B = (Q,X1,I,T, F, R) be a Buchi-automaton. We aim at a small Blichi-automaterthe
universal language of the complementf

Ly(B) = {w € =% | Va : (w,{z}) ¢ L(B)}
=YX\ {w e X® | Jz: (w,{z}) € L(B)}.

The standard approach first projects3ie® the languageC () restricted to the word$w, X') where
X is a singleton and then complements the resulting automatemce, the language in question can
be accepted by a Biichi-automaton wiep/°(2) many states. The following criterion on the Biichi-
automatons allows to avoid this exponential blow-up.

Thegeneral varianceof B, denotedGenVar(5), is the maximal size of a set

Iwu |J Iz}

0<z<|w|

for w € X*. In other words, it is the maximal number of states one cadhremadingw € >* indepen-
dently from the position of the pebble(and this pebble need not be placedumt all).

Proposition 7.2. Let B = (Q,X1,1,T, F, R) be a Buchi-automaton over the alphabkgtwith general
varianceGenVar(B) < m. Then one can construct a Buichi-automafowith £(C) = Ly(B) in space

O(mlog Q).

Proof:

Doubling the number of states if necessary, we can transism that it has no run on a wofd, X)) €
¥2° with | X| > 2 and it only accepts wordsv, X') € £9° whereX is a singleton. Note that the general
variance is not changed by this transformation.

Let B = (Q,%,1, T, F, R) be the projection of the automatdh to the alphabet:, i.e., 7" =
{(p,a,q) | (p,(a,0),q) € Tor(p,(a,1),q) € T}. We havel(B') = {w € £ | Tz : (w,{z}) €
L(B)}. SinceB does not allow any run on a wordv, X) with | X| > 2, the set/ - w in B’ equals
I (w,0) UlUp<yepw - (w, {z}) in the old automato, i.e., I - w contains at most: elements. Hence
the result follows from Proposition 7.1. O

7.3. Universal language and special variance

We still assume thaB = (Q,>;,1,7, F, R) is a Buchi-automaton. Here, we want to build a small
Buchi-automaton for the universal languagg ) = {w € X*° | Vx : (w, {z}) € L(B)} of B itself.



14 P. Gastin, D. Kuske / Uniform satisfiability for local tempblogics

Letw € X, u be a prefix ofw of lengths, andp € Q. ProvidedB is completep € I - (u, () U
Uo<w<ju I - (u,{z}) iff B can reactp afteri steps in some run ofw, {z}) for some positionz in
w. The setstates(B,w,i) C @ is defined analogously disregarding all non-successfus,rue.,p €
states(B,w, 1) iff B can reaclp afteri steps in somsuccessfutun on(w, {x}) for some positionz in
w. Thespecial varianceof B, denotedSpeVar(B), is the maximum of all valuegtates(B,w, )| for
w € X*° andi € N. Note that the special variance is always bounded by therglevariance.

Proposition 7.3. Let B = (Q,¥1,I,T, F, R) be a Buchi-automaton witipeVar(5) < m. Then, in
spaceO(mlog |Q]), one can compute a Blichi-automatdover such thatC(C) = Ly(B).

The proof of this proposition, that uses the following twmlaas, can be found on page 16.

For simplicity, we writeX(i) = ¥ x {i} for ¢ = 0,1 such thatZ; = ¥(0) U X(1). The canonical
projection fromX$° onto X*° is denotedr. Doubling the number of states #f if necessary, we can
assume that ifw, X) € L£(B) then X is a singleton. Hencef(B) C X(0)*X(1)X(0)>°. A word
w € X belongs toly(B) iff each wordv € ¥(0)*¥(1)X(0)* with 7(v) = w is accepted bys. To
acceptly(B), we first construct an alternating autométas follows

e The set of state§’ equalsQ W {B C Q | 0 < |B| <m}
e The initial condition is\/{J C I | 0 < |J| < m}

o F'=FU{p}andR = RU{BCQ|1<|B|<m}

Forp € Q anda € X, we havey (p,a) = \/{q €Q| (p,(a,0),q) €T}

ForA C Q with1 < |A] < manda € ¥, we set

§(A a) = \/{BQQHS |B| <mandV¥q € B, 3p€ A : (p,(a,0),q) € T}
A\/{aeQ|3peA:(p(a1),q) eT}

e Finally, fora € ¥ we seté(,a) = L.

This finishes the construction of the alternating autom#tos: (Q’,/, ¢, F', R').
Lemma7.1. Ly(B) C L(B)

Proof:
Let w = apajaz--- € Ly(B). We call a wordv € 3(0)*%X(1)X(0)> relevantif 7(v) = w. Since

w € Ly(B), any relevant word is accepted Byi.e., for any relevant word = byb1bs . . ., there exists a

b b : ,
successful rung - ¢¢ = ... of B onv. Using these runs, we define a successful run tré& of w:

e the set of nodes i = {u € X(0)* UX(0)*3(1)2(0)* | w(u) is a prefix ofw}.

e the set of edge#’ is given byE = {(u, ub) | ub € V andb € ¥ }.

!Similarly to our Biichi-automata that accept finite and iiéiwords, our (Biichi-)alternating automata have two sétsc-
cepting states, one for infinite runs and one for finite runs.
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e to define the labeling : V' — @', letu € V. First assume that € ¥(0)*3(1)X(0)*. Thenu can
be extended uniquely to some relevant wordRecall thatyg, ¢7 . . . is a successful run df onv.
We setp(u) = Q-

Now assume that € X(0)*. If ju| < |w| thenu can be extended to some relevant word, but
this time, the extension may not be unique. On the other hiid, = |w| thenw is not a prefix

of any relevant word. So lei(u) = {qr’u‘ | vis arelevant extension af}. In particular,p(u) is

a set of states that occur as state numbgm some successful run & on some(w, {x}) with

lu| <z < |w|. Hence, by the assumption @) the setp(u) contains at most: elements and is
therefore a state of the alternating automagén

We first prove that this is indeed a run tree. To this aimylet V' be an inner node with = |u| < |w|.
We have to show
{p(ub) |ube Vandb e X1} = §(p(u),ans1) . 1)

First consider the case € >(0)*X(1)X(0)*. Then, the unique successor ©fin the tree(V, E) is
v = wu(an,0). Letwv be the unique extension af to a relevant word. Since is also the unique
extension ofu to a relevant word, we havgu) = ¢, andp(u’) = ¢}, ;. Since the sequence of statgs
forms a run of3 on the wordv, this implies(p(u), (a,,0), p(u’)) € T. Hence (1) follows.

Next suppose: € X(0)* with |u| = n. Then the successors ofin the tree(V, E) are the words
uo = u (ap,0) € X(0)* andu; = u (an, 1) € £(0)*X(1). Then we have

p(u) = {q, | vis arelevant extension af}
p(uo) = {qy,1 | vis arelevant extension af }

Since any relevant extensierof v, is also a relevant extension of for all ¢ € p(ug) we findp € p(u)
such that(p, (a,,0),q) € T. Letwv be the unique relevant extensionof so thatg;, ,; = p(u1). As
above, since is also a relevant extension of we haveg,, € p(u) and(qy,, (an,1),q,,,) € T. Thus,
(1) follows.

It remains to be shown that the run tf@é E, p) is successful. Clearly, its roetis labeledp(e) C I
since all the successful runs on relevant words staft iBincep(s) € @', this impliesl < |p(e)] < m
and therefore(e) satisfies the initial condition d8’. Now consider a maximal branch (#, £'). Assume
first that all its nodes belong 8(0)*. If the branch is finite then its last labelflsc F’. If it is infinite
then all its labels belong toB C @ | 1 < |B| < m}. Hence the branch is accepting. Alternatively, there
exists a relevant word € ¥(0)*%(1)3(0)> such that the nodes of the branch are the finite prefixes of
v. Letn be the position of the letter frori(1) in v. The sequence of labels of the branch ends with
Qpi1, 9542, - - - - Since this is a suffix of a successful runarthe branch is accepting. 0

Lemma7.2. L(B') C Ly(B)

Proof:
Let(V, E, p) be a successful run tree of the alternating autom&ta@n the wordw = agajas - - - € X°.
Furthermore, let > 0 be some position iw. We have to prove that the relevant word

v = (aop,0) (a1,0) ... (an-1,0) (an,1) (an+1,0) (an+2,0)...

is accepted by the Buichi-automatBn
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Inductively, we construct a maximal brangh, z1, ... such that) # p(z;) C Q for0 < i < n and
p(x;) € @ for i > n. The noder is the root of the run treéV, E, p). Now suppose that;with i < |w|
has been chosen. Then

{p(x) € Q| (zi,2) € B} = ' (p(=i), i) - ()

Choosingr;1, we distinguish three cases.

1. Suppose < n. Because off # p(x;) C @ and (2), there exists anode,; € V with (z;,z,11) €
E andp(zit1) C {qg € Q| 3p € p(x;) : (p,(ai,0),q) € T}. Sincei + 1 < n < |w| the node
xi4+1 is not a leaf. Using (0, a,,) = L, we deduce that(x;;1) # 0.

2. Now supposé = n. Because of) # p(z;) C @ and (2), there exist a node_; € V with
(xi,xzi41) € F and a state € p(z;) such that the triplép, (a;, 1), p(xi1+1)) is a transition front".

3. Finally, suppose > n. Because op(z;) € @ and (2), there exists; 1 € V with (z;,z;+1) € E
and(p(wi)v (aiv 0)7 p(mi—i-l)) erT.

To obtain a successful run of the Biichi-automat®ron v, we first setq; = p(x;) for i > n.
By construction ofz,,11, there existsy, € p(x,) with (g5, (an,1),¢n+1) € T. Now, if i < n and
gi+1 € p(x;+1) has been chosen, there exigtsc p(x;) with (g¢;, (a;,0),¢;+1) € T by construction of
xi4+1. This defines a rugy, g1, ... of Bonw with ¢; € p(x;) fori < n andg; = p(z;) forn < i < |w|.
With ¢ = 0, we obtaingy € p(z) C I, i.e., the run starts in some initial state®f Since the maximal
branchzg, z1, x5 . .. is accepting and ultimately labelled by stateg)irthe run is successful as wellO

Proof of Proposition 7.3:

By Lemmas 7.1 and 7.2, (B) can be accepted by an alternating automaton with stat@’set Q W
{BCQ]|0<|B] <m}. Let(V,E,p) be some minimal (with respect to set inclusion) accepting
run tree of the alternating automatéti on w € X°°. Consider leveh in this run tree. First observe
that this level contains exactly one nodewith p(z) C Q. Now letz be some node on level with
p(x) € Q. Consider some maximal branch of the run tree that containss we saw in the proof of
Lemma 7.2,p(x) is state number. in some accepting run df on some relevant word. This shows
that the se{p(z) | = is some node on level of the run treé¢ equals{ B} U C for someB, C' C (@ with
|B|,|C| < m. For infinite runs, adopting the proof from [13], one can ¢amg an equivalent Bichi-
automatorC whose states consist of such sgis} U C together with ar{m + 1)-tuple of binary values
{0,1}. To store one element @), spacelog |Q| suffices, hence any state 6fcan be stored in space
O(mlog|Q|). For finite runs, the situation is even simpler since we doneeatd the(m + 1)-tuple of
binary values. O

7.4. Polynomial variance and PSPACE-effectiveness

Let B be a Biichi-automaton over the alphabigt As announced at the beginning of Section 7, we show
here how to construct a “small” automaton for the language

{(w,X) e X |V :z € X « (w,{z}) € LIB)}.

Since this property can be expressed in monadic second logley such an automatan exists, but its
number of states is in general doubly exponential. Usinghtiten of general and special variance, we
present two special cases where this increase can be avoided
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Lemma 7.3. Let B be a Buchi-automaton over the alphabitwith »n states and general variange
Then we can construct in spa€ém log n) a Buchi-automato@ over the alphabet; such that

LC)={(w,X)eX|Vx:ze X« (w,{x}) € L(B)}.

Proof:
There is a Bichi-automatadf; overX, with 2n + 1 states such that

L(B1) ={(w, X, {z}) e X |z € X — (w,{z}) € L(B)} .

The automaton checks whether, {z}) € £(B) and also whether the second set is a singleton (this
requires doubling the number of states®)fand goes into a new accepting state if the second set is not
contained in the first, otherwise, it acceptsSifaccepts(w, {z}). The general variance (and therefore
the special variance) of this automaton is at mast 1. By Proposition 7.3, we can construct in space
O(mlogn) a Blchi automato@; such thatC(C;) = Ly(By).

There is also a Buchi-automatd® with 2n states and general varianeesuch that

L(Bz) = {(w, X, {z}) € X5° [ & ¢ X N (w,{z}) € L(B)} -

By Proposition 7.2, we can construct in spa@émn logn) a Blichi automator®, such thatl(Cy) =
Ly(Bs) = {(w,X) € ° | Vo : o ¢ X — (w,{z}) ¢ L(B)}. Still in spaceO(mlogn) we can
construct the automatahaccepting the intersectiofi(C;) N £L(C2) = {(w, X) € £° |V 1z € X <
(w,{z}) € L(B)}. O

As a corollary, we obtain a sufficient condition based ongbeeralvariance to ensur@SPACE-
effectiveness of a modality.

Proposition 7.4. Let M be a modality of arityn. Assume that there existSPACE algorithm which,
given a finite set of processék computes a Buchi-automatdh; i1 with GenVar(Bys 1) € poly(|II])
accepting the language

‘C(BM,H) = {(w>X1> s >Xm> {CL'}) € Z‘%+1 | ([w]>X17 cee >Xm7 {1‘}) € [[M]]H} .
Then, the modality\/ is PSPACE-effective.

Proof:

Since the automatoi$,; 1 can be constructed by BSPACE algorithm, its number of states is in
2pely(I1) . We deduce from Lemma 7.3 that the automafapr; as defined in Definition 4.1 can be
constructed by an algorithm working in spa@¢GenVar (B 1) log (2P 1)) = poly(|TT)). O

In some cases, e.g. for the modalify,, we were not able to obtain a Buchi automafsgy r; with
generalvariance polynomial ifll|. In these cases, our proof BESPACE-effectiveness is based on the
special variance.

Lemma 7.4. Let B; and By be Biichi-automata over the alphal¥t such that(w, {z}) € L(B,) iff
(w,{z}) ¢ L(By) for all (w,{z}) € X° . If B; andB; have at most states and special variance at
mostm then we can construct in spaGém logn) a Buchi-automato® over the alphabet; such that

LEC)={(w,X)eX{°|Vx:xeX — (w,{z}) € L(B1)}.
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Proof:
As in the proof of Lemma 7.3 we can construct two Buchi-awttm8] and B over 3, with at most
2n + 1 states and special variance at mast- 1 such that

L(B) ={(w, X, {z}) € X5 |z € X — (w,{z}) € L(B1)}
L(By) = {(w, X {z}) € X5 [z ¢ X — (w, {2}) € L(By)}
={(w, X, {z}) €33 |2 ¢ X — (w,{z}) ¢ L(B1)}-
where the last equality holds by the hypothesidBprand ;.
By Proposition 7.3, we can construct in sp&den log n) two automata’; andC; such thatC(C;) =

Ly(B}) andL(C2) = Ly(BL). We conclude as in the proof of Lemma 7.3 since the desiragulage is
E(Cl) N E(Cg) O

As a corollary, we deduce another sufficient condition basedhe special variance to ensure
PSPACE-effectiveness of a modality.

Proposition 7.5. Let M be a modality of arityn. Assume that there exi®SSPACE algorithms which,
given a finite set of processé compute Biichi-automat&,, i1 and By, 1 with special variances in
poly(|II|) accepting the languages

LBr) ={(w,X1,..., Xm, {z}) e T | ([w], X1,.... X, {z}) € [M]u}
E(BMH) ={(w, X1,..., X, {2}) € Z51 | ([w], X1,..., X, {z}) & [M]n}.

Then, the modality\/ is PSPACE-effective.

Proof:

SinceBri andEMﬂ can both be constructed BSPACE algorithms, their number of states are in
2pely(T) " We deduce from Lemma 7.4 that the automafignr as defined in Definition 4.1 can be
constructed by an algorithm working in spgeely(|I1|). 0

8. Examples of PSPACE-effective modalities

The aim of this section is to show that all modalities desdilin Section 3 aré&SPACE-effective.
Throughout this section, ldil denote some finite set of processes and®ldie the set of nonempty
subsets ofI.

8.1. Derived modalities

As a preliminary, we indicate how to construct more invoh#PA CE-effective modalities from sim-
pler ones. This will be used repeatedly in the following ®ea. For instance, the modali¥, is derived
from the strict untilSU and the Boolean connectiveX;, ¢ = (—p) SU (p A ).

Let TL(B) be some local temporal logic. The settefmsof TL(B) is defined by the grammar

Tu=M(r,...,7)|p| X
——

arity (M)
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whereM ranges oveB, p over the infinite alphabe®, and X over the set variablegX, X, ... }. For
instance(—p) SU (p A X;) is aterm of TL(—, A, SU).

Recall that the semantics of a formula is a set of positions irace. Similarly, the semantics of
a termr with free variabledree(r) C {X1,..., Xy} is a set of positions in &-extended trace. Let
t = (V,=X,)\) be a trace over some set of procesBeand V7, ...,V C V be sets of positions. For
p € P, the semantics of the termis p:V1--Ve) = {v € V | p € A(v)}. Forl < i < k, we set
Xi(t’vl""’v’“) = V;. The induction then proceeds as in the case of formulas=fM (74, ..., 7,,) where
M € Bis of aritym > 0, then

TV Vi) = Ly e V| (t, 70V L BV Vi) (o)) € [M ).

Definition 8.1. Let TL(B) be some local temporal logic and l&f be somen-ary modality. Then\/
is aderived modalityif there exists a termr of TL(B) with m free variables such that for any finite set
of processe$l, we have

M = {(t, Vi, Vin, {v}) € Ryppr (D) | w € 7(BVEVim) )
If M is a derived modality, then we also say that it carekpressed with the modalities frabh

Proposition 8.1. Let TL(B) be somePSPACE-effective temporal logic and let/ be some derived
m-~ary modality. ThenV/ is PSPACE-effective.

Proof:

We use the notations from Section 4, adapted naturally frormdlas to terms. Let be the term

that defines the modality/. Then, the automatopd, from Section 4 can be constructed frdm

in PSPACE. Note that its alphabet i&,, = %,, x {0,1}5"P("), Then, by Lemma 4.1, a word

(w, V1, ..., Vi, V5 )o<s) is accepted by, iff, for any subterms of 7, we havel, = g([w}:VisVim),
Hence the projection of the automatai} to the alphabek,, x {0, 1} where we project away all com-
ponents associated with proper subterms ohn serve as automatdi; i from Definition 4.1. O

8.2. Universal modalities

This section is concerned with the strict universal uftil and its past version, the strict universal
sinceSS and with the modalities that can be derived from them. To #ms, we will construct au-
tomataBsy i1 andBss i1 whose general variances are polynomial in the sizH.oBoth these automata
are based on the following automatBn

Construction. The alphabet of the automatdhis >3 and B will accept a wordw, X, Y, Z) iff there
arei € X andk € Z with ¢ < k and such thaj € Y for all j with ¢ < j < k. Note here, that we have
two orders: the natural linear ordegron the positions of the word as well as the partial ordet of the
trace[w].

The set of states of the automat#his Q = {init, OK} w (2! x 2'), init is the unique ini-
tial state andOK is the only accepting state both for finite runs and for indmtins. We first de-
scribe intuitively the expected behaviour Bf Letw = ajay--- € X*°. Now, let (w, XY, Z) =
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(a1,21,91, 21) (a2, T2, Y2, 22) - - - € £3°. If there is a run

.. (a1,21,y1,21) (a2,22,y2,22)
mit = qo q1 q2...

of B then eithely,, = init for all n > 0 or with i = min{n > 0 | ¢,, # init} we havei € X and for all
n > i, if ¢, # OK theng,, = (A4,,, B,) with

Ay = Hajlizj<n} (3)
B, = | Haj |3/ ¢Y:i<j <j<n}. @)

Moreover, ifg, = OK for somen then withk = min{n > 0| ¢, = OK} we havei < k andk € Z and
jeYforali<j<k.
To this aim, a triple(p, (a, z, y, 2), q) is a transition iff one of the following conditions holds

p = init A ¢ = init
or p—init/\wzl/\q:(a,@)

or p=(A,B)AanA=0ANq=(A,B)

or p=(A,B)ANanA#0NanNB=0ANz=1Aq=0K

or p=(A,B)AanNA#0NanNnB=0ANz=0ANy=0Aq=(AUa,BUa)
or p=(A,B)AanNA#0NanNB=0ANz=0ANy=1Aq=(AUa,B)

or p=(A,B)AanNA#0OANanNB#0ANq=(AUa,BUa)

or p:OK/\q:OK.

Note that the non-determinism IBreduces to the choice of whether we leave the stdateor not when
we are in a position fronX (i.e., whenz = 1).

Lemma 8.1. The automator8 accepts a wordw, X, Y, Z) € £5° iff there existi € X andk € Z with
i < kandsuchthaj € Y foralli < j < k.

Proof:
We first show thaB3 satisfies the intuition described above. So we consider afrron (w, X,Y, Z) =

(a1,z1,y1, 21) (a2, T2, y2, 22) - - € X5

.. (a1,21,y1,21) (az2,22,y2,22)
mit = qp q1 qz ...

and we assume tha}, # init for somen > 0. Leti = min{n > 0 | ¢,, # init}. From the second line
of the definition of the transition relation we deduce that X andg; = (a;,0). Hence (3,4) holds for
n = i. Now, letn > i be such thag, # OK. Then we must haveg, 1 # OK and by induction we may
assume that (3,4) holds far— 1. We haveA,,_ Na,, # 0iff a; Na, # 0 for somei < j < niff i < n.
By definition of the transition relation, we havg, = A,,_{ if A,_1 Na, = 0 andA4, = A, 1 Ua,
otherwise. We deduce that (3) holds fer Now, if a,, N B,,_1 # () then we findj’ ¢ Y andj < n
such thatj’ < j anda, N a; # 0. We deduce that' < n andB,, = B,,_ U a,, satisfies (4). Similarly,
if y, = 0anda, N A4,_1 # 0 theni < j/ =n ¢ Y andB,, = B,,_1 U a, satisfies (4). Finally, if
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a, N B,—1 = ) then there is ng’ ¢ Y with i < j/ < n and if in additiony,, = 1 then there is no
j' ¢ Y withi < j* < n. We deduce that in this case (4) holds with = B,,_;. Moreover, assume that
¢n = OK for somen and letk = min{n > 0 | ¢,, = OK}. Sinceg; = (a;,?) we havek > i and (3,4)
holds forn = k — 1. By definition of the transition relation we havg = 1 anda; N Ax_1 # 0 and
ar, N B_1 = (. We deduce that € Z andi < kandj € Y foralli < j < k.

Now, assume thatw, X, Y, Z) is accepted by and consider an accepting run®fusing the same
notations as above. Since the run is accepting, it startaieisit and eventually loops on staf#. Let
1 andk be minimal withg; # init andq, = OK, resp. We have seen above that X,i < k, k € Z
andj € Yforalli < j < k.

Conversely, assume that there are X, k € Z with7 < kandj € Y foralli < j < k. Consider

the unique run

.. (a1,21,y1,21) (a2,22,y2,22)
mit = qo q1 qs ...

of B with ¢,, = init for all n < i andq; = (a;, (), which is indeed possible sinéec X. If ;1 = OK
then the run is accepting. So assume that; ## OK. Then, from the property of we haveg,_; =
(Ag_1,Br_1) and (3,4) holds forn = k£ — 1. Now, fromi < k we deduce that;, N A;_; # 0. Using
jeYforalli < j < kwe deduce that, N B,_1 = (). Sincek € Z the definition of the transition
function impliesq;, = OK. Therefore, the run is accepting. O

From the following lemma we will deduce that the generalamce of the two automatdsy i and
Bss 11 derived fromB is polynomial in|II|.

Lemma8.2. Letw = ajasy...a, andY C {1,...,n}. Then the set
{init - (w, X, v, 2) | X, Z C {1,...,n}}
contains at mos2 + |II|?(|II| + 1) many elements.

Proof:
Let X, Z C {1,2,...,n} and consider a run

.. (a1,x1,y1721) (a’!Lyx’!LnyMZ’!L)
mt=qgq ——>q1 - Gn-1——————qn-

Then, eithely, € {init, OK} or we havey, = (A(7), B(i)) with ¢ minimal such that; # init and

Ay =|Hajlizj<n} and B()=|Jf{a; |3 ¢Y:i<j 3j<n}.

Therefore, the set){init - (v, X,Y,Z2) | X,Z C {1,...,n}} is contained inH = {init, OK} U
{(A(i),B(3)) | 1 < ¢ < n}. Towards a contradiction, suppose the set in question areftre this
set H contains properly more thah+ |II|2(|II| + 1) states. Then there exit< ip < i1 < --- <
iz (m+1) < 7 such that the tuple§A(i;), B(i;)) are pairwise distinct. Since the positions on process
p are totally ordered for the causal orderirgthere are at leagt+ |I1|(|II| 4 1) positions totally ordered
for <. Therefore, after renaming if necessary, we can assumégthat; < --- < i (mj+1) < n. We
easily see that < ¢/ implies A(i) 2 A(¢"). Therefore, we obtain

A(ig) 2 A(i1) 2 -+ 2 A(fjmy(mi+1)) -
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Since all these are nonempty subsetdlofamong the remaining positions, there are at |¢a$t+ 2
positions with equal sets. Again, after renaming if neagssae can assume thag < i; < --- <
i\HH—l <n and

Alio) = A(i1) = -+ = Aijmm41) -

Finally, s < ¢ also impliesB(i) 2 B(i'). Therefore,
B(ig) 2 B(i1) 2 -+ 2 B(ijm41) -
We deduce that among these subsetd it least two are equal, which is a contradiction. O

We show now that the universal modalities 8%®PACE-effective. The strict universal untiU was
already defined in Section 3. Here we deal simultaneously itgtpast version, the strict universal since
SS whose semanticfSS]y; is defined by

{(V, 2,0 XY, {2}) eR3(Il) | Iy eY:y<zAVz:y<zx<z—xz€X}.
Proposition 8.2. The modalitiessS andSU arePSPACE-effective.

Proof:
We start with the strict universal since. Let, X,Y,{z}) € ¥5°. Then([w], X,Y,{z}) € [SS]n iff
the word(w, Y, X, {z}) is accepted bys. The automatoiBss 11 is thus the automatoi where the two
lines for X andY have been exchanged and which checks in addition that thé ised singleton. The
automaton3 can be constructed IRSPACE, hence also the automatdiys r;. The general variance
of Bss 11 is polynomial inII by Lemma 8.2. Hence the result follows from Proposition 7.4.

We turn now to the strict universal until. With the same riotag, we havé|w], X,Y,{z}) € [SU]u
iff the word (w, {z}, X,Y") is accepted bys. Hence, we can conclude as above. O

We have already seen that the Boolean connectiveB&iPd CE-effective, hence the temporal logic
TL(V,—,SU) is PSPACE-effective. Also, since the modaliti€sX andU can be expressed withU
we deduce that the logi@L(V, -, EX, U) is alsoPSPACE-effective. Similarly, the pure future pro-
cess based modalities, and U,, can be expressed withU, hence the process based temporal logic
TL(V, —, X,, U,) is PSPACE-effective.

The past versiongY, S, Y, andS, of EX, U, X, andU, can be expressed usii%$. Hence they
are alsdPSPACE-effective. Therefore, we can enhance BPACE-complete logics mentioned above
by past versions of their modalities. The uniform satisfigbproblem of the resulting logics is still in
PSPACE.

8.3. Modalities used inTrPTL

We show here that the modaliti€t, andl/, are alsa®SPACE-effective. Recall that these modalities are
neither pure future nor pure past. We will define non-deteistic automata with small special variances
in order to use Proposition 7.5.

Proposition 8.3. The modalityQ,, is PSPACE-effective.
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Proof:

We first define a non-deterministic automatdrwith 2!! as set of states, where all states exdepte
initial and () is the only accepting state. Even thoughis non-deterministic, it will have a unique ac-
cepting run on any woréw, {k}) € £5°. If we write (w, {k}) = (a1,y1)(a2,y2) ... then the accepting
run will be the sequenceA,,)o<,<|,| Such that

An=|J{aj In<j=k}. 5)

We haveatransitiomMA’ iff the following holds:
y=1NA=aNA =0
or y=0AanNA =0NA=A
or y=0ANanNA #A#ODNAUa=A.

We first show that the sequen¢4d,,),>o defined in (5) forms a successful run on, {k}). If n = k

(anyyn)
-— 5

then we havey,, = 1 andA,, = ) andA,,_; = a,, henceA,,_; A, is atransition ofd. If n > k

thenA,_; = A, = 0 andy,, = 0 hence agaim,,_; M A, is atransition ofd. If 0 < n < k then

yn = 0 and either,, N A,, = ) in which casen £ kandA,,_; = A, ora, N A, # 0 in which case

n < kandA, , = A, Ua,. In both cases we havé, ; <", A,
Conversely, letA,,),>o be a successful run od on (w,Y’). Letk = min{n | 4,, = 0}. We have
yr = 1l andA,_1 = ai hence (5) holds fok — 1. From the definition of the transition function, it is easy

to see thatd,, = () andy,, = 0 for all n > k hence (5) holds also for > k. Now, assume that (5) holds

for some0 < n < k. SinceA,,_1 LN A, is a transition, we havg,, = 0. Since (5) holds for. we

haven < kiff a, N A, # 0. Hence,A,,_y = A, Ua, if n < kandA,_, = A, otherwise. We deduce
that A, satisfies (5).
Now, we define the automatdfl = Bp, i1 over the alphabeX; whose first component will bel.

Its set of states i8!! x {0, 1,2} and the initial states arf@' \ {}}) x {0}. The only accepting state is

(6, 1). We have a transitiogd, q) "% (47, ¢/} if A %L A’is a transition of4 and

ifg=0A(pgaVvanA #£0)
fg=0ApcananA=0rz=1
ifg=0ApcananA'=0Ax=0

q ifqg#0.
We have seen above that there is only one successful runddirgh component. Moreover, the sec-
ond component of the automat@his deterministic once the first component of the run is fixeet L
(w, X, {k}) = (a1, z1,y1)(az, x2,y2) - - - € £3° and consider the unique rya,,, g, ),>o of B such that

the first component is successful. liet min{j | p € a; A j Z k} with the convention = oo if this
set is empty. Then, we can check that forrall 0,

N = O

0 ifn<i
gn=141 ifi<nAieX
2 ifi<nAig¢X.
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We deduce thaf(B) = {(w, X, {k}) | ([w], X, {k}) € [Op]n}. Moreover, if we change the accepting
states to{()} x {0, 2} then we obtain the complementary automalfs), i

Finally, we show thaSpeVar(B) < 2|II|(|II| + 1). Fix a word(w, X) andn € N and assume
towards a contradiction thattates(B, (w, X),n)| > 2|II|(|II| + 1). For eachk > 0, let (A, (k), gn(k))
be the state reached on the successful ruB @i (w, X, {k}). Note that in a successful run &f,
the valueg = 2 cannot occur. Then we finkh < k1 < --- < kjj(mj+1) such that the setd,, (k;)
are pairwise distinct and the valugs(k;) are all equal. Since the positions on a procgsse totally
ordered for the causal ordering there are at leastl| + 2 among these positions totally ordered for
Therefore, after renaming if necessary, we can assumeighatk; < --- < k‘mﬂ. We deduce that
An(ko) € Ap(k1) € -+ € An(kj41) Which contradicts the fact that these sets are pairwisendist
The same arguments yield the analogous result for the atmorﬁ@p,n.

Using Proposition 7.5 we deduce i@y is PSPACE-effective. O

Next, we turn to the modality/,. Recall thatp U4, ¢» means that we have until ¢» on the sequence
of vertices located on procegsand starting from the last vertex of proceswhich is in the past of the
current vertex if it exists and starting from the first vert&@xXprocessp which is not in the past of the
current vertex otherwise. To deal with, we introduce another unary modali€y,. Intuitively, O, ¢
means thap holds at the last vertex on procgsghich is in the past of the current vertex (and that this
vertex exists). Formally, its semantics is defined by

[O)]n = {(V. =, A X, {y}) € Ro(IT) | 3z € X :
pEXNz)NT S YAVz: (z 22 ApEN2)) = 2=y}.

Then, we havep U, v = O, (¢ Uy 1) V (=0, T A Op(¢ U, 9)). Recall from Section 8.2 that,, is
PSPACE-effective since it can be expressed witti. Hence, it remains to show théz‘j’g is PSPACE-
effective. The proof is almost the same as the one of Proposit 3 for the modality®,. The only
difference is in the definition of the transition relation fbe second component. We replace the defini-
tion by:

ifg=0A(pda\AVanA =0)
fg=0Apea\A NanNA #DANz=1
fg=0Apea\A NanNA #DNz=0

if g #0.

RN = O

8.4. The modalityEco

We can show that the modalitigco is PSPACE-effective using an idea similar to the one used for
O,. Indeed, let(w, X, {y}) € X5° and letz > 0 be any position. Thanks to the non-deterministic
automatonA from the proof of Proposition 8.3 we can check whethet y. It is also easy to construct
a deterministic automatad’ which allows to check whether < 2. It suffices to compute, after reading
the prefix of lengthn of (w, X, {y}) the setd], = (J{a; | y = j < n}. Using these two automata
and.A’ it is easy to check whethéfw], X, {y}) € [Eco]n. Thus, we get the automaBi , i1 andBeco 11
and we can show as in the previous proofs that their spedai@nee is inpoly(|II]).
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8.5. Path modalities

In this section, we show that the remaining modalities fréwa temporal logic for causalitf'L.C are
PSPACE-effective. The proof is based on Proposition 7.gaiticular on the notion of general variance.
Since the modalitieBU, ES andEG claim the existence of a path for the causal successoraelati
we need to know what are the positions that are covered by datew Letw = ajas--- € ¥*° and
let i, n be positions inw. Then,i < n iff for some proces® € a; N a,, we havea; N a, = @ for all

1<j<n.

This motivates the definition of the following determintsutomatond. The set of states i§, =
(211 x 2N and the initial state isit; = (0,0),ern. We first specify the expected behavior.4f For
each wordw = a; ... a, € X%, there is a unique rumit; ~ (A5, Bh),<r1 where for each procegs if
{j <n|p€aj}=0then(A}, BY) = (0,0) and otherwise, with = max{j < n | p € a;}, we have

A =|Ja;lizj<n} and B =|J{a;i<j<n}. (6)
To achieve this goal, we define transitio$”, B?),cr1 — (AP, B'P), e if for all p € T we have

(a,0) ifpea
(AP B'?) = ¢ (AP, BP) if an AP =0
(AP Ua,BPUa) otherwise.

Note that the number of states dfis in 2P°27(I11) and that we can compute the transition function4of
in spacepoly(|II]).

We show by induction that the specificationfs satisfied. Assume thate a,,. Then, by definition
of the transition function, we haw), = a,, andB} = (). Since in this case = max{i < n | p € a;} we
deduce that (6) holds. Assume now that a,. If p ¢ (J{a; | j <n—1}thenalsp ¢ J{a; | j < n}
and we get A}, BY) = (AP |, B _|) = (0,0) as desired. Otherwisé=max{j <n—1|pe A;} =
max{j < n |p € A;}. If an A?_, = () then using the inductive hypothesis, we deduce th#tn.
Therefore, (6) holds witi A%, BY) = (AP |, B ). Onthe other hand, it N A? | # () theni < n
and we also obtain (6) withA%, Bh) = (A? | Uay,, B | Uay,).

As explained above, the automatghis important since it allows us to know which positions are
covered by a new letter, i.e., when a new letigarrives, which are the positioris< n such that < n.
This is the case iff there existse a; N a,, such thap ¢ a; forall i < j < nanda, N BY_, = (. Note
that we only use the sefs? to check this property, while the se# are used to define the transitions of

the automatom.

Lemma 8.3. There is aPSPACE algorithm which, given a finite set of process&scomputes a Bichi-
automator3 that accepts a worflv, X, Y, Z) € X5° iff there exists a patly < - - - < i, in [w] such that
£>0,iy€ X,ip € Zandiy,ig,...,ig_1 €Y.

Moreover, ifinit is the initial state of3 then for eachwv € >*, we have

‘U{init (w, X,Y,Z) | X, Y, Z C{1,..., [w|}}| < || +2.

Proof:
The automators has two components. The first onedsand the set of states of the second component
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is Q2 = {inity, OK} W II. The initial state of5 is init = (init;, inity) and the accepting states are

F = Q; x {OK}. There is a transitiofi( A7, B?),cr1, ¢) 2227 (A, B'") e, ¢') if in A we have
the transition( A, BP),cr1 % (AP, B'P),e11 and one of the following holds

q = inity A ¢’ = inity
or g=initaAz=1A¢ €a
or g¢angd =q
or g€ahanBi=0Ay=1A¢ €a
or g€alhanBli=0Az=1Aq¢ =0K
or ¢=0KAq¢ =0K.

Let (w, X,Y,Z) = (a1,21,y1, 21) (a2, T2, y2, 22) - - - € £5°. Assume that we have a path~< --- < iy
in [w] such that’ > 0, ig € X, i1,i2,...,9¢-1 € Y,andi; € Z. Thenz;, = 1,y;, = 1for0 < j </,
andz;, = 1. Let (A}, BY),ei be the state reached by after reading the prefix of of lengthn. For
0 <j < ¢, we havei; <i;,1. Hence we findy;; € a;; Na;,,, such thay;; ¢ a, foralli; <n <ijy

anda,-jHﬂBf;il_1 = (0. Now, letg,, = inits forn < ig, ¢, = qi; fori; <n <i;with0 < j < ¢, and
¢n = OK for n > i,. We can easily check that the sequefcé), BY) e, q0), (A}, BY)pert, q1), - - -
defines an accepting run Bfon the word(w, X, Y, 7).

Conversely, assume théw, X,Y,Z) € L(B). Let ((A5, BY)perm, qo), (A}, BY)per, q1), ... be
an accepting run oB on (w, X,Y,Z) = (a1,z1,y1,21)(a2,x2,y2,22) - -+ € X5°. Since the run is
acceptingyo = inity andg,, = OK for all but finitely manyn.

We construct inductively a sequengg < --- < iy such thatip € X andi, e YU Zif £ > 0
andi; € Y for0 < i < fandg;; € a;; Na;, for 0 < j < £. To start the induction, we lep
be minimal withg;, # inits. Then, from the transition relation, we dedugec X andgq;, € a;,.
Now, assume we have already constructed a sequienceé, ~< --- < i, with the above property. If
iy € Z, then the construction stops. Otherwise, we claim thatc a;,. This is clearly the case if
¢ = 0. So assume that > 0. For0 < j < ¢, we havey;;, € a;; Na;;,, andi; < i;41. Hence, for
iy <n <iji1, we haveg;, ¢ a, andg, = qi;. In particular,g;,—1 = ¢i,_, € a;, and sincej, ¢ Z we
haveg;, # OK andg;, € a;, by definition of the transitions, which concludes the probbor claim.
Now, letiy; = min{n > i, | ¢;, € a,} (this is well-defined since otherwise the run would stay\ere
in stateg;, # OK and would not be successful). Thys, € a;, N a;,,, andg;, ¢ a, fori; <n < ip.
The definition of the transitions also implies thiat; N Bfgl_l = (P andiyy 1 € Y U Z. We deduce that
iy < igr1 and we have extended the sequence. Finally, the run beimgssfal, we eventually reach a
stateg,, = OK and the sequence cannot be extended forever. Thereforeentially geti, € Z which
implies the existence of a path as required.

The last property oB3 is trivial to check. Indeed, the first component®fi.e., the deterministic
automaton4, only depends on the word € > and not on the set¥, Y, Z. The second component
can take at mogilI| + 2 values.

Finally, givenII, the automato8 can be constructed RSPACE. O
Proposition 8.4. The modalitie€U andES arePSPACE-effective.

Proof:
Let (w, X,Y, {z}) € ¥° and letB be the automaton from Lemma 8.3. Then
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o ([w],X,Y,{z}) € [EU]n iff z € Y orthe word(w, {2}, X,Y") € L(B).
o ([w],X,Y,{z}) € [ES]n iff z € Y or the word(w, Y, X, {z}) € L(B).

The necessary changesiAacan be done in polynomial space and the general variancég oésulting
automata are ipoly(|II|). Hence the result follows from Proposition 7.4. 0

Proposition 8.5. The modalityEG is PSPACE-effective.

Proof:

First, note thaEG ¢ = EG(¢ A EXT) V (¢ EU(p A =EXT)). The first conjunct claims the existence
of an infinite <-path satisfyingp while the second conjunct claims the existence of a finiteraaximal
~-path satisfyings. We have already seen thalt) andEX are PSPACE-effective hence it remains to
deal WithEG(p A EXT).

The construction parallels that from the proof of Lemma 8I8e main difference is that the ac-
ceptance conditions is nhow some flag-construction checlkingthe path is indeed infinite. The new
automatonB has two components. The first onedsand the set of states of the second component is
Q2 = ({inite } WII) x {0,1}. The initial state of3 is init = (init, init, 0) and the accepting states are
F=0Q xIIx{1}.

There is inB a transition((A?, BP)pcr1, ¢, €) ON (AP, B"?)pemr, ¢, €') if in A we have the
transition( AP, BP),er1 = (AP, B'P),<r1 and one of the following hold

g=initg Ay =0A¢ =initag Ae’ =0 (7
or g=initoAz=1Ay=1A¢ cane =1 (8)
or g¢alNy=0Aq =qAre =0 9)
or gcarnanBi=PDrz=1Ay=0Aq¢ cane =1. (10)

Let (w, X,Y) € L(B). Then,Y = {ip} is a singleton. Let;, s, ... be the positions where a transition
of the form (10) is taken. As in the proof of Lemma 8.3 we carwslimatiy < i; < i2... and that
i; € X for all these positions. Now, the run being successful, itgfiyy many transitions of type (10) are
taken and the path is infinite.

Conversely, le{w, X, {io}) € X4 be such that there exists an infinite path~ i; < ia... with
i; € X forall j > 0. As in the proof of Lemma 8.3 we can build an accepting path for (w, X, {i¢})
where transition (8) is taken at positigmnand transitions (10) are taken at the positionsg., . . .

Finally, the general variance #fis at most(|II| + 1). Hence, we deduce from Proposition 7.4 that
the modalityEG(p A EX T) is PSPACE-effective. O
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