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Abstract. Asynchronous automata are parallel compositions of finite-
state processes synchronizing over shared variables. A deep theorem due
to Zielonka says that every regular trace language can be represented by
a deterministic asynchronous automaton. In this paper we improve the
construction, in that the size of the obtained asynchronous automaton
is polynomial in the size of a given DFA and simply exponential in the
number of processes. We show that our construction is optimal within the
class of automata produced by Zielonka-type constructions. In particular,
we provide the first non trivial lower bound on the size of asynchronous
automata.

1 Introduction

Zielonka’s asynchronous automata [15] is probably one of the simplest, and yet
rich, models of distributed computation. This model has a solid theoretical foun-
dation based on the theory of Mazurkiewicz traces [9,4]. The key property of
asynchronous automata, known as Zielonka’s theorem, is that every regular trace
language can be represented by a deterministic asynchronous automaton [15].
This result is one of the central results on distributed systems and has been
applied in many contexts. Its complex proof has been revisited on numerous oc-
casions (see e.g. [2,3,12,13,6] for a selection of such papers). In particular some
significant complexity gains have been achieved since the original construction.
This paper provides yet another such improvement, and moreover it shows that
the presented construction is in some sense optimal.

The asynchronous automata model is basically a parallel composition of
finite-state processes synchronizing over shared (state) variables. Zielonka’s the-
orem has many interpretations, here we would like to consider it as a result
about distributed synthesis: it gives a method to construct a deterministic asyn-
chronous automaton from a given sequential one and a distribution of the actions
over the set of processes. We remark that in this context it is essential that the
construction gives a deterministic asynchronous automaton: for a controller it is
the behaviour and not language acceptance that is important. The result has ap-
plications beyond the asynchronous automata model, for example it can be used
to synthesize communicating automata with bounded communication channels
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[11,7] or existentially-bounded channels [5]. Despite these achievements, from
the point of view of applications, the biggest problem of constructions of asyn-
chronous automata is considered to be their high complexity. The best construc-
tions give either automata of size doubly exponential in the number of processes,
or exponential in the size of the sequential automaton.

This paper proposes an improved construction of deterministic asynchronous
automata. It offers the first algorithm that gives an automaton of size polyno-
mial in the size of the sequential automaton and exponential in the number of
processes. We show that this is optimal for Zielonka-type constructions. Namely
constructions where each component has complete information about his history.
For this we introduce the notion of locally rejecting asynchronous automaton
and remark that all Zielonka-type constructions produce this kind of automata.
To be locally rejecting means that a process should reject as soon as its history
tells him that no more accepting extension exists. We believe that a locally re-
jecting behavior is quite desirable for applications, such as monitoring or control.
We show that when transforming a deterministic word automaton to a deter-
ministic locally rejecting automaton, the exponential blow-up in the number of
components is unavoidable. Thus, to improve our construction one would need
to construct automata that are not locally rejecting. However no general tools
for doing this are available at present.

For the upper bound we start from a deterministic (I-diamond) word au-
tomaton. We think that this is the best point of departure for a study of the
complexity of constructing asynchronous automata: considering non determin-
istic automata would introduce costs related to determinization. The size of the
deterministic asynchronous automaton obtained is measured as the sum of the
sizes of the local states sets. It means that we do not take global accepting states
into account. We think that this is reasonable as it is hardly practical to list these
states explicitly. From a deterministic I-diamond automaton A and a distributed
alphabet with process set P, we construct a deterministic asynchronous automa-
ton of size 22·|P|4 · |A||P|2 . We believe that this complexity, although exponential
in the number of processes, is interesting in practice. If we want to implement
such a device then it will need memory of size logarithmic in |A| and polynomial
in |P|. We also show that computing the next state on-the-fly can be done in
time polynomial in both |A| and |P|.

Related work. Besides the general constructions of Zielonka type, there are
a couple of different constructions, however they either apply to subclasses of
regular trace languages, or they produce non deterministic automata (or both).
The first category includes [10,3], that provide deterministic asynchronous cel-
lular automata from a given trace homomorphism in case that the dependence
alphabet is acyclic and chordal, respectively. These constructions are quite sim-
ple and only polynomial in the size of the monoid (thus still exponential in the
size of a DFA). In the second category we find [16], who gives an inductive con-
struction for non deterministic, deadlock-free asynchronous cellular automata.
(A deadlock-free variant of Zielonka’s construction was proposed in [14]). The
paper [1] proposes a construction of asynchronous automata of size exponential
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only in the number of processes (and polynomial in |A|) as our construction, but
it yields non deterministic asynchronous automata (inappropriate for monitoring
or control). Notice that while asynchronous automata can be determinized, there
are cases where the blow-up is doubly exponential in the number of processes [8].

2 Preliminaries

We fix a finite set P of processes and a finite alphabet Σ. Each letter a ∈ Σ is an
action associated with the set of processes dom(a) ⊆ P involved in its execution.
A pair (Σ,dom) is called distributed alphabet. A deterministic automaton over
the alphabet Σ is a tuple A = 〈Q,Σ,∆, q0, F 〉 with a finite set of states Q, a set
of final states F , an initial state q0 and a transition function ∆ : Q × Σ → Q.
As usual we extend ∆ to words in Σ∗. We use L(A) to denote the language
accepted by A. The automaton accepts w ∈ Σ∗ if ∆(q0, w) ∈ F . The size |A| of
A is the number of its states.

Concurrent systems with shared actions given by a distributed alphabet
(Σ,dom), are readily modeled by Mazurkiewicz traces [9]. The idea is that
the distribution of the alphabet defines an independence relation among actions
I ⊆ Σ×Σ, by setting (a, b) ∈ I if and only if dom(a)∩dom(b) = ∅. We call (Σ, I)
an independence alphabet. The independence relation induces a congruence ∼ on
Σ∗ by setting u ∼ v if there exist words u1, . . . , un ∈ Σ∗ with u1 = u, un = v
and such that for every i < n we have ui = xaby, ui+1 = xbay for some x, y ∈ Σ∗
and (a, b) ∈ I. An ∼-equivalence class is simply called a (Mazurkiewicz) trace.
We denote by [u] the trace associated with the word u ∈ Σ∗ (for simplicity we
do not refer to I, neither in ∼ nor in [u], as the independence alphabet is fixed).
Trace prefixes and trace factors are defined as usual, with [p] a trace prefix (trace
factor, resp.) of [u] if p is a word prefix (word factor, resp.) of some v ∼ u. For
two prefixes T1, T2 of T , we let T1 ∪ T2 denote the smallest prefix T ′ of T such
that Ti ≤ T ′ for i = 1, 2.

For several purposes it is convenient to represent traces by (labeled) pomsets.
Formally, a trace T = [a1 · · · an] (ai ∈ Σ for all i) corresponds to a labeled pomset
(E, λ,≤) defined as follows: E = {e1, . . . , en} is a set of events (or nodes), one
for each position in T . Event ei is labeled by λ(ei) = ai, for each i. The relation
≤ is the least partial order on E with ei ≤ ej whenever (ai, aj) ∈ D and i ≤ j. In
Figure 1 we give an example for the pomset of a trace T , depicted by its Hasse
diagram. A total order e1 · · · en that is compatible with ≤ is called a linearization
of T .

An automaton A is called I-diamond if for all (a, b) ∈ I, and s a state of A:
∆(s, ab) = ∆(s, ba). Note that the I-diamond property implies that the language
of A is I-closed : that is, u ∈ L(A) if and only if v ∈ L(A) for every u ∼ v. This
permits us to write ∆(s, T ) where T is a trace, to denote the state reached by A
from s on some linearization of T . Languages of I-diamond automata is called
regular trace languages.

Definition 1. A deterministic asynchronous automaton over the distributed al-
phabet (Σ, dom) is a tuple B = 〈(Sp)p∈P , (δa)a∈Σ , s0,Acc〉 where:
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Fig. 1. The pomset associated with the trace T = [c b a d c b a d b], with dom(a) =
{p, q}, dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}.

– Sp is the finite set of local states of a process p ∈ P,
– δa :

∏
q∈dom(a) Sq →

∏
q∈dom(a) Sq is the local transition function associated

with an action a ∈ Σ,
– s0 ∈

∏
p∈P Sp is the global initial state,

– Acc ⊆
∏
p∈P Sp is a set of global accepting states.

We call
∏
p∈P Sp the set of global states (whereas Sp is the set of p-local

states). In this paper the size of an asynchronous automaton B is the total
number of local states

∑
p∈P |Sp|. This definition is very conservative, as one

may want to count also Acc or the transition functions (which can be exponential
in |B|). We will see that our construction allows to compute both Acc and the
transition functions in polynomial time.

With the asynchronous automaton B one can associate a global automaton
AB = 〈Q,Σ,∆, q0,Acc〉 where:

– The set of states is the set of global states Q =
∏
p∈P Sp of B, the initial

and the accepting states are as in B.
– The transition function ∆ : Q×Σ → Q is defined by ∆(s, a) = (s′p)p∈P with

(s′p)p∈dom(a) = δa((sp)p∈dom(a)) and s′p = sp, for every p /∈ dom(a).

Clearly AB is a finite deterministic automaton with the I-diamond property.

Definition 2. The language of an asynchronous automaton B is the language
of the associated global automaton AB.

We conclude this section by introducing some notions that are basic ingredi-
ents of the common constructions of asynchronous automata. For a trace T , we
denote by dom(T ) =

⋃
e∈T dom(λ(e)) the set of processes occurring in T . For a

process p ∈ P, we denote by prefp(T ) the minimal trace prefix of T containing
all events of T on process p. Hence, prefp(T ) has a unique maximal event that
is the last (most recent) event of T on process p. This maximal event is denoted
as lastp(T ). Intuitively, prefp(T ) corresponds to the history of process p after
executing T . We extend this notation to a set of processes P ⊆ P and denote by
prefP (T ) the minimal trace prefix containing all events of T on processes from
P . For example, in Figure 1 we have prefp(T ) = [cbadcba] and lastp(T ) is the
second a of the pomset.
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3 Zielonka-type constructions: state of the art

All general constructions of deterministic asynchronous automata basically fol-
low the main ideas of the original construction of Zielonka [15]. These con-
structions start with a regular, I-closed word language, that is given either by a
homomorphism to a finite monoid, or by an I-diamond automaton. In most appli-
cations we are interested in the second case, where we start with a (possibly non
deterministic) automaton. The general constructions yield either asynchronous
automata as defined in the previous section, or asynchronous cellular automata,
that correspond to a concurrent-read-owner-write model.

Theorem 1. [15] Let A be an I-diamond automaton over the independence
alphabet (Σ, I). A deterministic asynchronous automaton B can be effectively
constructed with L(A) = L(B).

We now review the constructions of [2,12,6] and recall their complexities. It
is well known that determinization of word automata requires an exponential
blow-up, hence the complexity of going from a non deterministic I-diamond au-
tomaton A to a deterministic asynchronous automaton is at least exponential
in |A|. In that case, [6] gives an optimal construction in that it is simply expo-
nential. Since determinization has little to do with concurrency, we assume from
now on that A is a deterministic automaton.

– [2] introduces asynchronous mappings and constructs asynchronous cellular
automata of size |Σ||Σ|2 · |A|2|Σ| .

– [12] constructs asynchronous automata of size |P||P2| · |A||A|·2|P| .
– [6] introduces zone decompositions and constructs asynchronous automata

of size 23|P3| · |A||A|·|P|2 .

Comparing our present construction with previous ones, we obtain asyn-
chronous automata of size 22|P|4 · |A||P|2 . In all these constructions, the obtained
automata are such that every process knows the state reached by A on its his-
tory. We abstract this property below, and show in the following section that
our construction is optimal in this case.

Definition 3. A deterministic asynchronous automaton B is called locally re-
jecting if for every process p, there is a set Rp ⊆ Sp such that for every trace
T :

prefp(T ) /∈ pref(L(B)) iff the p-local state reached by B on T is in Rp.

Notice that Rp is a trap: if B reaches Rp on trace T , then so it does on every
extension of T ≤ T ′. Obviously, no accepting global state of B has a component
in Rp. For these reasons we call states of Rp rejecting.

Let us justify the interest in locally rejecting automata by an observation that
all general constructions [15,2,3,13,12,6] of deterministic asynchronous automata
produce such automata. Let us assume thatA is a (possibly non deterministic) I-
diamond automaton, and B a deterministic asynchronous automaton produced
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by one of the constructions in [15,13,12,6] (a similar statement applies to the
asynchronous cellular automata in [2,3]). Then the local p-state sp reached by
B after processing the trace T determines the set of states reached by A on
prefp(T ), for every process p. Thus, if no state in this set can reach a final state
of A, then we put sp in Rp. This makes B locally rejecting.

4 An exponential lower bound

In this section we present our lower bound result. We show that transforming
an I-diamond deterministic automaton into a locally rejecting asynchronous au-
tomaton may induce an exponential blow-up in the number of processes. For this
we define a family of languages Pathn, such that the minimal sequential automa-
ton for Pathn has size O(n2) but every locally rejecting automaton recognizing
Pathn is of size at least 2n/4.

Let P = {1, . . . , n} be the set of processes. The letters of our alphabet are
pairs of processes, two letters are dependent if they have a process in common.
Formally, the distributed alphabet is Σ =

(P
2

)
with dom({p, q}) = {p, q}.

The language Pathn is the set of traces [x1 · · ·xk] such that every two con-
secutive letters have a process in common: xi ∩ xi+1 6= ∅ for i = 1, . . . , k − 1.
Observe that a deterministic sequential automaton recognizing this language
simply needs to remember the last letter it has read. So it has less than |P|2
states.

Theorem 2. Every locally rejecting asynchronous automaton recognizing Pathn
is of size at least 2n/4.

Proof. Take a locally rejecting automaton recognizing Pathn. Without loss of
generality we suppose that n = 4k. To get a contradiction we suppose that
process n of this automaton has less than 2k (local) states.

We define for every integer 0 ≤ m < k two traces: am = {4m, 4m+ 1}{4m+
1, 4m+2}{4m+2, 4m+4} and bm = {4m, 4m+1}{4m, 4m+3}{4m+3, 4m+4}.
To get some intuition, the reader may depict traces a0 and b0 and see that both
a0 and b0 form a path from process 0 to process 4, the difference is that trace
a0 goes through process 2 while trace b0 goes through process 3.

Consider the language L defined by the regular expression (a0 + b0)(a1 +
b1) · · · (ak−1 + bk−1). Clearly, language L is included in Pathn and contains 2k =
2n/4 different traces. As we have assumed that process n has less than 2k states,
there are two different traces t1, t2 from L such that process n is in the same
state after t1 and t2. For simplicity of presentation we assume that t1 and t2
differ on the first factor: t1 starts with a0, and t2 with b0.

We can remark that processes 0 and n are in the same state after reading
t1{0, 3} and t2. For process 0 it is clear as in both traces it sees the same trace
{0, 1}{0, 3}. By our hypothesis, process n is in the same local state after traces
t1 and t2, therefore also after traces t1{0, 3} and t2.

Consider now the state sn reached by n after reading t2{0, n}. Since t2{0, n} ∈
Pathn, we have sn /∈ Rn. By the above, the same state sn is also reached after
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reading t1{0, 3}{0, n}. Trace t1 starts with a0 = {0, 1}{1, 2}{2, 4} and continues
with processes whose numbers are greater than 4, so {0, 3} commutes with all
letters of t1 except {0, 1}. Hence t1{0, 3} 6∈ pref(Pathn). Since trace t1 ends
with an action of process n, we have prefn(t1{0, 3}{0, n}) = t1{0, 3}{0, n} /∈
pref(Pathn). Since we have assumed that the automaton is locally rejecting,
sn ∈ Rn. A contradiction. 2

5 A matching upper bound

Our goal is to modify the construction from [6] in order to make it polynomial
with respect to the size of the sequential automaton. We give an overview of
the new construction, first describing the objects the asynchronous automaton
manipulates. Some details of the mechanics of the automaton will follow (a more
detailed presentation can be found in the appendix).

We fix a set of processes P and a distributed alphabet (Σ,dom). Let A =
〈Q,Σ,∆, q0, F 〉 be a deterministic I-diamond automaton. A candidate for an
equivalent asynchronous automaton B = 〈(Sp)p∈P , (δa)a∈Σ , s0,Acc〉 has a set of
states for each process and a local transition function. The goal is to make B
calculate the state reached by A after reading a linearization of a trace T . Let us
examine how B can accomplish this task. After reading a trace T the local state
of a component p of B depends only on prefp(T ). Hence, B can try to calculate
the state reached by A after reading (some linearization of ) prefp(T ). When a
next action, say a, is executed, processes in dom(a) can see each others’ states
and make the changes accordingly. Intuitively, this means that these processes
can now compose their information in order to calculate the state reached by
A on T ′ = prefdom(a)(T ) a. To do so they will need some information about the
structure of the trace.

As usual, the tricky part of this process is to reconstruct the common view
of prefdom(a)(T ) from separate views of each process: prefp(T ) for p ∈ dom(a).
For the sake of example suppose that dom(a) = {p, q, r}, and we know the states
reached by A after reading prefp(T ), prefq(T ), and prefr(T ). We would like to
know the state of A after reading pref{p,q,r}(T ). This would be possible if we
could compute contributions of prefq(T ) \ prefp(T ) and prefr(T ) \ pref{p,q}(T ).
The automaton B should be able to do this by looking at sp, sq, and sr, only.
This remark points out the challenge of the construction: find the type infor-
mation that allows to deduce the behaviour of A, and that at the same time is
updatable by an asynchronous automaton, see e.g. [13]. As in all general Zielonka
constructions, we use the fact that e.g. prefr(T )∩pref{p,q}(T ) is uniquely deter-
mined by last(prefr(T )) ∩ last(pref{p,q}(T )) ([15], see also [13]). By last(U) we
denote the set of events {lastp(U) | p ∈ P}.

5.1 General structure

Before introducing formal definitions it may be worth to say what is the general
structure of the states of the automaton B. Every local state will be a triple
(ts, ZO,∆), where
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– ts will be a time stamping information as in all general constructions of
asynchronous automata;

– ZO will be a zone order, a bounded size partial order on a partition of the
trace;

– ∆ will be state information, recording the behavior of A on the partition
given by ZO.

Roughly, we will use time stamping to compute zone orders, and zone orders
to compute state information. The latter provides all the necessary information
about the behaviour of A on (a linearization of) the trace.

Timestamping: The goal of the time stamping function [15] is to determine
for a set of processes P and a process q the set last(prefP (T )) ∩ last(prefq(T )).
This set uniquely determines the intersection of prefP (T ) and prefq(T ) (for
details see e.g. [13]). Computing such intersections is essential when compos-
ing information about prefp(T ) for every p ∈ dom(a) to information about
prefdom(a)(T ). The main point is that there exists a deterministic asynchronous
automaton that can accomplish this task (for a formal description see the ap-
pendix). Each of its local states can be described with O(|P|2 log(|P|) bits.

For instance, if a new b is executed after T = [cbadcbad] in Figure 2, processes
q, r determine that the intersection of their last-sets consists of the second b.
Indeed, last(prefq(T )) is made of the second a (for lastp = lastq) and the second
b (for lastr). Also, last(prefr(T )) is made of the second d (for lastr), the second
b (for lastq) and the first a (for lastp).

Zone orders: Recall that one of our objectives is to calculate, for every
p ∈ P, the state reached by A on prefp(P). As the discussion on page 7 pointed
out, for this we may need to recover the transition function of A associated with
prefq(T ) \ prefP (T ) for a process q and a set of processes P . Hence we need
to store information about the behaviour of A on some relevant factors of T
that are not prefixes. Zones are such relevant factors. They are defined in such a
way that there is a bound on the number of zones in a trace. The other crucial
property of zones is that for every extension T ′ of T and P ⊆ P, q ∈ P, if a zone
of T intersects prefq(T ′) \ prefP (T ′) then it is entirely in this set. A zone order
will be an abstract representation of the decomposition of a trace into zones.

Definition 4. [6] Let T = 〈E,≤, λ〉 be a trace. For an event e ∈ E we define
the set of events L(e) = {f ∈ last(T ) | e ≤ f}. We say that two events e, e′ are
equivalent (denoted as e ≡ e′) if L(e) = L(e′). The equivalence classes of ≡ are
called zones. The set of processes that are active in Z is denoted by dom(Z).

There is a useful partial order on zones that we define now. Let Z,Z ′ be two
zones of some trace T . We write Z l Z ′ if Z 6= Z ′ and e < e′ for some events
e ∈ Z, e′ ∈ Z ′. It is easy to see that ZlZ ′ implies that L(Z ′) ( L(Z). Thanks to
this property we can define the order on zones, denoted Z ≤ Z ′, as the smallest
partial order containing the l relation.

Lemma 1. A trace is partitioned in at most |P|2 zones.
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Fig. 2. The three zones of prefr(T ) are marked with solid lines. The two zones
of pref{p,q}(T ) are represented by dotted lines.

In Appendix A we show a trace with Ω(|P|2) zones. Figure 2 depicts the trace
T = [cbadcbad]. Recall that last(prefr(T )) consists of the first a, the second b
and the second d. There are three zones in prefr(T ): Z1 contains the first a, b and
c, Z2 the first d and the second b, and Z3 the second d. We have Z1 < Z2 < Z3.

Definition 5. A zone order is a labeled partial order ZO = 〈V,≤, ξ : V → 2P〉,
where every element is labeled by a set of processes. We require that every two
elements whose labels have non empty intersection are comparable: ξ(v)∩ξ(v′) 6=
∅ ⇒ (v ≤ v′ ∨ v′ ≤ v). We say that such a zone order is the zone order of a
trace T , if there is a bijection µ from V to zones of T preserving the order and
satisfying ξ(v) = dom(µ(v)).

Lemma 2. The zone order of a trace can be stored in |P|2(|P|2 + |P|) space. So
there are at most 2O(|P|4) zone orders.

State information: We describe now the state information for each zone of
the trace. Let ZO = 〈V,≤, ξ : V → 2P〉 be the zone order of some trace T , via a
bijection µ. For an element v ∈ V we denote by Tv the factor of T consisting of
zones up to µ(v): that is, the factor covering µ(v′) for all v′ ≤ v. Observe that
Tv is a prefix of T .

Definition 6. We say that a function ∆ : V → Q is state information for the
zone order ZO of a trace T if for every v we have ∆(v) = ∆(q0, Tv), namely the
state of A reached on a linearization of Tv.

Observe that a zone order for a trace of the form prefp(T ) has one maximal
element vp: it corresponds to the last action of p. If ∆ is the state information
for this zone then the state reached by A on reading a linearization of prefp(T )
is ∆(vp).
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5.2 The construction of the asynchronous automaton

Let us come back to the description of the asynchronous automaton B. For every
p ∈ P, a local state of Sp will have the form (tsp, ZOp,∆p). The automaton will
be defined in such a way that after reading a trace T the state sp reached at the
component p will satisfy:

– tsp is the time stamping information [13];
– ZOp is the zone order of prefp(T );
– ∆p is the state information for ZOp.

By [13] we know that B can update the tsp component. The proposition be-
low says that B can update the ZOp and ∆p components (for the proof see
Appendix C).

Proposition 1. Let T be a trace and a ∈ Σ an action. Suppose that for every
p ∈ dom(a) we have the time stamping information tsp and the zone order with
state information (ZOp,∆p) of prefp(T ). We can then calculate the zone order
and the state information of prefp(Ta), for every p ∈ dom(a).

We also need to define the set of local rejecting states Rp and the global
accepting states Acc of B. Observe that by Proposition 1, from the local state sp
we can calculate ∆(q0,prefp(T )), namely the state of A reached after reading a
linearization of prefp(T ). This state is exactly the state associated to the unique
maximal element of the zone order in sp. Hence, B can be made locally rejecting
by letting sp ∈ Rp if ∆(q0,prefp(T )) is a deadend state of A.

To define accepting tuples of states of B we use the following proposition:

Proposition 2. Let T be a trace. Given for every p ∈ P the time stamping tsp,
and the zone order ZOp with state information ∆p of prefp(T ), we can calculate
∆(q0, T ), the state reached by A on a linearization of T .

In the light of Proposition 2, a tuple of states of B is accepting if the state
∆(q0, T ) of A is accepting. The two propositions give us:

Theorem 3. Let A be a deterministic I-diamond automaton over the distributed
alphabet (Σ, dom). We can construct an equivalent deterministic locally rejecting
asynchronous automaton B with at most 22|P|4 · |A||P|2 states.

We now describe informally the main ingredients of the proof of Proposition 1
(Proposition 2 goes along similar lines). The zone order ZO of prefP∪{q}(T ) is
built in two steps from ZOP and ZOq: first we construct a so-called pre-zone
order ZO′ by adding to ZOP the zones from prefq(T ) \ prefP (T ) [6]. Then
we quotient ZO′ in order to obtain ZO. The quotient operation amounts to
merge zones. The difficulty compared to [6] is posed by the update of the state
information. Since the state information for the pre-zone ZO′ is inconsistent due
to the merge, the crucial step is to compute this information on downward closed
sets of zones:
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Lemma 3. Let ZO = 〈V,≤, ξ〉, ∆ be the zone order and state information for a
trace T (via the bijection µ). For every downward closed B ⊆ V we can compute
the state reached by A on a linearization of TB =

⋃
{Tv | v ∈ B}, using only ZO

and ∆.

The proof for the lemma above is based on a nice observation about I-
diamond automata A, [2]. It says that for every three traces T0, T1, T2 with
dom(T1) ∩ dom(T2) = ∅, the state reached by A on a linearization of T0T1T2

can be computed from dom(T1) and the states reached on (linearizations of) T0,
T0T1, T0T2, respectively.

We now sketch the proof of the lemma. We first choose some linearization
v1, . . . , vn of B, and let Bi = {v1, . . . , vi}. Let us write Bi,k (i ≤ k) for the set
Bi∪{vj | vj ≤ vk, j > i}. We show now how to compute inductively ∆(q0, TBi,k).

Suppose we know already ∆(q0, TBi−1,k), for all k ≥ i− 1. In particular, note
that the states qi−1, qi reached on µ(v1 · · · vi−1) and µ(v1 · · · vi), respectively, are
known (cases k = i− 1 and k = i).

We compute now ∆(q0, TBi,k), for k > i. Two cases arise. If vi 6< vk then
we apply the observation of [2] to qi−1, qi, ∆(q0, TBi−1,k), ξ(vi), which yields
∆(q0, TBi,k). If vi < vk, then Bi−1,k = Bi,k and the state ∆(q0, TBi,k) is al-
ready known. At the end of this polynomial time procedure, we have computed
∆(q0, TB) = ∆(q0, TBn,n).

Remark 1. The automaton B of Theorem 3 can be constructed on-the-fly, i.e. given
the action a ∈ Σ and the local states sp of B, p ∈ dom(a), one can compute the
successor states δa((sp)p∈dom(a). The question is now how much time we need
for this computation. The update of the time stamping and that of zone orders
takes time polynomial in |P|. The update of state information can be done in
time polynomial in |P| and linear in the number of transitions of |A|. So over-
all, we can compute transitions on-the-fly in polynomial time. Similarly, we can
decide whether a global state is accepting in polynomial time.

6 Conclusion

In this paper we presented an improved construction of asynchronous automata.
Starting from a zone construction of [6], we have shown how to keep just one state
per zone instead of a transition table. This allows to obtain the first construction
that is polynomial in the size of the sequential automaton and exponential only
in the number of processes.

It is tempting to conjecture that our construction is optimal. Unfortunately,
it is very difficult to provide lower bounds on sizes of asynchronous automata. We
gave a matching lower bound for the subclass of locally rejecting automata. It is
worth to recall that all general constructions in the literature produce automata
of this kind. Moreover the concept of locally rejecting automaton is interesting
on its own from the point of view of applications.

We conjecture that the translation from deterministic word automata to
asynchronous automata must be exponential in the number of processes; where
the size means the total number of local states.
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A A trace with many zones

Here is an example showing that there can be O(|P|2) zones in a trace. As set of
processes we take P = {0x, 1x, . . . , nx}∪{0y, 1y, . . . , ny}; that is two copies of the
initial segment of natural numbers. The alphabet Σ is {(ix, jy) | i, j = 0, . . . , n}.
So a letter is a pair of processes, and naturally, the domain of such a letter are
those two processes.

We consider a trace T where there is one event for every letter from Σ. For
simplicity of notation we will identify the events with letters. The order between
events is determined by the rule

– (ix, jy) ≤ (kx, ly) if i ≥ k and j ≥ l; notice the inversion of orders.

The trace is depicted in Figure 3 where the subscripts x and y are omitted for
readability. It is easy to verify that every event (ix, jy) is a zone by itself with
L(ix, jy) = {0x, . . . , ix} ∪ {0y, . . . , jy}.

(1,0)

(0,1)

(2,0)

(0,2)

(0,n)

(n,0)

(i+1,j+1)

(i+1,j)

(i,j+1)

(i,j)

(0,0)

Fig. 3. A trace with a big zone graph

B Time stamping

Theorem 4. [13] There exist a deterministic asynchronous automaton ATS =
〈(Sp)p∈P , (∆a)a∈Σ , s0〉 such that for every trace T and state s = ∆(s0, T ) reached
by ATS after reading T :

for every P ⊆ P and q, r, r′ ∈ P, the set of local states {sp | p ∈ P ∪{q}}
allows to determine if lastr(prefP (T )) = lastr′(prefq(T )).

Moreover, such ATS can be effectively computed and its local states can be de-
scribed using O(|P|2 log(|P|)) bits.
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C Updating state and zone information

In this section we show how an asynchronous automaton updates the zone or-
der and the state information (Proposition 1). We will get also the proof of
Proposition 2 as a side result.

Suppose that we extend a trace T by an action a ∈ Σ. We first need to
construct the zone order and the state information of prefdom(a)(T )a, given the
zone orders and state information of each of prefp(T ), p ∈ dom(a). The following
proposition implies that this is possible.

Proposition 3. Let P ⊆ P, q ∈ P and let T be a trace. Assume that we are
given the zone orders with state information (ZOP , ∆P ), (ZOq,∆q) for prefP (T )
and prefq(T ), respectively. Suppose that we also know the local states (sp)p∈P , sq
reached by the time stamping automaton ATS on prefP (T ) and prefq(T ), respec-
tively. Then we can compute the zone order and the state information (ZO,∆)
for prefP∪{q}(T ).

The proof of Proposition 3 will occupy most of this section. We start with
the following crucial property of zones, that shows that the zone update can be
performed without splitting zones:

Proposition 4 ([6], Props. 1, 3). Let T be a trace, P ⊆ P and q ∈ P. For
every zone Z of prefP (T ), we have either Z ⊆ prefP (T ) ∩ prefq(T ) or Z ⊆
prefP (T ) \ prefq(T ). Moreover, if Z is a zone of prefP (T ) or prefq(T ) then Z is
a factor of some zone of prefP∪{q}(T ).

We need also to determine which zones of prefq(T ) are within prefP (T ) ∩
prefq(T ). This task uses the time stamping automaton ATS (cf. Theorem 4):

Lemma 4. Let Z be a zone of prefq(T ). Then Z ⊆ prefP (T ) ∩ prefq(T ) if and
only if Z ≤ Z ′ for some zone Z ′ of prefq(T ) such that dom(Z ′) contains processes
r, r′ ∈ P with lastr(prefP (T )) = lastr′(prefq(T )).

Proof. We use the following basic fact (see e.g. [13]):

max(prefP (T ) ∩ prefq(T )) ⊆ last(prefP (T )) ∩ last(prefq(T ))

Thus, Z ⊆ prefP (T ) ∩ prefq(T ) if and only if Z ≤ Z ′ for some zone Z ′ that
contains an event e in max(prefP (T )∩prefq(T )). For such an event e, there exist
r, r′ with e = lastr(prefP (T )) = lastr′(prefq(T )). 2

We now come back to the proof of Proposition 3. Given the zone orders
ZOP = 〈VP ,≤P , ξP 〉 and ZOq = 〈Vq,≤q, ξq〉, we build the required ZO = 〈V,≤
, ξ〉 in two steps: (i) we construct an intermediate zone order ZO′ by adding a
part of ZOq to ZOP , then (ii) we need to quotient ZO′ in order to obtain ZO.

The first step is to add to ZOP the zones of ZOq included in prefq(T ) \
prefP (T ). Let W ′ ⊆ Vq denote the set of zones of ZOq satisfying Lemma 4, and
let W = Vq \W ′. The zone order ZO′ = 〈V ′,≤′, χ′〉 is defined by:
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– V ′ = VP ∪W ,
– ≤′ is the least partial order containing the orders of ZOP and ZOq, and such

that ξP (v) ∩ ξq(w) 6= ∅ implies v ≤′ w, for all v ∈ VP , w ∈W ,
– ξ′(v) = ξP (v) for v ∈ VP , and ξ′(v) = ξq(v) for v ∈W .

By assumption we have a bijection µP between ZOP and the zones of prefP (T );
and a bijection µq between ZOq and the zones of prefq(T ). We can define a bi-
jection µ′ from ZO′ to factors of T , by simply using µP for v′ ∈ VP and µq for
v′ ∈W .

It should be of no surprise that ZO′ is in general not the zone order of
prefP∪{q}(T ). This order has some weaker property though, that we summarize
in the following definition.

Definition 7. A zone order ZO = 〈V,≤, ξ : V → 2P〉 is an pre-zone order of a
trace T if there is a bijection µ from V to factors of T such that

– µ preserves order and domains: ξ(v) = dom(µ(v));
– (µ(v))v∈V is a partition of T into factors, and every one of them is a factor

of a zone of T .

Lemma 5. ZO′ is an pre-zone order of prefP∪{q}(T ), via the mapping µ′.

Proof. By definition it is clear that µ′ respects the domains and that its values
are factors in T , as they are zones in prefP (T ) or prefq(T ). By Proposition 4 we
know that such zones are factors of zones in prefP∪{q}(T ). It remains to show
that µ′ preserves order. For this suppose that v′1 ≤′ v′2 in ZO′. If the two elements
come from VP then it is clear, as µ′(v′1) = µP (v′1) ≤P µP (v′2) = µ′(v′2). Similarly
if the two elements come from W . The last possible case is when v′1 ∈ Vp and
v′2 ∈W . We suppose that ξP (v′1)∩ ξq(v′2) 6= ∅; the general case being an obvious
extension. By preservation of domains we get dom(µ′(v′1))∩dom(µ′(v′2)) 6= ∅. Let
r be a process belonging to this intersection and let e1 ∈ µ′(v′1) and e2 ∈ µ′(v′2)
be events involving r. These two events are ordered. Since by definition of W ,
e2 does not belong to prefP (T ), we have e1 ≤ e2. Hence µ′(v′1) ≤′ µ′(v′2). 2

Observe that this lemma implies that every zone of prefP∪{q}(T ) is a union
of factors of ZO′. In a second step we show how to glue together these factors
to obtain the zone order of prefP∪{q}(T ). We define the following equivalence
relation ≡ on V ′ × V ′: let v1 ≡ v2 if

⋃
{ξ′(w) | v1 ≤′ w} =

⋃
{ξ′(w) | v2 ≤′ w}.

Then let ZO = ZO′/≡ be the quotient partial order 〈V,≤, ξ〉 with

– V = V ′/≡,
– ξ([v]≡) =

⋃
v′≡v ξ

′(v′),
– ≤ is the smallest reflexive and transitive relation satisfying: [v]≡ ≤ [w]≡ if
v′ ≤′ w′ for some v ≡ v′, w ≡ w′.

Lemma 6. If ZO′ is a pre-zone order of a trace T then the quotient ZO =
ZO′/≡ is the zone order of T .
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Proof. Let ZO′ = 〈V ′,≤′, ξ′〉 be as in the assumption of the lemma; in
particular let µ′ be the map from V ′ to factors of T showing that ZO′ is an
pre-zone order. It is not difficult to check for v ∈ V ′ that⋃

{ξ′(w) | v ≤′ w} =
⋃
{dom(µ′(w)) | v ≤′ w} = dom(L(µ′(v)))

where L refers to the function of Definition 4 w.r.t the trace T . Notice that
L ◦ µ′ is well-defined, since each µ′(v) is included in a zone of T . Thus, v1 ≡ v2
iff dom(L(µ′(v1))) = dom(L(µ′(v2))) iff L(µ′(v1)) = L(µ′(v2)) iff µ′(v1), µ′(v2)
are included in the same zone of T . 2

We show in the remaining how to obtain the state information for ZO. First
we introduce some notation. For ZOP = 〈VP ,≤P , ξP 〉 and v ∈ VP we write
TPv for the prefix of T consisting of all factors µP (w), with w ≤P v. More
generally, for a downward closed subset B of ZOP we denote by TPB the prefix
of T consisting of all zones µP (v) for v ∈ B. Similarly, we define T qv using ZOq
and µq. Finally, Tv is defined using ZO and µ. The notations T qB and TB are
also evident.

Calculating the state information for ZO means to calculate for every v ∈ V
the state ∆(q0, Tv) reached by A on a linearization of Tv. The following lemma
says that this amounts to compute the state information for downward closed
subsets of VP and Vq, respectively. Recall first that V ′ = VP ∪W where W ⊆ Vq
is the set of zones of prefq(T ) included in prefq(T ) \ prefP (T ). We denote by
[W ]≡ the set {[w]≡ | w ∈W}.

Lemma 7. For every v ∈ V \ [W ]≡, there is a downward closed set B of ZOP
such that Tv = TPB . For every v ∈ [W ]≡ there is a downward closed set B of
ZOq such that Tv = T qB.

Proof. By definition, Tv is a union of zones of prefP∪{q}(T ). By Proposition 4,
Tv is either included in prefP (T ) or prefq(T ). Suppose it is included in prefP (T ),
the other case being similar. The same Proposition 4 says that Tv is union of
zones of prefp(T ). Let B = {w | µP (w) ⊆ Tv}. It is straightforward to check that
B is downward closed in ZOP . 2

Lemma 7 suggests that it is interesting to calculate ∆(q0, TPB ) for a downward
closed subset B of prefP (T ); and ∆(q0, T qB) as well. Lemma 9 below shows that
this is indeed possible. It is based on the following useful observation about
I-diamond automata.

Lemma 8. [2] Let A = 〈Q,Σ,∆, q0, F 〉 be a deterministic I-diamond automa-
ton. There is a function Diam : Q3 × 2P → Q such that for every three states
q0, q1, q2 of A and a set of processes X, the state q = Diam(q0, q1, q2, X) satisfies
the property:

For all traces T0, T1, T2 with dom(T1) ⊆ X and dom(T2) ⊆ P \ X, if
∆(q0, T0) = q0, ∆(q0, T0T1) = q1, and ∆(q0, T0T2) = q2, then ∆(q0, T0T1T2) =
q.
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Proof. Fix some q0, q1, q2, and X. Take arbitrary two words w1, w
′
1 such that

dom(w1),dom(w′1) ⊆ X, ∆(q0, w1) = ∆(q0, w′1) = q1; and two words w2, w
′
2 such

that dom(w2),dom(w′2) ⊆ P \X, ∆(q0, w2) = ∆(q0, w′2) = q2. We get

∆(q0, w1w2) = ∆(∆(q0, w1), w2) = ∆(∆(q0, w′1), w2) = ∆(q0, w′1w2) .

Since w2 and w′1 commute andA is I-diamond we have∆(q0, w′1w2) = ∆(q0, w2w
′
1).

Repeating the reasoning similarly to the above we get∆(q0, w2w
′
1) = ∆(q0, w′2w

′
1) =

∆(q0, w′1w
′
2). 2

Lemma 9. Let (ZO,∆) be the zone order and state information for a trace T .
For every downward closed B ⊆ V we can compute ∆(q0, TB) using only ZO
and ∆.

Proof. Let µ be the mapping from V to factors of T showing that ZO is an
pre-zone order. The proof is by induction on the number of elements in B. If
there is only one then we are done, as TB = Tv for the unique v ∈ B.

For the induction step take a maximal element v of B. Let B1 = {v′ | v′ ≤ v}
be the set of elements below v; and let B′ = B \ B1. Clearly B1 is downward
closed, and so are B0 = B1 \ {v} and B2 = B0 ∪ B′. By induction assumption
we can calculate qi = ∆(q0, TBi) for i = 0, 1, 2. Let T2 be the union of factors
µ(v′) for v′ ∈ B′. We get TB1 = TB0µ(v) and TB2 = TB0T2. Recall that the
definition of a zone order requires that if ξ(v) ∩ ξ(v′) 6= ∅ then v and v′ are
comparable in the order. Hence ξ(v) ∩ ξ(B′) = ∅ as all the elements of B′

are incomparable with v. This means that dom(µ(v)) ∩ dom(T2) = ∅ because
dom(µ(v)) = ξ(v) and dom(T2) = ξ(B′). We are in a position to apply Lemma 8
obtaining ∆(q0, TB) = Diam(q0, q1, q2, ξ(v)). 2

We are ready to complete the proof of Proposition 3. For every v ∈ ZO we
need to calculate ∆(v) = ∆(q0, Tv). By Lemma 7 we know that Tv = TPB or
Tv = T qB for some downward closed subset of TP or T q respectively. In the first
case ∆(v) = ∆(q0, TPB ) and this is computable by Lemma 9. Similarly in the
second case.

Remark 2. The update algorithm given by Lemma 9 is exponential in the size of
the factor order. In the following we describe an alternative, quadratic algorithm.

Assume we are given the factor order ZO = 〈V,≤, ξ : V → 2P〉 of trace T
(via the bijection µ) and the state information ∆ : V → Q such that ∆(v) =
∆(q0, Tv) for every v ∈ V . We choose some linearization v1, . . . , vn of B, and let
Bi = {v1, . . . , vi}. Let us write Bi,k (i ≤ k) for the set {v1, . . . , vi} ∪ {vj | vj ≤
vk, j > i}. We show now how to compute inductively ∆(q0, TBi,k). The desired
state is ∆(q0, TBn,n).

Suppose we know already ∆(q0, TBi−1,k), for all k ≥ i− 1. In particular, note
that the states qi−1, qi reached on µ(v1 · · · vi−1) and µ(v1 · · · vi), respectively, are
known (cases k = i− 1 and k = i).

We compute now ∆(q0, TBi,k), for k > i. Two cases arise. If vi 6< vk then we
apply Lemma 8 to qi−1, qi, ∆(q0, TBi−1,k),dom(vi), which yields ∆(q0, TBi,k). If
vi < vk, then Bi−1,k = Bi,k and the state ∆(q0, TBi,k) is already known.
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The proof of Proposition 2 is obtained by a repetitive use of Proposition 3.
For the proof of Proposition 1 we additionally need the following.

Proposition 5. Let a ∈ Σ and T = prefdom(a)(T ) be a trace. Given the zone
order ZO and state information ∆ of T , we can compute the zone order ZO′

and the state information ∆
′

of prefdom(a)Ta.

Proof. We first add to ZO a new, maximal node wa with ξ(wa) = dom(a).
It is not difficult to verify that we obtain a pre-zone order of prefdom(a)Ta.
By Lemma 6, the quotient of this order is the desired ZO′. By Lemma 9 we
can calculate ∆(B) for every downward closed subset B of ZO. Notice that⋃
{[w]≡ | [w]≡ ≤′ [v]≡} is downward closed in ZO. So we can compute ∆

′
([v]≡)

for every v ∈ V .
For {wa} we first compute ∆(V ) by another application of Lemma 9. Then

the state information for {wa} is ∆(∆(V ), a), namely the state reached by A on
Ta. 2

The proof of Proposition 1 follows from Propositions 3 and 5.


	Optimal Zielonka-Type Construction of Deterministic Asynchronous Automata
	Blaise Genest1,2, Hugo Gimbert3, Anca Muscholl3, Igor Walukiewicz3

