
Quantifying the Discord: Order Discrepancies in
Message Sequence Charts⋆

Edith Elkind1, Blaise Genest2, Doron Peled3, and Paola Spoletini4

1 School of Electronics and Computer Science University of Southampton, UK
2 CNRS/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3Department of Computer Science, University of Warwick
Coventry CV4 7AL, United Kingdom

and Department of Computer Science, Bar Ilan University,
Ramat Gan 52900, Israel

4 Dipartimento di Elettronica e Informazione, Politecnico di Milano
via Ponzio 34/5 - 20133, Milano, Italy

Abstract. Message Sequence Charts (MSCs) and High-level Message Sequence
Charts (HMSC) are formalisms used to describe scenarios of message passing
protocols. We propose using Allen’s logic to study the temporal order of the mes-
sages. We introduce the concept ofdiscord to quantify the order discrepancies
between messages in different nodes of an HMSC and study its algorithmic prop-
erties. We show that while discord of a pair of messages is hard to compute in gen-
eral, the problem becomes polynomial-time computable if the number of nodes of
the HMSC or the number of processes is constant. Moreover, for a given HMSC,
it is always computationally easy to identify a pair of messages that exhibits the
worst-case discord, and compute the discord of this pair.

1 Introduction

Message Sequence Charts (MSCs) and High-level Message Sequence Charts (HMSC)
are very useful tools for describing executions of communication protocols. They pro-
vide an intuitive visual notation, which is widely used in practice and has been formally
described in the MSC standard [11]. A related notation was also adopted as part of the
UML standard. Intuitively, an MSC is described by a set ofprocessesand a set ofmes-
sagesbetween these processes. The notation allows us to specify the order in which
each process sends and receives messages. An HMSC is a graph whose nodes are la-
beled with MSCs. An execution of an HMSC is a concatenation ofMSCs that appear
on a path in this graph. Using HMSC notation, one can describealternative behaviors
of systems, or even use it as a scenario-based programming formalism [10]. The reader
is referred to Section 2 for formal definitions.

Besides being used in practice, MSCs and HMSCs have been extensively studied
from theoretical perspective over the past few years. This research has pointed out sev-
eral difficulties with these formalisms. One such example isthe problem of detecting
race conditions in MSCs [2], i.e., the possibility that messages arrive out of order due

⋆ Work partly supported by the ESF project Automatha and the ANR project DOTS.

to lack of synchronization. This problem has also been generalized to HMSCs [14]
and sets of MSCs [7]. Another problem is related to global choice [4, 3], where some
processes behave according to one MSC scenario and other processes behave according
to another MSC scenario, resulting in new behaviors.

Continuing this line of research, in this paper we identify another ambiguity of the
MSC notation. Namely, in the definition of an HMSC, a concatenation of MSCs along
a path intuitively suggests that messages that appear in an earlier MSC precede in time
any message that appears in a later MSC. In fact, in some frameworks such aslive se-
quence charts[6] there is a hidden assumption of such synchronous nature.However,
according to the MSC semantics, this is is not the case: independence between events
happening in different sets of processes may allow messagesin later MSCs to over-
lap or even sometimes appear earlier than messages in previous MSCs. Moreover, it
is not clear how to achieve this kind of synchronization without an additional mecha-
nism or extra messages. Clearly, this discrepancy may result in users misinterpreting
the notation and, as a result, designing protocols that do not work as intended. This
is reminiscent of the concept of race conditions: the straightforward visual interpreta-
tion of concatenation is different from the intended semantics. However, unlike for race
conditions, this discrepancy has not been studied before.

In this paper, we provide a formal treatment of this issue. Weintroduce the notion
of discordof a pair of messages in different nodes of an HMSC. Intuitively, the discord
of two messages is the worst possible discrepancy between their order in an execution
and their “ideal” order, in which the message in the MSC that appears earlier on the
path precedes the message in the MSC later on the path. To formalize this intuition, we
need several tools that we introduce below.

We start our study of the message order in MSCs and HMSCs by defining the con-
cept of achain. Informally, a chain is a sequence of events where any adjacent pair
of events is ordered either by being a send-receive pair, or by belonging to the same
process line. Hence, a chain represents a possible flow of information. Clearly, the or-
der between messages is determined not only by the relevant messages themselves, but
also by chains between their endpoints. We characterize thepossible message orders
by describing the possible communication patterns betweentheir endpoints. We then
project each such pattern on a global timeline and classify the resulting scenarios. To
do so, we use a subset ofAllen’s interval logic[1]. Allen’s logic is a formalism for
describing the relative order of time intervals. For example, Allen’s logic formulaAdB

expresses the fact thatA happens duringB, i.e.,A starts afterB starts and ends before
B ends. It has been widely studied in the context of artificial intelligence and knowledge
representation, and its expressive power and computational properties are well under-
stood [12]. As messages can easily be seen as time intervals,it provides a convenient
language for describing the message order. We introduce a natural ordering on Allen’s
logic primitive predicates and define the discord of a pair ofmessages in an MSC as
the worst possible Allen’s logic primitive predicate (according to this ordering) that
corresponds to the communication pattern of this pair.

We study the concept of discord from the algorithmic perspective. First, we show
that computing the discord of a pair of messages is coNP-complete. Our reduction as-
sumes that both the number of nodes in the HMSC and the number of processes are

2

part of the input. We show that this is inevitable: if either of these numbers is fixed,
the discord can be computed in polynomial time. We then focuson characterizing the
discord of an HMSC by a single parameter. To this end, we definethe discord of an
HMSC as the worst possible discord of a pair of messages in this HMSC. Surprisingly,
it turns out that this quantity can be computed in time polynomial both in the size of the
MSC graph and the number of processes. Intuitively, the reason for that is that it is easy
to identify a pair of messages that exhibits the worst-case behavior for a given HMSC
and compute the discord of such a pair. The study of discords provides also a generic
study of the existence of communication chains, which we believe will be interesting in
its own right in studies of layered combination of communication algorithms.

2 Preliminaries

2.1 Message Sequence Charts

Following [11], we formally define message sequence charts (MSCs), MSC concatena-
tion, and high-level message sequence charts (HMSCs).

Definition 1. A Message Sequence Chart(MSC) is a tupleC = (P , E, P,M, <p:p∈P),
where

– P is a finite set ofprocesses;
– E is a finite set ofevents;
– P : E 7→ P is a function that maps every event to the process on which it occurs;
– M is a finite set of messages. Each messagem ∈ M consists of a pair of events

(s, r) for sendandreceive;
– For each processp ∈ P , <p is a total order on the events of that process.

We define a relation< as <=
⋃

p∈P <p ∪{(s, r) | (s, r) ∈ M} and let <∗ be
the transitive closure of<. We require<∗ to be acyclic. We assume that MSCs are
FIFO, that is, if two messages(s1, r1) and (s2, r2) are between the same processes,
i.e.,P (s1) = P (s2) andP (r1) = P (r2), thens1 < s2 impliesr1 < r2.

We will occasionally abuse notation and writem ∈ C instead ofm ∈ M.

Definition 2. LetC1, C2 be two MSCs whereC1 = (P1, E1, P 1,M1, <1
p:p∈P1), C2 =

(P2, E2, P 2,M2, <2
p:p∈P2) with P1 = P2 = P and E1 ∩ E2 = ∅. Define their

concatenationas an MSC(C1; C2) = (P , E, P,M, <p:p∈P), whereE = E1 ∪ E2,
M = M1∪M2, the functionP is given byP (e) = P 1(e) if e ∈ E1 andP (e) = P 2(e)
if e ∈ E2, and for eachp ∈ P we define<p=<1

p ∪ <2
p ∪{(e1, e2)|P 1(e1) = P 2(e2)}.

Notice that there are no sends in one MSC that are received in the other. This defin-
ition can be naturally extended to sequencesC1, C2, . . . , Cn of three or more MSCs by
setting(C1; C2; . . . ; Cn) = ((. . . (C1; C2); C3) . . .).

Definition 3. A High-level Message Sequence Chart (HMSC) is a tupleH = (G, C,

V0, λ), whereG = (V , E) is a directed graph with the vertex setV = {v1, . . . , vn}
and the edge setE ⊆ V × V , C = {C1, . . . , Cn} is a collection of MSCs with a

3

common set of processes and mutually disjoint sets of events, V0 ⊆ V is a set ofinitial
nodes, andλ : V 7→ C is a bijective mapping between the nodes of the graph and the
MSCs inC. To simplify notation, we assumeλ(vi) = Ci. Each vertex ofG is reachable
from one of the initial nodes. Anexecutionof the HMSC is a finite MSC(Ci; . . . ; Cj)
obtained by concatenating the MSCs in the nodes of a pathvi, . . . , vj of the HMSC
that starts with some initial nodevi ∈ V0. Thesize|H | of an HMSCH is defined as
|H | = |E1| + · · · + |En| + |V| + |E|, whereEi is the set of events of the MSCCi.

Given a pathL = (vi, . . . , vj) in G of length at least2, we denote byλ(L) the MSC that
is obtained by concatenating the MSCs alongL, i.e.,(Ci; . . . ; Cj). The set of executions
of an HMSC is also referred to as the set of MSCsgeneratedby that HMSC.

We can define infinite executions in a similar way. This requires defining the con-
catenation of an infinite sequence of MSCs, which is the limitof the sequence of finite
concatenations of prefixes. As this does not add to the results in the paper, we only refer
the reader to, e.g., [9].

M1 M2

M3 M4P1 P2 P3

P1 P2 P3 P1 P2 P3

P1 P2 P3

Connect

Fail

Approve

ReqService
Report

Fig. 1.An HMSC

Figure 1 shows an example of an HMSC. The node in the upper leftcorner, denoted
M1, is the starting node, hence it has an incoming edge that isconnected to no other
node. Initially, process P1 sends a message to P2, requesting a connection (e.g., to
an internet service), according to the node M1. This can result in either an approval
message from P2, according to the node M2, or a failure message, according to the
node M3. In the latter case, a report message is also sent fromP2 to some supervisory
process P3. There are two progress choices, corresponding to the two arrows out of
the node M3. We can decide to try and connect again, by choosing the arrow from M3
to M1, or to give up and send a service request (from process P1to process P3), by
choosing to progress according to the arrow from M3 to M4. Note how the HMSC

4

description abstracts away from internal process computation, and presents only the
communications. Consider the path (M1, M3, M4). According to the HMSC semantics,
process P2 does not necessarily have to send itsReport message in M3 before process
P1 has progressed according to M4 to send itsReq service message. However, process
P3 must receive theReport message before theReq service message.

2.2 Allen’s logic

Allen’s logic [1] is a formalism that allows one to express temporal relationships be-
tween time intervals. It has 13 primitive relations that correspond to possible relation-
ships between two intervals, such as “A precedesB” or “ A happens duringB”. Each
primitive relation describes a total order between the endpoints of these intervals. When
working with MSCs, we normally assume that no two events can happen at the same
time, i.e., no two intervals have a common endpoint. Therefore, to represent relation-
ships between two messagesm1 = (s1, r1) andm2 = (s2, r2), we will only use 6 of
these primitives, namely:

p — m1 precedesm2 (i.e.,s1 < r1 < s2 < r2);
p−1 — m1 is preceded bym2 (i.e.,s2 < r2 < s1 < r1);
o — m1 overlapsm2 (i.e.,s1 < s2 < r1 < r2);
o−1 — m1 is overlapped bym2 (i.e.,s2 < s1 < r2 < r1);
d — m1 is duringm2 (i.e.,s2 < s1 < r1 < r2);
d−1 — m1 containsm2 (i.e.,s1 < s2 < r2 < r1).

Observe that fort ∈ {p,o,d} the predicateAtB is equivalent toBt−1A.

A
B

A
B

A
B

Fig. 2. Allen’s logic relationships:ApB, AoB, andAd−1B

An Allen’s logic formula consists of concatenation of one ormore of these 6 letters,
and is interpreted as a disjunction of the corresponding predicates. For example, the
formula Apod−1B says that eitherA precedesB, or A overlapsB, or B happens
during (is included in)A. Given the semantics of the primitive predicates, it is easyto
see that this formula says thatA starts beforeB, but may end before (p), during (o),
or after (d−1) B. There are several operations that can be performed on Allen’s logic
formulas, such as composition and intersection. However, in this paper we only use the
Allen’s logic as a means to describe the relationships between messages. Therefore, we
will not formally define these operations.

3 Relationships between Messages

In this section, we will show how to use Allen’s logic to reason about the relationship
between a given pair of messages.

5

s1

r2

s2

r1

Fig. 3. Impossible relation between messages

Given an MSCC, a chain from x ∈ E to y ∈ E is a sequence of events(x =
ei1 , ei2 , . . . , eik−1

, eik
= y) such thateij

∈ E for j = 1, . . . , k, and every adjacent pair
(eij

, eij+1
) in the chain is either a send and the corresponding receive, or eij

appears
before (above)eij+1

in the same process line. Clearly,x <∗ y if and only if there is a
chain of messages fromx to y. Now, consider a pair of messages(s1, r1) and(s2, r2).
By definition, there is always a chain froms1 to r1 and froms2 to r2. Moreover, for
any(a, b) ∈ {s1, r1}×{s2, r2}, we have one of the following three cases: (1) there is a
chain of messages froma to b; (2) there is a chain of messages fromb toa; (3) there is no
chain in either direction. As there are four pairs of points,this corresponds to34 = 81
combinations. However, not all of them are possible, as MSCsdo not admit cycles (see
Figure 3). In fact, for two messages there are exactly twentypossible combinations of
orders between their endpoints. We list them in Figure 4. In these figures, the messages
correspond to the vertical arrows, and dashed arrows correspond to relationships derived
by transitive closure.

The patterns in Figure 4 correspond to the following Allen’slogic relationships:
(a)pp−1oo−1dd−1; (b)p; (c)pod−1; (d)po; (e)o; (f) d−1; (g)od−1; (h)poo−1dd−1;
(i) od; (j) opd; (k) oo−1dd−1. Except for cases (a) and (k), which are symmetric, each
other case has a symmetric twin that can be obtained by swapping the left and the right
message.

To decide between these cases, it suffices to calculate the transitive closure relation
<∗. While in general transitive closure algorithms run in cubic time [8, 16], it has been
observed [2] that in the MSC case one can be more efficient since each event has at
most two successors. Formally, we have the following proposition.

Proposition 1. [2] Given an MSCM with messagesm1, · · · , mt, one can decide in
timeO(t2) the relation between everymi, mj , 1 ≤ i, j ≤ t.

We will now derive a corollary that will be useful in boundingthe running time of our
algorithms.

Corollary 1. Given an HMSCH = (G, C,V0, λ), |C| = n, one can compute the rela-
tion <∗ for all MSCs inC in timeO(|H |2). Moreover, one can compute the relation<∗

for all concatenated MSCs of the form(Ci; Cj), whereCi, Cj ∈ C, in timeO(n|H |2).
Finally, given the relation<∗ for all concatenated MSCs of the form(Ci; Cj), where
Ci, Cj ∈ C, one can compute the Allen’s logic relationship for all pairs of messages
m, m′, wherem ∈ Ci, m′ ∈ Cj , Ci, Cj ∈ C, in timeO(n|H |2).

6

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 4. The possible orders between messages (up to symmetry)

Proof. Let Ei be the set of events of the MSCCi. By Proposition 1, we can compute
<∗ for Ci in time O(|Ei|2). Therefore, computing<∗ for all Ci, i = 1, . . . , n, takes
timeO(|E1|2 + · · · + |En|2) = O((|E1| + · · · + |En|)2) = O(|H |2).

Similarly, computing the relation<∗ for (Ci; Cj) can be done in timeO((|Ei| +
|Ej |)2). As (|Ei| + |Ej |)2 ≤ 2|Ei|2 + 2|Ej |2, computing<∗ for all MSCs of the form
(Ci; Cj), i, j = 1, . . . , n, can be done in timeO(n(|E1|2 + · · ·+ |En|2)) = O(n|H |2).
Now, fix 1 ≤ i, j ≤ n. Given the relation<∗ for (Ci; Cj), the Allen’s logic relationship
for any pair(m, m′), m ∈ Ci, m′ ∈ Cj , can be computed in constant time. As there
areO(|Ei||Ej |) such pairs, computing the Allen’s logic relationship for all of them can
be done in timeO(|Ei||Ej |) = O((|Ei| + |Ej |)2). Summing over alli, j = 1, . . . , n,
we obtain the bound ofO(|H |2), as claimed. 2

4 Definition of Discord

Concatenating two MSCsC1 andC2 does not necessarily mean thatall the messages
of C1 precede in time all the messages ofC2: for example, ifC1 consists of a single
message fromp1 to p2, andC2 consists of a single message fromp3 to p4, the relation
< does not provide any information about the relative order ofthese two messages. In
what follows, we propose an Allen logic-based formalism that allows us to quantify the
ordering discrepancies that occur when concatenating MSCs. We start by considering
sequences of MSCs, and then extend our analysis to HMSCs.

7

Consider a concatenated MSC(C1; C2). For any two messagesm1 = (s1, r1) ∈ C1

andm2 = (s2, r2) ∈ C2, we know thats1 < r1 ands2 < r2. Now, intuitively, the best
possible scenario for(C1; C2) is when all messages inC1 precede all messages inC2.
In this case, we also haver1 < s2, and thus we obtains1 < r1 < s2 < r2. This
corresponds to case (b) in Figure 4. Note that this scenario is only possible whenC1

has a unique maximal evente, C2 has a unique minimal evente′, ande ande′ occur on
the same process, i.e.,P (e) = P (e′).

Conversely, the worst possible case is when some messagem2 in C2 may be com-
pletely unordered with respect to a messagem1 in C1. That is, for somem1 andm2

as above, the situation is described by case (a) in Figure 4, or by the Allen’s logic for-
mulam1pp−1oo−1dd−1m2. In this case, at worst, the Allen logic formula allowsm2

to actually precedem1, since the disjunction permits in particular thatm1p
−1m2. All

remaining scenarios lie, as will be formulated below, between these two cases. We will
now introduce a measure of discrepancy, which we call thediscord, which will allow
us to order them more precisely,

Given a concatenation of two MSCs(C1; C2), two messagesm1 = (s1, r1) ∈ C1

andm2 = (s2, r2) ∈ C2 are said to beout of orderif r1 does not precedes2, i.e.,
¬m1pm2. In Figure 4, this happens in cases (a), (c), (d), (h), and (j). Note that in our
setting, the cases (e), (f), (g), (i), and (k) are impossible: in each of these cases, there
are chains of messages starting from events ofm2 and ending in events ofm1, which
cannot happen under concatenation.

We now classify all primitive Allen logic predicates according to how well they
order the endpoints of the projected intervals, i.e., represent the order between the events
of the two messagesm1 and m2. Recall that in the ideal case, i.e., when the order
between the intervals is described by the Allen logic predicatep, we haves1 < r1 <

s2 < r2. In this case, there are zero events in{s2, r2} that precede those in{s1, r1}.
Under the worst case, i.e., ifm2 fully precedesm1, we count four inversions: namely,
s2 < s1, r2 < r1, r2 < s1 ands2 < r1. We thus order the predicates according to how
many of these four relationships are inverted. In case of a tie, we give preference to the
relationships that involves1 to those that involver1.

Definition 4. The total order≺ is the transitive closure of the partial order≺0 given
by≺0= {(p,o), (o,d−1), (d−1,d), (d,o−1), (o−1,p−1)}.

Remark 1.Observe that the number of inversions inp−1 is 4, as explained above, in
o−1 it is 3, in d andd−1 it is 2, in o it is 1, and inp it is 0. Therefore, our decision
thatd−1 ≺ d may appear quite arbitrary. We made this choice for two reasons. First,
we do think that the time when the messages are sent is more important than the time
when they are received, as the designer has more control overthe former, and second, it
is convenient to have a total order to work with. However, we believe that many of our
ideas and results will apply for different orders, including some that are not total.

Definition 5. Consider a sequence of MSCs(C1, . . . , Ck) and a pair of messagesm1 ∈
C1, m2 ∈ Ck such that in the MSCC = (C1; . . . ; Ck) we havem1Rm2, whereR is a
(possibly non-primitive) Allen’s logic predicate. Thediscordof m1 andm2 with respect
to C is theworstpossible primitive predicate (largest according to≺) that appears in

8

R, i.e.,discordC(m1, m2) = t, wheret ∈ {p,p−1,o,o−1,d,d−1}, t appears inR,
and for allt′ that appear inR we havet′ � t.

Let us now apply this definition to the six cases that can occurfor a pair of mes-
sages in a concatenated MSC, as illustrated in Figure 4. In case (a) the messages are in
relationshippp−1oo−1dd−1. The worst elementary predicate in this formula isp−1,
so we conclude that the discord between the messages isp−1. For case (b), there is only
one relationp. Similarly, for case (c) the discord isd−1, for case (d) it iso, for (h) it
is o−1, and for (j) it isd. We conclude that the value ofdiscordC(m1, m2) can beany
elementary Allen’s logic predicate.

We now extend the definition of a discord to messages in HMSCs.

Definition 6. Given an HMSCH = (G,S,V0, λ) and a pair of messagesm1 ∈ λ(v),
m2 ∈ λ(v′), letdiscordH(m1, m2) = max≺{discordλ(L)(m1, m2) | L = (v, . . . , v′)},
wheremax≺A is the maximum element of the setA with respect to≺.

Consider now the HMSC in Figure 1. For the path (M1, M2), the discord isp, since
the maximum event of M1, which is a receive, precedes the minimum event of M2,
which is the send of messageApprove. On the other hand, for the path (M1, M3, M1),
we have that theReport message of M3 corresponds to theConnect message of M1
as in case (h) of Figure 4, which means a discord ofo−1. The discord of (M3, M4) isd
due to the relative ordering betweenReport in M3 andReqService in M4.

We will now state a simple observation that allows us to computediscordH(m1, m2).

Claim 1 Consider an HMSCH = (G, C,V0, λ). For anyv, v′ ∈ V , v 6= v′, and any
m1 ∈ λ(v), m2 ∈ λ(v′), we havediscordH(m1, m2) = max≺{discordλ(L)(m1, m2) |
L = (v, . . . , v′) is a simple path}. Also, for two messagesm1, m2 ∈ λ(v), we have
discordH(m1, m2) = max≺{discordλ(L)(m1, m2) | L = (v, . . . , v) is a simple cycle}.

Intuitively, this is true because removing a loop from a pathfrom v to v′ can only
increase the discord betweenm1 andm2. Hence, the path that exhibits the worst-case
discord is loop-free.

5 Computing the Discord of a Pair of Messages

For a simple pathL = (v = vi1 , . . . , vik
= v′), computingdiscordλ(L)(m1, m2) for

m1 ∈ λ(v), m2 ∈ λ(v′) is easy. Namely, first we run the transitive closure algorithm
to determine the causal relationships between the endpoints of m1 andm2. We then
identify the corresponding scenario of Figure 4 and apply the case analysis presented
after Definition 5. The running time of this algorithm is quadratic in the total number
of messages inλ(L).

For HMSCs, Definition 6 and Claim 1 suggest a straightforwardalgorithm for com-
puting the discord: given two messagesm1 ∈ λ(v), m2 ∈ λ(v′), we can consider each
simple path fromv tov′ (or each simple cycle, ifv = v′), compute the discord along this
path, and output the maximum discord obtained in this way. This naive algorithm runs
in exponential time in the input size. In the next subsection, we show that this is per-
haps inevitable: we prove that in general the problem of computingDiscordH(m1, m2)

9

is coNP-hard. However, we will now provide an alternative way of verifying whether
DiscordH(m1, m2) = t, wheret ∈ {p,p−1,o,o−1,d,d−1}. As we will see later, it
can be used to construct an efficient algorithm for computingDiscordH(m1, m2) in the
important special case when the number of processes is constant.

We will first define a related problem that will be useful for stating our results.

PATH WITH NO CHAIN : Given an HMSCH = (G = (V , E), C,V0, λ), a pair of
nodesv, v′ ∈ V , and a pair of eventse ∈ λ(v), e′ ∈ λ(v′), is there a pathL from v to v′

in G such that in the MSCλ(L) there is no chain of events frome to e′? We will write
PNCH(e, e′) = 1 if such path exists andPNCH(e, e′) = 0 otherwise.

Proposition 2. Given an HMSCH = (G = (V , E), C,V0, λ), a pair of nodesv, v′ ∈ V ,
and a pair of messagesm1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′), we have

– discordH(m1, m2) = p if and only if PNCH(r1, s2) = 0.
– discordH(m1, m2) = o if and only if PNCH(r1, s2) = 1, PNCH(s1, s2) = 0,

andPNCH(r1, r2) = 0.
– discordH(m1, m2) = d−1 if and only if PNCH(r1, r2) = 1 andPNCH(s1, s2) =

0.
– discordH(m1, m2) = d if and only if PNCH(s1, s2) = 1 and for any pathL =

(v, . . . , v′) in G, the MSCλ(L) contains a chain froms1 to s2 or a chain fromr1

to r2.
– discordH(m1, m2) = o−1 if and only if there exists a pathL = (v, . . . , v′) in G

such that the MSCλ(L) contains no chain froms1 to s2 and no chain fromr1 to
r2, andPNCH(s1, r2) = 0.

– discordH(m1, m2) = p−1 if and only if PNCH(s1, r2) = 1.

Proof. The analysis forp, o, andp−1 is straightforward.
If discordH(m1, m2) = d−1, then there is a pathL = (v, . . . , v′) that satis-

fies discordλ(L)(m1, m2) = d−1. Clearly,λ(L) contains no chain fromr1 to r2, so
PNCH(r1, r2) = 1. Also, for any pathL′ fromv tov′, we havediscordλ(L′)(m1, m2) ∈
{p,o,d−1}, soL′ contains a chain froms1 to s2. Hence,PNCH(s1, s2) = 0. Con-
versely, if PNCH(r1, r2) = 1, then there is a pathL from v to v′ with no chain
from r1 to r2, so it cannot be the case thatdiscordλ(L)(m1, m2) ∈ {p,o}. Hence,
discordλ(L)(m1, m2) � d−1. On the other hand,PNCH(s1, s2) = 0 means that any
pathL′ fromv to v′ contains a chain froms1 to s2, so we havediscordλ(L′)(m1, m2) 6∈
{d,o−1,p−1}. Other cases can be analyzed similarly. 2

Note that to check ifdiscordH(m1, m2) = t for t ∈ {p,p−1,d−1,o}, it suffices
to make a small number of calls toPNCH . However, to check ifdiscordH(m1, m2) =
t for t ∈ {d,o−1}, calling PNCH is not enough. Indeed, to verify, e.g., whether
discordH(m1, m2) = d, we have to check that any path between the corresponding
nodes containseitherone of two chains: a chain froms1 to s2 or a chain fromr1 to r2,
and this check cannot be simulated by calls toPNCH .

5.1 Computational hardness

We will now show that for HMSCs the problem of upper-boundingdiscordH(m1, m2)
is coNP-complete. Formally, we consider the following problem:

10

DISCORD(H, t, m1, m2): Given an HMSCH , a predicatet ∈ {p,p−1,o,o−1,d,

d−1}, and two messagesm1, m2 in H , is it the case thatdiscordH(m1, m2) � t?

Theorem 1. The problemDISCORD(H, t, m1, m2) is coNP-complete.

Proof. To see that DISCORD(H, t, m1, m2) is in coNP, observe that the complementary
problem of checking whetherdiscordH(m1, m2) ≻ t is in NP: a certificate can be
provided by a pathL such thatdiscordλ(L)(m1, m2) ≻ t. In particular, fort = p a
certificate is a path with no chain fromr1 to s2, for t = o it is a path with no chain from
r1 to r2, for t = d−1 it is a path with no chain froms1 to s2, for t = d it is a path with
no chain froms1 to s2 and no chain fromr1 to r2, and fort = o−1 it is a path with no
chain froms1 to r2.

The coNP-hardness proof is by reduction from 3SAT. Suppose that we are given
a 3CNF formula with a set of variablesx1, . . . , xn and a set of clausesc1, . . . , cm.
Let l1j , l

2
j , l

3
j be the literals that appear in thejth clause, i.e.,cj = l1j ∨ l2j ∨ l3j , lkj ∈

{x1, . . . , xn, x̄1, . . . , x̄n}. We construct an HMSCH as follows. SetP = {p1, p2, p3,

p4, px1
, px̄1

, . . . , pxn
, px̄n

, pc1
, . . . , pcm

}. The HMSCH has the following structure. Its
underlying graphG has a sourcev0, a sinkv1, n variable gadgetsX1, . . . , Xn andm

clause gadgetsY1, . . . , Ym. The variable gadgetXi consists of four verticesu0
i , u1

i , u2
i ,

u3
i and four edges(u0

i , u
1
i), (u

0
i , u

2
i), (u

1
i , u

3
i), (u

2
i , u

3
i). The clause gadgetYi consists of

five verticesw0
i , w1

i , w2
i , w3

i , w4
i and six edges(w0

i , w1
i), (w0

i , w2
i), (w0

i , w3
i), (w

1
i , w4

i),
(w2

i , w4
i), (w3

i , w4
i). The source, the vertex gadgets, the clause gadgets, and thesink are

all connected in series as depicted in Figure 5. More precisely, there is an edge fromv0

to the vertexu0
1, for all i = 1, . . . , n − 1 there is an edge fromu3

i to u0
i+1, there is an

edge fromu3
n to w0

1 , for all i = 1, . . . , m − 1 there is an edge fromw4
i to w0

i+1, and
finally there is an edge fromw4

m to v1.

v0 v1

X 1 X n Y 1 YmX 2

Fig. 5. The high-level structure of the HMSCH used in the proof of Theorem 1.

It remains to define the MSCs that are placed in the vertices ofG. The MSC inv0

consists of a single message(s1, r1) from p1 to p2. The MSCs in the verticesu0
i , u3

i ,
w0

j , w4
j are empty for alli = 1, . . . , n, j = 1, . . . , m. For i = 1, . . . , n, the MSC inu1

i

consists of a message fromp2 to pxi
, and the MSC inu2

i consists of a message from
p2 to px̄i

. For j = 1, . . . , m, k = 1, 2, 3, the MSC inwk
j contains a message fromplk

j

to pcj
, wherelkj is thekth literal of cj . Finally, the MSC inv1 hasm + 1 messages: a

message from eachpcj
, j = 1, . . . , m, to p3, and a messagem2 = (s2, r2) from p3 to

p4 that is sent after all messages from allpcj
are received.

We claim that the original 3CNF formula is satisfiable if and only if the tuple
(H,p, m1, m2) constitutes a “no”-instance of DISCORD(H,p, m1, m2), i.e., there is
a pathL from v0 to v1 such that the MSCλ(L) contains no chain fromr1 to s2.

11

P P2 xi

P P2 xi

iu0

iu1

iu2

iu3

(a)

P P

P P

P P

cj

cj

jc

l1

l2

l3

jw0

jw1

jw2

jw3

jw4

(b)

Fig. 6. (a) The gadgetXi; (b) The gadgetYj

Indeed, suppose that our formula is satisfiable, and letT = (t1, . . . , tn), ti ∈
{T, F} be a satisfying assignment for it. Consider a pathL that satisfies the follow-
ing conditions:

– L starts atv0 and ends atv1;
– L ∩ Xi = {u0

i , u
1
i , u

3
i } if ti = F andL ∩ Xi = {u0

i , u
2
i , u

3
i } if ti = T ;

– L ∩ Yj = {w0
i , w

k
j , w4

j } for somek ∈ {1, 2, 3} such thatlkj is true underT , i.e.,
lkj = xz andtz = T or lkj = x̄z andtz = F . Note that suchlkj is guaranteed to
exist sinceT has to satisfycj .

First, note that in the corresponding MSCλ(L) there is no chain fromr1 to any event
of any of the processespcj

, j = 1, . . . , m. Indeed, the only message received bypcj
in

λ(L) is from someplk
j

such thatlkj is true underT . Sincelkj is true underT , in λ(L)

the processplk
j

receives no messages whatsoever. Asp3 only receives messages from

pcj
, j = 1, . . . , m, we conclude that inλ(L) there is no chain fromr1 to s2.
Conversely, suppose that there is a pathL such that in the corresponding MSCλ(L)

there is no chain fromr1 to s2. Consider a satisfying assignmentT = (t1, . . . , tn)
such thatti = F if L ∩ Xi = {u0

i , u
1
i , u

3
i } andti = T if L ∩ Xi = {u0

i , u
2
i , u

3
i }.

Note that for anyj = 1, . . . , m, if L ∩ Yj = {w0
i , w

k
j , w4

j } for somek = 1, 2, 3, it
must be the case thatplk

j
receives no message fromp2 in λ(L), because otherwise there

would be a chain of messages fromr1 to s2. Hence, the literallkj is true underT , i.e.,
cj is satisfied. As this holds for anyj = 1, . . . , m, we have successfully constructed a
satisfying assignment for our instance of 3CNF.

2

Remark 2.Clearly, the proof of Theorem 1 implies that PATH WITH NO CHAIN is NP-
hard. Moreover, we can consider a weaker version of DISCORD, in which the Allen

12

logic predicate is not part of the input. Namely, fort ∈ {p,p−1,o,o−1,d,d−1}, let
DISCORDt(H, m1, m2) be the problem of checking whetherdiscordH(m1, m2) � t.
Obviously, fort = p−1 this problem is trivially in P: the answer is always “yes”.
Our proof shows that fort = p this problem is coNP-hard. To show that it is hard
for t = o, we can modify the reduction by changing the direction ofm1 (i.e., setting
P (s1) = p2, P (r1) = p1) and adding to the MSC inv0 a messagem′

1 = (s′1, r
′
1) from

p1 to p4 with r1 <p1
s′1. Then in any path inH there is a chain fromr1 to r2, and there

is a path with no chain froms1 to s2 if and only if the 3CNF formula has a satisfying
assignment. Similarly, to show that DISCORDd−1 (H, m1, m2) is coNP-hard, we change
the direction ofm1, to show that DISCORDd(H, m1, m2) is coNP-hard, we change the
direction ofm2, and to show that DISCORDo−1(H, m1, m2) is coNP-hard, we change
the direction of bothm1 andm2. We conclude that all five non-trivial versions of the
problem are coNP-hard.

5.2 Polynomial-time algorithms for bounded number of processes

In our hardness result, both the size of the graphG and the number of processesP are
unbounded. It turns out that this is necessary: if either of these parameters is constant,
there is an algorithm whose running time is polynomial in theother parameter.

This is easy to see if the size of the graph is constant. In particular, the naive al-
gorithm described in the beginning of this section will run in polynomial time: in a
graph with a constant number of vertices, there is a constantnumber of simple paths
and cycles, and one can compute the discord along a path in polynomial time.

The case when the number of processes is constant is considerably more compli-
cated. Our algorithm for this setting is based on Dijkstra’sshortest path algorithm com-
bined with dynamic programming approach. The underlying idea is that given a pair of
eventse ∈ λ(v), e′ ∈ λ(v′) and a subset of processesS, we can check if there is a path
L from v to v′ such that the set of processes reachable frome in λ(L) is exactlyS. A
straightforward generalization of this idea allows us to compute the discord of any pair
of messages in an HMSC in polynomial time for any fixed value of|P|. Formally, we
prove the following result.

Theorem 2. It is possible to computediscordH(m1, m2) in timeO(n324|P||H |2).

We start by describing an algorithm for PATH WITH NO CHAIN . Next, we show
how to generalize it to computediscordH(m1, m2). Note that just like in Dijkstra’s
algorithm, we simultaneously check whether there is a path with no chain from a given
evente ∈ C = λ(v) to all other events. Therefore, this algorithm can be easilyadapted
to compute the discords for all pairs of messages inH in timeO(n324|P||H |3).

Let K be a strict upper bound on the number of events on any process line in any
MSC inH . Re-number all events so thatek

i,j , k = 1, . . . , K − 1, is thekth event on the
process linepj in the MSCCi. For the purposes of the algorithm, we will introduce two
dummy eventsemin

i,j andemax
i,j on each process line of every MSC inH . The eventemin

i,j

precedes all eventsek
i,j , and the eventemax

i,j follows all eventsek
i,j . It is important to

note that these are not send or receive events, so they have noeffect on the information
flow in H . However, we will occasionally talk about chains to and fromthese events,

13

where a chain is defined in the same way as for regular events. We say that a processpj

is reachablefrom e along a pathv = (v, . . . , vi) if in the MSC (C; . . . ; Ci) there is a
chain frome to emax

i,j .
The outline of the algorithm is presented in Figure 7. First,for each MSCCi and

all l = 1, . . . , |P|, the procedureComputeX(); checks whether there is a chain
from emin

i,l to all other events in this MSC. More precisely, fork = 1, . . . , K − 1,
ComputeX(); setsX(i, j, k, l) = 1 if in Ci there is a chain fromemin

i,l to ek
i,j and

X(i, j, k, l) = 0 otherwise. Also, it setsX(i, j, K, l) = 1 if in Ci there is a chain from
emin

i,l to emax
i,j , andX(i, j, K, l) = 0 otherwise. Note that forj 6= l there can be no

chain fromemin
i,j to emin

i,l . By Corollary 1, we can implementComputeX(); in time
O(|H |2).

PNCH(e, ek
i,j);

1. ComputeX();
2. ComputeY();
3. forall i′ such that (vi′ , vi) ∈ E
4. forall S ⊆ P
5. if Y[S , i] = 0 break;
6. forall pl ∈ P \ S
7. if X(i, j, k, l) = 1 break;
8. return ‘‘yes’’;

Fig. 7. The algorithm forPNCH(e, ek
i,j). The implementation ofComputeY(); is given in

Figure 8.

Now, for anyS ⊆ P let Y (S, i) be a variable that indicates whether there is a path
L in G from v to vi such that inλ(L) none of the processes inS is reachable frome. We
setY (S, i) = 1 if such a path exists andY (S, i) = 0 otherwise. The values ofY (§, i)
are computed by the procedureComputeY(); given in Figure 8. We will discuss how
to implementComputeY(); later on.

Now, assume that we have computedY (S, i), X(i, j, k, l), for all S ⊆ P , i =
1, . . . , n, i, j = 1, . . . , |P|, k = 1, . . . , K. Then there is a path with no chain frome to
ek

i,j if and only if the conditions in the lines 3 — 7 hold, i.e., there is a pathL of the
form (v, . . . , vi′ , vi) and a setS ⊆ P such that for any processpl that is reachable from
e alongL′ = (v, . . . , vi′) (i.e., a process inP \ S), there is no chain fromemin

i,l to ek
i,j .

For a fixed eventek
i,j this condition can be verified in timen2|P||P|.

It remains to argue that the procedureComputeY(); in Figure 8 correctly computes
the values ofY (S, i). The procedure starts by initializing the variablesY[S, i] (lines
1—6). Fori 6= 1, it setsY[S, i] = 0 for all S ⊆ P . For i = 1, it computesY (S, 1)
(recall thatY (S, 1) = 1 if and only if there is no chain frome to emax

1,j for anypj ∈ S)
and setsY[S, i] = Y (S, i). The algorithm then repeats a Dijkstra-like “relaxation” step
n times. During each step, the value of eachY[S, i] may be changed from 0 to 1.

The correctness of the algorithm follows from two simple claims.

14

ComputeY();
1. forall i = 2, . . . , n

2. forall S ⊆ P
3. set Y[S , i] = 0;
4. Set S0 = {pj | there is no chain from e to emax

1,j };
5. forall S ⊆ P
6. if S ⊆ S0 then set Y[S , 1] = 1 else set Y[S , 1] = 0;
7. Repeat n times
8. forall i = 1, . . . , n

9. forall S ⊆ P
10. if Y[S , i] = 1 break;
11. forall i′ such that (vi′ , vi) ∈ E
12. forall S ′ such that S ⊆ S ′ and Y[S ′, i′] = 1
13. forall pj ∈ S
14. forall pl ∈ P \ S ′

15. if X(i, j, K, l)=1 break;
16. Set Y[S , i] = 1;
17. return;

Fig. 8. The implementation ofComputeY();

Claim 2 If Y (S, i) = 0, that at any point in the execution ofComputeY(); we have
Y[S, i] = 0.

Proof. The proof is by induction on the execution of the algorithm. The claim is
clearly true after the initialization step. Now, suppose that at some point we change the
value ofY[S, i] from 0 to 1 for someS, i. This means that we have discovered some
i′,S′ such that(vi′ , vi) ∈ E , Y[S′, i′] = 1. By inductive assumption, this means that
there exists a pathL from v to vi′ such that in the MSC(C; . . . ; Ci′) there is no chain
from e to any of the processes inS′. Moreover, we also haveX(i, j, K, l) = 0 for any
pl ∈ P \ S′ and anypj ∈ S, i.e., in the MSC(C; . . . ; Ci′ ; Ci) there is no chain from
emin

i,l to emax
i,j . Now, suppose that in(C; . . . ; Ci′ ; Ci) there is a chain frome to some

pj ∈ S. As there are no events that are sent from one MSC and are received in another
MSC, this chain would have to go through someemax

i′,l , emin
i,l , l = 1, . . . , |P|. If pl ∈ S′,

this means that there is a chain in(C; . . . ; Ci′) from e to pl, a contradiction. On the
other hand, ifpl ∈ P \S′, there is a chain fromemin

i,l to emax
i,j , a contradiction again. We

conclude thatY (S, i) = 1. 2

Claim 3 If for someS, i, there exists a path(v, . . . , vi′ , vi) of lengthl such that in the
MSC(C; . . . ; Ci′ ; Ci) there is no chain frome to any of the processes inS, then afterl
stepsComputeY(); setsY[S, i] = 1.

Proof. The proof is by induction onl. The claim is obviously true forl = 1. LetS′ be
the set of all processes that are not reachable frome along(C1, . . . , Ci′). By inductive
assumption, afterl−1 steps we haveY[S, i′] = 1. Also, by construction, in(C; . . . ; Ci′)
there is a chain frome to emax

i,l for any l ∈ P \ S′. Hence, we haveX(i, j, K, l) = 0

15

for any pl ∈ P \ S′, pj ∈ S. Therefore, during thelth step, our algorithm will set
Y[S, i] = 1. 2

It is not hard to verify that the running time ofComputeY() is O(n|E|22|P||P|2).
Indeed, the running time of this procedure is dominated by the cycle in lines 8–16,
which is repeatedn times. During each such cycle, we consider each edge ofE exactly
once (in lines 8 and 11), for each such edge we consider two subsets ofP , and for each
choice of these subsets we consider a pair of processes and doa constant-time check
for this pair.

The overall running time of our algorithm can then be expressed asO(n|E|22|P||P|2+
|H |2) = O(n322|P||H |2).

Now, suppose that we are given a pair of messagesm1 = (s1, r1) ∈ λ(v), m2 =
(s2, r2) ∈ λ(v′). By Proposition 2, we can check whetherdiscordH(m1, m2) = t for
t ∈ {p,o,d−1,p−1} by making at most three calls toPNCH();. However, to decide
betweendiscordH(m1, m2) = d anddiscordH(m1, m2) = o−1, we need additional
tools. Fortunately, it turns out that one can modifyPNCH(); to solve this problem.

To verify whetherdiscordH(m1, m2) = d, we first computePNCH(s1, s2). If we
havePNCH(s1, s2) = 0, thendiscordH(m1, m2) ≺ d, so the answer is negative.
Otherwise,discordH(m1, m2) 6= d if and only ifG contains a pathL from v to v′ such
that inλ(L) there is no chain froms1 to s2 and no chain fromr1 to r2. To find such a
path, we first computeX(i, j, k, l) usingComputeX();. We then defineY ′(S,S′, i)
as follows: for anyS,S′ ⊆ P and anyi = 1, . . . , n, setY ′(S,S′, i) = 1 if there is
a pathL from v to vi such that inλ(L) none of the processes inS is reachable from
s1 and none of the processes inS′ is reachable fromr1. It is straightforward to modify
ComputeY(); so that it computesY ′(S,S′, i) instead ofY (S, i). The running time
of the modified version isO(n|E|24|P||P|2), as we have to consider all possiblepairs
of subsets ofP in adjacent nodes.

Now, suppose that we have computedY ′(S,S′, i) for all S,S′ ⊆ P , i = 1, . . . , n.
Assume thatv′ = vi∗ ands2 = ek

i∗,j , r2 = ek′

i∗,j′ We havediscordH(m1, m2) ≻ d if
and only if there exists a tripleS,S′, i′ such that

(1) (vi′ , vi∗) ∈ E ;
(2) Y ′(S,S′, i′) = 1;
(3) for anypl ∈ P \ S we haveX(i∗, j, k, l) = 0;
(4) for anypl ∈ P \ S′ we haveX(i∗, j′, k′, l) = 0.

These conditions can be verified in timeO(n22|P||P|). Hence, the overall running time
of our algorithm isO(n324|P||H |2), which proves Theorem 2.

6 From Pairs of Messages to HMSCs

In some situations, it is convenient to characterize the discord of an HMSC with a single
parameter rather than list the discords for all pairs of messages in this HMSC. To this
end, we extend the definition of discord from pairs of messages to entire HMSCs by
defining the discord of an HMSCH to be the worst discord over all pairs of messages
in H . Formally, we setDiscord(H) = max≺{discordH(m1, m2) | m1 ∈ λ(v), m2 ∈

16

λ(v′), (v, v′) ∈ E∗}, whereE∗ is the transitive closure of the edge setE , andmax≺A
is the maximal element of the setA with respect to≺.

According to this definition, one can computeDiscord(H) by computing the dis-
cords for all pairs of messages inH . However, in general, computingdiscordH(m1, m2)
is coNP-hard, so this approach is not efficient. Quite surprisingly, it turns out that there
exists a different approach that allows us to computeDiscord(H) in polynomial time.
It is based on the fact that while it may be hard to check whether there exists a chain be-
tween two events, it is easy to prove that there is no chain between twoextremalevents,
for a suitable definition of extremality.

In the rest of the section, we describe polynomial-time algorithms for checking that
Discord(H) = t for t ∈ {p,p−1,o,o−1,d−1}. To check whetherDiscord(H) = d,
we can simply run all these algorithms and return “yes” if allof them return “no”. We
analyze the efficiency of these algorithms in terms ofn = |V|, |P| and |H |; observe
that we can assumen = O(|H |), |P| = O(|H |).

For the casest ∈ {p,o,d−1}, we will make use of a setE⋆ ⊂ V × V , con-
structed as follows:(v, v′) ∈ E⋆ if and only if (v, v′) ∈ E or there exists a path
(v = vi1 , vi2 , . . . , vik−1

, vik
= v′) such that forj = 2, . . . , k − 1 the MSCλ(vij

)
has an empty message set. Note thatE⋆ is a subset of the transitive closure ofE , i.e.,
(v, v′) ∈ E⋆ implies that inG there is a path fromv to v′.

To constructE∗, we can run the depth-first search from each node ofV , backtracking
as soon as we discovered a node whose MSC has a non-empty message set. Clearly, this
algorithm finds a path fromv to v′ if and only if (v, v′) ∈ E⋆. Moreover, as depth-first
search runs in timeO(|V| + |E|) = O(|H |), the total running time of this algorithm is
O(n|H |).

Discord(H) = p. We will show thatDiscord(H) = p if and only if for any(v, v′) ∈
E⋆, and anym1 ∈ λ(v), m2 ∈ λ(v′) we havediscord(λ(v);λ(v′))(m1, m2) = p.

Indeed, if for some suchm1, m2 we havediscord(λ(v);λ(v′))(m1, m2) 6= p, then ob-
viouslyDiscord(H) 6= p. Conversely, consider any pair of messagesm1 = (s1, r1) ∈
λ(v), m2 = (s2, r2) ∈ λ(v′) and any pathL = (v = vi1 , . . . , vik

= v′). We
show by induction onk that if our condition holds thendiscordλ(L)(m1, m2) = p.
The proof is based on the fact that for any three time intervals A, B, C, we have
ApB ∧ BpC =⇒ ApC. Fork = 2, the statement is obvious. Now, supposek > 2.
If for each j = 2, . . . , k − 1, the MSCλ(vij

) has an empty message set, then we
haveλ(L) = (λ(v); λ(v′)), sodiscordλ(L)(m1, m2) = p. Now suppose that for some
j ∈ {2, . . . , k − 1} the MSCλ(vij

) has non-empty message set and consider some
m = (s, r) ∈ λ(vij

). SetL′ = (vi1 , . . . , vij
), L′′ = (vij

, . . . , vik
). By induction hy-

pothesis,discordλ(L′)(m1, m) = p, discordλ(L′)(m, m2) = p, so inλ(L′) there is a
chain fromr1 to s, and inλ(L′′) there is a chain fromr to s2. We conclude that inλ(L)
there is a chain fromr1 to s2, i.e.,discordλ(L)(m1, m2) = p.

This algorithm can be implemented in timeO(n|H |2) as follows: we first construct
E⋆ (as shown above, this can be done in timeO(n|H |)), and then for each(v, v′) ∈ E⋆

we compute the relation<∗ for the concatenated MSC(λ(v); λ(v′)) (this can be done
in timeO(n|H |2) for all (v, v′) ∈ E⋆ by Corollary 1) and use it to check the discord of
all pairsm1 ∈ λ(v), m2 ∈ λ(v′) (again, by Corollary 1 this takes timeO(n|H |2)).

17

Discord(H) = o. The algorithm and the analysis are similar to the previous case.
Namely,Discord(H) = o if and only if Discord(H) 6= p (which can be verified in
polynomial time, as described above) and for any(v, v′) ∈ E⋆ and anym1 = (s1, r1) ∈
λ(v), m2 = (s2, r2) ∈ λ(v′) we havediscord(λ(v);λ(v′))(m1, m2) ∈ {p,o}. The
running time of this algorithm isO(n|H |2).

The proof is based on the fact that for any pathL = (v = vi1 , . . . , vik
= v′), any

(L′, L′′) such thatL′ = (vi1 , . . . , vij
), L′′ = (vij

, . . . , vik
) and anym = (s, r) ∈

λ(vij
), if discordλ(L′)(m1, m) ∈ {p,o} and discordλ(L′′)(m, m2) ∈ {p,o} then

discordλ(L)(m1, m2) ∈ {p,o}. To see this, note thatdiscordλ(L′)(m1, m) ∈ {p,o}
implies thatλ(L′) has chains froms1 to s and fromr1 to r, anddiscordλ(L′′)(m, m2) ∈
{p,o} implies thatλ(L′′) has chains froms to s2 and fromr to r2. Hence, inλ(L) there
are chains froms1 to s2 and fromr1 to r2, i.e.,discordλ(L)(m1, m2) ∈ {p,o}.

Discord(H) = d−1. The algorithm and the analysis are similar to the previous
two cases. Namely,Discord(H) = d−1 if and only if Discord(H) 6= p,o (which can
be verified in polynomial time, as described above) and for any (v, v′) ∈ E⋆ and any
m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) we havediscord(λ(v);λ(v′))(m1, m2) ∈
{p,o,d−1}. The running time of this algorithm isO(n|H |2).

The proof uses the fact that for any pathL = (v = vi1 , . . . , vik
= v′), any(L′, L′′)

such thatL′ = (vi1 , . . . , vij
), L′′ = (vij

, . . . , vik
) and anym = (s, r) ∈ λ(vij

),
if discordλ(L′)(m1, m) ∈ {p,o,d−1} anddiscordλ(L′)(m, m2) ∈ {p,o,d−1} then
discordλ(L)(m1, m2) ∈ {p,o,d−1}. Indeed,discordλ(L′)(m1, m) ∈ {p,o,d−1} im-
plies thatλ(L′) contains a chain froms1 to s, anddiscordλ(L′′)(m, m2) ∈ {p,o,d−1}
implies thatλ(L′′) contains a chain froms to s2. Hence, inλ(L) there is a chain from
s1 to s2, i.e.,discordλ(L)(m1, m2) ∈ {p,o,d−1}.

Discord(H) = p−1. If Discord(H) = p−1, there exists a pair of nodesv, v′ ∈ V ,
a pair of messagesm1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) and a pathL =
(v = vi1 , . . . , vik

= v′) such thatdiscordλ(L)(m1, m2) = p−1, i.e., inλ(L) there is
no chain froms1 to r2. Let C = λ(v), C′ = λ(v′), andC̄ = λ(vi2 , . . . , vik−1

).
Let s be a maximal send event in(C; C̄) such there is a chain froms1 to s, and let

r be the corresponding receive. Setp = P (s), q = P (r). It is easy to see that inL
there is no chain froms to r2, or, equivalently,(s, r)p−1m2. Therefore, without loss
of generality we can assumem1 = (s, r), i.e.,s1 is a maximal send event in(C; C̄).
This implies that in(C; C̄) there are no send events onp that happen afters1, and there
are no send events onq that happen afterr1 (for any such event, there would be a chain
from s1 to this event). Moreover, inC′ there is no chain from any event ofp or q to r2.

This suggests the following algorithm. For each pairv, v′ ∈ V , and each pair of
messagesm1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) do the following. Setp =
P (s1), q = P (r1). Let H(v, v′, p, q) be the HMSC obtained by deleting fromH all
nodes other thanv, v′ that have send events onp or q. Output “yes” if all of the following
four conditions hold:

(1) in λ(v) there are no send events onp afters1;
(2) in λ(v) there are no send events onq afterr1;

18

(3) inλ(v′) there is no chain from any event ofp or q to r2 (in particular,P (r2) 6= p, q);
(4) the HMSCH(v, v′, p, q) contains a path fromv to v′.

If (1) — (4) are all true, then the pair(m1, m2) provides a witness thatDiscord(H) =
p−1. Conversely, by the reasoning above, ifDiscord(H) = p−1, then there is a pair
(m1, m2) that satisfies (1) — (4).

The running time of this algorithm can be bounded byO(|H |3). To see this, note
that there areO(|H |2) pairs of messagesm1 ∈ λ(v), m2 ∈ λ(v′). For each such pair,
conditions (1) — (3) can be verified in timeO(|H |) assuming that the relation<∗ for
λ(v′) has been precomputed (by Corollary 1, we can precompute<∗ for all MSCs that
appear inH in time O(|H |2)). Condition (4) corresponds to solving a single instance
of reachability problem, so it can be checked in timeO(|H |) as well.

We can change the order of operations so that the algorithm runs in timeO(|P|2|H |2).
This is more efficient if|P|2 < |H |, which is likely to be the case in practice. First, we
compute the transitive closure of each MSC inH ; by Corollary 1, this can be done in
time O(|H |2). Then for eachv ∈ V , each evente in λ(v), and eachp ∈ P , we use the
information about the transitive closure to check whether in λ(v) there is a chain from
any event ofp to e. There areO(|H |) events,|P| processes, and for each pair(p, e),
e ∈ Ei, this computation takesO(|H |) steps, so this can be done in timeO(|P||H |2).

Next, fix a pairp, q ∈ P and setV 0(p, q) = {v ∈ V | λ(v) has no send events onp, q}.
Consider a modified version of depth-first search onG that backtracks as soon as it
reaches a node inV \V 0(p, q). This algorithm discovers a path fromv to v′ if and only
if the HMSCH(v, v′, p, q) contains a path fromv to v′. From any givenv, it runs in
time O(|H |). For eachvi ∈ V we will do the following. Find the last send event onp,
identify the corresponding receive and check whether it is on q and there are no send
events onq after it. This can be done in timeO(|H |). Then we run fromvi the modi-
fied version of the depth-first search described above. For any vj discovered during this
search and for each receive event ofCj = λ(vj), we check if it is not reachable from
any event ofp or q using the precomputed information.

For each triple(p, q, v), we traverse each edge ofE at most twice, and do a constant-
time computation for each event ofH . Hence, the computation that has to be done for
each triple(p, q, v) takesO(|H |) steps, and the total running time of our algorithm is
O(|P||H |2 + |P|2n|H |) = O(|P|2|H |2), as claimed.

Discord(H) = o−1. SupposeDiscord(H) = o−1. Then there exists a pair of nodes
v, v′ ∈ V , a pair of messagesm1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) and a path
L = (v = vi1 , . . . , vik

= v′) such thatdiscordλ(L)(m1, m2) = o−1, i.e., inλ(L) there
is a chain froms1 to r2, but no chain froms1 to s2 and no chain fromr1 to r2. Let
C = λ(v), C′ = λ(v′), andC̄ = λ(vi2 , . . . , vik−1

).
Observe that in(C; C̄) there is no chain fromr1 to any send events. Indeed, suppose

such a chain exists, and letr be the receive that corresponds to this send. If inλ(L) there
is no chain froms to r2, we would have(s, r)p−1(s1, r2), a contradiction. On the other
hand, a chain fromr1 to s together with a chain froms to r2 gives a chain fromr1 to r2

in λ(L), a contradiction again. By a similar argument, in(C̄; C′) there is no chain from
any receive eventr to s2.

19

Setp = P (r1), q = P (s2). It follows that inC there are no send events onp after
r1, in C′ there are no receive events onq befores2, and inC̄ there are no sends onp
and no receives onq. Obviously, inC there is no chain froms1 to any event ofq, and
in C′ there is no chain from any event ofp to r2. Moreover, it cannot be the case that
p = q, q = P (s1) or p = P (r2).

Consequently, we have the following algorithm for checkingwhetherDiscord(H) =
o−1. First check thatDiscord(H) 6= p−1. Then for each pairv, v′ ∈ V , and each pair
of messagesm1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) do the following. Set
p = P (r1), q = P (s2). Let H(v, v′, p, q) be the HMSC obtained by deleting fromH
all nodes other thanv andv′ that have send events onp or receive events onq. Output
“yes” if the following six conditions hold:

(1) we havep 6= q, q 6= P (s1), p 6= P (r2);
(2) in C there are no send events onp afterr1;
(3) in C′ there are no receive events onq befores2;
(4) in C there is no chain froms1 to any event ofq;
(5) in C′ there is no chain from any event ofp to r2;
(6) the HMSCH(v, v′, p, q) contains a path fromv to v′.

Suppose that for somev, v′ ∈ V , m1 ∈ λ(v), m2 ∈ λ(v′) (1) — (6) are all true.
By (6), there exists a pathL = (v = vi1 , . . . , vik

= v′) in H(v, v′, p, q). Setλ(v) = C,
λ(v′) = C′, C̄ = λ(vi2 , . . . , vik−1

). Suppose thatλ(L) contains a chain froms1 to
s2. As q 6= P (s1), p, this chain must contain a receive event onq. By (3), there is no
such event inC′, and by construction ofH(v, v′, p, q), there can be no such event in
C̄. Finally, by (4) there is no such event inC. Hence, inλ(L) there is no chain froms1

to s2. Similarly, a chain fromr1 to r2 must contain a send event onp, and there is no
such event inC (by (2)),C′ (by (5)), orC̄ (by construction ofH(v, v′, p, q)). Hence,
the pair(m1, m2) provides a witness thatDiscord(H) = o−1 Conversely, by the rea-
soning above, if for some pair(m1, m2) we havediscordH(m1, m2) = o−1, then our
algorithm will succeed. As in the previous case, this algorithm can be implemented in
timeO(|H |3) or, by changing the order of operations, inO(|P|2|H |2).

7 Conclusions

We proposed using Allen’s logic for detecting and measuringmessage order discrep-
ancy in HMSCs. We believe that Allen’s logic can be a versatile tool for other message
order-related problems in MSCs and HMSCs, such as, e.g., race conditions and message
overtake. Allen’s logic is very well studied from algorithmic perspective [12]; while in
this paper we did not use these results, they may be very useful for other applications
of Allen’s logic for message order analysis.

We introduced the notion of discord, which measures the difference between the
message order in an HMSC and the “ideal” message order for that HMSC. We have
shown a coNP-hardness result for computing the discord of a pair of messages in an
HMSC, as well as polynomial-time algorithms for restrictedversions of this problem.
In contrast, we showed how to find the worst-case discord of anHMSC in polynomial
time. We believe that the concept of discord will be useful inavoiding design errors

20

in HMSCs. In particular, it can be applied when one wants to partition a large HMSC
into smaller components: one should prefer partitions withsmall discord. Finally, con-
sider an MSC-based programming approach such as the “play-in, play-out” framework
of [10], which practically assumes synchronous MSC concatenation. Calculating dis-
cords allows one to quantify the potential for relaxing the synchronization assumption
and check for possible hazards. This may increase concurrency and efficiency of the
implementation and thus can be useful in protocol design.

References

1. James F. Allen, Maintaining Knowledge about Temporal Intervals. Communications of
ACM, vol. 26:11, pp. 832–843, 1983.

2. Rajeev Alur, Gerard Holzmann, Doron Peled, An Analyzer for Message Sequence Charts.
Software — Concepts and Tools17, pp. 70–77, 1996.

3. R. Alur, K. Etessami, M. Yannakakis, Realizability and Verification of MSC Graphs.
Theoretical Computer Science331(1): pp. 97–114, 2005.

4. H. Ben-Abdallah, S. Leue, Syntactic Detection of ProcessDivergence and Non-local
Choice in Message Sequence Charts. InTACAS’97, LNCS 1217, pp. 259–274, 1997

5. D. Brand and P. Zafiropulo, On Communicating Finite-StateMachines. Journal of the
ACM, 30(2), pp. 323–342, 1983.

6. W. Damm, D. Harel, LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design19(1), pp. 45–80, 2001.

7. E. Elkind, B. Genest, D. Peled, Detecting Races in Ensembles of Message Sequence
Charts, InTACAS’07, LNCS 4424, 2007.

8. R. W. Floyd, Algorithm 97 (Shortest Path), Communications of the ACM 1962, 356.
9. B. Genest, M. Minea, A. Muscholl and D. Peled. Specifying and Verifying Partial Order

Properties using Template MSCs. InFOSSACS’04, LNCS 2987, pp. 195–210, 2004.
10. D. Harel, R. Marelly, Come, Let’s Play: Scenario-Based Programming Using LSCs and

the Play-Engine. Springer Verlag, 2003.
11. ITU Z120 standard recommendation, 1996.
12. A. Krokhin, P. Jeavons, P. Jonsson, Reasoning about Temporal Relations: The Tractable

Subalgebras of Allen’s Interval Algebra. J. ACM 50(5), pp. 591–640, 2003.
13. M. Lohrey and A. Muscholl. Bounded MSC communication.Information and Computa-

tion 189, pp. 160–181, 2004.
14. A. Muscholl, D. Peled. Message Sequence Graphs and Decision Problems on

Mazurkiewicz Traces. InMFCS’99, pp. 81–91, 1999.
15. D. Peled. Specification and Verification of Message Sequence Charts. InFORTE’00, IFIP

CP 183, pp. 139-154, 2000.
16. S. Warshall, A Theorem on Boolean Matrices.Journal of the ACM9(1), pp. 11–12, 1962.

21

