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Abstract. The analysis of message sequence charts (MSCs) is highly impor-
tant in preventing common problems in communication protocols. Detecting race
conditions, i.e., possible discrepancies in event order, was studied for a single
MSC and for MSC graphs (a graph where each node consists of a single MSC,
also called HMSC). For the former case, this problem can be solved in quadratic
time, while for the latter case it was shown to be undecidable. However, the pre-
vailing real-life situation is that a collection of MSCs, called here an ensemble,
describing the different possible scenarios of the system behavior, is provided,
rather than a single MSC or an MSC graph. For an ensemble of MSCs, a poten-
tial race condition in one of its MSCs can be compensated by another MSC in
which the events occur in a different order. We provide a polynomial algorithm
for detecting races in an ensemble. On the other hand, we show that in order
to prevent races, the size of an ensemble may have to grow exponentially with
the number of messages. Also, we initiate the formal study of the standard MSC
coregion construct, which is used to relax the order among events of a process.
We show that by using this construct, we can provide more compact race-free
ensembles; however, detecting races becomes NP-complete.

1 Introduction

Software verification is an inherently difficult task. It is well known that it is undecid-
able for general domains. Moreover, even for finite domains many problems in this area
are computationally intractable. In particular, this is often the case for problems that
deal with concurrent processes. Another difficulty in applying verification methods for
software is the technology transfer, i.e., providing the users (which are programmers
and software engineers) with an easy-to-use and intuitive notation. It is thus beneficial
to be able to analyze a notation that is already in use by software developers.

Message sequence charts (MSCs) is a formalism that is widely used in software
engineering community and is formally described in [8]. This standard specification
formalism consists of a textual notation, and a corresponding graphical notation. One
MSC represents the relative order between message send and receive events (and some-
times also local events). A collection of charts represents alternative executions, which
can also be organized into a graph, where each node is an MSC. The latter construction
is called an MSC graph, or a High-level MSC (HMSC).



In recent years, several algorithms for analyzing MSCs and HMSCs have been sug-
gested [4, 6, 10–13]. Perhaps the first problem to be analyzed was that of detecting race
conditions [2]. This problem arises because in the MSC notation, the events of each
process must be totally ordered. On the other hand, because of limited control on speed
of message propagation, messages do not always arrive in the order specified by the
MSC. In other words, there are two partial orders associated with each MSC: the visual
order, which corresponds to the graphical description of the MSC, and the causal order,
i.e., the order that is under the control of the programmer (e.g., sending a message after
receiving another one, but on the other hand, not the order between two messages re-
ceived from different processes). A race condition is defined as a discrepancy between
the two orders.

A polynomial-time transitive closure-based algorithm for race detection was pro-
posed in [2]. This algorithm is used in various tools, in particular in Bell Labs’ uBET
tool [7]. In [15], the authors generalize this problem to HMSCs and show that in this set-
ting, it becomes undecidable. This is also the case for many other problems for HMSCs,
such as HMSC intersection and LTL model checking of HMSCs [3, 14]. Intuitively,
these undecidability results follow from the fact that the HMSC notation describes a
system with no bound on the number of messages in transit. This complication can
be avoided either by fixing a bound on the process queues, or by imposing various
structural restrictions. The latter approach is taken by [3, 14]; their proofs proceed by
bounding the size of the queues as a function of the HMSC.

Alur et al. [1] analyze several decision problems for a set of MSCs, rather than for a
single MSC or an HMSC. In particular, they consider the problem of deciding whether
a combination of behaviors for different processes specified by different MSCs is cov-
ered in the MSC collection. This is a very natural setting, as in many cases, the actual
objects that software engineers have to deal with are collection of scenarios (described
as MSCs), rather than a single MSC or an HMSC (one reason for this is that the seman-
tics of HMSCs is not quite clear due to different ways of defining the concatenation of
MSCs [15, 5]).

In this paper, we consider the problem of detecting race conditions in an ensemble
of MSCs, i.e., a collection of MSCs over the same set of events. In this setting, even
if in one of the MSCs the messages arrive in an order different from the one specified,
another MSC in the collection may capture this alternative order. Thus, avoiding race
conditions corresponds to covering alternative orders of events for one MSC by other
MSCs in the collection. More precisely, race conditions can be defined in terms of the
sets of linearizations (completions to total orders) of both orders associated with each
MSC. Namely, for each MSC the visual order and the causal order typically produce
different sets of linearizations (with the latter set including the former set). We say that
an ensemble of MSCs contains a race if there is a linearization of the causal order of
some MSC that is not a linearization of the visual order of any MSC in the ensemble.

We describe an efficient algorithm for finding race conditions, which extends the
one of [2] for a single MSC. The running time of our algorithm is cubic in the repre-
sentation size of the problem, i.e, the number of MSCs in the collection and the size of
each MSC. However, in many cases one would need a large number of MSCs to avoid
races: we describe some natural scenarios such that in any race-free collection that rep-
resents them the number of MSCs in the collection is exponential in the number of



messages. Sometimes this problem can be alleviated by using coregions, which can be
used to bundle together events in a single MSC. To the best of our knowledge, this pa-
per provides the first formal study of the complexity and succinctness of this notational
primitive, though it was already defined in [9] (see also [5, 16] for coregions in LSCs
and in TMSCs). Intuitively, it removes restrictions on the relative order of events that
appear in it. We provide examples in which using coregions results in an exponentially
smaller race-free collection. However, the more compact representation comes at a cost,
as the problem of detecting races becomes NP-complete, even for the most restrictive
definition of a coregion.

2 Preliminaries

In this section, we formally define message sequence charts (MSCs) as well as two
partial orders that are associated with them. Intuitively, a message sequence chart can
be graphically represented as a collection of process lines, where messages are depicted
as arcs that link the sending process with the receiving process. This representation
implies an ordering over all events that belong to the same process, as well as between
send and receive events that correspond to the same message.

Definition 1. A message sequence chart (MSC) M = (E,<M ,P, `, S,R, r) is given
by a set of events E, a partial order <M on E, a set P of processes, and a mapping
` : E 7→ P that associates each event in E with a process. For each process P , the
set `−1(P ) is totally ordered by <P =<M |P . The event set is partitioned as E =
S∪R, where S and R are the sets of send and receive events, respectively. Furthermore,
r : S 7→ R is a bijective mapping that relates each send with a unique receive. We
assume that a process cannot send a message to itself, i.e., for any e ∈ S we have
`(e) 6= `(r(e)).

Set e <c f for every e, f such that r(e) = f . It is required that <M is equal to the
transitive closure of <c ∪

⋃
P∈P <P . The relation <M is called the visual order of the

message sequence chart M .

In practical systems, there is often no way to ensure that two messages from different
processes arrive in the same order. This means that the visual order may provide more
ordering over events that is achievable in practice. This issue can be tackled by intro-
ducing a weaker partial order, which only orders two events if they necessarily happen
in that order in any execution. There are three classes of such events. First, it is clear
that each send occurs before the corresponding receive. Second, a process can condition
sending a message on sending or receiving some other messages. This means that each
send event always happens after all send and receive events of the same process that
precede it in the visual order. Finally, we assume that processes communicate through
a fifo channel, which guarantees that any two messages sent by one process to another
always arrive in the correct order. This set of requirements can be formalized as follows.

Definition 2. Given a message sequence chart M = (E,<,P, `, S,R, r), its causal
order ≺M is a transitive closure of the precedence relation ≺M

0 , where for two events
e, f ∈ E we have e ≺M

0 f if one of the following conditions holds:

– e and f are a matching send-receive pair, i.e., r(e) = f ;



– `(e) = `(f) = P , e <P f , and f ∈ S;
– `(e) = `(f) = P , e, f ∈ R, r−1(e) = e′, r−1(f) = f ′, `(e′) = `(f ′) = P ′, and

e′ <P ′ f ′.

Let L(X) be the set of all linearizations (i.e., completions to total order) of a partial or-
der X . Clearly, for any message sequence chart M , e ≺M f implies e <M f ; however,
the converse does not hold. In other words, we have L(<M ) ⊆ L(≺M ). To simplify
notation, we write L<(M) instead of L(<M ) and L≺(M) instead of L(≺M ).

Definition 3. We say that a message sequence chart M contains a race condition if
there are two events e, f ∈ E such that e <M f , but e, f are unordered by ≺M .

Intuitively, a race condition means that the causal order allows more executions than the
visual order, i.e., by restricting our attention to scenarios prescribed by the visual order,
we may miss some (unexpected) executions. This situation is illustrated in Figure 1: in
each MSC, the order of the two receive events of the second process is specified by the
visual order, but not by the causal order. Hence, it is desirable to have an algorithm that
detects races.

P1 P2 P3

1e

e3

e2

e4

e4

P1 P2 P3

1e e2

e3

M1 M2

Fig. 1. Each of M1, M2 admits a race. In M1, we have e3 <M1 e4, but e3 and e4 are unordered
by ≺M1 . In M2, we have e4 <M2 e3, but e3 and e4 are unordered by ≺M2 . However, taken
together, M1 and M2 cover all possible executions.

An equivalent definition of a race is to say that the set of all linearizations of <M is
strictly contained in the set of all linearizations of ≺M . As we have L<(M) ⊆ L≺(M)
for any M , it follows that M contains a race if and only if L≺(M) 6= L<(M). The
advantage of this definition is that it is easier to generalize it to collections of MSCs,
defined below.

3 Race detection in multiple MSCs

We start by introducing the notion of an ensemble of message sequence charts. In-
tuitively, it is a collection of several message sequence charts describing acceptable
behaviors of the system. Consequently, the message sequence charts in an ensemble
describe different partial orders (both visual and causal) on the same set of events.

Definition 4. An ensemble of MSCs is a set M = {M1, . . . ,Mm} such that



– E1 = · · · = Em = E;
– P1 = · · · = Pm = P;
– for any e ∈ E, it holds that `1(e) = · · · = `m(e) = `(e);
– S1 = · · · = Sm = S, R1 = · · · = Rm = R;
– for any e ∈ S, it holds that r1(e) = · · · = rm(e) = r(e).

Remark 1. Note that in general the admissible executions may not share the same set
(and type) of events, i.e., the MSCs given in the input do not necessarily form an en-
semble. However, in this case one can easily decompose the input into a collection of
ensembles. Therefore, checking ensembles rather than arbitrary collections of MSCs
does not lead to a loss of generality.

For an ensemble M = {M1, . . . ,Mm} of message sequence charts, we define
L<(M) = ∪i=1,...,mL<(Mi), L≺(M) = ∪i=1,...,mL≺(Mi). Similarly to the case of
a single message chart, we have L<(M) ⊆ L≺(M). We say that there is a race if
L<(M) 6= L≺(M). It may be the case that each MSC in M is not race-free, but M is:
for example, the two MSCs of Figure 1 form a race-free ensemble.

In the remainder of this section, we describe an algorithm that detect races in time
polynomial in the total size of the message sequence charts in M. Our approach is
based on the following idea. Consider a graph G whose vertices are all permutations of
events in E, and there is an edge between two vertices if the respective permutations can
be obtained from each other by reversing the order of two adjacent events. Clearly, if
|E| = N , then G has N ! vertices. Our algorithm does not construct this graph explicitly;
however, it will be useful in proving correctness of our algorithm. It easy to see that each
of the sets L≺(Mi), L<(Mi), i = 1, . . . ,m, forms a connected subgraph of this graph.
Note also that L<(Mi) ⊆ L≺(Mi) for all i = 1, . . . ,m. Moreover, if Mi 6= Mj , then
the sets L<(Mi) and L<(Mj) are disjoint. To see this, note that the visual orders <Mi

and <Mj differ if and only if they have different projections on some process line Pk,
i.e., some events ex and ey with `(ex) = `(ey) = Pk are ordered differently by <Mi

and <Mj . This means that for any Li ∈ L<(Mi) and Lj ∈ L<(Mj) the events ex and
ey will be ordered differently in Li and Lj as well, i.e., L<(Mi) ∩ L<(Mj) = ∅.

Proposition 1. The ensemble M contains a race if and only if for some i, j ∈ {1, . . . ,m}
and a permutation L1 the following conditions hold: (1) L1 ∈ L≺(Mi); (2) L1 is ad-
jacent in G to some permutation L2 ∈ L<(Mj); (3) L1 6∈ L<(M).

Proof. Clearly, if M does not contain a race, no such i, j and L1 can exist, as any
permutation in L≺(Mi) will be contained in L<(M).

For the opposite direction, suppose that M contains a race, that is, for some i ∈
{1, . . . ,m} there is a permutation L such that L ∈ L≺(Mi), L 6∈ L<(M). Consider
the subgraph of G induced by L<(M), and let L̂ be the maximal connected component
of this subgraph that contains L<(Mi). Clearly, we have L 6∈ L̂. On the other hand,
as L<(Mi) ⊆ L≺(Mi), there is another permutation L′ ∈ L≺(Mi) such that L′ ∈
L<(Mi) ⊆ L̂. Since the set L≺(Mi) is connected, there is a path in G that stays within
L≺(Mi) and leads from L to L′. The last vertex on this path is in L̂, while the first
one is not. Therefore, there exist two adjacent vertices (i.e., permutations) L1 and L2

on this path such that (i) both L1 and L2 are in L≺(Mi) and (ii) L2 is in L̂, while L1



is not. Moreover, we have L2 ∈ L<(Mj) ⊆ L̂ for some j ∈ {1, . . . ,m}. It remains to
show that L1 6∈ L<(Mk) for any k = 1, . . . ,m. For any k such that L<(Mk) ⊆ L̂, this
holds since L1 6∈ L̂. Now, suppose L1 ∈ L<(Mk) for some k such that L<(Mk) 6⊆ L̂.
Then L<(Mk) contains an element (i.e., L1) that is adjacent to L̂. This means that
the set L̂ ∪ L<(Mk) is connected. However, L̂ was defined as the largest connected
component of L<(M) that contains L<(Mi), a contradiction.

Hence, to check for races, it is sufficient to verify if the condition of Proposition 1
holds. The straightforward approach of checking this condition for each linearization
requires superpolynomial time. However, it turns out that we can partition candidate
linearizations in a polynomial number of classes that correspond to certain partial or-
ders, and check all linearizations in the same class simultaneously. Namely, consider
the following algorithm DetectRace(M).

DetectRace(M);
forall M = M1, . . . ,Mm do

forall P = P1, . . . , Pn do
K := |`−1(P )|;
for j = 1, . . . ,K − 1 do

<′
P = Swap(M,P, j);

<′M=<c ∪
⋃

P ′ 6=P <P ′ ∪ <′
P;

if PO(<′M ) and Disjoint(<′M ) then
forall N = M1, . . . ,Mm do

if PO(<′M ∪ ≺N ) return true;
return false;

The function Swap(M,P, j) returns the total order obtained from the order of the
events that belong to process P in message sequence chart M by switching the order
of the jth and the (j + 1)st event. The function PO(X) checks if its input relation X is
a partial order, i.e., contains no cycles. The function Disjoint(<′M ) checks that the
set of linearizations of <′M is disjoint from L<(M); its implementation is given below.
All other functions are straightforward to implement.

Disjoint(<′M);
forall N = M1, . . . ,Mm do

forall P = P1, . . . , Pn do
if <′M

P 6=<N
P break;

return false;
return true;

In words, for each message sequence chart M ∈ {M1, . . . ,Mm}, we consider the
visual orders of all MSCs that can be obtained from M by switching the order of two
consecutive events of some process. For each MSC obtained in this way, we check if
it is valid, i.e., contains no cycles, using the function PO. If this is indeed the case, we
check whether the linearizations of this MSC are not contained in L<(M) (function
Disjoint), and whether the union of the visual order of this MSC with the causal
order of some other MSC in M is a partial order. If both of these conditions hold, our
algorithm returns true, which means that M contains a race.



The correctness of our algorithm is proved via a sequence of lemmas.

Lemma 1. For any i, j = 1, . . . ,m and any L ∈ L≺(Mi), if L is adjacent to some
L′ ∈ L<(Mj) in G, then L can be obtained as a linearization of one of the partial
orders <′Mj constructed by DetectRace.

Proof. Consider a linearization L ∈ L≺(Mi) \ L<(Mj) that is adjacent to some L′ ∈
L<(Mj). Let ex and ey be the two events that are ordered differently in L and L′;
assume without loss of generality that ex precedes ey in L′. If ex and ey are not ordered
by <Mj , then changing their order will result in another linearization of <Mj . Hence,
we assume that ex <Mj ey .

By construction of the graph G, ex and ey have to be adjacent events in L′. Recall
that in <Mj the event ex has at most two immediate successors: et = r(ex) if ex ∈ S,
and the event ez that immediately follows ex on the same process line. Hence, ey ∈
{ez, et}. If ey = et, i.e., ex and ey are a matching send–receive pair, then ex ≺Mi ey;
as L ∈ L≺(Mi), ey cannot precede ex in L. Hence, ex and ey are consecutive events
of some process. Consequently, L ∈ L(<′M ) for M = Mj , P = `(ex) = `(ey) and j
equal to the position of ex in <P .

Lemma 2. For any j = 1, . . . ,m and any partial order <′Mj constructed by the algo-
rithm DetectRace such that PO(<′Mj ) = true, either the set of all linearizations of
<′Mj is disjoint from L(M) or <′Mj =<Mi for some i = 1, . . . ,m.

Proof. The partial order <′Mj is obtained from <Mj by changing the order of two
consecutive events of the same process. Hence, <′Mj also provides a total ordering on
the events of each process. If some other Mi ∈ M has the same projections on all
process lines, then by definition we have <′Mj =<Mi . Otherwise, for each Mi ∈ M
there is a pair of events ordered differently by <′Mj and <Mi . In this case, the sets
L(<′Mj ) and L<(Mi) are disjoint.

Lemma 3. For any two partial orders X and Y on the same set of events, we have
L(X) ∩ L(Y ) 6= ∅ if and only if X ∪ Y is a partial order.

Proof. If X∪Y is a partial order, we haveL(X∪Y ) 6= ∅. AsL(X∪Y ) ⊆ L(X)∩L(Y ),
we have L(X) ∩ L(Y ) 6= ∅.

Conversely, if X∪Y is not acyclic, assume for the sake of contradiction thatL(X)∩
L(Y ) 6= ∅ and let L be a linearization in L(X) ∩ L(Y ). Consider some cycle C =
{(e1, e2), . . . , (et−1, et), (et, e1)} in X ∪ Y ; there are two events e and f such that
(e, f) ∈ C, but f precedes e in L. Clearly, either (e, f) ∈ X , in which case L 6∈ L(X),
or (e, f) ∈ Y , in which case L 6∈ L(Y ). Hence, L 6∈ L(X)∩L(Y ), a contradiction.

Theorem 1. The algorithm DetectRace(M) returns true if and only if M admits a
race. Moreover, DetectRace(M) runs in time O(m2|E|3), where |E| is the number
of events in any MSC in M and m is the number of message sequence charts in M.

Proof. By Proposition 1, detecting a race is equivalent to finding a permutation that
satisfies conditions (1)–(3) in the statement of Proposition 1. By Lemma 1, for each
j = 1, . . . ,m, the algorithm DetectRace(M) considers all linearizations that lie
in the 1-neighborhood of L<(M j). By Lemma 2, the function Disjoint correctly



decides if any of these linearizations is not covered by L(M). Finally, by Lemma 3,
the last loop correctly determines if any of them can be a linearization of some causal
order ≺Mi , i = 1, . . . ,m. Hence, our algorithm never fails to detect a race. Conversely,
DetectRace(M) returns true only if it finds a linearization that lies in some ≺Mi ,
i = 1, . . . ,m, but is not contained in L<(M).

It remains to analyze the running time of our algorithm. For each triple M,P, j,
we call PO once to check if <′M is acyclic, call Disjoint to compare <′M with all
MSCs in M, and then for each MSC in M compute a union of two partial orders and use
PO again to check if it is acyclic. The function PO is based on computing the transitive
closure. As each event has at most two immediate successors, the transitive closure
computation can be done in time O(|E|2) [2]. Comparing the visual orders of two
MSCs can be done in time |E|. Hence, we use O(m|E|2) operations for each triple
M,P, j. As our algorithm only attempts to permute events that are adjacent on some
process line for some MSC, we only consider m|E| such triples. Hence, the running
time of DetectRace is O(m2|E|3), i.e., cubic in the size of the input.

4 Number of MSCs needed for closedness

In the previous section, we give an algorithm that checks whether an ensemble of mes-
sage sequence charts contains a race. Our algorithm is polynomial in the representation
size of the ensemble, that is, the number of events and the number of MSCs in the
ensemble. In this section, we investigate the relationship between these two parameters.
Two processes. Consider a message sequence chart M2 given in Figure 2. It consists
of two processes P1 and P2 and n = 4k events e1, . . . , en, and describes the scenario
when each process sends k messages to the other one, independently of the information
it receives. Clearly, the causal order of M2 induces a total order on all send events of
each process. Because of the fifo assumption it also induces a total order on all receive
events of the same process. However, the sends and receives of each process can be
interleaved in an arbitrary way.
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Theorem 2. For any ensemble M that contains M2, if M is race-free, then M contains
2Ω(n) message sequence charts.

Proof. Recall that for any linearization L of ≺M2 , its projection onto P1 is a total
order on the events e1, . . . , ek, e2k+1, . . . , e3k. Consider a collection of indices I =
{i1, . . . , ik}, where 1 ≤ i1 < · · · < ik ≤ 2k. We claim that for any such I , there exists
a linearization LI of ≺M2 such that its projection onto P1 has the jth receive event of
P1, i.e., e2k+j , in the ij th position. Indeed, we can construct LI by putting all send
events of P2 first, followed by all events of P1, where the jth receive event of P1 is in
the position k + ij , followed by all receive events of P2. Formally, it can be described
as a permutation LI = (e′1, . . . , e

′
4k) of the events in E such that for i = 1, . . . , k we

have e′i = ek+i, e′3k+i = e3k+i, and for i, . . . , 2k we have e′k+i = e2k+j if and only if
i = ij ∈ I , and the remaining events in {e′k+1, . . . , e

′
3k} are events from {e1, . . . , ek},

ordered so that ei precedes ej whenever 1 ≤ i < j ≤ k.
Now, consider any ensemble M that contains M2. The visual order of any MSC in

M provides a total order on the events of P1. Hence, for M to be race-free, for each set I
of the form described above, it has to contain an MSC whose visual order of the events
in P1 is the same as the one given by LI : otherwise, LI is not contained in L<(M).
There are

(
2k
k

)
= Θ(22k/

√
k) ways to choose the set I . Hence, to be race-free, M has

to contain at least Θ(22k/
√

k) = 2Ω(n) message sequence charts.

The proof of Theorem 2 depends on a subtle property of our definition of causal
order. Namely, for two events x ∈ R, y ∈ S, `(x) = `(y) = P , we assume that if x
precedes y in the visual order, then the same is true for the causal order. However, if x
follows y in the visual order, we do not require that they are ordered in the causal order
(they may still be ordered, of course, because of their causal relationships with other
events). An alternative definition of causal order requires that two events are ordered in
the causal order whenever they belong to the same process and at least one of them is
a send event. In other words, two x, y ∈ E such that `(x) = `(y) may be unordered
by the causal order only if x, y ∈ R. Of course, we still require the other properties of
the causal order, i.e., ordering a send and the corresponding receive, and fifo. It is easy
to see that under this definition of causal order, the argument of Theorem 2 no longer
applies. Moreover, it turns out that in this case, any message sequence chart with at
most two processes is race-free.

Proposition 2. For any message sequence chart M that contains exactly two processes
P1 and P2, we have <M≡≺′M , where≺′ is the variation of causal order defined above.

Proof. Consider two events ei and ej of P1 (the argument for P2 is identical). If one
of them is a send event, then, by definition, they are ordered in ≺′M . Now, suppose
that both of them are receive events and ei precedes ej in the visual order <M . Then
they both correspond to messages sent by P2, i.e., r−1(ei) = ei′ , r−1(ej) = ej′ , and
`(ei′) = `(ej′) = P2. The visual order has to obey the fifo property, i.e., we have
ei′ <P2 ej′ . As both ei′ and ej′ are send events, they are also ordered in the causal
order ≺′M . Finally, by applying the fifo property to ≺′M , we conclude that r(ei′) = ei

and e(ej′) = ej are ordered in ≺′M .
We have shown that ≺′M imposes an order on any two events that belong to the

same process. Also, we have e ≺′M r(e) for an e ∈ S. It follows that ≺′M and <M

order exactly the same events, i.e., <M≡≺′M .



Three processes. We will now show that with three processes we may need an ex-
ponential number of message sequence charts to avoid race conditions, even for the
modified definition of causal order ≺′.

Theorem 3. For any ensemble M that contains the MSC M3 given in Figure 3, if M is
race-free, then M contains 2Ω(n) message sequence charts.

The proof of this theorem is similar to that of Theorem 2 and is omitted. It relies on
the number of possible orderings of the events of the second process. As all of them are
receive events, it does not depend on which version of the causal order we use.

5 MSCs with coregions

One can represent admissible orderings of events more compactly using coregions. A
coregion is a notational primitive that covers two or more events. To the best of our
knowledge, this paper is the first attempt to provide a formal analysis of the succintness
of this notation. Intuitively, by putting events in a coregion we say that they can happen
in any order. There are several ways to formalize this intuition, depending on what
classes of events are allowed to appear in the same coregion.

Coregions that do not affect the causal order. The most restrictive approach is to
only allow events not ordered by the causal order within a coregion.

Definition 5. Given a MSC M on a set of processes P = {P1, . . . , Pn}, a core-
gion of type 1 for M is a set of events C = {e1, . . . , ek} such that e1, . . . , ek are
consecutive events of some process Pi ∈ P and no two events in C are ordered by
≺M . The causal order ≺(M,C) of the pair (M,C) is the same as the causal order of
M . To describe the visual order <(M,C) of the pair (M,C), we define the relation
<′

Pi
=<Pi \{(ex, ey) | ex, ey ∈ C} and let <(M,C) be the partial order induced by the

relation <c ∪
⋃

j 6=i <Pj ∪ <′
Pi

.

This definition can be extended to a message sequence chart with several coregions
C1, . . . , Ct in an obvious way. Namely, each coregion is required to consist of consec-
utive events of some process, and the visual order of the resulting message sequence
chart is obtained from the original one by deleting all pairs (ex, ey) such that both ex

and ey appear in the same coregion. We do not require that all coregions of a particular
MSC are disjoint. We will sometimes abuse notation and use M to denote an MSC with
one or more coregions. Also, we may refer to an MSC with coregions simply as an
MSC. The exact meaning will always be clear from the context.

It is easy to see that this construction can be used to decrease the number of MSCs
needed to avoid a race by exponential factor. An obvious example is provided by an
MSC with n + 1 processes P0, P1, . . . , Pn, in which each of P1, . . . , Pn sends a single
message to P0. In the absence of coregions, the visual order of P0 imposes a total order
on all n receive events, while the causal order allows for any ordering of them. Hence,
we need n! message sequence charts to avoid races, one for each possible permutation of
the receive events. On the other hand, if we are allowed to use coregions, we can simply
put all receive events inside a coregion, thus covering all linearizations admitted by the
causal order. The savings are not limited to MSCs with unbounded number of processes:



one can construct an example in which using coregions leads to an exponentially more
compact race-free ensemble for three processes.

Unfortunately, the more compact representation has a computational cost. Namely,
in Section 6 we show that for ensembles of MSCs with coregions detecting races be-
comes NP-hard. This result holds even if in all MSCs in the ensemble each process has
at most two coregions, all coregions are of type 1, and coregions of any process do not
overlap.
Coregions that may affect the causal order. In some settings, the requirement that
all events in a coregion are not ordered by the causal order can be too restrictive. To
increase the expressive power, we can use coregions to also express indifference about
the causal order of certain events. For example, we may want to say that given two
messages m1 and m2 from P1 to P2 and P1 to P3, respectively, it does not matter in
which order they are sent. To capture this meaning, we eliminate the restriction that all
events in a coregion must be independent with respect to ≺.

Definition 6. Given a MSC M on a set of processes P = {P1, . . . , Pn}, a coregion of
type 2 for M is a set of events C = {e1, . . . , ek} such that e1, . . . , ek are consecutive
events of some Pi ∈ P .

However, it turns out that for this definition of coregion, we cannot describe the set
of all linearizations implied by an MSC by a single partial order.

Example 1. Consider an MSC that corresponds to one process sending two messages
to another one. Formally, we set M = (E,<M ,P, `, S,R, r), where S = {s1, s2},
R = {r1, r2}, E = S ∪ R, P = {P1, P2}, `(s1) = `(s2) = P1, `(r1) = `(r2) =
P2. Suppose that we would like to use coregions to express that the messages can be
sent in any order. A natural way to do this is to set <P1= (s1, s2), <P2= (r1, r2),
C1 = {s1, s2}, C2 = {r1, r2}. Because of the fifo rule, the set L of all linearizations
that correspond to the causal order of this MSC consists of 4 elements, namely L1 =
(s1, s2, r1, r2), L2 = (s1, r1, s2, r2), L3 = (s2, s1, r2, r1), and L4 = (s2, r2, s1, r1).
We will now show that this set of linearizations cannot correspond to a single partial
order. For the sake of contradiction, suppose that there is a partial order X with this
set of linearizations. Clearly, if for some e, f ∈ E, e precedes f in some Li ∈ L, then
(f, e) 6∈ X . This allows us to derive (si, sj) 6∈ X , (ri, rj) 6∈ X , (ri, sj) 6∈ X for any
i, j = 1, 2, and also (s2, r1) 6∈ X , (s1, r2) 6∈ X . Hence, X can contain at most two
elements, namely, (s1, r1) and (s2, r2). But then (s1, s2, r2, r1) would be a linearization
of X , which is a contradiction.

Note also that, in contrast to the case of MSCs with coregions of type 1, the set L is
not connected.

Consequently, the definition of the set of all linearizations of an MSC with coregions
of type 2 is more complicated than that for a simple MSC.

Definition 7. Given a message sequence chart M and a collection C1, . . . , Ct of core-
gions of type 2 for M , let M be the ensemble of all valid message sequence charts
that can be obtained from M by permuting the events in each of the coregions arbi-
trarily. Let L≺(M,C1, . . . , Ct) denote the set of all linearizations of the causal or-
der of (M,C1, . . . , Ct), and let L<(M,C1, . . . , Ct) denote the set of all lineariza-



tions of the visual order of (M,C1, . . . , Ct). We define L≺(M,C1, . . . , Ct) = L≺(M),
L<(M,C1, . . . , Ct) = L<(M).

One can verify that the informal argument in Example 1 is consistent with Defi-
nition 7, i.e., the set L = {L1, L2, L3, L4} is exactly the set of all linearizations that
correspond to L≺(M,C1, C2). Moreover, for an MSC that only contains coregions of
type 1, the two definitions result in the same set of linearizations, both for causal and
for visual order. We will say that an MSC M with coregions C1, . . . , Ct captures an
ordinary MSC M ′ if M ′ ∈ M, where M is the ensemble of message sequence charts
constructed from M as in Definition 7.

By generalizing Example 1 to the case when P1 sends n messages to P2, we can see
that, compared to MSCs with coregions of type 1, using coregions of type 2 may result
in exponentially smaller race-free ensembles. Indeed, one can represent this scenario
by a single race-free MSC and two coregions of type 2: one for all send events, and one
for all receive events. On the other hand, an ensemble of MSCs with coregions of type
1 needs n! MSCs to be race-free. Another example is given by MSC in Figure 4, which
is obtained from the MSC in Theorem 3 by putting all events of P2 in a coregion. This
MSC is race-free; however, some of the events inside the coregion are ordered because
of the fifo rule, so we cannot use a coregion of type 1. Nevertheless, the worst-case
complexity of race detection is the same in both cases: in the next section, we show that
race detection is NP-complete for ensembles of MSCs with coregions of both types.

6 Hardness results

Formally, an instance of the problem of race detection is given by an ensemble M
whose elements are MSCs with coregions, i.e., each element of M is a list of the form
(M,C1, . . . , Ct), where M is a message sequence chart, and each Ci, i = 1, . . . , t, is a
coregion for M . We say that M is a “yes”-instance if and only if it admits a race.

Theorem 4. The problem of race detection in ensembles of MSCs with coregions is NP-
complete, even if each MSC in the ensemble only has coregions of type 1, each process
has at most two coregions, and no two coregions can overlap.

Proof. It is easy to see that this problem is in NP for coregions of both types: given
an ensemble M, a candidate linearization L and an MSC Mi ∈ M, we can check that
L ∈ L≺(Mi) and L 6∈ L<(Mj) for all Mj ∈ M.

For the opposite direction, the proof is by reduction from HAMILTONIAN PATH
problem. Recall that an instance of HAMILTONIAN PATH is given by a graph G =
(V,E), |V | = n. It is considered to be a “yes”-instance if and only if it contains a
simple path of length n− 1, i.e., there is an ordering vi1 , . . . , vin

of the elements of V
such that (vij

, vij+1) ∈ E for all j = 1, . . . , n− 1.
Given an instance G = (V,E) of HAMILTONIAN PATH, we construct an ensem-

ble M of MSCs that corresponds to it. Consider an MSC M0 that contains 2n + 1
processes, which are partitioned into two sets P1 = {P0, . . . , Pn} and P2 = {Pv |
v ∈ V }. Intuitively, M0 describes the scenario where each of the processes in P1

sends a single message to each process in P2. Formally, we set S = {sv
i }i=0,...,n,v∈V ,

R = {rv
i }i=0,...,n,v∈V , P = P1 ∪ P2. Also, for all i = 0, . . . , n, v ∈ V we define

r(sv
i ) = rv

i , `(sv
i ) = Pi, `(rv

i ) = Pv . Fix an ordering <V on the vertices of V . In M0,



all events of each process are ordered lexicographically, i.e., for any Pi ∈ P1 we have
su

i <Pi sv
i if and only if u <V v and for any Pv ∈ P2 we have rv

i <Pv rv
j if and only

if i < j. We will now construct an ensemble M that contains M0. By definition, each
M ∈ M has the same set of processes, the same sets of send and receive events, and
the same mappings r and ` as M0. We will also require that all M ∈ M order events in
S in exactly the same way as M0. Hence, to fully specify each M ∈ M, we will only
have to describe the order of the receive events for each process. Note that the causal
order of M0 imposes no restrictions on the relative order of the receives of any process.
Hence, for M to be race-free, the linearizations of the visual orders of MSCs in M must
cover all possible permutations of the receives.

To simplify notation, when describing the ordering of events on Pv , we will write i
instead of rv

i for i = 1, . . . , n and # instead of rv
0 . Consider a MSC MHP that satisfies

the following three conditions:

(1) for any Pv ∈ P2, there exists some i ∈ {1, . . . , n} such that the ordering of the
receives on Pv is (1, . . . , i,#, i + 1, . . . , n). This value of i is denoted by i(v);

(2) for all v 6= w ∈ V , i(v) 6= i(w);
(3) for any v ∈ V such that i(v) 6= n, there exists an edge (v, w) ∈ E such that

i(w) = i(v) + 1.

Intuitively, MHP describes a Hamiltonian path ρ in G: a vertex v is the ith vertex on
ρ if i(v) = i. As |V | = n, conditions (1) and (2) imply that for any i ≤ n, there exists
a unique vertex vi such that i(vi) = i, and condition (3) means that for every i < n,
(vi, vi+1) is an edge. Hence, ρ = v1 · · · vn is a Hamiltonian path. Therefore, if MHP

exists, then G has a Hamiltonian path; clearly, the converse is also true. We will now
construct a polynomial ensemble M′ of MSCs with coregions that captures all MSCs
that violate at least one of the conditions (1), (2), or (3). Set M = M′ ∪ {M0}; a race
condition in M is equivalent to the existence of an MSC MHP satisfying (1), (2) and
(3), and hence to the existence of a Hamiltonian path in G.

The ensemble M′ consists of three classes of MSCs with coregions: bad order
MSCs (ones that capture MSCs that violate condition (1)), no path MSCs (ones that
capture MSCs that violate condition (2)), and bad path MSCs (ones that capture MSCs
that violate condition (3)).

Consider a message sequence chart that violates condition (1) for some Pv . If the
first event of Pv is #, then this MSC can be captured by a message sequence chart
Mv,#. In this MSC Pv starts with #, followed by a coregion containing all other events
of Pv in arbitrary order. For each Pw, w 6= v, the events of Pw are ordered arbitrarily,
and there is a coregion that covers all of them. If Pv does not start with #, let k be
the first position in which the visual order of Pv deviates from the form prescribed by
condition (1). As all events j, j < k, appear in their prescribed positions, the event in
the position k must be l, l > k. We consider two cases, namely, k ≤ i(v) and k > i(v).

All MSCs that violate condition (1) for Pv with k ≤ i(v) and event l in the kth
position are captured by a message sequence chart M−

(v,k,l) defined as follows. For
all Pw, w 6= v, the events of Pw are ordered arbitrarily, and there is a coregion that
covers all of them. Moreover, the ordering of the first k events of Pv is (1, . . . , k−1, l),
followed by all other events (including #) in arbitrary order, and there is a coregion that
consists of all events that appear after l.



Similarly, all MSCs that violate condition (1) for Pv with k > i(v) and event l in
the kth position are captured by a message sequence chart M+

(v,k,l) defined as follows.
For all Pw, w 6= v, the events of Pw are ordered arbitrarily, and there is a coregion
that covers all of them. The ordering of the first k + 1 events of Pv is (1, . . . , k −
1,#, l), followed by all other events in arbitrary order. Also, there are two coregions
for Pv: one that consists of all events that appear before l (including #), and another
one that consists of all events that appear after l. Observe that M+

(v,k,l) may also capture
some MSCs where the first violation of condition (1) happens before k; nevertheless,
all MSCs covered by M+

(v,k,l) violate condition (1) for Pv in position k.
Now, consider an MSC that satisfies condition (1), but violates condition (2). This

happens if there are two vertices u and w such that # appears in the same posi-
tion k in Pu and Pv . Hence, all such MSCs can be captured by n3 no path MSCs
(M(u,v,k))u 6=v∈V,k≤n, defined as follows. In any M(u,v,k), for all Pw, w 6= u, v, the
events of Pw are ordered arbitrarily, and there is a coregion that covers all of them.
Furthermore, the events of Pu and Pv are ordered as (1, . . . , k, #, k + 1, . . . , n).

Finally, we need to cover all MSCs that satisfy conditions (1) and (2), but violate
condition (3). This happens if there is a pair of vertices u, v ∈ V such that (u, v) 6∈ E,
i(u) = k, i(v) = k + 1. All such MSCs can be captured by at most n3 bad path
MSCs (N(u,v,k))(u,v)/∈E,k<n, defined as follows. In any N(u,v,k), for all Pw, w 6= u, v,
the events of Pw are ordered arbitrarily, and there is a coregion that covers all of them.
Furthermore, the events of Pu are ordered as (1, . . . , k, #, k+1, · · · , n), and the events
of Pv are ordered as (1, . . . , k, k + 1,#, k + 2, · · · , n). Set

M′ =
⋃

v∈V

Mv,# ∪
⋃
v∈V

k 6=l≤n

M−
(v,k,l) ∪

⋃
v∈V

k 6=l≤n

M+
(v,k,l) ∪

⋃
u 6=v∈V

k≤n

M(u,v,k) ∪
⋃

(u,v)6∈E

k<n

N(u,v,k).

Recall that M = M′ ∪ {M0}, and observe that M0 violates condition (1). The causal
order of any M ∈ M is ≺M0 , i.e., it puts no restrictions on the relative ordering of
different receive events. For any MSCs M whose visual order violates (1), (2), or (3),
there is an MSC M ′ in M (with or without coregions) such that L<(M) ⊆ L<(M ′).
On the other hand, any M ∈ M violates at least one of the conditions (1), (2), and (3).

Now, suppose that G contains a Hamiltonian path. Then there exists an MSC MHP

described above, which satisfies all three conditions. The set L<(MHP ) is not covered
by L<(M), i.e., there is a race. Conversely, suppose that G contains no Hamiltonian
path, and let L be an arbitrary linearization of ≺M0 . Consider the MSC ML that is
obtained by projecting L onto processes in P . This MSC violates one of the conditions
(1), (2), or (3), so we have L<(ML) ⊆ L<(M). As L ∈ L<(ML), the result follows.

7 Conclusions
The MSC notation is important in describing scenarios of protocols. Its analysis allows
one to detect common design errors. One of the most basic problems in MSCs is that of
race conditions; the occurrence of events in an order that is different from the order of
their appearance in the MSC. Race conditions are defined for a single MSC as the dis-
crepancies between the visual order between events as they appear in the MSC, and the
causal order, which takes into account only the order that is under the control of the sys-
tem (e.g., excluding the order between receives from different processes). Equivalently,



this can be defined as the discrepancy between the corresponding sets of linearizations.
This relationship between partial orders and linearizations allows us to extend the prob-
lem beyond checking a single MSC. The classical algorithm for MSCs was described
in [2] and was implemented in the uBET system. For a graph of MSCs (HMSC), this
problem was shown to be undecidable [15].

In this paper we studied MSC ensembles, i.e., collections of MSCs for the same set
of messages. In this case, a race in a single MSC of the ensemble may be compensated
by another MSC with a different order of events. We describe a polynomial algorithm
for race detection, which extends the algorithm of [2]. On the other hand, the existence
of a polynomial algorithm can be attributed to the fact that a race-free ensemble of
MSCs may need to have an exponential (in the number of events) number of MSCs.

We also studied the coregion construct, a part of the standard which has not been
formally treated before. It allows encapsulating events (sends, receives) of a process
within a box, denoting the lack of any particular order between the events in the box.
We showed that by using this construct, one may achieve an exponential reduction in
the size of race-free ensembles; however, race detection becomes NP-complete.
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