Quasi-Static Scheduling of Communicating Tasks

Philippe Darondeau!, Blaise Genest!, P.S. Thiagarajan?, Shaofa Yang!

L TRISA, CNRS & INRIA, Rennes, France
2 School of Computing, National University of Singapore

Abstract. Good scheduling policies for distributed embedded applica-
tions are required for meeting hard real time constraints and for op-
timizing the use of computational resources. We study the quasi-static
scheduling problem in which (uncontrollable) control flow branchings can
influence scheduling decisions at run time. Our abstracted task model
consists of a network of sequential processes that communicate via point-
to-point buffers. In each round, the task gets activated by a request from
the environment. When the task has finished computing the required
responses, it reaches a pre-determined configuration and is ready to re-
ceive a new request from the environment. For such systems, we prove
that determining existence of quasi-static scheduling policies is undecid-
able. However, we show that the problem is decidable for the important
sub-class of “data branching” systems in which control flow branchings
are due exclusively to data-dependent internal choices made by the se-
quential components. This decidability result—which is non-trivial to
establish—exploits ideas derived from the Karp and Miller coverabili-
ty tree [7] as well as the existential boundedness notion of languages of
message sequence charts [5].

1 Introduction

We consider systems that consist of a finite collection of processes communicat-
ing via point-to-point buffers. Each process is a sequential transition system, in
which non-deterministic branchings may be of two types: (i) a data-dependent
internal choice made by a sequential component; (i) a process waiting for mes-
sages on different input buffers. In the second case, the waiting process non-
deterministically branches by picking up a message from one of the nonempty
input buffers [3]. The system of processes is triggered by an environment itera-
tively in rounds. We model the system dynamics for just one round. It is easy to
lift our results to multiple rounds. In each round, the environment sends a data
item to one of the processes. This starts the computations done in the round.
When the computation finishes, all the processes are in their final states and the
buffers are empty. In a technical sense, buffers—viewed as counters without zero
tests—are deployed here as over-approximated abstractions of FIFOs. We note
that using FIFOs or zero tests would render the model Turing powerful [1].

In this setting, one is interested in determining a schedule for the process-
es. If at a configuration the scheduler picks the process p to execute and p is
at a state with several outgoing transitions, then the schedule must allow all

possible choices to occur. As a result, such schedules are referred to as quasi-
static schedules. In addition, the schedule should never prevent the system from
(eventually) reaching the final state. We deem such schedules to be wvalid. In
addition, a quasi-static schedule is required to be regular in the sense that the
system under schedule should use only a bounded amount of memory to service
the request from the environment. In particular, the schedule should enforce a
uniform bound on the number of items stored in the buffers during the round.

Our first result is that determining whether a valid and regular quasi-static
schedule exists is undecidable. In fact the undecidability result holds even if the
system by itself is valid in that from every reachable global state it is possible to
reach the final global state; the schedule does not need to enforce this. Next we
define data-branching systems in which the only branching allowed is local (da-
ta) branching; simultaneous polling on multiple input buffers is ruled out. We
show that for data-banching systems, one can effectively check whether there
exists a valid and regular quasi-static schedule. This result is obtained using
classical ideas from [7] and by exploiting a special scheduling policy, called the
canonical schedule. The canonical schedule is very similar to a normal form ob-
tained for determining the existential boundedness property of certain languages
of message sequence charts [5]. The crucial point here is that one cannot directly
apply the techniques of [7] because the canonical schedule uses zero tests on
buffers. Whereas, as is well known, it is often the case that zero tests lead to
undecidability.

Before considering related work, it is worth noting that our setting is strongly
oriented towards distributed tasks and their rounds-based executions. Hence it
does not cater for models capturing non-terminating computations such as Kahn
process networks [6]. At present, it is not clear whether our undecidability result
can be extended to such settings. Quasi-static scheduling (QSS) has been studied
before in a number of settings (see [8] for a survey). An early work in [2] studied
dynamic scheduling of boolean-controlled dataflow (BDF) graphs. Being Turing
powerful, the QSS problem for this class of systems is undecidable [2]. Later, [3]
proposed a heuristic to solve QSS on a different model called the YAPI model
by exploring only a subset of the infinite state space. There is however no proof
that the heuristic is complete even on a subset of YAPI models. The work [9]
considered QSS on a restricted class of Petri nets called Equal-Conflict Petri
nets and showed decidability. However the notion of schedulability used in [9] is
much weaker than the one in [3] or ours. Basically, under the scheduling regime
defined in [9], only a finite number of runs can arise, hence in effect, systems
with loops are not schedulable. In comparison, our system model is very close
to (general) Petri Nets. Our scheduling notion is essentially the one presented in
[3], slightly modified to fit our model. Our undecidability result is also harder to
obtain than the one in [2], since reachability is decidable for our model. Indeed,
the decidability of this quasi-static schedulability problem is stated as an open
problem in [3, 8]. The work [11] considered QSS with the setting of [3] and
proposed a sufficient (but not necessary) condition for non-schedulability based
on the structure of the Petri net system model.

In the next section we present our model and the quasi-static scheduling
problem. Section 3 establishes the undecidability result in the general setting.
Section 4 imposes the data-branching restriction and shows the decidability of
the quasi-static scheduling problem under this restriction. The final section sum-
marizes and discusses our results.

2 Preliminaries

Through the rest of the paper, we fix a finite set PP of process names. Accordingly,
we fix a finite set Ch of buffer names. To each buffer ¢, we associate a source
process and a destination process, denoted src(c) and dst(c) respectively. We
have src(c) # dst(c) for each ¢ € Ch. For each p, we set X, = {lc | ¢ €
Ch, sre(c) = p} and E; = {7 | c € Ch,dst(c) = p}. So, lc stands for the action
that deposits one item into the buffer ¢ while ?¢ is the action that removes one
item from c. For each p, we fix also a finite set E;h" of choice actions. We assume
that E;’“’ N Eqd“’ = () whenever p # ¢q. Members of Elf'“’ will be used to label
branches arising from abstraction of “if...then...else”, “switch...” and “while...”
statements. For each p, we set ¥, = X} U X7 U X" Note that X, N X, = 0
whenever p # ¢. Finally, we fix X = Upep Xp.

A task system (abbreviated as “system” from now on) is a structure A =
{(Sp, sirit,—p,)} pep, where for each p € P, S, is a finite set of states, s
is the initial state, —, C S, X X, X S, is the transition relation, and s/ is the
final state. As usual, if s, € S, and 0 = (5, ap, 8),) is in —, with 5, = 5, then
we call § an outgoing transition of s,. We require the following conditions to be
satisfied:

— For each p € P and s, € S, if the set of outgoing transitions of s, is not
empty, then exactly one of the following conditions holds:
e Each outgoing transition of s, is in S, x X" x S,. Call such an s, a
(data-dependent) choice state.
e s, has precisely one outgoing transition, it is a send (s, !c,s;), where
c € Ch,s), € Sy. Such an s, is called a sending state.
e Each outgoing transition of s, is in S, x X7 x S,. Call such an s, a
polling state.
— For each process p, its final state sﬁ either has no outgoing transitions or is
a polling state.

Intuitively, the system works in rounds. A round starts as if a message from
the environment had just been received. At its final state, a process p should stay
watching buffers for messages possibly sent by other processes. If every process
is in its final state, and all buffers are empty, a reset operation triggered by
the environment may be performed to start a new round. This operation puts
every process in its initial state from which the computation can start again.
Thus, computations belonging to different rounds will not get mixed up. (We do
not explicitly represent this reset operation in the system model.) For technical

convenience, we do not consider multi-rate communications, that is, multiple
items can be deposited to or picked up from a buffer at one time. However, our
results extend to multi-rate task systems easily.

For notational convenience, we shall assume that the system is deterministic,
that is for each p, for each s, € Sp, if (sp,al,s1,), (sp,a2,s2y) are in —>p,
then al = a2 implies s1, = s2,. All our results can be extended easily to non-
deterministic systems. The dynamics of a system A is defined by the transition
system TS 4. A configuration is (s, x) where s € [] 5 Sp and x is a mapping
assigning a non-negative integer to each buffer in Ch. We term members of
HpeP Sp as global states. We view a member s of HpeP Sp as a mapping from P
to U,ep Sp such that s(p) € S, for each p. When no confusion arises, we write s,
for s(p). The initial configuration is (s, x°) where s (p) = s/ for each p.
Further, x°(c) = 0 for every ¢ € Ch. We define TS 4 = (RC 4, (s, x%), = 4)
where the (possibly infinite) set RC 4 of reachable configurations and =4 C
RC 4 x X x RC 4 are the least sets satisfying the following:

— (5™ x%) € RC 4.

— Suppose configuration (s,x) is in RC 4 and (s(p),a, s,) €—p such that
a = 7?c¢ implies x(¢) > 1. Then configuration (s’,x’) € RC4 and
((s:x),a,(s',X") € =>4, with 5'(p) = s}, s'(q) = s(q) for all ¢ # p, and

e If a =l¢, then x'(¢) = x(¢) + 1 and x'(d) = x(d) for all d # c.
e If a =7¢, then x'(c) = x(¢) — 1 and x'(d) = x(d) for all d # c.
o If a € Xt then x'(c) = x(c) for all ¢ € Ch.

We define s/ to be the global state given by sf(p) = s’g for each p. We term
(s7,x°) as the final configuration.

We extend =>4 to RC 4 x X* x RC 4 in the obvious way and denote the
extension also by == 4. Namely, firstly (s, x) == 4 (s, x) for any (s, x) in RC 4.
Secondly, if (s,x) =4 (s',X') and (s',x") ==4 (s",x") where 0 € X*, a €
X, then (s,x) =>4 (s",x"). A run of A is a sequence ¢ € X* such that
(s x9) =% (s,) for some (s,) in RC 4. We say that o ends at configuration
(s, x), and denote this configuration by (s7,x?). We let Run(A) denote the set
of runs of A. The run o is complete iff (s, x?) = (s#,x°), and we denote by
Runcpi(A) the set of complete runs of A.

Through the rest of this section, we fix a system A. We will often omit A
(e.g. write RC, Run.p instead of RC 4, Runcy(A)). A configuration (s,x) in

7c

0@

P2

Fig. 1. A task system with two processes P1, P2.

RC is wvalid iff there exists o with (s,x) == (s#,x°). A run o is valid iff o
ends at a valid configuration. We say that A is deadend-free iff every member
of RC is valid. Note that one can effectively decide whether a given system is
deadend-free by an easy reduction to the home marking reachability problem of
Petri nets [4].

We show in Fig. 1 a system consisting of two processes P1 and P2 with ¢
and e being buffers directed from P1 to P2 while o is a buffer directed from P2
to P1. The initial states are A and 1 while E and 3 are final states. The sequence
ble?elo?0 is a complete run. The run ¢ = alcble?elo?0o is not complete, even
though s7 = (E, 3). For, we have x7(c) = 1 # 0. This system is not deadend-free,
since the run ¢ cannot be extended to a complete run.

2.1 Schedules

We now define the notion of schedule and schedulability. Let (s,x) € RC 4 be a
reachable configuration. We say a € X is enabled at (s,) iff (s,x) == (s, x’)
for some (s', x') in RC. We say that p € P is enabled at (s, x) iff some a € ¥,
is enabled at (s, x). A schedule for A is a partial function Sch from Run to P
which satisfies the following condition: Sch(c) is defined iff there is some action
enabled at (s7,x7), and if Sch(o) = p, then p is enabled at (s7, x?). Notice that
if o is complete, then no action is enabled at (s7,x?) and Sch(c) = e. For the
schedule Sch, we denote by Run/Sch the set of runs according to Sch and define
it inductively as follows: ¢ € Run/Sch. If ¢ € Run/Sch, Sch(c) = p, a € X,
and oa is a run, then oa € Run/Sch. In particular, if Sch(c) = p and o can be
extended by two actions a, b of process p, then the schedule must allow both «a
and b. It is easy to check that this definition of a schedule corresponds to the
one in [3].

We say that the schedule Sch is walid for A iff every run in Run/Sch can
be extended in Run/Sch N Runcp. Next we define RC'/Sch = {(s”,x7) | 0 €
Run/Sch}, the set of configurations reached via runs according to Sch. We say
that Sch is regular if RC'/Sch is a finite set and Run/Sch is a regular language
(in particular, the system under schedule can be described with finite memory).
Finally, we say that A is quasi-static schedulable (schedulable for short) iff there

1A 000

Fig. 2. The system under schedule RC/Schs.

exists a valid and regular schedule for A. The quasi-static scheduling problem is
to determine, given a system A, whether A is schedulable. Again, it is easy to
check that this definition of quasi-static schedulability corresponds to the one
in [3]. In particular, the validity of the schedule corresponds to the fact that
the system can always answer a query of the environment (by reaching the final
configuration).

In the system of Fig. 1, the function Schi(c) = P with P = P1 if P1
is enabled at state (s7,x%), P = P2 otherwise, is a schedule. However, it is
not regular, since (a!c)* € Run/Schy goes through an unbounded number of
configurations ((1, 4), (n,0,0)). On the other hand, the function Schy(o) = P
with P = P2 if P2 is enabled at state (s7,x?), P = P1 otherwise is a valid
and regular schedule. Fig. 2 shows the finite state space RC/Schs which has no
deadend. In this figure, a configuration is of the form XY af~, with X (V') the
state of P2 (P1), and «, 3, v denote the contents of buffer ¢, e and o respectively.
That is, the system of Fig. 1 is schedulable. Notice that a schedule does not need
to prevent infinite runs. It just must allow every run to be completed.

3 General Case and Undecidability

The goal of this section is to establish the following result.

Theorem 1. The quasi-static scheduling problem is undecidable. In fact, it re-
mains undecidable even when restricted to systems that are deadend-free.

Our proof will consist of showing that the halting problem for deterministic
two-counter machines can be uniformly reduced to our quasi-static scheduling
problem. Given a deterministic two counter machine M, we shall construct a
system A such that M halts iff A is schedulable.

To ease the presentation, we shall present the construction of A in three
phases and prove in each case that M halts iff A is schedulable. In the first
phase, our goal is to bring out the main ingredients of construction of 4 with
mimimal amount of technical details. Thus, we shall allow transitions of A to
slightly deviate from the definition of system given in section 2. In the second
phase, we modify the transitions of A given in the first phase, so that they
strictly adhere to the definition of system in section 2. In the first and second
phase, the constructed A needs not be deadend-free. In the last phase, we show
that the system A constructed in the second phase can be in fact modified to
be a system which is deadend-free (and which strictly adheres to the definition
of system in section 2).

More precisely, the constructed A in the first two phases will have the fol-
lowing property: if Sch is a valid schedule for A, then under Sch the execution
of A will simulate the execution of M. Further, if the execution of Sch leads A
to its final configuration, then in the corresponding execution M will reach its
halting state. We will show that whenever M halts, A has a valid schedule Sch.
Further, Sch must lead A4 to its final configuration in a finite number of steps,
hence it is a valid and regular schedule and A turns out to be schedulable. On

the other hand, if M does not halt, it will turn out that A does not even have
a valid schedule.

Let Cy, C5 denote the two counters of M. Let halt denote the halting state
of M. We assume that, for each control state ¢ other than halt, the behaviour of
M at i is given by an instruction in one of the following forms with j € {1,2}:

— (4, Inc(j), k): increment C; and move to control state k.
— (i, Dec(j), k,m): if C; > 0, then decrement C; and move to control state k;
otherwise (C; = 0), move to control state m.

Thus, M either stops at halt after a finite number of steps, or runs forever
without visiting halt.

Naturally, we encode counters of M by buffers of 4. Incrementing a counter of
M amounts to sending a data item to the corresponding buffer. And decrement-
ing a counter of M amounts to picking up a data item from the corresponding
buffer. It is clear how the instruction (¢, Inc(j), k) of M can be simulated. The
main difficulty is to simulate the instruction (i, Dec(j), k,m). Indeed, in a sys-
tem, a process can not branch to different states according to whether a buffer
is empty or not. Further, when a schedule Sch selects a process p to execute, Sch
has to allow all transitions of p that are enabled at the current state s, of p. How-
ever, the following observation will facilitate the simulation of an (i, Dec(5), k, m)
instruction. Suppose s, is a polling state with two outgoing transitions labelled
?a, 7b, where src(a) # src(b). If prior to selecting p and assuming both buffers
a and b are currently empty, Sch can make the buffer a nonempty (for example,
by selecting sre(a) to send a data item to a) and keep b empty (for example, by
not selecting src(b)), then when Sch selects p, only the ?a transition is enabled
and executed, while the 7b transition is ignored.

Proof (of Theorem 1). Let M be a deterministic two-counter machine as above
with the associated notations. We construct a system A such that any walid
schedule for A will guide A to simulate the execution of M. As discussed above,
one can then argue that M halts iff A is schedulable. This will establish that the
quasi-static scheduling problem is undecidable. To show that the undecidability
remains even when restricted to systems that are deadend-free, we shall show
that one can in fact modify A so that A is deadend-free. Further, any wvalid

ol c(1),inc—ok(1)] c(2),inc—ok(2)|C(2)
inc(1) inc(2)

Fig. 3. The architecture of A

le(j)
Process C(j) Process GD Process GZ

Fig. 4. Description of processes GD, GZ,C(j)

and regular schedule for A will guide A simulate the execution of M. One can
then similarly argue that M halts iff A is schedulable. This will then establish
Theorem 1.

—Phase (i): Here we construct a system .4 whose transitions slightly deviate
from the definition of system in section 2. In particular, we shall allow a final
state to be not a polling state and permit the outgoing transitions of a local
state to consist of both receive transitions and choice transitions.

The system A has five processes A, C(1),C(2), GD, GZ. Their communica-
tion architecture is illustrated in Fig. 3 where a label ch on an arrow from
process p to process ¢ represents a buffer ch with src(ch) = p and dst(ch) = q.
For j = 1,2, the number of items stored in buffer ¢(j) will encode the value of
counter C; of M. Process A will mimic the instructions of M. For instructions
of the form (¢, Inc(j), k), A invoke C(5) to increment ¢(j). For instructions of the
form (i, Dec(j), k,m), A allows to receive from both channel gd (“Guess Dec”)
and gz (“Guess Zero”). The valid schedule will correctly simulates the emptiness
test of buffer ¢(j) by feeding the right channel gd or gz. Figure 4 displays the
transition systems of GD, GZ, and C(j), j = 1,2, where an initial state is indi-
cated by a pointing arrow, and a final state is drawn as a double circle. Figure 5
illustrates the transition system of A. For each (i, Inc(j), k) instruction of M,
A contains transitions shown in Fig. 5(i). For each (i, Dec(j), k,m) instruction

i

i 79d, "\ 79z halt

linc(j)

2inc—ok(j) ?C(i)i/Q\/\I(D 70(1)&@ 2c(2)
k

m sink

U (ii) (i)

Fig. 5. Transitions of process A

of M, A contains transitions shown in Fig. 5(ii), where the state sink is a dis-
tinguished state with no outgoing transitions. Unlabelled transitions represent
those with labels in X% For the halting state of M, A contains special transi-
tions shown in Fig. 5(iii), whose purpose is to empty the buffers ¢(1), ¢(2) after
A reaches halt. The initial state of A is the initial state of M, and the final state
of A is halt.

Let Sch be a valid schedule for A. Suppose that, according to Sch, execution
of A arrives at a configuration in which A is at state i. There are two cases to
consider:

—Case (i): The corresponding instruction of M is (i, Inc(j), k).

It is easy to see that Sch has no choice but to select A to execute !inc(j), then
select C'(j) three times to execute ?inc(j),!e(j), linc-0k(j), and finally select A
to execute ?inc-o0k(j). In doing so, ¢(j) is incremented and A moves to state k.
—Case (ii): The corresponding instruction of M is (i, Dec(j), k, m).

Note that from state i of A, there are two outgoing transitions labelled ?gd,
?gz respectively. Consider first the case where c(j) is greater than zero. We
argue that Sch has to guide A to execute only the transition ?¢d in order to
be valid. That is, Sch should ensure that the 7gd transition of A is enabled by
selecting GD. It must further ensure that the 7gz transition of A is not enabled
which it can do by not scheduling the process GZ. By doing so, ¢(j) will be
decremented and A will move to state k. If on the other hand, 7¢z is enabled
while ¢(j) is greater than zero, then Sch will allow A to take the ?gz transition.
Consequently, Sch will allow A to reach state m, as well as state sink. As sink
has no outgoing transitions, the run which leads A to sink is not valid. This
however will contradict the hypothesis that Sch is valid.

Similarly, for the case where ¢(j) is zero, it is easy to see that Sch has to guide
A to execute only 7gz. Further, after executing the ?gz transition, A will move
to state m only, since the corresponding ?¢(j) transition will not be enabled.

We claim that M halts iff A is schedulable. To see this, suppose M halts.
Then from the above argument that M may be simulated by executing A under
a valid schedule, it is easy to construct a valid schedule Sch for A so that Sch
will lead A to the configuration in which each process is at its final state, and all
buffers except possibly ¢(1),c(2) are empty. From Fig. 5(iii), it follows that Sch
will eventually also empty ¢(1), ¢(2). Further, it also follows that Sch is regular
and thus A is schedulable.

Suppose M does not halt. Assume further that Sch is a valid schedule for A.
Then as explained above, Sch simulates the execution of M and thus process A
can never reach its final state halt. Thus Sch can not be valid, a contradiction.

—End of Phase (i)

—Phase (ii): In this phase, we modify the transitions of 4 in phase (i) so that
they strictly adhere to the definition of system in section 2.

Firstly, we modify the communication architecture of processes of 4 to be
as displayed in Fig. 6. The transition systems of GD, GZ and processes C(j),
j = 1,2, are shown in Fig. 7. Note that the final states of processes GD, GZ
are now polling states. For j = 1,2, process C(j) is constructed in the same

Fig. 6. The architecture of A in phase (ii)

way as in phase (i). The transition system of A is illustrated in Fig. 8. For each
(1, Inc(j), k) instruction of M, A contains transitions shown in Fig. 8(i). For each
(i, Dec(j), k,m) instruction of M, A contains transitions shown in Fig. 8(ii),
where the state sink is a distinguished state with no outgoing transitions. As
in phase (i), for the halting state of M, A contains special transitions shown
in Fig. 8(iii). It is clear that the transitions of 4 now strictly adhere to the
definition of system in section 2.

Let Sch be a valid schedule for A. As in Case (i), we argue that Sch will guide
A to simulate the execution of M. The simulation of an (i, Inc(j), k) instruction
is as in Case (i). Now suppose that, according to Sch, execution of A arrives
at a configuration in which A is at state i and the corresponding instruction
of M is (i, Dec(j), k,m). And each of GD, GZ is at its initial state. Then it is
not difficult to see that Sch must first select A twice to execute !make — gd,
Imake — gz transitions and thus GD, GZ become enabled. Next, suppose c(j)
is greater than zero. Then as in phase (i), Sch has to guide A to execute only
the transition 7gd. And eventually, ¢(j) is decremented, A moves to state k, and
GD, GZ return to their initial states. On the other hand, if ¢(j) is zero, then Sch
has to guide A to execute only the transition 7gz. And eventually, ¢(j) remains
zero, A moves to state m, and GD, GZ return to their initial states.

_ \@ : ?make-gz
?inc()) ?make-gd U!gd Igz—ok

linc—ok(j)
ic(j) ‘92

Process C(j) Process GD Process GZ

Fig. 7. Description of processes GD, GZ,C(j) in phase (ii)

10

) (ii) (iii)

i i halt

Imake-gd %

2c(1) 2c(2)

linc(j)

P
7inc—ok(j) Imake-gz

=

?9z

?c(j) ?gz-ok
9z ?gd
?gz-ok m
@)
k

Fig. 8. Transitions of process A in phase (ii)

With the observation that any valid schedule Sch will guide A to simulate
the execution of M, it follows from similar arguments as in case (i) that M halts
iff A is schedulable. —End of Phase (ii)

—Phase (iii): Finally, we modify the construction of A in phase (ii) so that
A is in fact deadend-free. Further, we will construct A in such a way that any
valid and regular schedule for A will simulate the execution of A. One can then
show that M halts iff A is schedulable. In what follows, we first explain the
construction of A, then argue that M halts iff A is schedulable, and finally show
that A is in fact deadend-free.

The communication architecture of 4 is now as shown in Fig. 9. The transi-
tion systems of GD, GZ and processes C(j), j = 1,2, are displayed in Fig. 10.
The transition system of A is illustrated in Fig. 11. For each (i, Inc(j), k) instruc-
tion of M, A contains transitions shown in Fig. 11(i). For each (i, Dec(j), k, m)
instruction of M, A contains transitions shown in Fig. 11(ii), where sink is a
distinguished state. For the states sink and halt, A contains special transitions
shown in Fig. 11(iii) (where unlabelled arrows represent transitions with labels
in y¢ho).

We first note that the special transitions in Fig. 11(iii) are designed in such a
way that any valid and regular schedule must never lead A to a configuration in
which A is at the state sink. To see this, suppose Sch is a valid and regular sched-

11

gd,gd-wrong
gz,9z-ok

Fig. 9. The architecture of A in phase (iii)

ule for A. Assume further that according to Sch, A arrives at a configuration in
which A is at sink. Note that Sch can not discriminate between the two outgo-
ing transitions of sink which are data-dependent choice transitions. Thus, it is
not difficult to see that Sch has to admit runs in which the transitions linc(1),
?inc-ok(1) of Fig. 11(iii) can be executed arbitarily many times (with transitions
?inc(1), le(1), linc-ok(1) from C(1) being interleaved). That is, Sch will admit
complete runs which pass configurations with A being at state sink and the size
of ¢(1) can be arbitarily large. Consequently, Sch is not regular, a contradiction.

By the above obsevation that any valid and regular schedule for A must
guide A to avoid visiting sink, one can use similar arguments as in phase (ii) to
show that any valid and regular schedule for A will guide the execution of A to
simulate the execution of M. Now, similar to phase (i), if M halts, then one can
easily construct a valid and regular schedule which leads A to the configuration
in which each process is at its final state, and all buffers except possibly ¢(1), ¢(2)
are empty. Further, during the execution of A under Sch, A never visits state
sink. With the special transitions shown in Fig. 11(iii), Sch will eventually also
empty buffers ¢(1),¢(2). Thus A is schedulable.

On the other hand, if M does not halt, as any valid schedule needs to reach
the halt state in process A, any valid schedule needs to go through the sink

o ?make-gd ?make-gz
?inc(j) lgd-wrong lgz—ok
linc—ok(j)
Ic(j) lgd lgz

Process C(j) Process GD Process GZ

Fig. 10. Description of processes GD, GZ,C(j) in phase (iii)

12

) (ii) (iii)

nel) imake-gd Pinc-ok(1) ™"
?inc—ok(j -
(0 linc(1) halt
Imake-gz %
k 2¢(1) 2¢(2)
?9z-ok
?gd-wrong 2gd
C
? ? ?
f{oy4 ’9z ?gd 2gd-wrong
?gz-ok m
9 ?gz-ok| |?gd-wrong
O
k sink

Fig. 11. Transitions of process A in phase (iii)

state, and hence it is not regular. That is, A does not have a valid and regular
schedule. We have now shown that M halts iff A is schedulable.

Finally, we argue that the system .4 constructed in this phase is in fact
deadend-free. We shall assume that from any control state i of M except the
halting state, it is possible to reach a control state ¢ whose corresponding instruc-
tion has the form (¢, Dec(j), k,m). We note that this assumption involves no loss
of generality, since one may replace each (i, Inc(j), k) instruction equivalently by
the collection of three instructions (i, Inc(j),d'), (i’, Inc(j),i"), (i, Dec(j), k, k)
where 4',i" are newly created control states with i’ # 4"

To show that A is deadend-free, we need to argue that every run o of A
can be extended to a complete run. Loosely speaking, it suffices to consider two

types of runs of A:

Type I: Runs which simulate the execution of M and never visit a configuration
with A being at state sink.

Type II: Runs which end at the configuration with A being at state sink, ev-
ery other process being at its initial state, and all buffers except possibly
¢(1),¢(2) being empty.

13

Now we show that A is deadend-free by considering two cases according to
whether M halts or not.

—Case (i): M halts.

Let 0 be a run of A. If ¢ is of type I, then clearly o can be extended to
a complete run of A. If ¢ is of type II, then it is easy to see that o can be
extended to a run ending at the configuration in which A is at state halt, every
other process is at its initial state, and all buffers except possibly ¢(1), ¢(2) are
empty. It follows that o can be extended to a complete run.

—Case (ii): M does not halt.

Let o be a run of A. First consider the case where o is of type I. As discussed
above, we can assume from any control state i of M except the halting state,
it is possible to reach a control state i whose corresponding instruction has the
form (E, Dec(j),k,m). Thus, o can be extended to a run o' where ¢’ ends at a
configuration in which A is at some state i whose corresponding instruction of
M is of the form (i, Dec(j), k,m). From the transitions shown in Fig. 11(ii), it
is easy to see that ¢’ can be further extended to a run ¢” where ¢” ends at
a configuration in which A is at state sink. Further, ¢ can be extended to a
complete run.

For the case where o is of type II, by similar arguments as in case (i), one

sees that o can be extended to a complete run.
—End of Phase (iii)

With the construction of a deadend-free system A in phase (iii) and the
corresponding arguments that M halts iff A is schedulable, we complete the
proof of Theorem 1. O

4 Data-Branching and Decidability.

We have observed that a schedule’s ability to indirectly discriminate between
two receive actions (e.g. ?gd and ?gz) of the same process is crucial to our
undecidability proof. The question arises whether the quasi-static scheduling
problem for systems in which such choices are not available is decidable. We
show here that the answer is indeed yes. In this context, we wish to emphasize
that the definition of quasi static scheduling used in [9] will permit only a finite
collection of runs and hence does not cater for systems with internal loops. Thus,
the problem solved in [9] is simpler than the one addressed here.

The system A is said to be data-branching iff for each p, for each s, € S,, if
sp is a polling state, then it has exactly one outgoing transition. Thus the only
branching states are those at which internal data-dependent choices take place.

Theorem 2. Given a data-branching system A, one can effectively determine
whether A is schedulable.

The rest of this section is devoted to the proof of theorem 2. We shall assume
throughout that A is data-branching. The proof relies crucially on the notion of

14

a canonical schedule for A, denoted Sch,. The canonical schedule is positional,
that is, Scheq(0) = Scheq(o') whenever runs 0,0’ end at the same configuration.
Thus, we shall view Sch., as a function from RC to P. Informally, at configura-
tion (s, x), if there is a p € P such that p is enabled and s, is a polling or choice
state, then Sch., picks one such p. If there is no such process, then for each
process p enabled at (s, x), s, has exactly one outgoing transition (s, !c,, s;,). In
this case, Sch, picks a process p with x(cp) being minimum. Ties will be broken
by fixing a linear ordering on P. The proof of theorem 2 consists of two steps.
Firstly, we show that A is schedulable iff Sch., is a valid and regular schedule
(Prop. 3). Secondly, we prove that one can effectively decide whether Sch., is a
valid and regular schedule (Thm. 9).

4.1 The Canonical Schedule.

We fix a total order <p on P and define the canonical schedule Sch., for A
as follows. For each configuration (s, x), let P C P be the set of processes

enable
enabled at (s, x). We partition PU™%) into P;jﬁ‘), P and PP as follows.
For p € Pe(z’;z)le: we have:(i) p € Pézﬁ‘) iff s, is a polling state; (ii) p € Pc(l‘jofle

iff s, is a choice state; (iii) p € Ps(j;ffj) iff s, is a sending state. We further define

the set P& C P9 a5 follows: for pE P we have pE peX) iff

send-min send send >’ send-min
x(cp) < x(cq) for each ¢ € Ps(;’fé), where !¢, (respectively, l¢,) is the action of p
(respectively, of ¢) enabled at (s, x).

The canonical schedule Sch., maps each configuration (s, x) to the process

Schea(s, X) as follows. It PEXOUPEX) £ g then Seh, (s, y) is the least member

poll choice

of PNy pX) with respect to <p. Otherwise, Schcq(s,x) is the least member

poll choice
of Ps(jn)fj) min With respect to <p. It is straightforward to verify that Sch, adheres

to the definition of schedule.

Proposition 3. A data-branching system A is schedulable iff Sch., is a valid
and regqular schedule for A.

To facilitate the proof of Prop. 3, we introduce now an equivalence on com-
plete runs. For 0 € X* and p € P, let prj, (o) be the sequence obtained from o by
erasing letters not in X,,. We define the equivalence relation ~ C Run cp X Run cp
as follows: o ~ o' iff for every p € P, prj, (o) = prj,(0'). We note a useful rela-
tion between ~ and schedules.

Observation 4. Let o be a complete run of a data-branching system A. Suppose
that Sch is a schedule of A (not necessarily valid nor reqular). Then there exists
a complete run o' such that o' ~ o and o' € Run/Sch.

Proof. Let ¢ = Tar', with a € X, 7 € Run/Sch, and Sch(r) = ¢ # p. In
particular, Ta ¢ Run/Sch and ¢ is enabled at (s7, x™). We show that there exists
a complete w of the form 76¢ with b € X, (thus 7b is according to Sch) and

15

w ~ o. Repeating inductively this argument then eventually yields the desired
complete run ¢’ according to Sch with ¢’ ~ o.

Now we show the existence of w above by considering two cases. Note that
sq is the final state of ¢. It thus follows from the definition of a task system that,
either sy has no outgoing transitions, or sj is a polling state.

—Case (i): s is a sending state or a choice state.
We have s] # s7 since sy either has no outgoing transition or is a polling

state. So some (choice or sending) action b in X should occur in 7/ to move

from s7. Hence, let 7/ = pbp’ where p contains no letter of X;. Then one readily

verifies that w = Tbapp’ is also a run of A and w ~ o.

—Case (ii): 5] is a polling state.

Since Sch(T) = ¢, some action ?¢ with dst(c) = ¢ is enabled at the configura-
tion (s7,x7). That is, (s, ?c,s,) is an outgoing transition of s7 and x"(c) > 0.
We show that ?c¢ occurs in 7' and thus we can write 7/ in the form of p?cp’
where p contains no letter of X,. It easily implies that w = 7?capp’ is also a
run of A and w ~ o. First, since A is data-branching and sj is a polling state,
if there is an action in ¥y in 7', then the first such action must be ?c. Then, by
contradiction, if there is no action on ¢ in 7', then s] = s7, and in particular
there is no ?¢ in 7' (since it is an action of ¢), hence x?(c¢) > x7(¢) > 0 contra-

dicting the fact that (s?,x7?) is a final configuration. O

Observation 4 implies that a run o of Run/Sch can be extended to a run
in Runcp/Sch iff it can be extended to a run in Run.y. This holds for every
schedule Sch (not necessarily valid nor regular), provided the system is data-
branching. Using this observation, we can now prove that if there exists a valid
schedule, then Sch., is valid too.

Lemma 5. A data-branching system A admits some valid schedule iff Sch., is

valid for A.

Proof. Tt suffices to consider the “only if” direction. For contradiction, take
oa € Run/Sch., such that a € X, and there exists a run 7 with o7 € Runp
but cat’ ¢ Runcp for any 7'. Since o7 € Rungp, by observation 4, there exists
o' ~ o1 and o' € Runcy/Sch. Note that a € ¥, is enabled at (s7,x7).
Suppose that s7 is a choice or sending state. This implies that s # sﬁ and
hence there exists a choice or sending action b € ¥, with 7 = 71 b, where 7
has no action belonging to p. This implies that ¢’ ~ o7 b72. Let us decompose
o' as o' = 1{br}, with as many actions belonging to p in 7{ as in o7;. We have
Sch(r]) = p. Moreover, we have s;{ = s7. Further, every action of p enabled at

sp' = s7 should be allowed and a is such an action. So 7{a € Run/Sch. Now,

we use the fact that Sch is valid to get a 73 with 7{a7r3 € Run p. But we have
T{aTs ~ oT1at3 ~ oar; 73 which contradicts the fact that oca cannot be extended
in a complete run.

Suppose s? is a polling state. Let ?c be the only action of p enabled at

P
(s?,x7%). That is, a =?¢c. We thus have x?(¢) > 0. Thus 7 = 7, ?c 72, where 7

16

has no action belonging to p. It means that o' ~ o 7cy ~ o?¢riT2 = dam .
This contradicts the fact that oa cannot be extended into a complete run.
Hence Sch,, is a valid Schedule for A. O

The concept of an anchored run, that we introduce now will also play a crucial
role in what follows. If x is a mapping from Ch to the non-negative integers,
let max(y) = max{x(c) | ¢ € Ch}. For a run o, let max(o) = max{max(x°) |
o' is a prefix of o}. We say that o is an anchored run iff max(o) is non-null and
max (o) > max(x?) for every strict prefix o’ of o. Anchored runs according to
Sch ., have a special property: every action enabled concurrently with the last
action of an anchored run is a send action on some buffer that holds a maximum
number of items. This property may be stated precisely as follows.

Observation 6. Let o be an anchored run according to Sch.,, and let M =
max(c). Then o = élc for some ¢ € Ch and x7(c) = M. Further, if a € X is
enabled at (s7,x7), then a =!d for some d € Ch and moreover x°(d) = M — 1.

Notice that d = c is possible. We are now ready to prove Prop. 3.

Proof. of Prop. 3

The if part is obvious. As for the only if part, let Sch be a valid and regular
schedule for A. First, it follows from lemma 5 that Sch., is valid.

We prove that Sch., is regular. We know that RC/Sch contains a finite
number k of configurations. Since each action adds at most one item to one
buffer, for all ¢ € Run/Sch, max(c) < k. We will prove that for all o, €
Run/Sch.,, max(o.,) < k, which will imply that RC/Sch, has a finite number
of configurations. Since we know that Sch., is valid, it suffices to consider only
complete runs of Run/Sch,.

Let 0., € Run/Sch., be a complete run. Following observation 4, let o €
Run/Sch be a complete run such that ¢ ~ o.,. Suppose M., = max(o.,) and
M = max(o). Pick the least prefix 7., of 0., such that 7., = M,. Thus 7,
is anchored. By observation 6, let 7., = 7., !c. Consider the sequence 7.,. For a
prefix 7 of o, we say 7 is covered by 7, iff for every p € P, prj,(7) is a prefix
of prj,(ca). Now pick 7 to be the least prefix of o such that 7 is not covered
by 7cq- Such a 7 exists, following the definition of ~. Let 7 = 7a where a € X' is
the last letter of 7. We consider three cases.

—Case (i) a = !d for some d € Ch.

The choice of 7 implies prj, (7) = prj, (7ca). Thus, s7(ps) = s™(pa). And
!d is enabled at configuration (s7e,y7=). It follows from observation 6 that
X7(d) = M., — 1 (whether d = ¢ or not). As dst(d) # pa, the choice of 7 also
implies prj 45(4)(7) is a prefix of prj 454 (q) (7o) Hence, we have #14(7) = #1a(7ca)
and #724(7) < #24(7ca), where #;(p) denotes the number of occurrences of letter
b in sequence p. It follows that x7(d) > x™(d). Combining these observations
with x7(d) < M — 1 then yields M., < M.

—Case (ii): a = ?d for some d € Ch.

By the same argument as in case (i), we have s7(p,) = s7(p,). Also we

have prj, (7) = prj,, (Tea), and prj,.q)(7) is a prefix of prj,..(q)(7ca). Hence,

17

X7 (d) < xT=. It follows that ?d is enabled at configuration (s™,x7«). This
contradicts that at configuration (s™«,x7«), the schedule Sch., picks process
sre(e) with s (sre(c)) being a sending state.
—Case (iii): a € E;f".

Similar to Case (ii), we obtain a contradiction by noting that a is enabled at
(S‘f-crz’ X‘f'm)_ O

4.2 Deciding Boundedness of the Canonical Schedule.

The decision procedure for boundedness of Sch, is similar to the decision pro-
cedure for the boundedness of Petri nets [7], but one cannot directly apply [7]
because RC'/Sch., cannot be represented as the set of reachable markings of a
Petri net. Indeed, the canonical schedule performs a zero-test when it schedules
a process ready to send, because it must check that all processes ready to re-
ceive have empty input buffers. We show that one can nevertheless build a finite
tree of configurations in RC'/Sch, that exhibits a witness for unboundedness iff
RC/Sch, is not a finite set or Sch,, is not a valid schedule for A.

Towards this, the following partial order relation on anchored runs will play
a useful role. Let Rung,/Sch., be the subset of anchored runs of Run/Sch,.
We define <.,C Rungy/Scheq X Rungy,/Sch., as the least (strict) partial order
satisfying the following. For 0,0’ € Rung,/Sche,, (0,0') is in <., whenever
o =dlc, o' = ¢'lc for some ¢ € Ch and:

— o is a strict prefix of ¢’.
— 57(p) = 5% (p) for every p € P.
— x%(d) < x° (d) for each d € Ch.

Notice that, in particular, x?(c) < x° (¢) since o is a strict prefix of ¢’ and
both are anchored. We show now a structural property of <., which will serve
us to produce a finite coverability tree for all runs. An infinite run of A is an
infinite sequence p in X* such that every finite prefix of p is in Run(A). We say
that an infinite run p is admitted by Sch, iff every finite prefix of p is admitted
by Sche,-

Proposition 7. Suppose p € X“ is an infinite run admitted by Sch.,. Then
there exist two finite prefives o,0' of p such that either 0,0’ end at the same
configuration, or 0 <., o' (in which case o, o' are both anchored).

Proof. If there exists a bound k € N such that for all prefixes « of p, maz(x®) <
k, there is only a finite number of possible configurations, hence we can find two
prefixes of p ending at the same configuration. Else, maz(x®) is unbounded. It
means that we can extract an infinite subsequence of anchored prefixes from
the sequence of prefixes of p. Since there is a finite number of buffers and a
finite number of tuples of local states in IT,ep(S,), we can extract an infinite
subsequence of anchored prefixes which have the same maximal channel ¢ € Ch
and the same tuple of local states s € ITpep(Sp).

18

By an inductive argument on i < |Ch|, one easily verifies that there are
infinitely many anchored prefixes ag, a1, - -+ of p, such that x®°(c;) < x*'(¢;) <
... for every index 1 < j < 4. In particular, we get the existence of o,0’ with
0 <cq 0. O

Next we show that any pair of runs o,¢’ with ¢ <., o' witnesses for the
unboundedness of RC/Sch., (or for the non-validity of Sch,). This requires an
argument that differs from [7] because, even though o' = o7 and both o, ¢’ are
according to Scheq, 07" may be incompatible with Sch., for some n (because
of zero-tests). However, we shall argue that if there exist two anchored paths
satisfying o <., o' then for every n = 1,2,..., there exists a run p, according
to Sch., such that either max(p,) > n or p,, cannot be extended to reach a final
configuration.

Proposition 8. If there exist two anchored paths o,0' in Rungy,/Sche, such
that o <4 o', then either RC/Sch., has an infinite number of configurations or
Sch ., is not valid.

Proof. Suppose o' = or. Fix an arbitrary integer ¥ > 1 and consider the se-
quence a = o077 ... T (k copies of 7). Following the definition of <.,, one verifies
that « is a run of A. If @ cannot be extended to a complete run, then Sch, is
not valid and this ends the proof. Else, by observation 4, there exists a complete
run p ~ aw which is according to Sch.,, for some w € X*. Let M = max(o) and
M' = max(d'). Let 0 = e, o' = 6'le, where ¢ € Ch, X7 (c) = M, X7 (¢) = M'.
We show below that max(p) > M + k- (M’ — M) and thus Sch ., is not regular.

Though o7 is according to Sch.,, we note that a is not necessarily a prefix
of p. Let a = ale. Consider the sequence &. For a prefix 5 of p, we say that 8
is covered by & iff for every p € P, prj,(B) is a prefix of prj,(&). Pick 3 to be
the least prefix of p such that g is not covered by é&. Let f = Bb where b is the
last letter of 5. Let p, € P be the process such that b € X, . The choice of
implies that prj,, (3) = prj,, (&), and thus s7(p;) = s*(ps). Again we consider
three cases.
—Case (i). b = Id for some d € Ch.

Thus, !d is enabled at configuration (s, x%). Also, as dst(d) # ps, we have

that prj 4 (a)(8) is a prefix of prj 44 (4)(&). Thus, we have #14(8) = #14(@), and

P

#24(8) < #924(&), where #,(8) denotes the number of occurrences of letter a in
sequence 6. It follows that x?(d) > (@,

Note that x%(c) = M + k- (M' — M) — 1 and x°(d) < max(p) — 1. Thus,
if d = ¢, then we have max(p) > M + k- (M' — M). Otherwise, d # c. By
definition of <.,, we conclude that !d is also enabled at both configurations
(s7,%x%), (s°",x%"). Thus, we have x(d) = M — 1, x9 (d) = M' — 1, due to
observation 6. It follows that x%(d) = M — 1+ k- (M' — M). Consequently, we
also have max(p) = M + k- (M' — M).

—Case (ii). b = ?d for some d € Ch.
Following the definition of <,, we have 57 (py) = 5% (p) = 5*(ps) = 5° (pp)-

At configuration (5%, x%), Sch, picks process src(c) where 5% (src(c)) is a sending

19

state. Hence, pj is not enabled at (s%,x%). That is, x° (d) = 0. Similarly, we have
X% (d) = 0. As a result, x%(d) = 0.
However, by similar arguments as in case (i), one sees that #24(8) = #24(&)

~

and #14(8) < #14(&). Thus, Xé(d) < x%(d). We obtain a contradiction as ?d is
enabled at configuration (s’é P).
—Case (iii). b e X,

Similar to Case (ii), we obtain a contradiction by noting that p, is enabled
at (s7,x%). O

The set of all runs of a data-branching system under the canonical schedule
Sch ¢, forms a possibly infinite tree (any data dependent choice performed by a
scheduled process induces several branches). Following Karp and Miller’s ideas,
one may stop exploring this tree whenever coming again to a configuration al-
ready visited, or obtaining an anchored run ¢’ that extends a smaller anchored
run o, i.e. 0 <. o'. Based on this construction of a finite coverability tree, we
obtain the following theorem.

Theorem 9. One can effectively determine whether Sch., is valid and regular.

Proof. We construct inductively W, a tree of valid runs admitted by Sch,. First,
€ is in W. Then, suppose that ¢ is in W and oa is a run admitted by Sch¢,,
where a € Y. If there exists ¢/ € W such that ¢’ <., oa, then by proposition 8,
we can stop the construction of W and report that either Sch ., is not regular or
Sch ¢, is not valid. Otherwise, we check if there exists 7 € W such that 7 ends
at the same configuration as oa. If such a 7 does not exist, then we add oa to
W (otherwise we just ignore oa).

We first prove that the construction of W stops after a finite number of
steps. Suppose otherwise. Then members of W form an infinite tree. By Konig’s
lemma, there exists an infinite sequence p of X such that every finite prefix of
pisin W. Applying proposition 7, we get that there exist two finite prefixes 0,0’
of p such that o is a prefix of ¢’ and either 0,0’ end at the same configuration
or 0 < o'. In both cases, the construction would not extend o', hence p is not
an infinite path, a contradiction.

If the above construction of W terminates without finding o <., o’ (reporting
that Sch, is not regular or that Sch., is not valid), then {(s”,x7) | 0 € W} is
exactly the set of configurations of Sch.,(RC), that is we have the proof that
RC[Sch, is a finite set, and we can test easily whether Sch, is valid. O

Process P1 Process P2

Fig.12. A data-branching system.

20

Thm. 2 is now settled by applying Prop. 3 and Thm. 9.

To illustrate the construction in Thm. 9, we consider the data-branching
system in Fig. 12 and display in Fig. 13 the corresponding tree W of Thm. 9. In
Fig. 13, the root is indicated by a pointing arrow and each node Nod is identified
by reading the labels along the path from the root to Nod. We label each node
o with the configuration at which ¢ ends, where the notation ij klm represents
the configuration in which process P2 is at state i, P1 is at state j, buffer c,e,o
have respectively sizes k,l,m. A dotted arrow represents a branching which leads
to a node already constructed.

First, Sch., succeeds to reach the final sate 5£000 through the path
afleb?cgle?elo?o (we compresssed the fourth last transitions as one dashed
transition since no choice actions are involved). Two deadend states are reached:
2D 010 and 5E100. It means that Sch., is not valid, hence applying Prop. 3,
we know that no valid schedule exists for 4. Finally, the algorithm finds two an-
chored runs ordered by < and reachable from each other, namely aglc <.,
aglcalc (notice that the runs ag and a f are not anchored as max(ag) =
max(a f) = 0, hence for instance we do not have ag <., aglca). The algo-
rithm thus stops at the configuration 34 200 reached by a glcale, and depicted
by a double circle around the configuration. It means that the canonical schedule
is not regular, and thus applying Prop. 3, we know that no regular and valid
schedule exists for A. Recall that the model A is only an over-approximation of
the real system. That is, even if we have a proof that A is not schedulable, it
does not imply that the real system is not schedulable.

Fig. 13. The tree W in Thm. 9 for the system in Fig. 12.

21

The algorithm gives counterexample runs (here, we have two runs for dead-
ends and one for unboundedness). One can check whether these runs are concrete
runs from the original systems or only spurious runs created by the abstractions.
If they are spurious runs, then the real system is schedulable.

5 Discussion

In this paper, we have considered quasi-static scheduling as introduced in [3] and
have provided a negative answer to an open question posed in [8]. Specifically we
have shown that for the chosen class of infinite state systems, checking whether
a system is quasi-static schedulable is undecidable. We have then identified the
data-branching restriction, and proved that the quasi-static scheduling problem
is decidable for data-branching systems. Further, our proof constructs both the
schedule and the finite state behaviour of the system under schedule. An im-
portant concept used in the proof is the canonical schedule that draws much
inspiration from the study of existential bounds on channels of communicating
systems [5]. In the language of [5], our result can be rephrased as: it is decid-
able whether a weak FIFO data branching communicating system is existentially
bounded, when all its local final states are polling states. We recall that the same
problem is undecidable [5] for strong FIFO communicating systems, even if they
are deterministic and deadend free. Our abstraction policy is similar to the one
used in [10]. However, we use existential boundedness while [10] checks whether
a communicating system is universally bounded, which is an easier notion to
check. Note that the canonical schedule may be easily realized in any practical
context: it suffices to prevent any process from sending to a buffer that already
contains the maximum number of items determined from that schedule. It is
worth recalling that these bounds are optimal.

Deadends play an important role in the notion of quasi-static schedulability
studied here and previously. However, quasi-static scheduling may stumble on
spurious deadends due to the modelling of the task code by an abstract system.
The algorithm we have sketched for constructing the canonical schedule may
be combined with an iterative removal of spurious deadends. A more ambitious
extension would be to accomodate non data-branching systems. For this purpose,
it would be interesting to formulate a notion of quasi-static schedulabilty based
purely on existential boundedness and to study decidability issues in this setting.

References

[1] D. Brand and P. Zafiropulo. On communicating finite-state machines. In J. of
the ACM, 30(2):323-342, 1983.

[2] J. Buck. Scheduling dynamic dataflow graphs with bounded memory using the
token flow model. PhD Dissertation, Berkeley, 1993.

[3] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone and Y. Watanabe. Quasi-
static scheduling of independant tasks for reactive systems. IEEE Trans. on
Comp.-Aided Design 24(10):1492-1514, 2005.

22

[4]

D. de Frutos-Escrig. Decidability of home states in place transition systems.
Internal Report. Dpto. Informatica y Automatica. Univ. Complutense de Madrid,
1986.

B. Genest, D. Kuske, and A. Muscholl: On communicating automata with bound-
ed channels. In Fundamenta Informaticae. 80(2):147-167. 2007.

Kahn, G. The semantics of a simple language for parallel programming. In Proc.
Int. Federation Information Processing (IFIP) Congress. pages 471-475. 1974.
R. Karp, R. Miller. Parallel program schemata. J. Comput. Syst. Sci. 3(2):147-
195, 1969.

A. Kondratyev, L. Lavagno, C. Passerone and Y. Watanabe. Quasi-static schedul-
ing of concurrent specifications. In The Embedded Systems Handbook, CRC Press,
2005.

M. Sgroi, L. Lavagno, Y. Watanabe and A. Sangiovanni-Vincentelli. Quasi-static
scheduling of embedded software using equal conflict nets. In ICATPN 1999,
LNCS 1639, pages 208-227.

S. Leue, R. Mayr and W. Wei. A scalable incomplete test for the boundedness of
UML RT models. In TACAS 2004, LNCS 2988. pages 327-341.

C. Liu, A. Kondratyev, Y. Watanabe, A.L. Sangiovanni-Vincentelli, J. Desel.
Schedulability Analysis of Petri Nets Based on Structural Properties. In ACS-
D 2006. pages 69-78.

23

