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Abstract. We study the synthesis problem in an asynchronous dis-
tributed setting: a finite set of processes interact locally with an un-
controllable environment and communicate with each other by sending
signals – actions that are immediately received by the target process. The
synthesis problem is to come up with a local strategy for each process
such that the resulting behaviours of the system meet a given specifi-
cation. We consider external specifications over partial orders. External
means that specifications only relate input and output actions from and
to the environment and not signals exchanged by processes. We also
ask for some closure properties of the specification. We present this new
setting for studying the distributed synthesis problem, and give decid-
ability results: the non-distributed case, and the subclass of networks
where communication happens through a strongly connected graph. We
believe that this framework for distributed synthesis yields decidability
results for many more architectures.
Keywords. Distributed synthesis, Asynchronous systems.

1 Introduction

The synthesis problem consists in, given a high-level description of a system,
automatically producing a program that behaves according to this specification.
This can be parametrized by the specification language and the target model.

In this work, we address this problem for open, distributed, asynchronous
systems, with specifications over partial orders. In open reactive systems, the
process interacts with an uncontrollable environment and its behavior depends
on this interaction. The goal is then to synthesize strategies that control the ac-
tions of the system and not those of the environment (see for instance [1,7,8,15]).
The distributed case (that is, considering a set of processes that can cooperate
against an environment, each process having only a local view of the system) is
more involved, and the main hardness result is due to [17]. They proved that,
when all processes and the environment evolve synchronously, the general prob-
lem is undecidable for LTL specifications, and that LTL synthesis for pipelines is
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decidable (though non elementary). Some other classes of architectures have been
proved decidable: 2-ways pipelines for CTL

∗ specifications [9], doubly-flanked
pipelines for local specifications [11], uniformly well-connected architecture for
CTL

∗ specifications [5]. Synthesis in an asynchronous communication framework
has first been studied in [16]. They considered single-process implementations
and linear-time specifications. Later, [12] considered the problem in a distributed
setting and exhibited a specific class of controllers for which distributed synthesis
is decidable for trace-closed specifications. They strenghtened this result in [13],
where restrictions on communication patterns of controllers have been reduced.
Considering controllers with causal memories yields decidability results for an-
other subclass of systems in [4]. To reason about distributed synthesis in a more
abstract framework, both with synchronous and asynchronous semantics, [14]
proposed the framework of distributed games – a specialized version of multi-
player games. Recently, the synthesis of asynchronous distributed systems in the
general case of µ-calculus specifications was studied in [3].

Here we study a new model, different from the one of [12] in two ways: when
there, processes evolve asynchronously only with respect to each other, in our
model they also evolve locally asynchronously with respect to the environment.
A second difference is in the communication mechanism: whereas in [12] the syn-
chronization of processes is done by rendez-vous (handshaking), we use signals
and define for each action an owner that can trigger it, the signal being immedi-
ately received by the other process regardless of whether it is willing to receive it
or not. This communication mechanism is more convenient than shared variables
communication, and more realistic than rendez-vous. As in [5], we do not allow
our specifications to constrain the internal behaviour of the system: communica-
tions between processes are only restricted by the communication architecture,
not by the specification. This assumption is more natural from a practical point
of view – when describing the way a system is expected to work, one is only con-
cerned with its external behaviour, the way it interacts with the environment
and not by internal communications processes may set up in order to achieve
the specified global behaviour. In the framework of asynchronous distributed
systems, executions are partial orders of actions. Our specifications will then
be formulae whose models are partial orders of external actions. In addition, in
order to rule out unnatural constraints between actions, specifications consid-
ered in this paper will have some closure properties, ensuring that we do not
prevent causalities between events (this would restrain communication abilities
of processes) or impose causalities between others when it would make no sense.
With this model, we prove decidability for the synthesis problem for the class
of architectures whose communication graph is strongly connected. We believe
that the synthesis problem will be decidable for many more architectures with
these hypotheses.
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2 The Model

An architecture defines how a set of processes may communicate with each other
and with an (uncontrollable) external environment. An important parameter of
the problem is the type of communications allowed between processes. We are
interested in asynchronous distributed systems, hence it would be natural to use
unbounded fifo channels. However, this leads to infinite state systems, making
decidability results more uncertain to obtain.

A finite model can be obtained by using shared variables: processes can write
on variables that can be read by other processes. But in an asynchronous system,
communication is difficult to achieve with shared variables. Assume that process
i wants to transmit to process j a sequence m1,m2, . . . of messages. First, i
writes m1 to some shared variable x. But since processes evolve asynchronously,
i does not know when m1 will be read by j. Hence, some acknowledgement is
required from j to i before i may write m2 to x. Depending on the architecture,
this may not be possible. In any cases, it makes synthesis of distributed programs
satisfying a given specification harder.

Hence, we will use point to point communication by signals in the vein of [10].
Sending a signal is an action but receiving a signal is not. Instead, all signals sent
to some process j are automatically added to its local history, without requiring
actions from j. The system is still asynchronous, meaning that processes evolve
at different speeds. We are interested in synthesizing local programs, also called
strategies. By local we mean that to decide which action it should execute next,
a process j only knows its current local history, which automatically includes all
signals sent to j in addition to the signals sent by j.

Formally, an architecture is a tuple A = (Proc, E, (Ini)i∈Proc, (Outi)i∈Proc)
where (Proc, E) is the directed communication graph whose nodes are processes
and there is an edge (i, j) ∈ E if process i may send signals to process j. For
each process i ∈ Proc, the sets Ini and Outi define input and output signals that
i may receive from or send to the environment. We assume that all these sets
are pairwise disjoint. We let In =

⋃
i∈Proc Ini and Out =

⋃
i∈Proc Outi be the

sets of input and output signals of the whole system. Let also Γ = In ∪ Out.

In order to realize a specification, the processes may choose for each commu-
nication link (i, j) ∈ E a set Σi,j of signals that i could send to j. Again, we
assume that these sets are pairwise disjoint and disjoint from Γ . The complete
alphabet (of signals) is then Σ = Γ ∪

⋃
(i,j)∈E Σi,j . The actions in Γ are called

external signals whereas the actions in Σ \Γ are called internal signals. For each
a ∈ Σ we let process(a) be the set of processes taking part in the execution of
a: process(a) = {i} if a ∈ Ini ∪ Outi and process(a) = {i, j} if a ∈ Σi,j.

It should be no surprise now that the concrete executions of our asynchronous
distributed systems will be Mazurkiewicz traces. We consider the trace alphabet
(Σ,D) where the dependence relation D ⊆ Σ × Σ is defined by: (a, b) ∈ D if
process(a) ∩ process(b) 6= ∅. We recall that a Mazurkiewicz trace t over (Σ,D)
is (an equivalence class of) a finite or infinite Σ-labelled poset t = (V,≤, λ) such
that for all x, y ∈ V , ↓x = {y ∈ V | y ≤ x} is finite, (λ(x), λ(y)) ∈ D implies
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x ≤ y or y ≤ x, and x⋖y implies (λ(x), λ(y)) ∈ D where x⋖y means that x < y
and there is no z ∈ V such that x < z < y.

We denote by R(Σ,D) the set of traces over (Σ,D) and by M(Σ,D) the set
of finite traces. For i ∈ Proc, we denote by Σi = {a ∈ Σ | i ∈ process(a)} the set
of actions visible to process i and by Σc

i = Outi∪
⋃

j|(i,j)∈E Σi,j the set of actions
controlled by process i. A local strategy for process i is a mapping fi : Σ∗

i → Σc
i .

After a sequence of actions w ∈ Σ∗
i visible to i (but not necessarily all initiated

by i) fi(w) says which action in Σc
i the process i is willing to play. Observe that

another action in Σi \ Σc
i can be executed by another process before process i

had time to play according to its strategy. This would modify its local history,
and thus may modify its strategy: processes are then reactive to signals sent
to them by other processes and by the environment. A distributed strategy (or
program) is a tuple F = (fi)i∈Proc of local strategies.

Let t = (V,≤, λ) be a run of the system and let v ∈ V . By definition of
the dependence relation, the sets of events ↓iv = {x ∈ λ−1(Σi) | x ≤ v} and
⇓iv = ↓iv\{v} are totally ordered. We denote by λ(⇓iv) the word λ(x1) · · ·λ(xn)
where {x1, · · · , xn} = ⇓iv with x1 < · · · < xn. Let us fix a distributed strategy
F . We say that a run t = (V,≤, λ) is an F -run (or is compatible with strategy
F ) if all controllable events are played according to F , i.e., for all v ∈ V such
that λ(v) ∈ Σc

i , we have λ(v) = fi(λ(⇓iv)). Observe that, for a fixed distributed
strategy F , even if inputs from the environment follow the same pattern, there
are multiple F -runs depending on the scheduling of internal signals. A run t =
(V,≤, λ) is F -maximal if for any process i, either Vi = λ−1(Σi) is infinite, or fi

is undefined on λ(Vi).

3 The Specification

The specifications we consider only constrain external actions from Γ , i.e., ac-
tions that reflect communications with the environment. We want the processes
to collaborate freely in order to achieve the specification, hence we do not con-
strain internal signals. Moreover, our specifications will be on partial orders,
and not linearizations of executions. Indeed, specifying over interleavings allows
to differentiate between equivalent linearizations, which is not desirable for dis-
tributed systems.

For a concrete run t = (V,≤, λ) we define the abstract (observable) run as
the projection πΓ (t) = (λ−1(Γ ),≤ ∩ (λ−1(Γ ))2, λ). Specifications will then be
formulae in some logical formalism whose models are Γ -labelled partial orders.
We say that a concrete run t satisfies a specification ϕ if its projection πΓ (t)
satisfies ϕ.

Distributed synthesis: Given an architecture (Proc, E, (Ini)i∈Proc, (Outi)i∈Proc)
and a specification ϕ over Γ -labelled posest in an appropriate logic, decide
whether there exist internal signal sets (Σi,j)(i,j)∈E and a distributed strategy
F such that every F -maximal concrete F -run satisfies the specification ϕ.
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Fig. 1. Specifications must be closed under extensions

Acceptable Specifications. We explain now with some examples that not
all specifications are acceptable in our framework. We start with an example
showing that specifications must be closed under extensions of partial orders.

Consider a distributed system with Proc = {p, q, r} and E = {(p, q), (q, r)}.
Note that p cannot directly send signals to r. A natural specification could
be that q must output b and that if p receives input a from the environment
then r must later output c. This corresponds to the partial order represented in
Figure 1(a). In order to implement this specification, when process p receives a
it must send a signal to q and q should forward this signal to r so that r knows it
should output c. But these internal signals will induce some additional ordering
between a and b or between b and c as can be seen in Figure 1(b). None of the
corresponding abstract runs in Figure 1(c) correspond to the partial order of the
specification, though they are all extensions of it. Hence, we need to extend this
specification so that it can be implemented.

Formally, an (order) extension of a labelled partial order t = (V,≤t, λ) is any
partial order s = (V,≤s, λ) with ≤t ⊆ ≤s. We will require our specifications to
be closed under extensions.

Next, we show that the specification should also be closed under some weak-
enings of the partial order. This is due to the fact that inputs from the envi-
ronment are uncontrollable events. Hence, it seems unrealistic to try to impose
a direct causality between any action on some process and an input event from
the environment on another process. For instance, consider an architecture with
two processes, one receiving service requests from a client and the other granting
the service: Inc = {request} and Outs = {grant}.

A naive specification could be an alternation of request and grant as pre-
sented in Figure 2(a). A possible implementation is presented in Figure 2(b)
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using two internal signals forward ∈ Σc,s and ready ∈ Σs,c. Since inputs from
the environment are uncontrollable, we cannot enforce that the second request

comes after the internal signal ready. Hence, the specification should also include
the behavior of Figure 2(c) corresponding to the concrete run of Figure 2(d).

Formally, if a partial order t = (V,≤t, λ) satisfies a specification and if z⋖t z
′

where z′ is an input event from the environment and z, z′ are not on the same
process, then the weakening s = (V,≤s, λ) with ≤s = ≤t \ {(z, z′)} should also
satisfy the specification (≤s is still an order relation since z′ is a successor of z).

We will define the weakest partial order induced by t. Recall that actions
in Γ are either inputs from the environment or outputs to the environment:
Γ = In ∪ Out with In =

⋃
i∈Proc Ini and Out =

⋃
i∈Proc Outi. Consider now a

Γ -labelled partial order t = (V,≤, λ) and define

Wt = {(z, z′) ∈ V 2 | ∃i ∈ Proc, λ(z) /∈ Σi ∧ λ(z
′) ∈ Ini ∧ z < z′

∧ (¬∃y, λ(y) ∈ Outi ∧ z < y < z′)} .

The set Wt consists of all those pairs (z, z′) for which the ordering in t is fortu-
itous. This happens when z, z′ are on different processes and z′ is an uncontrol-
lable input from the environment, except if we find an output event y between
z and z′ which is on the same process as z′. Indeed, output y may have been
triggered by z so we do not remove orderings to output events.

We are now ready to define acceptable specifications.

Definition 1. A specification is acceptable if it is closed under extension and
weakening. Formally, a specification ϕ is acceptable if for all t = (V,≤t, λ) such
that λ−1(Σi) is totally ordered for all i ∈ Proc, if t |= ϕ, then

– r |= ϕ for all r = (V,≤r, λ) with ≤t ⊆ ≤r (extension),
– s |= ϕ where s = (V,≤s, λ) with ≤s = ≤t \Wt (weakening).

Observe that this definition of weakening removes all fortuitous orderings at
once, but, since the specification is also closed under extension, all intermediary
partial orders can also be obtained.
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AlocTL. Among different logics available to express specifications over par-
tial orders, we will focus on local temporal logics (locTL), for they allow easy
and intuitive specifications for distributed system, and they have a reasonable
complexity. However, not all local temporal logic formulae are acceptable: the
formula EM(a∧¬F b) meaning that there is a minimal a-event with no b-events
in its future is not closed under extension (see e.g. [2] for a formal semantics of
locTL). Also, the formula EM(a∧EX c) meaning that there is a minimal a-event
immediately followed by a c-event is not closed under extension. In fact, in order
to stay in the class of specifications closed under extensions, we have to rule
out any modality that requires some concurrency between two events. For the
closure by weakening, we restrict the use of the order relation between events on
different processes so that the greater event is not an input.

We introduce a syntactic restriction of a process based local temporal logic
for which all formulae will be acceptable. The syntax of AlocTL(Γ,Proc) (or
simply AlocTL if Γ and Proc are clear from the context) is given by:

ϕ ::= a | ¬a | ¬Xi ⊤ | ¬Yi ⊤ | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | Gi ϕ | Fi,j(Out ∧ ϕ) | Yi ϕ | ϕSi ϕ | Out ∧ Hi,j ϕ

with a ∈ Γ and i, j ∈ Proc. The modalities Xi, Yi, Ui and Si are the usual next,
yesterday, until and since restricted to the totally ordered events of process i. We
can also express in our logic release (dual of until): ϕRiψ = (Gi ψ)∨(ψUi(ϕ∧ψ)).
When restricted to the events of some process i, our logic has the full expressive
power of LTL or FO. We only restrict how one can switch from one process to
another so that closure under extensions and weakenings will be obtained.

To switch from process i to process j, we use Fi,j or Hi,j . The first one al-
lows to specify a response property triggered on process i for which the output
is delivered on process j, e.g., G(request −→ Fi,j(Out ∧ grant)). The sec-
ond modality may be used to specify that outputs should have a cause, e.g.,
G(grant −→ (Out ∧ Hj,i request)). We do not include negations or modalities
of the form Xi,j since they lead out of acceptable specifications.

We did not investigate the expressive power of our logic, but we believe it
can express lots of interesting properties since it has the expressive power of FO
when restricted to local events of each process, and allows response and cause
properties between processes.

The semantics defines when t, x |= ϕ where t = (V,≤, λ) is a Γ -labelled
partial order with Vi = λ−1(Σi) totally ordered for each i ∈ Proc, and x ∈ V :

– t, x |= a ∈ Γ if λ(x) = a
– t, x |= Xi ϕ if x ∈ Vi and t, y |= ϕ for some y ∈ Vi such that x < y and for

all z ∈ Vi, z ≤ x or y ≤ z.
– t, x |= Gi ϕ if x ∈ Vi and t, y |= ϕ for all y ∈ Vi such that x ≤ y.
– t, x |= ϕ Ui ψ if x ∈ Vi and t, y |= ψ for some y ∈ Vi such that x ≤ y and for

all z ∈ Vi, x ≤ z < y implies t, z |= ϕ.
– t, x |= Fi,j(ϕ ∧ Out) if x ∈ Vi and t, y |= ϕ for some y ∈ Vj such that x ≤ y

and λ(y) ∈ Out.
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The other modalities are defined similarly.
As in [2], we have chosen to introduce initial formulae to address the problem

of starting the evaluation of a formula. Those are defined by the syntax

α ::= ⊥ | ⊤ | ¬EMi ⊤ | EMi ϕ | α ∨ α | α ∧ α

where ϕ is a formula of AlocTL. The semantics is given by t |= EMi ϕ if t, x |= ϕ
where x is the minimal vertex of Vi.

Proposition 1. The logic AlocTL is closed under extension and weakening.

Observe that AlocTL is a natural fragment of FO(<) which is closed under
extensions and weakenings. In our setting, it provides a convenient way to specify
desired properties. Our decidability results will be stated for AlocTL but they
would still hold for more general logics defining regular properties which are
closed under extensions and weakenings.

4 Decidability Results

In this section we solve the synthesis problem for the subclass of architectures
having a strongly connected communication graph: every process can send signals
to everyone (though maybe not directly). In the following, we will simply call
them strongly connected architectures.

Singleton Architectures. A first step in solving the general problem is to handle
the sequential case. This problem is slightly different from the asynchronous
synthesis of [16] (where the communication was through shared variables) and
[12] (where a single process does not evolve asynchronously with respect to its
environment).

In the sequential case, there is no internal action and then Σ = Γ = In∪Out,
and all runs are total orders. The only specificity is that the system communi-
cates asynchronously with the environment, i.e., there may be several signals
from the environment before the process has a chance to play, and reciprocally.
Since there is no possible weakening or extension, we are concerned with classical
logics for specifications. We can deal both with linear time specifications (LTL,
FO, MSO) or with branching time specifications (CTL∗, µ-calculus) since all we
need is regular specifications. With slight modifications of the proof technique
used in [6], we obtain the following result.

Theorem 1. The synthesis problem over the singleton architecture is decidable
for regular specifications.

Strongly Connected Architectures. Now, we show that the distributed synthesis
problem is decidable for the whole subclass of strongly connected architectures.
This is done by reduction to the synthesis problem over the singleton. On one
hand, it is easy to simulate a distributed strategy with a sequential one. Con-
versely, when given a program for the singleton that produces only runs satisfying
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the specification, we can distribute it over the strongly connected architecture.
We use a master-slave algorithm: we centralize the information by making all
processes forward their local histories to a master process that takes all decisions
about which action to output. This master process consequently sends back or-
ders to the other processes, based on information it has and the given sequential
strategy. Formally, we will prove the following main result.

Theorem 2. The distributed synthesis problem over strongly connected archi-
tectures is decidable for AlocTL specifications.

The rest of the section is devoted to the proof of this theorem. Let A =
(Proc, E, (Ini)i∈Proc, (Outi)i∈Proc) be an architecture with (Proc, E) strongly
connected. Let S be an architecture with a single process p and external sig-
nals Inp = In =

⋃
i∈Proc Ini and Outp = Out =

⋃
i∈Proc Outi. We show that the

distributed synthesis problem for ϕ ∈ AlocTL(Γ,Proc) over A can be reduced
to the synthesis problem for an associated specification ϕ ∈ AlocTL(Γ, {p})
over S. Then, we obtain Theorem 2 from Theorem 1. We have to change the
specification since there is a single process in S and several processes in A. We
do so in such a way that for all Γ -labelled total order t and all x ∈ t, we have
t, x |= ϕ if and only if t, x |= ϕ. For instance, Xi ϕ = Σi∧X((¬Σi)U(Σi∧ϕ)) and
Fi,j(Out ∧ ϕ) = Σi ∧F(Outj ∧ϕ) (where A =

∨
a∈A a for A ⊆ Σ). The following

two propositions state that the synthesis problem for ϕ over A is reduced to the
synthesis problem for ϕ over S.

Proposition 2. If there are internal signals sets and a distributed winning strat-
egy for ϕ over A, then there is a winning strategy for ϕ over S.

The proof of this proposition is omitted due to lack of space.

Proposition 3. If there is a winning strategy for ϕ over S then one can define
internal signals sets and a distributed winning strategy for ϕ over A.

Proof (Sketch). We want to simulate a sequential run of S in the distributed
system A. Due to uncontrollable inputs from the environment, we cannot avoid
some concurrency but we will restrict it as much as possible so that runs of A
will be weakenings of sequential runs of S. To do so, we select a cycle in the
communication graph and force the processes to communicate in a sequential
way through this virtual ring – note that there may be no simple cycle, and
some technical details arise when a process appears several times in the ring.
For simplicity, we present here the proof assuming there is a simple cycle in
(Proc, E) and we rename the processes Proc = {1, . . . , n} according to this
cycle. Process 1 will be our master.

Let f be a winning strategy for ϕ over S. To simulate f over S, the master
Process 1 transforms its local history σ into a compatible sequential history ψ(σ)
of S (the definition of ψ will be given later).

If f is undefined on ψ(σ) then we let f1(σ) = (Msg1, ε) meaning that Process
1 wants to initiate a round collecting inputs received by other Processes. When
receiving this signal, Process 2 sends a pair (Msg2, τ) where τ ∈ In∗

1 is the

9



sequence of inputs received by Process 1 since the last time it has sent a signal
to Process 2. The round continues similarly for the other Processes. Formally,
for 1 < i ≤ n, σ ∈ Σ∗

i ·Σc
i ∪ {ε}, τ ∈ In∗ and τ1, τ2 ∈ In∗

i , we let

fi(σ · τ1 · (Msgi−1, τ) · τ2) = (Msgi, τ · τ1 · τ2).

Here τ is the sequence of inputs collected by previous processes, τ1 consists of
inputs received before the signal Msgi−1 and τ2 of the messages received after
Msgi−1 and before Msgi could be sent. This explains the reordering τ · τ1 · τ2.

Assume now that f is defined on ψ(σ) and let i with a = f(ψ(σ)) ∈ Outi.
If i = 1 then we simply let f1(σ) = f(ψ(σ)). Now, if i > 1 then we let f1(σ) =
(Ord1, a) to transmit to Process i the order to output a. The order is forwarded
by each intermediary Process 1 < j < i only if j received no inputs since the
last time it has sent a signal to j + 1. Then output a is performed by i and an
acknowledgement is sent to Process 1. This acknowledgement will also collect
inputs received by remaining processes. Formally, for 1 < i ≤ n, σ ∈ Σ∗

i ·Σ
c
i ∪{ε},

τ ∈ In∗ and τ1, τ2 ∈ In∗
i , we let

fi(σ · (Ordi−1, a)) = (Ordi, a) if a /∈ Outi

fi(σ · (Ordi−1, a)) = a if a ∈ Outi

fi(σ · (Ordi−1, a) · a · τ2) = (Acki, τ2) if a ∈ Outi

fi(σ · τ1 · (Acki−1, τ) · τ2) = (Acki, τ · τ1 · τ2)

Now, if an intermediary process received some inputs from the environment
before it could forward the order to Process i, then the basis on which Process 1
took is decision is no longer valid. Hence, we have to abort the order and signal
this fact with a Nack. We also need to abort if i received the order but has
also received inputs from the environment before it could execute the order. As
above, Nack also collects inputs received by the remaining processes. Formally,
for 1 < i ≤ n, σ ∈ Σ∗

i ·Σc
i ∪ {ε}, τ ∈ In∗ and τ1, τ2 ∈ In∗

i , we let

fi(σ · τ1 · (Ordi−1, a) · τ2) = (Nacki, τ1 · τ2) if τ1 · τ2 6= ε

fi(σ · τ1 · (Nacki−1, τ) · τ2) = (Nacki, τ · τ1 · τ2)

The sets of internal signals are implicitely defined by the strategies above:Σ1,2 =
({Ord1} × Out) ∪ {(Msg1, ε)} and for 1 < i ≤ n and j = 1 + (i mod n),

Σi,j = ({Msgi,Acki,Nacki} × In∗) ∪ ({Ordi} × Out).

Due to In∗, the sets Σi,j are infinite. We explain in Remark 1 how to reduce to
finite sets of signals, and strategies with finite-memories.

To conclude the construction, we define the map ψ : Σ∗
1 → Γ ∗ by induction.

First, ψ(ε) = ε. Next, ψ(σ · b) = ψ(σ) · b for σ ∈ Σ∗
1 and b ∈ Σ1 ∩ Γ . Finally, for

σ ∈ Σ∗
1 , a ∈ Out \ Out1, τ ∈ In∗

1 and τ ′ ∈ In∗, let:

ψ(σ · (Msg1, ε) · τ · (Msgn, τ
′)) = ψ(σ) · τ ′ · τ

ψ(σ · (Ord1, a) · τ · (Ackn, τ
′)) = ψ(σ) · a · τ ′ · τ

ψ(σ · (Ord1, a) · τ · (Nackn, τ
′)) = ψ(σ) · τ ′ · τ
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Note that, after sending Msg1 or Ord1, ψ is undefined until the corresponding
Msgn, Ackn or Nackn has been received by Process 1. When ψ is undefined then
f1 is also undefined so that Process 1 waits for the end of the round. Note also
that inputs in τ ′ may have been received before those in τ .

Let t = (V,≤t, λ) be an F -maximal F -run. We can easily check that all
output events in λ−1(Out) are totally ordered. We can also show that the history
t′ computed by ψ is an f -maximal f -run which is a linear extension of πΓ (t).
To conclude the proof, it remains to show that πΓ (t) is an extension of the
weakening of t′: ≤t′ \Wt′ ⊆ ≤t ⊆ ≤t. For this, we will use the following claim
whose proof is omitted for lack of space.

Claim. For all x, y ∈ λ−1(Γ ) such that x ‖t y, if x <t′ y then λ(y) ∈ In.

So let z, z′ ∈ λ−1(Γ ) with z <t′ z
′ and z ‖t z′. We have to show that

(z, z′) ∈ Wt′ . By the above claim, we get λ(z′) ∈ In. Let i ∈ Proc be such that
λ(z′) ∈ Ini. Since z ‖t z

′ we deduce λ(z) /∈ Σi. Now, let y ∈ λ−1(Γ ) be such that
z <t′ y <t′ z

′. Clearly, z ‖t z
′ implies z ‖t y and we deduce λ(y) ∈ In by the

claim stated above. Therefore, (z, z′) ∈ Wt′ . Finally, t′ |= ϕ since the strategy
f is winning. We deduce that πΓ (t) |= ϕ since our specification logic is closed
under weakenings and extensions. ⊓⊔

Remark 1. As they are defined, the sets (Σi,j)(i,j)∈E are infinite, and the strate-
gies for the distributed architecture need unbounded memory. However, it is
possible to modify them to use only finite signal sets and strategies with finite
memories. Recall that the strategy of our master process is essentially based on
the strategy f of the singleton. As usual in the sequential case, when there is
a winning strategy, then there is also a winning strategy using a finite memory
which can be described by a deterministic finite automaton M = (Q,Γ, δ, q0, f)
with f : Q→ Out. Consequently, each slave process may compute the transition
function δτ ∈ QQ associated with a sequence τ of inputs it has received and
transmit δτ instead of τ . Therefore, we get finite sets of internal signals

Σi,1+(i mod n) = ({Msgi,Acki,Nacki} ×QQ) ∪ ({Ordi} × Out).

and the memory needed by each process 1 < i ≤ n is QQ. It is then easy to
adapt the proof of Proposition 3.

5 Conclusion

In this paper, we have defined a new setting for the synthesis problem for dis-
tributed asynchronous systems, and proved that it is decidable for an interesting
subclass of architectures. We believe that using signals in asynchronous systems,
and restricting to acceptable specifications will help to overcome a lot of the
common difficulties that usually lead to undecidability results.

Future work includes the generalization of our decidability result to larger
classes of architectures. Other interesting problems would be to study the ex-
pressivity of AlocTL or to define other logics for acceptable specifications.
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