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Abstract: In this paper we focus on property-preserving preorders between timed game
automata and their application to control of partially observable systems. Following the example
of timed simulation between timed automata, we define timed alternating simulation as a
preorder between timed game automata, which preserves controllability. We define a method
to reduce the timed alternating simulation problem to a safety game. We show how timed
alternating simulation can be used to control efficiently a partially observable system. This
method is illustrated by a generic case study.
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1. INTRODUCTION

Since the introduction of timed automata the technology
and tool support (Larsen et al., 1997; Bozga et al., 1998)
for model-checking and analysis of timed automata based
formalisms have reached a level mature enough for indus-
trial applications as witnessed by a large number of case
studies. Most recently, efficient on-the-fly algorithms for
solving reachability and safety games based on timed game
automata have been put forward (Cassez et al., 2005) and
made available within the tool Uppaal-Tiga. The tool
has been recently used in an industrial case study (Jessen
et al., 2007) with the company Skov A/S for synthesizing
climate control programs for modern pig stables. Despite
this success, the state-space explosion problem is a real-
ity preventing the tools to scale up to arbitrarily large
and complex systems. What is needed are complementary
techniques allowing for the verification and analysis efforts
to be carried out on suitable abstractions.

Assume that S is a timed (game) automaton, and assume
that � is a property to be established (solved) for S. Now S

may be a timed automaton too complex for our verification
tool to settle the property �, or S may be a timed game
automaton with a number of unobservable features that
can not be exploited in any realizable strategy for solving
the game. The goal of abstraction is to replace the complex
(or unobservable) model S with an abstract timed (game)
automaton A being smaller in size, less complex and fully
observable. This method requires the user not only to
supply the abstraction but also to argue that the abstrac-
tion is correct in the sense that all relevant properties
established (controllable) for A also hold for S; i.e. it should
be established that S ≤ A for some property-preserving
relationship ≤ between timed (game) automata.
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The possible choices for the preorder ≤ obviously depend
heavily on the class of properties to be preserved as well
as the underlying modelling formalism. In this paper we
introduce the logic ATCTL being a universal fragment
of the real-time logic TCTL (Alur et al., 1993) (with
propositions both on states and events). We introduce the
notions of strong and weak alternating timed simulation
between timed game automata. These relations are proved
to preserve controllability with respect to ATCTL. As
main results of the paper we show how strong and weak
timed alternating simulation problems may be reduced to
safety games for suitably constructed “products” of timed
game automata. These constructions allow the use of
Uppaal-Tiga to provide direct tool support for checking
preorders between timed game automata.

Finally, we show how timed alternating simulation can be
used to control efficiently a partially observable system.
This method is illustrated by a generic case study: We
apply our construction for timed alternating simulation to
synthesize control programs for a scenario where the move
of a box on a conveyor belt is partially observable. We
compare experimental results obtained by two different
methods for this problem, one method using our weak
alternating timed simulation preorder.

Related work. Decidability for timed (bi)simulation be-
tween timed automata was given in (Cerans, 1992) us-
ing a “product” region construction. This technique pro-
vided the computational basis of the tool Epsilon (Cerans
et al., 1993). In (Weise and Lenzkes, 1997) a zone-based
algorithm for checking (weak) timed bisimulation – and
hence not suffering the region-explosion in Epsilon – was
proposed though never implemented. For fully observable
and deterministic abstract models timed simulation may
be reduced to a reachability problem of S in the context of
a suitably constructed testing automaton monitoring that
the behavior exhibited is within the bounds of A (Jensen
et al., 2000). Alternating temporal logics were introduced



in (Alur et al., 1997) and alternating simulation between
finite-state systems was introduced in (Alur et al., 1998).

In this paper we offer – to our knowledge – the first timed
extension of alternating simulation. The application of our
method using weak alternating simulation for the problem
of timed control under partial observability improves the
direct method proposed in (Cassez et al., 2007)

2. TIMED GAMES AND PRELIMINARIES

2.1 Timed Automata

Let X be a finite set of real-valued variables called clocks.
We note C(X) the set of constraints ' generated by the
grammar: ' ::= x ∼ k ∣ x − y ∼ k ∣ ' ∧ ' where k ∈ ℤ,
x, y ∈ X and ∼ ∈ {<,≤,=, >,≥}. ℬ(X) is the subset of
C(X) that uses only rectangular constraints of the form
x ∼ k. A valuation of the variables in X is a mapping
v : X 7→ ℝ≥0. We write 0 for the valuation that assigns 0
to each clock. For Y ⊆ X, we denote by v[Y ] the valuation
assigning 0 (resp. v(x)) for any x ∈ Y (resp. x ∈ X ∖ Y ).
We denote v + � for � ∈ ℝ≥0 the valuation s.t. for all
x ∈ X, (v + �)(x) = v(x) + �. For g ∈ C(X) and v ∈ ℝ

X
≥0

,

we write v ∣= g if v satisfies g and [[g]] denotes the set of
valuations {v ∈ ℝ

X
≥0

∣ v ∣= g}.

Definition 1. A Timed Automaton (TA) (Alur and Dill,
1994) is a tuple A = (L, l0,Σ, X,E, Inv) where L is a
finite set of locations, l0 ∈ L is the initial location, Σ is
the set of actions, X is a finite set of real-valued clocks,
Inv : L → ℬ(X) associates to each location its invariant
and E ⊆ L×ℬ(X)×Σ×2X×L is a finite set of transitions,
where t = (l, g, a,R, l′) ∈ E represents a transition from
the location l to l′, labeled by a, with the guard g, that
resets the clocks in R. One special label � is used to code
the fact that a transition is not observable.

A state of a TA is a pair (l, v) ∈ L × ℝ
X
≥0

that consists
of a discrete part and a valuation of the clocks. From a
state (l, v) ∈ L × ℝ

X
≥0

s.t. v ∣= Inv(l), a TA can either
let time progress or do a discrete transition and reach a
new state. This is defined by the transition relation −→
built as follows: for a ∈ Σ, (l, v)

a
−−→ (l′, v′) if there exists

a transition l
g,a,Y

−−−−−→ l′ in E s.t. v ∣= g, v′ = v[Y ] and

v′ ∣= Inv(l′); for � ≥ 0, (l, v)
�

−−→ (l, v′) if v′ = v + � and
v, v′ ∈ [[Inv(l)]]. Thus the semantics of a TA is the labeled
transition system SA = (Q, q0,−→) where Q = L × ℝ

X
≥0

,

q0 = (l0,0) and the set of labels is Σ ∪ ℝ≥0. A run of

a timed automaton A is a sequence q0
�1−→ q1

t1−→ q′1
�2−→

q2
t2−→ q′2 . . . of alternating time and discrete transitions in

SA. We use Runs((l, v), A) for the set of runs that start
in (l, v). We write Runs(A) for Runs((l0,0), A). If � is a
finite run we denote last(�) the last state of the run and
Duration(�) the total elapsed time all along the run.

Definition 2. We define inductively the observation asso-
ciated to a run � as the (possibly infinite) word Obs(�) over

the alphabet Σ ∪ ℝ defined as: Obs((�1, t1, �2, t2, . . . ))
def

=

(
∑i1

i=1
�i, ti1 ,

∑i2
i=i1+1

�i, ti2 ,
∑i3

i=i2+1
�i, ti3 , . . . ), where

i1 < i2 < . . . are the indices of the observable transitions:

Assumptions. We assume that: 1) every infinite run
contains infinitely many observable transitions; 2) from
every state, either a delay action with positive duration or
a controllable action can occur.

2.2 ATCTL

In this article, we consider a universal fragment ATCTL
of the real-time logic TCTL (Alur et al., 1993) with
propositions both on states and actions.

Definition 3. A formula of ATCTL is either A �1 U �2 or
A �1 W �2, where A denotes the quantifier “for all path”
and U (resp. W) denotes the temporal operator “until”
(resp. “weak until”), the �i’s are pairs (�s

i , �
�
i ) and �s

i

(resp. ��
i ) is a set of states (resp. observable actions).

A run � of a timed automaton A satisfies �1 U �2 iff there
exists a prefix �′ of � such that: 1) only actions of ��

1 occur
in �′ and 2) all the states reached during the execution of
�′ are in �s

1 ∪ �s
2 and 3) either last(�′) ∈ �s

2 or the last
action of �′ is in ��

2 . Then we write � ∣= �1 U �2.

A run � of a timed automaton A satisfies �1W�2 iff either
it satisfies �1 U �2 or only actions of ��

1 occur in � and all
the states reached during the execution of � are in �s

1.
Then we write � ∣= �1 W �2. When all the runs of a timed
automaton A satisfy a property �, we write A ∣= A �.

We define also the fragment ATCTL� of ATCTL where
only actions are considered: the formulas of ATCTL� are
only the formulas A �1U�2 and A �1W�2 where �

s
1 = L×

ℝ
X
≥0

and �s
2 = ∅.

2.3 Timed Games

Definition 4. A Timed Game Automaton (TGA) (Maler
et al., 1995) is a timed automaton G with its set of
transitions E partitioned into controllable (Ec) and un-
controllable (Eu) actions. We assume that a controllable
transition and an uncontrollable transition never share the
same observable label. In addition, invariants are restricted
to Inv : L → ℬ′(X) where ℬ′ is the subset of ℬ using
constraints of the form x ≤ k.

Given a TGA G and a control property � ≡ A �1 U �2

(resp.A �1W�2) of ATCTL, the reachability ( resp. safety)
control problem consists in finding a strategy f for the
controller such that all the runs of G supervised by f
satisfy the formula. By “the game (G,�)” we refer to the
control problem for G and �.

The formal definition of the control problems is based on
the definitions of strategies and outcomes. In any given
situation, the strategies suggest to do a particular action
after a given delay. A strategy (Maler et al., 1995) is
described by a function that during the course of the game
constantly gives information as to what the players want to
do, under the form of a pair (�, e) ∈ (ℝ≥0×E)∪{(∞,⊥)}.
(∞,⊥) means that the strategy wants to delay forever.

The environment has priority when choosing its actions:
if the controller and the environment want to play at the
same time, the environment actually plays. In addition, the
environment can decide not to take action if an invariant
requires to leave a state and the controller can do so.



Assumption. A special case occurs in states in states
where an invariant expires and only an uncontrollable
transition is possible. It is natural to “force” such a tran-
sition but this would complicate this paper significantly.
To keep readability, we consider models without this case.

Definition 5. Let G = (L, l0,Σ, X,E, Inv) be a TGA. A
strategy over G for the controller (resp. the environment)
is a function f from the set of runs Runs((l0,0), G) to
(ℝ≥0×Ec)∪{(∞,⊥)} (resp. (ℝ≥0×Eu)∪{(∞,⊥)}). We

denote (�(�), e(�))
def

= f(�) and we require that for every
run � leading to a state q,

∙ if �(�) = 0 then the transition e(�) is possible from q.
∙ for all �′ ≤ �(�), waiting �′ time units after � is

possible and the augmented run �′ = �
�′

−→ (abusing
notations) satisfies: f(�′) = (�(�)− �′, e(�)).

Furthermore, the controller is forced to play if an invariant
expires, (and, by assumption it can always play). This can
be specified as follows: if no positive delay is possible from
q, then the strategy of the controller satisfies �(�) = 0.

The restricted behavior of a TGA when the controller
plays a strategy fc and the opponent plays a strategy fu is
defined by the notion of outcome 1 . The proposed notions
of strategies and outcome are similar to the setting of
asymmetric concurrent games in de Alfaro et al. (2003).

Definition 6. Let G = (L, l0, Σ, X,E, Inv) be a TGA and
fc, resp. fu, a strategy over G for the controller, resp. the
environment. The outcome Outcome(q, fc, fu) from q in G
is the (possibly infinite) maximal run � = (�0, . . . , �i, . . . )

such that for every i ∈ ℕ (or 0 ≤ i <
∣�∣
2

for finite runs),

∙ �2i = min{�c(�0, . . . , �2i−1), �u(�0, . . . , �2i−1)}

∙ �2i+1 =

{

eu(�0, . . . , �2i) if �u(�0, . . . , �2i) = 0
ec(�0, . . . , �2i) otherwise

A strategy fc for the controller is winning in the game
(A,A �) if for every fu, Outcome(q0, fc, fu) satisfies �. We
say that a formula � is controllable in A, and we write
A ∣= c : A �, if there exists a winning strategy for the
game (A,A �).

3. PLAYING GAMES WITH TIMED GAMES

In this section we let A and B be two timed game
automata. We want to find conditions that ensure that
any property of ATCTL� that is controllable in B is
also controllable in A. In the context of model-checking,
simulation relations allow us to verify some properties of
a concrete model using a more abstract version of the
model, after checking that the abstract model (weakly)
simulates the concrete one. Here we are considering the
more general problem of controller synthesis: Some actions
are controllable (the models A and B are TGA) and we
want to use an abstraction of the model to build controllers
for some properties of the concrete model. For this we
define two alternating simulation relations (a strong one
≤sa and a weak one ≤wa), such that if A ≤sa B or A ≤wa

B, then any property of ATCTL� that is controllable in B
is also controllable in A. Moreover, the (weak) alternating

1 Unlike other papers, we define here one single maximal run for
each (q, fc, fu) instead of the set of possible runs for (q, fc).

simulation relation can be used to build the controller (or
the winning strategy) for A.

3.1 Strong Alternating Simulation

In this section we assume that all the transitions of the
timed games are observable. We define alternating simu-
lation relations as relations R between the states of A and
those of B such that if (qA, qB) ∈ R, then every property
that is controllable in B from qB is also controllable in
A from qA. Thus every controllable transition that can be
taken from qB must be matched by an equally labeled con-
trollable transition from qA. And on the other hand, every
uncontrollable transition in A tends to make A harder to
control than B; then we require that it is matched by an
equally labeled uncontrollable transition in B.

Progress of time. We have to check that if the controller
of B is able to avoid playing any action during a given
delay, then the controller of A is able to do the same.
To understand why this is required, think of a control
property where the goal is simply to reach a given time
without playing any observable action, unless the environ-
ment plays an uncontrollable action. If the controller of
B is able to wait, then it has a winning strategy for this
property. So the controller of A must be able to win too.
Symmetrically, we should in principle check that if the
environment of A is able to avoid playing during a given
delay, then the environment of B is able to do the same.
Actually this property does not need to be checked since,
by assumption, the environment is never forced to play.

Definition 7. A strong alternating simulation relation be-
tween two TGAs A and B is a relation R ⊆ QA×QB such
that (q0A, q0B) ∈ R and for every (qA, qB) ∈ R:

∙ (qB
a
−→c q

′
B) =⇒ ∃q′A (qA

a
−→c q

′
A ∧ (q′A, q

′
B) ∈ R)

∙ (qA
a
−→u q′A) =⇒ ∃q′B (qB

a
−→u q′B ∧ (q′A, q

′
B) ∈ R)

∙ (qB
�
−→ q′B) =⇒ ∃q′A (qA

�
−→ q′A ∧ (q′A, q

′
B) ∈ R)

We write A ≤sa B if there exists a strong alternating
simulation relation between A and B.

Theorem 1. If A and B are two timed games such that
A ≤sa B, then for every formula A � ∈ ATCTL�, if
B ∣= c : A �, then A ∣= c : A �.

3.2 Strong Alternating Simulation as a Timed Game

In this section we show how to build a timed game
Gamesa(A,B) such that A ≤sa B iff the controller has
a winning strategy. For simplicity we assume that A and
B share no clock, ℎ is a free clock, and the labels used by
controllable transitions of one timed game are not used by
any uncontrollable transition of the other timed game.

Intuition Behind the Construction of Gamesa(A,B). In
order to check the existence of a strong alternating sim-
ulation relation between A and B, we build a game that
consists in simulating the timed games A and B simultane-
ously, with the idea that at each time they are in states qA
and qB such that (qA, qB) ∈ R if there exists an alternating
simulation relation R between A and B. More precisely,
the controller of Gamesa(A,B) tries to keep the games A
and B in states qA and qB such that (qA, qB) ∈ R.



On the other hand, the environment of Gamesa(A,B) tries
to show that this is not always possible. For this it shows
that one of the implications in Definition 7 does not hold
from the current pair of states (qA, qB). The way of doing
this depends on the kind of implication that is considered.

For the first two implications, the technique is the fol-
lowing: The environment plays one transition correspond-
ing to the left hand side of the implication, and chal-
lenges the controller of Gamesa(A,B) to play a transition
corresponding to the right hand side, that imitates the
transition played by the environment of Gamesa(A,B).
Therefore all the controllable transitions of A and the
uncontrollable transitions of B become controllable in
Gamesa(A,B); and the uncontrollable transitions of A and
the controllable transitions of B become uncontrollable in
Gamesa(A,B). We use the labels to show which transitions
are controllable (c) and uncontrollable (u).

The idea is to use a variable la to store the last action
played by A, when A has played and B has not imitated it
yet. As soon as the action of A has been imitated by B, la
is set to the value � . As we did not present a model with
variables in this article, we define the TGA by duplicating
the states according to the possible values for la.

But in a real-time context, we want to check that the
actions are immediately imitated. Moreover the game must
be played such that every play corresponds to valid runs
of A and B. This implies that the time constraints of A
and B are satisfied. For this reason we keep the clocks of
A and B and we add one clock ℎ (assumed to be different
from those in A and B). ℎ is used to check that the
actions are immediately imitated: When the environment
of Gamesa(A,B) plays, ℎ is reset, and as soon as ℎ > 0
and la ∕= � (i.e. the controller of Gamesa(A,B) has not
played), the controller of Gamesa(A,B) loses.

Finally, when the environment wants to show that the
third implication of Definition 7 does not hold, it simply
waits until the invariant of qA expires. Of course, during
this time, the invariant of qB must hold. This amounts to
check that for every play, the corresponding runs of A and
B respect the invariants. Copying simply the invariants
in the game would not give the expected result: When an
invariant of A expires, the environment would have the
freedom of forcing the controller to take a transition of
B, which is not what we want. Instead, we remove all
the invariants from the model and take them into account
into the winning condition. If the invariant of InvsatA of
A (resp. InvsatB of B) is not satisfied, then the controller
(resp. the environment) loses the game.

Definition 8. The TGA of Gamesa(A,B) is defined as
(L, l0, {u, c}, X,E, Inv) where L = LA × LB × (Σ ∪ {�}),
l0 = (l0A, l0B , �), X = XA ∪XB ∪ {ℎ}, Inv = true and

E = {((lA, lB , �), g, u,R ∪ {ℎ}, (l′
A
, lB , a)) ∣ (lA, g, a, R, l′

A
) ∈ Eu

A
}

∪ {((lA, lB , �), g, u,R ∪ {ℎ}, (lA, l′
B
, a)) ∣ (lB , g, a, R, l′

B
) ∈ Ec

B
}

∪ {((lA, lB , a), g, c, R, (l′
A
, lB , �)) ∣ (lA, g, a, R, l′

A
) ∈ Ec

A
}

∪ {((lA, lB , a), g, c, R, (lA, l′
B
, �)) ∣ (lB , g, a, R, l′

B
) ∈ Eu

B
}

If the current state of Gamesa(A,B) is denoted
((lA, lB , la), v), the control property is the following:

A

{

InvsatA
∧ la ∕= � =⇒ v(ℎ) = 0

}

W

{

¬InvsatB
∧ la ∕= � =⇒ v(ℎ) = 0

}

z=0a

L2

z>=1

b
L1

x=0 y=0
a

L5

L4

y>=1

x<=2

bL3

Fig. 1. Two timed game automata, where the transitions
labeled by a are uncontrollable.

Theorem 2. A ≤sa B iff B has a winning strategy in the
timed game Gamesa(A,B).

3.3 Weak Alternating Simulation

As it is often the case that only observable actions are of in-
terest, we define a weak relation where only the observable
behavior of the automata is taken into account. We present
here a simple version of weak alternating simulation, where
the use of unobservable controllable transitions of A and
unobservable uncontrollable transitions of B is restricted.
Other choices are possible, but they usually make the
definition of weak alternating simulation and/or its coding
as a timed game very tricky. 2

Definition 9. A weak alternating simulation relation be-
tween two TGAs A and B is a relation R ⊆ QA×QB such
that (q0A, q0B) ∈ R and for every (qA, qB) ∈ R:

∙ (qB
a
−→c q

′
B) ⇒ ∃q′A (qA

a
−→c q

′
A ∧ (q′A, q

′
B) ∈ R)

∙ (qA
a
−→u q′A) ⇒ ∃q′B (qB

a
−→u q′B ∧ (q′A, q

′
B) ∈ R)

∙ (qB
�
−→ q′B) ⇒ ∃q′A (qA

�
−→ q′A ∧ (q′A, q

′
B) ∈ R)

∙ (qB
�
−→c q

′
B) ⇒

{

(qA, q
′
B) ∈ R

∨ ∃q′A (qA
�
−→c q

′
A ∧ (q′A, q

′
B) ∈ R)

∙ (qA
�
−→u q′A) ⇒

{

(q′A, qB) ∈ R

∨ ∃q′B (qB
�
−→u q′B ∧ (q′A, q

′
B) ∈ R)

We write A ≤wa B if there exists a weak alternating
simulation relation between A and B.

Remark that weak alternating simulation is larger than
strong alternating simulation and that if A and B are fully
observable, then weak alternating simulation and strong
alternating simulation coincide.

In Fig. 1 we show two timed game automata (denote
A the one on the left and B the one on the right)
where the transitions labeled by a are uncontrollable. The
other transitions are controllable, some labeled by b, some
unobservable. We have A ≤wa B. Intuitively, the reason
is that the controller has “more freedom” in A than in
B, because only one action b is possible in B; but the
environment of B can always imitate the actions of the
environment of A.

Theorem 3. If A and B are two timed games such that
A ≤wa B, then for every formula A � ∈ ATCTL�, if
B ∣= c : A �, then A ∣= c : A �.

2 For example, simply allowing an observable controllable transition
a
−→ to be imitated by a sequence made of an unobservable controllable

transition
�
−→ followed by a controllable

a
−→ poses the following

problem: We must check that the environment has no possible action
from the intermediate state, so that it cannot prevent the second
action from occurring.



3.4 Weak Alternating Simulation as a Timed Game

In this section we adapt the contruction of Section 3.2
to the case of weak alternating simulation. The symbols
�c and �u are used to code the situations where the
environment of Gamewa(A,B) has played an unobservable
action. This action corresponds either to an unobservable
uncontrollable action of A (in which case the symbol �u is
used), or to an unobservable controllable action of B (in
which case the symbol �c is used. As well as in the coding
of strong alternating simulation, the symbol � codes the
situations where all the uncontrollable actions of A and all
the controllable actions of B have been imitated.

The transitions of Gamewa(A,B) (see the construction of
E in Definition 10) are:

∙ those corresponding to the observable transitions
(lines 1 to 4), similar to those in Definition 8;

∙ the unobservable transitions played by the environ-
ment of Gamewa(A,B) (lines 5 and 6);

∙ the transitions that the controller of Gamewa(A,B)
takes after the environment has played an unobserv-
able transition (lines 7 to 10). They are of two kinds,
corresponding to the disjunctions that appear at the
right of the last two implications in Definition 9: The
controller of Gamewa(A,B) has the choice to take
zero or one unobservable action.

Definition 10. The TGA of Gamewa(A,B) is defined as
(L, l0, {u, c}, X,E, Inv) where L = LA × LB × (Σ ∪
{�c, �u, �}), l0 = (l0A, l0B , �), X = XA ∪ XB ∪ {ℎ},
Inv = true and

E = {((lA, lB , �), g, u,R ∪ {ℎ}, (l′
A
, lB , a)) ∣

(lA, g, a, R, l′
A
) ∈ Eu

A
∧ a ∕= �}

∪ {((lA, lB , �), g, u,R ∪ {ℎ}, (lA, l′
B
, a)) ∣

(lB , g, a, R, l′
B
) ∈ Ec

B
∧ a ∕= �}

∪ {((lA, lB , a), g, c, R, (l′
A
, lB , �)) ∣ (lA, g, a, R, l′

A
) ∈ Ec

A
∧ a ∕= �}

∪ {((lA, lB , a), g, c, R, (lA, l′
B
, �)) ∣ (lB , g, a, R, l′

B
) ∈ Eu

B
∧ a ∕= �}

∪ {((lA, lB , �), g, u,R ∪ {ℎ}, (l′
A
, lB , �u)) ∣ (lA, g, �, R, l′

A
) ∈ Eu

A
}

∪ {((lA, lB , �), g, u,R ∪ {ℎ}, (lA, l′
B
, �c)) ∣ (lB , g, �, R, l′

B
) ∈ Ec

B
}

∪ {((lA, lB , �c), g, c, R, (l′
A
, lB , �)) ∣ (lA, g, �, R, l′

A
) ∈ Ec

A
}

∪ {((lA, lB , �u), g, c, R, (lA, l′
B
, �)) ∣ (lB , g, �, R, l′

B
) ∈ Eu

B
}

∪ {((lA, lB , �c), true, c, ∅, (lA, lB , �)) ∣ lA ∈ LA ∧ lB ∈ LB}
∪ {((lA, lB , �u), true, c, ∅, (lA, lB , �)) ∣ lA ∈ LA ∧ lB ∈ LB}

The control property is the same as in Definition 8.

Theorem 4. A ≤wa B iff B has a winning strategy in the
timed game Gamewa(A,B).

4. CONTROL UNDER PARTIAL OBSERVABILITY

In (Cassez et al., 2007) we gave an on-the-fly algorithm
to solve the problem of timed controllability under par-
tial observability. The general setup is the same as in
Section 2 where the controller and the environment are
competing for actions. But in addition, a controller has
only imperfect or partial information on the state of the
system (that includes the environment), given in terms
of a finite number of observations, that are triggered ei-
ther when a discrete action is played or when some clock
reaches a given value. The controller can only use such
observations to distinguish states and base its strategy on.
According to these rules, a controllable action is “played”
until the observation changes. Therefore we are interested
in strategies where the actions are changed only when the
observation changes. Such strategies are called observation

x := 0,
pos++

x := 0
pos < N

LoseReady

Win

x >= N+3

x <= 1

x > 0

x >= N+3 Lose

Win

x > N+1

Fig. 2. Concrete (left) and abstract (right) model of a box.

based stuttering invariant strategies (OBSI). A winning
OBSI strategy is such that it leads to a winning obser-
vation whatever the environment chooses. The winning
condition is given as a particular observation. The algo-
rithm presented in (Cassez et al., 2007) that solves this
problem is based on constructing sets of symbolic states
(l̄, Z) with l̄ being the discrete part and Z a zone.

The important point in the exploration algorithm that
explains the experimental results is that the exploration
is done by computing successors of sets of such states
according to a given action � until the current observation
changes. The resulting space-space is partitioned by the
combinations of the observations (exponential), the num-
ber of sets of symbolic states is exponential in function of
the number of symbolic states, and the number of states
is itself exponential in the number of clocks.

4.1 Example of Use of Alternating Simulation for Timed
Control under Partial Observability

In this case-study, a box is placed on a moving conveyor
belt to reach a place where it will be filled. The box has
to go through a number of steps, that is a parameter
N in the model. Each step takes a variable duration (0
to 1 time unit); consequently, the exact time when the
box arrives in the state Ready is unknown. And the box
might stay only N + 3 time units in the state Ready.
Figure 2 (left part) shows a model of the system as a
timed game automaton. The loop represents the progress
on the conveyor belt, incrementing the variable pos, which
represents the position on the belt.

Thus the challenge for the controller is to fill the box while
it is in the state Ready. This would be easy if the controller
observes the progress of the box on the conveyor belt. But
we assume precisely that this is not the case. Then the
controller has to fill the box at a time where it is sure
that the box is in the state Ready, however the box has
progressed on the conveyor belt.

Now, using the control formula: c : A ◇Win (where ◇ is
the temporal operator “eventually”, ◇� is a shorthand
for true U �), Uppaal-Tiga allows us to generate a
controller which will fill the box while it is in the state
Ready. However, the strategy synthesized is based on full
information, including the position of the box on the
conveyor belt. In our context, this information is not
available for the controller.

We therefore introduce a fully observable, abstract model,
shown in Figure 2 (right). Again we use Uppaal-Tiga to
check for controllability. To guarantee that the strategy
obtained from this abstract model also correctly controls
our original concrete model we use Uppaal-Tiga to
establish a weak, timed alternating simulation between the
two models using the technique presented in Section 3.



simulation

N symbolic time
states (seconds)

100 1006 0.3
200 2006 0.9
300 3006 2.0
400 4006 3.5
500 5006 5.4
600 6006 7.7
700 7006 10.4
800 8006 13.6
900 9006 17.1
1000 10006 21.1

partial observability

N sets of time
symbolic (seconds)
states

1 83 0.5
2 160 1.8
3 274 4.8
4 421 10.3
5 625 21.9
6 864 42
7 1162 77
8 1491 172
9 1961 244
10 2486 415

Table 1. Experimental results

Actually, in order to treat this case-study, we had to use a
more general simulation relation than the one presented
in this paper: Indeed, the abstract model does not fit
the requirement that a controllable transition can fire
when an invariant expires. This case requires quite tricky
constructions that we did not detail in this paper.

4.2 Experimental Results

We compare two methods for checking the controllability
of our property. Table 1 shows the number of explored
symbolic states and the execution time obtained exper-
imentally. The first method is based on our simulation
technique. The second method uses an implementation
in Ruby of the algorithm presented in (Cassez et al.,
2007) that solves directly the control problem under par-
tial observability. Beyond the fact that the Ruby code is
interpreted and slow, we see clearly that its execution time
grows as an exponential ofN . In contrast the time required
for checking the simulation relation using Uppaal-Tiga is
quadratic. The number of symbolic states explored by our
simulation-based method is linear, while the first method
for partial observability explores a quadratic number of
sets of symbolic states.

In our example we have the observation y ∈ [0, 1) for a
clock y that belongs. This has the effect of cutting zones
down to regions in practice. In addition, those regions can
combine and define different sets of symbolic states, which
is exponential. This exponential shows up only in time
and not in space. This is due to on-the-fly inclusion checks
that remove sets, hence they do not appear at the end. We
note that the inclusion check between two sets of states is
more complex than ordinary inclusion check between two
zones. This behaviour is similar to determinization of non-
deterministic automata that can give such combinatorial
blow-ups.

5. CONCLUSION

We have defined strong and weak alternating timed simu-
lation between timed game automata and shown that these
relations preserve controllability w.r.t. ATCTL�. Moreover
we have proposed a coding of the strong and weak alter-
nating simulation problems as timed games. Any winning
strategy of the timed game can be used to build the weak
alternating timed simulation relation and vice versa.

We have shown how alternating timed simulation relations
can be used to control efficiently partially observable
systems. We used our tool Uppaal-Tiga to solve the
timed games generated from a generic case-study.

Though focus in this paper is on timed (weak) alter-
nating simulation preorders the given constructions may
be adapted to support the checking of other timed pre-
orders, including ready simulation preorder and (weak)
bisimulation. Also our constructions were designed so that
it is straitforward to adadpt them to preorders between
networks of timed game automata.
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