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Abstract. We study the model-checking problem for WMTL, a cost-
extension of the linear-time timed temporal logic MTL, that is inter-
preted over weighted timed automata. We draw a complete picture of
the decidability for that problem: it is decidable only for the class of
one-clock weighted timed automata with a restricted stopwatch cost,
and any slight extension of this model leads to undecidability. We finally
give some consequences on the undecidability of linear hybrid automata.

1 Introduction

Since a couple of years, the verification technology for timed automata has
evolved in several interesting directions, to answer new challenges posed by
modern real-life systems, like the control of resource (e.g. energy) consump-
tion. In that direction, weighted (or priced) timed automata [ALP01, BFH"01]
have been designed as an extension of the timed automaton formalism, which
uses observer variables to measure the performance of executions of the sys-
tem. This model raises numerous interesting optimization problems. A number
of them have been shown decidable, including optimal cost reachability [ALPO1,
BFH101, BBBRO7], optimal reachability in a multi-cost setting [LR05] or mean-
cost optimal schedules [BBLO4]. Note that the first and third problems even
induce no extra complexity compared to the classical problems without opti-
mization constraints (they are PSPACE-Complete).

Unfortunately, in general, adding resource consumption information is far
from being free-of-charge! Indeed, to now, two main branches have been ex-
plored, which both lead either to negative results, or to complex algorithms.
The first branch concerns the control problems, where a controller tries to min-
imize resource consumption, whatever an environment does: computing optimal
cost is undecidable in general [BBRO5], and this result holds even if the models
have no more than three clocks [BBMO0G]. Similarly, the model checking of WCTL,
a natural cost-extension of the branching-time logic CTL, has been investigated,
and very similar undecidability results have been obtained [BBR04, BBMO06],
even when strong hypotheses are made on the cost [BBRO6].

Recently, restriction of timed models to one clock has raised some inter-
est in the community, with interesting complexity or decidability results, like
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the NLOGSPACE-Completeness of reachability checking in one-clock timed au-
tomata [LMS04], or the decidability of emptiness checking in one-clock alter-
nating timed automata over finite timed words [LW05, OW05, LW07, OW07].
In the context of weighted timed systems, this restriction also leads to nice im-
provements. Indeed, optimal timed games have been proven decidable under that
restriction [BLMRO6]. The same holds for the model checking of WCTL [BLMO7],
which even remains PSPACE (i.e., has the same complexity as the model check-
ing of TCTL, the classical timed extension of CTL, even under the single-clock
restriction). However, not everything is decidable in this one-clock framework,
and for instance, the model checking of WCTL* is still undecidable [BLMO7].

In this paper, we tackle an obvious continuation of this literature, by con-
sidering the cost extension of the linear-time logic LTL, which we call WMTL
(MTL, for “Metric Temporal Logic”, is one of the classical timed extensions
of LTL introduced by [Koy90], and WMTL can also be viewed as a weighted
extension of MTL, hence the name). Indeed, it is known since [OW05] that the
model-checking problem for MTL over timed automata accepting finite timed
words is a decidable problem, whereas it becomes undecidable for infinite timed
words [OWO06]. We hence investigate the model checking problem for WMTL over
weighted timed automata recognizing finite timed words, and draw a complete
picture of the decidability results by proving that only the restriction to one-clock
weighted timed automata using a single stopwatch-cost variable3 is decidable,
and that any single extension (like having a non-stopwatch cost variable, or two
clocks, or two stopwatch cost variables) leads to undecidability. The decidability
proof relies on technics developed in [OW05, OW07] (notice however that in our
precise case, it is only valid for one-clock automata). The undecidability proofs
rely on a reduction from the halting problem of two-counter machines and push
ideas developed in [BBM06, BLMO07] much further to get an undecidability re-
sult with only one clock in the model and a single cost variable. Finally, these
undecidability results have some consequences on the undecidability landscape
for linear hybrid automata.

2 Definitions

2.1 Weighted Timed Automata

In the whole paper, AP is a fixed, non-empty set of atomic propositions. In this
section, we introduce the notion of weighted timed automata [ALPO1] (also called
priced timed automata [BFHT01]), which is an extension of timed automata with
a cost information (or weight) on both locations and edges. We first introduce
usual notations and definitions for timed automata.

Given a finite set X of clocks, the set of clock valuations over X (that is, of
applications v: X — Rx¢) is denoted ]Rico. Given a valuation v and a nonnegative
real 7 € Rxp, the valuation v + 7 is defined by (v + 7)(z) = v(z) + 7 for
every © € X. The set G(X) denotes the set of guards over X which are finite

3 A cost is stopwatch if it behaves like a clock that can be stopped and restarted.



conjunctions of atomic guards of the form z ~ n where z € & is a clock, n € N
is an integer constant, and ~ is one of the symbols {<, < = > >}. Notation
v = g means that the valuation v satisfies the guard g (which is defined in the
natural way). A reset r C X is a subset of X indicating which clocks are to be
reset to 0; we write v’ = v[r « 0] for the resulting valuation, i.e., v'(x) = 0 if
x €r, and v'(x) = v(x) otherwise.

Definition 1. A weighted timed automaton (WTA in short) with k cost func-
tions is a tuple A = (Q,Qo, A\, X, T, (¢i)1<i<k) such that: Q is a finite set of
locations, Qo C Q is the set of initial locations, A: Q — AP is the labelling func-
tion, X is a finite set of clocks, T C Q x G(X) x 2% x Q is a finite set of edges,
and for each 1 <1<k, ¢;: QUT — N assigns a cost to locations and edges.

For S CN, a cost ¢; is said to be S-sloped if ¢;(Q) € S. If S = {0,1}, it is
said stopwatch. If |S| = n, we say that the cost ¢; is n-sloped.

The semantics of a weighted timed automaton A corresponds to the semantics
of its underlying timed automaton (i.e., forgetting about cost functions). It is
given as a transition system T4 = (S, Sp, —) where:

— the set of states S is Q x RY,,
— the initial states are Sog = {(qo, v0) | @0 € Qo and vo(z) = 0 for every x € X'},
— the transition relation — is composed of delay and discrete moves:
e (delay move) (q,v) = (g,v +7) for (g,v) € S and T € Ry,
o (discrete move) (q,v) = (¢/,v') if there exists an edge e = (¢ L5 ¢')
in T such that v = g and v’ = v[r « 0].
A mized move (q,v) BELN (¢’,v") corresponds to the concatenation of a delay
and a discrete moves (¢,v) — (q,v +7) = (¢',v').

A run (or execution) in A is a finite path in T4, composed of mixed moves.
Let 0 = (go,v0) RELE (g1,v1) BELCN (g2,v2) - - - RELEN (gp, vp) be a finite run

in A. For every i < k, the i-th cost of g, denoted by cost; (o), is defined as:

cost; () = Z ci(gj—1) -7 + Z ci(ej)

1<j<p 1<j<p

Informally, the cost of a run is the accumulated cost of each move along that
run: delaying in some state ¢ during d time units costs ¢(q) - d, and firing an
edge e costs c(e). Hence, if ¢ is a location, ¢(q) gives the derivative of the cost
function for waiting in ¢: we thus write ¢ = 6 on pictures. For discrete costs on
transitions, we write c+ = 3.

Ezample 1. Fig. 1 models the energy consumption of a device. Due to over-
heating, this device cannot be left on for more than half an hour: it must either be
turned to a “sleep” mode, or completely off. The model has two costs functions:
cost ¢ represents energy consumption, while cost w measures the duration of this
device being on. The sleeping state consumes slightly more energy than the off
state, but it is cheaper and quicker to turn the machine back on. Of course, being
on consumes much more energy, but this is the only way of using the device.
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Fig. 1. Measuring the uptime of a device

2.2 The Logic WMTL

The logic WMTL is a weighted extension of LTL, but can also be viewed as an
extension of MTL [Koy90], hence its name WMTL holding for “Weighted MTL”.

Let C be a set of cost functions. We define the logic WMTL over C as the set
of formulas defined inductively as:

WMTLB(,O =0 | eV | P | © Ucostn ¢

where o € AP, cost is a cost-function symbol in C, ~ € {<,<,=,>,>}, and
n € N. If there is a single cost function or if the cost function cost is clear from
the context, we simply write ¢ U, 2 instead of ¢1 Ugostn @2

We interpret WMTL formulas over (finite) runs of weighted timed automata
with |C| cost functions, identifying cost cost; of C with the i-th cost cost; of the
runs of the automaton. Let A be such a weighted timed automaton, and let
0 = (qo,v0) == (q1,v1) 225 (go,v2) - - e, (gp,vp) be a finite run in A.
We write g>; for its suffix starting from (g;, v;), and p<; for its prefix ending in
(gi,v;). The satisfaction relation for WMTL is then defined inductively as follows:

oF o <= o C )
oFE @1V = oFEpiorokE e
oF T = oy
0= 01 Ucoston 2 <= Tk > 0s.t. 05 | 2, YO <i <k, 0> = 1,
and cost(p<x) ~ n

. . def def def
We use classical shorthands like true = o V o, false = —true, X ¢ = false U ¢,

def def
Fcoston @ = true Ucoston ®, and Geoston w =" (Fcosth _‘(P) .

Remark 2. Classically, there are two possible semantics for timed temporal log-
ics [Ras99]: the continuous semantics, where the system is observed continuously,
and the point-based semantics, where the system is observed only when the state
of the system changes. We have chosen the latter, because the model checking
problem for MTL under the continuous semantics is already undecidable [AH90].

Ezxample 2. We continue with our previous example. Assume that the battery
has been charged for a total of 1300 cost units (for cost ¢). We would like to
know whether it is possible to use the device for at least two hours within a



period of three hours. This is equivalent to the existence of a finite path in our
model satisfying the following WMTL formula:

chlgoo end A Fleg() end A Ft§180 end

where ¢ is a special cost measuring time, i.e., £ equals 1 in every location, and end
characterizes the ending state of the finite path (for instance, end = =X true).

2.3 The Problem and Our Results

In the following, we focus on the ezistential model-checking problem for WMTL
over weighted timed automata, stated as: given A a weighted timed automaton
and ¢ a WMTL formula, decide whether there exists a finite run g in A starting
in an initial state and such that ¢ = ¢. Since WMTL is closed under negation,
our results obviously extend to the dual problem of universal model-checking.

We prove that the model-checking problem against WMTL properties is de-
cidable for:

(1) one-clock WTAs with one stopwatch cost variable.

Any extension to that model leads to undecidability. Indeed, we prove that the
model-checking problem against WMTL properties is undecidable for:

(2) one-clock WTAs with one cost variable,
(3) one-clock WTAs with two stopwatch cost variables,
(4) two-clock WTAs with one stopwatch cost variable.

We present our results as follows. In Section 3, we explain the positive re-
sult (1) using an abstraction proposed in [OWO05] for proving the decidability
of MTL model checking over timed automata. Then, in Section 4, we present
all our undecidability results, starting with the proof for result (2), and then
slightly modifying the construction for proving results (3) and (4). We conclude
with some corollaries for linear hybrid automata.

3 Decidability Result

Theorem 3. Model checking one-clock weighted timed automata with one stop-
watch cost against WMTL properties is decidable, and non-primitive recursive.

Proof. Time can be viewed as a special {1}-sloped cost. Hence, the non-primitive
recursive lower bound follows from that of MTL model checking over finite timed
words, see [OW05, OW0T].

The decidability then relies on the same encoding as [OW05]. We present
the construction, but don’t give all details, especially when there is nothing new
compared with the above-mentioned papers.

Let ¢ be a WMTL formula, and 4 be a single-clock weighted timed automaton
with a stopwatch cost. Classically, from formula ¢, we construct an “equivalent”
one-variable alternating timed automaton® B,,. Fig. 2 displays an example of such

4 We use the eager semantics [BMOWO7] for alternating automata, where configura-
tion of the automaton always have the same sets of successors.



an automaton, corresponding to formula G [a = (F<3bV F>ac)] (see [OW05]
for more details on alternating timed automata).

Fig. 2. A timed alternating automaton for formula G [a = (F<3bV Fx>3¢)]

However, note that in that case, the unique variable of the alternating au-
tomaton is not a clock but a cost variable, whose rate will depend on the location
of A which is being visited. However, as for MTL, we have the property that
A = ¢ iff there is an accepting joint execution of A and B,.

In the following, we write ¢ for a generic location of A and ¢ for a generic
location of B,. Similarly, @@ denotes the set of locations of A and L the set of
locations of B,.

An A/B,-joint configuration is a finite subset of Q x R>o U L x R>¢ with
exactly one element of @ x R>q (the current state in automaton .4). The joint
behaviour of A and By, is made of time evolutions and discrete steps in a natural
way. Note that, from a given joint configuration ~, the time evolution is given by
the current location ¢, of A: if the cost rate in g, is 1, then all variables behave
like clocks, i.e., grow with rate 1, and if the cost rate in ¢, is 0, then all variables
in B, are stopped, and only the clock of A grows with rate 1.

We encode configurations with words over the alphabet I" = 2(@*RegULxReg)
where Reg = {0,1,..., M} U{T} (M is an integer above the maximal constant
appearing in both A and B,). A state (¢, c) of B, will for instance be encoded
by (¢, int(c)) ® if ¢ < M, and it will be encoded by (¢, T) if ¢ > M.

Now given a joint configuration v = {(gq, ) }U{(¢;, ¢;) | ¢ € I}, partition 7 into
a sequence of subsets Yo, 71, .. -,Vp, 7T, such that v = {(o, ) € v | 8 > M},
and if i, j # T, for all (o, B) € ; and (o, ) € v, frac(B) < frac(p') O iff i < j
(so that («, 3) and (a/, 3’) are in the same block ~; iff 3 and 3’ are both smaller
than or equal to M and have the same fractional part). We assume in addition
that the fractional part of elements in vy is 0 (even if it means that vy = @),
and that all ; for 1 <14 < p are non-empty.

If 7 is a joint configuration, we define its encoding H(+) as the word (over I")
reg(yo)reg(y1) - . . reg(yp)reg(yr) where reg(vy;) = {(a, reg(83)) | (e, 8) € 7;} with
reg(8) = int(08) if B < M, and reg(8) = T otherwise.

Ezxample 3. Consider the configuration

v ={(q,1.6)} U{(£1,5.2), (2,2.2), (£2,2.6), ({5,1.5), (¢3,4.5)}.

5 int represents the integral part.
S frac represents the fractional part.



Assuming that the maximal constant (on both A and By) is 4, the encoding is
then

H(y) = {(f2,2)} - {(ls; 1)} - {(g, 1), (€2, 2)} - { (€2, T), (s, T)}

We define a discrete transition system over encodings of A/B,-joint con-
figurations: there is a transition W = W’ if there exists v € H (W) and
v € H=Y(W’) such that v — ~' (that can be either a time evolution or a
discrete step).

Lemma 4. The equivalence relation = defined as v1 = 7o défH(fyl) = H(vy2) is
a time-abstract bisimulation over joint configurations.

Proof. We assume that v, — ~; and that v, = 2. We write H(y1) = H(y2) =
Wow1 ... wpwT where w; # 0 if 1 < i < p. We distinguish between the different
possible cases for the transition v; — 7.

— assume y; — 7, is a time evolution, and the cost rate in the corresponding

location of A is 0. If v1 = {(qu,21)} U{(li1,¢i1) | @ € L1}, then 77 =
{(g1,z1 +t1)} U{(li1,cin) | © € I} for some t; € R>g. We assume in
addition that v2 = {(g2,72)} U{({i2,ci2) | i € 2}
We set v} the part of configuration y; which corresponds to letter w;, and
we write o} for the fractional part of the clock values corresponding to ~i.
We have 0 = o < of < ... < of < 1. We define similarly (c4)o<;<, for
configuration 5. We then distinguish between several cases:

e cither 1 +t; > M, in which case it is sufficient to choose 2 € R>( such
that xo +t9 > M.

e or 1 +t; < M and frac(xy +t1) = o} for some 0 < i < p. In that case,
choose ty = 1 +t1 — af + ab — x9. As y1 = 79, it is not difficult to
check that to € R>q. Moreover, frac(zs + ta) = af and int(z2 + t3) =
int(xy +t1).

e orzy+t; < M and ! < frac(zy+t1) < it for some 0 < i < p (setting
0/1”'1 = 1). As previously, in that case also, we can choose 2 € R> such
that af < frac(za +t2) < ab™ and int(zy + to) = int(xy +t1).

In all cases, defining 74 = {(g2, z2 + t2)} U{(li2,¢i2) | i € L2}, we get that
Y2 — 4 and y] = ~4, which proves the inductive case.

— there are two other cases (time evolution with rate of all variables being 1,
and discrete step), but they are similar to the case of MTL, and we better
refer to [OWOT7]. O

Hence, from the previous lemma, we get:

Corollary 5. W =* W' iff there exist v € H-*(W) and v € H=*(W') such
that v —* +/.

The set I = 2(Q@xRegULxReg) ig naturally ordered by inclusion C. We extend
the classical subword relation for words over I' as follows: Given two words
apaq .. .a, and ayal . ..al, in I'*, we say that aga, ...a, C aja) ...a,, whenever
there exists an increasing injection ¢ : {0,1,...,n} — {0,1,...,n'} such that for
every i € {0,1,...,n},a; C ai(i). Following [AN0O, Theorem 3.1], the preorder C
is a well-quasi-order.



Lemma 6. Assume that Wi C Wa, and that Wy =* WJj. Then, there exists
W{ C Wy such that Wy =* W.

The algorithm then proceeds as follows: we start from the encoding of the
initial configuration, say W)y, and then generate the tree unfolding of the implicit
graph (I'*, =), stopping a branch when the current node is labelled by W such
that there already exists a node of the tree labelled by W’ with W/ C W (note
that by Lemma 6, if there is an accepting path from W, then so is there from
W', hence it is correct to prune the tree after node W). Note that this tree is
finitely branching. Hence, if the computation does not terminate, then it means
that there is an infinite branch (by Ko6nig lemma). This is not possible as C is
a well-quasi-order. Hence, the computation eventually terminates, and we can
decide whether there is a joint accepting computation in .4 and B, which implies
that we can decide whether A satisfies ¢ or not. O

Remark 7. In the case of MTL, the previous encoding can be used to prove the
decidability of model checking for timed automata with any number of clocks.
In our case, it cannot: Lemma 4 does not hold for two-clock weighted timed
automata, even with a single stopwatch cost. Consider for instance two clocks x
and z, and a cost variable cost. Assume we are in location ¢ of the automaton
with cost rate 0 and that there is an outgoing transition labelled by the constraint
x = 1. Assume moreover that the value of z is 0, whereas the value of x is 0.2.
We consider two cases: either the value of cost is 0.5, or the value of cost is 0.9.
In both cases, the encoding” of the joint configuration is {(g,2,0)} - {(g,z,0)} -
{(cost,0)}. However, in the first case, the encoding when firing the transition
will be {(q,z,1)} - {(cost,0)} - {(g, 2,0)}, whereas in the second case, it will be
{(¢,z,1)} - {(¢,2,0)} - {(cost,0)}. Hence the relation = is not a time-abstract
bisimulation.

4 Undecidability Results

4.1 One-Clock WTAs With One Cost Variable

Theorem 8. Model checking one-clock weighted timed automata with one cost
variable against WMTL properties is undecidable.

We push some ideas used in [BBM06, BLMO07] further to prove this new
undecidability result. We reduce the halting problem for a two-counter machine
M to that problem. The unique clock of the automaton will store both values of
the counters. If the first (resp. second) counter has value ¢; (resp. ¢2), then the
value of the clock will be 27137, Our machine M has two kinds of instructions.
The first kind increments one of the counter, say c, and jumps to the next
instruction:

pi: c:=c+1; goto pj. (1)

7 We extend the encoding we have presented above to several clocks, as originally done
in [OWO05].



The second kind decrements one of the counter, say c, and goes to the next
instruction, except if the value of the counter was zero:

pi : if (c ==0) then goto pj else c:=c—1; goto px. (2)

Our reduction consists in building a weighted timed automaton A, and a
WMTL formula ¢ such that the two-counter machine M halts iff Ay has an
execution satisfying . Each instruction of M is encoded as a module, all the
modules are then plugged together.

Module for instruction (1). Consider instruction (1), which increments the
first counter. To simulate this instruction, we need to be able to divide the value
of the clock by 2. The corresponding module, named Mod;, is depicted on Fig. 3.8

<1 A <1 B c +2 D <1

_ s < =1 TS

R — &3 —_— — - .
6 ) @) > to Mod,

Fig. 3. Module for incrementing ¢y

The following lemma is then easy to prove:

Lemma 9. Assume that there is an execution o entering module Mod; with © =
xo < 1, exiting with x = x1, and such that no time elapses in A and D and the
cost between A and D equals 3. Then x1 = /2.

A similar result can be obtained for a module incrementing cy: it simply
suffices to replace the cost rate in C' by 3 instead of 2.

Module for instruction (2). Consider instruction (2). The simulation of this
instruction is much more involved than the previous instruction. Indeed, we first
have to check whether the value of x when entering the module is of the form 37
(i.e., whether ¢; = 0). This is achieved, roughly, by multiplying the value of x
by 3 until it reaches (or exceeds) 1. Depending on the result, this module will
then branch to module Mod; or decrement counter ¢; and go to module Mody,.
The difficult point is that clock x must be re-set to its original value between
the first and the second part. We consider the module Mod; depicted on Fig. 4.

Lemma 10. Assume there exists an execution o entering module Mod; with x =
zg < 1, exiting to module Mod; with x = x1, and such that

8 As there is a unique cost variable, we write its rate within the location, and add a
discrete incrementation (eg +2) on edges, when the edge has a positive cost.
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Fig. 4. Module testing/decrementing c1

— no time elapses in Ay, Cy, D, A, C', Fy and Hq;

— any wvisit to Cy or C' is eventually followed (strictly) by a visit to C' or Fy;

— the cost exactly equals 3 along each part of o between A or Ay and the next
visit in D, between Cy or C' and the next visit in C' or Fi, and between the
last visit to D and H;.

Then x1 = x¢ and there exists n € N s.t. xg = 37"

Proof. Let o be such an execution. First, if zg = 1 and p goes directly to mod-
ule Mod;, then the result immediately follows.

Otherwise, o visits D at least once. We prove inductively that, at the k-th
visit in D, the value of 2 equals 3*zg (remember that no time can elapse in D).
The first part of o between Ay and D is as follows? (the labels on the arrows
represent the cost of the corresponding transition):

3(1—z0) 0 0 a,

(A(),Jio) (Bo,aﬁo) _ (B(), 1) — (00,0) — (C, O) (C a) (D a)
The total cost, 3(1 — zg) + «, must equal 3. Thus o = 3zp. A similar argument
shows that one turn in the loop (from D back to itself) also multiplies clock x
by 3, hence the result. Since g eventually fires the transition from D to Ey, it
must be the case that xg = 3™ for some n € N.

We now prove that 1 = zg. The proof follows a similar line: we prove that
at the k-th visit to Cp or C’, the value of z is (3¥ — 3)xo. This clearly holds
when k = 1 (i.e., when we visit Cp). Assuming that o eventually visits C’, we
consider the part of ¢ between Cy and the first visit to C:

(Co,0) % (C,0) 2% (C,320) L (D, 320) 2 (A 320) 2 (B 320)
2, (B,1) & (,0) L (0,8 S () ).

9 By contradiction, it can be proved that C’ cannot be visited along that part of o,
since the cost between Cp and C’ must be exactly 3.

(3731‘0)



The cost of this part is 3 — 6xg + 3, and must equal 3. Thus 8 = 6x( as required.
A similar computation (considering each part of ¢ between two consecutive visits
to C") proves the inductive case.

Now, consider the part from the last visit of C’ to Hy:

(C', (3" = 3)z0) 2 (C, (3™ — 3)30) 222 (C,3"x0) 2 (D, 3"z0) 2 (E1,0)
(B1,0) 5 (By,7) & (F1,7) 2 (G1,0) 25 (G1,0) & (Hy,0).

Remember that 3"xzg = 1, which explains why the computation goes to Ej
instead of Es). The cost between C’ and Fj is 3z + 37, and equals 3. Thus v =
1 — x(. Similarly, the cost between D and H; is 37+ 3§ and must equal 3, which
proves that &, which is precisely x1, equals . O

We have a similar result for a trajectory going to module Mody:

Lemma 11. Assume there exists an execution o entering module Mod; with © =
xo < 1, exiting to module Mody, with x = x1, and such that

— no time elapses in Ag, Co, D, A, C', Fy Hy, Ay and Do;

— any visit to Cy or C' is eventually followed (strictly) by a visit to C' or Fy;

— the cost exactly equals 3 along each part of o between A or Ay and the next
visit in D, between Coy or C' and the next visit in C' or Fy, between D
and Hy, and between Ho and Ds.

Then x1 = 2z¢ and for every n € N, zg # 37".

Proof. The arguments of the previous proof still apply: the value of = at the k-
th visit to D is 3*xq. If 29 had been of the form 37", then o would not have
been able to fire the transition to Fs. Also, the value of x when o visits Hy is
precisely zg. The part from Hs to D is then as follows:

2(1793(])
e

(Ha,w0) 2 (As,x0) % (Ba, o) (B2,1) & (C2,0) % (Ca, k) = (D, k).

The cost of this part is 2(1 — zg) + k + 1, so that x; = k = 2xy. O

Again, these results can easily be adapted to the case of an instruction testing
and decrementing co: it suffices to

— set the costs of states By, B, Fy, Fs, G; and G5 to 2,

— set the cost of By to 3,

set the discrete cost of Cy — Ds to 0

— set the discrete costs of C' — D, Gy — H; and Gy — Hy to +1.

Global reduction. We now explain the global reduction: the automaton A4 is
obtained by plugging the modules above following the instructions of M. There
is one special module for instruction Halt, which is made of a single Halt state.
We also add a special initial state that lets 1 t.u. elapse (so that = 1) before
entering the first module.



The WMTL formula is built as follows: we first define an intermediary sub-
formula stating that no time can elapse in some given state. It writes zero(P) =
G (P= (P U —P)). If the local cost in state P is not zero (which is the case in
all the states of A ), this formula forbids time elapsing in P. We then let 1 be
the formula requiring that time cannot elapse in a state labelled with A, D, Ay,
Co, C', Fy, F5, Hy, Hy, Ay and Ds. It remains to express the second and third
conditions in Lemmas 9, 10 and 11. This is the role of the following formula ¢,:

w2 =G[(AV Ay) = (-DU_3 D)|A
G[(Cov )= (=(C"V F)U_3(C"V Fy))]A
G [D= ((mAU A)V (=(Hy, V H2) U_3 (Hy V H2)))]A
G [Hy = (-D2U_3 D))

The following proposition is now straightforward:

Proposition 12. The machine M halts iff there exists an execution in Ap
satisfying o1 A w2 A F Halt.

Remark 13. — For the sake of simplicity, our reduction uses discrete costs, so
that our WMTL formulas only involve constraints “= 0” and “= 3” (and
the same formula (9 can be used for both counters). But our undecidability
result easily extends to automata without discrete costs.

— Our reduction uses a {1, 2, 3}-sloped cost variable, but it could be achieved
with any {p, ¢, r}-sloped cost variable (with 0 < p < ¢ < r, and p, ¢ and r
are pairwise coprime) by encoding the values of the counters by the clock
value (p/q)* - (p/r)*.

— Our WMTL formula can easily be turned into a WMITL formula (whose
syntax is that of MITL [AFH96], i.e., with no punctual constraints). It suffices
to replace formulas of the form (—p) U=, p with (=p) U<, p A (=p) Us,, p.

4.2 Two-Clock WTAs With One Stopwatch-Cost Variable

We now prove a similar result for WTAs with two clocks but only with a stop-
watch cost (i.e., a cost with slope 0 or 1).

Theorem 14. Model checking two-clock weighted timed automata with one stop-
watch cost against WMTL properties is undecidable.

Proof (Sketch). The proof uses the same encoding, except that states with cost 2
or 3 are replaced by sequences of states with costs 0 and 1 having the same effect.
We have two different kinds of states with cost 2 (or 3):

— those in which we stay until z = 1:



These states are replaced by the following submodule:

A <1 B 1 B 1 B 1 c
= S = M z= r= =

- 1 0 1hb——--->
B z:=0 =) x:=0 = z:=0 z:=0 -

— those in which we enter with = 0 (and exit with z < 1):
4 B <1 ,q

=

Those are replace with a slightly different sequence of states:

/é = z<1 (2 r=1 B z=1 ,q
= ‘Fﬁiig@ z:=0 LOJ x:=0 @__777>‘“ “
Those transformations are easily adapted to states with cost 3. U

4.3 One-Clock WTAs with Two Stopwatch-Cost Variables

In the above constructions, each clock can be replaced with an observer variable,
i.e., with a “clock cost” that is not involved in the guards of the automaton
anymore. We briefly explain this transformation on an example, and leave the
details to the keen reader.

C
O—==0 A

B
O—=—0

Fig. 5. Replacing a clock with an extra “clock cost”

Fig. 5 displays the transformation to be applied to the automaton. It then
suffices to enforce that no time elapses in states zg, £~ and z—1, and that the
following formula holds:

/\ G [(aco A —xo U an):(ﬁxo U, ~n) xNH)}
~ne{<1,=1}

This precisely encodes the role of clock z in the original automaton with a clock
cost, which is in particular a stopwatch cost. Note that this transformation is
not correct in general, but it is here because our reduction never involves two
consecutive transitions with the same guard. As a consequence:

Theorem 15. — Model checking one-clock weighted timed automata with two
stopwatch costs against WMTL properties is undecidable.

— Model checking zero-clock weighted timed automata with two costs (or three
stopwatch costs) against WMTL properties is undecidable.



4.4 Remarks on Hybrid Systems

It is worth making some remarks on the relation between our undecidability re-
sults and the undecidability of reachability in linear hybrid automata (LHA for
short; we refer to [HKPV9S8] for their definition). Indeed, the construction on
Fig. 5 is not surprising as MITL can capture the exact behaviour of timed au-
tomata [Ras99], and could thus be used to transfer undecidability results from
LHA to WMTL model checking: from an LHA H, we can construct a WMTL
formula 3, such that a given location of H is reachable iff the WTA resulting
from the transformation satisfies formula ¢4;.

To the best of our knowledge, the tightest undecidability results for LHA
hold either with five clocks and a single two-sloped variable [HKPV9S8], or with
four stopwatch variables [Fle02].

From these results and the remarks above, the model checking of WMTL
is undecidable for WTAs, either with five clocks and a single two-sloped cost
variable, or without clocks and four stopwatch costs. While the first result cannot
be compared with any of our results, the second is subsumed by Theorem 15.

On the other hand, by using similar ideas to those we have developed in this
paper, we can get noticeable undecidability results for LHA: it suffices to encode
as an LHA all the constraints mentioned in Lemmas 9, 10, 11, which can be
done rather easily using two variables and one clock. However, we can do better
and adapt the construction to get the undecidability already with one variable
and two clocks. We present this construction now, which can be interesting in
itself to understand the power of LHA. The incrementation instruction follows
rather easily from that of Fig. 3, we better present the modified construction

Fig. 6. Undecidability of LHA with two clocks (z, y) and a single hybrid variable (z)

for the test and decrementation instruction (see Fig. 6, where the derivative of
variable z, when relevant, is indicated in each location). It differs from Fig. 4
in the way the initial value of clock x is recovered at the end of the loop which
checks whether the value of clock z is of the form 37" or not: clock y is reset
when entering the module and then computes a modulo 1, which implies that
the initial value of clock x, say xg, is recovered each time y = 1.



Corollary 16. The reachability problem for LHA, either with two clocks and a
single {p, q,r}-sloped variable (with p, q and r positive and pairwise coprime),
or with three clocks and a single stopwatch variable, is undecidable.

Finally, note that the class of LHA with one clock and one stopwatch variable
can easily be proved decidable using the classical regions of [AD94].
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