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Abstract

Timed Petri nets and timed automata are two standard modelhé analysis of real-
time systems. We study in this paper their relationship, prode in particular that they
are incomparable w.r.t. language equivalence. In fact, twdysthe more general model
of timed Petri nets with read-arcRA-TdPN), already introduced in [17], which unifies
both models of timed Petri nets and of timed automata, andeptioat the coverability
problem remains decidable for this model. Then, we estallisnerous expressiveness
results and prove thatenobehaviours discriminate between several sub-class&Aef
TdPNs. This has surprising consequences on timed automatagstanice on the power of
non-deterministic clock resets.
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1 Introduction

Timed automat#TA) [3] are a well-accepted model for representing and anadyzi
real-time systems: they extend finite automata with cloclkatzes which give tim-
ing constraints on the behaviour of the system. Another prent formalism for
the design and analysis of discrete-event systems is thelrabi@etri nets(PN) [8].
An important interest oPNs lies in their applicability to the verification of infinite-
state systems because some standard problems are detidatitemodel (bound-
edness, coverability, reachability, action-based lisigae formula checking, etc.).

* A preliminary version of this work has been published in [6].
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Thus, in order to model concurrent systems with constraintsme, several timed
extensions oPNs have been proposed as a possible alternativa.to

Time Petri net{TPN), introduced in the 70’s, associate with each transitiama t
interval [4]. A transition can be fired if it is enabled (evanput place contains
the required number of tokens) and if the time since it has leeabled lies in the
specified interval. Time can elapse only if it does not digaadime transition: thus,
the decision to wait some amount of time and then fire a trianstiannot be done
locally, but requires to check globally that no other tréinsiis disabled during the
delay, even though this transition does not share any inpotitput place with the
transition we plan to fire. This restricts a lot applicapiltf partial order methods
for this model. Moreover, because of this “urgency” reqmeat, all significant
problems are undecidable for unboundéNs.

Timed Petri net{TdPN), also calledimed-arc Petri netsassociate with each arc
an interval [18]. INTdPNs, each token has an age. This age is initially set to a value
belonging to the interval of the arc which has produced iteairts zero if it be-
longs to the initial marking. Afterwards, ages of tokensleesynchronously with
time. A transition may be fired if tokens with age belonginghe intervals of its
input arcs may be found in the current configuration. Note ‘tbia” tokens may
die (.e, they cannot be used anymore for firing a transition but tleayain in the
place), and that conditions for firing transitions are hdocal and do not depend
on the global configuration of the system, unlikeTiRNs. This “lazy” behaviour
has important consequences. Whereas the reachabilityeprab undecidable for
TdPNSs [18], the coverability problem [2] and some significantestbnes are de-
cidable [1]. FurthermoreldPNs cannot be transformed into equival@at(for the
language equivalence), since the untimed languages cdttee inodel are regular.
However the question whether (bound&dPNs are more expressive th@A w.r.t.
language equivalence was not known.

Read-arc timed Petri net®RA-TdPN) extendTdPNs with read-arcsi.e. arcs that
check the presence of a token (with an age as specified ondjendthout con-
suming it. This model has been first introduced by Sirba in [17] in order to
compareTA with 1-boundedrdPNs (and its extension with read-arcs). Moreover,
this feature has already been introduced in the untimeddnaork [14] in order to
define a more refined concurrent semantics for the nets. Roargecs taking into
account fairness, it has been shown in [19] that read arce)gut@ssive power. For
the interleaving semantics, they however do not add anyesgpe power in the
untimed framework as they can be replaced by two arcs whiebkcthat a token

is in the place and replace it immediately.

Our contributions.  We first investigate the decidability of the coverabilitypr
lem for theRA-TdPN model, and we prove that, as fodPNs, it is decidable.



We then focus on the expressiveness of read-arcs, and prdeesgrprising results.
Indeed, we show that read-arcs add expressiveness to thel ofobdPNs when
considering languages of (possildgng infinite timed words. On the contrary,
we also prove that when considering languages of finite orZeninfinite timed
words, read-arcs can be simulated and thus don’t add ang&sipeness tddPNs.

Furthermore we investigate the relative expressivenessweiral subclasses BA-
TdPNs, depending on the following restrictions: boundednessehets, integral-
ity of constants appearing on the arcs, resets labellinggnos. We give a complete
picture of their relative expressive power, and distinguistween three timed lan-
guage equivalences (equivalence over finite words, or tafimords, or norgeno
infinite words) which, as before, lead tal@irent results.

We finally establish that timed automata and bounB@dTdPNs are language
equivalent. From this result and former ones, we deduceralewmrthwhile ex-
pressiveness results, for instance we prove that nonrdtism in clock resets
adds expressive power to timed automata with integral eotstover (possibly
Zeng infinite timed words, which contrasts with the finite or ndanoinfinite
timed words case [5]. If rational constants are allowed; &hino more the case: it
should be emphasized that this latter result implies thaigtanularity of the au-
tomaton has to be refined if we want to remove non-deternsnigidates while
preserving expressiveness.

Organisation of the paper. In Section 2, we define thRA-TdPN model and

its different subclasses. We show in Section 3 that the coverapitiylem is de-
cidable for that model. In Sections 4, 5, 6 and 7 we establismamerous ex-
pressiveness results ®A-TdPNs and their subclasses. We present an overview of
these results in Section 8. In Section 9, we give expresssgeresults for timed
automata.

2 Read-Arc Timed Petri Nets

Preliminaries. If Ais a setA" denotes the set of all finite words ow&mwhereas
A“ denotes the set of infinite words ovAr Given a functionf over some seX,
we may extend wordlessly to the set of subsets o, by f(Y) = {f(y) |y € Y},
for every subseY of X. An intervall of R.q is aQo-(resp.Nsq-)intervalif its left
endpoint belongs t@.( (resp.N.o) and its right endpoint belongs @.¢ U {0}
(resp.Nyg U {oo}). We denote byl (resp.fy.,) the set ofQ,o-(resp.Nso-)intervals
of Rso.

Bags.Given a set, Bag(&) denotes the set of mappinfgrom & to N, such that



the setdom(f) = {x € & | f(x) # O} is finite. Given such an elemefite Bag(&),
we use the notatioh = 3, q4om(r) f(X) - X (0mitting f(x) when f(x) = 1). We note
size(f) = Y. T(X). Letx,y € Bag(&), theny < xiff Vee &,y(e) < x(e). If y < X,
thenx -y e Bag(&) is defined byYe € &, (x—y)(e) = x(e) — y(e). Ford € R, and
X € Bag(Rsp), x+d € Bag(Rso) is defined byt < d, (x+d)(r) = 0 andvr > d, (x+
d)(r) = x(r—d). We finally define the operation of projection. bet Bag(&; X. . .X
&En), and letl = {iy,...,ix} be a set of indices such that<li; < ... < iy < n. The
bagmi, i (X) € Bag(&i, X ... x &) is defined by: for all§,,...,8,) € &, X ... X

.....

Gier iy, i (X (8, ..., 8) = Ze,—l ..... €, € Ejy X XEj, X(€r, ..., &), wherefjs, ..., jnu}
is the unique set of indices such thatlj; < ... < jok < nsatisfying{iy, ..., ik} N
{j1,.-., jnk} = 0. Finally, note that ifA is a finite set an® a set, theBag(B)”, the

set of applications fronA to Bag(B), is isomorphic tBag(A x B).

Timed words and timed languagé®t X be a fixed finite alphabet such that
(¢ is the silent action), we denok = X U {&}. A timed word woverX, (resp.X)
is a finite or infinite sequeno® = (ap, 70)(a1, 71) . .. (&n, 7n) . . . SUCh that for every
I >0,a €ZX, (respg € X), i € Rypandri,, > 7. The valuer, gives the time point
at which actiona, occurs. We writeDuration(w) = sup, 7 for the duration of the
timed wordw. Sincee is a silent action, it can be removed in timed words &ygr
and it naturally gives timed words ovEr An infinite timed wordw overX is said to
be ZenowheneveDuration(w) is finite. We denote by W*(X) (resp.7 W* (%),
TW(%)) the set of finite (resp. infinite, nodenoinfinite) timed words ovek.
A timed language of finite (resp. infinite, non-Zeno infinit@yas is a subset of
T W (Z) (resp.7 W (Z), T Wr(X)).

The Model of RA-TdPNs. The qualitativecomponent of &A-TdPN is a Petri
net extended with read-arcs. A read-arc checks for the pcessf tokens in a place
without consuming them. Thguantitativepart of aRA-TdPN is composed of tim-
ing constraints on arcs. Informally, when firing a transititokens are consumed
whose ages satisfy the timing constraints specified on fhe-arcs (they are speci-
fied using bags), and it is checked whether the constraietsfegd by the read-arcs
are satisfied. Tokens are then produced according to théraos specified on the
output-arcs.

Definition 1 A timed Petri net with read-arqRA-TdPN for short) N is a tuple
(P,my, T, Pre, Post, Read, A, Acc) where:

P is a finite set of places;

my € Bag(P) denotes the initial marking of places;

T is afinite set of transitions with R T = 0;

Pre, the backward incidence mapping, is a mapping from Bag(7)";
Post, the forward incidence mapping, is a mapping from TBtg(1)";
Read, the read incidence mapping, is a mapping from Bagy(7);
A: T — X, is alabelling function;



e Acc is an accepting condition defined as a finite set of formulashef which
is generated by the grammar

n
acc = Zpiwk | acc A acc
i=1

where pe P, ke Nyg andse {<, >}.

SinceBag(Z7)F is isomorphic taBag(P x 1), Pre(t), Post(t) andRead(t) may also
be considered as bags. Given a pla@nd a transition, if the bagPre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines pre-arc (resp.post-arg read-
arc) of t connected tq.

A configurationy of a RA-TdPN is an item ofBag(Ro)" (or equivalentlyBag(P

x Rs0)). Intuitively, a configuration is a marking extended witfeanformation for
the tokens. We will write §, 7) for a token which is in placg and whose age is
7. A configuration is then a finite sum of such pairs. A tokenrj then belongs to
the configuratiorr whenever p, 7) < v (in terms of bags). Thmitial configuration
vo € Bag(PxRso) is defined asg = 3 ,.p Mo(P)-(p, 0), where it means that for each
p, there arany(p) tokens of age 0 in plage Given a configuration € Bag(PxR.q)
and a bagf € Bag(P x I), we say thav satisfiesf, and writev | f, if and only if
there exists a bag € Bag(P x R, x I) verifying the following conditions.

m12(X) = v,
m3(X) = f,

Y(p,7,1) € dom(x), T € I.

We now describe the semantics dRA-TdPN as a transition system.

Definition 2 (Semantics of aRA-TdPN) Let N = (P,my, T, Pre, Post, Read, A,
Acc) be anRA-TdPN. Its semantics is the transition systé@, v, X,, —) where
Q = Bag(Rs0)", vo = 2.per Mo(P) - (P, 0), and the transition relation- is com-
posed of delay and discrete transitions as follows:

e For each de R,, there is a delay transitiom %y + d where the configuration
v + d is defined byv + d)(p) = v(p) + d for every pe P.
e Given atransition & T and two configurationg v’ € Bag(P x Rg), there exists

a discrete transition from to v’ labelled byA(t), denoted by 20, v/, ifand only



if there exist three bagy, °v,v* € Bag(P x R¢) such that:

*v E Pre(t),
°v E Read(t),
v* E Post(t),

v+ °v <,

VvV =y-="v+°

The intuition of the previous definition is as follows.is the set of tokens which

is removed from the configurationwhen firing transitiort, whereas'v is the set

of tokens that needs to be mfor transitiont to be fired (note that these two sets
of tokens need to be disjoint, hence the fourth conditiom °v < v); finally v* is

the set of tokens that are created by the transition firing.eldeer, the ages of all
these tokens need to satisfy the constraints specified lwatiwus arcs (conditions
written using the= operator defined above). Finally, all tokens used by a read-
arc are not removed, that's why the new configuration is glwen’ computed as

VvV =v-"v+v°.

To reason about the behaviour of the net, we also considdrahsition system

obtained whent is the identity mapping. We then write> v/ when transitiort is
fired, according to the previous definition.

. . d d .
A pathin theRA-TdPN N is a sequence, BN vy N Vi N v, 2 v, ...inthe above

transition system, which alternates between delay andedestransitions. Aimed
transition sequence a (finite or infinite) timed word over alphab&t the set of
transitions ofN. A firing sequenceés a timed transition sequendg, (1)(t2, 72) . ..

T1 , 1 T2—T1 , o . .
such thaty — v; = vi — v, = v,...isapath. If p,7) < v is a token of a
configurationy, it is adead tokerwhenever for every intervdllabelling a pre- or
a read-arc op, 7 is strictly greater tham. It means that this token cannot be used

anymore (either by a pre- or a read-arc) to fire a transition.

. . . d t d t .
The timed word which is read along a path— v, — v1 — v, = v,... s the

projection overz of the timed word {(t;), d;)(A(tz), d; + dy) ... Petri nets can be
considered as language acceptors, as formally defined metti@efinition.

1 This is a language misuse, the right term should be “bagh@®tcan be several tokens
with the same age.



We first define a satisfaction relation for the accepting donts. It is defined over
configurations of the nets, inductively as follows:

v satisfiesy!, pi s k iff X, size(v(p)) > k

v satisfiesaccy A accs iff v satisfiesacc, andy satisfiesacc,
wheres € {<, >}.

Definition 3 (Language accepted by &A-TdPN) Let N = (P,my, T, Pre, Post,
Read, A, Acc) be anRA-TdPN. A finite path inN is accepting if it ends in a config-
uration satisfying one of the formulas Ac. An infinite path is accepting if every
formula of Acc is satisfied infinitely often along the pathAoc is then viewed as
a generalized Buchi conditior). We notel*(N) (resp.L2(N), L(N)) the set
of finite (resp. infinite, non-Zeno infinite) timed words gitee by along finite
(resp. infinite) paths.

It is worth noticing that the accepting conditions only degen the untimed mark-
ings associated with configurations. Note also that infipaths leading to finite
timed words are not considered in this work.

Two RA-TdPNs N and N’ are x-equivalent(resp.w-equivalent wn-equivaleny
wheneverL*(N) = L*(N’) (resp.L(N) = LY(N”), L(N) = L=(N’)). These
equivalences naturally extend to subclasse®RAfTdPNs. In the following, we
will use notations like {*, w, wn,}-equivalence” to mean the intersection of all three
equivalenceddemfor “{x, wn,}-equivalence” and other combinations. We will also
use notations likes,, or =, to denote thev- (resp.{x, wn,}) equivalence between
classes of nets.

Notations.Read-arcs are represented by undirected arcs. On pictugasay use
shorthands to represent bags: forlale 7, | stands for the bag 1l, [a] is for
the interval p, a]. We may write intervals as constraintsg.”“< a” stands for the
interval [Q a]. A bagn represents the bag- R.,, and no bag on an arc means that
this arc is labelled by the bag R.,.

Example 1 An example oRA-TdPN is depicted on Figure 1. This net models an
information provided by a server and asynchronously cdesduby clients (transi-
tion “read). Since the information may be obsolete with validity diwa “val’,

the server periodically refreshes the value, but the fregyeof this refresh may
vary betweermmin and max depending on the workload of the server (transition
“start). Note that, due to the “lazy” semantics ®#A-TdPNs, nothing prevents the

2 We do not know whether generalized Biichi conditions coulddaiiced to Biichi con-
ditions in the context of timed Petri nets. Nevertheless sttandard construction for finite
automata does not extend to Petri nets.



token in place busy (resp. “ready) to die (i.e., to reach an age strictly greater
than max resp. than0), hence blocking the system. A suitable accepting condi-
tion like “Acc = {busy = 0,ready = 0}" prevents such a blocking behaviour by
enforcing infinitely often the server to refresh the cacheteNhe importance of
using a generalized Buichi condition to enforce the firingathldransitions ‘start

and “refresii. The admission control ensures that at least one time ulaipses
between two client arrivals (transitionehtry’). Note the interest of the read-arc
between the placesaché and “ read: when transition “read is fired, a token in
place “client’ with age 0 is consumed, and it is checked whether at least one token
in place “caché has age less than or equal toval’. However, this token is not
consumed (and can hence be used later on again) and its agelsnged.

Acc = {busy= 0, ready= 0}

input blisi/min,maxftart 0] ready
[0] >1 |
entry

[0]
client 0] ~|

Fig. 1. An example oRA-TdPN.

We give an example of a path in tlRA-TdPN, assuming thamin = 2, max = 4,
andval = 3.

(input, 0) + (busy, 0) LGN (input, 2) + (busy, 2)

start

— (input, 2) + (ready 0)

refresh

— (input, 2) + (busy 0) + (cache0)

B, (input 5) + (busy 3) + (cache3)
== (input,0) + (client 0) + (busy.3) + (cache3)

read

—> (input, 0) + (busy 3) + (cache3)

Subclasses oRA-TdPNs. We define several natural subclasse®afTdPNSs.

Definition 4 LetN = (P,my, T, Pre, Post, Read, A, Acc) be anRA-TdPN. It is



atimed Petri ne{TdPN for short)3if for all t € T, size(Read(t)) = 0,
integralif all intervals appearing in bags oV are in 7y,

O-resetfforallt e T,forall pe P, 1 #[0,0] = | ¢ dom(Post(t)(p)),
k-boundedif all configurationsy appearing along a firing sequence A&f are
such that for every place ¢ P, size(v(p)) < kK,

e boundedf there exists ke Ny such thatV is k-bounded,

e safeif it is 1-bounded.

All above notions are quite standard, except the O-res@igptpwhich implies that
all tokens which are produced are produced with initial age 0

Note that theRA-TdPN of Example 1 is integral, O-reset, but not bounded as there
can be an unbounded number of tokens in place “cache” omfttlie

3 The Coverability Problem.

Let N be anRA-TdPN. Let N be a set of configurations @¥. By N', we denote
the upward closure d¥, i.e,, the sefv | 3V € N, v/ < v}.

Let N be a finite set of configurations &f where all ages of tokens are rational.
The coverability problemfor N and set of configurationsl asks whether there
exists a path iV from vy, the initial configuration ofV, to somer € N'. We prove
the following result.

Theorem 1 The coverability problem is decidable fRA-TdPNs.

In order to prove this theorem, we introduce the notion ofaedor a net. Aregion

is a classical object used in the framework of timed autorf@ataepresenting an
infinite set of configurations [3], that we can extendrid-TdPNs. Such a construc-
tion has been done for example in [12] fbdPNs, and has been used recently in
several other contexts [15,16,11]. An alternative proafdobon zones rather than
regions could be used as well, like in [2].

Regions of RA-TdPNs. Let N = (P,my, T, Pre, Post, Read, 14, Acc) be a net
where the bounds of intervals arelifig U {co}. Let N be a finite set of markings
with integral ages. There is no loss of generality in assgrthiat finite bounds of
the net and that values of ages are integerscoi(otherwise we refine the granular-
ity of the regions). By max we denote the maximal integer appg in the bounds
of intervals of the net and in the ages of the tokens in the gardtions of\N.

3 This is the standard model, as defined in [18].



Definition 5 A regionR for N is a sequencea;...anad., Where ne N, for
all 0 <i <n,ag € Bag(P x {0,1,...,max) with size(a;) # Oifi # 0, and

a. € Bag(P X {c0}).

We first informally explain the semantics of a region. Givée bag of tokens
defining a configuration, we obtain its associated regionodews. We put in
a., all the tokens whose ages are strictly greater than max ageétftheir ages.
We then put inay the tokens with integral ages and add the information about
their ages. Finally, we order the remaining tokens dependim the fractional
part of their ages i, ..., a,, forget their fractional part, and only store the in-
tegral part of their ages. Henaeis the number of dierent positive fractional
values for ages of the remaining tokens. For instance, densihe bag of tokens
(p,1) + (p,2.8) + (0,0.8) + (9,5.1) + (r, 1.5). Then, if the maximal constant is 4,
its region encoding will beya;a,a., whereag = (p,1) (because there is a sin-
gle token with integral agej.. = (g, ) (because the age of tokeq, 6.1) is 51,
hence above the maximal constarmt),= (r,1) (among all fractional parts,®is
the smallest one), are = (p, 2) + (g, 0) (all tokens with fractional part.8).

We now define more formally the semantics of the regions ¢lle¢ the mapping
fromR.o 10 {0,1,..., max oo} defined by: ifx > max theng(x) = oo elseg(x) =
[X]. We extendp to P xR.q by ¢((p, X)) = (p, #(X)) and toBag(PxR.,) by linearity.

LetR = apa; ... ana. be a region. ThernA] is a set of configurations such that
there existy, v, ..., vn, Vo belonging toBag(P x R.q) with:

[ ] v:a0+v1+vz+...+vn+vm,

e V1<i<n ¢(v)=a, andg(ve) = Aw,

e V1<i<nV(p,X) +(qy) <vi,0<x-|x|=y-Llyl,

e V1<i<j<nV(p,X)<w, (Qy) <vj X=IXI <y-Llyl

Note that every configurationbelongs to a single region, that we wrig¢v), and
that if v € N, then [R(v)] = {v}. The original coverability problem thus reduces to
the coverability problem for finitely many regions, whicketf reduces to solving
the coverability problem for a single regidgh

Decidability of the coverability problem. We can now prove Theorem 1.

Proof. We first notice that, given two regior& = apa; . .. aha. andR’ = aja; . ..
a,a,, one can check whetheR[" ¢ [R']": the necessary and ficient conditions
areap > ap, a., > a,, and the existence of a strictly increasing mappinffom
{1,...,n"}into{1,...,n} such that for every kX i <n’, a,; > &.

We define a partial order between regionsfyx R’ iff [R']" € [R]". Then, using
Higman’'s lemma [9], we can show that this is a well quasi-grde., for every

10



infinite sequence of regionKi}iav., there exist < j such thatk; < R;. Indeed,
each regiorR is a finite sequence of bags over a finite set, hence applying [2
Theorem 1], the above-mentioned partial order is a well igowaker.

The algorithm for solving the coverability problem for thpward closure of a
single regionRk then consists in computing iteratively the predecessoygifbe
elapsing and by discrete steps) &]]. As we will see, each such predecessor is
a finite union of upward closures of regions. We stop exptptime predecessors
of an upward closure of a region when it is larger (for parteder <) than an
already computed region. Note that all configurations rahiehfrom [R,]" are also
reachable from®,]" wheneverR, < R,. The computation can then be seen as
a finitely branching tree. To prove that it terminates, itusfisient to prove that
this tree is finite. Suppose it is not. By applying Kénig lemrtfas tree has an
infinite branch. However, as is a well quasi-order, we will eventually obtain a
region which is larger than a previous one. This leads to &adittion. Hence, the
computation tree is finite, and the computation termindtbe.set of configurations

N is covered by th&®A-TdPN N if and only if its initial configuration/y occurs in
the upward closure of some region of the tree.

It remains to explain how we compute the time and discretdguessors of the
upward closure of aregioR = aya; . . . ahaw.

Time predecessors. If a; contains a tokeng, 0), there is no strict time predeces-

sor of [R]". Otherwise ifsize(as) # 0, then the time predecessor & with
R’ = aja;...a,a, 8. Wherea is the empty bag and, , is obtained froma, by
decrementing by 1 the (integral) age of each token. Infdgmiddis operation rep-
resents a (reverse) small time elapse such that no tokapnreaches an integral
value and no token di,, reaches back max.

Otherwise (e, size(ag) = 0) we need to choose if tokens af will first reach an
integral value or some tokensaf, will first reach max. It could be the tokensay,

a bag of token$., < a.,, or both. We only illustrate this last case (which assumes
n > 1). The above-mentioned time predecessoRi$[whereR’ = aa; ... a, ,a,

is obtained as follows.

[ ago = aoo - bcxn

e a, = & + C,, Wherec,, is obtained fromb,, by setting the age of each token to
max,

e Vl<i<n-1la&a =ay.

Discrete predecessors. We pick a transitiort. Note that given an intervdl of the
net and a tokeng, X) belonging to some; fori € {0,1,...,n, oo}, we can compute
whether, given a configuration belonging to that region,dbeesponding token
belongs tol. By property of the regions, this is independent of the chatthe
configuration. We then writa,(x) £ I.

11



We consider the upward closure of the reg&a; . .. a,a., and want to compute
its preimage by transition Transitiont produces the bag of toke®®st(t). These
tokens may appear in one of thgs, but this is not required, they may only be in
the upward closure. Similarly, some tokensRafad(t) may appear in some of the
a’s, but this is also not required. Hence, we choose bags efngost;, read;” €
Bag(Px{0,1,...,max x 1) for everyi € {0, 1,...,n} andpost,,, read’, € Bag(Px
{oo} X I') such that

e forall (p,x, 1) < post; +read;, (i,x) £ I,
e foralli € {0,1,...,n, oo}, m2(post) + mo(read;’) < &,
(recall thatry , projects bags onto the two first components.)
o Y ms(post;) < Post(t),
e >, mi3(read) < Read(t).

The bagpost; represents the tokens producedthwhich “belong” toa;, whereas
the bagread;” represents the tokens read thyhich also “belong” tag;. However,
there might be additional tokens (either that are read drareproduced) which
do not appear in one of th&’s (this is possible as we consider the upward closure
of the region), that’'s why the two last conditions are indifjiea and not equalities.
Figure 2 illustrates the decomposition.

Applying this first decomposition, we build an intermedisdgionR’ = aja; ... a/, a,,
by substractingr; o(post;) from g for everyi and deleting the item in the resulting
sequence if its size is null (ford i < n).

Then, to really simulate the discrete transittpwe need to initially have all tokens
required by the read-arcs and all tokens that are consumételpyre-arcs. We set
bags of tokengre;, read; € Bag(Px{0,1,...,maxx 1) foreveryi € {0,1,...,n"}
for some integen”, pre_,read_ € Bag(P x {0} x I) and a strictly increasing
mappingy from {1,...,n’}into{1,...,n”} such that

o forall (p,x,1) < pre; +read., (i,X) £ I,
e ay = ag + mya(prey) + mio(ready),
al =al, + mo(pre,) + mo(ready),
for everyi € {1,...,n"}, if there exists] such thaty(j) = i then
&’ = & + myo(pre;) + myo(read;), otherwises” = myp(pre;) + myp(read;),
o >imis(pre;) = Pre(t),
o Y. ma(ready) + Y mys(read;’) = Read(t).

The bagsead; complement the already defined bagsd.’s to satisfy theRead(t)
constraint, wheregwre,; are the tokens required by the pre-arcs of the transitiom. Se
Figure 2 for an illustration of the construction.

Under those conditions, the regi®Y = ajay...ay al, is a predecessor hyof
[R]". Note that the constructed regi® depends on the various choices we have
made (all bagsead™, read™, pre, etc. and also the indicer’, n”, the mapping
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¥, etc). For each of these (finitely many) choices, it gives a regidnch is in
the preimage ofR by t (indeed, take any configuratiort € [R”]", then quite
straightforwardly, any configuration image wby t is in [R]"), and all regions in
the preimage by can of course be obtained in that way.

c=d +E+ with ec[R]

*

E Pre(t)=%; m13pre; |

and ey (T m12(prey)) !
3 F i maread;

and € y~1(3; my2(read;))

e[kl!]
(S A i E Read(t)

E X m1aread;

and e y~1(3; w1 2(read;"))

' \
| = Xi m1,3pOst;
L and e y~(Z; m1.2(post;)) k= Post(t)

e[R' e[R" ce[R]"

Fig. 2. Decomposition of the set of tokens for the discreeglpcessor computation

Hence, time predecessors and discrete predecessorsaisege finite unions of
regions, and can befectively computed, which concludes the proof of the theo-
rem. m|

4 Two Discriminating Timed Languages

We design two timed languages which distinguish betweerraégubclasses of
RA-TdPNs. Notice that these two languages @ena This remark will be impor-
tant later on in this section.

The timed languagelL;. The RA-TdPN N, of Figure 3 (with a single Bichi
accepting conditiorp > 1) is a O-reset, integral and boundRé-TdPN which
recognizes the timed language (of infinite timed words)

Li={@r)...(at)...|0<T1<...<th < ... < 1}.
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Acc ={p =1}

(e 1901 i

Fig. 3. ARA-TdPN N; recognizingLy

Lemma 1 The timed language;lis recognized by n@dPN.

Proof. Assume that there is &dPN N which recognizes the timed languabe
We denote byd the least common multiple of the denominators of the constan
appearing in the intervals o¥. We pick an infinite wordw = (a,71)(a,72)...

(& 1) ...suchthatforevery> 1, 1-1/(2d) < 7j < 7j41 < 1.

The wordw is accepted byV;, and thus byV: there is an infinite firing sequence
o = o1(ty, T1)oo(to, 72) . . . on(th, Tn) - . . OVerX, which is an accepting run g¢¥ and
where all transitions ofr; are labelled by whereas the transitiorisare labelled
by a.

The seflTokof tokens part of the initial marking or produced along thgusncer;
is finite. Hence, there is an integesuch that tokens ifokare not used for firing
transitions in the sequenc®_(, Th_1)on(th, 7n) . . . Sincer,_1 < 1, there is a sfiix
(to, Tt ) - . - (L, Tn)(tn, 7)) Of the timed transition sequenci_{, Tn-1)on(tn, 7n)
with 7 < 7, (k may be equal to 0). We note’ the finite prefix ofo- up to ¢, 7),
ando” the sufix starting right aftertf, 7) (hences = o’c”"). We will prove that
the infinite sequence = o’'(0” + 1/(2d)) is a firing sequence oV (o’ + 1/(2d)
is the timed transition sequence obtained frothby delaying firings of transitions
by 1/(2d) time units). To that aim, we will analyse the age of tokeresdu®r firing
a transition ofo” = (t}, ) ... (t, 7n)(tn, Tn)on+1(ths1, Tnea) . . . in the original timed
transition sequence, and we will show that (when necessary) we can modify the
initial age of these tokens in order for the timed transisequence- to be firable.

We pick a token in placg which, alongo, is produced by some transitidrand
used for firing a transitiotr alongo”. This means in particular that this token is
not in Tok and thus that transitionoccurs alongr at some date with 7; < 7.
If tis a transition olr", then we do not need to modify the initial age along
o, sincet andt’ will be separated by the same delay alengnd alongs, hence
the tokenp can be used similarly io-r and ino. Otherwiset occurs alongr’ in o,
hence +1/(2d) < 11 < 7 <7 < 1, < 7 < 1 wherer’ is the date at whichi is fired
alongo. We sets = v — 7: obviously, 0< § < 1/(2d). Let us calll~ the interval
of Post(t)(p) associated with the production of the token, dndhe interval of
Pre(t")(p) associated with the consumption of the token. We first edhatl ~ and
I* cannot be both singletons: assuime= [h/d, h/d] and I* = [k/d, k/d] with
h,k € N, thenk/d = h/d + ¢, which is impossible since & § < 1/(2d). We
distinguish between several caseslifoand|*:
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e We assumeé™ = [h/d,h/d] andI* = (k/d, k'/d) with k < k' (the brackets defin-
ing I are either “strict” or “non-strict”). The age of the token &rhit is con-
sumed by transitioty alongo is h/d+ 6§ € I*. Thush < k', and we get that
h/d+ 6+ 1/(2d) € I* (since 0< ¢ < 1/(2d)). In this case, we do not change the
initial age of the token for firing the timed transition seqoeos, and the firing
of t’ can be delayed by/{2d) time units.

e We assuméd~ = (h/d,h’/d) andI* = [k/d,k/d] with h < h’. The age of the
token when it is produced.€., when transitiort is fired) alongrisk/d—6 € 1.
Thus,h < kandk/d — 6 — 1/(2d) € I~ since O0< § < 1/(2d). For firing the
sequencer, we thus change the initial age of the token dowk/— 6 — 1/(2d),
and the firing oft’ can then be delayed by (2d) time units.

e We assumé™ = (h/d,h'/d) andl* = (k/d, k’/d) with h < b andk < k’. We note
a the initial age of the token when transitions fired alongo: @ + 6 (< k'/d)
is its age when the token is consumed for firing transiticadongo. If o + 6 <
k'/d — 1/(2d), we do not modify its initial age i@, and the firing oft’ can be
delayed safely by /A2d) time units.

Assume conversely that > k'/d — 1/(2d) — 6. Then, K - 1)/d < a < K'/d,
and thush < k' — 1 < ’. Along o, choose as new initial agé = (k' — 1)/d + 8
with 0 < 8 < 1/(2d) — ¢ for the token (when transitionis fired), then we can
check thate’ € I~ anda’ + 6 + 1/(2d) € 1*, hence the firing of’ can also be
delayed by 1(2d) time units.

With these new initial ages for the tokens, the timed tramsgequencer is firable,
and accepts the timed word, ) ... (a, tn-1)(a, T, + 1/(2d))(a, 71 + 1/(2d)). . ..
Moreover, the discrete markings along the run acceptingnitiel word and the
above word are the same, both timed words are thus accept&d Hpwever this
timed word should not be accepted Iy as it is not accepted by, (because
T, + 1/(2d) > 1), which contradicts the existence ofdPN N equivalent toN;.
Thus, there is no classic@tiPN which recognizes;. O

The timed languageL,. The RA-TdPN N, of Figure 4 is an integral bounded
RA-TdPN which recognizes the timed language (of infinite timed wprds

L= (&, 0)(b,71)...(0,7y)... | Ir <18t OSTi<...<Th<...<7T)

Acc ={q > 1}
o o0l - 0
o

Fig. 4. ARA-TdPN N> recognizingL,

Lemma 2 The timed language,lis recognized by nb-reset integralRA-TdPN.
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Proof. Assume that the timed languabgis recognized by the O-reset integRa-
TdPN N. Pick awordw = (a,0)(b, 71)--- (b, 7)) ... iIn Ly, withO< 7y <15, < ... <
7 <...<tandlim_. 7 = 7. We noteo an accepting firing sequence M for w.

We write o = o010, Whereo; is an instantaneous firing sequence, and =

(to, d)o; for some delayd > 0 (hence}y is the first transition along- which does
not occur at date 0). We claim that = o107, wherecd, is obtained frono, by
delaying all dates by % 7 time units, is a firing sequence &f. Let us select an
occurrence of a transitionfired in o, and a token read or consumed togorre-
sponding to an intervdl If the token has been produced by a transition firegain
then it has the same ageadn. If the token is an initial token or has been produced
by o1, then its agex when firingt in o5 is such that O< d < x < 7 < 1, thus
10,1 c I (because the né¥ is integral and O-reset). The age of this token when it
is checked for firing in o, is x + 1 — 7 and satisfies & x+ 1 -7 < 1. Thus, the
same occurrence ofs firable ino,.

Since the untimed firing sequencescofindo’ are equalp”’ is an accepting se-
guence. The timed word which is read @hisw = (a,0)(b,71 +1—-17)...(b, 7 +
1-7)...withlimj_,7i+1-7=1.Thusw ¢ L,, which contradicts the assump-
tion that it is accepted by, and thus byN,. Finally, there is no O-reset integral
RA-TdPN which recognizes the language. O

5 Normalization of RA-TdPNs

We present a transformation &A-TdPNs which preserves both languages over
finite and Zenoor nonZeng infinite words, as well as boundedness and integral-
ity of the nets. This construction transforms the net by isipg strong syntactical
conditions on places, which will simplify further studies RA-TdPNs. This con-
struction is decomposed into three steps. The first stepstens splitting inter-
vals so that two intervals are either disjoint or equal. Téeosd step is somehow
close to one-dimensional regions of [10], and records afjgskens and how time
elapses. The third step duplicates places so that all gsp fyost-) arcs connected
to a place are labelled by the same interval.

Proposition 1 For everyRA-TdPN N, we can gectively construct &A-TdPN N’
which is{x, wnz, w}-equivalent toN, and in which all places are configured as one
of the five patterns depicted in Figure 5, which reads as: fghie ana (which is a
positive rational, or is possibly equal teco for patternsP, and®,) such that the
place is connected to possibly several post-arcs, pre-ancksread-arcs, with bags
as specified on the figure”. Note that parameters’namd ' are not necessarily
shared by arcs (whereas a is). Moreover the constructiolsgmees boundedness
and integrality.
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t} n: [O] —/p\ L [O] It// tI [O] ~/p\nu -]0, a{|t// tI [O] —/p\ [a] It//
n - [0] n -10,a n -10,a
t t t
(a) PatterrPy (b) Patterr®, (a > 0 ora = o) (c) PatterrP3 (a > 0)
¢ n-10,a IOn”-]O,a[ |n-]0,a[fp\ [a] |

t// t| |tll
n-]0,a

t’ t
(d) PatterrP, (a> 0 ora = ) (e) PatterrPs (a > 0)
Fig. 5. The five normalized patterns for BA-TdPN.

To avoid dificulties due to the initial marking, we first apply a straiginvard
transformation to the net. We add a plagg; containing initially one token and
a transitiont;,; labelled bye, whose single pre-arc labelled by [0] is connected
to pinit and whose post-arcs correspond to the initial markirmg, for all p € P,
Post(t)(p) = my(p) - [O]. All other places are initially unmarked. Finally we add
pinit = O to the acceptance conditions. It is trivial that this tfansation does
not modify any accepted language. In the sequel, we assuahe/éhhave already
applied this transformation to the net, and we apply the traxtsformations on
each place, excep.

As announced above, for proving Proposition 1 we proceedhrieet steps, and
successively construct a net which satisfies syntactiséiicgons (1), (2) and (3)
below:

(1) For every place, there exists a finite set of pairwiseodisjintervals{ly};<k<k
such that every arc connected to this place has a bag of tme}er, .« Nk - I
Moreover, everyly is either of the form 4] or ]Ja, b[ with a € Q.o andb €
Q0 U {oo}.

(2) For every place,

e either it is connected to (possibly) several post-arcsliathdy bags: - [0],
(possibly) several read-arcs labelled by bags[0] and (possibly) several
pre-arcs labelled by bagg - [O].

e or there exista € Q. such that it is connected to one post-arc whose bag is
[0], (possibly) several post-arc labelled by bags|0, a[, (possibly) several
read-arcs labelled by bags- 0, a[, one pre-arc labelled by a bag][ and
(possibly) several pre-arcs labelled by bafjs ]0, a[.

e Or it is connected to one post-arc whose bag is [0], (possasyeral post-
arc labelled by bags- ]0, +oo[, (possibly) several read-arcs labelled by bags
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n" - 10, +oo[, and (possibly) several pre-arcs labelled by bags]0, +oo].
(3) Every place is configured as one of the five patterns degbioh Figure 5.

In all following lemmas, the equivalence mentioned is {hev, wn,}-equivalence,
which means that the constructions are correct for finiteiafimite timed words.

The transformation proceeds as follows: it starts withRaTdPN N and suc-
cessively builds the threBA-TdPNs N;, N, and N3 obtained respectively by
Lemma 3, 4 and 5.

Lemma 3 We can build aRA-TdPN N, equivalent toN, and satisfying restric-
tion (1).

Proof.Let p be a place ofV. We consider the finite bounds of intervals which occur
in the bag of some arc connectedgpsay{a,...,an} Withi < j = & < a;. We
then define the s&l, = {[as, a1], ]as, @[, . . ., ]am-1, @m[, [@m, @m], ]am, oo[}. W.L.0.Q.

we assume that; = 0. Moreover, to ease the presentation, we dedjhe = « and
setam., — am = oo, and write the se6l, asSl, = {l}1«<k. Note that for every
interval I, € Sl, and for every interval which occurs in the bag of some arc
connected t@, we have eithet NIy =0orl Nl = Iy.

We will iteratively apply the following transformation the transitions connected
to p. Let us pick a transition connected tq by an arc whose associated bag is
X = Y1ae<k Nk - Je. We will replace the transitionby copies with the same arcs
and the same bags except the one which is concerned by tisfomaation. We
denote such copies Iy, whereg is a mapping fronfl, ..., K} x{1,..., K’} toN,q
such thaty N Jv = 0 = ¢(k k') = 0 and} 1k #(k k') = ny.. The modified bag is
defined by:

Xp = Dak<k 2asksk G(KK) - (Ie N )
= lek’sK' leksK ¢(k, kl) -l

= leksK(Zlgk’sK’ ¢(k, k,)) k.

This transformation is valid. Indeed given any choice oftamib € Bag(Ro X 1)
with m,(b) = x there exists a mapping and an itemd’ € Bag(R x Z) such that
m(b) = m(b) andma(b’) = x,. More precisely, we associate with a tokelnJ,) <

b a token @, 1) such that € I,. Conversely, given an itenl € Bag(R.o x ) with
mo(b') = x4, we pickg(k, k') tokens{(d;, 1k)}1<i<sk k) and replace them by the tokens
{(di, Je)}1<i<gki)- In this way, we obtain a balg € Bag(R.o x 7) with m»(b) = X
andrmy(b) = m (D).

The resultingRA-TdPN is denotedV;. O

Lemma 4 We can build aRA-TdPN N,, equivalent toN;, and satisfying restric-
tions(1) and(2).
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Proof. We iteratively apply the following transformation to eadhge of V3. Let p

be a place oV, and assume thf{ta;, a1],]as, a2[, . - . , 1am-1, &ml, [@m» @m], 1@m, 8me1[}
is the set of pairwise disjoint intervals required by resion (1).

We substitute tg a set of place§pa,, Pa,.ays - - - » Pan 1.0 Pans Paman..)- VWE thus need
to modify the accepting conditioAcc; of Ni: the accepting conditiohcc, of
N, is obtained by replacing all occurrencesmfn Acc; by the term> ", (ps +
Pa.a.,)- Besides, in the transformed net, a token with dge placep, Or pa a.,
will correspond to a token with agk+ a in placep.

In order to pick {.e., produce, consume or read) a token with age placep, one
must pick a token with age 0 in the new plagg In order to pick a token with age
d € ]a, a.1[ in placep, one must pick a token with agk- g € ]0, a1 — &[ in the
new placep, s, ,-

Thus we transform an arc connectedptwith bag

X=m-[ag, 1] + N2 ]ag, @ + - + Ny - [@m, @m] + Nmmet - ]@m, @mea

into arcs connected to the new places such that the bag poneiag top, is
ni - [0, 0], and the bag correspondingpg 4, iS Nij+1 - 10, &1 — al.

Finally, we add transitions to “transfer” tokens from onetted new places to an-
other one when their age increasgss,, ta,, - - - » ta,» taany - A transitiont; con-
sumes a token with ag® — a_; in p,_, o and produces a token with age 0 in place
Pa- A transitiont, 5., consumes a token with age 0 g3 and produces a token
with age O in placep; 5.,. All these transitions are labelled by

Let N, be the transformed net antibe a configuration oN,. We associate with
v’ a configuratiorv = f(v’) of Ny defined by:

f(p’,d) = (p’,d) if p” # p place ofN;
f(pa,d) = (p,a +d) for everyp,
f(Pa.a..-d) = (P, & +d) for everyp; .,

which we extend on bags by linearity. Note thidiy) = vo. Straightforwardly,
time elapsing commutes with this mapping. Moreover, firingea transition does
not modify the image of a configuration and finally the transfation of the arcs
ensures that firing an existing transition is also possibl&aé original net and that
this firing commutes with the mapping. Finally, we easily dhéhat the image by
this mapping of a configuration satisfyingc, # is a configuration satisfyingcc.

An accepting firing sequence 8f, leads thus by this mapping to an accepting firing
sequence oiV;.

4 Recall that a configurationsatisfies an acceptance conditiset whenever the number
of tokens in the places satisfies the constrairmaif.
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Conversely, assume thatis an accepting firing sequence Af. First, we split
time elapsing steps in such a way that if at some time a tokeegjonding to the
sequence reaches the agethis instant is associated with an intermediate config-
uration. In order to build the corresponding sequentef N>, we will add firings
of the new transitions at this instant some them just afetdbkt time elapsing and
some others just before the next time elapsing. The firstfsitirogs will corre-
spond to transitiong,,, and will transferall tokens in place,, ., with agea;,; — &
to placeps,,. The second set of firings will correspond to transitigns,, and will
transferall tokens in placep, with age 0 in place,, 4.,,. With these enforced tran-
sition firings, tokens are always in the appropriate placsifmulating a transition
firing in o ]

Example 2 We illustrate the above construction on the net below:

p
post S 1A+ 2102 7 3 L2l
2-[0]+]0, 2[
Read

The new (part of) net which is constructed is the following:

2.10,2[

Read

We consider an execution in the initial net, and will give tweresponding ex-
ecution in the constructed net. We consider the followirgcetion in the initial
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net:
Post

— 5 (p,0)+(p,1)+(p,1.2)

9 5. (p,0.5)+ (p, 1.5) + (p, 1.7)

Post

— 5. (p,0)+5-(p,05)+2-(p,1)+ (p,1.5) + (p,1.7)

Post

— 10- (p,0)+5-(p,0.5)+4-(p, 1)+ (p,1.5) + (p,1.7)

Read

— 10- (p,0)+5-(p,0.5)+4-(p,1)+ (p,1.5) + (p,1.7)

210 (p,1)+5- (p, 1.5) + 4- (p, 2) + (p, 25) + (p, 2.7)

Pre

— 10- (p,1)+5-(p,1.5)+ (p,2) + (p,2.7)

In the above sequence, tokens are gathered by age, for exdingplirst bag means
that there are seven tokens in place p, five of@gee of agel and one of agé.2.
The corresponding sequence of transitions in the congduget is:

Post (to2)°, (0.5), Post Post Read (tg.2)*°, (0.3), to, ts e, (0.2), t2, t.0, (0.5), ()%, Pre

Lemma 5 We can build arRA-TdPN N3, equivalent taV,, and satisfying restric-
tions(1), (2), and(3).

Proof. To prove this lemma, we need to explain how we can transfoenstippets
built in the proof of the previous lemma into equivalent etBrippets where all
places have the shape of one of the five patterns of Figure BAIMdPN N, we
have’,

e placesp, are connected to (possibly) several post-arcs labelledalggrb- [0],
(possibly) several read-arcs labelled by bags[0] and (possibly) several pre-
arcs labelled by bags’ - [0].

o placesp, 4., (With a1 < o) are connected to one post-arc whose bag is [0],
(possibly) several post-arc labelled by bags|0, a1 — &, (possibly) several
read-arcs labelled by bags]0, a;.1—a&[, one pre-arc labelled by a bag [, —aj],
and (possibly) several pre-arcs labelled by balgs]0, a;,1 — a.

e placep,, . IS connected to one post-arc whose bag is [0], (possibl@raépost-
arc labelled by bags - ]0, +oo[, (possibly) several read-arcs labelled by bags
n" - 10, +oo[, and (possibly) several pre-arcs labelled by bags]0, +oo].

We apply successively the following transformations todteerent places:

¢ duplicate the place for each incident post-arc, and duglial transitions con-
nected with read- and pre-arcs as depicted on the next giftransitiort can be
connected by a pre- or a read-arc):

> Parameters, n” andn” are not necessarily shared by arcs.
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ki-li p m- |
e~ t(m)
ko - 12 ko - I, (n-m)-1

kl X Il P1
P2
Thus, each transitions connected by a pre- or read-arclsceghby copies, one
for everym < nif n- 1 is the bag labelling the arc betweprandt.
e duplicate the place for each incident pre-arc, and dug@iedlttransitions con-
nected with read- and post-arcs as depicted on the nextr@igtansitiont can
be connected by a post- or a read-arc):

Prp
p ki-li Lt m- | CHRE SN
¢ Nl ~  t(m)
koo 1, 1t (n—m)- | 5, ko1 t2

Thus, each transition connected by a post- or a read-arplaced by copies,
one for everyn < nif n- 1 is the bag labelling the arc betweprandt.

We modify accordingly the accepting conditions by replgaaccurrences op by
the sump; + p; if we have duplicated the plageinto the two place®, andp,. It

is straightforward to prove that these constructions dahange the accepted lan-
guages. There is only one point that needs to be detailedeliast transformation,
given an occurrence dfin a sequence- of N, we obtain the correspondirg of
N’ by choosing the appropriatém) which depends onr. Indeed, we county, the
number of tokens produced byhat will be consumed by andm, the number of
tokens produced bythat will be consumed big. Note thatm, + m, < n, so we can
choose anynsuch thatmy < m< n—-m,.

Finally, the places of the resulting net satisfy the prop#rat they are connected
to post-arcs (resp. pre-arcs) labelled by the same intév@eover, because of the
form of the intervals in the former construction, this me#mat every place is of
the form of one of the five patterns of Figure 5. O

Note that all transformations we have presented in thissepteserve both bound-
edness and integrality of the nets. Note also that the tamsition is doubly-
exponential. This bound may be improved, but here we onlydam expressive-
ness. This concludes the proof of Proposition 1.
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6 Removing the Read-Arcs

In this section, we study the role of read-arcRiA-TdPNs. Thanks to Lemma 1
(languagd.;), we already know that read-arcs add expressive powedRiNs for
the w-equivalence. We then prove that read-arcs do not add estpeesss to the
model of TdAPNs when considering finite or infinite nafenotimed words. We
present two dterent constructions: the first one is correct only for finiteed
words, whereas the second one, which extends the first omeyrisct for non-
Zenoinfinite timed words. In both correction proofs, we need tsuase that places
connected to read-arcs do not occur in the acceptance mndihis can be done
without loss of generality, as stated by the following lemma

Lemma 6 Given anRA-TdPN N, we can build aRA-TdPN N’ {x, w, wnz}-equiva-
lent to NV such that no place connected to a read-arc does occur in thepance
condition.

Proof. We iteratively apply the following transformation to evegrhace of N con-
nected to a read-arc and occurring in the acceptance comditet p be such a
place. The netV’ is obtained by adding t&v a new placep’ such that for every
t € T, Post(t)(p’) = Post(t)(p), Pre(t)(p’) = Pre(t)(p), Read(t)(p’) = 0. We as-
sume in addition thaty(p’) = vo(p), and we set the acceptance conditior\ofto
the one ofN where placep is replaced by place’.

We claim thatN’ is equivalent toN. First note that given any reachable config-
uration of N’, p and p’ contain the same number of tokens, but not necessarily
the samei(e., with the same age) tokens (because pre-arcs may chodseedi
tokens).

Let o’ be a firing sequence d¥’ leading to an accepting configuration. Then
obtained froms’ by deleting the tokens qf in the bagsx, y, zassociated with the
firing of a transition, is a sequence Mf. Indeed asV is a subnet o\’ obtained
by deleting places, all behaviours of the latter net are \iehes of the former
one. Furthermore, due to the previous observation aboWkings of p andp’, the
configuration reached after the firing sequeacsatisfies the acceptance condition
of N.

Let o be a firing sequence d¥ leading to an accepting configuration. Then we
build o a firing sequence oN’ from o by consuming and producing in place
p’, the same tokens consumed and produceg by the sequence. The final
configuration o’ has the same tokens jprandp’ and thus satisfies the acceptance
condition of M. m]
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6.1 Case of finite words

As announced above, we establish now a result proving thiait mspect to the
equivalence of finite timed words, it is possible, givenR&TdPN, to build an-
other one which is equivalent. One of the key ideas undeglylms construction
is the resort to a modification of the acceptance conditiomshwvallows us to add
some vivacity to the model. Before stating our result, westitate this idea on an
example.

Example 3 We consider th&A-TdPN N depicted on Figure 3. We transform this
netinto the netillustrated on Figure 6, which recognizesgsame language of finite
timed words. In this net, initially, transition tabelled bye puts one token in place
p; and another one in place,pThen a’s are produced by firings of the transition
t3, and finally before one time unit has elapsed, the transitjoabelled bye is
taken, which empties places @nd p. This last firing is enforced by the accepting
condition p + p, = 0.

Acc ={p1+ p2 =0}

t1, & 0]

Fig. 6. An illustration of the ideas used for removing thed-@acs.

Theorem 2 Let N be anRA-TdPN, then we can fectively build aTdPN N’,
which isx-equivalent toN. Note that the construction preserves boundedness and
integrality of the net.

Proof. To prove this result, we first normalize the net. We considdy @laces
incident to read-arcs and, thanks to the previous lemmaanegppose that these
places are not in the acceptance condition. We then dissihdhetween the five
possible patterns of Figure 5 for a plapgéncident to a read-arc, and show that in
every case, we can remove the read-arcs incident to place

Pattern ;. The construction is presented on Figure 7. This is the sishglese.

Indeed, the simulation is the same as in the untimed caseeHsy to verify that
the firing sequences of the two nets are exactly the samehasdhe two nets are
equivalent.

Pattern £,. We handle separately the cages +oo0 anda < +o0. The construc-
tion for the first case is presented on Figure 8. For the secase, the construction
is presented on Figure 9.
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Fig. 7. Removing read-arcs in pattePn

[0] o] P
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Fig. 8. Removing read-arcs in pattegfg, casea = +oo

The case = +o is relatively simple. It is indeed $licient to notice that, once a
token has a positive age, it can be used forever by read-adcpra-arcs, since its
age does not constrain their firings. In particular, we domodtlify the accepting

condition.

The casea < +w is a little bit more involved since we have to take into acdoun
the ages of the tokens. Simulating the read-arcs is thusoneasy. To ensure the

Prv 10,4

N

Fig. 9. Removing read-arcs in pattefa, casea < +oo

correctness of this construction, we also modify the acegmondition of N by
adding the following constrainp; + p, + ps < 0. Before proving the equivalence
between the two nets, we make preliminary remarks on sewvseaiants of the net
N'’. Every configurationr appearing on aacceptingiring sequence oN’ satisfies
the following properties:
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(i) size(v(p1)) = size(v(p2)) + size(v(ps))
(i) size(v(p2)) = size(v(p1);-o)
wherev(p:)-o is the bag of tokens in plage whose age is equal to 0
(i) size(v(py)) = size(v(P1)<a)
wherev(p;)<a iS the bag of tokens in plage, whose age is strictly less
thana

The two first properties are simple invariants obtained bygaring producing and
consuming arcs connected to plaggsp, and ps.

The last property relies on the accepting property of theisece. Indeed, this
implies that every token produced in plagehas to be consumed by one of the two
transitionst” andt,. The timing requirements (J@[) of arcs connected to plaga

of transitionst” andt, then implies that the age of these tokens is always strictly
less thara.

We first consider an accepting firing sequencef N, and build a corresponding
accepting firing sequence of N’. We make two kinds of modifications to this
sequence. First, we move tokens from plag¢o placeps with the silent transition

t; as soon as we need them for transittoror t” (if a token is never used, we
move it when its age is equal 82). Secondly, we empty placgs and ps using

the silent transitiort, as soon as the tokens are no more used until the end of
the sequence. In this way, we consume every dead token @ platnet N. The
silent transitions we have inserted allow to verify that \aa @re the corresponding
discrete transitions in the nAf’.

Conversely, we consider an accepting firing sequericagf N’. We build a firing
sequencer of N obtained fromu” by erasing silent transitiorts andt,. We now
verify that transitiong’” andt” are still firable ino. First note that the producing
arcs imply the following inequality between two configuosis v andy’ obtained
respectively after the same prefixefando’:

v(p) = v'(pa)

This implies that every firable occurrence of the transitiom ¢~ is still firable in

o. To prove the same property for we will use the preliminary remarks. Suppose
thatt’ is firable inv’. Then, there are at leasttokens in placeys. Propertiesiy, (ii)
and {ii) together imply that there are at leastokens of age belonging to ,]§] in
placep;. The previous inequality betweetip) andv’'(p,) finally implies that the
transitiont” is also firable inV. This concludes the proof for patteft.

Pattern 3. The construction is presented on Figure 10. We also mod#ath
cepting condition ofA/ by adding the following constrainf>, pi < 0. Before
proving the equivalence between the two nets, we also maenimary remarks
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Fig. 10. Removing read-arcs in patte?g

on several invariants of the na&t'. Every configuration appearing on an accepting
firing sequence oN’ satisfies the following properties:

(i) size(v(Pr)o) + Size(v(P2)i-o) + Size(v(ps)-o) = size(v(ps)-o)

(i) size(v(P)-a) < size(v(Po);-o)
(ii)) size((P2)-o) + Size(v(Pa)-0) = Size(v(Pa).o) + Size(v(Ps)) + size(v(Ps))
(iv) size(V(P2)joa) + Size(r(Pa)yno) > Size(v(ps)y-o) + size(v(ps))

The first property is an invariant obtained by comparing peidg and consuming
arcs connected to thefterent places.

The second property relies on the accepting condition.eSintoken with aga in
placep, has to be consumed in zero time by transitionthis transition has to be
enabled, and thus we obtain the inequality.

The third property is obtained from the first one by lettingei elapse, using the
fact that the acceptance condition implies thiaé(v(p1)so) = O.

Finally, the fourth property can be obtained from proper{ig) and {ii) by sub-
traction.

We first consider an accepting firing sequencef N, and build a corresponding
accepting firing sequenee of N’.

At each time a token is produced by the transitipwe move the corresponding
token of placep,. If this token will be consumed by the transitioh then we use
the silent transitiort; to move it to the placg,. Otherwise, we move it withy, to
the placep,.
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Moreover, we also move the copy of the token of plggeo placeps with the
silent transitiortz as soon as we need it for transititrfif a token is never checked
by t’, we move it when its age is equal &2). This instant must appear after a
strictly positive delay of time since the intervaltofs ]0, a[, which ensures that the
transitionts is firable.

Finally, as soon as a token of plapgis no more used until the end of the sequence
by the transitiort’, we have to consume it usitigor ts. Two cases are possible:

¢ either the corresponding token @fis consumed by’, and then we move it to
Ps Usingts. Note that since the last read appears strictly before gscagalsa,
the age of the produced token g will be strictly positive when the age of the
corresponding token of plaga will reacha, and thus the transitiotY will be
firable.

e or the token is never consumed tfy and then we consume it immediately tgy
which is possible since the last occurrence’ @ippears strictly befora.

Note that the previous modifications are possible if we haredhe same choices
for the copies of the token placed jm andps. In this way, we consume every dead
token of placep of the netN. This implies that the corresponding firing sequence
will be accepting.

Finally, it can be checked that the silent transitions weehaserted lead to a firable
sequence of the n&\”.

Conversely, we consider an accepting firing sequericef N’. We build a firing
sequencer of NV obtained fronuv”’ by erasing silent transitiorts, . . ., ts. We now
verify that transitiong” andt” are still firable ino. First note that the producing
arcs imply the following inequality between two configuoatsy andy’ obtained
respectively after the same prefixeofando’:

v(p) 2 v'(P1) +V'(P2) + v'(Pa)

In particular, we have(p) > v'(p.). This implies that every firable occurrence of
the transitiort” in ¢ is still firable ino-. To prove the same property for we will

use the preliminary remarks. Suppose thé fireable inv’. Then there are at least

n’ tokens in placgs. Using inequality /), and the fact that the age of every token
in placepy is strictly less tham (since we consider an accepting sequence), we get:

size(v(P2)jo.ap) + Size(v(Pa)jo,a) = N

This implies, using the previous inequality grthat there at least tokens in place
p of age belonging to the interval ][ in the configuratiorv. This proves that' is
firable inv and concludes the proof for pattefs.
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Pattern #,. We distinguish the two cases = +oo (Figure 11) anda < +oo
(Figure 12).

| n[o]_/p\ n” _I 7
t| |t

n"-[0] n

t/

Fig. 11. Removing read-arcs in patte?y, casea = +oo

For the case = +o0, the construction is similar to that for pattefy. Indeed,
a token produced is immediately and forever available fer siace its age does
not constrain the firing of transitions. Note that we do notdifyothe accepting
conditions.

As for the patterrP,, the casea < +oo is more involved since we have to take
into account the ages of the tokens. We also modify the aicgepondition of

n”-10,a]

t/l

Fig. 12. Removing read-arcs in pattefy, casea < +oo

by adding the following constrainp; + p, < 0. This pattern is treated similarly
as the patters,. Indeed, the pre- and read-arcs are the same. The only naadific
tion then comes from the post-arc. In this pattern, tokeagasduced with initial
age belonging to the interval @[, whereas they were produced with initial age O
in pattern®,. The construction is simpler here since we do not need tool@ies
time elapse before allowing the transitibricorresponding to the read-arcs) to use
produced tokens.

The correctness proof for this pattern can easily be defiaed the proof for pat-
tern®,.
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Pattern 5. The construction is presented on Figure 13. We also mod#ath

(2] P

ts, £ Ps

t4, &

Fig. 13. Removing read-arcs in patte?g

cepting condition of\ by adding the following constraing?>, p; < 0. PatterrPs

is treated in a way similar to pattef?; since pre- and read-arcs are the same and
the only modification comes from the post-arc: productiothminterval [Q0] has
been replaced by a production in the intervalg0

We make two main modifications to the case of patf@sn

First, we let the choice of the initial age of the producecktuto the transitions
andt,. Since there is no timed copy of the token, the choice of aralrdge raises
no difficulty. Recall that the choice of firing or t, corresponds as previously to
the distinction between tokens that will be eventually econed by the transition
t” before the end of the firing sequence, and the tokens thahatill

Then, since produced tokens have initial age belongingdartterval ]Q a[, these
tokens can immediately be used by the transitiorand thus, as in the previous
case, we do not need to let some time elapse before movingsakehe placep,.

The correctness proof for this pattern can easily be defieed the one for pattern
Ps. O

6.2 Case of infinite non-Zeno words

The previous construction cannot be applied to languagedioite words. Indeed,

it relies on the following idea: the acceptance conditioguiges that one empties
the places at the end of the sequence in the simulating nedémn to check whether
ages of tokens have been appropriately simulated.
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Fig. 14. ARA-TAPN N3

In the case of infinite timed words, a similar Blichi conditwwould require that
the places of the simulating net are empty infinitely oftaut, this may not be the
case. Consider for example the é§ depicted on Figure 14. This net recognizes
the following language of infinite timed words :

L9(N3) ={w=(a,7)is0| & =a= 3j<i,a =bandr —7; €]0, 3[}
In particular the following timed word belongs #(N3):
w = (b,0)(b, 2)(a 2)(b,4)(a 4)... (b 2i)(a 2)...

Any configuration of the execution acceptingalways contains a token in plage

that needs to be read later on and thus a Blichi conditionasitailthe one used for
finite words would “eliminate” the timed wordl. However in the divergent case,
we will first apply a transformation of the net that will notasige the language, in
such a way that in the new net, every infinite noeaotimed word will be accepted

by an appropriate generalized Biichi condition. Roughig, ¢bnstruction consists

on this example in creating two copies of the net and produwkens alternatively

in a copy of placep or in the other one. As a consequence, each copy will be empty
infinitely often.

Theorem 3 Let N be anRA-TdPN, then we can fectively build aTdPN N’,
which iswn-equivalent toV. Note that the construction preserves the boundedness
and the integrality of the nets.

Proof. We assume thatv' is normalized and that no place connected to a read-
arc occurs in the acceptance conditions. First note thabtite cases in which
bounds of intervals may be infinite are in pattefisand®,. Moreover, in these
cases, whem is infinite, we have proposed constructions which do not caly

a modification of the acceptance conditions and which are #iso correct for
equivalences on infinite timed words. In the sequel, we ars tnly interested in
cases of finite boundsge., whena is finite.

First we transformV into anotherRA-TdPN N* as follows. We duplicate every
place p connected to a read-arc by an arc labelled witha]|a finite), into two
placespodq and peven Then we apply the following transformation iteratively to
every placep and every arc connected poLett be a transition connected foand
n-1 be the bag labelling the arc connecting them. We replagea set of transitions
{t(K)}o<k<n SUch that the arcs of these transitions are identical teetbftsexcept the
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one under examination. We add to transiti¢) two arcs (of the same kind as the
original one), one labelled by- | connected t@,qq and one labelled byn(— K) - |
connected t@e.en NOte that an original transition may be duplicated sevarads.
The label of the duplicated transitions is the one of theionalgransition.

It is clear that\V and N* are equivalent for all the language equivalences and in
particular for thew,-equivalence. Howevey* satisfies an additional property that
we explain now. We select an integer strictly greater thamyefinite interval bound
occurring inN* and call it max. Given an infinite sequenceand a token initially
present or produced along the sequence, we say that a tokeelesssn some
configuration reached along, if it will not be “used” in the remaining sequence
by a read-arc or a pre-arc.

Let w be an infinite norgenotimed word accepted by a firing sequencef N
then we build a firing sequenee of N* whose label isvand such that:

e at any time (R) - max withk € N, there is a configuration such that all places
PevenCONtain only useless tokens,

e at any time (R + 1) - max withk € N, there is a configuration such that all
placespyqq cOntain only useless tokens.

Note that, due to the (time) divergence @f a token produced in some plape
(defined as before) will either become useless or it will besconed in some con-
figuration. This is true because we are concerned with iatemvhose bounds are
finite. If this configuration occurs in some intervalk21)- max (2k+2)-max[, we
say that this token isvenotherwise we say that it isdd We buildo™ by appropri-
ately replacing a transition by one of its copies: the choicene copy depends on
whether tokens that are read, consumed or produced are ewed.d-or instance,
an odd (resp. even) token will be produced in the odd (regm)aopy of the place.

Now take the last configuration of* reached at time {2+ 1) - max and suppose
that placep,qq cONntains a token which is not useless yet, then it will becassdess
during the interval J(R+ 1) - max (2k + 2) - max[. So it is an even token and should
have been produced o, The proof for the last configuration of* reached at
time (X) - max is similar.

We now apply the transformation of Theorem 2A6 yielding . In the trans-
formation of patterns 2, 3, 4, 5 whenis finite we memorize the character of the
new places. For instance, in the pattétp a placepoqq is replaced by two places
Podd1 @nd Pogq2- Then we add to the generalized Buchi condition\dftwo new
conditions: the sum of tokens in odd (resp. even) places beustfinitely often O.

Let w be a nonZenoinfinite timed word ofN (and of N*). Now take a sequence

o* of N* acceptingw with the additional property. Simulate the sequencéin

as for Theorem 2 except that tokens not consumed-bare consumed by the
“emptying” transitions ofN’ as soon as they become useless. Due to the property
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of o*, this simulating sequence fulfills the new conditions adeitie generalized
Bichi condition.

Conversely let”’ be an infinite noréenosequence ofN’ and suppose that it does
not respect previous conditionse,, that it produces tokens in the wrong copies of
the placep, or that it does not consume tokens that are useless. Thea tedlens

in odd or even places will never be consumedrirando”’ is not accepting. Thus
for an accepting sequeneé of N’, we apply exactly the same transformations as
those performed in Theorem 2 in order to obtain an accepéggence oiN*. O

Example 4 (Application of the construction of Theorem 3) Consider the netv;
depicted on Figure 14. It is easy to see that the net depiateléigure 15, sayV;,

is the net obtained by the construction presented in theflgbBheorem 3. Indeed,
the only place p ofN; is configured as patter#,. The construction thus consists
in duplicating this place into two copies called “Even” an@tld”, and then ap-
plying the construction described for finite timed wordsacleof this copies. The
accepting condition is a generalized Bichi condition repg that the two sets
of places obtained respectively for the even copy and footltecopy are empty
infinitely often. Recall that the following word is acceptsdVs;.

Acc = {ip‘e = O,Z31pi) = O}
i=1 i=1

Evencopy P Odd copy P}

t3,a

Fig. 15. Application of Theorem 3 to the n&g

w=(b,0) (b.2) @2) (0b4) @4)...(b2)(@a2)...
odd even even
We give here the corresponding executionin N}, as it is defined in the proof

of Theorem 3. Note that it could be possible on this examppeaeide a simpler
execution. By definition, we considéras the constanmax of the proof. Then a
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token is “even” if it becomes useless in an interval of thevf¢(2k + 1).4, (2k +
2).4[, and “odd” otherwise. We have indicated under the occureshof b in w
whether the produced token is odd or even. Using this infdtonawe can derive
the following sequence’.

o’ = (5 0) 2)(th 2)(E, 2t 2t 4) 2 4)(E. )t A)(E 6)(2. 6)(2. 6)(t2. ). ..

Let us noter; (respectively,) the configuration reached after firing tldirst tran-
sitions (respectivelt3) of 0. It is routine to verify that;, satisfies the accepting
conditiony?, p. = 0 and thatv, satisfies the accepting conditigif, pl, = 0.

7 Removing General Resets

In this section, we study the role of general reseBAARTdPNs. Thanks to Lemma 2
(languagd.,), we know that the class of integ@A-TdPNSs is strictly more expres-
sive than the class of O-reset integRghA-TdPNs for thew-equivalence. We now
prove two results, which show that this is the combinatiothefpresence of read-
arcs together with the integrality property which explaihe expressiveness gap
between O-reset nets and nets with general resets. Indeeltstvypropose a con-
struction which is correct fofdPNs (.e., without read-arcs), and which preserves
integrality of the net. Then we present a second construciitrich is correct even
for nets with read-arcs, but which does not preserve thgnali¢y of the nets.

Theorem 4 For everyTdPN N, we can gectively build a-resetTdPN N’ which
is {x, w, wnz-equivalent toN. Moreover, this construction preserves boundedness
and integrality of the net.

This result is not dficult and consists in shifting intervals of pre-arcs coneéd¢b
a place, depending on the intervals which label post-ameexcted to this place.

Proof.Let N be aTdPN. Observing that the transformation related to Proposition
preserves the absence of read-arcs, we can assume thapkeey of NV satisfies
one of the five patterns of Figure 5, in which there is no re&d-a

Only patterng?, and®s have general resets, we thus only describe a construction
for these two cases. The constructions are depicted ond-iyrand it is straight-
forward to prove their correctness. Indeed, in the casettéipe?,, if, in the initial

net, a token enters plagawith agex € 10, a[ and leaves placp with agey € ]0, &,

then in the second net, it will enter plapaewith age 0, and leave plagewith age

y — x € [0, a[. Conversely, if a token arrives in plage(with age 0) in the second
net, and leaves the place with age [0, a[, then it will arrive in placep (in the first

net) with age%* € ]0, a[ if a < co (with age 1 otherwise) and it will leave plage
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(a) Case of patterfr, (b) Case of patterf®s
Fig. 16. Removing general resetslidPNs.

at age®* € ]0,a[ if a < oo (at age 1+ x otherwise). Dead tokens in the first net
correspond to dead tokens in the second net. The case afng8ites similar. O

The second construction is much more involved, and reqtorexfine the granular-
ity of the net which is built. However, itis correct for the wlk class o0RA-TdPNSs.

Theorem 5 For everyRA-TdPN N, we can build &D-resetRA-TdPN N’ which is
{*, wnz, w}-equivalent taV. The construction preserves boundedness of the net, but
not its integrality.

Proof. First, it it worth noticing that in the case of finite timed wig; and norgeno
infinite timed words, this result is a corollary of previowesults (Theorems 2, 3
and 4). The construction we explain now, though correct lidiirate and infinite
timed words, is thus only necessary to deal vid#mnoinfinite timed words.

Let N be aRA-TdPN which, we assume, only includes the patterns of Proposi-
tion 1. The only places oV which are connected to non O-reset post-arcs are those
which satisfy pattert#, or patternPs (Figures 5(d) and 5(e)).

Case of pattern®,. The construction for this case is depicted on Figure 17. We
denoteN’ the resulting net. We prove now the equivalence of the twe Aeand
N'.

First, leto- be an (infinite) accepting firing sequenceNn We construct a sequence
o’ in N’ accepting the same timed word as follows.

Let us pick a token op with initial aged. Two cases have to be distinguished:

e First case:this token will not be consumed l§. If 6 > § then we permanently
leave itinp;. Otherwise (0< ¢ < §), after lettingS—¢ time units pass, we transfer
it to p, using the silent transitiof. Note that the token iV’ is available inp;
or in p, at least as long as it is available M.
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nll, ' [0’ é[

Fig. 17. O-reset equivalent for pattef

e Second casehis token will be consumed iy when its age ig’. If 0 < ¢ — (<
a), then we transfer it tq, after Iettinng“S time units pass. Otherwise, the token
is immediately consumed and no time elapses: we thus doarfar the token.
Note again that the token iN” is available inp, or in p, at least as long as it is
available inN.

Now the sequence’ is obtained fronw by inserting the occurrences of the transfer
transition and by substituting the appropri&i@) (resp.t”(n})) for t (resp.t”)
depending on the locations of the tokenspah N’ used by the firing of’ (resp.
t”)in N.

Conversely, let”’ be an (infinite) accepting firing sequenceANfi. We construct a
sequence in N accepting the same timed word as follows.

We simply delete the occurrences of the transfer transdiwh we substitute the
transitiont’ (resp.t”) for t'(k;) (resp.t”(k{’)). It remains to define the initial age
of a token produced ip. If this token corresponds to a token M which is not
transfered tqo,, its initial age is. If the token is transfered tp, when its age i$,
then inN, its initial age is§ — . Due to this choice, the token is availableprat
least as long as it is available ;3 or in p, of A, and every firable transition of
will thus be firable ino.

This concludes the case of patté?p

Case of patternPs. This construction is more involved since read actions and
consumptions happen inftirent intervals (J0a] and [a] respectively). In order

to understand the problem raised by this new constraintpened to pattersP,,

we start with a wrong simulation (depicted in Figure 18) dileadapted from the
previous simulation.

Using a proof similar to the one for pattefty, we can show that every firing se-
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r(n - 1-
t'(ny)
Fig. 18. A wrong O-reset simulation for pattefa

guencer in A can be simulated in this net. However the converse is wraomntpdd,
assume for instance that= n" = 1. Then, the firing sequencg Q)(ty, §)(t'(1), §)
(t”, 2) does not correspond to any sequence in the original netethd such a
sequence did exist then the token produced twpuld have an age belonging to
10, a[ at time § in order to firet’. But then at timeg, the transitiort” is not firable.
The problem with this simulation is that at the same pointnret a token may be
used first to simulate a firing @f and then to simulate the firing of.

P2 X [07 él[

p a t,8
{ n-[o] ~ 10,3 | [0]

t/l

[0, %]
ni'[o,g[ (n,_ni)'[o’ %[ o<n <n
-

Fig. 19. A O-reset simulation for patteffs ... with a dynamical weight

We now present a second simulation (depicted in Figure 193hwis correct but
uses a “dynamical” weight on an arc. Let us explain the semanticsxofvhen
firing t” at some time point, x is the maximum value af’ —n’ corresponding to a
previous firing of somé'(n}) at dater. Thus, one avoids the problem faced by the
previous simulation, but there are no dynamical weightheRA-TdPN model.
The next (correct) simulation, depicted on Figure 20, nyadoinsists in simulating
such a dynamical weight. We again denoteNsythe resultingRA-TdPN.

Before proving the correctness of the construction, we gime explanations
aboutN’. First, placereadyis connected to every transition ¢f by a read-arc
whose bag is [0]. Secondly, we denoteKyhe largest constamt appearing on a
bagn' -]0, af of a read-arc and, for every integesuch that < k < K, we define a
placeq(k) and two silent transitionisi(k) andout(k). The lower part of the net plays
three roles. First it schedules the upper part as followsaites explicit the alterna-
tion between time elapsing and “simulating” instantandousy sequences in the
upper part of the net. Then before any “simulating” instaataus firing sequence, it
selects the maximal number of tokens that will be simultaisgochecked by a fir-
ing of t’ in this firing sequencd.¢., selects the numbdrwhich corresponds to the
previous dynamical weight). Finally, after some time hagpséd, it moves tokens
from p; to p in order to avoid these transfers during the “simulatingstamta-
neous firing sequences. More precisely, every behavios’ ahust be a (possibly
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Fig. 20. O-reset equivalent for pattef.
infinite) iteration of the following sequence:

e First, exactly one of the transitions(k) is fired, thus putting instantaneously
(i.e. in zero delay) a token in some plagg) and in the placeeady

e Then the net fires the transitions Af, includingt, t’, t”, (or more precisely their
versions inN’) in zero delay. Then, instantaneously, transitigg is fired and
the token in placeeadyis moved to the placwait.

o Afterwards, some time elapses, enabling the firing of thensiransitiorout(k),
which picks the token out of the plagék) and puts a token in plade.

e The upper part of the net can then transfer in zero delay sokeas$ fromp; to
p2 using the silent transitiofy.

¢ Finally, the silent transitioty, is fired instantaneously and puts back the token
of the lower part in placsel
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We can now prove that the two nets are equivalent.

Let o be an (infinite) accepting firing sequence M We add to this sequence
additional information in order to build a sequencein N’ accepting the same
timed word. We assume that the sequence includes the irdeateenarkings and
that the tokens in the markings are distinguished (meamng$§tance, that if two
tokens have the same age, then one of them is the first, theithe second).

First, we add a (possibly infinité¢jansfer dateto all tokens produced ip. Let us
pick a token ofp with initial aged produced at time. Two cases are possible:

e First case:this token will not be consumed l§. If § > §, then we #ectto it a
transfer date equal t®. Otherwise (0< ¢ < $), its transfer date will be + 5 - 6.

e Second casehis token will be consumed hy (necessarily when its age .
Its transfer date will be + 22.

Let us now consider a maximal instantaneous firing sequence., a (possibly
infinite) maximal subsequence efof time length equal to 0. In this subsequence,
we add to every occurrence of some transitiononnected tq with a read-arc
n’-10, a[, the number of tokens checked by this read-arc which havgetgeached
their transfer date, let say. We &fect to the whole subsequence the (finite) maxi-
mal value among’ — n; for suchn’ (O if this set is empty). Let us denote this value
k: k=maxn —n; | n is attached t&/',t" € p}. We havek < K.

We now buildo” as follows. Let 0= 79 < 71 < 12 < --- be the (finite or infinite)
sequence of instants corresponding to either a firing ofeitian ino- or to a finite
transfer date (or both).

In o, the lower part of the net of Figure 20 “decomposes” time &lagpaccording

to 7o, 71, 72, . ... Let us describe the iterative “behaviour” @f. If r; corresponds

to a firing subsequence of then it selects the valule described above by firing
in(k), otherwise, it selects 0 by firinop(0). Afterwards, the upper part simulates
the maximal subsequence substitutif{g;, k) (resp.t”(k)) for t' (resp.t’) with n,
specified above. Then, after firing,q, it letst;,; — 7; time units elapse and (after
firing out(k)), firest; as many times as specified by the number of tokens with
transfer date;,; and finally firestse;.

We claim that we obtain in this way a firing sequenceNhaccepting the same
timed word. The validity of the firing of a transitioti(n,, k) is obtained as for
pattern®,. Thus the only point to be detailed is the validity of’gk) firing in N’
since there is an additional read-arc. However, this firakgs$ place in a maximal
instantaneous firing subsequence whetekens have been read j with an age
belonging to [05[. Due to our choice of firings of the transfer transitianthese
tokens correspond iV to tokens inp whose age was strictly less tharduring
this subsequence. So they cannot be consumed by this selpeegand thus are
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present when firing”’ (k).

Conversely, letr’ be an (infinite) accepting firing sequence gf. We obtain a
sequencer of N with same timed word as follows. First we remark that eacletim
a transitiont” (k) is fired ino”’, we can consume the oldest tokerpiwith age less
than or equal tg without modifying the firability of the sequence (since token

p. are checked for downwards closed intervals). Thus we assumbehaviour.

We simply delete the occurrences of the transfer transatimhthe cycle transitions
(i.e., those occurring in the lower net) and we substitute thesttiam t’ (resp.t”)

for t'(n7, k) (resp.t”(k)). It remains to define the initial age of a token produced in
p. If this token corresponds to a tokeni which is not transfered tp,, its initial
age is3. If the token is transfered tp, when its age is and not consumed by some
t”(K), then inN, its initial age is§ - 6. At last, if the token is transfered @ when

its age iy and consumed by some transititiik) when its age i¢’, then its initial
age isa— 6 — ¢’ (note that this last choice implies that the correspondoayoence

of transitiont” will also be firable inN).

Finally, we need to verify that these definitions of the aliges of the tokens iV

are compatible with the firing of the transitiotisLet us consider an occurrence in
o of atransitiont’ with a read-arc labelled by bay- 10, a[. To be firablet’ requires
the presence af’ tokens inp with age less thaa. This checking corresponds in
N’ to the firing of a transition’ (n, k) with n” — n} < kin some instantaneous firing
sequence. Then] tokens inp; used by this firing have, by construction, an age
less thana (note that these tokens will be possibly transferegiafter a time
elapsing). Now take the’ — n; youngest tokens i, at the beginning op. We

will prove that they all have an age N strictly less thara. First, note that none
of them can be consumed by a transitidrduring p since a firing oft” requires

at leastk > n" — n; tokens in addition to the one to be consumed, and since we
have assumed above that transitiof&) consume the oldest tokens. Now, let us
consider one of these tokens. Two cases are possible: éitisezonsumed later
(i.e. in another instantaneous firing sequence) by a trangitiéy, and then its age

in NV is necessarily less tham Or this token is never consumed, and then if its age
in N is equal to somé’ < £, we have defined above its ageAhas$ + ¢’, which
satisfies; + ¢’ < a.

This concludes the proof of the second case. O

8 Summary of Our Expressiveness Results

Case of finite and infinite non-Zeno words. Applying the results of the two pre-
vious sections, we get equality of all subclasse®AfTdPNs mentioned on Fig-
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ure 21, for the(x, wn,}-equivalence. Note that this picture is correct for the gaine
classes, for the restriction to integral nets, and alsoterréestriction to bounded
nets.

RA-TdPN =,,.  TdPN =,  O-resefTdPN
N—— N——
Theo. 2,3 Theo. 4

Fig. 21. Relative expressivenessrA-TdPNs for finite and infinite norgenowords

Case of infinite words. The picture in the case of infinite timed words is much
different (see Figure 22). Indeed the hierarchy in the previases collapses, whereas
we get in that case the lattice depicted on Figure 22. Pla&is i@present strict in-
clusion, and dashed arcs indicate that the classes are racabie. Finally note
that this picture holds for both bounded and general nets.

9 Application to Timed Automata

First defined in [3], the model of timed automai&\] associates with a finite au-
tomaton a finite set of non negative real-valued variablésdalocks.

Theo 5
RA TdPN =, O reseiRA-TdPN

integralRA-TdPN lang. '-1
3

"7~ - TdPN =, O-resefTdPN

- N——

O-reset integraRA-TdPN - -~ integral Theo. 4

lang.L;
\ C&u’

integralTdPN =, O-reset integraldPN
N——
Theo. 4

Fig. 22. Relative expressivenessrRA-TdPN for infinite words
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9.1 Definition of Timed Automata

Let X be a finite set of variables, which we calbcks We writeC(X) for the set of

constraintsover X, which consist of conjunctions of atomic formulas of thenfior
X hfor x € X, h € Qs and € {<, <, =,>,>}. The model we will define here
is a slight extension of the classical model of [3] and a sagxbfupdatable timed

automatg5].

Definition 6 (Timed Automaton (TA)) A timed automatonA over X, is a tuple
(L, 4, X, 2, E, A) where L is a finite set olocations ¢, € L is theinitial location,
X is a finite set otlocks E C L X C(X) x X, x (X — I) x L is a finite set ofedges
A c 2 is the accepting condition. An edge=e(¢,v,a,u,{’) € E represents a
transition from locatiory to location¢’ labelled by a with constraing and update
partially defined functiomn called areset

A valuation vis a mapping irRX. If 1 : X < I is a partially defined function, if

is a valuationu(v) is the set of valuationg such that/(x) € u(X) if u is defined in
X, andv'(x) = v(x) otherwise. Constraints @f(X) are interpreted over valuations,
and the relatiorv E v is defined inductively by E (x > h) whenv(x) > h, and

V E (y1 A y2) whenevew E y; andv E ;.

The semantics of timed automata is defined as a timed tramsiyistem.

Definition 7 (Semantics of alTA) The semantics of 3A A = (L, (o, X, 2., E) is a
TTS Sy = (Q, go, —) Where Q= L x (R<)*, 0o = (¢, 0) and — is defined by:

¢ either a delay mov€, v) 5 (¢,v+d),
e Or a discrete mové/, v) 5 (¢',V) iff there exists some=e (¢,y,a,u, ') € E s.t.
VEyandV e u(v).

We recover classical timed automata by restricting thetsasepartial functiong:
assigning only the interval [0], but we will call them heregeset timed automata
If all constants appearing in guards and updates are irgegersay that the timed
automaton isntegral.

As for RA-TdPNs, we define the various timed languages accepted Dy &A:

L (A), LY(A), and LY=(A), where the acceptance condition is given by the set
of finite locations| Jg.a F for finite timed words, and by the generalized Bichi
conditionA for infinite timed words® . We extend the-(resp.w-, wn,-)equivalences

to TA and to comparisons between subclasseB/TdPNs and subclasses OA.

6 Here we could use standard Biichi conditions since the ckssbnstruction for finite
state automata also works foh.
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Two examples offA are given on Figure 23. Note that tha A; of Figure 23(a)
recognizes the timed language introduced in section 4. Similarly, tHEA ‘A, of

Figure 23(b), which uses a non-deterministic reset of cbookthe interval ]9 1],

recognizes the timed languafbgalso introduced there.

x<1la x<1b
g i Xx=0, a /@\
x :€]0, 1]
(a) ATA A1 recognizinglLy (b) A TA A, recognizinglL,

Fig. 23. Two examples of timed automata

9.2 TA and BoundedRA-TdPNSs.

Our aim was to compare the relative expressivenes&eTdPNs andTA. In this
subsection, we prove the equivalence between bouRdetdPNs andTA. In this
context, the following result has been obtained iy Siba:

Theorem 6 ([17]) SafeRA-TdPNs andTA are {*, wn,, w}-equivalent’

We strengthen the above result and prove that this also HotdsoundedRA-
TdPNs.

Theorem 7 BoundedRA-TdPNs andTA are {x, wn,, w}-equivalent. Moreover, the
translation preserves integrality arireset.

To improve readability, we however give here a self-corgdiproof of the com-
plete result.

Proof. From bounded RA-TdPNsto TA. Let N be a bounde@®A-TdPN, and as-
sume that the net is bounded kyWe will build a TA A equivalent toN. The
construction is made in two steps. We first construct an edgri (structurally)
safeRA-TdPN N’, and we then build an equivalent timed automa#bn

Copies of placesEvery placep of N is replaced by Rplaces{p?, p' | 1 < i < k}in
N’. The two placep? and p! will be mutually exclusive, and the (at mogtjokens
in placep in A will be spread in the places''s. The intuition of the construction
is to use the placeg' to simulate one of the at moktokens in placep. To ensure
that these places are safe, we use the complementary giaceée make these

’ The result proved in [17] is even stronger because the elguiva considered is not a
language equivalence, but isomorphism of timed transgimtems.
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two places p° and p!) mutually exclusive by imposing, when producing (resp.
consuming) a token ip', to consume (resp. produce) a token in plpte

Copies of transitions. Let us consider a transitionof N. Transitiont will be
replaced by copiere(t)(p) (resp.Read(t)(p), Post(t)(p)) is a bag inBag(Z),
whosesize is denoted bys(p) (resp.s(p), S’(p)). We order the tokens in these
bags and assume thRte(t)(p) = 1 + ... + lgp), Read(t)(p) = 1] +... + 150 and
Post(t)(p) = 17 +... + 1S 0 The copies of are parameterized by three functions
indicating for every place in which copies of the place the tokens should be
consumed (resp. read, produced).

Pre-arcs.For every placep such thats(p) > 0. Consider an injective function
{p defined from{1,..., s(p)} into Ny = {1,...,k}. This function defines in which
places the pre-arc betweeandp will consume thes(p) tokens.

Read-arcsFor every place such thats'(p) > 0. Consider an injective function
¢, defined from{1, ..., s(p)} into Ny = {1,...,k}. This function defines in which
places the read-arc betweeandp will read thes'(p) tokens.

Post-arcs.For every placep such thats”(p) > 0. Consider an injective function
{y defined from{1,...,s’(p)} into Ny = {1,...,k}. This function defines in which
places the post-arc betwetand p will produce thes’(p) tokens.

We now define the functiod (resp.l’, ¢”) as the function mapping each place
p € P to the functiong,, (resp.¢y, £7).

Suppose moreover that these three functions satisfy tleniolg conditions:

v {p and{j, have disjoint images,
Per £, andZy have disjoint images.

These conditions simply require that for every plgcéhe simulation ot does not
try to consume and read a token in the same copy of the pléesp. does not try
to read and produce a token in the same copy of the gdace
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For every 3-tuple of such functiong,¢’, ”’) verifying these conditions, we add to
the new net the transition = t, .~ defined, for every placp € P, by

Pre(t’)(p}p(i)) =1 i

el ... P {Post(t’)(p?p(i)) = [0]

Viell,...,s(p) Read(t’)(pé}b(j)) =1

Pre(t’)(pgga)) =Ry

Yl e {1, cey s”(p)}’ {POSt(t')(pgg(D) — III/

Moreover, the label of; . .~ is the one of.

Given a place, the arcs connecting transitiy. .~ to copies ofp are represented
on Figure 24.

jefl,....,s(p)

Fig. 24. Simulating a boundeRlA-TdPN using a safé&RA-TdPN

Initial marking. Given the original initial markingVl, € Bag(P), the new initial
markingM is defined by
Mo(p)

Mg=> > pt.

peP =1

Acceptance conditionFinally, the acceptance condition is transformed in a @tur
way: every occurrence of a plagein the acceptance condition is replaced by the
term Y, pt.

It is easy to verify that this transformation provides astuvally 1-safeRA-TdPN

N’ which is strongly bisimilar toV. The fact thatN’ is 1-safe is obvious by con-
struction (recall that placeg® and p! are mutually exclusive). The existence of a
bisimulation relation relies on the fact that a configunatigth n tokens in placep

is encoded by a configuration wherelacesp! contains 1 token (whose ages are
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the ones of tokens qf) whereas for thé — n otheri’s, there is 1 token in placg?
(with arbitrary ages). It is then easy to prove th& firable from a configuration

v of NV if and only if there exists a copy dfwhich is firable from a correspond-
ing configuration inN’. Since the initial markings and the acceptance conditions
are preserved by the bisimulation, the strong bisimulaitioplies the{x, w, wnz}-
equivalence.

We now present the construction which transforms a B dPN into aTA. Let

N = (P,my, T, Pre, Post, Read, 1, Acc) be a safeRA-TdPN. We define aTlA A =

(L, 4o, X, 2, E, F, A) equivalent toV. By notation misuse, given a transitioof N,

we simply write in this constructioRre(t) for the set of placep € P such that
size(Pre(t)(p)) > 0 (and similarly forPost andRead). Note that sinceV is safe,
we can assume that for every transittoa T, we havePre(t) N Read(t) = 0 and
Read(t) N Post(t) = 0 (otherwise the transition will never be firable).

We defineA as follows:

L =27,
{o = dom(my) (there is exactly one token per initially marked place),
X = P (x, denotes the clock corresponding to the plage

there is a transitiofi 225 ¢ whenever there exists a transitiom N such that:
- Pre(t) U Read(t) C ¢,

- Post(t) N (¢ \ Pre(t)) = 0,

- ¢ = (€ \ Pre(t)) U Post(t),

- v is the conjunction of alk, € |, such that p, I ;) € Pre(t) U Read(t),

- ais the label of transitionin N,

- presets clock, in intervall, if (p, ;) € Post(t).

if Acc = {accy,...,accy}, Ais defined as the set of formuldd,, ..., A where
forevery 1<i <k A = {erP | (/\q: 1/\/\q:0):> acci}.

el qel

Note that since a place contains at most one token, one domkaugh to encode
the behaviour of a place. It is then routine to verify thas ttonstruction is correct.

From TA to bounded RA-TdPNs. Let A = (L, o, X, X, E, F) be aTA. We construct
theRA-TdPN N = (P, my, T, Pre, Post, Read, A, Acc) as follows.

e P=LUX,
e My ={o+ Dyex %
e T=E,

foralle=¢ 22 ¢ in E,

- if xis such thaj(x) is defined Post(e)(x) = u(X), Pre(e)(x) = gix, Wheregx is
the interval ofx imposed by constrairg,

- if xis such thaj(x) is not definedRead(e)(x) = g,
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- Pre(€)(¢) = Ry, Post(e)(¢') = [O],
- A(e) = a,
o if A={A4,..., A, thenAccisthe setacc,, ..., accc} where forevery K i <Kk,
acc; = /\ =1
CeA

The netN that we have constructed is strongly bisimilar to the oagjtrmed au-
tomaton. Indeed, we consider the relat®ulefined by

size(v(£)) > 0
(¢,val) Ry iff {size(v(¢'))=0 V& #¢
v(X) =1-val(x) VxeX
where (,val) € L x R, is a configuration ofA, andv € Bag(R.o)" is a configu-

ration of N. It is straightforward to verify thaR is a bisimulation relation which
respects accepting configurations.

Finally, just notice that there is always exactly one tokeomne of the placeé for
¢ € L. This justifies the definition occ. Moreover, it is easy to verify that the net
we have constructed is safe, thus bounded. ]

Example 5 We illustrate the transformation of @ into a boundedrA-TdPN on
the automaton depicted on Figure 25.

X [1] y

b X<2Ay>3a b

O 2 3
x:=1 O ~ ) a )

4 1 52

Fig. 25. An example of the construction frofA to safeRA-TdPNs.

9.3 Expressiveness Results f@r

Combining the previous result with the results of the prasgisection on Petri nets,
we get interesting side results on timed automata, and trcplar quite surprising
results for languages of infinite timed words.

Corollary 1 For the{x*, wpz}-equivalence,

(1) boundedrdPNs andTA are equally expressive;
(2) (integral) TA andO-reset (integral)TA are equally expressive.

Corollary 2 For thew-equivalence,
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(3) TdPNs andTA are incomparable?

(4) TA are strictly more expressive than boundedPNs;

(5) integral TA are strictly more expressive than integfalesetTA,;
(6) TA andO-resetTA are equally expressive.

As a folklore theorem, it was thought thga and boundeddPNs are equally ex-
pressive. We have proved that this is indeed the case fax &ndl infinite noréeno
timed words (iten(1)), but that it is wrong when considering al&enobehaviours
(item (4)). Indeed, the result is even stronger: even tholdfNs can be somehow
seen as timed systems with infinitely many clocks, we haveqardhatTA and
TdPNSs are in general incomparable (itgB)).

The three other results complete the picture of known resilout general resets in
TA[5]. Item (2) was already partially proved in the above-mentioned paetwe
provide here a new proof of this result. Iteif®g and(6) are quite surprising, since
they show that refining the granularity of the guards is neagsfor removing
general resets iMA (and for preserving the languages of infinite timed words).
It is one of the first such results in the framework of timedteys (up to our
knowledge). Finally, the construction provided in the grobTheorem 5 applied
to TA provides an extension to infinite words of the constructi@spnted in [5] for
removing general resets A (which is indeed only correct for finite and infinite
nonZenotimed words). We illustrate this construction on Figure 36diving a
O-resefTA w-equivalent to the timed automaton of Figure 23(b).

X< 3,b Xx<3ib

e O
T x:=0 O

Fig. 26. An example of the construction for removing genegaéts inTA.

10 Conclusion

In this paper , we have thoroughly studied the relative esgiveness of dPNs and
TA, and we have proved in particular that they are incomparabigeneral. This
makes the model oRA-TdPNs (introduced earlier in [17]) very interesting, as it
unifiesTA and TdPNs while it enjoys the interesting property that coverapilg
still decidable. Surprisingly, this rather general modsbanjoys nice expressive-
ness properties.

8 Recall that (untimed) Petri nets may recognize non regalaguages, unlike timed au-
tomata whose untimed languages are always regular.
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We have studied the expressive power of read-ardBAATdPNs, and we have
proved that, when restricting to finite or infinite n@enobehaviours, read-arcs
do not add expressiveness. On the other hand, we sho¢natbehaviours dis-
criminate between several subclasse®afTdPNs. For instancelRA-TdPNs are
strictly more expressive thardPNs. This implies in particular that, in this context,
the classical assumption which consists in forgetdiegobehaviours is restrictive.
Since we also prove that boundB@&-TdPNs andTA are equally expressive, we
get the surprising result thaA are strictly more expressive than boundefiPNs,
which is quite counter-intuitive.

Classically, TdPNs use quite general resets, wher@Anly use resets to 0. We
have thus studied the expressive power of these genertd resmpared with resets
to 0. We have shown that they don’t add any expressiveneks @bibve-mentioned
models, but that the granularity has to be refined for rengpgaemneral resets iRA-
TdPNs when consideringenobehaviours. Up to our knowledge, this is one of the
first expressiveness results (at least in the domain of tegstéms), which requires
to refine the granularity of the model. As side results, we @eie the work in [5],
and get that it is necessary to refine the granularity of guardA for removing
general resets, when considering languages of infinitalpgsdenotimed words.

Our main further work is to develop unfolding techniques R¥-TdPNs, taking
advantage of the locality of the firing rules. A first step imttlalirection is [7],
where we have extended the seminal work of McMillan [13] toaeks of timed
automata with invariants (using some ideas presented srptper for translating
timed autamata t®A-TdPNs). Note that read-arcs increase concurrency between
events, but they require some attention when building ainigl [20,21]. Another
possible research direction is to study other kinds of dorspstance arcs which

do not reset ages of tokens when moving the tokens from oxe peanother one.
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