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Abstract. In this work, we study decision problems related to timecdasta
with silent transitions TA.) which strictly extend the expressiveness of timed
automata TA). First, we answer negatively a central question raisedchbyirt-
troduction of silent transitions: can we decide whetherl@mguage recognized
by aTA. can be recognized by sonfA? Then we establish in the framework
of TA. some old open conjectures that O. Finkel has recently sdbwe@A. Its
proofs follow a generic scheme which relies on the fact timdy a finite num-
ber of configurations can be reached byAawhile reading a timed word. This
property does not hold fofA., the proofs in the framework A, thus require
more elaborated arguments. We establish undecidabiligonfplementability,
minimization of the number of clocks, and closure under f&ufve also show
these results in the framework of infinite timed languages.

1 Introduction

The model of timed automata has been proposed by Alur andriitie early 90’s as
a model for real-time systems [AD90,AD94]. A timed autormeitoa finite automaton
which can manipulate real-valued variables called clogksch evolve synchronously
with the time, can be tested and reset to zero. One of the fmedtal properties of this
model is that checking reachability properties is decidatiiough the set of configu-
rations of a timed automaton is in general infinite. Sincenftileis model has attracted
much attention from the researchers, as it is very appraiga verification purposes.

A constant interest goes to the theoretical understanditiggomodel, and to the
theoretical foundations of timed languages. Indeed, thesatal (untimed) formal lan-
guages enjoy very nice and robust properties, like the atprice of first-order logic
with aperiodic regular languages, and this forms a wondlé&dmework that nobody
can contest.

The case of timed languages is much less satisfactory, gslthaot enjoy those
nice logical and algebraic characterizations, thoughdghigect has inspired several ap-
proaches [Wil94,Dim99,D’'S00,Dim01,ACM02,BP02,BPTOR®,CDPO06]. Indeeithe
right class of timed language has probably not yet been figaed, and much work
is still needed to really understand and formalize the thioal foundations of timed
languages [Asa04].

* Partly supported by a Marie Curie Fellowship.



A major drawback of timed automata (and their recognizecdrranguages) is
that they are not closed under complementation and are netndi@izable. It com-
plexifies the definition of equivalent logical languages las tlosure by negation is
somewhat the quintessence of logics. Hence, either we wefiget about negation
in the logics [Wil94,Bou02], or we restrict to subclassedamfguages closed by com-
plementation [AFH94,D’S00,CDPO06], or we try to better urstand the role of com-
plementation. The paper [Tri03] follows this idea, and aglisstions like “Is a timed
automaton complementable into another timed automatonan a timed automa-
ton be determinized?”. The proof of Tripakis therein yididttthose two problems are
undecidable, as soon as we require that a witnessing awarbatconstructed. He also
provides such proofs requiring the construction of witesder various other problems
like minimizing the number of clocks required to recognizg\een timed languagetc
In [Fin06], Finkel improved quite a lot the above-mentiomedofs by proving that all
these problems are undecidable, even if we do not requileotigtruction of witnessing
automata.

In the untimed framework, using silent transitions in firdiétomata does not in-
crease expressiveness of the model. For timed systemsaskedsmuch different, as
it is well-known that silent transitionadd extra power to timed automata [BDGP98].
However, for modelling purposes, they are very useful ag tlha for instance be used
to model discrete-time behaviours embedded in continupusanment. Furthermore
the standard symbolic analysis techniques (like the coatstn of the region automa-
ton, or the construction of the zone-based simulation grapply to timed automata
with silent transitions with no extra cost.

In this paper, we carry on both works [BDGP98,Fin06]. Fingt,answer negatively
a central question raised by the introduction of silentgittans: can we decide whether
the language of a timed automaton with silent transitiomslmarecognized by some
timed automaton? Then we extend undecidability result$-mi(6] to the framework
of timed languages accepted by timed automata with silansitions. Though we fol-
low the same lines, the extension is far from trivial as rssof [Fin06] heavily relied
on an important property of timed automatéhout silent transitions: given a timed
word there are finitely many timed executions reading it.sTikiof course no more
the case when adding silent transitions: the set of suchdtienecutions may even be
uncountable.

More precisely, we prove that it is not possible to:

— decide whether asrtimed regular language is timed regulae( if it is possible to
remove silent transitions in timed automata), see Section 3

— decide whether the complement ofdimed regular language istimed regular,
see Section 4;

— compute the minimal number of clocks needed to recognize-timed regular
language, see Section 5;

— decide whether the shuffle of twe-Jtimed regular languages istimed regular,
see Section 6.

Finally, we extend all previous results, proved for finitaéid words, to infinite timed
words and to timed automata with a Blichi acceptance camditee Section 7.



2 Preliminaries

2.1 Timed words, timed languages

If S is a set,S* denotes the set of all finite words ov€rwhereasS“ denotes the set
of infinite words overS. We use classical notations lik&>, or Q> for the set of
nonnegative real numbers (resp. nonnegative rational Btshb

Let X' be a fixed finite alphabet. A finite (resp. infiniténed wordw over X' is
an elementw = (ag,m0)(a1,71) ... (an, ) ... IN (X x Rxq)* (resp.(X x R>¢)*)
such that for every > 0,a; € X, 7; € R>o andr;11 > 7;. The valuer;, gives the
absolute date at which actian, occurs. Giveni € R, we define the timed word
w+d = (ap,70 +d)(a1,71 +d)...(an, 7 + d).... We denote byT W*(X) (resp.
TW* (X)) the set of finite (resp. infinite) timed words ovBr A timed language over
finite (resp. infinite) wordss a subset of W*(X) (resp.7 W= (X))). Let £ be a timed
language, thei denotes its complement. Letbe a timed word oveE anda € X,
then|w|, is the number of occurrences of lettem w. Finally, let us denot&ntimed
the operator which maps a timed word to the associated udtinued obtained by
erasing the dates of actions.

2.2 Timed automata

Timed automata have been introduced in the 90’s by Alur atichBia model for rep-

resenting real-time systems [AD90,AD94]. A timed automaita classical untimed
finite automaton to which are associated a finite set of noatihexyeal-valued variables
calledclocks

Syntax. Let X be a finite set of clocks. We assume the time domain be thR set
of nonnegative real numbers.Valuationv over X is a mapping : X — R>¢. Let
U C X, the valuatiorw[U « 0] resets each clock df to zero,i.e,, maps each clock
z € Uto0, and each other clock ¢ U to v(z). Letd € R, the valuatiorv +d maps
every clockr € X tov(x) + d.

We writeC(X) for the set of(clock) constraint®ver X consisting of conjunctions
of atomic formulas of the form: > h for 2 € X, h € Q5 is a nonnegative rational
number, and< € {<, <,=,>,>}. Such constraints are interpreted over valuations,
and we writev |= « if valuation v satisfies the clock constraint It is defined in a
natural way by |= (z > h) whenevew(z) 0 h, andv = (1 Ay2) whenevew = v
andv = .

Definition 1 (Timed automaton).Let Y’ be a finite alphabet. Aimed automatoovery’
isatupled = (L, ¢y, X, E, F') where:

— L is afinite set of locations,

— ¢y € Listhe initial location,

— X is afinite set of clocks,

- ECLxC(X)x X x 2% x Lis afinite set of edges, and
— Fis the set of final locations.



An edgee = (¢,7v,a,U, ¢') € E represents a transition from locatighto location?’
with labela, guard~y and reset.

Let X be afinite alphabet, and lebe a fresh symbol not i&v. We write TA for the
class of timed automata ové&r, andTA. for the set of timed automata over the alphabet
Y. = ¥ U {e}. The new event is asilent actionand it isunobservableA transition
labelled by a silent action will be calledsdlent transition

Let A be aTA or aTA.. Thegranularity of A is the smallest positive integer
such that each elementary constraint< h in A is such thatl - h € N. We define
Ng = {k/d | k € N}. We extend the notion ahodulow.r.t. Q. Letr € Qo, then
we definer mod r = 2 — nr withn = max{i € Z | ir < x} andz = y mod r iff
(x —y mod r) =0.

If AisaTA, we say it isdeterministiovhenever given two transitiong, v1, a, U1, £;)
and(¢, va, a, Us, £4), it holds thaty; A 2 is not satisfiable.

Semantics.We give the semantics of a timed automaton as a timed trans{istem
and then the corresponding accepted timed languaged ket L, ¢y, X, E, F, R) be a
TA over X' (resp.TA.). It defines the timed transition syste$ty = (Q, g0, —) where:

- @ = L x (R>()¥ is the set of states also callednfigurations
— qo = (o, 0) is the initial staté,
— and the transition relation> is composed of the following moves:
e delay moves(/,v) — 4, (E v+ d) for everyd € R>q;
o discrete moves, v) % (¢, ') iff there exists some transition
e=(¢~,a,U") € Esuchthav = v, andv’ = v[U « 0].

A timed executionf A is a (finite or infinite) pathy : (4o, vo) do, (Lo, vo + dop) N

al

(l1,v1) S, (b1,v1 +dy) — ... In S4 starting in the initial statey (i.e, vo =
0) and alternating between delay and discrete moves. Givelm guimed execution,
T; = Y p<; dx denotes the absolute date at which transition labelled; mccurs. The
durationof g is the (eventually infinite) sum of all delays alopg.e. sup, (7;).

If 7 is a value smaller than or equal to the duration of a finite etien o, we write
(v . -») for the first configuration along in which the automaton is at date and
(¢4, v} ) for the last configuration at date More formally, definingi~ = max{ |
7; < 7} andi™ = max{i | 7; < 7} with the conventiomax(()) = 0, then:

(yrs ;T) (l;—,v;— +7—71;-), and
(83—77 0,7 ) = ([ﬁ—,'[}ﬁ— + 7 — ’7'1'-%—) .

For instance, if a single transition occurs at time((, ., v, ) is the configuration
before the transition is fired, Where(dgﬂ ..-) is the configuration after the transition
is fired. A major observation is that when> 0 thenVz € X, v, (z) > 0.

Let ¢ be a timed execution in @A A. The label ofp is the timed wordw =
(a0, 70)(a1,7) ... (with 7; defined as previously). Whemis a timed execution in a
TA., then the label is obtained by deleting frasrthe occurrences of pairs such that the

4 The valuatiord maps each clock to.



first component ig. If in addition g is finite and ends in a final location, we say that
the above timed word is accepted Hy We noteL(.A) the set of finite timed words ac-
cepted byA. Note that in a deterministitA, every word has at most a single underlying
timed execution.

Let £ C 7W*(X) be a timed language. It is satined regularwhenever it is
accepted by som@A, ande-timed regularwhenever it is accepted by sorA.. Note
that if £ is a(ne-)timed regular language, théimtimed £) is also regular [AD94].

In this paper, we assume the reader is familiar with the regigdcomaton construc-
tion and its properties, proposed by Alur and Dill in [AD9@A4].

2.3 Classical results orfTA and TA.

We summarize all expressiveness and (un)decidabilitytease will use in our proofs.
Most of them are standard results, and we give classicalartes for each of them.

Theorem 1 (Closure and expressiveness results).

1. The family of timed regular languages is not closed underglementation [AD94].

2. The family of timed regular languages accepted by detestic TA is strictly in-
cluded in the family of timed regular languages [AD94].

3. The family of timed regular languages is strictly incldde the family ofs-timed
regular languages) [BDGP98].

Theorem 2 (Universality problem).

1. The universality problem fofA is undecidable even when restricting T8 with
two clocks [AD94].

2. The universality problem fofA with a single clock is decidable [OW04].

3. The universality problem fofA. with a single clock is undecidable [LWO7].

2.4 Accepting timed words inTA and TA.

In this subsection, we give two examplesT@. which explain major difficulties that
may arise from silent transitions.

Example 1.TheTA, of Figure 1 recognizes the timed language
Reven= {(a,m)(a,7;)...(a,7,) | m =0 mod 2 foreveryl <i<mn}.
This timed language is not recognized by 8iy[BDGP98].

Example 2.The TA. of Figure 2 recognizes the timed language reduced to a simgle
{(a,1)}. However any patléy, 0) % (¢o,d) = (£1,d) =% (£1,1) 2 (£, 1), with

d € [0,1], is an accepting path. Along one of these paths, dengtednfiguration
(ly1>vp1) = (€1,1) and(¢) vl ) = (£2,0).

0,17 %o,1



= 0;a;

r=2e;2:=0

Fig. 1. A TA: not equivalent to anJA

r=1l;a;x:=
()= O

Fig. 2. (a, 1) is accepted by infinitely (and even uncountably) many paths

3 Removing Silent Transitions

In [BDGP98] the impact of silent transitions on the expresgiower of timed automata
has been studied, and syntactical restrictions have b&en,ghat are sufficient to re-
move silent transitions,e., syntactical restrictions for asttimed regular language to
be timed regular. However, these syntactical restricteoasot necessary, and we prove
in this section that the problem to decide whethetdimed regular language is timed
regular is indeed undecidable.

Theorem 3 (Removing silent transitions) Given aTA. A, it is undecidable to deter-
mine whether there existsTé B such thatL(A) = L(B).

To prove this result, and other theorems in the sequel, weceethe problem to the
universality problem for timed automata. We first describ@astruction over timed
languages introduced by Finkel [Fin06].

In the sequelX’ denotes an alphabet, and fresh letter not in¥. We setX, =
Y U{e}.

Definition 2. Let£ andR be two timed languages ovér. Then Compos&, R) is a
timed language oveE', defined as the union of the following three languages:

Vi ={weTW (X)) | eL, I eTW (Y),Irstw=uw(c,1)w"}
Vo = {w e TW(51) | ful, # 1}
Vs={weTW (Xy)|Iw € TW*(X), Iw” e R,Ir s.tw =w'(¢e,7)(w”" +7)}

Now we state two fundamental properties of this constractiat will be exten-
sively used in the proofs.

Lemma 1. Let £ andR be two timed languages over alphabiet



— If £ andR are accepted bYA. with at most: clocks, then Compog£, R) is also
accepted by &A. with at mostn clocks.

— Compos¢T W*(X),R) = TW*(X,), itis thus accepted by a determinisii&
with no clock.

Proof. The first point is obtained by verifying that it is possiblestrare the clocks of
the two automata. The second pointis by definition. a

We can now give the proof of Theorem 3.

Proof. Assumea € X, and consider the timed langua@gyenintroduced in Subsec-
tion 2.4. LetL C TW*(X) be a timed regular language. As recalled abdgen
is e-timed regular, but not timed regular. Let us consider now timed language
YV = ComposeL, Rever)- Applying Lemma 1, we have that is e-timed regular. We
will show now thatV is timed regular if and only if is universal on¥. We distinguish
two cases:

(1) First case.Assumel = 7W*(X). Applying Lemma 1V = TW*(X,), which
is obviously timed regular.

(2) Second caseAssumel # TW*(X). Towards a contradiction, assume thais
recognized by 8A A. Lety = (ao, 7o) ... (an, 7) € TW*(X)\ L. Then we have
that, for everyw € TW*(X), y.(¢, 7,).(w + 7,) € Vifand only if w € Reyen
Mimicking the proof of [BDGP98] which shows th&eyenis not timed regular, we
will get a contradiction. Lefs be the maximal constant of and consider the timed
wordw’ = y.(¢c, 7,).(a, 7 + 7,) Wherer € N is an even integer satisfying> K.
Then, the timed word’ is accepted by, and there exists a path.ihalong which
w’ is accepted. In particular, the last transition of this pdémoted ¢, v, a, U, ¢'),
is such that’ € F is afinal location. Let denote Ky, v) the configuration reached
aftery.(c, 7,) is recognized. Then’ = v + 7 is the valuation when firing the last
transition, and verifies’ |= ~. Because of the choice &f it holds for any clock
x of Athatv'(x) = v(z) + 7 > K. In particular, for any odd integer greater
thanr, the timed wordy.(c, 7,,).(a, 7, + 7’) is also accepted by, which is a
contradiction. Hencé; cannot be recognized byTA.

This concludes the proof is universal if and only ifV is timed regular. a

4 Complementability and Determinizability

In [Fin06, Theorem 1], Finkel proved that deciding whetlmer¢omplement of a regular
timed language is regular is undecidable, and so is the @mobf deciding whether a
regular timed language can be recognized by a determiiistid/e extend those results
to the clasgA. of timed automata with silent transitions.

Theorem 4 (Determinization).ltis undecidable to determine whether, for a giviédn
A, there exists a deterministiA 5 such thatZ(B) = L(A).

SinceTA are less expressive thdA., the above result is a straightforward conse-
quence of Finkel's result.



Theorem 5 (Complementation).

1. Itis undecidable to determine whether, for a giién A, there exists dA. B such

that L(B) = L(A).
2. Furthermore this result holds faiA. over alphabets with two letters.

The proof of this theorem is neither a corollary of that ofkéhfor the classTA,
nor an obvious twist of his proof. Indeed, his proof heavdiigs on the fact that given
a timed word and @A, there ardinitelymany timed executions wich yield such a timed
word. This is no more the case for the cld®s, as mentioned in Subsection 2.4. We
propose two undecidability proofs for that result, the despone which holds for timed
automata over alphabets with three letters or more, andttiex one, more involved,
which holds for timed automata over alphabets with two tstte

The two proofs proceed as follows:

— Fix a regular timed languagg

— Fix a regular timed language such thatR is not regular;

— Build from £ andR, a new regular timed languageomposéel, R) (which has
been defined in the previous section) such that universal iff the complement of
ComposéL, R) is regular.

4.1 Case ofTA. over alphabets with three letters or more

For this proof, we instantiate the langua@eby a language proposed in [AM04] for
gracefully proving that the class of timed regular langsdgeot closed under comple-
ment. It turns out that their result, proved in the framewafrkmed regular languages,
also holds in the framework af-timed regular languages, as stated in the following
proposition.

Proposition 1. AssumeX’ = {a, b}, and letR, ; be the timed language
Ra,b = {w = (ao,To) . (an,’Tn) € TW*(E) | di, a; = a, ande >, Ti—T; 7& ].}
This timed language is timed regular, but its complemenbts#timed regular.

The proof of this proposition is similar to that in [AMO04], bior sake of completeness,
we write it there as well.

Proof. The timed languag®, ; is accepted by the timed automaton depicted on Fig-
ure 3, henceitis timed regular. We now show that its compigmsenots-timed regular,
i.e, that it cannot be recognized by ai¥.. Assume that there existslA. B such that
L(B) = Rap. The complement oR,, ;, is the set of timed words in which every action
a is followed one time unit later by an action.

Let 77 be the set of timed words over Y’ such that:

(1) Untimedw) belongs to the untimed regular languagé*,
(4) all a’s occur within[0, 1], and
(7i1) no twoa’s occur at the same date.



a,b x#1; a,b

Fig. 3. The timed automaton acceptif,

It is straightforward to check thak is timed regular. Now observe that a word of the
form a™b™ belongs toUntimed7Z; N R, ) if and only if m > n holds. Hence a con-
tradiction: both intersection and tluntimedoperator preserve regularity of languages,
and{a"™b™ | m > n} is notregular. O

The following lemma will be useful on the proof of Theorem 5This is the coun-
terpart of [AD94, Theorem 3.17] for complements of timeduleg languages.

Lemma 2. Let .4 be aTA over alphabet” andw ¢ L(A) be a finite timed word,
then there is another timed word’ ¢ L(.A) whose dates are rational. Furthermore,
Untimedw) = Untimedw’).

Proof. Letd be the granularity ofd. Letw = (a1, 71) - . - (an, 7). FOr convenience of
notations, we defing) = 0. We buildw’ = (a1, 7). .. (an, 7)) by induction. Moreover
the timed word will satisfy this property:

VO<i<}j Sn,VkEN,Tj—Tiwk‘/d@TJ’-—T{NkJ/dWith ~e{<, <} (D)

The inductive property is the following one: thereis awefd = (a1, ") . .. (an, 77")
fulfilling the property (1) withvi < m, 7 € Q. The base case is proved by taking
wo = w.

Assume that there is a word™ = (a1, 7]") ... (an, 77) fulfilling property (1). If
. . € Qthenw™*! = w™. Otherwise we split the set of indexés= {0,1,...,n}
intwo subsetd— = {i € I | 7" =77, mod 1/d} andlz =1\ I=.As7]" € Q
forall i < m (by induction hypothesis) and’, ; ¢ Q, we have thaf0,...,m} C I-.
Letd = min(min(7}™ — 77, mod 1/d, 7,7, — 7" mod 1/d) | i € I+). Observe
thatd > 0. Pick somey’ such that < ¢’ < § andr",, + &' € Q. We buildw™*! as
follows. Vi € Iz, 7/""! = 7" andVi € I=,7/"*! = 7/ + §'. It is routine to check
thatw™*! fulfills the inductive property.

We claim thatw’ ¢ L(A). By contradiction, assume that' € L(A) and let

(Lo, v0) —= (Lo,vo + 7}) =5 (lr,01) . (bn1, 01 + 7, — 71 1) < (Lo, v)

be a finite accepting path far’. Examine the pattity, vo) —= (fo,v0 + 71) —=
(l1,v1) .. (bp—1,Vn—1 + Tn — Tn—1) L, (¢, vy). The value of a clock when firing

an edge; in the former path is; — 7; for some;j < i (corresponding to the last reset of

x before firinge;) and this value in the latter path4s— ;. Due to property (1) on time
differences relative ta) andw’, the previous observation shows that the guard of every
e; in the latter path is satisfied and thuss L(.A) which yields a contradiction. O

We can now prove Theorem 5.1.



Proof. Assume{a, b} C X. We consider the timed langua@, ; introduced in Propo-
sition 1. LetL C 7W™* (X)) be a timed regular language, and define the timed language
V overX, asV = ComposeL, R, ;). We claim that = TW*(X) iff Vis recognized

by aTA.. To prove this claim, we distinguish two cases:

(1) First case.AssumeL = 7W™*(X). Applying Lemma 1V = TW*(X). Thus,
VY = (, which is obviously £-)timed regular.

(2) Second caseAssumel # TW*(X). Towards a contradiction, assume that
is recognized by &A. A’ with granularityd. Let w = (ag,70) .- (an,Tn) €
TW*(X)\ L. By Lemma 2, we can assume that all dates are rational. Weedefin
the timed regular languagg as follows:

Untimedz) € a*b*,

T = (a,T{))...(a,r,él)(b,n'{)...(b,T,’C’z),
V0 <4< ki, 7] € [Tn, Tn + 1],

V0 <i#j <k, TZ’#T]'

w =wle,m)r € Ta <

Similarly to the proof of Proposition 1, observe thantimed7Z; N V) = {w" |
Im > n,w’ = Untimedw)ca™b™}. This contradicts our assumption thatbe
e-timed regular since the right member of the previous egualinot regular.

This concludes the proof: is universal iffV is e-timed regular. O

4.2 Case ofTA. over alphabets with two letters
We first state the following lemma:

Lemma 3. Let.4 be aTA with n clocks and granularityl. Let(¢, v) be a configuration
of A. Then[0,1/d] can be partitioned ag, U ... U I,, wherel,..., I, are disjoint
consecutive intervals such that < 2n+1, and for everyt < j < m,forall 6,¢’ € I;,
for everyk € N, for all z € X, for every< € {<, <},

v(r) +ok/d <= v(x)+d xk/d.

Proof. For everyr € X, there is exactly one valug € [0,1/d[ such that(z) + ¢, €
Ng. Let A = {é1,...,6,} be the set of such values, assumig< ;. Of course,
J < n. Let the partition0, 1/d[ be given by{0, 61 [W[d1, §1]w]d1, d2[W ... W]ds, 1/d[. It
is routine to check that this partition fulfills the requirent of the lemma. a

The next proposition extends Té\. the well-known result that the class ©A over
an alphabet reduced to a singleton is not closed under comepltion.

Proposition 2. Let R, be the following timed language:
Roe={(a,m)...(a,7) | T <i<j<mstr —7 =1}.

ThenR, is note-timed regular.



Proof. Towards a contradiction, we assume thatThe .4 recognizes the language, .
We denote by: the number of clocks afl, and byd its granularity. The languagde,
is the set of timed words such that no pair of occurrencessoére separated by one
time unit.

Pick a timed wordy = (a,71) ... (a, Toan+1) IN R, Such thatV = 2n + 1, and:

—foralll1<i<j<N,0<7 <7 <1/d,
—foralllgiSN,1<7N+i<1+n<TN+7;+1<1+1/d.

Let o be a timed execution afl which acceptsv, and consider the configuration
(4.1, v,1)- Applying Lemma 3 to this configuration, we get a partitiorj®fl /d[ com-
posed of at mosd intervals. There exists asuch thatV + 1 < j < 2N, 7; — 1 and
Tj+1 — 1 belong to the same interval of this partition.

We now prove that for each € X, there exist& € N such that:

R/ < vy, (1) <vgp, (@) + (731 = 75) < (k+1)/d )
Letz € X. We distinguish two cases:

— Assume that has not been reset between the configuratiéns, v, ;) and(¢, ;. , v, )
alongp. It implies thatv, . (z) = v, (x) + 7; — 1. Due to the choice of, we
know thatv,, , () +7; —1andv, . () + (1j41 — 75) = v, (z) + 7j41 — 1 satisfy
the same constraints of ‘granularifyy Hence, equation (2) holds for cloak

— Assume thatr has been reset alongbetween the configuratior{g, ,, v, ;) and
(€7, Vg.7,)- Inthis case, equation (2) holds fbr= 0. Indeed) < v, . () since

7; > 0. Furthermore, as the date at which clackas been last reset between the

two above-mentioned configurations is within the intefal + 1/d[, we get that

Vo7 (@) + (Tj41 — 75) < (75 — 1) + (7541 — 75) < 1/d.

0,Tj
Leté = 1+ 7;_n — 7;. From equation (2) and the constraints on the time sequence
(7i)1<i<2n+1, We get that for every € X, there exists some € N such that:

kjd<wv,, (x) <v,.(x)+6<(k+1)/d (3)

0,75

Now we build a timed executiop as follows. It mimicse up to the configuration
(047, Vo.r,)- Then, itletsy time units elapse, which leads to configuratiép. . v, - +
d0). Then it fires thenstantaneousubsequence €., with null duration) ofp (saygj)
leading from(¢;, ., v, ) to (¢7 . ,vi. ). The timed executiop; is non empty as it
contains at least a transition labelled by This sequence can also be executed from
(E;Tj, o + ¢) since, following equation (3), both configurations belooghe same
‘region’ associated witt! (we refer to [AD94] for a definition and properties of regions
in timed automata). The, can do the same actions aspossibly with other delays
(due to the so-called time-abstract bisimulation propeftsegions), until reaching an
accepting location (agis accepting).

Now, the timed word read op’ has two occurrences af separated by one time
unit (those at date;_ y and at daté + 7;_ ). Thus, it does not belong ®,,, hence a

contradiction. |



We can now prove Theorem 5.2 for alphabets with two letters.

Proof. The proof follows the lines described before. IZebe a timed regular language
and defin@’ = Composg€L, R,,) whereR,, is the language introduced in Proposition 2.
We claim thatC = TW*(X) iff V is recognized by 3A.. We distinguish two cases:

(1) First case.We assumel = 7W*(X). As a consequence of Lemmal,= {)
which is obviously §-)timed regular.

(2) Second caseWe assumel # 7W*(X) . Towards a contradiction, we assume
thatV is recognized by &A. A’ with granularityd andn clocks. Pickw’ =
(a1,71) ... (am, 7)) INTW*(X)\Landletw = w'(c,7),)(a, 1) ... (a,Tan+1) €
Y with N = 2n + 1 such that:

eforalll<i<j<N,7, <7 <7 <T,+1/d

o foralll<i< N,7/ +1<7n4i <147 <TNtit1 <7, +1+1/d.
From a timed execution acceptingn .4, we construct a timed executigh(which
plays the wordsy’, the N next actions, and then applies the construction of the
proof of Proposition 2 fron@é;m 410 Ug +1)) to obtain another accepting execu-
tion o’ whose associated word does not belony tgielding a contradiction. O

5 Minimization of the Number of Clocks

In [Fin06, Theorem 2], Finkel proved that given a timed laag®@ recognized by 8A
with n clocks, we cannot decide whether it can be recognizedlidywith n— 1 clocks.
In this Section, we prove that this result also holds in thenework ofTA..

We first prove the following proposition, which exhibits afdy of timed languages
such that thei-th language is recognized by arclock TA, but not by any(n — 1)-clock
TA.. These languages are known since [HKWT95] when restridnfA. However,
the extension of the result A, is non-trivial and requires a careful analysis of timed
executions inrA..

Proposition 3 (Language with a minimal number of clocks)Letn > 1 be a positive
integer. Define the language,, as follows:

Rn:{(a,Tl)(a,Tg)...(a,Tgn)|V1§i§n, 0<7 < 1/\Tn+i:1+7—i}.

The timed languag®,, is accepted by @A with n clocks, but not by anyA, and even
anyTA., with strictly less tham clocks.

Proof. Letn > 1 be a positive integer. The langua@sg, is recognized by théA A,
depicted on Figure 4.

Now assume that there exist3A. 1 with less tham clocks, and such thdt(B) =
L(A). Denote byd the granularity of3. Fix some value$r; )1<i<, such thab < r <
Ty < ... < Ty < 1/d,and consider the timed wotd = (a, 71 )(a, 72) . .. (a, ™) (a, 71+
1)(a,72+1)...(a,7, + 1). Obviouslyw € R,, and thusw is accepted by5 along
some rurp.

For each index in {1,...,n}, we consider the configuratioi, .. 1, v, 1)
The last transition before this configuration is thus a défagsition. We distinguish
two cases:



q0 q1 q2
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Fig. 4. Automaton.A,, with n clocks.

— First case: There exists an index € {1,...,n} such that for every clock,
v, -.+1(z) #0 mod 1/d. This implies that the region (with respect to granularity
d) to which belongs the valuatiary . . , is ‘time-open’,i.e, for everyv € r, there
existsd > 0 suchthav+6 € randv—4 € r. Thus, we can change the time elapsed
during the last transition, and add such a valu&he new configuration which is
reached along this modified execution({§ ., ,,,v, .., + ) andv, ., +4is
in the same region ag . ;. Hence, applying the time-abstract bisimulation prop-
erty of the regions, it is possible to follow exactly the satransitions (possibly
at different dates). This gives another accepting exesulievertheless, the timed
word which is read on this execution does not belontobecause théth a and
thei + N-th a are separated bly+ § > 1 units of time. Hence a contradiction.

— Second caséiWe assume that for every indéx {1, ...,n}, there exists a clock
suchthav, . .;(z) =0 mod 1/d. Since the number of clocks #is strictly less
thann, there exists a clock suchthav, . ., (z) =0 mod 1/dandv, . ,,(z) =
0 mod 1/dwith1l <i < j <n.Sincer; +1 > 0andr; +1 > 0, the two values
Vg r41(x) @ndv, () are positive, hence sontg'd for k € N*. This leads to
a contradiction, as the time elapsed between these twdgtsis strictly less than
1/d (and positive).

This concludes the proof: suchTa. B cannot exist. O

We can now state the following theorem, which extends Tha@®f [Fin06] to
timed automata with silent transitions. Note that our umdgaility result holds even
for one-clockTA., which is to be compared with the class of one-cldékfor which
we can decide this problem.

Theorem 6 (Minimizing the number of clocks).Letn be an integer.

— Casen > 2. Forn > 2, itis undecidable to determine whether, for a givién(and
thus also fofTA.) A with n clocks, there exists 8A. B withn — 1 clocks such that
L(A) = L(B).

— Casen = 1. Itis undecidable to determine whether, for a givie A with 1 clock,
there exists &A. B without clocks such that(A) = L(B).



Proof. Let X be a finite alphabet, and lat € X. Letn > 1, andR,, be the set of
timed words introduced in Proposition 3. Lebe a fresh letter{¢ X). We consider a
regular languag€ C 7W*(XY') accepted by sonmiBA with n clocks whem > 2 or by
someTA, with a single clock (case = 1). We construct another timed languagg
overX; = XY U {c} defined ag/,, = Compose,, R,,). Due to Lemma 1, the timed
languageV, is timed regular (respe-timed regular whem = 1) and is accepted by a
TA with n clocks (resp. &A. with a single clock). We claim that is universal iff),,

is accepted by @A, with n — 1 clocks. We distinguish two cases:

1. First case.We assumeC is universal onX, i.e. L = TW*(X*). Then,V, =
TW*(X4),i.e,V, is universal on*, and thus it can be accepted by a (determin-
istic) timed automatowithout any clock

2. Second caseWe assumeC is not universal onY, i.e., £ is strictly included in
TW*(X). Then, there is a timed word= (a1, 71) ... (ax, 7%) € TW*(X) which
does not belong t&. Consider now a timed word € 7W*(X). It holds that
u.(¢,m).(x + 1) € V, iff x € R,,. Towards a contradiction, assume th&tis
accepted by @A, B with n — 1 clocks. Let us denote hythe granularity of3, and
fix some value$7/)1<i<, Such that) < 7{ < 74 < ... < 7, < 1/d. We consider
the timed wordv = (a, 77)(a,73) ... (a, 7)) (a, 71 + 1)(a, 75 + 1) ... (a, 7}, + 1).
Obviously,v € R,, and thusw = u.(c, 7%).(v + 1) € V,, is accepted byB. We
can then apply the reasoning developed in the proof of Pibpos$ to the timed
word w, and get a contradiction. Indeed, this proof does not relyhenfact that
the initial valuation isO and thus can be reproduced from configuration reached
after recognizing:.(c, 7). We can finally conclude that such a timed automagon
cannot exist. Hence, the timed languagecannot be recognized by aij. with
strictly less tham clocks.

Thus determining whethéy,, can be recognized by BA. with less tham clocks is
equivalent to deciding whethéY is universal. Since the two universality problems that
we consider are undecidable (see Theorem 2), this conctbdgsoof. a

6 Shuffle Operation

In this section, we are interested in the shuffle operationifieed words. In order to
conform to the definition considered in [Fin06] and in [DinhO&e introduce a new
description of timed words: given a timed watd= (ag, 79) - . . (an, 7). . ., we define
its associatedelay timed worddenotedelay(w), and defined by

Delay(w) = (To,ao) . ((7‘1 — ’7'0),(11) cee ((Tn — Tn,l),an) B

Delay timed words are thus simply words on the alphéBef, x X)), i.e., elements of
(R>o x X)*. This description of a timed word gathers the delay of tineg #lapses
together with the next discrete action. either actions dayde Delay is a bijection
between timed wordsF(W* (X)) and delay timed word§R>q x X)*).

We first define the shuffle operation on finite words on an alph&b Givenu, v €
X*, we defineu LU v as the set of words

{w=z111%2Y2 . . . TnYp | U = 122 ... Ty @NAV = Y1y ... Yn } .



We extend it to sets of words by defining, {61, S; C X*, S i Sy = {s1 LW s9 |
S1 € 51,82 S SQ}

This definition thus directly applies to delay timed wordpl@abetX = (R>ox X))
andvia the Delay mapping can be used to define the shuffle operationn timed
words. Giverw andv in 7W*(X),

u L v = Delay ™! (Delay(u) LU Delay(v)) .

It also extends to delay timed languages, sets of delay timed words, by previous
definition on sets of words. Moreover, we define naturally tlodons of ¢-) delay
timed regular languages, as those associated wijiitned regular languages by the
operatoDelay

In order to simplify the notations, in the sequel of this gattwe only handle delay
timed words. The results for timed words are obtainidthe Delay mapping.

Finkel and Dima proved independently that delay timed raglainguages are not
closed under shuffle operation. We first extend this redalted as [Fin06, Theorem 4],
to e-delay timed regular languages.

Proposition 4. The shuffle of two delay timed regular languages is not nacissn
e-delay timed regular language.

Proof. To prove this result, we follow the lines of the proof of [FB]0We first define
three delay timed regular languages:

- Nl = {(tlva) : (1’0') : (t27a) | ty +to = 1};
= Na={(1,b) - (s,b) | s € Rx0},
- N3 = {(tlva) : (Lb) : (S’b) : (1,0,) : (t27a) | t1,8,12 € IRZO}-

If the shuffle of two delay timed regular languages wasatelay timed regular
language, and sincedelay timed regular languages are closed under inteosedtie
delay timed languageV; L N>) N N3 would also bes-delay timed regular. We show
that this is not the case.

(./\/1 LI_INQ)Q./\/g = {(tl,a)-(1,b)-(s,b)-(1,a)-(t2,a) | tl,tQ,S c Rzo, t1+t2 = ].}

Towards a contradiction, we suppose that there exi$fs.ad accepting this language.
We denote byl the granularity ofA.
Letw be a delay timed word accepted Hysuch that the following properties hold:

ta #0 mod 1/d
s+taZ0 mod 1/d
s #0 mod 1/d

Sincew is accepted byA, there exists a path in the automaton which recognizes
by =5 0y, 0,_1 = 1, wheree; are edges ofd. This path can be viewed as a
(linear) TA. A’ with n + 1 locations corresponding to the occurrences of locations in
the path andw edges corresponding to the occurrences of edges in theTgattlocks

of the two automata are the same ones. The guard and the fesebocurring edge



are the ones of the original one. The set of final locationssisgleton whose element
corresponds té,,.

By construction, A’ has no cyclew € L(A’") C L(.A) and its granularity!’ divides
the one ofA.

Using [BDGP98, Theorem 21], it is possible to build fro#h another timed au-
tomaton without silent transitiond” accepting the same timed language, and such that
its granularity is equal to that of’. Let us examine in the region automaton4f, a
path which accepts. Due to hypotheses done ent; andt,, the region reached im-
mediately before the firing of the thikdis time-open. Indeed a region is time-open as
soon as there exists a clock valuation inside it such thayesleck value is not equiv-
alent to 0 modulo the granularity of the automaton. An eletagnexamination of the
timed word yields to the possible clock values;to + 1,to +1+ s,t0+2 45,3+ s
(recall that there are no silent transitions4).

As a consequence, we can postpone the date at which thigtiaris taken by
a small delay. We obtain another timed wartiwhich is accepted byl”, but which
does not satisfy the constraints @, 11 N2) N N3 (i.e, t1 + t2 = 1). This yields a
contradiction sincev’ € L(A"”) = L(A’) C L(A). O

Observation.Let us analyze the scheme of the previous proof:

1. fix a wordw in the languag& under study;

2. transform one of its accepting paths into a lin®r which accepts a languagg
such thatw € £ andf’ C £;

3. transform this lineaffA. into a TA using the construction of [BDGP98] which
accepts the same languaffe(this is possible as there is no cycle in ffi&.);

4. apply a technique specific ¥ in order to obtain a word,’ accepted by thiFA
such that’ ¢ L.

One could believe that such a scheme could be adapted to thi@peevious results of

this paper. However, it is worth noticing that the constimrtbf [BDGP98] increases

the number of clocks. This prevents the application of thieesne to the proofs which

rely on the number of clocks of the originBA. (more precisely theorems 5.2 and 6).
We now state our extension of [Fin06, Theorems]the framework offA..

Theorem 7 (Shuffle).The problem of deciding whether the shuffle of two delay timed
regular languages is-delay timed regular is undecidable.

Proof. Let ' be a finite alphabet containing at least one leitéie denote by andc
two letters notin¥, and define¥, = YU {c} andX}, = X' U {b}. We consider a delay
timed regular languagé C (R>¢ x X)*. Denoting byAV; C (R>o x X)* the delay
timed regular language introduced in the proof of the pnesiproposition, we define
VY C (R>¢ x X4 )* as the union of the following three delay timed languagéss (s a
natural adaptation domposedo delay timed words)

Vi ={w|Fw €L, I € (Rso x X)*,Irstw=w""(¢,7) w'}
Vo ={w | |wle # 1}
Vs ={w| 3w € (Rso x )*, FJw”" e Nj,Irstw=w"-(¢,7) - w"}

5 Just notice that the proof presented in [Fin06] is not coteplecorrect, but it can be fixed
using our techniques.



Since£ and\; are delay timed regular, we get thatis also delay timed regular.
We consider now the delay timed language= V L1 N> whereN; has been defined
in the previous proof. Note thal, involves letterb. We claim thatZ is universal (on
X)) iff W is e-delay timed regular. We distinguish two cases:

1. First case.We assumeC is universal on, i.e, £ = (R>o x X)*. Then,V =
(R>o x X4)*, i.e, V is universal onX . It is then easy to verify that th@A
depicted on Figure 5 recognizig. In particular,V is (¢)-delay timed regular.

E+;x::0 2+ 2+
z=1;b ; ; b

Fig. 5. A TA accepting/V.

2. Second caseWe assumeC is not universal on¥. Towards a contradiction, as-
sume thadV is e-delay timed regular. Then, the delay timed language- W N
(R>o x 2)* - (1,¢) - N3) is e-delay timed regular. Pick a delay timed ward=
(11,61) - (16, a1) € (R>o x X)* which does not belong t€. Consider now a
delay timed word: € (R>o x X3)*. We will show the following equivalence:

w-(l,e) - 2€X <= x € (N WNy)NN3

First suppose that’ = w-(1,¢)-z € X. Sincew’ € (R>oxX)* (1, ¢)-N3, we get
thatz € V3. Since there is a single occurrencedf w’, w’ belongs to eithey; L
Ny or Vs 1 Na. Assume thaty” € VL Ns, thusw’ € w™ - (1,¢) - wt 1 ws
with w™ € £ andws € M. Thusw™ # w and sow is obtained by inserting letter
occurrences ofv, in w™ but these aré occurrences which cannot occurdna
word overX. Hence we have that- (1,¢) -z € (R>o x X)* - (1,¢) - N1) LU Na.
Again since a word ofVs includes onlyb occurrences, we get € N; L N>,
which concludes the proof of the first direction. Conversilg second implication
follows fromw - (1,¢) - (M7 o Na) € (w - (1,¢) - Nq) L Ns.

Then we mimic the proof of Proposition 4 and prove thaicannot bes-timed
regular. However, this is not direct, and requires to befoareet denote by4 a
TA. acceptingX. We denote byl its granularity. Consider a delay timed ward
belonging to(N; 1 N2) N A3 such that:

to %0 mod 1/d
s+ ts %20 mod 1/d
s #0 mod 1/d

s+35 7 #0 modl/d, Vie{l,... k}

This is possible since the set of pafsst2) that do not fulfill one of these equations
has zero measure. We can then consider the delay timedwierdw-(1,¢)-z € X.



Using the same techniques as in the previous proof, we cahieaffA A" whose
granularity divides? and such that’ € L(A"”) C L(A). We explicit the delay
timed wordw’:

w = (11,a1) (16, ax) - (1,¢) - (t1,a) - (1,b) - (s,b) - (1,a) - (t2,a) .

A simple examination yields that the possible clock valiesched immediately
before the firing of the last are the following onesty, to + 1,t0 + 1 + s,t2 +
2+s53+s,4+s,4+s+71,..., 4+ 5+ Z?:l’rj. As a consequence, due to
the constraints imposed an the region reached at this instant is time-open, and
we can postpone the firing of the lastWe obtain another timed word” which is
accepted byd”, but does not belong t&, since it violates the property + ¢, = 1
required by(N; L A3) N N3. This yields the contradiction.

This concludes the proof: determining wheth®rcan be recognized by BA. is equiv-
alent to deciding whethet is universal. a

7 Extension to Infinite Timed Words

In this section, we explain how all previous results extemthe framework of infinite
timed words. First, we define the acceptance of infinite timvedds by timed automata
with or without silent transitions. We assume that the atarege condition is given
by a Biichi condition, and replace the set of accepting lonatF' in the definition
of a timed automaton by a set cdpeated locationsk. Take A = (L, 4y, X, E, R)
such a timed automaton. For defining its semantics in termsfivite timed words,
we need to distinguish between automata with or withounsileansitions. We first

assume thatl has no silent transitions. Given a infinite timed executior{¢y, vo) do,

(bo,vo + do) 2% (£1,01) 25 (01,01 + dy) 5 ..., its label is the infinite timed
wordw = (ag, 7;)i>0 Wherer; is given as previously by; = ", ., di. If the timed
execution passes infinitely often through a locatiorkpfve say that it is amccepting
executionand that its label is accepted by the timed automatoifhen, we assume
that A is a timed automaton oveX. (that is, it has silent transitions). As in the case
of finite timed words, we define by’ the timed word obtained fromv by deleting
the pairs whose first component is equaktdt may be the case that’ is finite: it
happens exactly when there are infinitely many actions latbély <, but only finitely
many labelled by elements different from If the timed execution passes infinitely
often through a repeated location, and if moreowéis infinite, we say thaf is an
accepting execution, and that its lahel is accepted byA. In both cases, the set of
infinite timed words accepted by is denoted.“ (A).

All the results we have presented in the framework of langsagf finite timed
words extend to the framework of languages of infinite timexdds. We sum up all
results in the following theorem.

Theorem 8 (Infinite words). The six following problems are undecidable:

1. Given aTA. A, determine whether there exist§A 5 such thatL“ (B) = L¥(A).



2. Given aTA. A, determine whether there exists a determinigdc 5 such that
L¥(B) = L¥(A).

3. Given aTA. A over an alphabet of at least two letters, determine whetheret
exists arlA. B such thatL“ (B) = Lv(A).

4. Given aTA A with n clocks ¢ > 2), determine whether there existdA. B with
n — 1 clocks such that“(B) = L“(A).

5. Given aTA. A with a single clock determine whether there exisi&a B without
clock such thal“ (B) = L¥(A).

6. Given twoTA A and B, determine whether the shuffle bf (A) and L¥(B) is
e-timed regulaf.

The proof of this theorem can be derived from the various fsra@ have proposed
in the framework of finite timed words. Since all extensions eery similar, we only
develop the proof of the first result. The idea is to modify¢bastructiorComposéor
the framework of infinite timed words, and then to build a dlegdimed languag&k
(over infinite words) witnessing the strict inclusion beemghe two families of studied
languages.

As previously, given an alphabét, we pick a letter: not in X/, and denote by’
the alphabet’ U {c}.

Definition 3. Let£ C TW*(X) andR C TW"(X) be two timed languages ovér
(the first one only contains finite words, whereas the secomdomly contains infinite
words). Then Inf-Compoé&€&, R) is a timed language of infinite words ovEr. defined
as the union of the following three languages:

Vi ={weTW(Xy)|w €L, Iw eTW(X),Irstw=uw'(c,7)w}
Vo ={w e TW(Xy) | |wle # 1}
Vs={weTW?(Xy) | F € TW*(X), Jw” € R,Irstw =v'(¢,7)(w"” +7)}

We obtain similar properties for this new construction:

Lemma4. LetL C TW*(X) andR C TW*(X) be two timed languages over al-
phabet¥.

— If £ andR are accepted bY¥A. with at mostr clocks, then Inf-Compo&é, R) is
also accepted by @A, with at mostn clocks.

— Inf-Compos€T W*(X), R) = TW*(X), it is thus accepted by a deterministic
TA with no clock.

The proof of this lemma is similar to that of Lemma 1.

Proof (of Theorem 8\We only develop the proof of the first item. We consider a gligh
modificationRg,.,0f the languag&evendefined by:

Réen={(a,m)...(a,7,)... | 7 =0[2] foreveryi > 1} .

% For this result, we exclude Zeno timed words since the coatitm of [BDGP98] is only valid
for infinite non Zeno words.



This timed language is accepted by . of Figure 1 where the set of repeated
locations is the singletof¢}.

Assumen € X, and let. C 7W™*(X) be a timed regular language. Let us consider
now the timed languag¥ = Inf-ComposéL, R&..). Applying Lemma 4, we have
thatV is e-timed regular. We will show now tha? is timed regular if and only it is
universal on¥’. We distinguish two cases:

(1) First case.AssumeL = 7W*(X). Applying Lemma 4y = TW*(X,), which
is obviously timed regular.

(2) Second caseAssumel # TW*(X). Towards a contradiction, assume thais
recognized by 8A A. Lety = (ao,70) . .. (an, 7) € TW*(X)\ L. Then we have
that, for everyw € 7TW*(X), y.(¢, 7).(w+7,,) € Vifand only ifw € RE,e, Let
K be the maximal constant gf and consider the timed wotd = y.(c, 7,).(a, 7+
7n).(a, 7 + 7, + 2) ... wherer € Nis an even integer satisfying > K. Then,
the timed wordw’ is accepted by, and there exists a path i along whichw’ is
accepted. Let = (¢,v, a, U, ¢') denote the transition of this path corresponding to
(a, 7+ 7,) and let(¢, v) be the configuration reached afigfc, 7,,) is recognized.
Letv’ = v+ 7 be the valuation when firing, thenv’ |= ~. Because of the choice of
7, it holds for any clock: of A thatv’(z) = v(x)+7 > K. In particular, for any odd
integerr’ greater tham, the timed wordy.(c, 7,).(a, 7, +7') can be recognized by
the prefix of the path ending in Furthermore, in the region automaton this prefix
reaches the same region and thus can be extended into aniagdgepinite) path
for a wordw” with y.(c, 7,).(a, 7, + 7’) as prefix which is a contradictiorn/(is
not even). Hencey cannot be recognized byTa.

This concludes the proof is universal if and only i} is timed regular. a0

8 Conclusion

In this work, we have studied decision problems relatedn@ti automata with silent
transitions. First we have answered negatively a centiedtippn raised by the introduc-
tion of silent transitions: can we decide whether the lagguacognized by a timed au-
tomaton with silent transitions is recognized by some @tastimed automaton? Then
we have extended undecidability results known in the fraorkwef timed automata.
Proofs of these results are more involved than the previoas because a timed word
can be accepted in uncountably many different ways by a t@goimaton with silent
transitions. In addition to the interest of the results, vedidve that such proofs give
more insight on the role of silent transitions.

Finally, since all our proofs rely on the introduction of axnletter, a possible future
work is the particular case of an alphabet reduced to a sorgle
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