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Abstract. In this work, we study decision problems related to timed automata
with silent transitions (TAε) which strictly extend the expressiveness of timed
automata (TA). First, we answer negatively a central question raised by the in-
troduction of silent transitions: can we decide whether thelanguage recognized
by a TAε can be recognized by someTA? Then we establish in the framework
of TAε some old open conjectures that O. Finkel has recently solvedfor TA. Its
proofs follow a generic scheme which relies on the fact that only a finite num-
ber of configurations can be reached by aTA while reading a timed word. This
property does not hold forTAε, the proofs in the framework ofTAε thus require
more elaborated arguments. We establish undecidability ofcomplementability,
minimization of the number of clocks, and closure under shuffle. We also show
these results in the framework of infinite timed languages.

1 Introduction

The model of timed automata has been proposed by Alur and Dillin the early 90’s as
a model for real-time systems [AD90,AD94]. A timed automaton is a finite automaton
which can manipulate real-valued variables called clocks,which evolve synchronously
with the time, can be tested and reset to zero. One of the fundamental properties of this
model is that checking reachability properties is decidable, though the set of configu-
rations of a timed automaton is in general infinite. Since then, this model has attracted
much attention from the researchers, as it is very appropriate for verification purposes.

A constant interest goes to the theoretical understanding of the model, and to the
theoretical foundations of timed languages. Indeed, the classical (untimed) formal lan-
guages enjoy very nice and robust properties, like the equivalence of first-order logic
with aperiodic regular languages, and this forms a wonderful framework that nobody
can contest.

The case of timed languages is much less satisfactory, as they do not enjoy those
nice logical and algebraic characterizations, though thissubject has inspired several ap-
proaches [Wil94,Dim99,D’S00,Dim01,ACM02,BP02,BPT02,MP04,CDP06]. Indeedthe
right class of timed language has probably not yet been investigated, and much work
is still needed to really understand and formalize the theoretical foundations of timed
languages [Asa04].
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A major drawback of timed automata (and their recognized timed languages) is
that they are not closed under complementation and are not determinizable. It com-
plexifies the definition of equivalent logical languages as the closure by negation is
somewhat the quintessence of logics. Hence, either we need to forget about negation
in the logics [Wil94,Bou02], or we restrict to subclasses oflanguages closed by com-
plementation [AFH94,D’S00,CDP06], or we try to better understand the role of com-
plementation. The paper [Tri03] follows this idea, and asksquestions like “Is a timed
automaton complementable into another timed automaton?” or “Can a timed automa-
ton be determinized?”. The proof of Tripakis therein yield that those two problems are
undecidable, as soon as we require that a witnessing automaton be constructed. He also
provides such proofs requiring the construction of witnesses for various other problems
like minimizing the number of clocks required to recognize agiven timed language,etc.
In [Fin06], Finkel improved quite a lot the above-mentionedproofs by proving that all
these problems are undecidable, even if we do not require theconstruction of witnessing
automata.

In the untimed framework, using silent transitions in finiteautomata does not in-
crease expressiveness of the model. For timed systems, the case is much different, as
it is well-known that silent transitionsadd extra power to timed automata [BDGP98].
However, for modelling purposes, they are very useful as they can for instance be used
to model discrete-time behaviours embedded in continuous environment. Furthermore
the standard symbolic analysis techniques (like the construction of the region automa-
ton, or the construction of the zone-based simulation graph) apply to timed automata
with silent transitions with no extra cost.

In this paper, we carry on both works [BDGP98,Fin06]. First,we answer negatively
a central question raised by the introduction of silent transitions: can we decide whether
the language of a timed automaton with silent transitions can be recognized by some
timed automaton? Then we extend undecidability results of [Fin06] to the framework
of timed languages accepted by timed automata with silent transitions. Though we fol-
low the same lines, the extension is far from trivial as results of [Fin06] heavily relied
on an important property of timed automatawithout silent transitions: given a timed
word there are finitely many timed executions reading it. This is of course no more
the case when adding silent transitions: the set of such timed executions may even be
uncountable.

More precisely, we prove that it is not possible to:

– decide whether anε-timed regular language is timed regular (i.e., if it is possible to
remove silent transitions in timed automata), see Section 3;

– decide whether the complement of aε-timed regular language isε-timed regular,
see Section 4;

– compute the minimal number of clocks needed to recognize anε-timed regular
language, see Section 5;

– decide whether the shuffle of two (ε-)timed regular languages isε-timed regular,
see Section 6.

Finally, we extend all previous results, proved for finite timed words, to infinite timed
words and to timed automata with a Büchi acceptance condition, see Section 7.



2 Preliminaries

2.1 Timed words, timed languages

If S is a set,S∗ denotes the set of all finite words overS whereasSω denotes the set
of infinite words overS. We use classical notations likeR≥0 or Q≥0 for the set of
nonnegative real numbers (resp. nonnegative rational numbers).

Let Σ be a fixed finite alphabet. A finite (resp. infinite)timed wordw overΣ is
an elementw = (a0, τ0)(a1, τ1) . . . (an, τn) . . . in (Σ × R≥0)

∗ (resp.(Σ × R≥0)
ω)

such that for everyi ≥ 0, ai ∈ Σ, τi ∈ R≥0 andτi+1 ≥ τi. The valueτk gives the
absolute date at which actionak occurs. Givend ∈ R≥0, we define the timed word
w + d = (a0, τ0 + d)(a1, τ1 + d) . . . (an, τn + d) . . .. We denote byT W∗(Σ) (resp.
T Wω(Σ)) the set of finite (resp. infinite) timed words overΣ. A timed language over
finite (resp. infinite) wordsis a subset ofT W∗(Σ) (resp.T Wω(Σ)). LetL be a timed
language, thenL denotes its complement. Letw be a timed word overΣ anda ∈ Σ,
then|w|a is the number of occurrences of lettera in w. Finally, let us denoteUntimed
the operator which maps a timed word to the associated untimed word obtained by
erasing the dates of actions.

2.2 Timed automata

Timed automata have been introduced in the 90’s by Alur and Dill as a model for rep-
resenting real-time systems [AD90,AD94]. A timed automaton is a classical untimed
finite automaton to which are associated a finite set of nonnegative real-valued variables
calledclocks.

Syntax. Let X be a finite set of clocks. We assume the time domain be the setR≥0

of nonnegative real numbers. Avaluationv overX is a mappingv : X → R≥0. Let
U ⊆ X , the valuationv[U ← 0] resets each clock ofU to zero,i.e., maps each clock
x ∈ U to 0, and each other clockx 6∈ U to v(x). Letd ∈ R≥0, the valuationv+d maps
every clockx ∈ X to v(x) + d.

We writeC(X) for the set of(clock) constraintsoverX consisting of conjunctions
of atomic formulas of the formx ./ h for x ∈ X , h ∈ Q≥0 is a nonnegative rational
number, and./ ∈ {<,≤, =,≥, >}. Such constraints are interpreted over valuations,
and we writev |= γ if valuation v satisfies the clock constraintγ. It is defined in a
natural way byv |= (x ./ h) wheneverv(x) ./ h, andv |= (γ1 ∧ γ2) wheneverv |= γ1

andv |= γ2.

Definition 1 (Timed automaton).LetΣ be a finite alphabet. Atimed automatonoverΣ
is a tupleA = (L, `0, X, E, F ) where:

– L is a finite set of locations,
– `0 ∈ L is the initial location,
– X is a finite set of clocks,
– E ⊆ L× C(X)×Σ × 2X × L is a finite set of edges, and
– F is the set of final locations.



An edgee = 〈`, γ, a, U, `′〉 ∈ E represents a transition from locatioǹto location`′

with labela, guardγ and resetU .

Let Σ be a finite alphabet, and letε be a fresh symbol not inΣ. We writeTA for the
class of timed automata overΣ, andTAε for the set of timed automata over the alphabet
Σε = Σ ∪ {ε}. The new eventε is asilent actionand it isunobservable. A transition
labelled by a silent action will be called asilent transition.

Let A be aTA or a TAε. The granularity of A is the smallest positive integerd
such that each elementary constraintx ./ h in A is such thatd · h ∈ N. We define
Nd = {k/d | k ∈ N}. We extend the notion ofmodulow.r.t. Q>0. Let r ∈ Q>0, then
we definex mod r = x − nr with n = max{i ∈ Z | ir ≤ x} andx ≡ y mod r iff
(x− y mod r) = 0.

If A is aTA, we say it isdeterministicwhenever given two transitions〈`, γ1, a, U1, `
′
1〉

and〈`, γ2, a, U2, `
′
2〉, it holds thatγ1 ∧ γ2 is not satisfiable.

Semantics.We give the semantics of a timed automaton as a timed transition system
and then the corresponding accepted timed language. LetA = (L, `0, X, E, F, R) be a
TA overΣ (resp.TAε). It defines the timed transition systemSA = (Q, q0,→) where:

– Q = L× (R≥0)
X is the set of states also calledconfigurations,

– q0 = (`0,0) is the initial state4,
– and the transition relation→ is composed of the following moves:

• delay moves:(`, v)
d
−→ (`, v + d) for everyd ∈ R≥0;

• discrete moves:(`, v)
a
−→ (`′, v′) iff there exists some transition

e = (`, γ, a, U, `′) ∈ E such thatv |= γ, andv′ = v[U ← 0].

A timed executionof A is a (finite or infinite) path% : (`0, v0)
d0−→ (`0, v0 + d0)

a0−→

(`1, v1)
d1−→ (`1, v1 + d1)

a1−→ . . . in SA starting in the initial stateq0 (i.e., v0 =
0) and alternating between delay and discrete moves. Given such a timed execution,
τi =

∑

k≤i dk denotes the absolute date at which transition labelled byai occurs. The
durationof % is the (eventually infinite) sum of all delays along%, i.e. supi(τi).

If τ is a value smaller than or equal to the duration of a finite execution%, we write
(`−%,τ , v−%,τ ) for the first configuration along% in which the automaton is at dateτ , and
(`+

%,τ , v+
%,τ ) for the last configuration at dateτ . More formally, definingi− = max{i |

τi < τ} andi+ = max{i | τi ≤ τ} with the conventionmax(∅) = 0, then:
{

(`−%,τ , v−%,τ ) = (`i− , vi− + τ − τi−), and
(`+

%,τ , v+
%,τ ) = (`i+ , vi+ + τ − τi+) .

For instance, if a single transition occurs at timeτ , (`−%,τ , v−%,τ ) is the configuration
before the transition is fired, whereas(`+

%,τ , v+
%,τ ) is the configuration after the transition

is fired. A major observation is that whenτ > 0 then∀x ∈ X, v−%,τ (x) > 0.
Let % be a timed execution in aTA A. The label of% is the timed wordw =

(a0, τ0)(a1, τ1) . . . (with τi defined as previously). When% is a timed execution in a
TAε, then the label is obtained by deleting fromw the occurrences of pairs such that the

4 The valuation0 maps each clock to0.



first component isε. If in addition% is finite and ends in a final location, we say that
the above timed word is accepted byA. We noteL(A) the set of finite timed words ac-
cepted byA. Note that in a deterministicTA, every word has at most a single underlying
timed execution.

Let L ⊆ T W∗(Σ) be a timed language. It is saidtimed regularwhenever it is
accepted by someTA, andε-timed regularwhenever it is accepted by someTAε. Note
that ifL is a(nε-)timed regular language, thenUntimed(L) is also regular [AD94].

In this paper, we assume the reader is familiar with the region automaton construc-
tion and its properties, proposed by Alur and Dill in [AD90,AD94].

2.3 Classical results onTA and TAε

We summarize all expressiveness and (un)decidability results we will use in our proofs.
Most of them are standard results, and we give classical references for each of them.

Theorem 1 (Closure and expressiveness results).

1. The family of timed regular languages is not closed under complementation [AD94].
2. The family of timed regular languages accepted by deterministic TA is strictly in-

cluded in the family of timed regular languages [AD94].
3. The family of timed regular languages is strictly included in the family ofε-timed

regular languages) [BDGP98].

Theorem 2 (Universality problem).

1. The universality problem forTA is undecidable even when restricting toTA with
two clocks [AD94].

2. The universality problem forTA with a single clock is decidable [OW04].
3. The universality problem forTAε with a single clock is undecidable [LW07].

2.4 Accepting timed words inTA and TAε

In this subsection, we give two examples ofTAε which explain major difficulties that
may arise from silent transitions.

Example 1.TheTAε of Figure 1 recognizes the timed language

Reven= {(a, τ1)(a, τi) . . . (a, τn) | τi ≡ 0 mod 2 for every1 ≤ i ≤ n} .

This timed language is not recognized by anyTA [BDGP98].

Example 2.TheTAε of Figure 2 recognizes the timed language reduced to a singleton

{(a, 1)}. However any path(`0, 0)
d
−→ (`0, d)

ε
−→ (`1, d)

1−d
−−→ (`1, 1)

a
−→ (`2, 1), with

d ∈ [0, 1], is an accepting path. Along one of these paths, denoted%, configuration
(`−%,1, v

−
%,1) = (`1, 1) and(`+

%,1, v
+

%,1) = (`2, 0).



`

x = 0; a;

x = 2; ε; x := 0

Fig. 1. A TAε not equivalent to anyTA

`0 `1 `2
ε x = 1; a; x := 0

Fig. 2. (a, 1) is accepted by infinitely (and even uncountably) many paths

3 Removing Silent Transitions

In [BDGP98] the impact of silent transitions on the expressive power of timed automata
has been studied, and syntactical restrictions have been given, that are sufficient to re-
move silent transitions,i.e., syntactical restrictions for anε-timed regular language to
be timed regular. However, these syntactical restrictionsare not necessary, and we prove
in this section that the problem to decide whether anε-timed regular language is timed
regular is indeed undecidable.

Theorem 3 (Removing silent transitions).Given aTAε A, it is undecidable to deter-
mine whether there exists aTA B such thatL(A) = L(B).

To prove this result, and other theorems in the sequel, we reduce the problem to the
universality problem for timed automata. We first describe aconstruction over timed
languages introduced by Finkel [Fin06].

In the sequel,Σ denotes an alphabet, andc a fresh letter not inΣ. We setΣ+ =
Σ ∪ {c}.

Definition 2. LetL andR be two timed languages overΣ. Then Compose(L,R) is a
timed language overΣ+ defined as the union of the following three languages:

V1 = {w ∈ T W∗(Σ+) | ∃w′ ∈ L, ∃w′′ ∈ T W∗(Σ), ∃τ s.t.w = w′(c, τ)w′′}
V2 = {w ∈ T W∗(Σ+) | |w|c 6= 1}
V3 = {w ∈ T W∗(Σ+) | ∃w′ ∈ T W∗(Σ), ∃w′′ ∈ R, ∃τ s.t.w = w′(c, τ)(w′′ + τ)}

Now we state two fundamental properties of this construction that will be exten-
sively used in the proofs.

Lemma 1. LetL andR be two timed languages over alphabetΣ.



– If L andR are accepted byTAε with at mostn clocks, then Compose(L,R) is also
accepted by aTAε with at mostn clocks.

– Compose(T W∗(Σ),R) = T W∗(Σ+), it is thus accepted by a deterministicTA
with no clock.

Proof. The first point is obtained by verifying that it is possible toshare the clocks of
the two automata. The second point is by definition. ut

We can now give the proof of Theorem 3.

Proof. Assumea ∈ Σ, and consider the timed languageReven introduced in Subsec-
tion 2.4. LetL ⊆ T W∗(Σ) be a timed regular language. As recalled above,Reven

is ε-timed regular, but not timed regular. Let us consider now the timed language
V = Compose(L,Reven). Applying Lemma 1, we have thatV is ε-timed regular. We
will show now thatV is timed regular if and only ifL is universal onΣ. We distinguish
two cases:

(1) First case.AssumeL = T W∗(Σ). Applying Lemma 1,V = T W∗(Σ+), which
is obviously timed regular.

(2) Second case.AssumeL 6= T W∗(Σ). Towards a contradiction, assume thatV is
recognized by aTAA. Lety = (a0, τ0) . . . (an, τn) ∈ T W∗(Σ)\L. Then we have
that, for everyw ∈ T W∗(Σ), y.(c, τn).(w + τn) ∈ V if and only if w ∈ Reven.
Mimicking the proof of [BDGP98] which shows thatRevenis not timed regular, we
will get a contradiction. LetK be the maximal constant ofA and consider the timed
wordw′ = y.(c, τn).(a, τ + τn) whereτ ∈ N is an even integer satisfyingτ > K.
Then, the timed wordw′ is accepted byA, and there exists a path inA along which
w′ is accepted. In particular, the last transition of this path, denoted(`, γ, a, U, `′),
is such that̀ ′ ∈ F is a final location. Let denote by(`, v) the configuration reached
aftery.(c, τn) is recognized. Thenv′ = v + τ is the valuation when firing the last
transition, and verifiesv′ |= γ. Because of the choice ofτ , it holds for any clock
x of A thatv′(x) = v(x) + τ > K. In particular, for any odd integerτ ′ greater
than τ , the timed wordy.(c, τn).(a, τn + τ ′) is also accepted byA, which is a
contradiction. Hence,V cannot be recognized by aTA.

This concludes the proof:L is universal if and only ifV is timed regular. ut

4 Complementability and Determinizability

In [Fin06, Theorem 1], Finkel proved that deciding whether the complement of a regular
timed language is regular is undecidable, and so is the problem of deciding whether a
regular timed language can be recognized by a deterministicTA. We extend those results
to the classTAε of timed automata with silent transitions.

Theorem 4 (Determinization).It is undecidable to determine whether, for a givenTAε

A, there exists a deterministicTA B such thatL(B) = L(A).

SinceTA are less expressive thanTAε, the above result is a straightforward conse-
quence of Finkel’s result.



Theorem 5 (Complementation).

1. It is undecidable to determine whether, for a givenTAε A, there exists aTAε B such
thatL(B) = L(A).

2. Furthermore this result holds forTAε over alphabets with two letters.

The proof of this theorem is neither a corollary of that of Finkel for the classTA,
nor an obvious twist of his proof. Indeed, his proof heavily relies on the fact that given
a timed word and aTA, there arefinitelymany timed executions wich yield such a timed
word. This is no more the case for the classTAε, as mentioned in Subsection 2.4. We
propose two undecidability proofs for that result, the simplest one which holds for timed
automata over alphabets with three letters or more, and the other one, more involved,
which holds for timed automata over alphabets with two letters.

The two proofs proceed as follows:

– Fix a regular timed languageL;
– Fix a regular timed languageR such thatR is not regular;
– Build from L andR, a new regular timed languageCompose(L,R) (which has

been defined in the previous section) such thatL is universal iff the complement of
Compose(L,R) is regular.

4.1 Case ofTAε over alphabets with three letters or more

For this proof, we instantiate the languageR by a language proposed in [AM04] for
gracefully proving that the class of timed regular languages is not closed under comple-
ment. It turns out that their result, proved in the frameworkof timed regular languages,
also holds in the framework ofε-timed regular languages, as stated in the following
proposition.

Proposition 1. AssumeΣ = {a, b}, and letRa,b be the timed language

Ra,b = {w = (a0, τ0) . . . (an, τn) ∈ T W∗(Σ) | ∃i, ai = a, and∀j ≥ i, τj−τi 6= 1} .

This timed language is timed regular, but its complement is not ε-timed regular.

The proof of this proposition is similar to that in [AM04], but for sake of completeness,
we write it there as well.

Proof. The timed languageRa,b is accepted by the timed automaton depicted on Fig-
ure 3, hence it is timed regular. We now show that its complement is notε-timed regular,
i.e., that it cannot be recognized by anyTAε. Assume that there exists aTAε B such that
L(B) = Ra,b. The complement ofRa,b is the set of timed words in which every action
a is followed one time unit later by an action.

Let T1 be the set of timed wordsw overΣ such that:

(i) Untimed(w) belongs to the untimed regular languagea∗b∗,
(ii) all a’s occur within[0, 1[, and
(iii) no twoa’s occur at the same date.



a, b

a; x := 0

x 6= 1; a, b

Fig. 3. The timed automaton acceptingRa,b

It is straightforward to check thatT1 is timed regular. Now observe that a word of the
form anbm belongs toUntimed(T1 ∩ Ra,b) if and only if m ≥ n holds. Hence a con-
tradiction: both intersection and theUntimedoperator preserve regularity of languages,
and{anbm | m ≥ n} is not regular. ut

The following lemma will be useful on the proof of Theorem 5.1. This is the coun-
terpart of [AD94, Theorem 3.17] for complements of timed regular languages.

Lemma 2. Let A be aTA over alphabetΣ and w /∈ L(A) be a finite timed word,
then there is another timed wordw′ /∈ L(A) whose dates are rational. Furthermore,
Untimed(w) = Untimed(w′).

Proof. Let d be the granularity ofA. Let w = (a1, τ1) . . . (an, τn). For convenience of
notations, we defineτ0 = 0. We buildw′ = (a1, τ

′
1) . . . (an, τ ′

n) by induction. Moreover
the timed word will satisfy this property:

∀0 ≤ i < j ≤ n, ∀k ∈ N, τj − τi ∼ k/d⇔ τ ′
j − τ ′

i ∼ k/d with ∼∈ {<,≤} (1)

The inductive property is the following one: there is a wordwm = (a1, τ
m
1 ) . . . (an, τm

n )
fulfilling the property (1) with∀i ≤ m, τm

i ∈ Q. The base case is proved by taking
w0 = w.

Assume that there is a wordwm = (a1, τ
m
1 ) . . . (an, τm

n ) fulfilling property (1). If
τm
m+1 ∈ Q thenwm+1 = wm. Otherwise we split the set of indexesI = {0, 1, . . . , n}

in two subsetsI≡ = {i ∈ I | τm
i ≡ τm

m+1 mod 1/d} andI6≡ = I \ I≡. As τm
i ∈ Q

for all i ≤ m (by induction hypothesis) andτm
m+1 6∈ Q, we have that{0, . . . , m} ⊆ I6≡.

Let δ = min(min(τm
i − τm

m+1 mod 1/d, τm
m+1 − τm

i mod 1/d) | i ∈ I6≡). Observe
thatδ > 0. Pick someδ′ such that0 < δ′ ≤ δ andτm

m+1 + δ′ ∈ Q. We buildwm+1 as
follows. ∀i ∈ I6≡, τm+1

i = τm
i and∀i ∈ I≡, τm+1

i = τm
i + δ′. It is routine to check

thatwm+1 fulfills the inductive property.
We claim thatw′ /∈ L(A). By contradiction, assume thatw′ ∈ L(A) and let

(`0, v0)
τ ′

1−→ (`0, v0 + τ ′
1)

e1−→ (`1, v1) . . . (`n−1, vn−1 + τ ′
n − τ ′

n−1)
en−→ (`n, vn)

be a finite accepting path forw′. Examine the path(`0, v0)
τ1−→ (`0, v0 + τ1)

e1−→

(`1, v1) . . . (`n−1, vn−1 + τn − τn−1)
en−→ (`n, vn). The value of a clockx when firing

an edgeei in the former path isτ ′
i−τ ′

j for somej < i (corresponding to the last reset of
x before firingei) and this value in the latter path isτi− τj. Due to property (1) on time
differences relative tow andw′, the previous observation shows that the guard of every
ei in the latter path is satisfied and thusw ∈ L(A) which yields a contradiction. ut

We can now prove Theorem 5.1.



Proof. Assume{a, b} ⊆ Σ. We consider the timed languageRa,b introduced in Propo-
sition 1. LetL ⊆ T W∗(Σ) be a timed regular language, and define the timed language
V overΣ+ asV = Compose(L,Ra,b). We claim thatL = T W∗(Σ) iff V is recognized
by aTAε. To prove this claim, we distinguish two cases:

(1) First case.AssumeL = T W∗(Σ). Applying Lemma 1,V = T W∗(Σ+). Thus,
V = ∅, which is obviously (ε-)timed regular.

(2) Second case.AssumeL 6= T W∗(Σ). Towards a contradiction, assume thatV
is recognized by aTAε A

′ with granularityd. Let w = (a0, τ0) . . . (an, τn) ∈
T W∗(Σ) \ L. By Lemma 2, we can assume that all dates are rational. We define
the timed regular languageT2 as follows:

w′ = w(c, τn)x ∈ T2 ⇐⇒



















Untimed(x) ∈ a∗b∗,

x = (a, τ ′
0) . . . (a, τ ′

k1
)(b, τ ′′

0 ) . . . (b, τ ′′
k2

),

∀0 ≤ i ≤ k1, τ ′
i ∈ [τn, τn + 1[,

∀0 ≤ i 6= j ≤ k1, τ ′
i 6= τ ′

j .

Similarly to the proof of Proposition 1, observe thatUntimed(T2 ∩ V) = {w′ |
∃m ≥ n, w′ = Untimed(w) c anbm}. This contradicts our assumption thatV be
ε-timed regular since the right member of the previous equality is not regular.

This concludes the proof:L is universal iffV is ε-timed regular. ut

4.2 Case ofTAε over alphabets with two letters

We first state the following lemma:

Lemma 3. LetA be aTA with n clocks and granularityd. Let(`, v) be a configuration
ofA. Then[0, 1/d[ can be partitioned asI1 ∪ . . . ∪ Im whereI1, . . . , Im are disjoint
consecutive intervals such thatm ≤ 2n+1, and for every1 ≤ j ≤ m, for all δ, δ′ ∈ Ij ,
for everyk ∈ N, for all x ∈ X , for every./ ∈ {<,≤},

v(x) + δ ./ k/d ⇐⇒ v(x) + δ′ ./ k/d .

Proof. For everyx ∈ X , there is exactly one valueδx ∈ [0, 1/d[ such thatv(x) + δx ∈
Nd. Let ∆ = {δ1, . . . , δJ} be the set of such values, assumingδi < δi+1. Of course,
J ≤ n. Let the partition[0, 1/d[ be given by[0, δ1[][δ1, δ1]]]δ1, δ2[] . . .]]δJ , 1/d[. It
is routine to check that this partition fulfills the requirement of the lemma. ut

The next proposition extends toTAε the well-known result that the class ofTA over
an alphabet reduced to a singleton is not closed under complementation.

Proposition 2. LetRa be the following timed language:

Ra = {(a, τ1) . . . (a, τn) | ∃1 ≤ i < j ≤ n s.t.τj − τi = 1} .

ThenRa is notε-timed regular.



Proof. Towards a contradiction, we assume that theTAε A recognizes the languageRa.
We denote byn the number of clocks ofA, and byd its granularity. The languageRa

is the set of timed words such that no pair of occurrences ofa’s are separated by one
time unit.

Pick a timed wordw = (a, τ1) . . . (a, τ2N+1) in Ra such thatN = 2n + 1, and:

– for all 1 ≤ i < j ≤ N , 0 < τi < τj < 1/d,
– for all 1 ≤ i ≤ N , 1 < τN+i < 1 + τi < τN+i+1 < 1 + 1/d.

Let % be a timed execution ofA which acceptsw, and consider the configuration
(`−%,1, v

−
%,1). Applying Lemma 3 to this configuration, we get a partition of[0, 1/d[ com-

posed of at mostN intervals. There exists aj such thatN + 1 ≤ j ≤ 2N , τj − 1 and
τj+1 − 1 belong to the same interval of this partition.

We now prove that for eachx ∈ X , there existsk ∈ N such that:

k/d < v−%,τj
(x) < v−%,τj

(x) + (τj+1 − τj) < (k + 1)/d (2)

Let x ∈ X . We distinguish two cases:

– Assume thatx has not been reset between the configurations(`−%,1, v
−
%,1) and(`−%,τj

, v−%,τj
)

along%. It implies thatv−%,τj
(x) = v−%,1(x) + τj − 1. Due to the choice ofj, we

know thatv−%,1(x)+ τj −1 andv−%,τj
(x)+ (τj+1− τj) = v−%,1(x)+ τj+1−1 satisfy

the same constraints of ‘granularityd’. Hence, equation (2) holds for clockx.
– Assume thatx has been reset along% between the configurations(`−%,1, v

−
%,1) and

(`−%,τj
, v−%,τj

). In this case, equation (2) holds fork = 0. Indeed0 < v−%,τj
(x) since

τj > 0. Furthermore, as the date at which clockx has been last reset between the
two above-mentioned configurations is within the interval[1, 1 + 1/d[, we get that
v−%,τj

(x) + (τj+1 − τj) ≤ (τj − 1) + (τj+1 − τj) < 1/d.

Let δ = 1+ τj−N − τj . From equation (2) and the constraints on the time sequence
(τi)1≤i≤2N+1, we get that for everyx ∈ X , there exists somek ∈ N such that:

k/d < v−%,τj
(x) < v−%,τj

(x) + δ < (k + 1)/d (3)

Now we build a timed execution%′ as follows. It mimics% up to the configuration
(`−%,τj

, v−%,τj
). Then, it letsδ time units elapse, which leads to configuration(`−%,τj

, v−%,τj
+

δ). Then it fires theinstantaneoussubsequence (i.e., with null duration) of% (say%j)
leading from(`−%,τj

, v−%,τj
) to (`+

%,τj
, v+

%,τj
). The timed execution%j is non empty as it

contains at least a transition labelled bya. This sequence can also be executed from
(`−%,τj

, v−%,τj
+ δ) since, following equation (3), both configurations belong to the same

‘region’ associated withA (we refer to [AD94] for a definition and properties of regions
in timed automata). Then,%′ can do the same actions as%, possibly with other delays
(due to the so-called time-abstract bisimulation propertyof regions), until reaching an
accepting location (as% is accepting).

Now, the timed word read on%′ has two occurrences ofa separated by one time
unit (those at dateτj−N and at date1 + τj−N ). Thus, it does not belong toRa, hence a
contradiction. ut



We can now prove Theorem 5.2 for alphabets with two letters.

Proof. The proof follows the lines described before. LetL be a timed regular language
and defineV = Compose(L,Ra) whereRa is the language introduced in Proposition 2.
We claim thatL = T W∗(Σ) iff V is recognized by aTAε. We distinguish two cases:

(1) First case.We assumeL = T W∗(Σ). As a consequence of Lemma 1,V = ∅
which is obviously (ε-)timed regular.

(2) Second case.We assumeL 6= T W∗(Σ) . Towards a contradiction, we assume
that V is recognized by aTAε A′ with granularityd and n clocks. Pickw′ =
(a1, τ

′
1) . . . (am, τ ′

m) in T W∗(Σ)\L and letw = w′(c, τ ′
m)(a, τ1) . . . (a, τ2N+1) ∈

V with N = 2n + 1 such that:
• for all 1 ≤ i < j ≤ N , τ ′

m < τi < τj < τ ′
m + 1/d;

• for all 1 ≤ i ≤ N , τ ′
m + 1 < τN+i < 1 + τi < τN+i+1 < τ ′

m + 1 + 1/d.
From a timed execution acceptingw inA, we construct a timed execution%′ (which
plays the wordsw′, theN next actions, and then applies the construction of the
proof of Proposition 2 from(`−%,τ ′

m+1
, v−%,τ ′

m+1
)) to obtain another accepting execu-

tion %′ whose associated word does not belong toV , yielding a contradiction. ut

5 Minimization of the Number of Clocks

In [Fin06, Theorem 2], Finkel proved that given a timed language recognized by aTA
with n clocks, we cannot decide whether it can be recognized by aTA with n−1 clocks.
In this Section, we prove that this result also holds in the framework ofTAε.

We first prove the following proposition, which exhibits a family of timed languages
such that then-th language is recognized by ann-clockTA, but not by any(n−1)-clock
TAε. These languages are known since [HKWT95] when restrictingto TA. However,
the extension of the result toTAε is non-trivial and requires a careful analysis of timed
executions inTAε.

Proposition 3 (Language with a minimal number of clocks).Letn ≥ 1 be a positive
integer. Define the languageRn as follows:

Rn = {(a, τ1)(a, τ2) . . . (a, τ2n) | ∀1 ≤ i ≤ n, 0 ≤ τi < 1 ∧ τn+i = 1 + τi} .

The timed languageRn is accepted by aTA with n clocks, but not by anyTA, and even
anyTAε, with strictly less thann clocks.

Proof. Let n ≥ 1 be a positive integer. The languageRn is recognized by theTA An

depicted on Figure 4.
Now assume that there exists aTAε B with less thann clocks, and such thatL(B) =

L(A). Denote byd the granularity ofB. Fix some values(τi)1≤i≤n such that0 < τ1 <
τ2 < . . . < τn < 1/d, and consider the timed wordw = (a, τ1)(a, τ2) . . . (a, τn)(a, τ1+
1)(a, τ2 + 1) . . . (a, τn + 1). Obviouslyw ∈ Rn, and thusw is accepted byB along
some run%.

For each indexi in {1, . . . , n}, we consider the configuration(`−%,τi+1, v
−
%,τi+1).

The last transition before this configuration is thus a delaytransition. We distinguish
two cases:



q0 q1 q2 qn

qn+1

qn+2 q2n

a

x1 := 0

a

x2 := 0

a

xn < 1
xn := 0

x1 = 1

a

a

x2 = 1

a

xn = 1

Fig. 4.AutomatonAn with n clocks.

– First case: There exists an indexi ∈ {1, . . . , n} such that for every clockx,
v−%,τi+1(x) 6≡ 0 mod 1/d. This implies that the region (with respect to granularity
d) to which belongs the valuationv−%,τi+1 is ‘time-open’,i.e., for everyv ∈ r, there
existsδ > 0 such thatv+δ ∈ r andv−δ ∈ r. Thus, we can change the time elapsed
during the last transition, and add such a valueδ. The new configuration which is
reached along this modified execution is(`−%,τi+1

, v−%,τi+1
+ δ) andv−%,τi+1

+ δ is
in the same region asv−%,τi+1. Hence, applying the time-abstract bisimulation prop-
erty of the regions, it is possible to follow exactly the sametransitions (possibly
at different dates). This gives another accepting execution. Nevertheless, the timed
word which is read on this execution does not belong toRn because thei-th a and
thei + N -th a are separated by1 + δ > 1 units of time. Hence a contradiction.

– Second case:We assume that for every indexi ∈ {1, . . . , n}, there exists a clockx
such thatv−%,τi+1(x) ≡ 0 mod 1/d. Since the number of clocks ofB is strictly less
thann, there exists a clockx such thatv−%,τi+1(x) ≡ 0 mod 1/d andv−%,τj+1(x) ≡

0 mod 1/d with 1 ≤ i < j ≤ n. Sinceτi + 1 > 0 andτj + 1 > 0, the two values
v−%,τi+1(x) andv−%,τj+1(x) are positive, hence somek/d for k ∈ N∗. This leads to
a contradiction, as the time elapsed between these two positions is strictly less than
1/d (and positive).

This concludes the proof: such aTAε B cannot exist. ut

We can now state the following theorem, which extends Theorem 2 of [Fin06] to
timed automata with silent transitions. Note that our undecidability result holds even
for one-clockTAε, which is to be compared with the class of one-clockTA for which
we can decide this problem.

Theorem 6 (Minimizing the number of clocks).Letn be an integer.

– Casen ≥ 2. For n ≥ 2, it is undecidable to determine whether, for a givenTA (and
thus also forTAε)A with n clocks, there exists aTAε B with n− 1 clocks such that
L(A) = L(B).

– Casen = 1. It is undecidable to determine whether, for a givenTAε Awith 1 clock,
there exists aTAε B without clocks such thatL(A) = L(B).



Proof. Let Σ be a finite alphabet, and leta ∈ Σ. Let n ≥ 1, andRn be the set of
timed words introduced in Proposition 3. Letc be a fresh letter (c 6∈ Σ). We consider a
regular languageL ⊆ T W∗(Σ) accepted by someTA with n clocks whenn ≥ 2 or by
someTAε with a single clock (casen = 1). We construct another timed languageVn

overΣ+ = Σ ∪ {c} defined asVn = Compose(L,Rn). Due to Lemma 1, the timed
languageVn is timed regular (resp.ε-timed regular whenn = 1) and is accepted by a
TA with n clocks (resp. aTAε with a single clock). We claim thatL is universal iffVn

is accepted by aTAε with n− 1 clocks. We distinguish two cases:

1. First case.We assumeL is universal onΣ, i.e. L = T W∗(Σ∗). Then,Vn =
T W∗(Σ+), i.e., Vn is universal onΣ+, and thus it can be accepted by a (determin-
istic) timed automatonwithout any clock.

2. Second case.We assumeL is not universal onΣ, i.e., L is strictly included in
T W∗(Σ). Then, there is a timed wordu = (a1, τ1) . . . (ak, τk) ∈ T W∗(Σ) which
does not belong toL. Consider now a timed wordx ∈ T W∗(Σ). It holds that
u.(c, τk).(x + τk) ∈ Vn iff x ∈ Rn. Towards a contradiction, assume thatVn is
accepted by aTAε B with n−1 clocks. Let us denote byd the granularity ofB, and
fix some values(τ ′

i)1≤i≤n such that0 < τ ′
1 < τ ′

2 < . . . < τ ′
n < 1/d. We consider

the timed wordv = (a, τ ′
1)(a, τ ′

2) . . . (a, τ ′
n)(a, τ ′

1 + 1)(a, τ ′
2 + 1) . . . (a, τ ′

n + 1).
Obviously,v ∈ Rn, and thusw = u.(c, τk).(v + τk) ∈ Vn is accepted byB. We
can then apply the reasoning developed in the proof of Proposition 3 to the timed
word w, and get a contradiction. Indeed, this proof does not rely onthe fact that
the initial valuation is0 and thus can be reproduced from configuration reached
after recognizingu.(c, τk). We can finally conclude that such a timed automatonB
cannot exist. Hence, the timed languageVn cannot be recognized by anyTAε with
strictly less thann clocks.

Thus determining whetherVn can be recognized by aTAε with less thann clocks is
equivalent to deciding whetherL is universal. Since the two universality problems that
we consider are undecidable (see Theorem 2), this concludesthe proof. ut

6 Shuffle Operation

In this section, we are interested in the shuffle operation for timed words. In order to
conform to the definition considered in [Fin06] and in [Dim05], we introduce a new
description of timed words: given a timed wordw = (a0, τ0) . . . (an, τn) . . ., we define
its associateddelay timed word, denotedDelay(w), and defined by

Delay(w) = (τ0, a0) · ((τ1 − τ0), a1) · · · ((τn − τn−1), an) · · ·

Delay timed words are thus simply words on the alphabet(R≥0 ×Σ), i.e., elements of
(R≥0 × Σ)∗. This description of a timed word gathers the delay of time that elapses
together with the next discrete action. either actions or delays. Delay is a bijection
between timed words (T W∗(Σ)) and delay timed words ((R≥0 ×Σ)∗).

We first define the shuffle operation on finite words on an alphabetX . Givenu, v ∈
X∗, we defineu tt v as the set of words

{w = x1y1x2y2 . . . xnyn | u = x1x2 . . . xn andv = y1y2 . . . yn} .



We extend it to sets of words by defining, forS1, S2 ⊆ X∗, S1 tt S2 = {s1 tt s2 |
s1 ∈ S1, s2 ∈ S2}.

This definition thus directly applies to delay timed words (alphabetX = (R≥0×Σ))
andvia the Delay mapping can be used to define the shuffle operationtt on timed
words. Givenu andv in T W∗(Σ),

u tt v = Delay−1(Delay(u) tt Delay(v)) .

It also extends to delay timed languages,i.e., sets of delay timed words, by previous
definition on sets of words. Moreover, we define naturally thenotions of (ε-) delay
timed regular languages, as those associated with (ε-) timed regular languages by the
operatorDelay

In order to simplify the notations, in the sequel of this section, we only handle delay
timed words. The results for timed words are obtainedvia theDelay mapping.

Finkel and Dima proved independently that delay timed regular languages are not
closed under shuffle operation. We first extend this result, stated as [Fin06, Theorem 4],
to ε-delay timed regular languages.

Proposition 4. The shuffle of two delay timed regular languages is not necessarily an
ε-delay timed regular language.

Proof. To prove this result, we follow the lines of the proof of [Fin06]. We first define
three delay timed regular languages:

– N1 = {(t1, a) · (1, a) · (t2, a) | t1 + t2 = 1},
– N2 = {(1, b) · (s, b) | s ∈ R≥0},
– N3 = {(t1, a) · (1, b) · (s, b) · (1, a) · (t2, a) | t1, s, t2 ∈ R≥0}.

If the shuffle of two delay timed regular languages was anε-delay timed regular
language, and sinceε-delay timed regular languages are closed under intersection, the
delay timed language(N1 tt N2) ∩ N3 would also beε-delay timed regular. We show
that this is not the case.

(N1 tt N2)∩N3 = {(t1, a) ·(1, b) ·(s, b) ·(1, a) ·(t2, a) | t1, t2, s ∈ R≥0, t1+t2 = 1}

Towards a contradiction, we suppose that there exists aTAε A accepting this language.
We denote byd the granularity ofA.

Let w be a delay timed word accepted byA such that the following properties hold:






t2 6≡ 0 mod 1/d
s + t2 6≡ 0 mod 1/d
s 6≡ 0 mod 1/d

Sincew is accepted byA, there exists a path in the automaton which recognizesw,
`0

e1−→ `1 . . . `n−1

en−→ `n whereei are edges ofA. This path can be viewed as a
(linear)TAε A′ with n + 1 locations corresponding to the occurrences of locations in
the path andn edges corresponding to the occurrences of edges in the path.The clocks
of the two automata are the same ones. The guard and the reset of an occurring edge



are the ones of the original one. The set of final locations is asingleton whose element
corresponds tòn.

By construction,A′ has no cycle,w ∈ L(A′) ⊆ L(A) and its granularityd′ divides
the one ofA.

Using [BDGP98, Theorem 21], it is possible to build fromA′ another timed au-
tomaton without silent transitionsA′′ accepting the same timed language, and such that
its granularity is equal to that ofA′. Let us examine in the region automaton ofA′′, a
path which acceptsw. Due to hypotheses done ons, t1 andt2, the region reached im-
mediately before the firing of the thirda is time-open. Indeed a region is time-open as
soon as there exists a clock valuation inside it such that every clock value is not equiv-
alent to 0 modulo the granularity of the automaton. An elementary examination of the
timed word yields to the possible clock values:t2, t2 + 1, t2 + 1 + s, t2 + 2 + s, 3 + s
(recall that there are no silent transitions inA′′).

As a consequence, we can postpone the date at which this transition is taken by
a small delay. We obtain another timed wordw′ which is accepted byA′′, but which
does not satisfy the constraints of(N1 tt N2) ∩ N3 (i.e., t1 + t2 = 1). This yields a
contradiction sincew′ ∈ L(A′′) = L(A′) ⊆ L(A). ut

Observation.Let us analyze the scheme of the previous proof:

1. fix a wordw in the languageL under study;
2. transform one of its accepting paths into a linearTAε which accepts a languageL′

such thatw ∈ L′ andL′ ⊆ L;
3. transform this linearTAε into a TA using the construction of [BDGP98] which

accepts the same languageL′ (this is possible as there is no cycle in theTAε);
4. apply a technique specific toTA in order to obtain a wordw′ accepted by thisTA

such thatw′ /∈ L.

One could believe that such a scheme could be adapted to provethe previous results of
this paper. However, it is worth noticing that the construction of [BDGP98] increases
the number of clocks. This prevents the application of this scheme to the proofs which
rely on the number of clocks of the originalTAε (more precisely theorems 5.2 and 6).

We now state our extension of [Fin06, Theorem 5]5 to the framework ofTAε.

Theorem 7 (Shuffle).The problem of deciding whether the shuffle of two delay timed
regular languages isε-delay timed regular is undecidable.

Proof. Let Σ be a finite alphabet containing at least one lettera. We denote byb andc
two letters not inΣ, and defineΣ+ = Σ ∪{c} andΣb = Σ ∪{b}. We consider a delay
timed regular languageL ⊆ (R≥0 × Σ)∗. Denoting byN1 ⊆ (R≥0 × Σ)∗ the delay
timed regular language introduced in the proof of the previous proposition, we define
V ⊆ (R≥0 ×Σ+)∗ as the union of the following three delay timed languages: (this is a
natural adaptation ofComposeto delay timed words)

V1 = {w | ∃w′ ∈ L, ∃w′′ ∈ (R≥0 ×Σ)∗, ∃τ s.t.w = w′ · (c, τ) · w′′}
V2 = {w | |w|c 6= 1}
V3 = {w | ∃w′ ∈ (R≥0 ×Σ)∗, ∃w′′ ∈ N1, ∃τ s.t.w = w′ · (c, τ) · w′′}

5 Just notice that the proof presented in [Fin06] is not completely correct, but it can be fixed
using our techniques.



SinceL andN1 are delay timed regular, we get thatV is also delay timed regular.
We consider now the delay timed languageW = V tt N2 whereN2 has been defined
in the previous proof. Note thatN2 involves letterb. We claim thatL is universal (on
Σ) iff W is ε-delay timed regular. We distinguish two cases:

1. First case.We assumeL is universal onΣ, i.e., L = (R≥0 × Σ)∗. Then,V =
(R≥0 × Σ+)∗, i.e., V is universal onΣ+. It is then easy to verify that theTA
depicted on Figure 5 recognizesW . In particular,W is (ε)-delay timed regular.

Σ+; x := 0

x = 1; b

Σ+

b

Σ+

Fig. 5.A TA acceptingW.

2. Second case.We assumeL is not universal onΣ. Towards a contradiction, as-
sume thatW is ε-delay timed regular. Then, the delay timed languageX = W ∩
((R≥0 ×Σ)∗ · (1, c) · N3) is ε-delay timed regular. Pick a delay timed wordw =
(τ1, a1) · · · (τk, ak) ∈ (R≥0 × Σ)∗ which does not belong toL. Consider now a
delay timed wordx ∈ (R≥0 ×Σb)

∗. We will show the following equivalence:

w · (1, c) · x ∈ X ⇐⇒ x ∈ (N1 tt N2) ∩ N3

First suppose thatw′ = w·(1, c)·x ∈ X . Since,w′ ∈ (R≥0×Σ)∗·(1, c)·N3, we get
thatx ∈ N3. Since there is a single occurrence ofc in w′, w′ belongs to eitherV1 tt

N2 or V3 tt N2. Assume thatw′ ∈ V1 tt N2, thusw′ ∈ w− · (1, c) · w+ tt w2

with w− ∈ L andw2 ∈ N2. Thusw− 6= w and sow is obtained by inserting letter
occurrences ofw2 in w− but these areb occurrences which cannot occur inw a
word overΣ. Hence we have thatw · (1, c) ·x ∈ ((R≥0 ×Σ)∗ · (1, c) · N1) tt N2.
Again since a word ofN2 includes onlyb occurrences, we getx ∈ N1 tt N2,
which concludes the proof of the first direction. Conversely, the second implication
follows fromw · (1, c) · (N1 tt N2) ⊆ (w · (1, c) · N1) tt N2.
Then we mimic the proof of Proposition 4 and prove thatX cannot beε-timed
regular. However, this is not direct, and requires to be careful. Let denote byA a
TAε acceptingX . We denote byd its granularity. Consider a delay timed wordx
belonging to(N1 tt N2) ∩ N3 such that:















t2 6≡ 0 mod 1/d
s + t2 6≡ 0 mod 1/d
s 6≡ 0 mod 1/d

s +
∑k

j=i τj 6≡ 0 mod 1/d, ∀i ∈ {1, . . . , k}

This is possible since the set of pairs(s, t2) that do not fulfill one of these equations
has zero measure. We can then consider the delay timed wordw′ = w·(1, c)·x ∈ X .



Using the same techniques as in the previous proof, we can exhibit a TAA′′ whose
granularity dividesd and such thatw′ ∈ L(A′′) ⊆ L(A). We explicit the delay
timed wordw′:

w′ = (τ1, a1) · · · (τk, ak) · (1, c) · (t1, a) · (1, b) · (s, b) · (1, a) · (t2, a) .

A simple examination yields that the possible clock values reached immediately
before the firing of the lasta are the following ones:t2, t2 + 1, t2 + 1 + s, t2 +

2 + s, 3 + s, 4 + s, 4 + s + τk, . . . , 4 + s +
∑k

j=1
τj . As a consequence, due to

the constraints imposed onx, the region reached at this instant is time-open, and
we can postpone the firing of the lasta. We obtain another timed wordw′′ which is
accepted byA′′, but does not belong toX , since it violates the propertyt1 + t2 = 1
required by(N1 tt N2) ∩N3. This yields the contradiction.

This concludes the proof: determining whetherW can be recognized by aTAε is equiv-
alent to deciding whetherL is universal. ut

7 Extension to Infinite Timed Words

In this section, we explain how all previous results extend to the framework of infinite
timed words. First, we define the acceptance of infinite timedwords by timed automata
with or without silent transitions. We assume that the acceptance condition is given
by a Büchi condition, and replace the set of accepting locations F in the definition
of a timed automaton by a set ofrepeated locationsR. TakeA = (L, `0, X, E, R)
such a timed automaton. For defining its semantics in terms ofinfinite timed words,
we need to distinguish between automata with or without silent transitions. We first

assume thatA has no silent transitions. Given a infinite timed execution% : (`0, v0)
d0−→

(`0, v0 + d0)
a0−→ (`1, v1)

d1−→ (`1, v1 + d1)
a1−→ . . ., its label is the infinite timed

word w = (a0, τi)i≥0 whereτi is given as previously byτi =
∑

k≤i dk. If the timed
execution passes infinitely often through a location ofR, we say that it is anaccepting
execution, and that its label is accepted by the timed automatonA. Then, we assume
thatA is a timed automaton overΣε (that is, it has silent transitions). As in the case
of finite timed words, we define byw′ the timed word obtained fromw by deleting
the pairs whose first component is equal toε. It may be the case thatw′ is finite: it
happens exactly when there are infinitely many actions labelled byε, but only finitely
many labelled by elements different fromε. If the timed execution passes infinitely
often through a repeated location, and if moreoverw′ is infinite, we say that% is an
accepting execution, and that its labelw′ is accepted byA. In both cases, the set of
infinite timed words accepted byA is denotedLω(A).

All the results we have presented in the framework of languages of finite timed
words extend to the framework of languages of infinite timed words. We sum up all
results in the following theorem.

Theorem 8 (Infinite words). The six following problems are undecidable:

1. Given aTAε A, determine whether there exists aTA B such thatLω(B) = Lω(A).



2. Given aTAε A, determine whether there exists a deterministicTA B such that
Lω(B) = Lω(A).

3. Given aTAε A over an alphabet of at least two letters, determine whether there
exists aTAε B such thatLω(B) = Lω(A).

4. Given aTA A with n clocks (n ≥ 2), determine whether there exists aTAε B with
n− 1 clocks such thatLω(B) = Lω(A).

5. Given aTAε A with a single clock determine whether there exists aTAε B without
clock such thatLω(B) = Lω(A).

6. Given twoTA A and B, determine whether the shuffle ofLω(A) and Lω(B) is
ε-timed regular6.

The proof of this theorem can be derived from the various proofs we have proposed
in the framework of finite timed words. Since all extensions are very similar, we only
develop the proof of the first result. The idea is to modify theconstructionComposefor
the framework of infinite timed words, and then to build a regular timed languageR
(over infinite words) witnessing the strict inclusion between the two families of studied
languages.

As previously, given an alphabetΣ, we pick a letterc not in Σ, and denote byΣ+

the alphabetΣ ∪ {c}.

Definition 3. LetL ⊆ T W∗(Σ) andR ⊆ T Wω(Σ) be two timed languages overΣ
(the first one only contains finite words, whereas the second one only contains infinite
words). Then Inf-Compose(L,R) is a timed language of infinite words overΣ+ defined
as the union of the following three languages:

V1 = {w ∈ T Wω(Σ+) | ∃w′ ∈ L, ∃w′′ ∈ T Wω(Σ), ∃τ s.t.w = w′(c, τ)w′′}
V2 = {w ∈ T Wω(Σ+) | |w|c 6= 1}
V3 = {w ∈ T Wω(Σ+) | ∃w′ ∈ T W∗(Σ), ∃w′′ ∈ R, ∃τ s.t.w = w′(c, τ)(w′′ + τ)}

We obtain similar properties for this new construction:

Lemma 4. LetL ⊆ T W∗(Σ) andR ⊆ T Wω(Σ) be two timed languages over al-
phabetΣ.

– If L andR are accepted byTAε with at mostn clocks, then Inf-Compose(L,R) is
also accepted by aTAε with at mostn clocks.

– Inf-Compose(T W∗(Σ),R) = T Wω(Σ+), it is thus accepted by a deterministic
TA with no clock.

The proof of this lemma is similar to that of Lemma 1.

Proof (of Theorem 8).We only develop the proof of the first item. We consider a slight
modificationRω

evenof the languageRevendefined by:

Rω
even= {(a, τ1) . . . (a, τn) . . . | τi ≡ 0[2] for everyi ≥ 1} .

6 For this result, we exclude Zeno timed words since the construction of [BDGP98] is only valid
for infinite non Zeno words.



This timed language is accepted by theTAε of Figure 1 where the set of repeated
locations is the singleton{`}.

Assumea ∈ Σ, and letL ⊆ T W∗(Σ) be a timed regular language. Let us consider
now the timed languageV = Inf-Compose(L,Rω

even). Applying Lemma 4, we have
thatV is ε-timed regular. We will show now thatV is timed regular if and only ifL is
universal onΣ. We distinguish two cases:

(1) First case.AssumeL = T W∗(Σ). Applying Lemma 4,V = T Wω(Σ+), which
is obviously timed regular.

(2) Second case.AssumeL 6= T W∗(Σ). Towards a contradiction, assume thatV is
recognized by aTAA. Lety = (a0, τ0) . . . (an, τn) ∈ T W∗(Σ)\L. Then we have
that, for everyw ∈ T Wω(Σ), y.(c, τn).(w + τn) ∈ V if and only if w ∈ Rω

even. Let
K be the maximal constant ofA and consider the timed wordw′ = y.(c, τn).(a, τ+
τn).(a, τ + τn + 2) . . . whereτ ∈ N is an even integer satisfyingτ > K. Then,
the timed wordw′ is accepted byA, and there exists a path inA along whichw′ is
accepted. Lete = (`, γ, a, U, `′) denote the transition of this path corresponding to
(a, τ + τn) and let(`, v) be the configuration reached aftery.(c, τn) is recognized.
Let v′ = v+τ be the valuation when firinge, thenv′ |= γ. Because of the choice of
τ , it holds for any clockx ofA thatv′(x) = v(x)+τ > K. In particular, for any odd
integerτ ′ greater thanτ , the timed wordy.(c, τn).(a, τn +τ ′) can be recognized by
the prefix of the path ending ine. Furthermore, in the region automaton this prefix
reaches the same region and thus can be extended into an accepting (infinite) path
for a wordw′′ with y.(c, τn).(a, τn + τ ′) as prefix which is a contradiction (τ ′ is
not even). Hence,V cannot be recognized by aTA.

This concludes the proof:L is universal if and only ifV is timed regular. ut

8 Conclusion

In this work, we have studied decision problems related to timed automata with silent
transitions. First we have answered negatively a central question raised by the introduc-
tion of silent transitions: can we decide whether the language recognized by a timed au-
tomaton with silent transitions is recognized by some classical timed automaton? Then
we have extended undecidability results known in the framework of timed automata.
Proofs of these results are more involved than the previous ones because a timed word
can be accepted in uncountably many different ways by a timedautomaton with silent
transitions. In addition to the interest of the results, we believe that such proofs give
more insight on the role of silent transitions.

Finally, since all our proofs rely on the introduction of a new letter, a possible future
work is the particular case of an alphabet reduced to a singleton.
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