
Interrupt Timed Automata

B. Bérard1⋆, S. Haddad2⋆

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
E-mail: Beatrice.Berard@lip6.fr

2 Ecole Normale Supérieure de Cachan, LSV, CNRS UMR 8643, Cachan, France
E-mail: Serge.Haddad@lsv.ens-cachan.fr

Abstract. In this work, we introduce the class of Interrupt Timed Au-
tomata (ITA), which are well suited to the description of multi-task sys-
tems with interruptions in a single processor environment. This model
is a subclass of hybrid automata. While reachability is undecidable for
hybrid automata we show that in ITA the reachability problem is in 2-
EXPSPACE and in PSPACE when the number of clocks is fixed, with a
procedure based on a generalized class graph. Furthermore we consider
a subclass ITA

−
which still describes usual interrupt systems and for

which the reachability problem is in NEXPTIME and in NP when the
number of clocks is fixed (without any class graph). There exist languages
accepted by an ITA

−
but neither by timed automata nor by controlled

real-time automata (CRTA), another extension of timed automata. How-
ever we conjecture that CRTA is not contained in ITA. So, we combine
ITA with CRTA in a model which encompasses both classes and show
that the reachability problem is still decidable.

Keywords: hybrid automata, timed automata, multi-task systems, in-
terruptions, decidability of reachability

1 Introduction

Context. The model of timed automata (TA), introduced in [1], has proved very
successful due to the decidability of the emptiness test. A timed automaton
consists of a finite automaton equipped with real valued variables, called clocks,
which evolve synchronously with time, during the sojourn the states. When a
discrete transition occurs, clocks can be tested by guards, which compare their
values with constants, and reset. The decidability result was obtained through
the construction of a finite partition of the state space into regions, leading to
a finite graph which is time-abstract bisimilar to the original transition system,
thus preserving reachability.

Hybrid automata have subsequently been proposed as an extension of timed
automata [14], with the aim to increase the expressive power of the model. In this
model, clocks are replaced by variables which evolve according to a differential
equation. Furthermore, guards consist of more general constraints on the vari-
ables and resets are extended into (possibly non deterministic) updates. However,

⋆ Work partly supported by project DOTS (ANR-06-SETI-003)

since reachability is undecidable for this model, many classes have been defined,
between timed and hybrid automata, to obtain the decidability of this problem.
Examples of such classes are multi-rate or rectangular automata [2], some sys-
tems with piece-wise constant derivatives [3], controlled real-time automata [9],
integration graphs [11], o-minimal hybrid systems [12, 13], some updatable timed
automata [6] or polygonal hybrid systems [4].

Contribution. In this paper, we define a subclass of hybrid automata, called
Interrupt Timed Automata (ITA), well suited to the description of multi-task
systems with interruptions in a single processor environement. In an ITA, the
finite set of control states is organized according to interrupt levels, ranging
from 1 to n, with exactly one active clock for a given level. The clocks from
lower levels are suspended and those from higher levels are not yet defined.
On the transitions, guards are linear constraints using only clocks from the
current level or the levels below and the relevant clocks can be updated by
linear expressions, using clocks from lower levels. For a transition increasing the
level, the newly relevant clocks are reset. This model is rather expressive since
it combines variables with rate 1 or 0 (usually called stopwatches) and linear
expressions for guards or updates.

While the reachability problem is well known to be undecidable for automata
with stopwatches [10, 8, 7], we prove that for ITA, it belongs to 2-EXPSPACE.
The procedure significantly extends the classical region construction of [1] by
associating with each state a family of orderings over linear expressions. Fur-
thermore, we define a slight restriction of the model, leading to a subclass ITA−

for which reachability can be decided in NEXPTIME. Furthermore when the
number of clocks is fixed, the complexity is greatly reduced for both classes:
PSPACE (resp. NP) for ITA (resp. ITA−).

We also investigate the expressive power of the class ITA, in comparison with
the original model of timed automata and also with the more general controlled
real-time automata (CRTA) proposed in [9]. In CRTA, clocks are also organized
into a partition (according to colours) and may have different rates, but all
active clocks in a given state have identical rate. We prove that there exist timed
languages accepted by ITA (and also ITA−) but not by a CRTA (resp. not by
a TA). We conjecture that the classes ITA and CRTA are incomparable, which
leads us to define a combination of the two models, the CRTA part describing
a basic task at an implicit additional level 0. For this extended model denoted
by ITA+ (with ITA+

− as a subclass), we show that reachability is still decidable
with the same complexity.

Outline. In section 2, we define ITA and study its expressive power. Section 3
is devoted to the decidability of the reachability problem and section 4 extends
the results for the models combining ITA and CRTA.

2 Interrupt Timed Automata

2.1 Definitions and examples

The sets of natural numbers, rational numbers and real numbers are denoted
respectively by N, Q and R, with Q≥0 (resp. R≥0) for the set of non negative
rational (resp. real) numbers.

Let X be a set of clocks. A linear expression over X is a term of the form∑
x∈X axx + b where b and the axs are in Q. We denote by C+(X) the set of

constraints obtained by conjunctions of atomic propositions of the form C ⊲⊳ 0,
where C is a linear expression and ⊲⊳ is in {<,≤,≥, >}. The subset of C+(X)
where linear expressions are restricted to the form x + b, for x ∈ X and b ∈ Q is
denoted by C(X). An update over X is a conjunction of the form

∧
x∈X x := Cx

where Cx is a linear expression. We denote by U+(X) the set of updates over X
and by U(X) the subset of U+(X) where for each clock x, the linear expression
Cx is either x (value unchanged) or 0 (clock reset).

A clock valuation is a mapping v : X 7→ R and we denote by 0 the valuation
assigning the value 0 to all clocks. The set of all clock valuations is RX and we
write v |= ϕ when valuation v satisfies the clock constraint ϕ. For an element d
of R≥0, the valuation v+d is defined by (v+d)(x) = v(x)+d, for each clock x in
X. For a linear expression C =

∑
x∈X axx+b, the real number v[C] is defined by∑

x∈X axv(x) + b. For an update u defined by
∧

x∈X x := Cx, the valuation v[u]
is defined by v[u](x) = v[Cx] for x in X. The linear expression C[u] is obtained
by substituting in C every x by Cx.

The model of ITA is based on the principle of multi-task systems with in-
terruptions, in a single processor environment. We consider a set of tasks with
different priority levels, where a higher level task represents an interruption for
a lower level task. At a given level, exactly one clock is active with rate 1, while
the clocks for tasks of lower levels are suspended, and the clocks for tasks of
higher levels are not yet activated.

Definition 1 (Interrupt Timed Automaton). An interrupt timed automa-
ton is a tuple A = (Σ, Q, q0, F, X, λ, ∆), where Σ is a finite alphabet, Q is
a finite set of states, q0 is the initial state, F ⊆ Q is the set of final states,
X = {x1, . . . , xn} consists of n interrupt clocks, the mapping λ : Q 7→ {1, . . . , n}
associates with each state its level and ∆ ⊆ Q× [C+(X)×(Σ∪{ε})×U+(X)]×Q
is the set of transitions.

We call xλ(q) the active clock in state q. Let q
ϕ,a,u
−−−→ q′ in ∆ be a transition

with k = λ(q) and k′ = λ(q′). The guard ϕ contains only clocks from levels less

than or equal to k: it is a conjunction of constraints of the form
∑k

j=1 ajxj +b ⊲⊳
0. The update u is of the form ∧n

i=1xi := Ci with:

– if k′ < k, i.e. the transition decreases the level, then Ci is of the form∑i−1
j=1 ajxj + b or Ci = xi for 1 ≤ i ≤ k′ and Ci = xi otherwise;

– if k′ ≥ k then Ci is of the form
∑i−1

j=1 ajxj + b or Ci = xi for 1 ≤ i ≤ k,
Ci = 0 if k < i ≤ k′ and Ci = xi if i > k′.

Thus, clocks from levels higher than the target state are ignored, and when newly
relevant clocks appear upon increasing the level, they are reset.

Definition 2 (Semantics of an ITA). The semantics of an ITA A is defined
by the transition system TA = (S, s0,→). The set S of configurations is {(q, v) |
q ∈ Q, v ∈ RX}, with initial configuration (q0,0). An accepting configuration
of TA is a pair (q, v) with q in F . The relation → on S consists of two types of
steps:

Time steps: Only the active clock in a state can evolve, all other clocks are
suspended. For a state q with active clock xλ(q), a time step of duration d is

defined by (q, v)
d
−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d and v′(x) = v(x) for

any other clock x.
Discrete steps: A discrete step (q, v)

a
−→ (q′, v′) occurs if there exists a transi-

tion q
ϕ,a,u
−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

q0, 1 q1, 2 q2, 2
x1 < 1, a, x2 := 0 x1 + 2x2 = 1, b

Fig. 1. An ITA A1 with two interrupt levels

q0, 1 q1, 2
x1 > 0, a, x2 := 0

x2 = x1, a, x2 := 0

Fig. 2. An ITA A2 for L2

Remarks. Observe that in state q the only relevant clocks are {xk}k≤λ(q) since
any other clock will be reset before being tested for the first time in the future.
We have not stated this feature more explicitely in the definition for the sake of
simplicity.

Concerning updates, if we allow a slight generalization, substituting xi :=∑i−1
j=1 ajxj + b by xi :=

∑i
j=1 ajxj + b, it is easy to simulate a two-counter

machine with a three clocks-ITA, thus implying undecidability of reachability
for the model.

A timed word is a finite sequence (a1, t1) . . . (ap, tp) ∈ (Σ × R≥0)
∗, where

the ti’s form a non decreasing sequence. A timed language is a set of timed
words. For a timed language L, the corresponding untimed language, written
Untime(L), is the projection of L on Σ∗. For an ITA A, a run is a path in TA
from the initial to an accepting configuration such that time steps alternate with

discrete steps: (q0, v0)
d1−→ (q0, v

′
0)

a1−→ (q1, v1) · · ·
dn−→ (qn−1, v

′
n−1)

an−−→ (qn, vn),

with v0 = 0. The sequence t1, . . . , tn of absolute dates associated with this run is
ti =

∑i

j=1 dj and a timed word accepted by A is obtained by removing from the
sequence (a1, t1) . . . (an, tn) the pairs such that ai = ε. We denote by L(A) the
set of timed words accepted by A. ITL denotes the family of timed languages
accepted by an ITA.

We end this paragraph with two examples of ITA. In the figures, the level of a
state is indicated beside its name. For the automaton A1 in Fig. 1, state q0 is the
initial state with level 1. States q1 and q2 are on level 2, and q2 is the final state.
There are two interrupt clocks x1 and x2.Entering state q1 at time 1−τ for some
τ , clock x1 is suspended and state q2 is reached at time 1−τ+t with 1−τ+2t = 1.
The language accepted by A1 is thus L1 = {(a, 1 − τ)(b, 1 − τ/2) | 0 < τ ≤ 1}.
The ITA in Fig. 2 also has two levels and two interrupt clocks x1 and x2. It
accepts L2 = {(a, τ)(a, 2τ) . . . (a, nτ) | n ∈ N, τ > 0}.

2.2 Expressive power of ITA

We now compare the expressive power of ITA with classical Timed Automata
(TA) and Controlled Real-Time Automata (CRTA) [9].

Recall that a Timed Automaton is a tuple A = (Σ, Q, q0, F, X, ∆), where Σ
is a finite alphabet, Q is a finite set of states, q0 is the initial state, F ⊆ Q is the
set of final states, X is a set of clocks and ∆ ⊆ Q× [C(X)×(Σ∪{ε})×U(X)]×Q
is the set of transitions.
Since all clocks evolve with rate 1, the only difference from ITA in the definition

of semantics concerns a time step of duration d, which is defined by (q, v)
d
−→

(q, v + d).
CRTA extend TA with the following features: the clocks and the states are

partionned according to colors belonging to a set Ω and with every state is
associated a rational velocity. When time elapses in a state, the set of active
clocks (i.e. with the color of the state) evolve with rate equal to the velocity of
the state while other clocks remain unchanged. For sake of simplicity, we now
propose a slightly simplified version of CRTA.

Definition 3. A CRTA A = (Σ, Q, q0, F, X, up, low, vel, λ, ∆) on a finite set Ω
of colors is defined by:
- Σ is the alphabet of actions,
- Q is a set of states, q0 ∈ Q is the initial state, F is the set of final states,
- X is a set of clocks, up and low are mappings which associate with each clock
respectively an upper and a lower bound, vel : Q 7→ Q is the velocity mapping,
- λ : X ∪ Q 7→ Ω is the coloring mapping and
- ∆ is the set of transitions. A transition in ∆ has guards in C(X) with constants
in Q and updates in U(X) (i.e. only reset). The lower and upper bound mappings
satisfy low(x) ≤ 0 ≤ up(x) for each clock x ∈ X, and low(x) ≤ b ≤ up(x) for
each constant such that x ⊲⊳ b is a constraint in A.

The original semantics of CRTA is rather involved in order to obtain decid-
ability of the reachability problem. It ensures that entering a state q in which

clock x is active, the following conditions on the clock bounds hold : if vel(q) > 0
then x ≥ low(x) and if vel(q) < 0 then x ≤ up(x). Instead (and equivalently)
we add a syntactical restriction which ensures this behaviour. For instance, if a
transition with guard ϕ and reset u enters state q with vel(q) < 0 and if x is the
only clock such that ω(x) = ω(q), then we replace this transition by two other
transitions: the first one has guard ϕ ∧ x > up(x) and adds x := 0 to the reset
condition u, the other has guard ϕ ∧ x ≤ up(x) and reset u. In the general case
where k clocks have color ω(q), this leads to 2k transitions. With this syntactical
condition, again the only difference from ITA concerns a time step of duration

d, defined by (q, v)
d
−→ (q, v′), with v′(x) = v(x) + vel(q)d if ω(x) = ω(q) and

v′(x) = v(x) otherwise.

We denote by TL (resp. CRTL) the family of timed languages accepted by
TA (resp. CRTA), with TL strictly contained in CRTL.

Proposition 1.
1. There exists a language in ITL which is not in TL.
2. There exists a language in ITL whichis not in CRTL.

Proof. To prove the first point, consider the ITA A1 in Fig. 1. Suppose, by
contradiction, that L1 is accepted by some timed automaton B in TA (possibly
with ε-transitions) and let d be the granularity of B, i.e. the gcd of all rational
constants appearing in the constraints of B (thus each such constant can be
written k/d for some integer k). Then the word w = (a, 1 − 1/d)(b, 1 − 1/2d)
is accepted by B through a finite path. Consider now the automaton B′ in TA,
consisting of this single path (where states may have been renamed). We have
w ∈ L(B′) ⊆ L(B) = L and B′ contains no cycle. Using the result in [5], we can
build a timed automaton B′′ without ε-transition and with same granularity d
such that L(B′′) = L(B′), so that w ∈ L(B′′). The accepting path for w in B′′

contains two transitions : p0
ϕ1,a,r1
−−−−−→ p1

ϕ2,b,r2
−−−−→ p2. After firing the a-transition,

all clock values are 1 − 1/d or 0, thus all clock values are 1 − 1/2d or 1/2d
when the b-transition is fired. Let x ⊲⊳ c be an atomic proposition appearing in
ϕ2. Since the granularity of B′′ is d, the ⊲⊳ operator cannot be = otherwise the
constraint would be x = 1/2d or x = 1 − 1/2d. If the constraint is x < c, x ≤ c,
x > c, or x ≥ c, the path will also accept some word (a, 1 − 1/d)(b, t) for some
t 6= 1− 1/2d. This is also the case if the constraint ϕ2 is true. We thus obtain a
contradiction with L(B′′) ⊆ L, which ends the proof.

To prove the second point, consider the language L2 = {(a, τ)(a, 2τ) . . . (a, nτ) |
n ∈ N, τ > 0} defined above, accepted by the ITA A2 in Fig. 2. This language
cannot be accepted by a CRTA (see [9]).

Note that we do not yet know of a language accepted by an automaton in
TA (or CRTA) but not by an automaton in ITA. However, we conjecture that
these classes are incomparable.

3 Reachability is decidable in ITA

3.1 General case

Similarly to the decision algorithm for reachability in TA (and in CRTA), the
procedure for an ITA A is based on the construction of a (finite) class graph
which is time abstract bisimilar to the transition system TA. However the con-
struction of classes is much more involved than in the case of TA. More precisely,
it depends on the expressions occurring in the guards and updates of the au-
tomaton (while in TA it depends only on the maximal constant occurring in
the guards). We associate with each state q a set of expressions Exp(q) with
the following meaning. The values of clocks giving the same ordering of these
expressions correspond to a class. In order to define Exp(q), we first build a
family of sets {Ei}1≤i≤n. Then Exp(q) =

⋃
i≤λ(q) Ei. Finally in proposition 3

we show how to build the class graph which decides the reachability problem.
We first introduce an operation, called normalization, on expressions relative

to some level. As explained in the construction below, this operation will be used
to order the respective values of expressions at a given level.

Definition 4 (Normalization). Let C =
∑

i≤k aixi + b be an expression over
Xk = {xj | j ≤ k}, the k-normalization of C, norm(C, k), is defined by:

– if ak 6= 0 then norm(C, k) = xk + (1/ak)(
∑

i<k aixi + b);
– else norm(C, k) = C.

Since guards are linear expressions with rational constants, we can assume
that in a guard C ⊲⊳ 0 occurring in a transition outgoing from a state q with level
k, the expression C is either xk +

∑
i<k aixi +b (by k-normalizing the expression

and if necessary changing the comparison operator) or
∑

i<k aixi + b.

Construction of {Ek}k≤n. The construction proceeds top down from level n to
level 1 after initializing Ek = {xk, 0} for all k. As we shall see below, when
handling the level k, we add new terms to {Ei}1≤i≤k.

– At level k, first for every expression αxk +
∑

i<k aixi+b (with α ∈ {0, 1}) oc-
curring in a guard of an edge leaving a state of level k, we add −

∑
i<k aixi−b

to Ek.
– Then we iterate the following procedure until no new term is added to any

Ei for 1 ≤ i ≤ k.
1. Let q

ϕ,a,u
−−−→ q′ with λ(q′) ≥ k and λ(q) ≥ k. Let C ∈ Ek, then we add

C[u] to Ek.

2. Let q
ϕ,a,u
−−−→ q′ with λ(q′) ≥ k and λ(q) < k. Let C, C ′ ∈ Ek, then we

compute C ′′ = norm(C[u] − C ′[u], λ(q)). Let us write C ′′ as αxλ(q) +∑
i<λ(q) aixi + b with α ∈ {0, 1}. Then we add −

∑
i<λ(q) aixi − b to

Eλ(q).

Proposition 2. The construction procedure of {Ek}k≤n terminates and the size

of every Ek is bounded by B2n(n−k+1)+1 where B is the maximum between 2 and
the number of edges of the ITA.

Proof. Given some k, we prove the termination of the stage relative to k. Observe
that the second step only adds new expressions to Ek′ for k′ < k. Thus the
two steps can be ordered. Let us prove the termination of the first step of the
saturation procedure. We denote E0

k ≡ Ek at the beginning of this stage and
Ei

k ≡ Ek after the insertion of the ith item in it. With each added item C[u] can
be associated its father C. Thus we can view Ek as an increasing forest with
finite degree (due to the finitess of the edges). Assume that this step does not
terminate. Then we have an infinite forest and by König lemma, it has an infinite
branch C0, C1, . . . where Ci+1 = Ci[ui] for some update ui such that Ci+1 6= Ci.
Observe that the number of updates that change the variable xk is either 0 or
1 since once xk disappears it cannot appear again. We split the branch into two
parts before and after this update or we still consider the whole branch if there is
no such update. In these (sub)branches, we conclude with the same reasonning
that there is at most one update that change the variable xk−1. Iterating this
process, we conclude that the number of updates is at most 2k−1 and the length

of the branch is at most 2k. Thus the final size of Ek is at most E0
k × B2k

since
the width of the forest is bounded by B.

In the second step, we add at most B × (|Ek| × (|Ek| − 1))/2 to Ei for every
i < k. This concludes the proof of termination.

We now prove by a painful backward induction that as soon as n ≥ 2,

|Ek| ≤ B2n(n−k+1)+1. We define pk ≡ |Ek|.

Basis case k = n
pn ≤ p0

n × B2n

where p0
n is the number of guards of the outgoing edges from

states of level n. Thus:
pn ≤ B × B2n

= B2n+1 = B2n(n−n+1)+1

which is the claimed bound.

Inductive case
Assume that the bound holds for k < j ≤ n. Due to the second step of the
procedure, we have:
p0

k ≤ B + B × ((pk+1 × (pk+1 − 1))/2 + · · · + (pn × (pn − 1))/2)

p0
k ≤ B + B × (B2n(n−k)+1+2 + · · · + B2n+1+2)

p0
k ≤ B × (n − k + 1) × B2n(n−k)+1+2

p0
k ≤ B × Bn × B2n(n−k)+1+2 (here we use B ≥ 2)

p0
k ≤ B2n(n−k)+1+n+3

pk ≤ B2n(n−k)+1+2k+n+3

Let us consider the term δ = 2n(n−k+1) + 1 − 2n(n−k)+1 − 2k − n − 3
δ ≥ (2n−1 − 1)2n(n−k)+1 − (2k + n + 2)
δ ≥ (2n−1 − 1)2n(n−k)+1 − (2n−1 + 2n)
δ ≥ (2n−1 − 1)2n(n−k)+1 − 2n+1 ≥ 0

Thus: pk ≤ B2n(n−k)+1+2k+n+3 ≤ B2n(n−k+1)+1

which is the claimed bound.

Proposition 3. The reachability problem for ITA is decidable and belongs to
2-EXPSPACE and to PSPACE when the number of clocks is fixed.

Proof.
Class definition. Let A be an ITA, the decision algorithm is based on the
construction of a (finite) class graph which is time abstract bisimilar to the
transition system TA. A class is a syntactical representation of a subset of reach-
able configurations. More precisely, it is defined as a pair R = (q, {�k}1≤k≤λ(q))
where q is a state and �k is a total preorder over Ek.

The class R describes the set of valuations:
[[R]]= {(q, v) | ∀k ≤ λ(q) ∀(g, h) ∈ Ek, g[v] ≤ h[v] iff g �k h}

Observe that the number of classes is bounded by:

|Q| · 3B2(n
2)+1

where n is the number of clocks of A and B is defined in proposition 2.

As usual, there are two kinds of transitions in the graph, corresponding to dis-
crete steps and time steps.

Discrete step. Let R = (q, {�k}1≤k≤λ(q)) and R′ = (q′, {�′
k}1≤k≤λ(q′)) be two

classes. There is a transition R
e
−→ R′ for a transition e : q

ϕ,a,u
−−−→ q′ if there is

some (q, v) ∈[[R]] and (q′, v′) ∈[[R′]] such that (q, v)
e
−→ (q′, v′). In this case, for

all (q, v) ∈[[R]] there is a (q′, v′) ∈[[R′]] such that (q, v)
e
−→ (q′, v′). This can be

decided as follows.
Firability condition. Write ϕ =

∧
1≤j≤J′ Cj ≤ 0 ∧

∧
J′+1≤j≤J ¬(Cj ≤ 0). By

definition of an ITA, for every j, Cj = αxλ(q)+
∑

i<λ(q) aixi+b (with α ∈ {0, 1}).

By construction C ′
j = −

∑
i<λ(q) aixi − b ∈ Eλ(q). If j ≤ J ′ then we require that

αxλ(q) �k C ′
j . If j > J ′ then we require that ¬(αxλ(q) �k C ′

j).
Successor definition. R′ is defined as follows. Let k ≤ λ(q′) and g′, h′ ∈ Ek.

1. Either k ≤ λ(q), by construction, g′[u], h′[u] ∈ Ek then g′ �′
k h′ iff g′[u] �k

h′[u].
2. Or k > λ(q), let D = g′[u]−h′[u] =

∑
i≤λ(q) cixi+d, and C = norm(D, λ(q)),

and write C = αxλ(q) +
∑

i<λ(q) aixi + b (with α ∈ {0, 1}). By construction

C ′ = −
∑

i<λ(q) aixi − b ∈ Eλ(q).

When cλ(q) ≥ 0 then g′ �′
k h′ iff C ′ �λ(q) αxλ(q).

When cλ(q) < 0 then g′ �′
k h′ iff αxλ(q) �λ(q) C ′.

By definition of [[]],

– ∀(q, v) ∈[[R]], if there exists (q, v)
e
−→ (q′, v′) then the firability condition is

fulfilled and (q′, v′) belongs to [[R′]].
– If the firability condition is fulfilled then ∀(q, v) ∈[[R]] there exists (q′, v′) ∈

[[R′]] such that (q, v)
e
−→ (q′, v′).

Time step. Let R = (q, {�k}1≤k≤λ(q)).
The time successor Post(R) = (q, {�′

k}1≤k≤λ(q)) of R is defined as follows.

For every k′ < λ(q) �′
k=�k. Let ∼=�λ(q) ∩ �−1

λ(q) be the equivalence relation

induced by the preorder. On equivalence classes, this (total) preorder becomes
a (total) order. Let V be the equivalence class containing xλ(q).

1. Either V = {xλ(q)} and it is the greatest equivalence class. Then �′
λ(q)=�λ(q)

(thus Post(R) = R).

2. Either V = {xλ(q)} and it is not the greatest equivalence class. Let V ′ be the
next equivalence class. Then �′

λ(q) is obtained by merging V and V ′, and
preserving �λ(q) elsewhere.

3. Either V is not a singleton. Then we split V into V \ {xλ(q)} and {xλ(q)}
and “extend” �λ(q) by V \ {xλ(q)} �′

λ(q) {xλ(q)}.

By definition of [[]], ∀(q, v) ∈[[R]], there exists d > 0 such that (q, v+d) ∈ Post(R)
and ∀0 ≤ d′ ≤ d, (q, v + d′) ∈ R ∪ Post(R).

The initial state of this graph is defined by the class R0 with [[R0]] containing
(q0,0) which can be straightforwardly determined. The reachability problem is
then solved by a non deterministic search of a path in this graph (without build-
ing it) leading to the complexity stated in the proposition. When the number
of clocks is fixed the length of this path is at most exponential w.r.t. the size of
the problem leading to a PSPACE procedure.

Example. We illustrate this construction of a class automaton for the automa-
ton A1 from section 2 (see figure 3, where dashed lines indicate time successors).

R0

R1

0

R2

0

R3

0

R1

q1, Z0

0 < x2 < 1

2

q1, Z0

0 < x2 = 1

2

q2, Z0

0 < x2 = 1

2

q2, Z0

0 < 1

2
< x2

R1

1

q1, Z
1

0

0 < x2 < −
1

2
x1 + 1

2

q1, Z
1

0

0 < x2 = −
1

2
x1 + 1

2

q2, Z
1

0

0 < x2 = −
1

2
x1 + 1

2

q2, Z
1

0

0 < −
1

2
x1 + 1

2
< x2

a

a

b

b

Fig. 3. The class automaton for A1

In this case, we obtain E1 = {x1, 0, 1} and E2 = {x2, 0,−1
2x1 + 1

2}. In
state q0, the only relevant clock is x1 and the initial class is R0 = (q0, Z0) with
Z0 : x1 = 0 < 1. Its time successor is R1

0 = (q0, Z
1
0) with Z1

0 : 0 < x1 < 1.
Transition a leading to q1 can be taken from both classes, but not from the next
time successors R2

0 = (q0, 0 < x1 = 1) and R3
0 = (q0, 0 < 1 < x1).

Transition a switches from R0 to R1 = (q1, Z0, x2 = 0 < 1
2), because x1 = 0,

and from R1
0 to R1

1 = (q1, Z
1
0 , x2 = 0 < −1

2x1 + 1
2). Transition b is fired from

those time successors for which x2 = −1
2x1 + 1

2 .
A geometric view is given below, with a possible trajectory: first the value

of x1 increases from 0 in state q0 (horizontal line) and, after transition a occurs,
its value is frozen in state q1 while x2 increases (vertical line) until reaching the
line x2 = −1

2x1 + 1
2 . The light gray zone is (0 < x1 < 1, 0 < x2 < −1

2x1 + 1
2),

associated with q1.

x1

x2

0 1

1
2

3.2 A simpler model

In practice, the clock associated with some level measures the time spent in this
level or more generally the time spent by some tasks at this level. Thus when
going to a higher level, this clock is “frozen” until returning to this level. The
following restriction of the ITA model takes this feature into account.

Definition 5. The subclass ITA− of ITA is defined by the following restriction

on updates. For a transition q
ϕ,a,u
−−−→ q′ of an automaton A in ITA− (with

k = λ(q) and k′ = λ(q′)), the update u is of the form ∧n
i=1xi := Ci with:

– if k′ < k, u = ∧n
i=1xi := xi i.e. no updates;

– if k′ ≥ k then Ck is of the form
∑k−1

j=1 ajxj + b or Ck = xk, Ci = 0 if
k < i ≤ k′ and Ci = xi otherwise.

Observe that the automata of figures 1 and 2 belong to ITA−. So the expres-
siveness results of proposition 1 still hold for ITA−.

It turns out that the reachability problem for ITA− can be solved more
efficiently.

Proposition 4. The reachability problem for ITA− belongs to NEXPTIME and
to NP when the number of clocks is fixed.

Proof. Let A = (Σ, Q, q0, F, X, λ, ∆) be an ITA−. In the sequel, the level of a
transition is the level of its source state. Let E = |∆| be the number of transitions

and given a fixed run, let mk be the number of occurrences of transitions of level
k.

Assume that there is a run ρ from (q0, v0) to some configuration (qf , vf). We
build a run ρ′ from (q0, v0) to (qf , vf) which fulfills:

– m′
1 ≤ (E + 1)2

– ∀k m′
k+1 ≤ (E + 1)2(m′

k + 1)

Thus
∑n

k=1 m′
k = O(E2n).

We iteratively modify the run ρ by considering the transitions of level k from 1 to
n. For the basis case k = 1, we consider in the run ρ the subsequence (e1, · · · , ep)
of transitions in ∆ of level 1 which update x1. Observe that if ei = ej for some
i < j, we can remove the subrun between these two transitions, because x1 is
the only relevant clock before the firing of ei (or ej). Thus we obtain a run
with at most E such transitions. Now we consider a subsequence (e′1, · · · , e′r)
of transitions of level 1 occurring between two of these transitions (or before
the first or after the last). Observe that if e′i = e′j for some i < j, we can
replace the subrun between these two transitions by a time step corresponding
to the difference of values of x1. Indeed, since there is no update, the clock value
after the second transition is greater than or equal to the value after the first
transition. Thus we obtain a run with at most (E + 1)2 transitions of level 1
(including at most E(E + 1) transitions without update).

Assume that the bound holds at levels less than k + 1 and consider the
subrun between two consecutive transitions of level less than k+1 (or before the
first or after the last). By definition of ITA−, the values of clocks x1, . . . , xk are
unchanged during this subrun. Thus for two occurrences of the same transition
of level k+1, the update of xk+1 is the same. So we can apply the same reasoning
as for the basis case, thus leading to the claimed bound.

The decision procedure is as follows. It non deterministically guesses a path
in the ITA− whose length is less than or equal to the bound. In order to check
that this path yields a run, it builds a linear program whose variables are {xj

i},

where xj
i is the value of clock xi after the jth step, and {dj} where dj is the

amount of time elapsed during the jth step, when j corresponds to a time step.
The equations and inequations are deduced from the guards and updates of
discrete transitions in the path and the delay of the time steps. The size of this
linear program is exponential w.r.t. the size of the ITA−. As a linear program
can be solved in polynomial time [15], we obtain a procedure in NEXPTIME. If
the number of clocks is fixed the number of variables is now polynomial w.r.t.
the size of the problem.

4 Combining ITA and CRTA

We finally define an extended class denoted by ITA+, including a set of clocks
at an implicit additional level 0, corresponding to a basic task described as in a
CRTA.

Definition 6 (ITA+). An extended interrupt timed automaton is a tuple A =
(Q, q0, F, X ⊎ Y, Σ, Ω, λ, up, low, vel, ∆), where:

– Q is a finite set of states, q0 is the initial state and F ⊆ Q is the set of final
states.

– X = {x1, . . . , xn} consists of n interrupt clocks and Y is a set of basic clocks,
– Σ is a finite alphabet,
– Ω is a set of colours, the mapping λ : Q ⊎ Y 7→ {1, . . . , n} ⊎ Ω associates

with each state its level or its colour, with xλ(q) the active clock in state q
for λ(q) ∈ N and λ(y) ∈ Ω for y ∈ Y ,

– up and low are mappings from Y to Q with the same constraints of CRTA
(see definition 3), and vel : Q 7→ Q is the clock rate with λ(q) /∈ Ω ⇒
vel(q) = 1

– ∆ ⊆ Q× [C+(X ∪Y)× (Σ ∪{ε})×U+(X ∪Y)]×Q is the set of transitions.

Let q
ϕ,a,u
−−−→ q′ in ∆ be a transition.

1. The guard ϕ is of the form ϕ1 ∧ ϕ2 with the following conditions. If
λ(q) ∈ N, ϕ1 is an ITA guard on X and otherwise ϕ1 = true. Constraint
ϕ2 is a CRTA guard on Y (also possibly equals to true).

2. The update u is of the form u1 ∧ u2 fullfilling the following conditions.
Assignments from u1 update the clocks in X with the constraints of ITA
when λ(q) and λ(q′) belong to N. Otherwise it is a global reset of clocks
in X. Assignments from u2 update clocks from Y , like in CRTA.

Any ITA can be viewed as an ITA+ with Y empty and λ(Q) ⊆ {1, . . . , n},
and any CRTA can be viewed as an ITA+ with X empty and λ(Q) ⊆ Ω. Class
ITA+ combines both models in the following sense. When the current state q
is such that λ(q) ∈ Ω, the ITA part is inactive. Otherwise, it behaves as an
ITA but with additional constraints about clocks of the CRTA involved by the
extended guards and updates. The semantics of ITA+ is defined as usual but
now takes into account the velocity of CRTA clocks.

Definition 7 (Semantics of ITA+). The semantics of an automaton A in
ITA+ is defined by the transition system TA = (S, s0,→). The set S of config-
urations is {(q, v) | q ∈ Q, v ∈ RX∪Y }, with initial configuration (q0,0). An
accepting configuration of TA is a pair (q, v) with q in F . The relation → on
S consists of time steps and discrete steps, the definition of the latter being the
same as before:

Time steps: Only the active clocks in a state can evolve, all other clocks are
suspended. For a state q with λ(q) ∈ N (the active clock is xλ(q)), a time

step of duration d is defined by (q, v)
d
−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d

and v′(x) = v(x) for any other clock x. For a state q with λ(q) ∈ Ω (the
active clocks are Y ′ = Y ∩ λ−1(λ(q))), a time step of duration d is defined

by (q, v)
d
−→ (q, v′) with v′(y) = v(y) + vel(q)d for y ∈ Y ′ and v′(x) = v(x)

for any other clock x.
Discrete steps: A discrete step (q, v)

a
−→ (q′, v′) occurs if there exists a transi-

tion q
ϕ,a,u
−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

init wait log

out

I, 1

y=0,p y<1∧z<6,ok

y≤1∧z=6,to,z:=0

z=50,rs,z:=0,y:=0

y≤1∧z<6,er,y:=0 y<1∧z<6,i,x1:=0

x1<3∨z<3,cont,y:=0

x1≥3∧z≥3,rs,y:=0,z:=0

In order to illustrate the interest of the combined models, an example of a
(simple) login procedure is described in the figure above as a TA with inter-
ruptions at a single level. First it immediately displays a prompt and arms a

time-out of 1 t.u. handled by clock y (transition init
p
−→ wait). Then either the

user answers correctly within this delay (transition wait
ok
−→ log) or he/she an-

swers incorrectly or let time elapse, both cases with transition wait
er
−→ init, and

the system prompts again. The whole process is controlled by a global time-out

of 6 t.u. (transition wait
to
−→ out) followed by a long suspension (50 t.u.) before

reinitializing the process (transition out
rs
−→ init). Both delays are handled by

clock z. At any time during the process (in fact in state wait), a system inter-

rupt may occur (transition wait
i
−→ I). If the time spent (measured by clock x1)

during the interrupt is less than 3 t.u. or the time already spent by the user is

less than 3, the login process resumes (transition I
cont
−−−→ init). Otherwise the

login process is reinitialized allowing again the 6 t.u. (transition I
rs
−→ init). In

both cases, the prompt will be displayed again. Since invariants are irrelevant
for the reachability problem we did not include them in the models. Of course,
in this example state wait should have invariant y ≤ 1 ∧ z ≤ 6 and state out
should have invariant z ≤ 50.

We extend the decidability and complexity results of the previous models
when combining them with CRTA. Class ITA+

− is obtained in a similar way by
combining ITA− with CRTA. Proofs are omitted here.

Proposition 5.
1. The reachability problem for ITA+ is decidable and belongs to 2-EXPSPACE
and is PSPACE-complete when the number of interrupt clocks is fixed.
2. The reachability problem for ITA+

− belongs to NEXPTIME and is PSPACE-
complete when the number of interrupt clocks is fixed.

5 Conclusion

We have proposed a subclass of hybrid automata, called ITA. An ITA describes
a set of tasks, executing at interrupt levels, with exactly one active clock at
each level. We prove that the reachability problem is decidable in this class,

with a procedure in 2-EXPSPACE. We also consider restrictions on this class,
that make the complexity of decision lower (in NEXPTIME). We show that
these results still hold for a combination of ITA with the class CRTA. When the
number of clocks is fixed, the complexity bound is the same as the one of TA
and even better in case of ITA−. Whether the classes TA or CRTA are contained
in ITA and whether ITA− is a strict subclass of ITA are open questions.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science

126:183–235, 1994.
2. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,

A. Olivero, J. Sifakis and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138:3–34, 1995.

3. E. Asarin, O. Maler and A. Pnueli. Reachability Analysis of Dynamical Systems
having Piecewise-Constant Derivatives. Theoretical Computer Science 138:35–66,
1995.

4. E. Asarin, G. Schneider and S. Yovine. Algorithmic Analysis of Polygonal Hybrid
Systems, Part I: Reachability. Theoretical Computer Science 379(1-2):231–265,
2007.

5. B. Bérard, V. Diekert, P. Gastin and A. Petit. Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36:145–
182, 1998.

6. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in

System Design 24(3):281–320, 2004.
7. T. Brihaye, V. Bruyère and J.-F. Raskin. On Model-Checking Timed Automata

with Stopwatch Observers. Information and Computatiion 2004(3):408–433, 2006.
8. F. Cassez and K. G. Larsen. The impressive power of stopwatches. Proceedings of

CONCUR’00, number 1877 in LNCS, pages 138–152, 2000.
9. F. Demichelis and W. Zielonka. Controlled timed automata. Proceedings of CON-

CUR’98, number 1466 in LNCS, pages 455–469, 1998.
10. T.A. Henzinger, P.W. Kopke, A. Puri and P. Varaiya. What’s decidable about

hybrid automata ? Journal of Computer and System Sciences 57:94–124,1998.
11. Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine. Decidable Integration Graphs.

Information and Computation 150(2):209–243, 1999.
12. G. Lafferriere, G. J. Pappas and S. Yovine. A new class of decidable hybrid systems.

Proceedings of HSCC’99, number 1569 in LNCS, pages 137–151, 1999.
13. G. Lafferriere, G. J. Pappas and S. Yovine. Symbolic reachability computations for

families of linear vector fields. Journal of Symbolic Computation, 32(3):231–253,
2001.

14. O. Maler, Z. Manna and A. Pnueli. From Timed to Hybrid Systems. Proceedings

of the REX Workshop “Real-Time: Theory in Practice”, number 600 in LNCS,
pages 447–484, 1992.

15. C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimiza-

tion. An Interior Point Approach. Wiley-Interscience, John Wiley & Sons Ltd,
West Sussex, England, 1997.

