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Abstract. Message sequence charts are an attractive formalism for spec-
ifying communicating systems. One way to test such a system is to sub-
stitute a component by a test process and observe its interaction with
the rest of the system. Unfortunately, local observations can combine in
unexpected ways to define implied scenarios not present in the original
specification. Checking whether a scenario specification is closed with re-
spect to implied scenarios is known to be undecidable when observations
are made one process at a time. We show that even if we strengthen
the observer to be able to observe multiple processes simultaneously, the
problem remains undecidable. In fact, undecidability continues to hold
even without message labels, provided we observe two or more processes
simultaneously. On the other hand, without message labels, if we observe
one process at a time, checking for implied scenarios is decidable.

1 Introduction

Message Sequence Charts (MSCs) [7] are an appealing visual formalism that
are used in a number of software engineering notational frameworks such as
SDL [15] and UML [4]. A collection of MSCs is used to capture the scenarios
that a designer might want the system to exhibit (or avoid).

A standard way to generate a set of MSCs is via Hierarchical (or High-
level) Message Sequence Charts (HMSCs) [10]. Without losing expressiveness,
we consider only a subclass of HMSCs called Message Sequence Graphs (MSGs).
An MSG is a finite directed graph in which each node is labeled by an MSC.
An MSG defines a collection of MSCs by concatenating the MSCs labeling each
path from an initial vertex to a terminal vertex.

A natural way to test a distributed implementation against an MSG specifi-
cation is to substitute test processes for one or more components and record the
interactions between the test process(es) and the rest of the system. We refer
to this form of testing of distributed message-passing systems as local testing.

⋆ Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme.



The implementation is said to pass a local test if the observations at the test
process(es) are consistent with the MSG specification.

An important impediment to local testing is the possibility of implied sce-
narios. Let T = {P1, P2, . . . , Pk} be a collection of subsets of processes. We say
that an MSC M is T -implied by an MSC language L if the projections of M
onto each subset Pi ∈ T agree with the projections onto Pi of some good MSC
MPi

∈ L. Implied scenarios have been studied in [2, 3], where the observations
are restricted to individual processes rather than arbitrary subsets.

Let Tk denote the set of all subsets of processes of size k. We say that an
MSC language L is k-testable if every Tk-implied scenario is already present in
L. In other words, if a specification is k-testable, it is possible to accurately test
an implementation by performing a collection of local tests with respect to Tk.
On the other hand, if L is not k-testable, even an exhaustive set of local tests
with respect to Tk cannot rule out an undesirable implied scenario.

It has been shown in [3] that 1-testability is undecidable, even for regular
MSG specifications. (The results of [3] are formulated in the context of dis-
tributed synthesis, but they can also be interpreted in terms of local testing.)
We extend the results of [3] to show that for any n, k-testability of an MSG
specification with n processes is undecidable, for all k ∈ {1, 2, . . . , n − 1}.

We also consider MSG specifications over n processes without message labels.
Somewhat surprisingly, k-testability remains undecidable for k ∈ {2, . . . , n− 1}.
However, for unlabelled MSG specifications, 1-testability is decidable.

The paper is organized as follows. We begin with preliminaries about MSCs,
before we formally define k-testability in Section 3. The next section establishes
various undecidability results. In Section 5, we show that 1-testability is decid-
able for unlabelled MSG specifications. We conclude with a brief discussion.

2 Preliminaries

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p 6= q ∈ P , m ∈ M} be
the set of communication actions in which p participates. The action p!q(m) is
read as p sends the message m to q and the action p?q(m) is read as p receives
the message m from q. We set Σ =

⋃

p∈P Σp. We also denote the set of channels

by Ch = {(p, q) ∈ P2 | p 6= q}.

Labelled posets A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a partially ordered set and λ : E → Σ is a labelling function. For e ∈ E, let
↓e = {e′ | e′ ≤ e}. For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and
Ea = {e | λ(e) = a}, respectively. For (p, q) ∈ Ch, we define the relation <pq:

e <pq e′
def
= ∃m ∈ M such that λ(e) = p!q(m), λ(e′) = q?p(m) and

|↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|
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The relation e <pq e′ says that channels are FIFO with respect to each message—
if e <pq e′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep ×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC over P is a finite Σ-labelled poset M = (E,≤, λ) where:

1. Each relation ≤pp is a linear (total) order.
2. If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.

3. If e <pq e′, then |↓e ∩
(
⋃

m∈M Ep!q(m)

)

| = |↓e′ ∩
(
⋃

m∈M Eq?p(m)

)

|.
4. The partial order ≤ is the reflexive, transitive closure of

⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is
received. The third condition says that every channel is FIFO across all messages.

p q r

e1

e′1

e2

e′2 e3

e′3

m1

m2

m3

Fig. 1. An MSC

In diagrams, the events of an MSC are presented in
visual order. The events of each process are arranged in
a vertical line and messages are displayed as horizontal
or downward-sloping directed edges. Fig. 1 shows an
example with three processes {p, q, r} and six events
{e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to three messages—

m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) =

{λ(π) | π is a linearization of (E,≤)}. For instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is
one linearization of the MSC in Fig. 1.

MSC languages An MSC language is a set of MSCs.
We can also regard an MSC language L as a word language over Σ given by
lin(L) =

⋃

{lin(M) | M ∈ L}.

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Σ.

Let M be an MSC and B ∈ N. We say that w ∈ lin(M) is B-bounded if
for every prefix v of w and for every channel (p, q) ∈ Ch,

∑

m∈M |πp!q(m)(v)| −
∑

m∈M |πq?p(m)(v)| ≤ B, where πΓ (v) denotes the projection of v on Γ ⊆ Σ.
This means that along the execution of M described by w, no channel ever
contains more than B-messages. We say that M is (universally) B-bounded if
every w ∈ lin(M) is B-bounded. An MSC language L is B-bounded if every
M ∈ L is B-bounded. Finally, L is bounded if it is B-bounded for some B.

We then have the following result [5].

Theorem 3. If an MSC language L is regular then it is bounded.

2.2 Message sequence graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC. The
edges represent (asynchronous) MSC concatenation, defined as follows.
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Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that
E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and ≤ = (≤1 ∪ ≤2 ∪

⋃

p∈P E1
p × E2

p)∗.

A Message Sequence Graph is a structure G = (Q,→, Qin, F, Φ), where Q is a
finite and nonempty set of states, → ⊆ Q×Q, Qin ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such
that (qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦ M1 ◦ M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn

is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}. We say that an MSC language L is
MSG-definable if there exists and MSG G such that L = L(G).

⇒M1 M2

p q r s

M1

m

m

p q r s

M2

m

m

p q

r s

CGM1◦M2

Fig. 2. A message sequence graph

An example of an MSG is depicted in Fig. 2. The initial state is marked ⇒
and the final state has a double line. The language L defined by this MSG is not
regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗ such
that |σ↾p!q(m)| = |σ↾r!s(m)| ≥ 1, which is not a regular string language.

In general, it is undecidable whether an MSG describes a regular MSC lan-
guage [5]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph For an MSC M = (E,≤, λ), let CGM , the communi-
cation graph of M , be the directed graph (P , 7→) where:

– P is the set of processes of the system.

– (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices.

Locally synchronized MSGs The MSG G is locally synchronized [12] (or
bounded [1]) if for every loop π = q → q1 → · · · → qn → q, the MSC M(π) is
com-connected. In Fig. 2, CGM1◦M2

is not com-connected, so the MSG is not
locally synchronized. We have the following result for MSGs [1].

Theorem 4. If G is locally synchronized, L(G) is a regular MSC language.
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3 Locally testable MSC languages

In local testing, we substitute test process(es) for one or more components and
record the interactions between the test process(es) and the rest of the system.
The implementation is said to pass a local test if the observations at the test
process(es) are consistent with the MSG specification. An important impediment
to local testing is the possibility of implied scenarios.

Definition 5. Let M = (E,≤, λ) be an MSC and P ⊆ P a set of processes. The
P -observation of M , M↾P , is the collection of local observasions {(Ep,≤pp)}p∈P ,
where ≤pp= ≤∩(Ep×Ep). The collection {(Ep,≤pp)}p∈P can also be viewed as a

labelled partial order (EP ,≤P ) where EP =
⋃

p∈P Ep and ≤p=
(

⋃

p,q∈P <pq

)∗

.

Let T ⊆ 2P be a family of subsets of processes. An MSC M is said to be
T -implied by an MSC-language L if for every subset P ∈ T there is an MSC
MP ∈ L such that MP ↾P = M↾P .

We denote by Tk the set {P ⊆ P | |P | = k} of all subsets of P of size k and
we say that an MSC is k-implied if it is Tk-implied.

Fig. 3 illustrates the idea of implied scenarios. The MSC M ′ is 1-implied
by {M1, M2}. However, M ′ is not 2-implied by {M1, M2} because the {p, s}-
observation of M ′ does not match either M1 or M2.

p q r s

M1

m

m

p q r s

M2

m

m

p q r s

M ′

m m

m

Fig. 3. An example of implied scenarios

We are interested in checking the global behaviour of a distributed imple-
mentation by testing it locally against an MSG specification. For this to be
meaningful, the MSG should be closed with respect to implied scenarios gener-
ated by the test observations. This leads to the following definition.

Definition 6. Let |P| = n. An MSG G is said to be k-testable if every scenario
M that is k-implied by L(G) is already a member of L(G).

We have the following negative result from [3] (adapted to our context).

Theorem 7. Let G be a locally-synchronized MSG, so that L(G) is a regular
MSC language. It is undecidable whether L(G) is 1-testable.

This result is somewhat surprising, since the analogous problem for syn-
chronous systems is decidable [16]. The root cause of this undecidability is the
fact that even when a MSC language L is regular, and hence B-bounded for
some B, the set of scenarios implied by L may not be bounded. An example is
shown in Fig. 4—all messages are labelled m and labels are omitted.
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p M1 q

p M2 q

M1

M1

M1

M1

M2

M2

M2

M2

M1

M1

M1

M1

Fig. 4.

Since M1 and M2 are both com-
connected, the language (M1 + M2)

∗

is a regular MSG-definable language.
On the other hand, for each

k ∈ N, the MSC in which the p-
observation matches M2k

1 Mk
2 and the

q-observation matches Mk
2 M2k

1 has a
global cut where the channel (p, q) has
capacity k + 1. The figure shows the
case k = 2. The dotted line marks the
global cut where the channel (p, q) has
maximum capacity.

4 Undecidability

We know from [3] that 1-testability is undecidable for regular MSG-definable
languages. The example in Fig. 3 suggests that it might be possible to deter-
mine the smallest k < n such that an MSG specification with n processes is
k-testable. (Observe that every MSC language over n processes is trivially n-
testable.) Unfortunately, this is not the case. For all k < n, the problem of
determining whether a regular MSG specification is k-testable is undecidable.

The undecidability proofs in this section use reductions from the Modified
Post’s Correspondence Problem (MPCP) [6]. An instance of MPCP is a collection
{(v1, w1), (v2, w2) . . . , (vr, wr)} of pairs of words over an alphabet Σ. A solution
is a sequence i2i3 . . . im of indices from {1, 2, . . . , r} such that v1vi2vi3 · · · vim

=
w1wi2wi3 · · ·wim

. It is proved in [6] that checking whether an instance of MPCP
admits a solution is undecidable. A careful examination of the proof in [6] shows
that MPCP is undecidable even under following assumptions:

1. For each word u in the list {(v1, w1), (v2, w2) . . . , (vr, wr)}, 1 ≤ |u| ≤ 4.
2. w1 is a strict prefix of v1 and is shorter by at least 2 letters.
3. If the instance has a solution then it has a solution of the form i2i3 . . . im

such that w1wi2 . . . wik
is a strict prefix of v1vi2 . . . vik

for each k < m.

Theorem 8. For 3 ≤ k ≤ n, (k − 1)-testability is undecidable for regular 1-
bounded MSG-definable languages over n processes.

Proof. Let ∆ = {(v1, w1), (v2, w2), . . . , (vr, wr)} be an instance of MPCP sat-
isfying the assumptions described above. For each pair (vℓ, wℓ), we construct k
MSCs Mvℓ

, Mwℓ
and {M j

vℓ,wℓ
| 1 < j < k} over processes {1, 2, . . . , n}, such that

only processes {1, 2, . . . , k} are active in these k MSCs. The message alphabet
for these MSCs is the alphabet of the MPCP instance along with the integers
{1, 2, . . . , r}. In the definition below, vj

ℓ and wj
ℓ are the jth symbols in the strings

vℓ and wℓ, respectively. Also, i
m
−→ j denotes the MSC generated by the sequence

i!j(m) j?i(m) where i sends message m to j. For m ∈ M and i < j we define

N i,j
m = (i

m
−→ i + 1) · · · (j − 1

m
−→ j)(j

m
−→ j − 1) · · · (i + 1

m
−→ i).
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In this MSC, the message m is sent from i to j through the intermediate processes
i + 1, . . . , j − 1 and an acknowledgment is sent back from j to i through the same

route. We also let Nℓ = (k
ℓ
−→ 1) and define for 1 < j < k the MSCs

Mvℓ
= NℓN

1,k

v1
ℓ

· · ·N1,k

v
|vℓ|

ℓ

Mwℓ
= NℓN

1,k

w1
ℓ

· · ·N1,k

w
|wℓ|

ℓ

M j
vℓ,wℓ

= NℓN
1,j

v1
ℓ

N j,k

w1
ℓ

· · ·N1,j

v
|wℓ|

ℓ

N j,k

w
|wℓ|

ℓ

N1,j

v
|wℓ|+1

ℓ

· · ·N1,j

v
|vℓ|

ℓ

if |wℓ| ≤ |vℓ|

M j
vℓ,wℓ

= NℓN
1,j

v1
ℓ

N j,k

w1
ℓ

· · ·N1,j

v
|vℓ|

ℓ

N j,k

w
|vℓ|

ℓ

N j,k

w
|vℓ|+1

ℓ

· · ·N j,k

w
|wℓ|

ℓ

otherwise.

Since each word in the MPCP instance is nonempty, each of these MSCs is com-
connected, so any MSG whose node labels are drawn from this set of MSCs is
guaranteed to be locally-synchronized. For 1 < j < k, we define

Lv = Mv1
{Mvℓ

| 1 ≤ ℓ ≤ r}∗

Lw = Mw1
{Mwℓ

| 1 ≤ ℓ ≤ r}∗

Lj
v,w = M j

v1,w1
{M j

vℓ,wℓ
| 1 ≤ ℓ ≤ r}∗

L∆ = Lv ∪ Lw ∪
⋃

1<j<n

Lj
v,w.

Claim. ∆ has a solution iff L∆ is not (k − 1)-testable.

Let i2, i3, ....., im be a solution of ∆ that satisfies Condition 3 listed above. Let
v1vi2 ....vim

= w1wi2 ....wim
= a1a2 . . . aℓ. Then, we first construct the MSC M ′ =

N1,k
a1

N1,k
a2

· · ·N1,k
aℓ

. In M ′, we insert events labelled k!1(1), k!1(i2),. . . ,k!1(im) into
k so as to partition its communications with k − 1 as w1,wi2 , . . . , wim

. Finally,
we insert events labelled 1?k(1), 1?k(i2), . . . , 1?k(im) into 1 to partition its
communications with 2 as v1, vi2 , . . . , vim

. Call this MSC M . To observe that
M is indeed a valid MSC, we note that for each j < m, w1wi2 . . . wij

is a prefix
of v1vi2 . . . vij

, so the receive event 1?k(ij) inserted into 1 can occur later than
the corresponding send event k!1(ij) inserted into n.

It is easy to verify that M↾{1,2,...,k−1} = (Mv1
Mvi2

· · ·Mvim
)↾{1,2,...,k−1}.

Similarly, M↾{2,3,...,k} = (Mw1
Mwi2

· · ·Mwim
)↾{2,3,...,k}. Finally, for 1 < j < k

we have M↾{1,...,j−1,j+1,...,k} = (M j
v1w1

M j
vi2

wi2
· · ·M j

vimwim
)↾{1,...,j−1,j+1,...,k}.

Thus M is (k − 1)-implied by L∆.
To see that M is not already in L∆, simply observe that there is at least one

event in M between the second k!1 event and the second 1?k event and this is
not the case for any MSC in L.

Conversely, suppose there is an MSC M /∈ L∆ that is (k− 1)-implied by L∆.
The MSC M must be of one of the following two types:

Type 1 M↾{j} /∈ ({N1,k
m | m ∈ M}∗)↾{j} for some 1 < j < k.

Type 2 M↾{j} ∈ ({N1,k
m | m ∈ M}∗)↾{j} for all 1 < j < k.
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If M is of type 1 as witnessed by j, it must be the case that M↾{1,2,...,k−1} =

(M j
v1w1

M j
vi2

wi2
· · ·M j

vimwim
)↾{1,2,...,k−1}. Similarly, we also have M↾{2,3,...,k} =

(M j
v1w1

M j
vi2

wi2
· · ·M j

vimwim
)↾{2,3,...,k}. Hence, M = M j

v1w1
M j

vi2
wi2

· · ·M j
vimwim

,
which in turn implies that M ∈ L∆ thus contradicting our initial assumption.
Therefore M cannot be of type 1.

On the other hand, if M is of type 2, we show that if M is 1-implied by L∆

then either M ∈ Lv ∪Lw or ∆ has a solution. Note that this is a stronger result
since we only assume that M is 1-implied instead of (k − 1)-implied.

We have (Lj
v,w)↾1 = (Lv)↾1 and (Lj

v,w)↾k = (Lw)↾k. Hence, M↾1 ∈ (Lv ∪
Lw)↾1 and M↾k ∈ (Lv ∪ Lw)↾k. Using in addition the fact that M is of type 2,
we deduce that if we remove from M the messages from k to 1 we obtain an
MSC M ′ = N1,k

a1
N1,k

a2
· · ·N1,k

aℓ
for some word a1a2 · · ·aℓ.

Now, if M /∈ Lv ∪ Lw then we must have M↾1 ∈ (Lv)↾1 and M↾k ∈ (Lw)↾k

(otherwise the second message from k to 1 would induce a cycle in the MSC).
Therefore, the sequence of messages from k to 1 parses on the left the se-
quence a1a2 · · ·aℓ into some v1vi2 · · · vim

and on the right the same sequence
into w1wi2 · · ·wim

and ∆ has a solution. ⊓⊔

Remark 9. We can modify the proof to obtain the undecidability of 1-testability
even for regular 1-bounded MSG-definable languages over n ≥ 3 processes. Be-
low, we get down to 2 processes but the regular language is only 4-bounded.

Undecidability of 1-testability for 2 processes

The argument in [3] shows that 1-testability is undecidable for regular MSG-
definable languages with four processes. We tighten this result to show that 1-
testability is undecidable for regular MSG-definable languages over 2 processes.

Theorem 10. For n ≥ 2, 1-testability is undecidable for regular 4-bounded
MSG-definable languages over n processes.

i

a1

a2
...

ak

Fig. 5.

Proof. As before, let ∆ = {(v1, w1), (v2, w2), . . . , (vr, wr)}
be an instance of MPCP satisfying the assumptions (1–3)
stated earlier. With each word vi = a1a2 . . . ak we associate
an MSC Mvi

as indicated in Fig. 5.
Similarly we construct the MSCs Mwi

. First, observe that
each of these MSCs is com-connected, so any MSG that uses
these MSCs as node labels is locally synchronized. Also,
from assumption 1 of the MPCP instance, the MSCs are
4-bounded and therefore, any language generated by these
MSCs is 4-bounded.

Let Lv = {Mvi
| 1 ≤ i ≤ r} and Lw = {Mwi

| 1 ≤
i ≤ r}. Consider the MSG-definable regular language L∆ =
Mv1

.(Lv)∗ + Mw1
.(Lw)∗.

If M is any MSC in L then M↾1 is a word of the form 1!2(1) 1?2(x1) 1!2(i2)
1?2(xi2) · · · 1!2(ik) 1?2(xik

) where either each xij
is vij

or each xij
is wij

. A
similar property holds for M↾2.
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j j + 1

... i times

0 n 1

... i times

Fig. 6.

Suppose there is a 1-implied MSC M that is not in L∆. Then, M↾1 =
(Mw1

Mwi2
· · ·Mwik

)↾1 and M↾2 = (Mv1
Mvi2

· · ·Mvik
)↾2. It follows that the

MPCP instance ∆ has a solution.
Conversely, from any solution i2i3 . . . ik to the MPCP instance ∆, it is quite

easy to construct a 1-implied scenario where p1 witnesses the w1wi2 · · ·wik
and

p2 witnesses the v1vi2 · · · vik
. ⊓⊔

Finally, we turn our attention to MSGs over a singleton message alphabet. As
we shall see in the next section, 1-testability is decidable for locally-synchronized
MSG languages over singleton message alphabets. However, k-testability is un-
decidable for any k > 1.

Theorem 11. Let n and k be any two integers with n > 2 and 1 < k < n − 1.
There is a constant B such that the problem of deciding whether a B-bounded
HMSC language over a singleton alphabet is k-testable is undecidable.

Proof. (Sketch) Following the proof of Theorem 10, it suffices to prove the result
for k = n−2. We modify the reduction used in the proof of Theorem 8 to
use a singleton message alphabet. Let us assume that the message alphabet is
{a1, a2, . . . ak}. A communication ai between process j and j + 1 is replaced
by the communication pattern at the left of Fig. 6. Since k > 1, any subset
containing j and j + 1 would witness that the communication between j and
j + 1 is uniquely and correctly parsed. We still have to deal with the message
from process n to 1. We add an additional process 0 and simulate the act of
sending i from n to 1 by the MSC at the right of Fig. 6. Since k > 1, the pair
{n, 0} will jointly witness that i is sent from n to 1. ⊓⊔

5 Decidability

In this section we consider the 1-testability problem for regular MSC languages
where the message alphabet for each channel is a singleton. In this case, we may
omit the message content in any event. Throughout this section, we write p!q
and q?p rather than p!q(m) and q?p(m).

Proper and complete words For a word w and a letter a, #a(w) denotes
the number of times a appears in w. We say that σ ∈ Σ∗ is proper if for every
prefix τ of σ and every pair p, q of processes, #p!q(τ) ≥ #q?p(τ). We say that σ
is complete if σ is proper and #p!q(σ) = #q?p(σ) for every pair p, q of processes.

9



Every linearization of any MSC is a complete word and every complete word is
the linearization of a unique MSC.

Suppose L is the set of linearizations of a MSC language. Let Lp = {w↾p |
w ∈ L}. Let, 1-closure(L) = {w | w is complete and ∀p. w↾p ∈ Lp}. Observe
that 1-closure(L) is the set of 1-implied words of L.

Let L be the set of linearizations of some regular MSC language over a single-
ton message alphabet. From any finite automaton A = (Q, Σ, δ, i, F ) accepting L
we can easily construct for each p ∈ P an automaton Ap = (Qp, Σ↾p, δp, ip, Fp)
that accepts Lp. Note that 1-closure(L) is exactly the set of complete words
accepted by the (free) product

∏

p Ap of these automata. The product automa-
ton accepts a regular language. The difficulty is in ensuring that a word that
is accepted is complete. However, since the message alphabet is a singleton, it
suffices to keep track of the number of sent and as yet unreceived messages along
any channel. This leads us naturally to the following idea.

From these automata (Ap)p∈P , we construct a labelled Petri net N whose
firing sequences are related to words in 1-closure(L).3

1. The set of places is
⋃

p∈P Qp ∪ {cpq | p, q ∈ P}.
2. The set of transtions is

⋃

p∈P δp.

3. The transition (s, p!q, t) ∈ δp removes a token from the place s and deposits
a token each at the places t and cpq.

4. The transition (s, q?p, t) ∈ δp removes a token each from the places s and
cqp and deposits a token at t.

5. The initial marking has one token in each place ip, p ∈ P , corresponding to
the initial states of the automata Ap.

6. The label on the transition (s, x, t) is x ∈ Σ.

From the definition of N it follows that in any reachable marking, for any
p ∈ P , exactly one place in Qp has a token. We say that a marking of this net is
final if every place of the form cpq is empty and for each p ∈ P there is fp ∈ Fp

such that fp is marked. There are only finitely many final markings.

It is quite easy to observe that a word w ∈ 1-closure(L) if and only if there
is a firing sequence labelled w from the initial marking to some final marking.
This leads us naturally to the following proposition:

Proposition 12. Let B be any integer. We can decide if 1-closure(L) contains
a word that is not B-bounded.

Proof. The set of markings where exactly one of the places of the form cpq

has B + 1 tokens (and all other places have at most B tokens) is finite. Since
reachability is decidable for Petri nets [8, 9], we can check for each such marking
χ whether χ is reachable from the initial marking and if some final marking is
reachable from χ. ⊓⊔

3 Due to lack of space, we are constrained to omit basic definitions concerning Petri
nets. See [14] for a detailed introduction.

10



Now, if the given MSC language L is regular we can compute a bound B from
its presentation such that L is B-bounded. Using the proposition above, we can
check if 1-closure(L) contains words that are not B-bounded. If the answer is yes,
then L is not 1-testable. On the other hand, if there are no words in 1-closure(L)
that violate the B bound on any channel, we can look for 1-implied scenarios
using the following proposition.

Proposition 13. Let L be a B-bounded MSC regular language. We can decide
if 1-closure(L) contains any B-bounded words not in L.

Proof (Sketch). Construct the net N corresponding to the product automaton
∏

p Ap as described earlier. Explore all reachable configurations in which each
place in {cpq | p, q ∈ P} has no more than B tokens. This results in a finite
automaton that accepts all the B-bounded words in 1-closure(L). ⊓⊔

From the two propositions described above, we conclude that:

Theorem 14. The 1-testability problem for regular MSC languages over a sin-
gleton message alphabet is decidable.4

In fact, in this case we can even decide if 1-closure(L) is regular.

Theorem 15. Let L be a regular MSC language over a singleton message al-
phabet. Then, it is decidable whether 1-closure(L) is regular.

Proof. We reduce this to the Intermediate Marking Problem (IMP) for Petri
nets, which is known to be decidable [17].

Consider the Petri net constructed above. Define an intermediate marking to
be one that can be reached from the initial configuration and from which some
final marking is reachable. If the number of intermediate markings is finite, there
is a bound B such that along any firing sequence from the initial marking to
a final marking, no place ever contains more than B tokens. In other words,
if w is the word generated by some firing sequence from the initial to a final
configuration then the number of unreceived messages at any prefix of w is
bounded by B. Thus, the language 1-closure(L) is the language of a bounded
Petri net and hence regular.

On the other hand, if the number of intermediate markings is infinite, we may
conclude that for any B there is a word w ∈ 1-closure(L) which has a prefix with
B sent and as yet unreceived messages. Thus 1-closure(L) is not B-bounded for
any B and hence not regular. ⊓⊔

6 Discussion

We have seen in this paper that developing a framework for locally testing MSC
based specifications is hard. This is because MSG-based specifications permit
unintended implied scenarios that cannot, in general, be detected algorithmically.

4 This theorem can also be viewed as a special case of the result proved in [11] that 1-
testability is decidable for MSCs without fifo channels, but our proof for this special
case is simpler than the general proof in [11].

11



There are two approaches to attack the problem of local testing in light
of this bottleneck. One is to characterize structural conditions for k-testability.
This is analogous to identifying locally synchronized MSGs as those that generate
regular MSC specifications, even though the general problem of checking whether
an MSG specification describes a regular MSC language is undecidable [5].

Another tactic would be to recognize that practical implementations always
work with bounded buffers and impose an upper bound B on the buffer size.
The set of B-bounded MSCs in the k-closure of a regular MSC language is again
regular, so the B-bounded k-testability problem is decidable for all regular MSG-
definable languages. The focus could now be on efficiently identifying the smallest
k for which an MSG specification is k-testable. Another interesting problem is
to identify a minimal set of tests to validate a k-testable specification.
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