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Abstract strategies in these games represent either controlleheof t

system or behaviors of the environment.

We consider the standard model of finite two-person  Most algorithms for stochastic games suffer from the
zero-sum stochastic games with signals. We are interestedsiame restriction: they are designed for games where play-
in the existence of almost-surely winning or positively-win ers can fully observe the state of the system (e.g. concur-
ning strategies, under reachability, safetyfidhi or co-  rent games [9, 8] and stochastic games with perfect infor-
Buchi winning objectives. We prove twoialitative deter-  mation [7, 13]). The full observation hypothesis can hinder
minacyresults. First, in a reachability game either player interesting applications in controller synthesis becduie
1 can achieve almost-surely the reachability objective, or monitoring of the system is hardly implementable in prac-
player 2 can ensure surely the complementary safety ob-tice. Although this restriction is partly relaxed in [16, 5]
jective, or both players have positively winning strategie \here one of the players has partial observation and her op-
Second, in a Bchi game if playet cannot achieve almost-  ponent is fully informed, certain real-life distributedssy
surely the Bichi objective, then playe2 can ensure pos-  tems cannot be modeled without restricting observations of
itively the complementary coki8hi objective. We prove  pothplayers.
that players only need strategies withite-memory whose _ In the present paper, we considgochastic games with
sizes range from no memory.at all to doubly-exponential signals that are a standard tool in game theory to model
”F‘mber of sFatgs, with mgtchlng lower bounds. Tc_’getherpartial observation [23, 20, 17]. When playing a stochastic
with the qualitative determinacy results, we also provige fi game with signals, players cannot observe the actual dtate o
point algorithms for deciding which player has an almost- the game, nor the actions played by their opponent, but are
surely winning or a positively winning strategy and for com- only informed via private signals they receive throughout
puting the finite memory strgtegy. Co_mplexity ranges from the play. Stochastic games with signals subsume standard
EXPTIME to 2EXPTIME with matghmg lower bounds, . stochastic games [22], repeated games with incomplete in-
and better complexity can be a}ch|eved .for some Spec'alformation [1], games with imperfect monitoring [20], con-
cases where one of the players is better informed than herCurrent games [8] and deterministic games with imperfect
opponent. information on one side [16, 5]. Players make their deci-

sions based upon the sequence of signals they receive: a
) strategy is hence a mapping from finite sequences of private
Introduction signals to probability distributions over actions.
From the algorithmic point of view, stochastic games

Numerous advances in algorithmics of stochastic gamesyith signals are considerably harder to deal with than
have recently been made [9, 8, 6, 4, 11, 13], motivated in stochastic games with full observation. Whitgluesof the
partby application in controller synthesis and verificatid  |atter games are computable [8, 4], simple questions like
open systems. Open systems can be viewed as two-playergs there a strategy for player which guarantees winning
games between the system and its environment. At eachyith probability more thar, ?’ areundecidableven for re-
round of the game, both players independently and simul-stricted classes of stochastic games with signals [15]. For
taneously choose actions and the two choices together withhijs reason, rather thaguantitativeproperties (i.e. ques-
the current state of the game determine transition probabil tions about values), we focus in the present papeyuati-
ities to the next state of the game. Properties of open sys+ative properties of stochastic games with signals.
tems are modeled as objectives of the games [8, 12], and We study the following qualitative questions about

stochastic games with signals, equipped with reachapility
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safety, Buichi or co-Biichi objectives: algorithms are given for deciding whether the imperfectly

informed player has an almost-surely winning strategy for

a Buchi (or reachability) objective but nothing can be in-

ferred in case she has no such strategy. This open question

is solved in the present paper, in the broader framework of
stochastic games with signals.

(i) Does player2 have apositively winning strategyi.e. Our qualitative determinacy result (1) is a radical gener-
a strategy which guarantees the opposite objective toalization of the same result for concurrent games [8, Th.2],
be achieved with strictly positive probability, whatever while proofs are very different. Interestingly, for coneur
the strategy of player? rent games, qualitative determinacy holds for every omega-

regular objectives [8], while for games with signals we

show that it fails already for co-Buchi objectives. Inter-
estingly also, stochastic games with signals and a reacha-
bility objective have a value [19] but this value is not com-

(1) Either property (i) holds or property (ii) holds; in othe  putable [15], whereas it is computable for concurrent games
words these games agealitatively determined with omega-regular objectives [10]. The use of randomized

strategies is mandatory for achieving determinacy results

this also holds for stochastic games without signals [22, 9]

and even matrix games [24], which contrasts with [3, 16]

where only deterministic strategies are considered.

(3) Questions (i) and (ii) are decidable. We provide fix-  Qur results about randomized finite-memory strategies
point algorithms for computing uniformly all initial  (2), stated in Theorem 2, are either brand new or generalize
states that satisfy (i) or (ii), together with the corre- previous work. It was shown in [5] that for deterministic
sponding finite-memory strategies. The complexity of games where playeris perfectly informed, strategies with
the algorithms ranges froEXPTIME to 2EXPTIME. a finite memory of exponential size are sufficient for player

These three results are detailed in Theorems 1, 2, 3and 41 {0 achieve a Buchi objective almost-surely. We prove the

We prove that these results are tight and robust in severaP@Me result holds for the whole class of stochastic games

aspects. Games with co-Biichi objectives are absent fromWith signals. Moreover we prove that for playea doubly-

these results, since they are neither qualitatively detexch exponential number of memory states is necessary and suf-

(see Fig. 3) nor decidable (as proven in [2]) ficient for achieving positively the complementary co-Biic
Our main result and the element of surprise, is that °Piective. o o

for winning positively a safety or co-Biichi objective, a Concerning algorithmic results (3) (see details in Theo-

player needsa memory with a doubly-exponential num- €M 3 and 4) we show that our algorithms are optimal in

ber of states, and the corresponding decision problem isthe following meaning. First, we give a fix-point based al-

2EXPTIME-complete. This result departs from what was 907ithm for deciding whether a player has an almost-surely
previously known [16, 5], where both the number of mem- WInning strategy for a Biichi objective. In general, thigal

ory states and the complexity are simply exponential. These!Ithm is Z2XPTIME. We show in Theorem 5 that this prob-
results also reveal a nice property &chability games, lem is indeed EXPTIME-hard. However, in the restricted

that Biichi games do not enjoy: Every initial state is ei- setting of [5], it is already known that this problem is only

theralmost-surely winnindor player1, surely winningfor EXPTIME-complete. We show that our algorithm is also
player? or positively winningor both. optimal with anEXPTIME complexity not only in the set-

o ting of [5] where player has perfect information but also
Our results strengthen and generalize in several ways re-

its that ously K ¢ i 9 under weaker hypothesis: it is sufficient that plageras
sults that were previously known for concurren game;[ ’ more informatiorthan playerl. Our algorithm is alsd&X-
8] and deterministic games with imperfect information

) . . PTIME when playerl has full information (Proposition 2).
on one s_|de [.16’ 5]. l_:|rst, the framework of StOChaS_t'C In both subcases, play2meeds only exponential memory.
games with signals strictly emcompasses all the settings

of [16, 9, 8, 5]. In concurrent games there is no signal- The paper is organized as follows. In Section 1 we intro-
ing structure at all, and in deterministic games with imper- duce partial observation games, in Section 2 we define the
fectinformation on one side [5] transitions are deterntinis  notion of qualitative determinacy and we state our determi-
and player2 observes everything that happens in the game, nacy result, in Section 3 we discuss the memory needed by
including results of random choices of her opponent. strategies. Section 4 is devoted to decidability questios

No determinacy result was known for deterministic Section 5 investigates the precise complexity of the génera
games with imperfect information on one side. In [16, 5], problem as well as special cases.

(i) Does playen have aralmost-surely winning strategy
i.e. a strategy which guarantees the objective to be
achieved with probability, whatever the strategy of
player2?

Obviously, given an objective, properties (i) and (ii) catin
hold simultaneously. For games with a reachability, safety
or Biichi objective, we obtain the following results:

(2) Players only need strategies wiithite-memorywhose
memory sizes range from no memory at all to doubly-
exponential number of states.



hal-00356566, version 1 - 27 Jan 2009

1 Stochastic games with signals. We use random variablgs,,, I,,, J,,, C,, andD,, to de-
note respectively the-th state, action of player, action of
We consider the standard model of finite two-person player2, signal of player and signal of playe2.
zero-sum stochastic games with signals [23, 20, 17]. These
are stochastic games where players cannot observe the ag/inning conditions. The goal of playerl is described
tual state of the game, nor the actions played by their op-by a measurable eveiin called thewinning condition
ponent, their only source of information are private sig- Motivated by applications in logic and controller synthe-
nals they receive throughout the play. Stochastic gamessis [12], we are especially interestedr@gachability, safety,
with signals subsume standard stochastic games [22], reBiichi and co-Bichi conditions These four winning condi-
peated games with incomplete information [1], games with tions use a subsé@t C K of target statesn their definition.
imperfect monitoring [20] and games with imperfect infor- The reachability condition stipulates thatshould be vis-

mation [5]. ited at least oncéWin = {3n € N, K,, € T}, the safety
condition is complementarWin = {Vn € N, K,, & T'}.
Notations. Given a finite setf{, we denote byD(K) = For the Biichi condition the est of target states has to be vis

{6 : K — [0,1] | Y, 0(k) = 1} the set of probability ited infinitely often, Win = {3A C N,[A| = oo,Vn €
distributions onk and for a distributiony € D(K), we A, K,, € T}, and the co-Buichi condition is complementary
denotesupp(d) = {k € K | (k) > 0} its support. Win = {Im e N,Vn > m, K, ¢ T'}.

States, actions and signals. Two players called and2 Almost-surely and positively winning strategies. When
have opposite goals and play for an infinite sequence ofplayerl and2 use strategies andr and the initial distri-
steps, choosing actions and receiving signals. Players obbution isd, then played wins the game with probability:

serve their own actions and signals but they cannot observe e,

the actual state of the game, nor the actions played and the Ps™ (Win) .

signals received by their opponent. We borrow notations Playerl wants to maximize this probability, while play®r
from [17]. Initially, the game is in a state chosen according \ants to minimize it. The best situation for playiés when
to an initial distributiony € D(K') known by both players;  ghe has an almost-surely winning strategy.

the initial state isko with probability 5(ky). At each step

n € N, playersl and2 choose some actiong € 7 and  Definition 1 (Almost-surely winning strategy)A strategy

Jn € J. They respectively receive signails € C andd,, € o for player1 is almost-surely winnindrom an initial dis-
D, and the game moves to a new stitg ;. This happens tribution ¢ if

with probabilityp(kn 1, Cn, dn | knsin, jn) given by fixed v, P57 (Win) =1 . (1)

transition probabilitiep : K x I x J — D(K x C x D), When such a strategy exists, bothd and its support
known by both players. supp(d) are said to be almost-surely winning as well.

A less enjoyable situation for playéris when she only

Plays and strategies. Players observe their own actions . S
has a positively winning strategy.

and the signals they receive. It is convenient to assume
that the action player1 plays is encoded in the signal Definition 2 (Positively winning strategy)A strategyo for

she receives, with the notatian= i(c) (and symmetri-  player1 is positively winningfrom an initial distributions
cally for player2). This way, plays can be described by if
sequences of states and signals for both players, without V7, P77 (Win) > 0 . (2)

mentioning which actions were played. A finite play is a
sequence = (ko,c1,d1,...,Cnydn,kn) € (KCD)*K
such that for every) < m < n, p(km+1, Cm+1,dm+1 |

When such a strategy exists, bothd and its support
supp(d) are said to be positively winning as well.

km,i(¢m+1),7(dm+1)) > 0. Aninfinite play is a sequence The worst situation for playet is when her opponent
p € (KCD)“ whose prefixes are finite plays. has an almost-surely winning strategy which ensures
A (behavioral) strategy of player is a mappingo : Py" (Win) = 0 for all strategiess chosen by player
D(K) x C* — D(I). If the initial distribution is§ and 1. Symmetrically, a strategy for player2 is positively
playerl has seen signals, ..., c, then she plays action winning if it guarantee®'o,P7"" (Win) < 1. These no-

¢ with probability o (6, c1, ..., ¢,). Strategies for playe? tions only depend on the supportdsinceP{” (Win) =
are defined symmetrically. In the usual way, an initial dis- 3, _ - 6(k) - P7.” (Win).

tribution 6 and two strategies andr define a probability Consider the one-player game depicted on Fig. 1. The

measuré;’" on the set of infinite plays, equipped with the objective of playet is to reach state. The initial distribu-
o-algebra generated by cylinders. tionis (1) = §(2) = 3 andd(t) = d(s) = 0. Playerl
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(value) determinacwhich refers to the existence ofialue
Actually both qualitative determinacy and value determi-
nacy are formally expressed by a quantifier inversion. On
one hand, qualitative determinacy rewrites as:

(Vo 3r P{" (Win) < 1) = (37 Vo P77 (Win) < 1) .
On the other hand, the game has a value if:

sup inf PJ"" (Win) > inf sup P{"" (Win) .

Both the converse implication of the first equation and the
converse inequality of the second equation are obvious.
While value determinacys a classical notion in game
theory [14], to our knowledge the notion qtialitative de-
terminacyappeared only in the context of omega-regular
concurrent games [9, 8] and stochastic games with perfect
information [13].
plays with actiond = {a, g1, g2}, Whereg; andgs mean Existence of an almost-surely winning strategy ensures
respectively ‘guess’ and ‘guess2’, while player2 plays that the value of the game Is but the converse is not true.
with actionsJ = {c} (that is, player 2 has no choice). Actually it can even hold that playérhas a positively win-
Player1 receives signal€ = {«a, 3, L} and player2 is ning strategy while at the same time the value of the game
‘blind’, she always receives the same sigdal= {1}. is 1. For example, consider the game depicted on Fig. 2,
Transitions probabilities are represented in a quite matur which is a slight modification of Fig. 1 (only signals of
way. When the game is in stateand both players play  player1 and transitions probabilities differ). Playgrhas
a, then playerl receives signad or L with probability 3, signals{«, 3} and similarly to the game on Fig 1, her goal
player2 receives signal. and the game stays in state is to reach the target stateby guessing correctly whether
In state2 when both actions ar€s, playerl cannotreceive  the initial state isl or 2. On one hand, player can guar-
signala butinstead she may receive sigiaMWhen ‘guess-  antee a winning probability as close tas she wants: she
ing the state’ i.e. playing actiay in statej € {1,2}, player  playsa for along time and compares how often she received
1 wins the game if = j (she guesses the correct state) and signalsa. and 3. If signalsa were more frequent, then she
loses the game if # j. The star symbok stands for any  plays actiong;, otherwise she plays actign. Of course,
action. In this game, player has a strategy to reachal- the longer playet playsa’s the more accurate the predic-
most surely. Her strategy is to keep playing acticas long  tion will be. On the other hand, the only strategy available t
as she keeps receiving signal The day playei receives  player2 (always playing) is positively winning, because
signala or 3, she plays respectively actign or go. This  any sequence of signals fay, 3}* can be generated with
strategy is almost-surely winning because the probability positive probability from both statesand2.
for player1 to receive signal. forever is0.

Figure 1. When the initial state is chosen at
random between states 1 and 2, player 1 has
a strategy to reach ¢ almost surely.

2 Qualitative Determinacy.

If an initial distribution is positively winning for player
then by definition it i;motalmost-surely winning for his op-
ponent playeR. A natural question is whether the converse
implication holds.

Definition 3 (Qualitative determinacy)A winning con-
dition Win is qualitatively determinedf for every game
equipped withWin, every initial distribution is either
almost-surely winning for playeror positively winning for

player2. Figure 2. A reachability game with value 1
where player 2 has a positively winning strat-
Comparison with value determinacy. Qualitative deter- egy.

minacyis similar to but different from the usual notion of
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Qualitative determinacy results. The first main result of  of player2 which playsd at that date. Although playé&ris
this paper is the qualitative determinacy of stochasticegam blind, obviously she can play such a strategy which requires
with signals for the following winning objectives. only counting time elapsed since the beginning of the play.
With probability arbitrarily close td, the game is in state
_Th(_aorem 1. Rea_lchability, safety andlBhigamesarequal- 9 and playing ad puts the game back in state Playing
itatively determined. long sequences afs followed by ad, player2 can ensure
with probability arbitrarily close td that if playerl plays
according too, the play will visit stateg and?2 infinitely
often, hence will be lost by playdr. This contradicts the

While qualitative determinacy of safety games is not too
hard to establish, proving determinacy of Biichi games is
harder. Notice that the qualitative determinacy of Buchi __. L

L L . .. existence of an almost-surely winning strategy for player
games implies the qualitative determinacy of reachability -
) - . On the other hand, playé@rdoes not have a positively
games, since any reachability game can be turned into an . . . '
) oo . . winning strategy either. Fix a strategyfor player2 and
equivalent Biichi one by making all target states absorbing suppose it is positively winning. Onceis fixed, player
The proof of Theorem 1 is postponed to Section 4, where y : , P13y

the determinacy result will be completed by a decidability 1 knows how long she should wait so that if actiénvas
result: there are algorithms for computing which initiad-di never played by playerthen there is arbitrarily small prob-

tributions are almost-surely winning for playéror posi- ability that player2 will play d in the future. Playet plays

. e i i ! a for that duration. If player2 plays ad then the play
g\r/:zgvén:r':;g;m player2. This is stated precisely in The- reaches staté and playerl wins, otherwise the play stays

A fTh 1is that i habil in statet. In the latter case, playdrplays actionh. Player
consequence of Theorem 1 is that In & reachability y \q\ys that with very high probability playerwill play
game, every initial d|str|putlpn Is either almost-su_r_elmw c forever in the future, in that case the play stays in s?2ate
ning _for playerl, surelywinning for_plgyerz, or positively and playerl wins. If player1 is very unlucky then playex
winning for both players. S‘!re'y winning means that.player will play d again, but this occurs with small probability and

2 has a strategy for preventing every finite play consistent then playerl can repeat the same process again and again.

with T frrlpm wsmndg targetstatesh._ ice f b Similar examples can be used to prove that stochastic Buichi
Buichi games do not share this nice feature because COyames with signals do not have a value [18].

Biichi games are not qualitatively determined. An example
of a co-Biichi game which is not determined is represented i
in Fig. 3. In this game, playdrobserves everything, player 3 Memory needed by strategies.
2 is blind (she only observes her own actions), and player
1's objective is to avoid statefrom some momenton. The 3.1 Finite-memory strategies.
initial state ist.
Since our ultimate goal are algorithmic results and con-

ok ac *c troller synthesis, we are especially interested in stiageg

. . " . that can be finitely described, like finite-memory stratsgie
C
a @.a Definition 4 (Finite-memory strategy)A finite-memory
xd strategyfor player1 is given by a finite sed/ called the
*d memory together with a strategic functien, : M —

D(I), an update functiompd,; : M x C — D(M), and
an initialization functioninity; : P(K) — D(M). The
Figure 3. Co-Blichi games are not qualita- memory sizas the cardinal of}/.

tively determined. In order to play with a finite-memory strategy, a player

proceeds as follows. She initializes the memorysofo
initps (L), whereL = supp(6) is the support of the initial
distributiono. When the memory is in state € M, she
plays action with probability o, (m) (i) and after receiv-
ing signalc, the new memory state is’ with probability
upd y (m, ¢)(m’).

On one hand it is intuitively clear how to play with a
finite-memory strategy, on the other hand the behavioral
strategy associated with a finite-memory strateggn be

On one hand, player does not have an almost-surely
winning strategy for the co-Biichi objective. Fix a strateg
o for player1 and suppose it is almost-surely winning. To
win against the strategy where playeplaysc forever,o
should eventually play & with probability 1. Otherwise,
the probability that the play stays in statés positive, and
o is not almost-surely winning, a contradiction. Sincés
fixed there exists a date after which playehas played
with probability arbitrarily close td. Consider the strategy Lprecisely defined in the Appendix.
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quite complicated and requires the player to use infinitely in playing randomly any action which ensures the next be-
many different probability distributions to make random lief to be almost-surely winnind. Similar strategies were

choices (see discussions in [9, 8, 13]). used in [5]. These two results are not very surprising: al-
In the games we consider, the construction of finite- though they were not stated before as such, they can be
memory strategies is often based on the notiomelfef proved using techniques similar to those used in [16, 5].

The belief of a player at some moment of the play is the set  The element of surprise is the amount of memory needed
of states she thinks the game could possibly be in, accordingor winning positively co-Biichi and safety games. In these
to the signals she received so far. situations, itis still enough for playérto use a strategy with
finite-memory but, surprisingly perhaps, an exponentz si
memory is not enough. Instead doubly-exponential memory
is necessary as will be proved in the next subsection.
Doubly-exponential size memory is also sufficient. Ac-
tually for winning positively, it is enough for player to
make hypothesis about beliefs of playgrand to store in

Definition 5 (Belief). From an initial set of stated C K,
the belief of playet after receiving signat (hence playing
actioni(c)), is the set of statdssuch that there exists a state
lin L and a signall € D with p(k,c,d | 1,i(c),j(d)) > 0.
The belief of playet after receiving a sequence of signals

c1, .- cn IS defined inductively by: her memory all pairgk, L) of possible current state and be-
Bi(L,ci,...,cn) = Bi(Bi(L,ciy. .. cn 1), cn) !lef o_f heropponent. The update operator of the correqund—
ing finite-memory strategy uses numerous random choices
Beliefs of playee are defined similarly. so that the opponentis unable to predict future moves. More

] ) o details are available in the proof of Theorem 4.
Our second main result is that for the qualitatively de-

termined games of Theorem 1, finite-memory strategies are3.2  Doubly-exponential memory is neces-

sufficient for both players. The amount of memory needed sary to win positively safety games.
by these finite-memory strategies is summarized in Table 1
and detailed in Theorem 2. We now show that a doubly-exponential memory is nec-

essary to win positively safety (and hence co-Biichi) games

Almost-surely | Positively We construct, for each integera reachability game, whose

Reachability bel?ef memoryless number of state is polynomial imand such that playe@rhas
g?fi{y Ee:!e]: doubly-exp a positively winning strategy for her safety objective. §hi
tchi elie

- game, calledzuess_my_set,,, is described on Fig. 4. The
Co-Buchi doubly-exp objective of player 2 is to stay away fromwhile player 1
tries to reacht.

We prove that whenever play@ruses a finite-memory
strategy in the gamguess_my_set,, then the size of the
memory has to be doubly-exponentialrnn otherwise the
Theorem 2(Finite-memory is sufficient)Every reachabil-  safety objective of playe2 may not be achieved with pos-
ity game is either won positively by playeor won surely itive probability. This is stated precisely later in Propo-
by player2. In the first case playing randomly any action Sition 1. Prior to that, we briefly describe the game
is a positively winning strategy for playérand in the sec-  guess_my_set,, for fixedn € N.
ond case playe? has a surely winning strategy with finite-
memoryP (K) and update functiofss. Idea of the game. The gameguess_my_set,, is divided

Every Bichi game is either won almost-surely by player into three parts. In the first part, player 1 generates a set
1 or won positively by playel. In the first case player has X ¢ {1,...,n} of size|X| = n/2. There are(n%) possi-

Table 1. Memory required by strategies.

an almost-surely winning strategy with finite-memBiii’) bilities of such sets(. Player 2 is blind in this part and has
and update functio8;. In the second case play@rhas a no action to play.

positively winning strategy with finite-memdR(P (K) x In the second part, player 1 announces by her actions
K). %(7;}2) (pairwise different) sets of size/2 which are dif-

ferent fromX. Player 2 has no action to play in that part,
but she observes the actions of player 1 (and hence the sets
nounced by playdn.

In the third part, playe2 can announce by her action

up to%(n%) sets of size1/2. Playerl observes actions of

The situation where a player needs the least memory is
when she wants to win positively a reachability game. To
do so, she uses a memoryless strategy consisting in playinéln
randomly any action.

To win almost-surely games with reachability, safety and
Bchi objectives, itis sufficient for a player to remember h 2for reachability and safety games, we suppose without lbgerer-
belief. A canonical almost-surely winning strategy cotssis ality that target states are absorbing.
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only one inequality each time a s&t; is given, namely

Playerl chooses secretly a se X; < Xi+1. Itis done in a similar but more involved way
X c{1,...,n}of size} as before, by remembering randomly two elementpf
* instead of one.

The last problem is to count up t- (n72) with a loga-
rithmic number of bits. Again, we ask player 1 to increment
a counter, while remembering only one of the bits and pun-
ishing her if she increments the counter wrongly.

Playerl announces publicly |cheat
3(,,7,) sets different fromy

Proposition 1. Player 2 has a finite-memory strategy with

X found L i
Player2 has%(n%) tries 3 x 22°(J2) different memory states to win positively
for finding X guess_my._set,,.
No finite-memory strategy of player 2 with less than
X not found 1) Y . 9 ”p Y
22"\»/2) memory states wins positivedyess_my_set,,.
*
@' Proof. The first claim is quite straightforward. Playzre-
) members in which part she is (3 different possibilities). In
Figure 4. A game where player 2 needs a lot part 2, player2 remembers all the sets proposed by player

of memory to stay away from target state  ¢.

1 (2%'(5}2> possibilities). Between part 2 and part 3, player

2 inverses her memory to remember the sets playeid

o not propose (stiIE%'(n%) possibilities). Then she proposes

player2. If player2 succeeds in finding the s&t, the game  g4ch of these sets, one by one, in part 3, deleting the set

restarts from scratch. Otherwise, the game goes 1o state from her memory after she proposed it. Let us assume first

and player 1 wins. _ _ that playerl does not cheat and plays fair. Then all the sets
It is worth noticing that in order to implement the game ¢ sizen/2 are proposed (since there a?re% . (n72) such

guess_my.set,, in & compact way, we allow player 1 10 go(q) that ist has been found and the game starts another
cheat, and rely on pr_obat_>|l|t|e§ to always have a c_hance 0 5und without entering state Else, if playerl cheats at
catch player 1 cheating, in which case the game is sent 10 ome point, then the probability to reach the sink staite

the sink state_s, and playerl_loses. Tha_t is, playet has non zero, and playeralso winspositivelyher safety objec-
to play following the rules without cheating else she cannot tive

win almost-surely her reachability objective. Notice also

; : o The second claim is not hard to show either. The strategy
that playerl is better informed than playérin this game.

of player1 is to never cheat, which prevents the game from
entering the sink state. In part 2, player 1 proposes the sets
Concise encoding. We now turn to a more formaldescrip-  x in a lexicographical way and uniformly at random. As-
tion of the gameguess_my_set,,, to prove that it can be en-  sume by contradiction that player 2 has a counter strategy

coded with a number of states polynomiabin There are i, strictly less thare? (/=) states of memory that wins
three pr(_)blems t(.) be solved, that we sketch here. First, re'positively the safety objective. Consider the end of part 2,
memberlqg seK in the state of the game would ask.for an | hen player 1 has propos%d ( n ) sets. If there are less
exponential number of states. Instead, we use a fairly stan- L n/2
dard technique: recall at random a single elemert X. than2#'(»72) states the memory of playercan be in, then
In order to check that a séf of sizen /2 is different from  there exists a memory state. of player 2 and at least two
the setX of sizen/2, we challenge player 1 to point out setsA, B among the; - (,,) sets proposed by player 1
some elemeny € Y \ X. We ensure by construction that such that the memory of player 2 aftdris m. with non
y € Y, for instance by asking it wheX is given. Thisway,  zero probability and the memory of player 2 afferis m.
if player 1 cheats, then she will givee X, leaving a pos-  with non zero probability. NowA U B has strictly more
itive probability thaty = z, in which case the game is sure than% : (7:}2) sets ofn/2 elements. Hence, there is a set
that player 1 is cheating and punishes player 1 by sendingx < 4 J B with a positive probability not to be proposed
her to states where she loses. by player 2 after memory state... Without loss of gener-
The second problem is to make sure that player 1 gen-gjity, we can assume thaf ¢ A (the other cas&l ¢ B is
erates an exponential number of pairwise different setssymmetrical). Now, for each round of the game, there is a
X1, Xa,..., Xy (). Notice that the game cannot re-  positive probability thafk is the setin the memory of player
call even one set. Instead, player 1 generates the sets if, that player 1 proposed sets in which case player 2 has
some total order, denoted, and thus it suffices to check a (small) probability not to propos& and then the game
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goes ta, where playet wins. Player will thus eventually
reach the target state with probabilityhence a contradic-

the Buchi condition to hold with probability. According
to Theorem 3, in the remaining case there exists a support

tion. This achieves the proof that no finite-memory strategy L surely winning for playe® for her co-Biichi objective.

of player 2 with less thaa? (/=) states of memory is pos-
itively winning. O

4 Decidability.

We turn now to the algorithms which compute the set
of supports that are almost-surely or positively winning fo
various objectives.

Theorem 3 (Deciding positive winning in reachability
games) In a reachability game each initial distribution
0 is either positively winning for playet or surely win-
ning for player2, and this depends only empp(d) C K.
The corresponding partition ¢ (k) is computable in time
O (G - 2K), whereG denotes the size of the description of

We prove that in case playércanforce the belief of
player 1 to be L someday with positive probability from
another suppott’, thenL'’ is positively winning as well for
player2. This is not completely obvious because in gen-
eral player2 cannot know exactlywhenthe belief of player
1 is L. For winning positively fromL’, player2 plays to-
tally randomly until she guesses randomly that the belief
of player1 is L, at that moment she switches to a strategy
surely winning fromL. Such a strategy is far from being
optimal, because play@mplays randomly and in most cases
she makes a wrong guess about the belief of playelow-
ever player wins positively because there is a chance she
is lucky and guesses correctly at the right moment the belief
of playerl.

Player1 should surely avoid her belief to beor L’ if

the game. The algorithm computes at the same time theshe wants to win almost-surely. However, doing so player

finite-memory strategies described in Theorem 2.

As often in algorithmics of game theory, the computation
is achieved by a fix-point algorithm.

Sketch of proofThe set of support€ C P(K) surely-
winning for player2 are characterized as the largest fix-
point of some monotonic operat@¢ : P(P(K)) —
P(P(K)). The operato® associates witl C P(K) the
set of supportg, € £ that do not intersect target states and

such that playe? has an action which ensures that her next

belief is in £ as well, whatever action is chosen by player
and whatever signal play@rreceives. FoL C P(K), the
value of®(L£) is computable in time linear id and in the

description of the game, yielding the exponential complex-

ity bound. O

To decide whether playdrwins almost-surely a Bichi
game, we provide an algorithm which runs in doubly-

1 may prevent the play from reaching target states, which
may create another positively winning support for plad,er
and so on...

Using these ideas, we prove that the 8gt C P(K) of
supports almost-surely winning for playerfor the Biichi
objective is the largest set of initial supports from where

(1) playerl has a strategy for winning positively the reach-
ability game while ensuring at the same time her belief
to stay inL ..

Property ) can be reformulated as a reachability con-
dition in a new game whose states are states of the original
game augmented with beliefs of playker kept hidden to
player2.

The fix-point characterization suggests the following al-
gorithm for computing the set of supports positively win-
ning for player2: P(K)\L« is the limit of the sequence
D=L, CLyULY CLyULY CLLULIULY C ... C

exponential time and uses the algorithm of Theorem 3 as;/ ...y 2/ = P(K)\ L., where

a sub-procedure.

Theorem 4 (Deciding almost-sure winning in Buchi
games) In a Biichi game each initial distributio# is ei-
ther almost-surely winning for player or positively win-
ning for player2, and this depends only cupp(d) C K.
The corresponding partition ¢ (k) is computable in time
(’)(22G), whereG denotes the size of the description of the

game. The algorithm computes at the same time the finite-

memory strategies described in Theorem 2.

Sketch of proofThe proof of Theorem 4 is based on the
following ideas.

First, suppose that fromveryinitial support playerl
can win thereachability objectivevith positive probability.

(a) from supports inCy, ; player2 can surely guarantee
the safety objective, under the hypothesis that player
beliefs stay outsid&?,

(b) from supports inC;, ; player2 can ensure with pos-
itive probability the belief of played to be in £},
someday, under the same hypothesis.

The overall strategy of playeX positively winning for
the co-Bichi objective consists in playing randomly for
some time until she decides to pick up randomly a bdlief
of playerl in someL!. She forgets the signals she has re-
ceived up to that moment and switches definitively to a strat-
egy which guarantees (a). With positive probability, playe

Then, repeating the same strategy, Player 1 can guarante®is lucky enough to guess correctly the belief of playeat
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the right moment, and future beliefs of playlewill stay in 2, one has to remember a position of the tape. Unfortu-
L, in which case the co-Bliichi condition holds. O nately, the polynomial-size game cannot remember this po-
) ) sition directly, as there are exponentially many posgibgi
Property} can be formulated by mean of a fix-point ac- |ngtead, we use playdrto detect the cheating of player

cording to Theorem 3, hence the set of supports positively g il randomly choose a position and the corresponding
winning for player2 can be expressed using two embedded |g¢ter 1o remember, and check at the next step that player

fix-points. This should be useful for actually implementing 5 iq not cheat on this position. To prevent playeirom
the algorithm and for computing symbolic representations cheating, that is saying playecheats although she did not,

of winning sets. some information is remembered in the states of the game
(but hidden to both players). Here again, the game cannot

5 Complexity and special cases. remember the precise position of the letter chosen by player
1, since it could be exponential im, so she randomly re-

In this section we show that our algorithms are optimal members a bit of the binary encoding of the letter’s posi-
regarding complexity. Furthermore, we show that these al-tion. This way, both players can be caught if they cheat. If
gorithms enjoy better complexity in restricted cases, gen-the play reaches a final configuration.f, playerl wins.
eralizing some known algorithms [16, 5] to more general If player2 cheats and playerdelates her, the play is won by
subcases, while keeping the same complexity. player1l. Playerl has a reset action in case she witnesses

The special cases that we consider regard inclusion beplayer2 has cheated, but she was not caught. If player
tween knowledges of players. To this end, we define the cheats and is caught by the game, the play is won by player
following notion. If at each moment of the game the belief 2. This construction ensures that playlehas an almost
of playerz is included in the one of player, then player: sure winning strategy if and only if is accepted by the al-
is said to have more information (or to be better informed) ternating Turing maching{. Indeed, on the one hand, if
than playew. Itis in particular the case when for every tran- w is accepted, player needs to cheat infinitely often (af-

sition, the signal of player contains the signal of player ter each reset), so that the final stateMfis not reached.
Player1 has no interest in cheating, and at each step, she
5.1 Lower bound. has a positive probability (uniformely bounded by below)

to catch playee cheating, and thus to win the play. Hence,

We prove here that the problem of knowing whether the player1 wins almost-surely. On the other handuifis not
initial support of a reachability game is almost-surely win accepted by\, player2 shouldn’t cheat. The only way for
ning for playerl is 2EXPTIME-complete. The lowerbound ~ Playerl towin, is to cheat, by denonciating playzeven if

even holds when playéris more informed than playex she didn’t cheat. Here, there is a positive probability that
game remembered the correct bit, that testifies that player

Theorem 5. In a reachability game, deciding whether cheated, and this causes the loss of pldaydience, player

player 1 has an almost-surely winning strategy is 1 does not have an almost-sure strategy. O
2EXPTIME-hard, even if player is more informed than
player2. 5.2 Special cases.

Sketch of proof.To prove the2EXPTIME-hardness we do

a reduction from the membership problem for alternating
EXPSPACE Turing machines. LetM be such a Turing
machine andv be an input word of length. Playerl is re-
sponsible for choosing the successor configuration in exis-
tential states while playeX owns universal states. The role
of player2 is to simulate an execution @1 onw according

to the rules she and playérchoose. For each configura-
tion she thus enumerates the tape contents. Plagiens at
reaching target states, which are configurations where th
state is the final state of the Turing machine. Hence, if
player2 does not cheat in her task, playehas a surely
winning strategy to reach her target if and onlyifis ac-
cepted byM. However playe could cheat while describ-  Proposition 2. In a Bichi game where either player
ing the tape contents, that is she could give a configurationhas more information than playdr or player1 has com-
not consistent with the previous configuration and the cho- plete observation, deciding whether playédras an almost-
senrule. To be able to detect the cheating and punish playesurely winning strategy or not (in which case player 2 has

A first straightforward result is that in a safety game
where player has full information, deciding whether she
has an almost-surely winning strategy iFmIME.

Now, consider a Bichi game. In general, as shown in
the previous section, deciding whether the game is almost-
surely winning for playet is 2EXPTIME-complete. How-
ever, it is already known that when player 2 has a full ob-
servation of the game the problemBEXPTIME-complete
only [5]. We show that our algorithm keeps the saf¥

TIME upper-bound even in the more general case where
player2 is more informed than player, as well as in the
case where playdrfully observes the state of the game.
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Technical Appendix

A Details for Section 3

We give here all the details for encoding the gagness_my_set,, with a game of polynomial size.
First, we describe how to ensure that a player does expa@atiigntiany steps. We show this for a game
with one and a half player, that is one of the player has no nawadlable. This game can thus be
applied to any player.

A.1 Exponential number of steps

Lety; - - -y, be the binary encoding of a numbgexponential im (y,, being the parity of). Here
is a reachability game that the player needs to playfpsteps to surely win. Intuitively, the player
needs to enumerate one by one the successors of 0 until mgaghi- - y,, in order to win. Let say
x) --- ), is the binary encoding of the successor counteof counterxz. In order to check that the
player does not cheat, the hit for a random is secretly remembered. It can be easily computed on
the fly readingy; . . . x,,. Indeed} = «; iff there exists somé > i with z;, = 0.

Action ¢ and signal coincide, ande {0, 1,2}, a € {0, 1} standing for the current bit;, anda = 2
standing for the fact that the player claims having reached

The state space is basically the following: b, j,V’, j', ¢); j js<n.z.2'c{0,1}- The signification of
such a state is that the player will give bit, b, 7 are the check to make to the current number (checking
thatz; = b), ', j are the check to make to the successar 6f’, = b') , andc indicates whether there
is a carry (correcting’ in casec = 1 at the end of the current numbeér= n)). The initial distribution
is the uniform distribution o0, 0, &, 0, 1) (checking that the initial number generated is indegdf
the player playg, then ify; = b the game goes to the goal state, else it goes to a sinksstate

We haveP((i,b,7,V',5',¢),a,8) = 1if i = j anda # b. Else, ifi # n, P((i,b,5,V',7,¢),a, (i +
1,b,5,0,5 ¢ Na)) = % (the current bit will not be checked, and the carry is 1 if betland
a are 1), andP((i,b,4,b,j',¢),a,(i + 1,b,4,a,i,1)) = 1/2. At last, fori = n, we have
P((i,b,5,V,75",¢),a, (1,0 Ae ' a,1,1)) = 1 (the bit of the next number becomes the bit for the
current configuration, taking care of the carjy Clearly, if the player does not play: steps of the
game, then it means she did not compute accurately the sucEsone step, hence it has a chance to
get caught and lose. That is, the probability to reach thégiate is not 1.

A.2 TImplementing guess_my_set, with a polynomial size game.

We now turn to the formal definition gfuess_my_set,,, with a number of states polynomialin At
each time (but in state), player 1 can restart the game from the begining (but froarsthk state), we
will say that it performs another round of the game.

The first part of the game is fairly standard, it consists kiragplayer 1 (who wants to reach some
goal) for a setX of n/2 numbers below:. The states of the game are of the fofm:), wherez is
the number remembered by the system (hidden for both playerd: < n — 2 is the size ofX so
far. Player 1 actions and signals are the same, equgl,ta.,n}, There is no action nor signal for
player 2. We havé®((z, %), z,s) = 1 (player 1 is caught cheating by proposing again the same eumb
remembered by the system). For gl z, we haveP((x,:),y, (z,7 + 1)) = 1/2 (the numbery
is accepted as new and the memaeris not updated)P((x,),y, (y,7 + 1) = 1/2 (the numbel is
accepted as new and the memory is updated y). If player1 plays0, it means that she has given
n/2 number, the system checks that the current state is indeed2) and goes to the next part. If the
current state is ndtz, n/2), then it goes ta and player 1 looses.
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The number: in the memory of the system at the end of part 1 will be used antembered all
along this round of the game in the other parts. We turn nowécsecond part, where player 1 gives
% . (n%) setsY differentto X . First, in order to be sure that every $&she proposes is nevar, player
1is asked to give one numberh\ {z} (this number is not observed by player 2). Givingends the
game into the sink statefrom which player 1 loses. Since player 1 does not know whiat playing
any number inX is dangerous and ensures that the probability of the plashieg the sink state is
stricly positive, hence it cannot reach its goal almostlgufiehe way the sets are announced by player 1
is the following. First, player 1 is asked whether number lbibgs to the set it is annoucing (she plays
a if yes,a’ if not, anda” if it is and furthermore it is the biggest number which willastge compared
to the following set). Player 2 has no choice of action to pEye observation of player 1 and 2 is the
same as the action of player 1, that is player 2 is informeti@Eets announced by player 1.

Second, the game needs to ensure that each set is diffecerhak, it asks player 1 to generate the
sets in lexicographic order (i is given before&r’”’, then there exists j € Y x Y’ such that < j and
forall k € X with & > i, k € X’ andk # j), and to announce in its action what is the biggest number
of current selt” which will be changed next time. The game remembgptus one numbej € Y with
j > i (if any) (it can be done with polynomial number of states)e Bame checks whether the next set
Y’ containsj, plus a numbet’ € Y’ with i < i’ andi’ # j. Again, since player 1 does not know the
number; chosen, if player 1 cheats and changes a nurhhber: of Y, then there is always a chance
that the game remembers that number and catches playertingh@awhich case the game goes to the
sink states. To be sure that player 1 giv%s (7;}2) sets, she plays the game of section A.1 step by step,
advancing to the successor of the current counter only whest ¥ is proposed. Furthermore, when
she has finished giving - (n’;g) she goes to the third part.

The third part ressembles the second part: player 2 prop})s(ané;g) sets instead of player 1, and
player 1 observes these sets. For eaclismioposed by playe?, playerl has to give an event it \ Y’
(this is not observed by player 2). This is ensured in the sameas in part 2. Recall that Player 1 has
always a reset action to restart the game from step 1, bueisittk states. That is, ifY = X, player 1
can ends the round, and restart the game with a new $etthe following round.

After each set proposed by player 2, the game of section Avaraxs to its next step. Once there
has beer% . (n72) setsY proposed with the proof by Player 1 th&t £ Y, then Player 1 goes to the
goal state¢ and wins.

B Details for Section 4
B.1 Strategies with finite memory

Definition 6 (Behavioral strategy associated with a finite memory sisgteA strategy with finite mem-
ory is described by a finite s@ff called the memory, a strategic functien; : M — D(I), an update

functionupd,, : M x C — M, an initialization functioninity,; : P(K) — M. The associated
behavioral strategy is defined by

a(d)(c1---en)(i) =

Z init r7 (supp(0))(mo) - upd s (mo, c1)(ma) - - - updyr (Mp—1, €0 ) (M) - o2z (M) (7)

mo - My € M1
B.2 Beliefs and the shifting lemma

When "shifting time” in proofs, we will use the followinghifting lemmaeither explicitely or im-
plicitely.
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Lemma 1 (Shifting lemma) Let f : S“ — {0, 1} be the indicator function of a measurable evértie
an initial distribution ando andr two strategies. Then:

Pg’T (f(Kl,KQ, .. ) =1 | Cl =c, Dy = d) = Pg:j—d (f(Ko,Kl, .. ) = 1),

whereVk € K,dqq(k) = PJ7 (K1 =k | Ci =¢,D1 =d), oc(cacs---cn) = o(ccacs---cy) and
Td(d2d3 e dn) = O'(ddeg cee dn)

Proof. Using basic definitions, this holds whefris the indicator function of a union of cylinders, and
the class of events that satisfy this property is a monottassc O

We will use heavily the following properties of beliefs.

Proposition 3. Let o, T be strategies for player and2 and ¢ an initial distribution with supportL.
Then forn € N,
]P)g’T (Kn+1 S Bl(L, Cl, ey Cn)) =1. (3)

Moreover, letr; be the strategy for playe which plays every action uniformly at random. Then for
everyn € Nandey --- ¢, € C*,if P7™V (C1 = ¢q,...,C,, = ¢,) > 0 then for every staté € K,

(kGBl(L,Cl,...,Cn)) < (]P)?TU (KnJrl :k,C’l :Cl,...,Cn :Cn) >O) . (4)

Consider the reachability, safetyjiBhi or co-Bichi condition, and supposeand are almost-surely
winning for playerl. Then for every: € N and strategyr,

Py (Bi(L, Dy, ...,Dy)is a.s.w. for playei) =1 . (5)

Proof. Easy from the definitions using the shifting lemma. Recallréchability and safety games,
we suppose without loss of generality that target statealaserbing. The first statement says that the
current state is always in the belief of playlerThe second statement says that in case playdays
every action, then every state in the belief of playes a possible current state. The third statement
says in case playdrplays with an almost-surely winning strategy, his beliefgd stay almost-surely
winning. This is because should be almost-surely winning againstas well. O

B.3 Proof of Theorem 3

Theorem 3 (Deciding positive winning in reachability gamedn a reachability game each initial
distributiond is either positively winning for playerr or surely winning for playee, and this depends
only onsupp(d) C K. The corresponding partition ¢(K) is computable in timé (G - 2X), where

G denotes the size of the description of the game. The algogttimputes at the same time the finite-
memory strategies described in Theorem 2.

The proof is elementary. By inspection of the proof, one dataio bounds on time and probabilities
before reaching a target state, using the uniform memaeategy ;. From an initial distribution
positively winning for the reachability objective, for eyestrategyr,

2
PV 7T (In <28 K, eT) > (ﬁ) , (6)
p

wherep is the smallest non-zero transition probability.
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Proof. Let L., C P(K\T) be the greatest fix-point of the monotonic operator P(P(K\T)) —
P(P(K\T)) defined by:

o(L)y={LeL]|Tj,eJVde D,(j.=73jld) = BaL,d) e L},

in other wordsd (L) is the set of supports such that plagenas an actiog, such that whatever signal
d she might receive (coherent wijhof course) her new belief will still be if. Letog be the strategy
for player1 that plays randomly any action.

We are going to prove that:

(A) every supportinC is surely winning for playeg,
(B) andor, is positively winning from any suppoft C K which is not inL ..

We start with proving (A). For winning surely from any suppbre L, player2 uses the following
finite-memory strategy: if the current belief of playe2 is L € L., then player2 chooses an action
jr such that whatever signdlplayer2 receives (withj(d) = j), her next belief32(L, d) will be in
L~ as well. By definition of® there always exists such an actifny and this defines a finite memory
strategy with memorf (K'\T') and update operatd;.

When playing with strategy, starting from a support i, beliefs of player never intersect’.
According to 3 of Proposition 3, this guarantees the playeneisits 7', whatever strategy is used by
playerl.

Conversely, we prove (B). Once the memoryless strategyor player1 is fixed, the game is a
one-player game where only play®zhas choices to make: it is enough to prove (B) in the specgsd ca
where the set of actions of playgris a singletonl = {i}. Let Ly = P(K\T) 2 L1 = ®(Ly) 2
Lo =®(Ly)...andL be the limit of this sequence, the greatest fixpoinbofe prove that for any
supportL € P(K), if L € Lo, then:

L is positively winning for playet . (7)

If LNT # 0, (7) is obvious. For dealing with the case whére P(K\T'), we define for every, € N,
K, = P(K\T)\L,, and we prove by induction on € N that for everyL € K, for every initial
distributiond, with supportL, for every strategy,

P5, (3m,2<m<n+1,K,e€T)>0. (8)

Forn = 0, (8) is obvious becaud€, = (). Suppose that for some e N, (8) holds for eveni. € K,,,
and letL € K,1. If L € K, then by inductive hypothesis, (8) holds. Otherwise ,,;1\X,, and
by definition ofIC,, 1,

LeL\D(Ly) - 9)

Letdy, be an initial distribution with suppo#t andr a strategy for playe2. Let j be an action such that
7(61,)(4) > 0. According to (9), by definition of, there exists a signal € D such thatj = j(d) and
By(L,d) & L. If B2(L,d) N'T # (0 then according to Proposition B (K, € T') > 0. Otherwise
Ba(L,d) € P(K\T)\L, = K, hence distribution,(k) = Pj (K2 =k | D1 = d) has its supportin
K,.. By inductive hypothesis,for every strategyIP’g; (FmeN,2<m<n+1,K, €T)>0hence
according to the shifting lemma and the definitiord@fP§ (Im € N,3 <m <n+2,K,, € T) > 0,
which achieves the inductive step.

For computing the partition of supports between those wesjtwinning for playerl and those
surely winning for playee, it is enough to compute the largest fixpoint®f Since® is monotonic,
and each application of the operator can be computed in tiear in the size of the gamé&| and the
number of support2(¢) the overall computation can be achieved in ti#®<. For computing strategy
7, itis enough to compute for eadhe L., an actionj;, which ensure®s (L, d) € L. O
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B.4 Proof of Theorem 4

Theorem 4(Deciding almost-sure winning in Biichi game#) a Biichi game each initial distributioéi

is either almost-surely winning for playeror positively winning for playe?, and this depends only on
supp(d) C K. The corresponding partition P (K) is computable in tim@(22G), whereG denotes
the size of the description of the game. The algorithm coespat the same time the finite-memory
strategies described in Theorem 2.

We start with formalizing what it means for playérno force her pessimistic beliefs to stay in a
certain set.

Definition 7. Let £L C P(K) be a set of supports. We say that playetan enforce her beliefs to
stay outsideC if player 1 has a strategy such that for every strategy of player2 and every initial
distributiond whose support is not ig,

P77 (Vn e N,Bi(L,Ch,...,Co) € L) =1 . (10)
Equivalently, for every. ¢ L, the set:
I(L) = {i € I suchthatvc € C, if i = i(c) thenBy(L,c) & L} ,
is not empty.

Proof. The equivalence is straightforward. In one directiongldie a strategy with the property above,
L ¢ L, é;, adistribution with suppork and: an action such that(é,)(z) > 0. Then according to (10),

i € I, hencely, is not empty. In the other direction, if, is not empty for every., ¢ L then consider
the finite-memory strategy which consists in playing any action iz, when the belief ig.. Then by
definition of beliefs (10) holds. O

We need the notion of-games.

Definition 8 (£-games) Let £ be a set of supports such that playlecan enforce her beliefs to stay
outsideL. For every suppor ¢ L, let I(L) be the set of actions given by Definition 7. Thwame
has same actions, transitions and signals than the origiaatial observation game, only the winning
condition changes: playelr wins if the play reaches a target state and moreover playdoes not use
actions other thad;, whenever her pessimistic belieflis Formally given an initial distributiord with
supportL and two strategies andr the winning probability of playet is:

Py" (3n, K, € T andVn, I, € I(B1(L,C4,...,Cy))).

Actually, winning positively anC-game amounts to winning positively a reachability gamésitite
spaceP(K) x K, as shown by the following lemma and its proof.

Proposition 4 (£-games) Let £ C P(K) be a set of supports such thétis upward-closed and player
1 can enforce her pessimistic beliefs to stay outglde

() Inthe £-game, every support is either positively winning for ptayyer surely winning for player
2. We denotel” the set of supports that are not ihand are surely winning for playe? in the
L-game.

(i) SupposeL” is empty i.e. every support not ifiis positively for playerl in the £L-game. Then
every support not irC is almost-surely winning for playdr, both in the£-game and also for the
Buchi objective. Moreover, the strategy for player1 which consists in chosing randomly any
action inZ(L) when her belief id is almost-surely winning in thé-game.
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(iii) SupposeL” is notempty. Then playe? has a strategy for winning surely theC-game from any
support inL”, andr has finite memorP ((P(K)\L) x K).

(iv) There is an algorithm running in time doubly-exponehtime in the size of7 for computingZ”
and, in case (iii) holds, strategy.

The proof is based on Theorem 3.

Proof. We define a reachability game which is a synchronized prodftie original games with
beliefs of playei, with a few modifications. this new reachability game is dedé- .. The state space

is K x (P(K)\L)U{L}, where{L} is a sink state, used for punishing playevhenever he uses an
action not inI(L). Target states off. are those whose first component is a target state of thelinitia
game(. Actions and signals of both players are the same &5 ifihe transition function is the product
of the transition function ofz (for the first component), together with the belief operdior(for the
second component), with one modification: whenever theeotistate igl, L) and playerl plays an
action: which is notinI (L), the next state i§$_L }, and remaing L} forever.

Applying Theorem 3 to the reachability garGg:, we get (i) and (iii). Property (i) holds because a
strategy for playet is positively winning in theC-game if and only if it is positively winning itz 2
and a strategy for playeris surely winning in theC-game if and only if it is surely winning i .
Property (iii) holds according to Theorem 3, because the sgaace of7 . is K x (P(K)\L) U {L}
and player2 can forget about staté because it is a sink state.

Computability of£” ande andr stated in (iv) is straightforward from Theorem 3 applied:tg.

Now we suppose”’ is empty and prove (ii). According to Theorem 3, any suppottin £ is
positively winning for playeil in G, and moreover the strategy;, which consists in playing randomly
any action is positively winning for player. When the belief of playet is L, playing an action
which is not in/(L) leads immediatly to a non-accepting sink state, henceeglyat; which consists
in playing randomly any action ifi( L) is positively winning as well, from any initial distributiovhose
supportis not inC.

To prove (ii) it is enough to show that for every initial distition § whose support is not i,

o is almost-surely winning for playdarfrom ¢ . (12)

Note this is a consequence of (6), but we quickly reprove dr groving (11), we need to give an
upper bound on the time to wait before seeing a target stagestsivt with proving that for each ¢ £
there existsVy;, € N such that for every strategy for every distributiory with supportL,

1
Py" (3n < Np,K,e€T) > — . (12)
Ng,

We suppose such aN;, does not exist and seek for a contradiction. Suppose foyeVehere exists
7n anddy with supportLZ such that (12) does not hold. Without loss of generalitycsin is fixed
and property (12) only concerns the firgtsteps of the game, we can "de-randomize” strategynd
supposery is deterministic i.e.7y : D* — J. Without loss of generality, we can assume as well
thaté converges to some distributian whose support is necessarily includedinUsing Koenig’s
lemma, it is easy to build a strategy: D* — J such that for infinitely many,

o,T 1
P(S}v (HHSN,KHGT)<N .
Taking the limit whenN — oo, we get:

P7 (3n, K, €T) =0 .

Vi
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this contradicts the fact that is positively winning fromL, because the support éfis included in
L ¢ £ and by hypothesig is upward closed heneepp(d) ¢ L as well. This proves the existence of
Ny, such that (12) holds.

Now we can achieve the proof of (ii). L&{ = max{Ny, | L ¢ L}. Then for every strategy and
every distributiony whose support is not i,

1
Py"(3In< N,K,eT)> N (13)

Sinceo guarantees the belief of playeto stay outsideC, we can apply the shifting lemma and get:

1
P77 (Vn < 2N, K, ¢ T) < (1 — N)2 ,

and by induction,
P*" (GneN,K,eT)=1.

This holds for every strategyand every distribution whose supportis notiff. Sinces, guarantees
the belief of playet to stay outsideC, by induction using (4) we obtain
P57 (3%n, K, €eT) =1 .

This achieves to prove tha: is almost-surely winning from any suppdrtz £ for the Biichi condition.
This proves (11) hence (ii). O

The following proposition provides a fix-point charactation of almost-surely winning supports
for player1.

Proposition 5 (Fix-point characterization of almost-surely winning popts) Let £ C P(K) be a set
of supports. Suppose playecan enforce her beliefs to stay outsideThen,

(i) either every supporl. ¢ L is almost-surely winning for playarand her Bichi objective,
(i) or there exists a set of support¥ C P(K) and a strategy-* for player2 such that:

(a) £ is not empty and does not intersekt
(b) playerl can enforce her beliefs to stay outside) £/,
(c) for every strategy and initial distributiond with support inZ’,

PP7 (v > 2K K, ¢ T |¥n,By(L,Cy,...,C) € L) >0 . (14)

There exists an algorithm running in time doubly-exporeiti the size of= for deciding which of
cases (i) or (ii) holds. In case (i) holds, the strategyfor player1 which consists in playing randomly
any action inI(L) when her belief isL is almost-surely winning for the iBhi objective. In case
(i) holds, the algorithm computes at the same tiieand a finite memory strategy* with memory
P(L' x K)\{0} such thai(14)holds.

Proof. Let £” be the set of supports surely winning for plagen the £L-game. Let; be the memory-
less strategy for playeXplaying randomly any action. Let’ be the set of supports such thatl, & £
and,

Vo, P (In < 25, B1(L,Cy,...,Cn) € L"UL) >0, (15)

wheredy, is the uniform distribution ord.

vii
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We start with proving that ifZ” is empty then case (i) of Proposition 5 holds. Since pldyean
enforce her beliefs to stay outside then£’ is empty as well. Moreover, according to (ii) of Proposi-
tion 4, every support not if is almost-surely winning for player for the Buichi condition, hence we
are in case (i) of Proposition 5.

Suppose now that” is notempty, Then we prove (ii)(a), (ii)(b) and (ii)(c) of Proptisn 5.

First (ii)(a) is obvious because sing€ C £, thenL’ is not empty either

Now we prove property (ii)(b) holds: playércan enforce his beliefs to stay outsideJ £’. There
existso such that (15) does not hold, and we can even suppds¢erministic, i.ec : P(K)xC* — I.
This strategyr guarantees the belief of playeto stay outsideC”” U £ for the first2X steps os the game.
We can modifyo such that this holds for all steps of the game. For that, play@n use strategy’
which plays likes, and as soon as playéras twice the same belidf, she forgets every signal she
received between the two occurenced.aind keep playing witlr. Using (4) and the shifting lemma,
one proves that if playing’ there is positive probability that the belief of playleis in £” U £ someday
then there is positive probability that the belief of playeis in £” U £ someday and moreover all
beliefs of playerl are different up to that moment. Since there are at 8stlifferent beliefs, this
contradicts the definition af. Hences’ guarantees the belief of playeto stay outsidel” U £ forever.
As a consequence, guarantees the belief of playeto stay outside’ as well forever, again this is an
application of (4) and the shifting lemma.

Description of the positively winning strategyr* for player 2. Itremains to prove (ii)(c). According
to (iii) of Proposition 4, there exists a strategyfor player2 which is surely winning in the&C-game
from any supportirC”.

We define a strategy* for player2 which guarantees (14) to hold. At each step, platrows a
coin. As long as the result is "tail”, then play2plays randomly any action: she keeps playing with
If the result is "head” then playex picks randomly a suppoit € £ (actually she guesses the belief
of player1), forgets all her signals up to now and switches definititelgtrategy-’ with initial support
L.

Intuitively, what matters with strategy* is that the opponent playérdoes not know whether he
faces strategy’ or strategyry, because everything is possible with strategy Formalizing this very
simple idea is a bit painful.

Let us prove that* guarantees property (14) to hold.

We start with proving for every strategyof playerl andé an initial distribution whose support is
in L € L', there exists a suppaft’ € £, N < 2X andc; - - - ey € C* such that:

Vie " §"(1) =P (K,=1,Ci=c1,...,Cx =cn) >0 . (16)
By definition of £’ and 7y, there existscy,...,cy and a supportl” € L” such thatL” =
Bi(L,ci,...,en), N < 2K andP{™ (Cy = ¢y,...,C, = cn) > 0. Let, Then, according to (4),
Vi e L", P77V (K, =1,C1 =c1,...,Cn =cn) > 0. Since by definition ofr*, there is positive
probability thatr plays liker; up to stageV, then we get (16).
Now we can achieve the proof of (14). Sinceis surely winning in theZ-game fromL” € L”, it
guarantees that:

Vo, Py (Yn €N, K, ¢ T |¥n € N, I, € I(By(L",Cy,...,Cp))) =1 .

There is positive probability that at stager* switches to strategy’ in initial stateL”. By definition of
beliefs,5,(L",C4,...,Cy) = B1(L,c1,...,cen,Ch,...,Cp), hence according to (16) and the shifting
lemma,

Vo,P" (Yn> N, K, €T,Cy---Cy =cy--cy | Yn> N, I, € [(By(L,Ch,...,Cp))) >0 .
(17)

viii
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According to the definition of I(L), for every o and n € N,
Py™ (Bi(L,Cy,...,C, Cryr) € L] Iy € I(B1(L,Ch,...,Cy))) > 0 and since there is posi-
tive probability thatr plays liker;; up to stage:, the same holds for, hence:

PS7 (Vn €N, I, € I(By(L,Ch,...,Cp)) | ¥n € N,By(L,Cy,...,Co) € L) >0 .

This last equation together with (17) proves (14), whichi@abs to prove (ii)(c) of Proposition 5.

Description of the algorithm. To achieve the proof of Proposition 5, we have to describelthbly-
exponential algorithm. This algorithm is a fix-point algbm, actually there are two embedded fix-
points, since this algorithm uses twice as sub-procedbesslgjorithm provided by Theorem 3 on game
G . defined in the proof of Proposition 4.

The algorithm of Proposition 4, property (iv) is used for qarting£”, ando or 7.

In caseL” is empty, the algorithm simply outputs strategy described in (ii) of Proposition 5. In
caseL” is not empty, the algorithm computes the set of supp@rdefined by (15), from which player
2 can force the belief of playdrto be in£” U £ someday with positive probability. For computidg
we have to fix strategyy in the game= ; and check whether playérhas a strategy for avoiding surely
his beliefs to be inC’ U £, which can be done running the algorithm of Proposition Sheogame .
Remark we prove the bourd can be replaced by in (15).

Once/£’ has been computed, the algorithm outputs stratégyescribed above. O

The proof of Theorem 4 illustrates how to compose the variimite memory strategies of Proposi-
tion 5 to obtain a strategy for play2mhich is positively winning and has finite memd®(P (K) x K).

Proof of Theorem 4 According to Proposition 5, starting with, = (), there exists a sequen£g, £/,
..., L] of disjoint non-empty sets of supports such that for everg n,
e if0 <m< Mthenl,, = L{U--- UL matches case (ii) of Proposition 5. We dennte

m—1

the corresponding finite memory strategy.
e L, matches case (i) of Proposition 5.

Then according to Proposition 5, the set of supports pejtiwinning for player2 is exactlyLy,
and supports that are not ify, are almost-surely winning for playér This proves qualitative deter-
minacy.

The sequencéj, L1, ..., L, is computable in doubly-exponential time, because eaclicappn of
Proposition 5 involves running the doubly exponentialeialgorithm, and the length of the sequence
is at most doubly-exponential in the size of the game.

The only thing that remains to prove is the existence and coalyiity of a positively winning
strategyr™ for player2, with finite memoryP(P(K) x K). Strategyr consists in playing randomly
any action as long as a coin gives result "head”. When the givies result "tail”, then strategy™
chooses randomly an integeér< m < M and a supporL. € £/ and switches to strategy,. Since
each strategy,, has memoryP(L], x K)\{0} and thel!, are distincts, strategy™ has memory
P(P(K) x K) with § used as the initial memory state.

We prove thatr™ is positively winning for playe2 from £,;. Let o be a strategy for playet,

L € L), and§ an initial distribution with supporL. Let mq be the smallest index such that

Py (3n € N,By(L,Ch,...,Cn) € L) >0 .
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SinceL € Ly andLy = U,,,<ps £1n» the set in the definition ofn is non-empty andn, is well
defined. Letyg € Nandcy, co, ..., ¢y € C™ suchthat3y (L, cy, ..., cp,) € L, and

]P)g"rJr (Cl = Cl,...,Cno = Cno) >0 .

According to the definition of T, there is positive probability that™ plays randomly until stem
hence according to (4), for every stéte By (L, c1, ..., Cn,),

]P)gﬂ—Jr (Cl =Cly.-vy CnO = Cnyg andK’”f = l) >0 (18)

According to the definition of * again, there is positive probability that switches to strategy,, at
instantng. SinceBi (L, ci,...,¢cn,) € L, hence according to (18) and to (14) of Proposition 5,

P77 (vn > 25, K, ¢ T | ¥n > 1o, By(L,C1,...,Cn) & Long) >0 (19)

!/
mo—1"

By definition ofmg and sinceC,,, = LHU---U L

P?T+ (vn S NaBI(Lacla" 7071) ¢ EWU) =1 ’

then together with (19),
P77 (vn > 25 K, ¢ T) >0 ,

which proves that ™ is positively winning for the co-Blichi condition. O

C Details for Section 5
Proof of 2EXPTIME-hardness

We give here a more detailed proof for thlEX2PTIME-hardness of the problem of deciding whether
player1 has an almost-surely winning strategy in a reachabilitygam

Theorem 5. In a reachability game, deciding whether playiehas an almost-surely winning strategy
is 2EXPTIME-hard, even if playet is more informed than playex.

Proof. We reduce the membership problem for alternatix>SPACE Turing machines. LetM be
an EXPSPACE alternating Turing machine, amd be an input word of length. From M we build
a stochastic game with partial observation such that playsn achieve almost-surely a reachability
objective if and only ifw is accepted byM. The idea of the game is that play®zdescribes an execution
of M onw, thatis, she enumerates the tape contents of successfigLzations. Moreover she chooses
the rule to apply when the state 6 is universal, whereas playgiis responsible for choosing the rule
in existential states. When the Turing machine reachesits ftate, the play is won by playér In
this simple deterministic game, if play2really implements some execution.® onw, playerl has a
surely winning strategy if and only ib is accepted byM. Indeed, if all executions om reach the final
state of M, then whatever the choices play®makes in universal states, playlecan properly choose
rules to apply in existential states in order to reach a finafiguration of the Turing machine. On the
other hand, if some execution andoes not lead to the final state 8, playerl is not sure to reach a
final configuration and win the game.

This reasoning holds under the assumption that pl2agdiectively describes the execution.df on
w consistent with the rules chosen by both players. Howevayep2 could cheat when enumerating
successive configurations of the execution. She would &airce do so, ifv is indeed accepted by1,
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in order to have a chance not to lose the game. To preventrildyem cheating (or at least to prevent
her from cheating too often), it would be convenient for tlaeng to remember the tape contents, and
check that in the next configuration, playzmdeed applied the chosen rule. However, the game can
remember only a logarithmic number of bits, while the configions have a number of bits exponential
in n. Instead, we ask playérto pick any positiork of the tape, and to announce it to the game (player
2 does not knowk), which is described by a linear number of bits. The game &dkp the letter at
this position together with the previous and next lettertemtpe. This allows the game to compute
the lettera at positionk of the nextconfiguration. As playe2 describes the next configuration, player
1 will annouce to the game that positiérhas been reached again. The game will thus check that the
letter player 2 gives is indeed This way, the game has a positive probability to detectplater2 is
cheating. If so, the game goes to a sink state which is winfanglayer1. To increase the probability
for player1 of observing playeg cheating, playei has the possibility to restart the whole execution
from the beginning whenever she wants. In particular, sHiedeiso when an execution lasts longer
than22” steps. This way, if playet cheats infinitely often, player will detect it with probability one,
and will win the game almost-surely. So far, we describedtardgnistic game satisfying that i is
accepted byM, player1 has a mixed strategy to reach her winning state almost swetywithout
cheating (that is, denonciating play®only if she was cheating).

We now have to take into account that playemould cheat: she could point a certain position of the
tape contents at a given step, and point somewhere elsenextetep. To avoid this kind of behaviour,
or at least refrain it, a piece of information about the posipointed by playet is kept secret (to both
players) in the state of the game. More precisely, a bit obihary encoding of the letter position on
the tape, and the position of this bit itself is randomly @drmamong the at most possible positions.

If player 1 is caught cheating (that is, if the bits at the position rerberad differ between both step),
the game goes to a sink state losing for playeihis way, when playet decides to cheat, there is a
positive probability that she loses the game. At this stdgegame is stochastic (a bit and a position
are remembered randomly in states of the game), plagees not have full information (she does not
know which bit is remembered in the state), but she has méoenvation than playe? (the latter does
not know what letter player decided to memorize). Moreover, the game satisfies thewolly w is
accepted byM if and only if playerl has mixed winning strategy which ensures reaching a gaal sta
almost surely.

O
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