
Timed Automata with Observers under
Energy Constraints∗

Patricia Bouyer
∗∗

Lab. Spécification et Vérification
CNRS & ENS Cachan, France
bouyer@lsv.ens-cachan.fr

Uli Fahrenberg
§

Dept. of Computer Science
Aalborg University, Denmark

uli@cs.aau.dk

Kim G. Larsen
§

Dept. of Computer Science
Aalborg University, Denmark

kgl@cs.aau.dk

Nicolas Markey
∗∗

Lab. Spécification et Vérification
CNRS & ENS Cachan, France
markey@lsv.ens-cachan.fr

ABSTRACT
In this paper we study one-clock priced timed automata
in which prices can grow linearly (ṗ = k) or exponentially
(ṗ = kp), with discontinuous updates on edges. We propose
EXPTIME algorithms to decide the existence of controllers
that ensure existence of infinite runs or reachability of some
goal location with non-negative observer value all along the
run. These algorithms consist in computing the optimal
delays that should be elapsed in each location along a run,
so that the final observer value is maximized (and never goes
below zero).

1. INTRODUCTION
Priced timed automata [5, 3] are emerging as a useful for-

malism for formulating and solving a broad range of real-time
resource allocation problems of importance in application
areas such as, e.g., embedded systems. In [7] we began the
study of a new class of resource scheduling problems, namely
that of constructing infinite schedules or strategies subject to
boundary constraints on the accumulated use of resources.

More specifically, we proposed priced timed automata with
positive as well as negative price-rates. This extension allows
for the modelling of systems where resources are not only
consumed but also occasionally produced or regained, e.g.
for scheduling the behaviour of an autonomous robot which,
during operation, occasionally may need to return to its base
in order not to run out of energy. As an example consider the

∗This work is partly supported by project FP7 Quasimodo.
∗∗These authors are partially supported by project DOTS
(ANR-06-SETI-003).
§These authors are partially supported by MT-LAB, a VKR
Center of Excellence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC 2010 Stockholm, Sweden
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

−3

`0

+6

`1

−6

`2

c=1c:=0

0
0

1

2

3

4

1
(a)

0
0

1

2

3

4

1
(b)

0
0

1

2

3

4

1
(c)

Figure 1: One-clock priced timed automaton and three
types of infinite schedules: lower-bound (a), lower-upper-
bound (b) and lower-weak-upper-bound (c).

priced timed automaton in Fig. 1 with infinite behaviours
repeatedly delaying in `0, `1 and `2 for a total duration of one
time unit. The negative weights (−3 and −6) in `0 and `2
indicate the rates by which energy will be consumed, and the
positive rate (+6) in `1 indicates the rate by which energy
will be gained. Thus, for a given iteration the effect on the
energy remaining will highly depend on the distribution of
the one time unit over the three locations.

In [7] three infinite scheduling problems for one-clock priced
timed automata have been considered: the existence of an
infinite schedule (run) during which the energy level never
goes below zero (lower-bound), never goes below zero nor
above an upper bound (interval-bound), and never goes below
zero nor above a weak upper bound, which does not prevent
energy-increasing behaviour from proceeding once the upper
bound is reached but merely maintains the energy level at the
upper bound (lower-weak-upper-bound). Fig. 1 illustrates the
three types of schedules given an initial energy level of one.

For one-clock priced timed automata both the lower-bound
and the lower-weak-upper-bound problems are shown decid-
able (in polynomial time) [7], whereas the interval-bound
problem is proved to be undecidable in a game setting. De-
cidability of the interval-bound problem for one-clock priced
timed automata as well as decidability of all of the considered
scheduling problems for priced timed automata with two or
more clocks are still unsettled.

+2

`0

+4

`1
−3

c=1 c:=0

0
0

1 2 3 4

1

2

3

4

(a)
0

0
1 2 3 4

1

2

3

4

(b)

Figure 2: One-clock priced timed automaton with discrete
updates. Infeasibility of region-stable lower-bound sched-
ule (a) and optimal lower-bound schedule (b).

In this paper, we extend the decidability result of [7] for the
lower-bound problem to “1 1

2
-clock” priced timed automata

and with prices growing either linearly (i.e. ṗ = k) or expo-
nentially (i.e. ṗ = kp). By “1 1

2
-clock” priced timed automata

we refer to one-clock priced timed automata augmented with
discontinuous (discrete) updates (i.e., p := p+ c) of the price
on edges: discrete updates can be encoded using a second
clock but do not provide the full expressive power of two
clocks.

Surprisingly, the presence of discrete updates makes the
lower-bound problem significantly more intricate. In partic-
ular, whereas region-based strategies suffice in the search
for infinite lower-bound schedules for one-clock priced timed
automata, this is no longer the case when discrete updates
are permitted. For the priced timed automaton in Figure 1
the infinite lower-bound schedule in Figure 1(a) could be
replaced by the region-based schedule in which the entire
one time unit is spent in the location with the highest price-
rate, i.e., `1. In contrast, given initial energy-level of two,
the (only possible) region-based schedule for the “1 1

2
-clock”

priced timed automaton of Figure 2 requires the one time
unit to be spent in location `0 and will eventually lead to
energy-level below zero as indicated in Figure 2(a). However,
choosing to leave for location `1 after having spent 0.5 time
units in `0—and thus having achieved an energy-level of 3
matching the subtracting update of the edge—provides an
infinite lower-bound schedule (Figure 2(b)).

α

β

win

wout

0 1 2 3 4
0

1

2

3

4

5

point win wout

α 1 0
β 3 4

(a)

α β

γ

win

wout

0 4 8
0

200

400

pt win wout

α ≈ 0.406006 0
β ≈ 0.812012 3
γ 6 ≈ 163.794

(b)

Figure 3: Energy functions for 〈`0, `1〉 of the priced timed
automaton of Figure 2 with linear rates (a) and exponential
rates (b).

Not being able to rely on the classical region construction,

the key to our decidability result is the notion of an energy
function providing an abstraction of a path in the priced
timed automaton. Given a path π, the energy function fπ
maps an initial energy level win at the beginning of the path
to the maximal energy wout which may remain after the path.
For the path π = 〈`0, `1〉 of the priced timed automaton of
Figure 2, we have already seen that fπ(2) = 2. We note
that fπ(1) = 0 as the full one time-unit needs to be spent in
location `0 in order to allow for a feasible run. Also fπ(win)
is undefined for win < 1. On the other hand, fπ(3) = 4 as
the full one time-unit may be spent in location `1; in fact
fπ(win) = win + 1 whenever win ≥ 3. Figure 3(a) shows
the energy-function fπ. Also Figure 3(b) shows the energy
function gπ for the same path π, but with exponential rates
(i.e., ṗ = 2p in `0 and ṗ = 4p in `1).

As we shall demonstrate in the remainder of the paper—for
both linearly and exponentially priced timed automata—the
energy function fπ for an arbitrary path π is a piecewise col-
lection of rational power functions satisfying fπ(x)−fπ(x′) ≥
x− x′ whenever x ≥ x′. The key for finding infinite lower-
bound schedules now reduces to identifying (minimal) fix-
points w = fπ(w), indicating that an initial energy level of w
suffices for an infinite repetition of the path π. For the two
energy functions fπ and gπ of Figure 2 the minimal fixpoints
are fπ(2) = 2 and gπ(3

e2−1
) = 3

e2−1
≈ 0.47, respectively,

indicating the minimal initial energy level for infinite lower-
bound schedules under the relevant linear or exponential
interpretation.

Due to space restrictions, most of the proofs had to be
omitted from this paper. They can be found in the long
version [6].

2. TIMED AUTOMATA WITH OBSERVERS
The general formalism we introduce below, timed automata

with observers, is intended to model control problems where
resources may grow or decrease linearly or exponentially and
with discontinuous updates. This includes oil tanks with
pipes and drains which may be shut and opened using valves,
electronic devices which may instantaneously lose energy
when turned on or off, and bank accounts, or an investment
portfolio, where the amount of money increases exponentially
with time but where the transfer of money from one account
to another typically has a fixed fee associated.

The formalism is quite general and unifies several concepts
of timed automata with hybrid information found in the
literature, e.g. in [9, 2]. In particular, it generalizes the
notion of priced, or weighted, timed automata introduced
in [4, 5]. In the definition, Φ(C) denotes the set of clock
constraints on C given by the grammar ϕ ::= c ./ k | ϕ1 ∧ϕ2

with c ∈ C, k ∈ Z and ./ ∈ {≤, <,≥, >,=}.

Definition 1. A timed automaton with observers is a
tuple (L,C, I, urg, E,X,fl, upd) consisting of a finite set L
of locations, a finite set C of clocks, location invariants
I : L→ Φ(C), an urgency mapping urg : L→ {>,⊥}, a finite
set E ⊆ L×Φ(C)×2C×L of edges, a finite set X of variables,
flow conditions fl : L→ (RX → R

X), and update conditions
upd : E → (RX → R

X).

Note that a timed automaton with observers has indeed
an underlying timed automaton (L,C, I, E). In the following

we shall write `
g,r−−→ `′ instead of (`, g, r, `′) for edges.

A timed automaton (with observers) is said to be closed
if only non-strict inequalities ≤ and ≥ are used in guards

and invariants. We shall later restrict development to closed
timed automata: this case contains the important aspects of
our algorithm and makes exposition easier.

Using a standard construction for timed automata, urgency
of locations (for which we use the urg mapping above) can be
encoded using an extra clock, hence is not strictly necessary
in the above definition. However we shall later consider the
special case of one-clock timed automata with observers, and
for these, urgency indeed adds expressivity.

In the definition below, we use the standard reset and
delay operators v[r], v+ d on valuations given by v[r](x) = 0
if x ∈ r, v[r](x) = v(x) if x 6∈ r, and (v + d)(x) = v(x) + d.
Also, D([0, d],RX) denotes the set of continuous functions
[0, d] → R

X which are differentiable on the open interval
]0, d[.

Definition 2. The semantics of a timed automaton A
with observers is given by the (infinite) transition system
JAK = (S, T) with

S =
˘

(`, v, w) ∈ L×RC≥0 ×RX
˛̨
v |= I(`)

¯
T =

˘
(`, v, w)

e−→ (`′, v′, w′)
˛̨
∃e = `

g,r−−→ `′ ∈ E : v |= g,

v′ = v[r], w′ = upd(e)(w)}

∪
˘

(`, v, w)
d−→ (`, v + d,w′)

˛̨
urg(`) = ⊥,

d ∈ R≥0, ∃f ∈ D([0, d],RX) :

f(0) = w, f(d) = w′, and ∀t ∈]0, d[:

v + t |= I(`) and ḟ(t) = fl(`)(f(t))}
A run of a timed automaton A with observers is a path in

its semantics JAK. Hence A admits both discrete behaviour,

indicated by transitions
e−→, and continuous behaviour indi-

cated by delay transitions
d−→. Note that whether or not a

discrete or continuous transition is available does not depend
on the value w of the observer variables; the semantics de-
fined above is indeed just the semantics of the underlying
timed automaton, augmented with observer values.

We shall henceforth mostly write ṗ instead of the more
cumbersome fl(`)(w)(p), provided that the location ` is clear
from the context, and similarly p′ instead of upd(e)(w)(p).
We also write p instead of w(p) when no ambiguity arises
from such an abuse of notation.

Note also that timed automata with observers form a spe-
cial class of hybrid automata [1] in which the clock variables c
have the restricted flow ċ = 1 customary for timed automata.

In the sequel we shall consider two special classes of ob-
servers: linear and exponential ones. For a linear observer p,
flow conditions are restricted to be of the form ṗ = k for
some constants k (possibly depending on the current loca-
tion), hence linear observers admit a constant derivative (and
linear growth) in locations. For an exponential observer p,
flow conditions are restricted to be of the form ṗ = kp; that
is, exponential observers have linear derivatives (hence expo-
nential growth) in locations. We also restrict development
to timed automata with one linear or exponential observer,
with additive updates of the form p′ = p+ c, and with one
clock only.

3. PROBLEMS AND RESULTS
The general problems with which we are concerned in this

paper concern the existence of paths along which the observer
value always remains positive:

Definition 3. A run ρ in a timed automaton A with
observers is feasible if the values of all the observers remain
nonnegative all along ρ.

Our problems can then be defined as follows:

Problem 1. (Reachability) Given a timed automaton A
with observers X, an initial location `0, an initial valuation
w0 : X → R, and a set of goal locations LG ⊆ L, either
exhibit a feasible finite run in A with initial location `0, initial
clock values v(c) = 0 for all c ∈ C, and initial valuation w0,
and ending in one of the locations in LG, or establish that
no such run exists.

Problem 2. (Infinite runs) Given a timed automaton A
with observers X, an initial location `0, and an initial valua-
tion w0 : X → R, either exhibit a feasible infinite run in A
with initial location `0, initial clock values v(c) = 0 for all
c ∈ C, and initial valuation w0, or establish that no such run
exists.

In the case of linear observers, we also deal with a stronger
notion of being feasible, in which the value of the observer
must be larger than a given value m. The problem of interval
bounds m ≤ w(p) ≤M appears to be much more difficult to
handle however, see [7].

Below we give a precise definition of the classes of timed
automata with observers which we shall consider in this
paper and state the decidability results whose proof the rest
of the paper is devoted to:

Definition 4. A one-clock timed automaton with one
linear observer and additive updates is a timed automaton
with C = {c}, X = {p}, and for which there exist rate and
weight functions rate : L → Z, weight : E → Z such that
fl(`)(w)(p) = rate(`) and upd(e)(w)(p) = w(p) + weight(e)
for all ` ∈ L and e ∈ E.

Definition 5. A one-clock timed automaton with one
exponential observer and additive nonpositive updates is a
timed automaton with C = {c}, X = {p}, and for which there
exist rate and weight functions rate : L→ Z and weight : E →
Z≤0 such that fl(`)(w)(p) = rate(`)w(p) and upd(e)(w)(p) =
w(p) + weight(e) for all ` ∈ L and e ∈ E.

Hence a linear observer indeed has ṗ = rate(`) in all loca-
tions, and an exponential one has ṗ = rate(`) · p. Notice that
we require additive updates to be nonpositive for exponential
observers; the general case poses additional difficulties.

Theorem 6. Problems 1 and 2 are decidable in EXPTIME
for closed one-clock timed automata with one linear observer
and additive updates.

Theorem 7. Problems 1 and 2 are decidable in EXPTIME
for closed one-clock timed automata with one exponential
observer and additive non-positive updates.

The rest of this paper is devoted to the proofs of these
theorems, as follows: In Sections 4 to 6, we prepare the proofs
by showing how to abstract observer values along paths in
a timed automaton. In Section 7, we show how to use this
abstraction to translate a timed automaton with one linear
or exponential observer into a finite automaton with energy
functions as defined in Section 8, for which the problems
then can be decided.

For the sake of readability, we only present our proofs for
the case of closed timed automata, i.e., timed automata in
which guards and invariants to not involve strict inequali-
ties. This case already comprises the important ideas of our
constructions.

4. OPTIMIZATIONS ALONG PATHS
Before attempting the general problem, we solve an opti-

mization problem for paths without clock resets, both for a
linear and for an exponential observer: We compute optimal
delays in order to maximize the exit value along a path, as
a function of the initial observer value. This is a special
case of our problem, and will be the keystone of our general
algorithm.

More precisely, we assume we are given an annotated unit
path, i.e., a sequence (which should be seen as a timed
automaton with one observer, as explained below)

π : `0
ϕ p0−−−−−−→{c} ≥b0

`1
p1−−→≥b1 `2 · · ·

pn−1−−−−→≥bn−1
`n

c=1 pn−−−−−−→{c} ≥bn
`n+1

along which all unspecified guards are 0 ≤ c ≤ 1, clock c
is only reset along the first and last edges, and there is a
global invariant c ≤ 1. We write ri for the rate in location `i,
and assume (w.l.o.g.) that r0 = rn+1 = 0. Along each edge,
pi indicates the discrete update, and ≥ bi is an annotation,
which is a special guard on the observer value just before
firing the transition: the transition is only fireable if observer
value is larger than or equal to bi. Notice that this kind of
constraint can be encoded in our one-clock models thanks to
urgency, by adding two transitions with weights −bi and +bi
with an urgent location in-between. An annotated unit
path can thus be seen as a special kind of one-clock timed
automaton with one observer and additive updates.

Let π be an annotated unit path. A run along π with
initial observer value w is a run

ρ : (`0, 0, w
′
0)

e0−→ (`1, v1, w1)
t1−→ (`1, v

′
1, w

′
1)

e1−→ · · ·

· · · (`n, vn, wn)
tn−→ (`n, v

′
n, w

′
n)

en−−→ (`n+1, 0, wn+1)

in the corresponding timed automaton with observer with
w′0 = w. (Note that the precise values of wi and w′i depend
on the type of observer we are considering.)

We write ρ = (w, t1, . . . , tn)π to denote the run along π
with initial observer value w and elapsing ti time units in `i.
Such a run ρ is a feasible run if it satisfies the additional
constraint that w′i ≥ bi for every 0 ≤ i ≤ n. Notice that these
constraints are more general than our original aim of keeping
observer value above 0: it suffices to let bi = max(0,−pi) to
ensure that the value will remain nonnegative all along the
run.

The energy function along an annotated unit path π is
defined as

fπ(w) = sup
˘
wn+1

˛̨
(w, t1, . . . , tn)π feasible run along π

¯
with fπ(w) being undefined in case no feasible run along π
with w′0 = w exists.

In the sequel, we explain how to compute fπ for an an-
notated unit path π, first in the linear and then in the
exponential setting.

The first step, common to linear and exponential observers,
is to remove urgent locations from our paths. Clearly enough,
as no time elapses in urgent locations, the following two se-
quence of transitions are equivalent (w.r.t. time and observer

values):

`i
pi−−→≥bi `urg

i+1

pi+1−−−−→≥bi+1
`i+2 ; `i

pi+pi+1−−−−−−−−−−−→≥max(bi,bi+1−pi)
`i+2

Hence:

Lemma 8. For any annotated unit path π, an annotated
unit path π̄ containing no urgent locations can be computed
in polynomial time with fπ = fπ̄.

5. PATHS WITH LINEAR OBSERVER
In the following two sections, we show how to turn an

annotated path into a normal form and how to compute fπ
for normal-form paths. Both the notion of normal form,
and how to compute energy functions for normal-form paths,
depend on whether the observer is linear or exponential.

From now on, we can assume that π has the form

π : `0
ϕ p0−−−−−−→{c} ≥b0

`1
p1−−→≥b1 `2 · · ·

pn−1−−−−→≥bn−1
`n

c=1 pn−−−−−−→{c} ≥bn
`n+1

with n ≥ 1, and that it contains no urgent locations.

Normal form. An annotated unit path as above is said to
be in normal form (for linear observers) if all locations are
non-urgent, n ≥ 1, and one of the following three conditions
holds:
• n = 1 (trivial normal form);
• all rates are positive, and ri < ri+1 for 1 ≤ i ≤ n− 1, and

for every 1 ≤ i ≤ n − 1, it holds that bi−1 + pi−1 < bi
(positive normal form);
• all rates are negative, and ri > ri+1 for 1 ≤ i ≤ n − 1,

and for every 2 ≤ i ≤ n, it holds that bi−1 + pi−1 > bi
(negative normal form).
The proof of the fact that any annotated path can be

converted into normal form, and the kind of normal form
one arrives at, depend on the path’s maximal location rate
max{ri | i = 1, . . . , n}. There are three cases to consider:

Case max{ri | i = 1, . . . , n} = 0. In this case, any run
which maximizes observer value will delay in one of the
locations with rate 0, hence all other locations can be removed
from the path (and the corresponding edges contracted). As
a matter of fact, one only needs to keep one of the locations
with zero rate; all others can be removed as well. Hence one
arrives at the trivial normal form:

Lemma 9. For any annotated path π (without urgent lo-
cations) such that max{ri | i = 1, . . . , n} = 0, an annotated
path eπ in trivial normal form can be constructed in polynomial
time with fπ = feπ.

Case max{ri | i = 1, . . . , n} > 0. In this case, we can
transform π into an equivalent path in positive (or trivial)
normal form:

Lemma 10. For any annotated path π (without urgent
locations) such that max{ri | i = 1, . . . , n} > 0, an annotated
path eπ in positive (or trivial) normal form can be constructed
in polynomial time with fπ = feπ.

Proof sketch. The intuition is as follows: As before, the
aim is to spend time in the most profitable location. However,
due to annotations, we may have to delay some time in earlier

0 2 1 4 5 4 0
{c}

c=0 −1

≥1

+4

≥0

−3

≥3

−1

≥1

c=1

{c}

0 02 4 5
{c}

c=0 +3

≥1

−3

≥3

−1

≥1

c=1

{c}

0 02 5
{c}

c=0 0

≥1

−1

≥1

c=1

{c}

selection

reduction

Figure 4: Conversion of annotated path into positive normal
form

locations, in order to have high enough observer value to fire
transitions up to this optimal location.

First we construct a sequence (nj)j≥0 of location indices
with increasing rates as follows:
• n0 = 0
• assuming nj has been computed for some j ≥ 0, then

– if rnj = max{ri | i = 1, . . . , n} is the maximal rate
along π, then the sequence stops there;

– otherwise, we let nj+1 be the least index i > nj for
which ri > rnj .

Let m be the index of the last item in (nj)j≥0. We add
another last item nm+1 = n+ 1, and define an intermediary
annotated path π̄, having m+ 2 locations ¯̀

0 to ¯̀
m+1, with

rates r̄k = rnk when 0 ≤ k ≤ m+1. Notice that this sequence
of locations satisfies the first part of the condition for being
in positive normal form (or in trivial normal form if m = 1).

We now define the transitions of π̄. For 0 ≤ j ≤ m, the

annotated edge ¯̀
j

p̄j−−→≥b̄j
¯̀
j+1 is defined by

p̄j =

nj+1−1X
k=nj

pk b̄j = max
˘
bk−

k−1X
l=nj

pl | nj ≤ k ≤ nj+1−1
¯

Hence b̄j is the minimum observer value needed in ¯̀
j = `nj

to complete the sub-path from `nj to `nj+1 without delaying
and under observance of the lower bounds bk.

It remains to enforce the second condition (b̄i−1 + p̄i−1 < b̄i
for 1 ≤ i ≤ m − 2) on π̄. This is achieved by induc-
tively replacing any offending pair of consecutive annotated

edges ¯̀
i−1

p̄i−1−−−−→≥b̄i−1
¯̀
i

p̄i−−→≥b̄i
¯̀
i+1 by a single annotated edge

¯̀
i−1

p̄i−1+p̄i−−−−−→≥b̄i−1
¯̀
i+1. The resulting annotated path eπ is in

normal form, and satisfies fπ = feπ. �

Figure 4 shows an example of a path being converted into
positive normal form.

Case max{ri | i = 1, . . . , n} < 0. The case with only
negative rates is dual to the above one and can be handled
using similar techniques:

Lemma 11. For any annotated path π such that max{ri |
i = 1, . . . , n} < 0, an annotated path π̄ in negative (or trivial)
normal form can be constructed in polynomial time with
fπ = fπ̄.

Energy function. We now turn to the computation of
the function mapping initial to final observer value along
a unit path in normal form for linear observers. For the

trivial normal form this is easy, as there is only one possible
run along π. For the positive normal form we detail the
computations below, and the negative normal form can be
handled in an analogous manner.

Let

π : `0
ϕ p0−−−−−−→{c} ≥b0

`1
p1−−→≥b1 `2 · · ·

pn−1−−−−→≥bn−1
`n

c=1 pn−−−−−−→{c} ≥bn
`n+1

be an annotated unit path in positive normal form, and
define the n-tuple topt = (topt

i)1≤i≤n by

topt
i =

(
0 if i = m and bm ≤ bm−1 + pm−1
bi−(bi−1+pi−1)

ri
otherwise

Since the rates are all positive and bi > bi−1 + pi−1 for
all 1 ≤ i ≤ m− 1, these values are well-defined and positive.
An important equality to notice is the following:

bn−1 + pn−1 + rn · topt
n = max(bn−1 + pn−1, bn)

We prove in the sequel that those delays represent the
“optimal” delays one should wait in each location, and corre-
spond to the policy where each transition is fired as soon as
the observer value satisfies the lower-bound constraint (≥ bi
for the transition leaving `i).

As it may be the case that the optimal delays collected in
topt do not sum up to 1 (which is the total time to be spent
along π), we define another tuple t? containing the delays
which (as we shall show) have to be spent on an optimal run.
• In case

Pn
i=1 t

opt
i > 1, we have to cut down on the time

we delay in the locations. The more profitable locations
are the ones with higher rates at the end of the path,
hence this is where we shall spend the delays: Letting ιπ
be the largest index for which

Pn
i=ιπ

topt
i > 1 (so thatPn

i=ιπ+1 t
opt
i ≤ 1), we set

t?i =

8><>:
0 for i < ιπ

1−
Pn
i=ιπ+1 t

opt
i for i = ιπ

topt
i for i > ιπ

• In case
Pn
i=1 t

opt
i ≤ 1, we may have to spend some extra

time in one of the locations. The most profitable location
for this delay is the last, hence we define t?i = topt

i for 1 ≤
i ≤ n− 1, and t?n = 1−

Pn−1
i=1 t

opt
i . We also let ιπ = 0 in

this case.
Before we prove that those delays are indeed optimal,

we first compute the initial observer value needed to traverse
the whole path under this policy.
• in the first case (ιπ ≥ 1), the minimal initial observer value

is

w∗ιπ = bιπ−1 −
ιπ−2X
k=0

pk + (topt
ιπ − t

?
ιπ) · rιπ ,

and the final accumulated cost is ω∗ιπ = max(bn, bn−1 +
pn−1) + pn;
• if ιπ = 0, the minimal initial observer value is w∗0 = b0, and

the final accumulated cost is ω∗0 = max(bn, bn−1 + pn−1) +
pn+ (t?n− topt

n) · rn. These values actually equal w∗1 and ω∗1
defined below.
We generalize the previous construction by letting, for

ιπ + 1 ≤ i ≤ n:

w∗i = bi−1 −
i−2X
k=0

pk

ω∗i = max(bn, bn−1 + pn−1) + pn + ((t?n − topt
n) +

X
j<i

t?j) · rn

We claim that w∗i is the minimal initial observer value for
which it is possible to spend no delay in locations `0 to `i−1

along a feasible run, and ω∗i is the corresponding optimal
observer value at the end of the run. This can be expressed
as follows:

Proposition 12. The function fπ is a piecewise affine
function defined on the interval [w∗ιπ ,∞[, visiting points

(w∗i , ω
∗
i), for all ιπ ≤ i ≤ n, with constant slope ḟπ(x) ≥ 1

between two consecutive such points, and with slope ḟπ(x) = 1
after (w∗n, ω

∗
n).

Example 1. We consider the following example, which is
already in normal form. The corresponding function fπ then
looks as depicted on Figure 5:

0 2
0

≥0

c=0

{c}
5

−2

≥2
7

−1

≥1
9

−5

≥5
0

0

≥0

c=1

{c}

α

β

γ

δ

win

wout

0 2 4 6 8
0

2

4

6

8

10

point win wout

α 64/35 0

β 2 27/35

γ 3 18/7

δ 8 9

Figure 5: Function fπ for example with linear observer

For instance, if we enter the path with initial observer
value 2, the optimal policy is to spend no time in the location
with rate 2 (as we can leave it directly), then spend 1/5 time
units in the next location (so that we have value 1 and can
fire the outgoing transition), then spend 5/7 time units with
rate 7, and the remaining 3/35 time units in the location
with rate 9, ending with final observer value 27/35 (point β).

Remark 1. We note that the above considerations easily
can be adapted to paths (without resets) with a general guard
c = k on the last transition (instead of c = 1), hence it
is straight-forward to handle these. Also the restriction to
closed timed automata can be lifted: we showed above how
to handle paths with non-strict guards only, and the general
case is similar. In this case, the energy function fπ gives,
for each input value w, the supremum fπ(w) of the observer
values obtainable as output, an whether or not this value is
actually attained for an input can be decided by looking at
the delays spent in each location.

6. PATHS WITH EXPONENTIAL OBSERVER

Normal form. As for linear observers, we are interested
in computing the energy function along a unit path, by first
transforming it into a normal form and then computing the
energy function for normal-form paths. In this case however,
we have to restrict the kinds of paths we can handle:
• We assume that the edge weights pi are nonpositive, and

that at least one of the rates ri is nonnegative;
• paths are not annotated, i.e. we do not impose “local”

constraints of the form “≥ bi” in this case, and only require
that observer value always be nonnegative along the run.
These restrictions amount to only considering the positive

normal form, without local observer constraints. As in the
previous case, we could handle the case where all rates are
negative in a similar way (with a suitable notion of negative
normal form). The other restrictions are purely technical:
Currently we do not know how to handle paths with mixed
positive and negative updates, or with local constraints, but
we expect our techniques to also extend to these settings.

For the sequel, we again fix a unit path

π : `0
ϕ p0−−−−−−→{c} `1

p1−→ `2 · · ·
pn−1−−−→ `n

c=1 pn−−−−−−→{c} `n+1

satisfying the above constraints, and with r0 = rn+1 = 0.
As in the previous section, our aim is to compute fπ for such
a path (but now with exponential observer), mapping initial
to maximum final observer value.

A path as above is said to be in normal form (for expo-
nential observers) if all locations are non-urgent, m ≥ 1, and
one of the following two conditions holds:
• m = 1 (trivial normal form);
• all rates are positive, and ri < ri+1 for 1 ≤ i ≤ m− 1, and

for every 2 ≤ i ≤ m−1, it holds that
pi−1ri−1ri
ri−1−ri

<
piriri+1
ri−ri+1

(positive normal form);
The last condition for being in positive normal form is the
counterpart, for exponential observers, to the condition “bi >
bi−1 + pi−1” which we had in the case of linear observers.

Such a normal form can be computed:

Proposition 13. Assume π is a unit path with nonposi-
tive edge weights and such that max{ri | i = 1, . . . , n} ≥ 0.
Then we can construct in polynomial time a path eπ in normal
form for exponential observers so that fπ = feπ.

The proof relies on arguments similar to the ones we used
for the linear case.

Energy function. Along a path in positive normal form,
we can decide whether a given initial observer value is suffi-
cient to reach the last location:

Proposition 14. Let π be a path in positive normal form
(for exponential observers) and w an initial observer value.
Then we can decide whether there is a feasible run along
π with initial observer value w, and we can compute the
value fπ(w).

Notice that contrary to the linear case, it is not sufficient
to fire a transition as soon as the observer value can afford
paying the nonpositive update: Consider the two-state au-
tomaton of Figure 2. If the initial observer value is 3, it is
allowed to immediately fire the transition to `1, but this
would set the energy level to 0, and the exponential growth
would be annihilated.

α β γ δ

ε

win

wout

0 10 20 30
0

50000

100000

150000

200000

pt win wout

α
e−2∗10/3∗(21/8)2/5∗(2)2/7

≈ 0.809003
0

β
e−2∗10/3∗(21/8)2/5∗(9)2/7

≈ 1.24332
35/2

γ 10/3
e9∗35/2∗(8/21)9/5∗(1/9)9/7

≈ 1480.38

δ 11/2
e9∗35/2∗(1/9)9/7

≈ 8410.18

ε 51/2
e9∗35/2

≈ 141804

interval equation of the curve

α – β wout = 45
2
·
“

win
e−2∗10/3∗(21/8)2/5∗(9)2/7

”7/2

− 5

β – γ wout = 35
2
·
“

win
e−2∗10/3∗(21/8)2/5∗(9)2/7

”9/2

γ – δ wout = 35
2
·
“

win−2

e−5∗7/2∗(9)5/7

”9/5

δ – ε wout = 35
2
·
“

win−3
e−7∗45/2

”9/7

ε – +∞ wout = (win − 8) · e9

Figure 6: Function fπ for example with exponential observer

The proof of Proposition 14 relies on the computation of
optimal exit values for the observer: letting wopt

i =
pi·ri+1
ri−ri+1

,

we prove that wopt
i is the optimal value of the observer

with which to exit location `i (as long as time permits).
The optimal time to be spent in location `i is then

topt
i =

1

ri
ln

wopt
i

wopt
i−1 + pi−1

!
,

with the convention that wopt
0 is the initial observer value.

The technical condition for being in normal form implies that
these values are positive (except possibly topt

1 : having topt
1

negative means that the initial observer value is sufficient to
go with no delay to the next location).

This allows us to compute the exact value of fπ:

Proposition 15. The function fπ is defined on an inter-
val [w∗0 ,∞[, and there is a sequence w∗0 < w∗1 < · · · < w∗n of
algebraic numbers w∗0 , w

∗
1 , . . . , w

∗
n ∈ R≥0 such that on each

interval [w∗i , w
∗
i+1] and on [w∗n,∞[, fπ can be obtained in

closed form as

fπ(w) = αi · (w − βi)ri/r
′
i + γi

where ri and r′i are rates of π with ri ≥ r′i, and αi, βi
and γi are algebraic numbers which can be computed from
the constants appearing in π. Moreover, fπ is continuous
and has continuous derivative ḟπ(x) ≥ 1 on its domain (also
at the points w∗i).

Example 2. We consider the same path as depicted in
Example 1, but assuming an exponential observer with addi-
tive updates. This automaton satisfies the restrictions and
is already in normal form for exponential observer. The
resulting function fπ is depicted in Figure 6. For instance,
if we enter the path with initial observer value 1, the opti-
mal policy is to exit the location with rate 2 when the value
reaches wopt

1 = 10/3 (which occurs after ln(5/3)/2 time units),
then leave the next location when the value reaches wopt

2 = 7/2,
and then spend the remaining 1− ln(5/3)/2− ln(21/8)/5 time

units in the location with rate 7 (there is not enough time
remaining to reach wopt

3 = 45/2). When we leave this lo-
cation, observer value then equals (7/2 − 1) · exp(7 · (1 −
ln(5/3)/2− ln(21/8)/5)) ≈ 21/2, which makes it possible to
fire the last transition directly and end up with final observer
value around 11/2.

7. THE DISCRETE ABSTRACTION
In this section we show how a timed automaton with

one clock and one observer with additive updates can be
converted into a form in which the analysis of paths without
resets from the preceding sections can be applied. After
applying this, we arrive at a finite automaton with energy
functions which we subsequently analyse in the next section.

Clock bounded above by 1. As a first step, we show
that A can be converted to a timed automaton with observers
where the clock is bounded above by 1 and with only three
different types of edges. A similar simplification technique
for priced games was used in [8].

Lemma 16. Let A be a closed one-clock timed automaton
with observers, `0 a location of A, and LG ⊆ L a set of goal
locations. One can construct in exponential time another
one-clock timed automaton A′ with observers, together with
a new initial location `′0 and a new set of goal locations L′G,
such that
• in any state `′ of A′, the invariant is c′ ≤ 1;

• for any edge `
g,r−−→ `′ in A′, either r = ∅ and g is the

constraint 0 ≤ c′ ≤ 1, or r = {c′} and g is an equality
constraint c′ = 0 or c′ = 1,

and such that, for any w0 and m, 〈A, `0, w0, LG,m〉 is a
positive instance of the reachability (resp. infinite-run) prob-
lem iff 〈A′, `′0, w0, L

′
G,m〉 is also a positive instance of that

problem.

Note that the lemma applies to automata with an arbitrary
number of observers, with arbitrary updates instead of only

additive ones. For the following conversions however, we
have to assume a single linear or exponential observer with
additive updates.

Remark 2. It is convenient for the sequel to have global
invariant c ≤ 1 for the clock, but not strictly necessary.
As mentionned at Remark 1, it is possible to handle paths
with general invariant c ≤ k. A variant of the second property
of the lemma can be ensured using the coarse clock regions
of [10], and using this construction, one avoids exponential
blowup.

Eliminating cycles without resets. To be able to apply
our analysis of paths without resets in Sections 5 and 6, we
need to ensure that there are only finitely many such paths
between any two locations. Using a partial unfolding of
the timed automaton where we only unfold along edges
without resets, and afterwards pruning infinite reset-free
paths, we can construct a timed automaton without reset-
free cycles. In order to be correct, this construction must
be preceded by a detection of feasible Zeno runs in the
original automaton, and this information has to be stored
in the unfolding. For reachability, we also have to take into
account positive Zeno cycles from which some final location
is reachable.

Lemma 17. Let A be a closed one-clock timed automaton
with one linear or exponential observer and additive updates,
and with clock bound c ≤ 1. Let `0 ∈ L be a location of A,
and LG ⊆ L be a set of goal locations. We can compute in
exponential time
• two labelling functions wZeno, w

LG
Zeno : L→ R ∪ {+∞},

• another such automaton A′, with set of locations L′, and
a projection lab : L′ → L,
• a location `′0 ∈ L′
• a set of goal locations L′G ⊆ L′,
such that A′ does not contain reset-free cycles, and for any
initial observer value w0, we have the following:
• There is an infinite feasible run in A from (`0, c = 0) with

initial observer value w0 if and only if there is such a run
in A′ from (`′0, c = 0), or there is a feasible run in A′ from
(`′0, c = 0) with observer value w0 to a configuration (`, c =
0) with observer value w, and such that w ≥ wZeno(lab(`)).
• There is a feasible run in A from (`0, c = 0) with initial

observer value w0 to a location in LG if and only if there
is such a run in A′ from (`′0, c = 0) to a location in L′G, or
there is a feasible run in A′ from (`′0, c = 0) with observer
value w0 to a configuration (`, c = 0) with observer value

w ≥ wLGZeno(lab(`)).

8. AUTOMATA WITH ENERGY FUNCTIONS
We are now left with a timed automaton A′ in which

all cycles have at least one resetting transition. We shall
construct a discrete abstraction B of A′ which will contain
all the information we need for solving our problem. This
abstraction will be a finite automaton with energy functions:

Definition 18. A finite automaton with energy functions
is a finite transition system (S, T) equipped with a function
f : T → (R ⇀ R) decorating transitions with energy func-
tions. The semantics JBK of such an automaton is given by
an infinite transition system with states (s, w) ∈ S ×R and
transitions (s, w)→ (s′, w′) whenever there is e = (s, s′) ∈ T
such that f(e) is defined in w and f(e)(w) = w′.

Discrete abstraction. For the discrete abstraction of A,
we take as states of B the locations of A having at least one
incoming resetting transition. It is intended that state ` of B
represents configuration (`, c = 0) of A. For each pair of
states (`, `′) in B, there is an edge from ` to `′ iff there is a
reset-free path from ` to `′ in A. We label each edge (`, `′)
of B with a (partial) function f`,`′ : R → R computed as
follows: f`,`′(w) is the maximal achievable observer value
when entering `′, if starting from ` with observer value w
and visiting only reset-free paths in A′. Since there are only
exponentially many such paths, f`,`′ can be computed in
exponential time, using our procedures of Sections 5 or 6.

Finally, we label states of B with their values of wZeno

and wLGZeno (as locations in A), obtained from Lemma 17: the

values wZeno(`) (respectively wLGZeno(`)) represent the minimal
observer value needed in ` for which there exists a simple reset-
free path from ` to a reset-free simple cycle with nonnegative
accumulated update (respectively with positive accumulated
update and from which LG can be reached).

The following lemma directly follows from this construction
and Lemma 17:

Lemma 19. Let A be a closed one-clock timed automaton
with one linear or exponential observer and additive updates,
and with clock bound c ≤ 1. Let `0 ∈ L be a location of A
and LG ⊆ L a set of goal locations, and assume w.l.o.g. that
locations in LG only have resetting incoming transitions and
have no outgoing transitions. Let B be the finite automaton
with energy functions as constructed above and w0 ∈ R+ an
initial observer value. Then
• there is a feasible infinite run in A from (`0, c = 0) with

initial credit w0 iff either there is an infinite path in JBK
from (`0, w0), or there is a finite path in JBK from (`0, w0)
to a configuration (`, w) such that w ≥ wZeno(`);
• there is a feasible run in A reaching a location in LG

from (`0, c = 0) with initial credit w0 iff either there is a
finite path in JBK from (`0, w0) to (`, w) for some ` ∈ LG
and some w, or there is a finite path in JBK from (`0, w0)

to (`, w) for some ` such that w ≥ wLGZeno(`).

Energy functions. We now take advantage of the special
shape of the energy functions that we get in the case of linear
and exponential cases.

Definition 20. A rational power function is a function
of the form f : x 7→ α ·xr +β where r is rational and α and β
are algebraic numbers.

As a consequence of our results of Sect. 5 and 6, we have:

Lemma 21. Let π be an annotated path (with linear or
exponential observer, under the corresponding restrictions
of Sections 5 and 6). Then the energy function fπ has the
following property:

(?) there exists an increasing sequence x1 < x2 < . . . < xn
of algebraic numbers such that
• the domain of fπ, written dom(fπ), is [x1,+∞[;
• for all i, the restrictions (fπ)�[xi,xi+1[(x) and

(fπ)�[xn,∞[are rational power functions;
• for all x ≥ x′ ≥ x1, it holds that fπ(x)− fπ(x′) ≥
x− x′.

Notice that the last condition follows from the fact that
ḟπ(x) ≥ 1. Also, functions satisfying this condition are
injective.

We shall need operations of (binary) maximum and compo-
sition on functions with property (?) above; these are defined
in the standard way: Given partial functions f and f ′ with
right-infinite domain,
• max(f, f ′) is the function with domain dom(f) ∪ dom(f ′)

defined by x 7→ max{g(x) | g ∈ {f, f ′}, x ∈ dom(g)};
• f ′ ◦ f is the function with domain dom(f) ∩ f−1(dom(f ′))

defined by x 7→ f ′(f(x)).

Lemma 22. If f and f ′ are partial functions satisfying
Property (?) above, then max(f, f ′) and f ′ ◦f also satisfy (?).

Proof. Let (xi) and (x′i) be the corresponding sequences
of algebraic numbers as of Lemma 21. Let (yj) be the
increasing sequence of algebraic numbers given by {yj} =
{xi} ∪ {x′i}. Then max(f, f ′) is defined on [y1,+∞) and is
clearly a piecewise rational power function. The proof of the
third property is straightforward.

For composition f ′ ◦ f , we let (yj) be the increasing se-
quence of algebraic numbers for which {yj} = {f−1(x′i) | x′i ≥
f(x1)}∪{xi | f(xi) ≥ x′1}. (Note that, indeed, these numbers
are roots of polynomials and hence algebraic.) Then f ′ ◦ f is
a piecewise rational power function on [y1,+∞). The third
property is straightforward. �

We now study fixed points of those functions:

Lemma 23. Let f be a function satisfying Property (?) of
Lemma 21. Then

1. The set of fixed points of f is either empty or a left-
closed interval.

2. Let [x∗, x†〉 be the set of fixed points of f (assuming
it is not empty, and allowing x† to equal +∞). Then
f(x) < x for all x < x∗ and f(x) > x for all x > x†.

3. If x∗ exists, then for all x ∈ dom(f), there exists an
infinite sequence (fn(x))n of iterated values iff x ≥ x∗.

Proof. For the first claim: From the fact that f(x) −
f(y) ≥ x − y whenever x ≥ y, we get that any point be-
tween two fixed points is a fixed point. Moreover, f is
left-continuous, so that if f(x) = x on a left-open interval,
then also f(x) = x at the left end-point.

For the second claim: Let x < x∗. Then f(x∗)− f(x) ≥
x∗ − x, which entails f(x) ≤ x. Since x cannot be a fixed
point, we must have f(x) < x. Similarly for the other claim.

Finally, for the third claim: For any z ≥ x∗, we have
f(z) ≥ z. Hence if x ≥ x∗, then for any k such that fk(x) is
defined, we have fk(x) ≥ x∗, so that fk+1(x) is defined.
On the other hand, assume that x < x∗, and that the
infinite sequence (fn(x))n is defined. Then f(x) < x and,
by induction, fn+1(x) < fn(x) for all n. The sequence being
decreasing and bounded by x1, it converges. As f is left-
continuous, the limit x̄ satisfies f(x̄) = x̄, which contradicts
the fact that x∗ is the smallest fixed point. �

Algorithm. We now gather everything together in order
to solve Problems 1 and 2. We first explain how we detect
feasible non-Zeno runs of A: Assume that such a run exists
in A, and let ρ be the corresponding infinite run in B. Then
some simple cycle σ in ρ must be repeated infinitely often.
For all i ≥ 0, write w2i for the observer value when entering
the (i+ 1)-st occurrence of σ, and w2i+1 for the value when
exiting the (i+ 1)-st occurrence.

Assume that w2i+1 < w2i for all i, and that either w2i+2 <
w2i+1, or w2i+2 = w2i+1 and the (i+ 2)-nd occurrence of σ
directly follows the (i + 1)-st one. Notice that it cannot
be the case that we are in the latter situation for all i,
as this would give an infinite iteration fn(w) for an energy
function with f(w) < w, contradicting Lemma 23. Hence
there are two occurrences of σ having a non-empty sub-
path in-between, and this sub-path has negative effect on
observer value. Dropping the earliest such path yields a
feasible infinite non-Zeno run ρ′. This procedure can be
repeated recursively, as long as the sequence (wi) satisfies
the condition above.

We first assume that the sequence (wi)i is decreasing.
This means that between the first and second occurrences
of σ, observer value has decreased. Then this part between
the first two occurrences of σ can be dropped, yielding a
new feasible infinite non-Zeno run. Apply this procedure
recursively, as long as the sequence (wi)i in the resulting run
is decreasing. This yields a sequence of feasible runs (ρn)n of
the form ρ0 · (σ)n · πn. There must exist an index at which
the procedure cannot be repeated, since otherwise it would
contradict Lemma 23. At that point, we end up with a run
in which a simple cycle has a positive effect on observer value.
Following Lemma 23, this cycle can be iterated from that
point on, yielding a feasible lasso-shaped non-Zeno run.

Now, consider the non-periodic part of this run: if it
contains a (simple) cycle with negative effect, then again we
can drop this cycle while obtaining a feasible lasso-shaped
infinite non-Zeno run. On the other hand, if the cycle has
nonnegative effect, it can be iterated itself. In the end, we
have proved the following lemma:

Lemma 24. If there is a feasible infinite non-Zeno run
in A from (`0, c = 0) with observer value w0, then there is a
lasso-shaped one in which the initial part is acyclic and the
periodic part is a simple cycle. In particular, both parts have
linear size.

Now consider the case of feasible Zeno runs in A. Such
a run corresponds to a finite run ρ in B, ending in a loca-
tion ` with observer value at least wZeno(`). Using similar
arguments as above, if there is a simple cycle in ρ with non-
negative effect, then we can deduce a feasible infinite run
in B, hence in A. If the effect of the cycle is negative, then
dropping the cycle yields another feasible Zeno run. In the
end, we have

Lemma 25. If there is a feasible infinite Zeno run in A
from (`0, c = 0) with observer value w0, then either there is
an acyclic path in B reaching a configuration (`, w) with w ≥
wZeno(`), or there is a lasso-shaped run in which the initial
part is acyclic and the periodic part is a simple cycle.

As B has size linear in A, we can enumerate in exponential
time the possible witnesses given by the above two lemmas.
Since constructing B is already in exponential time, our
global procedure is in exponential time. For reachability,
similar techniques give the following lemma:

Lemma 26. If there is a feasible run in A from (`0, c = 0)
with observer value w0 to a goal location in LG, then there
is an acyclic path in B reaching a configuration (`, w) with

` ∈ LG or w ≥ wLGZeno(`).

−4+2+4

+2

+1 +4 +5

+4

{c}

c=1−3

{
c}

c
=

1

−
1

+4 −3

−
1

{
c}

c
=

1

f 2

f4

f1

win

wout

0 1 2 3 4 5
0

1

2

3

4

5

α

β

γ

pt win wout

α 1.3 0

β 1.5 1

γ 3 4

Figure 7: Solving the infinite-run problem for an example
timed automaton

Example 3. The simple linearly priced timed automaton
in Figure 7 is a collection of some of the paths we have seen
earlier. Specifically, we have taken the paths from Figures 2
and 4 and connected them using a trivial path with one
location with rate −4. The figure also displays the discrete
abstraction of the automaton, consisting of three states and
three transitions labeled with energy functions f2 for the path
from Figure 2, f4 for the path from Figure 4, and f1 for
the trivial path. Note that no Zeno runs are possible in the
automaton, hence the wZeno annotation has been omitted.

To compute the minimum observer value necessary for
having an infinite run in the example automaton, we need to
find the least fixed point of the energy function f1 ◦ f4 ◦ f2

which is displayed in the right part of the figure. This point
can be computed to be at win = 2, hence the automaton
admits an infinite run if and only if initial observer value is
at least 2.

9. CONCLUSION AND FUTURE WORK
We have shown that the infinite-runs and reachability

problems are decidable for closed one-clock timed automata
with one linear or exponential observer and additive updates,
using a novel technique of energy functions. We expect this
technique, and the general notion of finite automata with
energy functions, to have applications in other areas as well.

The restriction to a one-clock setting is essential in our
approach, and currently we do not know how to extend it
to timed automata with more than one clock. However one-
clock models are expressive enough to model a large class
of interesting examples, and in the context of priced timed
automata, it is well-known that models with more than one
clock are very difficult to handle.

The restriction to closed timed automata is not essential.
It was mainly adapted to ease exposition, and can be lifted
by during the analysis carefully taking note of which values
of energy functions can actually be attained. On another
note, our technique may also apply to the lower-soft-upper-
bound problem mentioned in the introduction. We have
concentrated on solving lower-bound problems here, but by
adapting our analysis of paths, we may also solve the problem
with soft upper bound. The interval-bound problem seems
however much more difficult.

Considering more general observers than only linear or ex-
ponential ones is also of interest. The present work is part of a
general project concerning“hybridization”of timed-automata
technology, and linear and exponential flow conditions com-
bined cover the whole class of first-order differentiable ob-

servers. We can easily handle observers which can have either
linear or exponential behaviour, but the general first-order
differential case is more difficult, partly because our tech-
nique relies on flows being monotonous, either increasing or
decreasing, in locations.

10. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, Th. A.

Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138(1):3–34,
1995.

[2] R. Alur, C. Courcoubetis, and Th. A. Henzinger.
Computing accumulated delays in real-time systems. In
Proc. 5th International Conference on Computer Aided
Verification (CAV’93), volume 697 of Lecture Notes in
Computer Science, pages 181–193. Springer, 1993.

[3] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths
in weighted timed automata. In Proc. 4th International
Workshop on Hybrid Systems: Computation and
Control (HSCC’01), volume 2034 of Lecture Notes in
Computer Science, pages 49–62. Springer, 2001.

[4] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths
in weighted timed automata. Theoretical Computer
Science, 318(3):297–322, 2004.

[5] G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen,
P. Pettersson, J. Romijn, and F. Vaandrager.
Minimum-cost reachability for priced timed automata.
In Proc. 4th International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), volume
2034 of Lecture Notes in Computer Science, pages
147–161. Springer, 2001.

[6] P. Bouyer, U. Fahrenberg, K. G. Larsen, and
N. Markey. Timed automata with observers under
energy constraints. Research Report LSV-10-01,
Laboratoire Spécification et Vérification, ENS Cachan,
France, 2010.

[7] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey,
and J. Srba. Infinite runs in weighted timed automata
with energy constraints. In Proc. 6th International
Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’08), Lecture Notes in Computer
Science, pages 33–47. Springer, 2008.

[8] P. Bouyer, K. G. Larsen, N. Markey, and J. I.
Rasmussen. Almost optimal strategies in one-clock
priced timed automata. In Proc. 26th Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’06), volume 4337 of
Lecture Notes in Computer Science, pages 345–356.
Springer, 2006.

[9] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine.
Decidable integration graphs. Information and
Computation, 150(2):209–243, 1999.

[10] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model
checking timed automata with one or two clocks. In
Proc. 15th International Conference on Concurrency
Theory (CONCUR’04), volume 3170 of Lecture Notes
in Computer Science, pages 387–401. Springer, 2004.

