
Noname manuscript No.

(will be inserted by the editor)

On Commutativity Based Edge Lean Search

Dragan Bošnački1 · Edith Elkind2
· Blaise

Genest 3
· Doron Peled4

the date of receipt and acceptance should be inserted later

Abstract The problem of state space search is fundamental to many areas of computer

science, such as, e.g., AI and formal methods. Often, the state space to be searched

is huge, so optimizing the search is an important issue. In this paper, we consider

the problem of visiting all states in the setting where transitions between states are

generated by actions, and the (reachable) states are not known in advance. Some of the

actions may commute, i.e., they result in the same state for every order in which they

are taken. We show how to use commutativity to achieve full coverage of the states,

while traversing a relatively small number of edges.

1 Introduction

In many application areas one has to explore a huge state space using limited resources,

such as time and memory. Examples include software and hardware testing and ver-

ification [3], planning, vision, robotics, as well as problems from several other areas

of computer science. In such cases, it is obviously important to optimize the search,

exploring only the necessary states and transitions.

If the state space is very large, it is common to represent it implicitly, i.e., by giving

an initial state and a transition relation that produces all successors of a given state.

Often, transitions between states are generated by a finite number of actions. More

specifically, for each state, there can be one or more actions available from this state,

and executing an available action leads to another state. In this setting, applying an

action from a given state, or even just checking whether this action is available and thus

generates a new state, can be costly. On the other hand, in a given state, some actions

may be redundant, i.e., applying them would lead to a state that we have already

visited or that we will necessarily visit in the future. Thus, we could speed up the state

1 Dragan Bošnački, Department of Biomedical Engineering, Eindhoven University of Technol-
ogy, P.O. Box 513, NL-5600 MB, Eindhoven, the Netherlands
2 Edith Elkind, School of Electronics and Computer Science, University of Southampton, SO17
1BJ, UK · Nanyang Technological University, Singapore
3 Blaise Genest, IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
4 Doron Peled, Department of Computer Science, Bar Ilan University, Ramat Gan 52900,
Israel

space search if we could predict whether a given action is redundant without actually

applying it. Exploring fewer actions may also reduce the size of the search stack, and

hence the memory consumption. Note, however, that such a prediction algorithm would

only be useful if it involved little or no overhead in terms of time and space.

In many of the application areas described above, some of the actions may be

independent, i.e., executing a after b has the same result as executing b after a. This

situation can be modeled using an independence relation on actions: two actions are

said to be independent if executing them in any order from a given state leads to the

same state. Intuitively, an independence relation between actions should allow us to

explore fewer transitions: if two sequences of actions lead to the same state, it suffices to

apply one of them. The goal of this paper is to explore the advantages and limitations

of several variants of this approach.

Our main contribution is a new algorithm for state-space search, which we call edge-

lean search. Our algorithm selects a total order on actions, extends it to paths (i.e.,

sequences of actions) in a natural way, and only explores paths that cannot be made

smaller with respect to this order by permuting two adjacent independent actions. The

proof that combining this simple principle with depth-first search ensures visiting all

states turns out to be quite non-trivial (see Section 3).

We also investigate a trace theory-inspired approach, which only considers paths

corresponding to sequences in trace normal form (TNF) (see Section 4). The sequences

in trace normal form are minimal with respect to the ordering described in the previous

paragraph, but the converse is not true. Hence, our TNF-based algorithm provides

a more powerful reduction than the edge-lean search algorithm. However, the added

efficiency comes at a price: we demonstrate that if the state system may contain cycles,

the TNF-based algorithm that uses depth-first search may fail to visit all states. On the

other hand, it does provide complete coverage if the underlying state system does not

contain cycles. As many state systems that occur in practice are naturally acyclic, there

are situations where the TNF-based algorithm should be preferred over the edge-lean

algorithm.

We also consider a variant of the TNF-based algorithm which explores the states

in breadth-first search order, and discuss connections between the algorithms proposed

in this paper and the sleep set algorithm [4,5].

In more detail, the main contributions of this paper are as follows:

– Presenting a simple depth-first search-based algorithm EdgeLeanDfs that visits all

states, but does not explore all transitions. It has no space overhead and negligible

time overhead. Furthermore, it provides significant time savings when exploring

transitions is expensive (which is not the case in SPIN), and significant space savings

in every context. Therefore, it compares favorably with the corresponding version

of the sleep sets of Godefroid [4], which requires saving a set of transitions (the

“sleep set”) together with every reached state.

– Presenting an alternative TNF-based algorithm TNF Dfs for the same problem that

explores even fewer edges than EdgeLeanDfs, but is only guaranteed to explore all

states if the underlying state system is acyclic. This algorithm is shown to coincide,

under some order restrictions, with the original sleep set algorithm (see [5]), but

requires less overhead per state.

– Providing an example that shows that when the state system contains cycles,

TNF Dfs (and hence the original sleep set algorithm) may fail to cover all states.

2

– Showing that a modification of the TNF-based algorithm that explores states in

breadth-first order is guaranteed to explore all states.

– Providing an efficient representation and an update algorithm for a data structure

used to check that traces (equivalence classes of sequences under permutation) are

in normal form (i.e., minimal in their equivalence class under trace equivalence).

This data structure is used by our TNF-based algorithms, but has other applica-

tions, such as generation and checking of normal form traces.

In Section 7, we provide the results of several experiments that compare our al-

gorithms with classic depth-first search used in SPIN [8]. Our experiments show that

for a number of natural problems, our methods provide a dramatic reduction in the

number of transitions explored and the stack size.

Related Work

The idea of speeding up state-space search by using an independence relation between

actions is well-known in the model-checking community. In particular, this approach

has been explored by the family of partial order reductions [11,4,13]. As opposed to our

setting, in general these methods, known as ample sets, persistent sets, or stubborn sets,

respectively, do not necessarily visit all the states. However, these methods guarantee

to generate a reduced state space that preserves the property that one would like to

check. Our algorithms are most closely related to the sleep set approach of [4], in

particular, the non-state-splitting sleep set algorithms. In fact, we show that our TNF-

based algorithm generates exactly the same reduced graph as the very first version of

the sleep set algorithm proposed in [5]. On the other hand, the more general algorithm

of Section 3 is substantially different from all the algorithms described in the existing

literature. Moreover, it has the advantage of achieving full state coverage with no

memory overhead.

Our work also has obvious connections to planning. Indeed, in many planning do-

mains there is a natural independence relation on actions, and hence our algorithms

are directly applicable for forward search. However, in planning one usually assumes

considerably more problem structure, such as pre- and post-condition for actions, the

ability to decompose the goal, etc. This additional information is usually used by the

planning algorithm in an essential way. Indeed, it has been argued that simple forward

seach that explores all states in computationally infeasible in many planning scenar-

ios due to combinatorial state explosion. Hence, it would be interesting to see if our

algorithms could be combined with classic planning techniques so as to be applicable

in real-life planning scenarios. Our model also bears certain similarity to nonlinear

planning. However, in nonlinear planning the search take place in the plan space as

opposed to the action space, and the independence relation is on partial plans, not on

actions.

2 Preliminaries

A system (or transition system) is a tuple A = 〈S, s0, Σ, T, I〉 where

– S is a finite set of states.

– s0 ∈ S is an initial state.

– Σ is a finite alphabet of actions.

3

– T ⊆ S×Σ×S is a labeled transition relation. We write s
a

−→ s′ when (s, a, s′) ∈ T .

– I ⊆ Σ×Σ is a symmetric and irreflexive relation on actions, called the independence

relation.

We say that the system has the diamond property if for every state s and any pair

of independent actions (a, b) ∈ I it is the case that if s
a

−→ q
b

−→ r then there exists

a state q′ ∈ S such that s
b

−→ q′
a

−→ r. All state systems considered in this paper

are assumed to have the diamond property. However, we do not require the forward

diamond property:

If s
a

−→ q and s
b

−→ q′ then there exists a state r ∈ S such that s
a

−→ q
b

−→ r.

We will sometimes identify a state system with a directed graph whose vertices corre-

spond to states, and whose edges correspond to transitions.

An action a is enabled from a state s ∈ S if there exists some state s′ ∈ S such that

s
a

−→ s′. We say that a path ρ = s0
a1−→ · · ·

an−→ sn is loop-free or simple if si 6= sj for

all i 6= j. A labeling ℓ(ρ) of a path ρ = s0
a1−→ · · ·

an−→ sn is given by ℓ(ρ) = a1 · · · an.

We extend the arrow notation from transitions to paths, denoting the above path by

s0
a1...an−→ sn. We will sometimes identify a path with its labeling.

Let σ, ρ ∈ Σ∗. We write σ
1
≡ρ if and only if there exist strings u, v ∈ Σ∗ and letters

(a, b) ∈ I such that σ = uabv, ρ = ubav. That is, σ
1
≡ρ if ρ is obtained from σ (or vice

versa) by transposing adjacent independent letters. Let ≡ be the transitive closure

of
1
≡. It is not hard to see that ≡ is an equivalence relation. It is often called trace

equivalence [9].

For example, for Σ = {a, b} and I = {(a, b), (b, a)} we have abbab
1
≡ababb and

abbab ≡ bbbaa. Notice that if the system has the diamond property and u ≡ v, then

s
u

−→ r if and only if s
v

−→ r.

Let ≪ be a total order on the alphabet Σ. We call it the alphabetic order. We can

extend ≪ to a lexicographic order on words in a standard way, i.e., by setting v ≪ vu

and vau ≪ vbw for any v, u, w ∈ Σ∗ and any a, b ∈ Σ such that a ≪ b.

Definition 1 Let w ∈ Σ∗. Let w̃ denote the least word under the relation ≪ that is

equivalent to w. If w = w̃, we say that w is in trace normal form (TNF) [10].

Most of the search algorithms to be presented are based on depth-first search (DFS),

which provides some advantages over breadth-first search (e.g., linear time detection

of loops using Tarjan’s algorithm [12]). It uses a hash table to check whether a state

has been previously visited.

proc Dfs(q);

local variable q’;

hash(q);

forall q
a

−→ q′ do

if q′ is not hashed then Dfs(q’);

end Dfs;

3 An Edge Lean Algorithm for Complete State Coverage

In this section, we show how to reduce the number of explored edges by making use

of the diamond property. Clearly, any state that can be reached from the initial state

4

by a path labeled with some word w can also be reached by a path labeled with w̃.

Therefore, it is tempting to limit our attention to paths labeled with words in TNF,

as such paths do explore all reachable states. However, one has to use caution when

applying this approach within the depth-first search framework. The main reason for

this is that all paths explored during depth-first search are necessarily acyclic. Hence,

this approach would only consider paths that are both acyclic and labeled with words

in TNF. On its own, neither of these restrictions prevents us from reaching all states.

However, it turns out that when the input state system has cycles, searching only

paths that are labeled with words in TNF, leaves some states unexplored; we provide

an example in Section 4.1. Therefore, for state systems that may have cycles, we have

to settle for a less ambitious reduction. In what follows, we define a smaller relation on

strings in Σ∗, and prove that it suffices to explore paths whose labeling is minimum

with respect to this relation.

Definition 2 Set ubav 1 uabv if and only if a I b and a ≪ b, and let be the

transitive closure of 1. We say that a word w ∈ Σ∗ is irreducible if there exists no

w′ 6= w such that w w′.

Intuitively, a word is irreducible if it cannot be transformed into a smaller word with

respect to by a local fix (a single permutation of adjacent independent letters). We

call a path ρ irreducible if its labeling ℓ(ρ) is an irreducible word. Observe that a prefix

of an irreducible path is also irreducible. Note that if w is in TNF, then it is irreducible.

However, the converse does not necessarily hold. Indeed, consider a ≪ b ≪ c, a I b, b I c

and ¬(a I c). Then x = cab is irreducible, but x̃ = bca 6= x.

Our algorithm EdgeLeanDfs is based on depth-first search. However, unlike the

classic depth-first search, it only explores paths whose labelings are irreducible. For

this, it suffices to remember the last letter x seen along the current path, and not to

extend this path with letter y whenever x I y and y ≪ x.

EdgeLeanDfs(s0,ǫ);

proc EdgeLeanDfs(q,prev);

local variable q’;

hash(q);

forall q
a

−→q’ such that prev= ǫ or ¬(aIprev) or prev ≪ a do

begin

if q’ not hashed then EdgeLeanDfs(q’, a);

end EdgeLeanDfs;

Let firstel (s) be the first path by which EdgeLeanDfs(s0, ǫ) reaches the state s; if

EdgeLeanDfs(s0, ǫ) does not reach s, set firstel (s)=⊥.

Theorem 1 For any state system A and any s ∈ A, we have firstel (s) 6= ⊥. Hence,

EdgeLeanDfs(s0, ǫ) explores all states of A that are reachable from s0.

Proof To prove Theorem 1, we fix a state s, and show that EdgeLeanDfs(s0, ǫ) reaches

this state. To do so, we start with an arbitrary simple irreducible path in the state

graph that reaches s (we show that such a path always exists) and repeatedly apply

to it a transformation T , defined below. This transformation produces another simple

irreducible path that also leads to s. We show that for any ρ for which T (ρ) is defined,

an application of T results in a path that is smaller than ρ with respect to a certain

5

well-founded ordering, defined later. Therefore, after a finite number of iterations, we

obtain a simple irreducible path ρ such that T (ρ) is not defined. We then prove that

any such ρ is a path taken by EdgeLeanDfs(s0, ǫ), i.e., s is reached by our algorithm.

The details follow.

For any simple path ρ and any state t on this path, we denote by ρt the prefix of

ρ that reaches t. In particular, ρs is a simple path that reaches s. We will now show

that we can choose ρs so that it is irreducible.

Lemma 1 For any state s ∈ A that is reachable from s0, there exists a path ρs that

is simple and irreducible.

Proof We start with an arbitrary path ρs that leads from s0 to s and iteratively

(1) delete loops from the current path; and (2) replace the current path with an an

equivalent irreducible path. Each application of (1) strictly decreases the length of the

path, while (2) does not change its length. By diamond property, (2) results in a path

that also leads to s. We obtain a simple irreducible path that leads to s after a finite

number of iterations.

Given a simple path ρ that reaches s, all states on ρ can be classified into three

categories with respect to ρ. We say that a state t is red if firstel (t) = ρt, blue if

firstel (t) 6= ⊥, but firstel (t) 6= ρt, and white if firstel (t) = ⊥. This classification depends

on the path ρ: a state can be red with respect to one path but blue with respect to a

different path. It turns out that for a simple irreducible path, not all sequences of state

colors are possible.

Lemma 2 Suppose that ρs is loop-free and irreducible. Then if t is the last red state

along ρs, all states that precede t on ρs are also red. Moreover, either t is the last state

on ρs, i.e., t = s, or the state t′ that follows t on ρs is blue.

Proof The first statement of the lemma follows from the definition of a red state and

from the use of depth-first search. To prove the second statement, assume for the sake

of contradiction that t′ is white (t′ cannot be red as t is the last red state on ρs). The

path ρt′ is a prefix of ρs, so it is simple and irreducible. Hence, EdgeLeanDfs(s0, ǫ)

must explore the transition that leads from t to t′. Therefore, t′ cannot be white.

We define a transformation T that can be applied to any simple irreducible path ρ =

ρs that contains a blue state; its output is another simple irreducible path that reaches

the same state s. Recall that ℓ(π) denotes the labeling of a path π. The transformation

T consists of the following steps (w and v appear only for a later reference in the proof):

(1) Let ρt be the shortest prefix of ρ such that t is blue. Decompose ρ as ρ = ρt σ. Mod-

ify ρ by replacing ρt with firstel (t), i.e., set ρ=firstel (t)σ. Set w = y = ℓ(firstel (t)),

v = z = ℓ(σ) and x = yz = ℓ(ρ).

(2) Eliminate all loops from ρ. Update x, y, and z by deleting the substrings that

correspond to these loops.

(3) Replace ρ with an equivalent irreducible path as follows:

(3a) Replace z with an equivalent irreducible word.

(3b) Let a be the last letter of y, and let b be the first letter of z. If a ≫ b and a I b,

move a from y to z and push it as far to the right as possible within z.

(3c) Repeat Step (3b) until the last letter a of y cannot be moved to z, i.e., a ≪ b

or a and b are not independent.

6

(3d) Set x = yz, and let ρ be a path reaching s with ℓ(ρ) = x.

(4) Repeat (2) and (3) until ρ is simple and irreducible.

By the argument in the proof of Lemma 1, we only need to repeat steps (2) and

(3) a finite number of times, so the computation of T terminates. Observe that if s

is red with respect to ρs, then T (ρs) is not defined. On the other hand, consider a

simple irreducible path ρs such that s is not red with respect to ρs. By Lemma 2, we

can apply T to ρs. The output of T (ρs) is loop-free and irreducible, so if s is not red

with respect to T (ρs), we can apply T to T (ρs). We will now show that after a finite

number of iterations n, we obtain a path T n(ρs), which consists of red states only.

We will first define a new ordering <♯ on words, and state a useful result about the

properties of this ordering (Proposition 1), which follows immediately from Higman’s

lemma [7].

Definition 3 For a word v ∈ Σ∗, let ♯a(v) be the number of occurrences of the letter

a in v. We write v <♯ w if there exists a letter a such that for all b ≪ a, ♯b(v) ≤ ♯b(w)

and ♯a(v) < ♯a(w).

Proposition 1 The relation <♯ is a well-founded (partial) order, i.e., there does not

exist an infinite sequence u1, u2, . . . ∈ Σ∗ such that u1 >♯ u2 >♯

Consider a simple irreducible path ρ = ρs. Suppose that both ρ and T (ρ) contain

blue states.

Lemma 3 Let ρ = ρtσ, where t is the first blue state on ρ, and let T (ρ) = ρ′t′σ
′, where

t′ is the first blue state on T (ρ). Let v = ℓ(σ), v′ = ℓ(σ′). Then v >♯ v′.

Before we prove Lemma 3, let us show that it implies Theorem 1. Indeed, by

Proposition 1, there does not exist an infinite decreasing sequence of words with respect

to <♯. The strings v, v′ satisfy v′ <♯ v, and are well-defined as long as both ρ and T (ρ)

contain blue states. Hence, for some finite value of n, T n(ρ) contains no blue states,

it is simple and irreducible. Therefore, by Lemma 2 we obtain a path of our algorithm

that reaches s. We now prove Lemma 3.

Proof We use the notation introduced in the description of T : we have w = ℓ(firstel (t)),

v = ℓ(σ), and x = wv is the labeling of ρ after ρt was replaced by firstel (t).

In the rest of the proof, we use the word “letter” to refer both to an element of

Σ and an occurrence of this element in a word. The specific meaning will be clear

from the context. In particular, in the coloring described in the next paragraph, we

will assign colors to occurrences of the elements of Σ rather than the elements itself,

whereas when we write a ≪ b, we refer to the respective elements of Σ.

We will now color all the letters in the word wv so that all letters in w are yellow

and all letters in v are green, and investigate what happens to this coloring during an

application of transformation T . Note that by construction, at any point in time all

letters in y will be yellow, and therefore all letters pushed into z during Step (3) will

be yellow. We construct a directed acyclic graph (DAG) whose set of nodes includes

all yellow letters in z as well as some of the green letters. Namely, if a yellow letter a

gets pushed into z when the first letter of z is b, there is an edge from this occurrence

of a to this occurrence of b. Also, if a (yellow or green) letter a that is currently the

first letter of z gets transposed with its right-hand side neighbor b (by (3a)), there is

an edge from this occurrence of a to this occurrence of b. Observe that in both cases if

7

there is an edge from an occurrence of a to an occurrence of b, then we have b ≪ a, so

our graph contains no directed cycles. We do not delete a node from this graph even if

the respective occurrence is deleted from x by (2).

Lemma 4 Each yellow letter pushed into z has an outgoing edge. Moreover, if a letter

has incoming edges, but no outgoing edges, either it has been eliminated from x, or it

is the first letter of z after the execution of T is completed.

Proof Each yellow letter acquires an outgoing edge as it is moved into z. Now, consider

a letter that has incoming edges. It acquired them either when it was the first letter of

z and yellow letters were pushed past it, or when it was transposed with its left-hand

side neighbor and became the first letter of z. In both cases, it was the first letter of

z at some point in time. If it remains in that position till the end of the execution of

T , we are done. Now, suppose that it stopped being the first letter of z. Then either

it was deleted during the loop elimination phase, in which case we are done, or it was

transposed with its right-hand side neighbor, in which case it acquired an outgoing

edge. [Lemma 4]

Let G be the set of nodes of our DAG that have incoming edges, but no outgoing

edges. By Lemma 4 none of the letters in G is yellow, so all of them are green. Moreover,

each letter in G either has been eliminated from x or is the first letter of z after the

end of the execution of T .

Consider the string x = yz obtained after the end of the execution of T . This string

corresponds to ρ′ = T (ρ). Recall that w corresponds to firstel (t), which consists of red

states only, and y is a prefix of w. Hence, the prefix of ρ′ that corresponds to y reaches

a red state. Therefore, to reach a blue state along ρ′, we need to progress over at least

one letter of z, or, equivalently, v′ is a strict suffix of z. That is, v′ does not include

the first letter of z. Using Lemma 4, we conclude that v′ does not contain any of the

letters in G.

Let a be the minimal letter of G with respect to ≪. It is contained in v, but not

in v′. On the other hand, each letter c that is contained in v′ but not in v, is a yellow

letter that appears in the DAG. That is, there is a path in the DAG leading from c to

some b ∈ G. By construction of the DAG, the existence of a path from c to b implies

c ≫ b, and hence c ≫ a. Hence, for any b in v′ such that b ≪ a or b = a it holds that

b is green, and therefore ♯b(v
′) ≤ ♯b(v). Also, we have argued that ♯a(v′) < ♯a(v). We

conclude that v′ <♯ v. [Lemma 3,Theorem 1]

We now give an example that illustrates the performance of our algorithm. Consider

two processes p and p′ with a counter from 1 to n on each process. These counters can be

incremented through actions a and a′, respectively, and decremented through actions

b and b′, respectively. Clearly, the independence relation between this actions is the

symmetric closure of aIa′, aIb′, a′Ib, bIb′. Let a ≪ b ≪ a′ ≪ b′. The left part of

Figure 1 shows in solid edges the paths explored by regular depth-dirst search (Dfs),

and in dotted edges the transitions which lead to a state already explored. On the

right, we indicate in the same way the path followed by EdgeLeanDfs, though we have

deleted the transitions not considered by EdgeLeanDfs.
It is easy to see that Dfs considers almost twice as many transitions as EdgeLeanDfs

(i.e., 4n(n− 1) versus (2n + 2)(n− 1)). Moreover, the stack size in DFS is n2 − 1 (path

labeled by (ana′bna′)(n−1)/2), while for EdgeLeanDfs it is only 2n. Generalizing this

example from 2 to n processes, we obtain an example in which EdgeLeanDfs has an

exponentially smaller maximum stack size than Dfs.

8

s1,1 s2,1 sn,1

s1,2 s2,2 sn,2

s1,n s2,n sn,n

a a

b b

a a

b b

a a

b b

a’

a’

b’

b’

a’

a’

b’

b’

a’

a’

b’

b’

s1,1 s2,1 sn,1

s1,2 s2,2 sn,2

s1,n s2,n sn,n

a a

b b

a’

a’

b’

b’

a’

a’

b’

b’

a’

a’

b’

b’

Fig. 1 Paths explored by Dfs (left) and by EdgeLeanDfs (right).

4 TNF-based Algorithms

In the beginning of Section 3, we have demonstrated that there are irreducible words

that are not in trace normal form. Thus, given two paths from the same trace equiva-

lence class that are both labeled with irreducible words, EdgeLeanDfs will explore both

of them, even though they are guaranteed to lead to the same state. Therefore, in some

sense, EdgeLeanDfs behaves suboptimally.

In this section, we focus on algorithms that only explore paths labeled with words

in TNF. First, we demonstrate that under depth-first search order, the TNF-based

algorithm is guaranteed to explore all states as long as the state space is cycle-free.

We then provide an example showing that the latter condition is necessary. Finally,

we show that under breadth-first search order, the TNF-based algorithm explores all

states even if the state space may contain cycles.

4.1 TNF-based DFS Algorithm for Acyclic State Spaces

We will now describe an algorithm TNF Dfs, which is based on depth-first search and

only explores paths labeled with words in trace normal form. This algorithm often

provides a significant reduction in the size of stack needed, compared to both regular

depth-first search and EdgeLeanDfs. The algorithm TNF Dfs uses summaries (also called

last appearance records in other contexts), which are data structures that represent

the order in which the last appearance of each letter occurred in the string. Using

summaries provides a significant computational advantage, as they are much cheaper

to store and analyze than the strings themselves.

Definition 4 Given a string σ, let α(σ) denote the set of letters occurring in σ. A

summary of σ is the total order ≺σ on the letters from α(σ) such that a ≺σ b if and only

if the last occurrence of a in σ precedes the last occurrence of b in σ. That is, a ≺σ b

if σ can be represented as vaubw, where v ∈ Σ∗, u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

We will also represent a summary ≺σ as a word over Σ in which each letter occurs

at most once, and a ∈ Σ appears before b ∈ Σ if and only a ≺σ b. For instance, in

this notation, the summary of the word w = bcbabza is cbza. Clearly, the length of a

summary is always at most |Σ|.

9

We will now formulate a criterion that allows us to check whether adding a letter

to a string in TNF results in a string that is also in TNF.

Lemma 5 Let σ ∈ Σ∗ be in TNF and a ∈ Σ. Then σa is not in TNF if and only if

σ = vu for some v, u such that (i) vau ≡ vua and (ii) vau ≪ vu.

Proof If conditions (i) and (ii) hold, then clearly vua is not in TNF, since it is not

lexicographically minimal among the sequences that are equivalent to it.

Conversely, let ρ be the lexicographically minimal string such that ρ ≡ σa. Denote

by fst(v) the first letter of a nonempty string v. Let v be the maximal common prefix

of ρ and σ (and thus also of ρ and σa). Let u, w be the respective suffixes of σ and ρ,

i.e., σ = vu and ρ = vw. We will now prove that the decomposition σ = vu satisfies

conditions (i) and (ii). Consider the following cases:

1. w starts with a.

(a) u does not contain a. Then au ≡ ua, satisfying (i) and (ii).

(b) u contains a. Write u = u1au2, where u1 contains no occurrences of a. Then

u = u1au2 ≡ au1u2. Since ρ = vw ≪ vua, we have a = fst(w) ≪ fst(u1) =

fst(u). Thus, vau1u2 ≪ vu1au2 = vu, a contradiction to the fact that σ is in

TNF.

2. w does not start with a.

Write w = w1aw2, where w2 contains no occurrences of a. Then, w = w1aw2 ≡

w1w2a ≡ ua and thus w1w2 ≡ u. Since vw ≪ vu, we have fst(w1) = fst(w) ≪
fst(u). Thus, vw1w2 ≪ vu = σ and vw1w2 ≡ vu. This contradicts the fact that σ

is in TNF.

Intuitively, Lemma 5 means that σa is not in TNF iff we can move a backwards

past an appropriate suffix of σ to obtain a string that is lexicographically smaller than

σ. The following lemma shows that we can apply this criterion using a summary of σ

rather than σ itself.

Lemma 6 Consider a string σ ∈ Σ∗ in TNF and a letter a ∈ Σ. The string σa is not

in TNF if and only if there is a letter b ∈ α(σ) such that a ≪ b and for each c such

that b �σ c we have aIc.

Proof Suppose that σ is in TNF and σa is not. Let u be the shortest suffix of σ that

satisfies the conditions of Lemma 5, i.e., σ = vu and vau ≡ vua. Let b be the first letter

of u. Then a ≪ b. Furthermore, consider any c such that b �σ c. Clearly, c ∈ α(u). As

aIc′ for each c′ ∈ α(u), we have aIc.

Conversely, let b ∈ α(σ) be a letter satisfying the conditions of the lemma. Let u

be the shortest suffix of σ that begins with b. It follows that all letters c ∈ α(u) satisfy

b �σ c, and aIc. This means that conditions (i) and (ii) of Lemma 5 hold.

For instance, consider the string w = bcbabza with summary cbza. Suppose that b

commutes with a, but not with z. Then the string wb is in TNF if and only if a ≪ b.

Our algorithm TNF Dfs is desribed below. It performs a reduced depth-first search

(DFS) by only considering strings in TNF. It considers all transitions enabled at the

current state. For each of them, it checks if adding this transition to the labeling of

the current path will result in a strng in TNF, using function normal; the transition is

only explored if this is indeed the case. This check is performed using summaries, as

suggested by Lemma 6. The summary is stored in a global array summary[1..n], where

10

n = |Σ|. The variable size stores the number of different letters in the current string

σ. We update the summary as we progress with the DFS, and recover the previous

value when backtracking. That is, the value of the summary is calculated on the fly

through the use of functions update sumr and recover sumr, defined later. This means

that there is no need to save the value of the summary with the state information.

size:=0;

TNF Dfs(s0)

proc TNF Dfs(q)

local variables q’, i;

hash(q);

forall q
a

−→q’ in increasing order do

if normal(a) and q’ not hashed then

i:=ord(a);

update sumr(i,a);

TNF Dfs(q’);

recover sumr(i,a);

end TNF Dfs;

We will now describe the procedures used in the pseudocode for TNF Dfs.

The function ord is used to find the position of a letter a in the summary.

func ord(a);

for i:=size backto 1 do

if summary[i]=a then return(i);

return(0);

end ord;

The function normal checks whether the current string augmented with a given

letter is in TNF. It makes use of the summary as described in Lemma 6.

func normal(a);

for j:=size backto 1 do

b:=summary[j];

if ¬ (a I b) then return(true);

if a≪b then return(false);

return(true);

end normal;

The summary is updated using the procedure update sumr. This procedure is given

the last transition a that was executed, and its old location i (0 if it was not introduced

yet) in the summary. It removes a from the ith position, shifts all elements in positions

i + 1, . . . , size one position to the left, and puts a at the end of the summary. If a did

not occur in the summary, then there is no need to shift other letters, but in this case

the size of the summary increases.

proc update sumr(i, a);

if i=0 then

size:=size+1

else

11

for j:=i+1 to size do

summary[j-1]:=summary[j];

summary[size]:=a

end update sumr;

Recovering the summary upon backtracking is done with the help of the procedure

recover sumr. It reverses the effect of update sumr by shifting the array elements

indexed i (the original position of a) and higher to the right, and putting a in the ith

place. If i is zero, then there is no need for shifting, but the size of the summary needs

to be decremented.

proc recover sumr(i, a);

if i=0 then

summary[size]:=blank;

size:=size-1

else

for j:=size-1 downto i do

summary[j+1]:=summary[j]

summary[i]:=a;

end recover sumr;

Theorem 2 Given an acyclic state space A, the algorithm TNF Dfs(s0) visits all states

of A that are reachable from s0.

Proof Fix a state s and consider the set of all paths that reach s. Among all such paths,

pick one whose labeling is minimal with respect to ≪. Denote this path by mintnf (s).

Clearly, ℓ(mintnf (s)) is in TNF. We will now show that s is reached by mintnf (s).

Indeed, suppose that there exists a state s that is not reached by mintnf (s). Among

all such states, pick the one with the lexicographically minimal ℓ(mintnf (s)). Let t

be the state that precedes s on mintnf (s), and suppose that ℓ(mintnf (s)) = ua. We

have u ≪ ℓ(mintnf (s)), and hence u = ℓ(mintnf (t)). Consider the moment when our

algorithm has reached the state t and is about to decide whether to explore a. Since ua

is in TNF and acyclic, the action a will be taken, and hence the state s will be reached

by mintnf (s). Furthermore, since mintnf (s) is lexicographically minimal among all

paths that reach s, no other path that reaches s has been considered before.

We will now analyze the running time of our algorithm. Each call to update sumr,

ord, recover sumr, and normal takes time O(|Σ|). Moreover, the summary data struc-

ture can be implemented as a list, in which case ord and normal need O(|Σ|) reads,

while update sumr and recover sumr need O(1) writes to memory only. Let S be the

total number of states. As the total number of transitions is bounded by S|Σ|, it follows

that the running time of our algorithm is O(S|Σ|2). In Section 6, we will further reduce

the running time of our algorithm in the important special case where actions belong

to communicating processes. Concerning memory, compared with the usual DFS al-

gorithm, one needs to remember log2 |Σ| additional bits per letter in the stack (the

index of this letter in the previous summary) to recover the summary, plus the current

summary itself (|Σ| log2 |Σ| bits, which is negligible with respect to the size of the

stack). This compares favorably to the sleep set method (see Section 5), which needs

to store the entire sleep set, i.e., up to |Σ| log2 |Σ| bits, for each letter in the stack.

12

s0

s1 s2 s3 s4

s5 s6

bb b b bb

z

a

b

c

c

a

a

Fig. 2 A state space for which TNF Dfs does not explore every state.

4.2 State Space Not Fully Explored by TNF Dfs

In the previous section, we have argued that for acyclic state spaces, TNF Dfs is guar-

anteed to explore all states. However, for general state spaces this is no longer the

case.

Figure 2 provides an example of a state space that satisfies the diamond property,

but is not fully explored by TNF Dfs. The nodes, except s6, are numbered in the order

in which they are discovered. The node s6 is not discovered. The alphabet is {a, b, c, z},
with the ordering a ≪ b ≪ c ≪ z. The independence relation is the symmetric closure

of b I a, b I c. Consequently, z depends on every other letter a, b, c, and a, c are depen-

dent. The state s6 can only be visited through s3 and s5, with mintnf (s3) = bca and

mintnf (s5) = bcazb. Neither of the strings bcab (≡ bbca) and bcazba (≡ bcaaab) is in

TNF (but note that bcab is irreducible, as required by EdgeLeanDfs), hence s6 is not

visited. On the other hand, s6 is visited by EdgeLeanDfs.

4.3 TNF-Based Breadth-First Search

We will now prove that, when using breadth-first search (BFS), we can ignore paths

labeled by words not in TNF and still reach all states, even on graphs with cycles.

Hence, the results of Section 5, which relate the sleep set method to TNF-based search,

imply that using BFS with sleep sets does not require a loop proviso. This is in contrast

with the setting where the sleep set method is used in conjunction with DFS, in which

case a loop proviso appears necessary. We will start by describing the classic breadth-

first search. The algorithm below is initialized with a queue containing the initial state

only.

hash(s0); Bfs(s0);

proc Bfs(queue);

local variables q, q’, queue’;

queue’=ǫ;

forall q in queue do

forall q
a

−→q’ do

13

if q’ not hashed then hash(q’);

append(queue’,q’);

Bfs(queue’);

end Bfs;

We now modify this search to consider paths in TNF only. For this version of the

algorithm, we need to keep track of the summaries. Therefore, the elements of the queue

are pairs of the form (state, summary). Consequently, unlike in the DFS version of the

algorithm, we do not have a global variable summary. The implementation below uses

functions normal(a, summary), ord(a) and update summary(i, a, summary), which

are similar to procedures normal(a) and update summary(i, a) defined in Section 4.1,

but take into account the fact that summary is not a global variable. In particular,

this means that update sumr now produces an output summary’, which is an updated

version of its input summary, while summary itself remains intact (and hence there is no

need to recover it).

hash(s0); TNF Bfs(s0);

proc TNF Bfs(queue);

local variables q, q’, summary’, queue’;

queue’=ǫ;

forall pair (q, summary) in queue do

forall q
a

−→q’ in ≪ order do

if normal(a, summary) and q’ not hashed then

hash(q’);

i:=ord(a, summary);

summary’ = update sumr(i, a, summary);

append(queue’, (q’, summary’));

TNF Bfs(queue’);

end TNF Bfs;

We will now prove that this algorithm explores all states.

Theorem 3 For any state system A, the algorithm TNF Bfs(s0) explores all states that

are reachable from s0.

Proof For each node s ∈ A reached by TNF Bfs from s0, let firstbfs (s) be the path from

s0 to s according to which s is discovered. We need to prove that firstbfs (s) is defined

for each s ∈ A.

For every s ∈ A, let Min(s) be the set of paths of minimum length from s0 to s in

A. That is, every path in Min(s) has the same length, and there are no shorter paths

reaching s. We denote by minbfs(s) the path of Min(s) labeled by the lexicographically

smallest word among the labelings of paths in Min(s). Since A has the diamond prop-

erty, the string minbfs(s) is lexicographically minimal among trace equivalent words,

and hence necessarily in TNF.

Lemma 7 Let minbfs(s) = σa, and let t be the state that is reached from s0 via σ,

i.e., s0
σ

−→ t. Then minbfs(t) = σ.

Proof First, it follows from the definition of trace normal form that any prefix of a word

in TNF must also be in TNF, hence σ is in TNF. Suppose for the sake of contradiction

14

that minbfs(t) = ρ, where ρ 6= σ. Then we have ρ ≪ σ and thus ρa ≪ σa. Then

s0
ρa
−→ s. Let µ be the lexicographically minimal word that is equivalent to ρa; clearly,

µ is in TNF. Then either µ = ρa or µ ≪ ρa. It follows that µ ≪ σa, a contradiction.

[Lemma 7]

Since we explore the actions available from each node in alphabetic order, it follows

by induction on the order of discovering nodes by TNF Bfs that if s and t are on the

queue at the same time (that is, they are at the same distance from the initial node

s0), and s appears before t in the queue, then firstbfs (s) ≪ firstbfs (t).

Now we will prove the following claim, which implies the correctness of the algo-

rithm: each node s in A is reached during the search, and is paired up with the summary

that corresponds to the string minbfs(s) = firstbfs (s). The proof is by contradiction. Let

S be the set of states for which this claim does not hold. Let n = min{|minbfs(s
′)| | s′ ∈

S}. Let Sn be the states s′ of S with |minbfs(s
′)| = n. Among all states in Sn, pick the

one with path minbfs(s) labeled by the lexicographically smallest word, and denote it by

s. That is, for all s′ ∈ S, either |minbfs(s)| < |minbfs(s
′)|, or |minbfs(s)| = |minbfs(s

′)|

and minbfs(s) is lexicographically before minbfs(s
′). Suppose that minbfs(s) = σa, and

let t be the state that precedes s on minbfs(s). Then by Lemma 7 we have minbfs(t) = σ.

Since |σ| < |σa|, the state t is discovered and put into the queue paired up with a sum-

mary that corresponds to the word firstbfs (t) = minbfs(t) = σ. Now, when this pair

is removed from the queue, checking a against the summary that is paired up with it

results in the conclusion that σa is in TNF. Thus, the case where s is not explored can-

not happen. It means that s was already explored with some path ρ 6= minbfs(s) before

considering minbfs(s). By choice of s, we know that every state s′ reached before s is

reached by minbfs(s
′) = firstbfs (s

′). According to the algorithm, it implies that paths

are considered according to their size, ties being broken using lexicographic order. That

is ρ reaches s, and either |ρ| < |minbfs(s)|, or |ρ| = |minbfs(s)| and ρ ≪ minbfs(s),

which contradicts the definition of minbfs(s).

5 Connections with the Sleep Set Algorithm

In [4], Godefroid describes a state space search algorithm that is based on the concept

of sleep sets. Intuitively, the sleep set of a state consists of actions that need not be

explored from that state. It is constructed from the sleep set of the predecessor of that

state in depth-first search. Unfortunately, as follows from Proposition 2 below and the

example in Figure 2, the original sleep set algorithm [5] may fail to visit some of the

states. One way of fixing this is to split states during search [11,4], i.e., explore a state

more than once depending on the sleep set that it inherits from its predecessor. In [6]

a different approach is proposed, which is based on eliminating some actions from the

sleep set. To compare our algorithms with the sleep set approach, we describe a generic

sleep set-based algorithm that generalizes the algorithms of [5] and [6]. We then show

how to represent our algorithm EdgeLeanDfs within this framework. Moreover, we show

that TNF Dfs is, in fact, equivalent to the algorithm of [5]. This equivalence is quite

surprising since the rationale behind both algorithms is quite different.

Similarly to the algorithms of Sections 3 and 4.1, the generic sleep set algorithm

that we are about to describe is based on depth-first search. For any node q, we store

an associated set of actions sleep(q), which we call the sleep set. These are the actions

we are going to ignore: if the label of an edge starting in q is in sleep(q), this edge is

15

not explored. In the beginning, we set sleep(s0) = ∅; the sleep sets of all other nodes

are constructed when we first discover these nodes. The sleep sets are updated during

the execution of the algorithm. Whenever we backtrack to q from exploring an edge

labeled with a, we add a to sleep(q). A newly discovered state inherits the sleep set of

its parent, with some modifications. Namely, suppose that a state q′ is discovered from

a state q by exploring an edge labeled with a. Let dep(a) = {b | ¬bIa}, i.e., dep(a) is

the set of actions dependent on a. Then sleep(q′) is a subset of sleep(q) \ dep(a). That

is, to construct the sleep set for q′, we take the sleep set for q and delete all actions

that are dependent on a, as well as some other actions.

In the following description, the function remove(q, a) determines which actions

should not be inherited by the state that is discovered from q by exploring an edge

labeled with a. In the remainder of this section, we will compare algorithms that result

from different implementations of this function.

proc SleepSetsDfs(q,sleep);

local variables q’, current;

current:=sleep;

hash(q);

forall a 6∈ sleep, q
a

−→q’ do

begin

if q’ not hashed then

rem = remove(q, a);

SleepSetDfs(q’,(current \ rem) \ dep(a));

current := current ∪ {a};
end;

end SleepSetsDfs;

This description leaves us with two degrees of freedom: the choice of function

remove(q, a) and the order in which we explore the edges from a given vertex.

The algorithm of [5] can be seen as the most straightforward implementation of

this approach. Namely, it sets remove(q, a) = ∅ for all q, a. We will now show that the

algorithm TNF Dfs described in Section 4.1 is equivalent to the algorithm of [5] as long

as both consider actions in alphabetic order. More precisely, we prove that TNF Dfs

and SleepSetDfs with remove(q, a) ≡ ∅ ignore the same actions and explore exactly

the same set of states.

Proposition 2 Suppose that TND Dfs and SleepSetDfs with remove(q, a) ≡ ∅ use the

same alphabetic priority order ≪. Then during the search, from any given state q these

two algorithms explore exactly the same successors.

Proof Consider an action a that is in the sleep set of a state q. Suppose that q is

reachable from the initial state via a path labeled with σ. Then σ can be decomposed

as σ = vu so that there is a state t reached from s0 via v, a has been taken from t,

and all the letters in u are independent of a. Also, we have a ≪ u. Thus, if a is in the

sleep set of q, Lemma 5 implies that σa cannot be in TNF.

Conversely, assume that TNF Dfs does not take action a from a state q, where the

path on the stack is labeled with σ. Then it has to be the case that σa is not in normal

form. Then, according to Lemma 5, the string σ can be decomposed as σ = vu, where

vau ≡ vua and vau ≪ vu. Let u be the longest such suffix of σ, and let t be the state

16

reached after v. Then a is enabled from t. Now, consider SleepSetDfs. If it takes action

a from the state t, it will do so before taking the action that corresponds to the first

letter of u, since a ≪ u. Then a must be in the sleep set of q, and thus is not taken

from it. On the other hand, since a is enabled at t, if SleepSetDfs does not take a

from t, it must be because a is in the sleep set when SleepSetDfs reaches t. But this

means that there is a longer suffix u′ of σ such that a is independent of u′, and a ≪ u′,

a contradiction with our choice of u.

As shown by the example in Figure 2, TNF Dfs may fail to discover some of the

states. Hence, the same is true for this version of SleepSetsDfs. Indeed, one can run

this algorithm on our example to verify that the state s6 is not discovered. To follow the

search, notice that the sleep sets are given by Sleep(s0) = Sleep(s1) = Sleep(s4) = ∅,

Sleep(s2) = Sleep(s3) = {b} and Sleep(s5) = {a}.

Another existing sleep set algorithm that fits into this framework is that of [6]. In

this version of the algorithm, remove(q, a) consists of all actions that start in q and

lead to a state that is currently on the search stack (that is, the set rem is independent

of a and hence can be computed outside of the main loop). Note that this approach

forces one to explore each action, as we have to check whether it leads to a state on

the stack.

Finally, using an argument similar to that of Lemma 2, it is easy to see that

EdgeLeanDfs can also be seen as an implementation of our generic algorithm. Namely,

we set bigger(a) = {b | a ≪ b}, and let remove(q, a) = bigger(a). This version requires

slightly more space and time than the other two, as the function remove(q, a) has to

be called for each action.

Observe that both of our algorithms do not “split” states. Moreover, when we

compare states to see if a newly generated state has been discovered before, we only

look at the original state values. The additional data structures used by our algorithm

are computed on the fly. As argued above, this provides significant memory savings

compared to state-splitting algorithms.

6 Efficient Representation of Summaries

In many state systems, the actions belong to different processes, and the independence

relation arises from the fact that the actions of any two processes are independent

unless they are communication actions between these processes.

We will now show that in this setting the summaries can be represented with a

better time and space efficiency than in the general case. Our representation applies

when pairs of processes can communicate with each other synchronously. We chose to

focus on this model because it is perhaps the simplest to represent and describe among

concurrent executions models. Similar principles can be applied to other models, e.g.,

concurrency with shared variables or with asynchronous communication.

Assume that there are p processes. We partition the set of actions Σ according

to the process that is involved. Local actions of process 1 ≤ i ≤ p are put in the set

Σi. Communication actions between process i and process j (irrespectively of which

process is the sender and which is the receiver) are put in the set Σij for 1 ≤ i ≤ j ≤ p.

Also, we identify Σi with Σii. We order the sets Σij lexicographically, with the right

index being most significant, i.e., we set Σij ≪ Σkl if either (1) j < l or (2) j = l and

17

i < k. We obtain

Σ11 ≪ Σ12 ≪ Σ22 ≪ Σ13 ≪ Σ23 ≪ Σ33 ≪ . . . ≪ Σ1p ≪ Σ2p ≪ . . . ≪ Σpp.

This ordering induces an ordering on actions in a natural way: a ≪ b if and only if

a ∈ Σij , b ∈ Σkl and Σij ≪ Σkl.

In this model, actions of Σij are independent of actions of Σkl (including the case

where i = j or k = l) exactly when {i, j} ∩ {k, l} = ∅, i.e., when they involve disjoint

processes.

Recall that the algorithm for checking the summary proceeds from right to left.

The scan stops whenever it finds an action that is either dependent on the current

one (and then the word is in TNF), or independent but bigger in the alphabetic order

than the current action (and then the word is not in TNF). In the remaining case,

namely, when it sees an action that is independent of the current action but smaller in

the alphabetic order, the scan continues. The implementation of the summary used in

Section 4 requires space for all the different actions, hence the size of the summary is

at least linear in the number of actions |Σ|.

We first observe that, rather than storing actions in the summary, it suffices to

only keep the index of the subset Σij to which this action belongs, i.e., a singleton or

a pair of numbers between 1 and p. Indeed, the algorithms that use the summary data

structure treat all internal actions of a given process, as well as all communication

actions between a given pair of processes, in the same way. This brings the size of

the summary down to the size of the communication graph of the system (i.e., an

undirected graph where nods represent processes, and there is an edge between two

nodes if there is a potential communication between them), which is at most O(p2).

We will now show how to further reduce the size of the summary to p. We will

make use of two indices i, î per process i ∈ P , which will never occur simultaneously

in the summary. We redefine the summary of a word σ inductively, as follows.

Definition 5 The summary of ǫ is ǫ. Let u be the summary of a word σ, and let

a ∈ Σij . Let delij(u) be an operation that deletes all of the indices i, î, j, ĵ from u.

Then the summary of σa is delij(u)ĵi if i 6= j, and delij(u)ĵ if i = j.

Note that when a summary is updated, the indices are inserted in the reversed order at

the right end of the summary. For example, consider the words a and ab with a ∈ Σij

and b ∈ Σik. Under the old summary definition, the entries of the summary are pairs

of indices, and therefore summary for a is 〈i, j〉 and the summary for ab is 〈i, j〉〈i, k〉.

On the other hand, under the definition proposed above, the summary for a is ĵi and

the summary for ab is ĵk̂i.

Now, in order to check whether a word σa is in TNF, with σ in TNF and a ∈ Σij ,

we perform a scan of the summary of σ from right to left, stopping whenever we find

an index k ∈ {i, î, j, ĵ} (and then the word is in TNF), or when we find an index l̂ with

l > j (and then the word is not in TNF). Notice that j ≥ i, hence l > j implies that

l /∈ {i, j}.

The intuition behind this algorithm is as follows. Updating the summary by putting

the indices of the new action in reversed order enables us to give priority to checking

dependence over checking alphabetic order. Accordingly, until subsequent changes of

summary further shift one of the indices of an action to the right, its left index is

seen before its right index during the scan. Hence, for any letter b added to σ before

a, we have the following possibilities. If one of the indices of b is equal to one of the

18

indices of a, then a and b are dependent. Otherwise, a and b are independent, and their

right indices (with a hat) are different. In this case, we can check the alphabetic order

between a and b solely by looking at their right indices. (by the alphabetic ordering we

defined, the left index is irrelevant for the comparison when the right index is different).

We now formally prove the correctness of the algorithm.

Theorem 4 Let σ be a word in TNF and let a ∈ Σij . The algorithm described above

correctly decides whether σa is in TNF.

Proof First, we consider the case where some index l̂ with l > j was found during

the summary scan. By construction j ≥ i, so l /∈ {i, j}. In this case, the algorithm

decides that σa is not in TNF. Consider the moment when l̂ was last inserted into the

summary. This was due to an occurrence of an action b ∈ Σkl. Decompose σ into ρbµ,

where µ does not contain any occurrences of b. We have a ≪ b, since the right index

l of b is strictly bigger than right index j of a. We claim that all actions in bµ are

independent of a. Assume for the sake of contradiction that this is not the case. Then

the last occurrence of a letter c in bµ that is dependent of a would have caused an index

t ∈ {i, î, j, ĵ} to occur to the right of the index l in the summary. Note that this includes

the case c = b: in this case, since l is the right index of b and l /∈ {i, j}, t would have

to be the left index of b, which by construction is inserted into the summary after l̂.

Such an index t would have been detected and stopped the search before l was reached,

a contradiction. Now, since all actions in bµ are independent from a, and a ≪ b, it

follows from Lemma 6 that σa is not in TNF, as correctly concluded by the algorithm.

Now suppose that an index m ∈ {i, î, j, ĵ} is found on the right-to-left summary

search. In this case, the algorithm concludes that σa is in TNF. Again, the last update

of m in the summary is due to the occurrence of some action b, and we decompose σ

into ρbµ, where µ does not contain any occurrences of b. Clearly, a and b are dependent

since they share the index m. Now, by the same argument as in the previous case, all

actions in µ are independent of a. In order to use Lemma 6 to prove that the conclusion

of the algorithm is correct, it suffices to show that µ does not contain an action c such

that a ≪ c.

Suppose that this is not the case, and consider an arbitrary action c in µ that

satisfies a ≪ c. As all actions in µ are independent from a, we have c ∈ Σkl for some

l > j. Let t be the largest value of l such that for some k = 1, . . . , p the string µ

contains an action c ∈ Σkl. As c appears in µ, we have t ≥ l > j. Now, among all

actions in ∪t
k=1Σkt, let c′ be the one that occurs last in µ. Suppose that c′ ∈ Σkt.

In the summary, we put t̂k on the far right of the summary when this occurrence

of c′ is seen. Since no action involving t occurs after c′, t̂ is not deleted (by putting t

instead of t̂ in the summary). But then the search would have found this t̂ with t > j

before m, and consequently would have stopped and concluded that σa is not in TNF,

a contradiction.

Thus, in both cases the algorithm behaves correctly, and the proof is complete.

Our algorithm can easily be extended to the case where more than two processes

can communicate at the same time. In this case, we partition the actions into to sets

with the same communication participants (e.g., Σ245 will involve processes 2, 4 and

5). The order between subsets is lexicographic with more significant indices further to

the right. We make the indexing equilength when needed by repeating the last index.

When updating the summary, only the rightmost index is marked with a hat (thus,

2, 4 and 5̂ in the above example), and indices are put on the extreme right in reverse

19

order (5̂42 in our example). Again, we can compare the order of actions in different

sets by checking the rightmost (most significant) index only, since if that value is the

same, the actions are interdependent anyway.

7 Experiments

We implemented the algorithms EdgeLeanDfs and TNF Dfs from Sections 3 and 4.1

in the tool Spin [8]. We tested state space generation for several examples from the

literature. The results are shown in Table 1: The rows correspond to regular depth-

first search, the EdgeLeanDfs, and TNF Dfs, respectively. For each example we give

the number of states and edges explored as well as the maximal size of the stack, in

units, thousands (K), and millions (M). We also list the memory used in Megabytes

and runtime in seconds. It should be mentioned that we use the plain version of SPIN,

without partial order reduction. The reason for this is that our method is not intended

to replace the existing POR in SPIN, but rather to complement it. Notice that more

memory can be allocated than the memory used we report. First Spin allocates statically

memory for the stack (the actual number is usually obtained by trial and error). Second,

on a 64bits machine, Spin uses 40 bytes (5 words) per stack level. When there is no

rendez-vous, we implemented EdgeleanDfs without additional memory and TNF Dfs

with 1 additional byte. Rendez vous are implemented in Spin in such a way that we

use an additional byte (for both EdgeleanDfs and TNF Dfs) in case the model future

rendez vous actions. That additional byte would be avoidable in other tools, and may

be in Spin itself. Anyway, when 1,2 (up to 8) bytes are added, the new prototype

allocates 48 bytes per stack level (instead of 40). We report the used bytes in our

comparison, as the others (allocated but unused) bytes are left free for implementing

new features. We also give the allocated memory in parenthesis as stated by Spin, for

some arbitrary but reasonable fixed maximal value of memory for the stack.

The first two examples, DMSnoCC and DMSwithCC, are models of system-on-chip

designs of a distributed memory system on message-passing network without and with

cache coherency, respectively. For more details, we refer the reader to [1]. The examples

RW1, RW4, and RW6 are models of various instances of the so-called Replicated Work-

ers problem described in [2]. The rest of the models are from the test suite that comes

with the standard distribution of Spin. For these models we use the default parameters

(e.g., the number of processes in petersonN and leader is set to 3 and 5, respectively).

For the presented examples our method improve the runtime in Spin without POR (up

to 4 times), but not dramatically (sometimes being barely slower). However, one can

expect huge improvement in the contexts where computing a transition has a higher

cost. The number of transitions explored gives a good indication of the algorithm’s

runtime in other scenarios.

The memory consumption depends on whether one uses the automaton minimiza-

tion technique of Spin. If this technique is used (DMS,RW6), then the size of stack

is the prevailing factor in the memory consumption, and for DMSwithCC, the mem-

ory requirement is reduced by a factor of 30 for EdgeLeanDfs, and a factor of 150 for

TNF DFS. In the case where the stack size is not prevalent, then the memory consump-

tion does not change. Anyway, the size of the stack gives a good indication of how the

algorithm performs memory-wise in different scenarios.

Although TNF Dfs may fail to explore the entire state space (each of our exam-

ples contains cycles), there is only one case (RW6) where we observed a difference

20

Table 1 Experimental Results.

DMSnoCC
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 229M 1009M 26M 1060 (1126.5) 12623
Spin with EdgeLeanDfs 229M 296M 264.5K 40.9 (41.1) 12620
Spin with TNF Dfs 229M 265M 32.2K 31.4 (33.8) 11638

DMSwithCC
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 132M 541M 18.9M 760 (860) 8469
Spin with EdgeLeanDfs 132M 174M 384K 19.8 (30.9) 8523
Spin with TNF Dfs 132M 151M 29.2K 5.2 (5.6) 8158

RW1
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 181K 852K 2219 18.8 (19.7) 4.32
Spin with EdgeLeanDfs 181K 409K 1224 18.7 (19.1) 3.18
Spin with TNF Dfs 181K 339K 360 18.7 (19.1) 2.93

RW4
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 263K 1.1M 2253 26.1 (27.4) 5.34
Spin with EdgeLeanDfs 263K 558K 1247 26.0 (26.5) 4.22
Spin with TNF Dfs 263K 462K 625 26.0 (26.5) 3.87

RW6
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 11.5M 65.6M 827K 42.9 (43.5) 560
Spin with EdgeLeanDfs 11.5M 59.6M 784K 42.0 (46.1) 556
Spin with TNF Dfs 9.9M 41.3M 148K 12.3 (15.3) 432

petersonN
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 25362 69787 5837 3.0 (3.1) 0.06
Spin with EdgeLeanDfs 25362 28855 1035 2.8 (3.1) 0.05
Spin with TNF Dfs 25362 28328 632 2.8 (3.1) 0.04

pftp
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 207K 604K 3077 27.3 (27.5) 1.6
Spin with EdgeLeanDfs 207K 480K 2578 27.2 (27.5) 1.3
Spin with TNF Dfs 207K 473K 2824 27.3 (27.5) 1.4

snoopy
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 62179 213K 6877 8.5 (8.5) 0.46
Spin with EdgeLeanDfs 62179 193K 5670 8.4 (8.6) 0.45
Spin with TNF Dfs 62179 192K 5546 8.4 (8.6) 0.44

leader
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 38863 158K 113 8.8 (9.0) 0.45
Spin with EdgeLeanDfs 38863 51565 112 8.8 (9.1) 0.21
Spin with TNF Dfs 38863 51565 113 8.8 (9.1) 0.23

sort
states edges stack [nr. of states] memory [MB] time [s]

Spin with regular DFS 374238 1.53M 177 62.1 (62.4) 5.6
Spin with EdgeLeanDfs 374238 413K 176 62.1 (62.4) 1.5
Spin with TNF Dfs 374238 413K 177 62.1 (62.4) 1.7

21

between the number of states generated by EdgeLeanDfs and TNF Dfs. In most of the

experiments, both of our algorithms explore considerably fewer transitions than regular

depth-first search. On the other hand, the difference between EdgeLeanDfs and TNF Dfs

regarding the number of transitions is not very significant. With respect to the stack

size (and thus memory consumption), our algorithms are up to 1000 times better than

regular DFS (see, e.g., DMS examples). Also, on many examples TNF Dfs uses much less

space than EdgeLeanDfs (see DMSwithCC, RW and the petersonN examples), while

EdgeLeanDfs has a slight advantage for pftp, leader and sort. It is quite surprising that

both algorithms explore roughly the same number of transitions, but TNF Dfs needs

much smaller stack than EdgeLeanDfs (examples DMS, RW and petersonN).

8 Conclusions and Future Work

In this paper we presented some novel algorithms for state space search optimization.

The algorithms exploit the commutativity of the actions that generate the transitions of

the state space. We showed that full coverage of the state space can be achieved while

reducing the number of transitions. Proving this was quite-non trivial, in particular

in the case of the EdgeLean algorithm. We implemented our DFS based algorithms

EdgeLean and TNF Dfs on top of the model checker Spin. The experiments with the

prototype implementation showed that impressive savings in memory can be achieved

without significant time overhead. The reduction in memory consumption is due to

smaller stacks that are generated by EdgeLean and TNF Dfs. We also discussed the

relation of TNF Dfs with the sleep set algorithm. In addition, we showed that, although

TNF Dfs does not provide a complete coverage for the state space, when cycles are

present, a BFS version of this algorithm does provide complete coverage.

An interesting topic for future work would be to combine our algorithms with

other techniques that exploit action commutativity, like various partial order techniques

based on ample sets or persistent sets.

9 Acknowledgements

The work of the second author has been partially supported by EPSRC under grant

GR/T07343/02 and by ESRC under grant ES/f035845/1. The work of the third author

has been partially supported by ANR SETI-06 DOTS. Part of this work has been done

when the second and the fourth author were with the University of Warwick.

References

1. T. Basten, D. Bošnački, M. Geilen, Cluster-based Partial Order Reduction, Automated

Software Engineering, 11(4), pp. 365–402, Kluwer, 2004.
2. C. S. Păsăreanu, M. B. Dwyer, M. Huth, Assume-Guarantee Model Checking of Software:

A Comparative Case Study, in Theoretical and Practical Aspects of SPIN Model Checking,
LNCS 1680, Springer, 1999.

3. E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 2000.
4. P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems—An

Approach to the State-Explosion Problem, PhD thesis, University of Liege, Computer
Science Department, November 1994.

5. P. Godefroid, P. Wolper, Using Partial Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties, in CAV 1991, pp. 176–185, 1991.

22

6. P. Godefroid, G. Holzmann, D. Pirottin, State-Space Caching Revisited, Formal Methods

in System Design 7:3, pp. 227–242, 1995.
7. G. Higman, Ordering by Divisibility in Abstract Algebra, Proc. London Mathematical

Society 2, pp. 326–336, 1952.
8. G. Holzmann, The SPIN Model Checking, Addison Wesley, 2003.
9. A. Mazurkiewicz, Trace semantics, in Advances in Petri Nets 1986, LNCS 255, pp. 279–

324, 1986.
10. E. Ochmanski, Languages and Automata, in The Book of Traces, V. Diekert, G. Rozenberg

(eds.), pp. 167–204, 1995.
11. D. Peled, Combining Partial Order Reductions with On-the-fly Model-Checking, in CAV

1994, LNCS 818, pp. 377–390, 1994.
12. R. E. Tarjan, Depth-First Search and Linear Graph Algorithms, in FOCS 1971, pp. 114–

121, 1971.
13. A. Valmari: A Stubborn Attack on State Explosion, Formal Methods in System Design

1(4), pp. 297–322, 1992.

23

