Measuring Permissivity in Finite Games

Patricia Bouyer!'*, Marie Duflot?, Nicolas Markey'*, and Gabriel Renault?

1 LSV, CNRS & ENS Cachan, France
{bouyer ,markey}@lsv.ens-cachan.fr
2 LACL, Université Paris 12, France
duflot@univ-parisi2.fr
3 Département Informatique, ENS Lyon, France
gabriel.renault@ens-lyon.fr

Abstract. In this paper, we extend the classical notion of strategies
in turn-based finite games by allowing several moves to be selected.
We define and study a quantitative measure for permissivity of such
strategies by assigning penalties when blocking transitions. We prove
that for reachability objectives, most permissive strategies exist, can be
chosen memoryless, and can be computed in polynomial time, while it is
in NP N coNP for discounted and mean penalties.

1 Introduction

Finite games. Finite games have found numerous applications in computer sci-
ence [Tho02]. They extend finite automata with several players interacting on the
sequence of transitions being fired. This provides a convenient way for reasoning
about open systems (subject to uncontrollable actions of their environment), and
for verifying their correctness. In that setting, correctness generally means the
existence of a controller under which the system always behaves according to a
given specification. A controller, in that terminology, is nothing but a strategy
in the corresponding game, played on the automaton of the system, against the
environment.

Our framework. In this paper, we propose a new framework for computing
permissive controllers in finite-state systems. We assume the framework of two-
player turn-based games (where the players are Player ¢ and Player O, with
the controller corresponding to Player <). The classical notion of (deterministic)
strategy in finite (turn-based) games is extended into the notion of multi-strategy,
which allows several edges to be enabled. The permissivity of such a multi-strategy
is then measured by associating penalties to blocking edges (each edge may have
a different penalty). A strategy is more permissive than an other one if its penalty
is weaker, i.e., if it blocks fewer (or less expensive) edges.

We focus on reachability objectives for the controller, that is, the first aim
of Player ¢ will be to reach a designated set of winning states (whatever

* These authors were partly supported by the French project DOTS (ANR-06-SETI-
003), by the European project QUASIMODO (FP7-ICT-STREP- 214755), and by
the ESF project GASICS.

Player O does). The second aim of Player & will be to minimize the penalty
assigned to the set of outcomes generated by the multi-strategy.

Formally we consider weighted (finite) games, which are turn-based finite
games with non-negative weights on edges. In each state, the penalty assigned to a
multi-strategy is the sum of the weights of the edges blocked by the multi-strategy.
Several ways of measuring the penalty of a strategy can then be considered:
in this paper, we consider three ways of counting penalties along outcomes (sum,
discounted sum, and mean value) and then set the penalty of a multi-strategy as
the maximal penalty of its outcomes.

We will be interested in several problems: (i) does Player & have a win-
ning multi-strategy for which the penalty is no more than a given threshold?
(i) compute the infimal penalty that Player <& can ensure while reaching her
goal; (ii7) synthesize (almost-)optimal winning multi-strategies, and characterize
them (in terms of memory and regularity).

Our results. We first prove that our games with penalties can be transformed
into classical weighted games [ZP96,LMO06] with an exponential blowup, and
that the converse reduction is polynomial.

Then, we prove that we can compute optimal and memoryless multi-strategies
for optimal reachability in PTIME. The proof is in three steps: first, using
our transformation to weighted games and results of [LMOO06], we obtain the
existence of optimal memoryless multi-strategies; we then propose a polynomial-
time algorithm for computing an optimal winning multi-strategy with memory;
finally, we show how we can get rid of the memory in such a multi-strategy, which
yields the expected result.

We then focus on two other ways of computing penalties, namely the dis-
counted sum and the mean value, and we prove that optimal multi-strategies
may not exist, or may require memory. We further prove that we can compute
the optimal discounted penalty in NP N coNP, and that we can search for almost-
optimal winning multi-strategies as a pair (o1, 02) of memoryless multi-strategies
and that we need to play oy for some time before following o5 in order to reach
the goal. The longer we play o1, the closer we end up to the optimal discounted
penalty. The same holds for the mean penalty before reaching the goal.

As side-results, we obtain the complexity of computing strategies in weighted
games with a combined objective of reaching a goal state and optimizing the
accumulated cost. This can be seen as the game version of the shortest path
problem in weighted automata. Regarding accumulated costs, this was already a
by-product of [LMOO06]; we show here that for discounted and mean costs, optimal
or memoryless optimal strategies do not necessarily exist, but almost-optimal
strategies can be obtained as a “pair” of memoryless strategies.

Related work. This quantitative approach to permissivity is rather original, and
does not compare to either of the approaches found in the literature [BJW02,PR05].
Indeed classical notions of permissivity imply the largest sets of generated plays.
This is not the case here, where an early cut of a branch/edge of the game may
avoid a large penalty later on for blocking many edges. However our notion

of multi-strategy coincides with the non-deterministic strategies of [BJW02]
and [Lut08].

Our work also meets the problem proposed in [CHJ05] of considering mixed
winning objectives, one which is qualitative (parity in their special case), and
one which is quantitative (mean-payoff in their special case). The same kind
of mixed objectives is considered when extending ATL with quantitative con-
straints [LMOO06,HPO0G].

The rest of this paper is organized as follows. In the next section, we introduce
our formalism of multi-strategies and penalties. We also explain the link with the
classical framework of games with costs. Section 3 is devoted to our polynomial-
time algorithm for computing most permissive strategies. Section 4 deals with
the case of discounted and mean penalty. By lack of space, several proofs are
omitted.

2 Weighted Games with Reachability Objectives

2.1 Basic definitions

Weighted games. A (finite) weighted game is a tuple G = (Vg, Vo, E, weight)
where Vg and Vo, are finite sets of states (said to belong to Player O and Player <,
resp.); writing V = V5 U Vo U{®, ®} where © and @ are two distinguished states
not belonging to VoUVe, E C V XV is a finite set of edges; and weight: £ — N is
a function assigning a weight to every edge. We assume (w.l.o.g.) that the states ®
and ® have no outgoing edges (they are respectively the winning and losing
states). If v € V, we write vE (resp. Ev) for EN({v} x V) (resp. EN(V x {v}))
for the set of edges originating from (resp. targetting to) v.

A run ¢ in G is a finite or infinite sequence of states (v;)o<i<p (for some
p € NU{oo}) such that e; = (v;_1,v;) € E when 0 < i < p. We may also write for
such a run o = (vg — v1 = va--+), or o = (e;)i>1 *, or the word g = voviva...
The length of o, denoted by |g|, is p + 1. For finite-length runs, we write last(o)
for the last state v,. Given r < |g|, the r-th prefix of 0 = (v;)o<i<p is the run
o<r = (v;)o<i<r. Given a finite run ¢ = (v;)o<i<p and a transition e = (v,?’)
with v = v,, we write ¢ —, or ¢ — v/, for the run o = (v;)o<i<p+1 With v, 1 = v'.

We write Runsg® (resp. Runsg) for the set of finite (resp. infinite) runs in G,
and Runsg = Runs$®” U Runs¢. In the sequel, we omit the subscript G when no
ambiguity may arise.

Multi-strategies. A multi-strategy for Player < is a function

o: {0 € Runs<* | last(p) € Vo } — 2F

such that, for all p € Runs=“, we have o(0) C vE with v = last(0). A multi-
strategy is memoryless if o(0) = o(¢’) as soon as last(p) = last(¢’). A memoryless

4 These notations are equivalent since we assume that there can only be one edge
between two states.

multi-strategy o can be equivalently represented as a mapping o’: Vo — 27,
with o(0) = o'(last(p)).

Multi-strategies extend the usual notion of strategies by selecting several
possible moves (classically, a strategy is a multi-strategy o such that for every
0 € Runs=* with last(g) € V&, the set (o) is a singleton). The aim of this paper
is to compare multi-strategies and to define and study a quantitative notion of
permissivity of a multi-strategy.

Given a multi-strategy o for Player &, the set of outcomes of o, denoted
Out(c) C Runs, is defined as follows:

— for every state v € V, the run v is in Out~*(o);
— if o € Out=“(o) and o(p) is defined and non-empty, then for every e € o (o),
the run ¢ = is in Out<“(o);
— if p € Out=*(0) and last(p) = v € Vg, then for every edge e € vE, the run
e . . <w .
0 — is in Out™~*(o);
— if p € Runs® and if all finite prefixes o’ of g are in Out<“ (), then o € Out* (o).

We write Out(c) = Out<* (o) UOut” (o). A run g in Out(c) is mazimal whenever
it is infinite, or it is finite and either o(p) = @, or last(p) has no outgoing edge
(i-e., the set vE, with v = last(p), is empty). If gy is a finite outcome of o,
we write Out(o, g9) (resp. Out™®*(c, gg)) for the set of outcomes (resp. maximal
outcomes) of o having gy as a prefix. A multi-strategy o is winning after g
if every run ¢ € Out™*(o, o) is finite and has last(p) = ©. A finite run ¢ is
winning if it admits a winning multi-strategy after gg. Last, a strategy is winning
if it is winning from any winning state (seen as a finite run).

Penalties for multi-strategies. We define a notion of permissivity of a multi-
strategy by counting the weight of transitions that the multi-strategy blocks along
its outcomes. If o is a multi-strategy and og is a finite run, the penalty of o after g,
denoted penalty(c, 0o), is defined as sup{penalty, , (o) | ¢ € Out™**(c, go)} where
penalty,, , (o) is defined inductively, for every finite run ¢ € Out(c, 0o), by:

— penalty, , (00) = 0;
if last(0) ¢ Vo and (last(g),v) € E, then penalty, , (¢ — v) = penalty, , (0);
if last(p) € Vo and (last(p),v) € o(p), then

penalty, , (0 — v) = penalty, , (o) + Z weight(last(p), v');
(last(e),v")€(E~a(0))

if o € Out(a, go) N Runs”, then penalty, , (¢) = lim penalty, , (0<n)-
’ n—-—+00 ’

The first objective of Player < is to win the game (i.e., reach @), and her
second objective is to minimize the penalty. In our formulation of the problem,
Player O has no formal objective, but her aim is to play against Player < (this is
a zero-sum game), which implicitly means that Player O tries to avoid reaching @,
and if this is not possible, she tries to maximize the penalty before reaching ®.

We write opt_penalty(go) for the optimal penalty Player ¢ can ensure after gg
while reaching ©:

opt_penalty (o) = inf{penalty(c’, 0o) | o’ winning multi-strategy after go}.

It is equal to +oo if and only if Player ¢ has no winning multi-strategy after og.
The following lemma is rather obvious, and shows that we only need to deal
with the optimal penalty from a state.

Lemma 1. Let G be a weighted game, let o and o' be two runs in G such that
last(g) = last(¢’). Then opt_penalty(o) = opt_penalty(o’).

Given € > 0, a winning multi-strategy o is e-optimal after g if penalty(o, 0g) <
opt_penalty(oo) + €. It is optimal after oo when it is O-optimal after gy. If o is
g-optimal from any winning state, then we say that ¢ is e-optimal.

Classical weighted games. This way of associating values to runs and (multi-)
strategies is rather non-standard, and usually it is rather a notion of accumulated
cost along the runs which is considered. It is defined inductively as follows:

— cost(v) = 0 for single-state runs;
— cost(p %) = cost(p) + weight(e) otherwise.

Then again, if o is a multi-strategy and gp is a finite outcome, cost(a, gg) =
sup{cost(p) — cost(go) | 0 € Out™* (o, o)}, and notions of (e-)optimal strategies
are defined in the expected way.

Example 1. A weighted game is depicted on Fig. 1. For this example, it can be
easily seen that the optimal strategy w.r.t. costs from state a consists in going
through b, resulting in a weight of 6.

Regarding penalties and multi-strate-
gies, the situation is more difficult. From
state b, there is only one way of win-
ning, with penalty 6 (because the strat-
egy must block the transition to the los-
ing state). From d, we have two possi-
ble winning multi-strategies: either block
the transition to b, with penalty 2, or
keep it; in the latter case, we will then
have penalty 6 in state d, as explained
above. In d, the best multi-strategy thus
amounts to blocking the transition to b, so that we can win with penalty 2. Now,
from a, it seems natural to try to go winning via d. This requires blocking both
transitions to b and ¢, and results in a global penalty of 8(= 5+ 14 2) for winning.
However, allowing both transitions to b and d is better, as the global (worst case)
penalty in this case is 7(= 1 + 6). Note that in that case, it is also possible to
allow transition to ¢ for some time, since the loop between a and ¢ will add no
extra penalty. But if we allow it forever, it will not be winning, this transition
to ¢ has thus to be blocked at some point in order to win.

Fig. 1. A weighted game

Computation and decision problems. We let G = (Vg, Vo, E, weight) be
a weighted game. Given v € V, we will be interested in computing the value
opt_penalty(v), and if an optimal winning multi-strategy exists, in computing it.
We will also be interested in computing for every £ > 0, an e-optimal winning
multi-strategy.

Formally, the optimal reachability problem with penalty we consider is the
following: given a weighted game G, a rational number ¢ and a state v € V', does
there exist a multi-strategy o for Player < such that penalty(o,v) < c.

2.2 From penalties to costs, and back

Penalties and costs assume very different points of view: in particular, cost-
optimality can obviously be achieved with “deterministic” strategies (adding
extra outcomes can only increase the overall cost of the strategy), while penalty-
optimality generally requires multi-strategies. Still, there exists a tight link
between both approaches, which we explain on two examples (Figs. 2 and 3).

Lemma 2. For every weighted game G = (Vg, Vo, E, weight), we can construct
an exponential-size weighted game G' = (V! VL, E' weight') such that Vo C V[,
Vo C V4 and, for any state v € Vo U Vs and any bound ¢, Player & has a winning
multi-strategy with penalty ¢ from v in G iff she has a winning strategy with cost ¢
from v in G'.

Fig. 2. From penalties (and multi-strategies) to costs (and strategies)

Lemma 3. For every weighted game G' = (V1,, V&, E', weight'), we can construct
a polynomial-size weighted game G = (Vg, Vo, E,weight) such that V, C Vg,
V4 C Vo, and for any state v € VL UVY and any value ¢, Player <& has a winning
strategy with cost ¢ from v in G’ iff she has a winning multi-strateqy with penalty ¢
from v in G.

3 Optimal Reachability in Penalty Games
Classical weighted games are known to admit memoryless optimal strategies

(see e.g. [LMOO6]). Hence, applying Lemma 2 we know that we can solve the
optimal reachability problem with penalty in NP: memoryless multi-strategies are

V(a,c) ¢ -

Fig. 3. From costs (and strategies) to penalties (and multi-strategies)

sufficient to win optimally, and we can thus guess a memoryless multi-strategy
and check, in polynomial time, that it is winning and has penalty less than the
given threshold. This section is devoted to the two-step proof of the following
(stronger) result:

Theorem 4. The optimal reachability problem with penalty can be solved in
PTIME.

In the sequel, we let G = (Vg, Vo, E, weight) be a weighted game.

3.1 Construction of an optimal winning multi-strategy

In this section, we give a polynomial-time algorithm for computing an optimal
winning multi-strategy (which requires memory). The idea is to inductively
compute the penalty for winning in j steps, for each j less than the number of
states. This will be sufficient as we know that there exists a memoryless optimal
multi-strategy, which wins in |V| from the winning states.

Due to the transformation presented in Lemma 2, there is a priori an expo-
nential blowup for computing the best move in one step (because Player & can
select any subset of the outgoing edges of the current state, and will choose ‘the
best’ subset), but we will show that choices satisfy some monotonicity property
that will help making the best choice in polynomial time.

For any integer k, we say that a multi-strategy o is k-step if, for every run g of
length (strictly) larger than k with last(o) € Vo, we have o(p) = &. For instance,
a memoryless winning multi-strategy ¢’ naturally induces winning multi-strategy
(all outcomes of ¢’ have length no more than |V| and for all the other (useless)
runs we can set o(p) = &). We say that a state v is winning in k steps if there is
a k-step multi-strategy which is winning from v.

The algorithm will proceed as follows: for every 0 < j < |V, we build a j-step
multi-strategy o; which will be winning from all states that are winning in j steps,
and optimal among all those winning j-step multi-strategies. We also compute,
for each state v € V, a value ¢, ; which is either the penalty of strategy o; from v
(i.e. penalty(o;, v)), or +00 in case o; is not winning from v.

Since we know that memoryless multi-strategies suffice to win optimally, we
conclude that there exists a |V|-step multi-strategy, which is winning and optimal,
and the multi-strategy o}y, which we build will then be optimal and winning.
It follows that c, |y will be equal to opt_penalty(v).

When j = 0, we let o9(0) = @ for any ¢ ending in a Vi-state. It is the
only O-step multi-strategy, so that it clearly is optimal among these. Clearly,
Cy0 = +oo for all v # O, c@, =0, and © is the only state from which we can
win with a 0-step multi-strategy.

We assume we have built o; (0 < j < |V|), and we now define 0. Let o =

Vo — U1 — Vg ... — v be arun ending in Vo. If k> 7+ 1, we let 0,41(0) = @.
Otherwise, if £ > 1, we let 0j41(vo = v1 = v2 ... = vg) =0j(v1 = v2 ... —
vg). Finally, when k = 0 and ¢ = v, we let {u1,...,u,} be the set of successors

of v, assuming that they are ordered in such a way that c,, ; < ¢y, ; if r <'s.
Now, let
Joj+1: L C[1,p] — Zweight(v,us) +maxcy, j,
s¢l
and let I # @ be a subset of [1,p] realizing the minimum of f, j+1 over the
non-empty subsets of [1,p]. Assume that there exist two integers I < m in [1, p]
such that [¢ I and m € I. Since u; < u,,, we have

Jojr1(LU{l}) = foj41(I) = —weight(v, up).

This entails that TU{l} is also optimal. By repeating the process, we can prove that
there exists an interval [1, ¢ realizing the minimum of f, ;1. As a consequence,
finding the minimum of f, j11 can be done in polynomial time (by checking all
intervals of the form [1,¢]). We write T, ;41 for a corresponding set of states,
whose indices realize the minimum of f, j+1. We then define ;41 (v) = {(v,?v) |
v €Ty jy1}, and ¢y jy1 = foj+1(T j41) for all v € V. It is easy to check that
Co,j+1 = penalty(oj1,v) if 0j41 is winning from v, and ¢, j41 = +00 otherwise.

We now prove that for every 0 < j < |V, 0; is optimal among all j-step
winning multi-strategies. Assume that, for some 0 < j < |V, there is a j-step
multi-strategy o’ that is winning and strictly better than o; from some winning
state v. We pick the smallest such index j. We must have 5 > 0 since o is optimal
among the 0-step multi-strategies. Consider the set of successors {u1, ..., u,} of v
ordered as above, and let T be the set of indices such that o/ (v) = {(v,us) | t € T}.
Then after one step, the multi-strategy o’ is (j — 1)-step and winning from any
uy satisfying (v,uy) € o/(v), and its penalty is thus not smaller than that of the
multi-strategy o;_; (by minimality of j, we have penalty(c’,v — u¢) > ¢y, j—1)-
Hence:

/ :
penalty(o’,v) > ng;welght(v,us) + MAX Cy, j—1 = fu i (T)
On the other hand, as ¢’ is strictly better than ¢; we must have

penalty(o’,v) < ¢y ; = fu.j(Tv;) < fo,;(T)

because T, ; achieves the minimum of f, ;. This is a contradiction, and from
every state v from which there is a j-step winning multi-strategy, o; is winning
optimally (in j steps).

As stated earlier, due to the existence of memoryless optimal winning multi-
strategies, |V[-step multi-strategies are sufficient and oy is optimal winning.

_I

3.2 Deriving a memoryless winning multi-strategy

In this section we compute, from any winning multi-strategy o, a memoryless
winning multi-strategy o’ which has lower penalty for Player <. The idea is
to represent o as a (finite) forest (it is finite because o is winning) where a
node corresponds to a finite outcome, and to select a state v for which o is not
memoryless yet. This state should be chosen carefully® so that we will be able to
“plug” the subtree (i.e., play the multi-strategy) rooted at some node ending in v
at all nodes ending in v while keeping all states winning and while decreasing (or
at least leaving unchanged) the penalty of all states. This transformation will be
repeated until the multi-strategy is memoryless from all states. That way, if o
was originally optimal, then so will ¢’ be.

Let X be a finite alphabet. A Y-forest is a tuple 7 = (T, R) where T C X+
is a set of non-empty finite words on X' (called nodes) such that, for each t-a € T
with a € X and t € YT, it holds ¢t € T (T is closed by non-empty prefix) ;
R C X NT is the set of roots. Given a € X', a node ¢ such that t = u - a is called
an occurrence of a. Given a node t € T, the depth of t is |t| — 1 (where |¢| is the
length of ¢ seen as a word on X'), and its height, denoted height(t), is

sup{|u| |u € X" and t-u € T}.

In particular, heights(t) = 400 when t is the prefix of an infinite branch in 7.

A XY-tree is a X-forest with one single root. Given a forest 7 = (T, R) and a
node t € T, the subtree of T rooted at t is the tree S = (5, {n}) where n = last(¢)
and se Sifft-seT.

Let G = (Vg, Vo, E, weight) be a weighted game. A winning multi-strategy o
for Player ¢ in G and a winning state v € V' naturally define a finite V-tree 7,
with root v: given a state s, a word t = u-sisin 7, , iff u € 7, , and, seeing u as a
finite run, we have either last(u) = v € Vo and (v/, s) € o(u), or last(u) = v' € Vg
and (v', s) € E. In this tree, the height of the root coincides with the length of a
longest run generated by the multi-strategy o from v. Since the multi-strategy o
is winning from v, all branches are finite, and all leaves of 7, , are occurrences
of ®. The union of all trees 7, , (for v a winning state) defines a forest 7.

Conversely, every V-forest 7 = (T, W) with W C V satisfying the following
conditions naturally defines a winning multi-strategy o7 (viewing each node t € T
as a run of G):

— if last(t) = v € Vg, t-s € T iff (v/,s) € E;

— if last(t) = v € Vo and t-s € T, then (v/,s) € E. In that case we set
or(t)={(',s)eE|t-seT}

— if ¢ is maximal, then last(t) = ©.

Lemma 5. Assume that we are given an optimal winning multi-strategy o.
We can effectively construct in polynomial time a memoryless multi-strategy o',

which is winning and optimal.

5 An appropriate measure will be assigned to every node of the forest.

Proof. Assume that W is the set of winning states. Let 7 be the forest repre-
senting the multi-strategy o (its set of roots is W). Since o is winning from every
state in W, all branches of the forest are finite. For every node ¢ of 7, we define
7 (t) as the residual penalty of o after prefix ¢. Formally, v7(t) = penalty(o, t).
Obviously, for all v € V, we have penalty(c,v) = y7(v).

We will consider a measure p7 on the set of nodes of the forest 7 as follows:
if t is a node of T, we let pur(t) = (y7(t), height,(t)).

We say that no memory is required for state v in 7 if, for every two nodes ¢
and t’' that are occurrences of v, the subtree of 7 rooted at ¢t and the subtree
of T rooted at t’' are identical. Note that in that case, ur(t) = pr(t').

For every 0 < i < |W/|, we inductively build in polynomial time a forest 7°
and a set M; C W containing ¢ elements, such that:

(a) T? represents an optimal winning multi-strategy from all the states of W;

(b) for every v € M;, no memory is required for v in 7°, and for every node t'
which is a descendant of some node that is an occurrence of v, letting v’ =
last(t'), it holds v' € M;.

Intuitively, each 7% will be the forest of a winning optimal multi-strategy o;, and
each M; will be a set of states from which o; is memoryless (i.e., o; is memoryless
from the states in M;, and from the states that occur in the outcomes from
these states). In the end, the forest 71" represents a multi-strategy o’ which is
memoryless, optimal and winning from every state of the game. 1

4 Discounted and Mean Penalty Games

4.1 Discounted and mean penalties of multi-strategies

We have proposed a way to measure the permissivity of winning strategies in
games, by summing penalties for blocking edges in the graph. It can be interesting
to consider that blocking an edge early in a run is more restrictive than blocking
an edge later. A classical way to represent this is to consider a discounted version
of the penalty of a multi-strategy, which we now define.

Discounted penalties of multi-strategies. Let G = (Vg, Vo, E, weight) be a

weighted game, o be a winning (w.r.t. the reachability objective) multi-strategy,

and go be a finite outcome of o. Given a discount factor A € (0, 1), the dis-

counted penalty of o after gy (w.r.t. \), denoted penalty)‘(a7 00), is defined as
max

sup{penalty;\go(g) | 0 € Outg™ (o, 00)}, where penaltyégo(g) is inductively de-
fined for all ¢ € Outg(o, 0o) as follows:

— penalty; ,,(00) = 0;
— if last(p) ¢ Vo and (last(p),v) € E, then penalty(’;gﬂ(g —) = penalty;go(g);
— if last(p) € Vo and (last(p),v) € o(p), then penalty;go(g — v) is defined as

penaltyg,go(Q) + Alel=leol . Z weight(last(o), v").
(last(e),v")€(E~o(e))

We also define the discounted penalty along infinite runs, as being the limit
(which necessarily exists as A < 1) of the penalties along the finite prefixes.

We write opt,penalty’\(go) for the optimal discounted penalty (w.r.t. \)
Player < can ensure after gy while reaching ©:

opt_penalty* (o) = inf{penalty*(, 0) | o winning multi-strategy after go}.

Given € > 0 and A € (0,1), a multi-strategy o is said e-optimal for discount
factor \ after g if it is winning after gy and

penalty’\(o, 00) < opt,penalty’\(go) +e.

Again, optimality is a shorthand for 0-optimality. Finally, a multi-strategy is
e-optimal for discount factor A if it is e-optimal for A from any winning state.

Discounted cost in weighted games. As in Section 2.1, we recall the usual
notion cost® of discounted cost of runs in a weighted game [ZP96]%:

— cost*(v) = 0;

— cost* (0 =) = cost* (o) + Alel=1 . weight(e);
Then we define cost*(a, 09) = sup{cost* (o) | 0 € Outg™ (o, 00)}. Those games
are symmetric, and later we will sometimes take the point-of-view of Player O
whose objective will be to maximize the discounted cost: given a strategy o for
Player 0O, we then define cost*(c, 09) = inf{cost* (o) | 0 € Outg™* (o, 00)}-

Computation and decision problems. As in the previous section, our aim is
to compute (almost-)optimal multi-strategies. The optimal reachability problem
with discounted penalty is the following: given a weighted game G, a rational
number ¢, a discount factor A € (0,1), and a state v € V, does there exist a
multi-strategy o for Player & such that penalty” (o,v) < ¢. The transformations
between penalties and costs depicted in Section 2.2 are still possible in the
discounted setting. The only point is that in both cases, each single transition
gives rise to two consecutive transitions, so that we must consider v/A as the new
discounting factor”.

4.2 Some examples

As far as the existence of an optimal multi-strategy is concerned, the discounted
case is more challenging as the results of the previous section do not hold.
In particular, we exemplify on Figures 4 and 5 the fact that optimal multi-
strategies do not always exist, and when they exist, they cannot always be made
memoryless.

6 Note that we have dropped the normalization factor (1 =X), which is only important
to relate A-discounted values to mean values (by making A tend to 1) [ZP96].
7 For the reduction of Lemma 3, the penalty is also multiplied by v/

—Lap——@ HD< O

Fig. 4. No optimal discounted Fig. 5. No memoryless optimal discounted
multi-strategy multi-strategy

4.3 A pair of memoryless strategies is sufficient

We prove here that there always exist e-optimal multi-strategies that are made
of two memoryless multi-strategies. Roughly, the first multi-strategy aims at
lengthening the path (so that the coefficient Al¢l will be small) without increasing
the penalty, and the second multi-strategy aims at reaching the final state.

To this aim, we need to first study the multi-strategy problem in the setting
where there is no reachability objective. Let G be a finite weighted game, A € (0, 1),
and ¢ € Q. The optimal discounted-penalty problem consists in deciding whether
there is a multi-strategy for Player & for which the A-discounted penalty along
any maximal (finite or infinite) outcome is less than or equal to c.

Theorem 6. The optimal discounted-penalty problem is in NP N coNP, and is
PTIME-hard.

The proof of this theorem relies on known results in classical discounted
games [ZP96,Jur98], uses the transformation of Lemma 2 and monotonicity
properties already used in the proof given in section 3.1.

Proof. We let G = (Vg, Vo, E, weight) be a finite weighted game with no incoming
transitions to ®, and let ¢ € Q. Applying the transformation of Lemma 2 to
the discounted case, we get an exponential-size weighted game G’ = (V, V{,
E', weight) with V5 C V/ and Vi, = V such that for every v € VU Vs, Player ©
has a winning multi-strategy from v in G with discounted penalty no more than ¢
(for discount A) iff Player © has a winning strategy from v in G’ with discounted
cost no more than ¢ (for discount v/X).

From [ZP96], Player & has a memoryless optimal strategy in G’. The NP
algorithm is then as follows: guess such a memoryless strategy oo for Player <,
i.e. for every v € Vo guess a subset F' C vF and set 0o (v) = (v, F'). Removing
from G’ transitions that have not been chosen by o¢ yields a polynomial-size
graph G”, in which we can compute in polynomial time the maximal discounted
cost, which corresponds to costﬁ(ao, v). The graph G” can be computed from G
without explicitly building G’, so that our procedure runs in polynomial time.

Membership in coNP is harder, and we only give a sketch of proof here.
The game G’ is memoryless determined [ZP96], which means that for every
¢ € Q, for every state v € VU VY, either Player ¢ has a memoryless strat-

egy oo with costﬁ(ao,v) < ¢, or Player O has a memoryless strategy op
with costﬁ(ag, v) > ¢. Our coNP algorithm consists in guessing a memoryless

strategy for Player O that achieves cost larger than ¢. However, Player O controls
exponentially many states in G’, so that we will guess a succinct encoding of
her strategy, based on the following observation: there is a (preference) order on
the states in Vg U Vo8 so that, in states of the form (v, F), the optimal strategy
for Player O consists in playing the “preferred” state of F' (w.r.t. the order). In
other words, the strategy in those states can be defined in terms of an order on
the states, which can be guessed in polynomial time.

Once such a strategy has been chosen non-deterministically, it then suffices to
build a polynomial-size graph G” in which the cost of the strategy oy corresponds
to the minimal discounted cost of Player O in G'.

Hardness in PTIME directly follows from Lemma 3. N

Remark 1. This problem could be extended with safety condition: the aim is
then to minimize the discounted penalty while avoiding some bad states. An easy
adaptation of the previous proof yields the very same results for this problem.

Definition 7. Let 01 and o2 be two memoryless multi-strategies, and k € N.
The multi-strategy o = o¥ - o} is defined, for each o such that last(o) € Vo, as:

— if lo| < k, then o(p) =
— if lo| >k, then o(p) =

Theorem 8. Let G = (V, Vo, E, weight) be a finite weighted game with a reacha-
bility objective, and A € (0, 1). Then there exist two memoryless multi-strategies o1
and o9 such that, for any € > 0, there is an integer k such that the multi-
strategy of - o is e-optimal (w.r.t. A\-discounted penalties) for any k' > k.

Proof. This is proved together with the following lemma:

Lemma 9. Let G = (Vg, Vo, E, weight) be a finite weighted game with a reach-
ability objective, \ € (0,1), and ¢ € Q. Then (G, \,c) is a positive instance of
the optimal discounted-penalty problem iff for any e > 0, (G, A\, c+ €) is a positive
instance of the optimal reachability problem with discounted penalty

Proof. From the remark following the proof of Theorem 6, there is a memoryless
optimal multi-strategy o; all of whose maximal outcomes have A-discounted
penalty less than or equal to ¢, and never visit losing states. Let o2 be a memoryless
winning multi-strategy for the reachability objective, and let ¢y be the maximal
penalty accumulated along an outcome of o5. Let € > 0, and k£ € N such that
M\f . ¢y < e. Then for any k' > k, the multi-strategy J’f/ - 05 is winning, and the
A-discounted penalty of any outcome is at most ¢ + Moy <c+e.

Conversely, let ¢ > 0, and ¢ be a winning multi-strategy achieving discounted
penalty no more than ¢ + €. Then in particular, o achieves discounted penalty
less than or equal to ¢ + ¢ along all of its outcomes, so that (G, A\, c+¢) is a
positive instance of the optimal discounted-penalty problem (for any € > 0). From

8 Which will be given by ordering the values given by the classical optimality equa-
tions [Jur98] in G'.

Theorem 6, this problem admits a (truly) optimal memoryless multi-strategy, so
that there must exist a multi-strategy achieving discounted penalty less than or
equal to ¢ along all of its outcomes. g4

Theorem 10. The optimal reachability problem with discounted penalty is in
NP N coNP, and is PTIME-hard.

Remark 2. Tt can be observed that the results of this section extend to discounted-
cost games with reachability objectives (without the exponential gap due to the
first transformation of weighted games with penalties). In particular, those games
admit almost-optimal strategies made of two memoryless strategies, and the
corresponding decision problem is equivalent to classical discounted-payoff games.

4.4 Extension to the mean penalty of multi-strategies

We also define the mean penalty of a multi-strategy o from state v, denoted
mean_penalty(o, v), as sup{mean_penalty (o) | ¢ € Outg(o,v), o maximal}, where

penalty, (o)
el
lim sup mean_penalty, (¢|<,,) otherwise

n—-+oo -

if |o] < o0
mean_penalty, (o) =

where g|<,, is the prefix of length n of ¢. The notion of e-optimality, for € > 0, is
defined as previously. Using the same lines of arguments as earlier, we get:

Theorem 11. Let G = (Vg, Vo, E, weight) be a finite weighted game with reach-
ability objectives, in which all states in Vg U Ve are winning. There exist two
memoryless multi-strategies o1 and oo such that, for any € > 0, there exists k so
that the multi-strategy 0%’ - o3 is e-optimal (w.r.t. mean penalties) for any k' > k.

Theorem 12. The optimal reachability problem with mean-penalty is in NPNcoNP
and is PTIME-hard.

Remark 3. Again, this result extends to mean-cost games with reachability
objectives, which thus admit almost-optimal strategies made of two memoryless
strategies. Surprisingly, the same phenomenon has been shown to occur in mean-
payoff parity games [CHJ05], but the corresponding strategy can be made fully
optimal thanks to the infiniteness of the outcomes.

5 Conclusion and future work

We have proposed an original quantitative approach to the permissivity of (multi-)-
strategies in two-player games with reachability objectives, through a natural
notion of penalty given to the player for blocking edges. We have proven that
most permissive strategies exist and can be chosen memoryless in the case where
penalties are added up along the outcomes, and proposed a PTIME algorithm for
computing such an optimal strategy. When considering discounted sum or mean
penalty, we have proved that we must settle for almost-optimal strategies, which

are built from two memoryless strategies. The resulting algorithm is in NPNcoNP.
This is rather surprising as the natural way of encoding multi-strategies in classical
weighted games entails an exponential blowup.

Besides the naturalness of multi-strategies, our initial motivation underly-
ing this work (and the aim of our future works) is in the domain of timed
games [AMPS98,BCD'07]: in that setting, strategies are often defined as func-
tions from executions to pairs (¢, a) where ¢ is a real number and a an action. This
way of defining strategies goes against the paradigm of implementability [DDR04],
as it requires infinite precision. We plan to extend the work reported here to the
timed setting, where penalties would depend on the precision needed to apply the
strategy. Also, as stated in [CHJ05], we believe that games with mixed objectives
are interesting on their own, which gives another direction of research for future
work. This catches up with related works on quantitative extensions of ATL.

References

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symposium on System Structure and Control,
p. 469-474. Elsevier Science, 1998.

[BCD*07] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
UPPAAL-Tiga: Time for playing games! In Proc. 19th Intl Conf. on Computer
Aided Verification (CAV’07), LNCS 4590, p. 121-125. Springer, 2007.

[BJWO02] J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: From parity
games to safety games. Inf. Théor. et Applications, 36(3):261-275, 2002.

[CHJ05] K. Chatterjee, Th. A. Henzinger, and M. Jurdziriski. Mean-payoff parity
games. In Proc. 20th Annual Symposium on Logic in Computer Science
(LICS’05). IEEE Computer Society Press, 2005.

[DDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From
timed models to timed implementations. In Proc. 7th Intl Workshop on
Hybrid Systems: Computation and Control (HSCC’04), LNCS 2993, p. 296
310. Springer, 2004.

[HP06] T. A. Henzinger and V. S. Prabhu. Timed alternating-time temporal logic.
In Proc. 4th Intl Conf. on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), LNCS 4202, p. 1-17. Springer, 2006.

[Jur9g] M. Jurdziniski. Deciding the winner in parity games is in UP N coUP. Infor-
mation Processing Letters, 68(3):119-124, 1998.

[LMOO06] F. Laroussinie, N. Markey, and G. Oreiby. Model checking timed ATL for
durational concurrent game structures. In Proc. 4th Intl Conf. on Formal
Modeling and Analysis of Timed Systems (FORMATS06), LNCS 4202,
p- 245-259. Springer, 2006.

[Lut08] M. Luttenberger. Strategy iteration using non-deterministic strategies for
solving parity games. Research Report ¢s.GT/0806.2923, arXiv, 2008.
[PRO5] S. Pinchinat and S. Riedweg. You can always compute maximally permissive

controllers under partial observation when they exist. In Proc. 24th American
Control Conf. (ACC’05), p. 2287-2292, 2005.
[Tho02] W. Thomas. Infinite games and verification. In Proc. 14th Intl Conf. on
Computer Aided Verification (CAV’02), LNCS 2404, p. 58-64. Springer, 2002.
[ZP96) U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1-2):343-359, 1996.

