
ATL with strategy contexts
and bounded memory

Thomas Brihaye1, Arnaud Da Costa2,
François Laroussinie3, and Nicolas Markey2

1 Institut de mathématiques, Université de Mons-Hainaut, Belgium
2 Lab. Spécification & Vérification, ENS Cachan – CNRS UMR 8643, France

3 LIAFA, Univ. Paris 7 – CNRS UMR 7089, France
thomas.brihaye@umh.ac.be, dacosta@lsv.ens-cachan.fr,

francoisl@liafa.jussieu.fr, markey@lsv.ens-cachan.fr

Abstract. We extend the alternating-time temporal logics ATL and
ATL? with strategy contexts and memory constraints: the first extension
makes strategy quantifiers to not “forget” the strategies being executed
by the other players. The second extension allows strategy quantifiers to
restrict to memoryless or bounded-memory strategies.
We first consider expressiveness issues. We show that our logics can
express important properties such as equilibria, and we formally compare
them with other similar formalisms (ATL, ATL? , Game Logic, Strategy
Logic, ...). We then address the problem of model-checking for our logics,
especially we provide a PSPACE algorithm for the sublogics involving
only memoryless strategies and an EXPSPACE algorithm for the bounded-
memory case.

1 Introduction

Temporal logics and model checking. Temporal logics (LTL, CTL) have been
proposed for the specification of reactive systems almost thirty years ago [13, 7,
14]. Since then, they have been widely studied and successfully used in many
situations, especially for model checking—the automatic verification that a model
of a system satisfies a temporal logic specification.

Alternating-time temporal logic (ATL). Over the last ten years, ATL has been
proposed as a new flavor of temporal logics for specifying and verifying properties
in multi-agent systems (modeled as Concurrent Game Structures (CGS) [2]),
in which several agents can concurrently act upon the behaviour of the system.
In these models, it is not only interesting to know if something can or will happen,
as is expressed in CTL or LTL, but also if some agent(s) can control the evolution
of the system in order to enforce a given property, whatever the other agents do.
ATL can express this kind of properties thanks to its quantifier over strategies,
denoted 〈〈A〉〉 (where A is a coalition of agents). That coalition A has a strategy
for reaching a winning location is then written 〈〈A〉〉F win (where F is the LTL
modality for “eventually”).

Our contributions. In this paper, we extend ATL and ATL? in two directions: first,
while ATL strategy quantifiers drop strategies introduced by earlier quantifiers
in the evaluation of the formula, our logics keep executing those strategies.
To achieve this idea, we naturally adapt the semantics of ATL? in order to interpret
a formula within a stategy context. Our new strategy quantifier, written 〈·A·〉 ,
can for instance express that “A has a strategy s.t. (1) Player B always has a
strategy (given that of A) to enforce Φ and (2) Player C always has a strategy
(given the same strategy of A) to enforce Ψ”. This would be written as follows:
〈·A·〉G

(
〈·B·〉Φ∧ 〈·C·〉Ψ

)
. Naive attempts to express this property in standard ATL

fail: in the ATL formula 〈〈A〉〉G (〈〈B〉〉Φ∧ 〈〈C〉〉Ψ), the coalitions do not cooperate
anymore; in 〈〈A〉〉G (〈〈A,B〉〉Φ∧ 〈〈A,C〉〉Ψ), coalition A is allowed to use different
strategies when playing with B and C.

Our second extension consists in parameterising strategy quantifiers with the
resources (in terms of memory) allowed for strategies: we define the quantifier
〈·As·〉 with s ∈ (N ∪ {∞}), which restricts the quantification to strategies using
memory of size s (called s-memory strategies) for Player A. It is well-known that
memoryless strategies are enough to enforce ATL properties, but this is not the
case for ATL? formulae, nor for our extension of ATL (and ATL?) with strategy
contexts.

Our results are twofold: on the one hand, we study the increase in expres-
siveness brought by our extensions, comparing our logics to ATL and ATL? and
several related logics such as Game Logic [2], Strategy Logic [6] and qDµ [12], ...
We also illustrate their convenience with some sample formulas expressing e.g.
equilibrium properties.

On the other hand, we study the model-checking problem for our extensions:
while we only have a non-elementary algorithm for the most general logic, we pro-
pose a polynomial-space algorithm for model-checking our logic in the memoryless
case, and extend it to an exponential-space algorithm for the bounded-memory
setting.

Related work. Recently, several works have focused on the same kind of extensions
of ATL, and come up with different solutions which we list below. Generally speak-
ing, this leads to very expressive logics, able to express for instance equilibrium
properties, and drastically increases the model-checking complexity.

– IATL [1] extends ATL with strategy contexts, with a similar definition as ours,
but it requires players to commit to a strategy, which they are not allowed
to modify in the sequel. This logic is then studied in the memoryless case
(which is proven to be a strict restriction to memory-based strategies).

– SL [6] extends temporal logics with first-order quantification over strategies.
This extension has been defined and studied only in the two-player turn-based
setting, where a non-elementary algorithm is proposed.

– qDµ [12] considers strategies as labellings of the computation tree of the game
structure with fresh atomic propositions. This provides a way of explicitly
dealing with strategies. This extension is added on top of the decision µ-
calculus Dµ, yielding a very expressive, yet decidable framework.

– Stochastic Game Logic [3] is a similar extension to ours, but for stochastic
games. It is undecidable in the general case, but proved decidable when
restricting to memoryless strategies.

Instead of defining a completely new formalism, we prefer sticking to an
ATL-like syntax, as we believe that our new modality 〈· · ·〉 is more intuitive than
the standard ATL modality 〈〈A〉〉 . Also, none of the above the extension has the
ability to explicitely restrict to bounded-memory strategies, which is of obvious
practical relevance and leads to more efficient algorithms.

Plan of the paper. Section 2 contains the definitions of our logics, and of our
bounded-memory setting. Section 3 deals with the expressiveness results, and
compares our extension with those cited in the related work above. In Section 4,
we consider the model-checking problem for our extensions, and provide algorithms
for the case of s-memory strategies. For lack of space, we refer to the full version [4]
of this paper for the detailled proofs.

2 Definitions

In this section we introduce classical definitions of concurrent game structures,
strategies and outcomes. We then define a notion of s-bounded memory strategies.
In the whole paper, AP denotes a finite non-empty set of atomic propositions.

2.1 Concurrent Game Structures

Concurrent game structures are a multi-player extension of classical Kripke
structures [2]. Their definition is as follows:

Definition 1. A Concurrent Game Structure (CGS for short) C is a 8-tuple
(Loc, `0, Lab, δ,Agt,M,Mov,Edg) where:

– Loc is a finite set of locations, `0 ∈ Loc is the initial location;
– Lab : Loc→ 2AP is a labelling function;
– δ ⊆ Loc× Loc is the set of transitions;
– Agt = {A1, ..., Ak} is a finite set of agents (or players);
– M is a finite, non-empty set of moves;
– Mov : Loc× Agt→ P(M) r {∅} defines the (finite) set of possible moves of

each agent in each location.
– Edg : Loc×Mk → δ, where k = |Agt|, is a transition table. With each location

and each set of moves of the agents, it associates the resulting transition.

The size |C| of a CGS C is defined as |Loc|+ |Edg|, where |Edg| is the size of
the transition table1. The intended behaviour is as follows [2]: in a location `,
each player Ai chooses one of his possible moves mAi and the next transition

1 Our results would still hold if we consider symbolic CGSs [10], where the transition
table is encoded through boolean formulas.

is given by Edg(`,mA1 , ...,mAk). We write Next(`) for the set of all transitions
corresponding to possible moves from `, and Next(`, Aj ,m), with m ∈ Mov(`, Aj),
for the restriction of Next(`) to possible transitions from ` when player Aj makes
the move m.

2.2 Coalitions, bounded-memory strategies, outcomes.

Coalitions. A coalition is a subset of agents. In multi-agent systems, a coalition A
plays against its opponent coalition Agt rA as if they were two single players.
We thus extend Mov and Next to coalitions:

– Given A ⊆ Agt and ` ∈ Loc, Mov(`, A) denotes the set of possible moves for
coalition A from `. Those moves m are composed of one single move per
agent of the coalition, i.e., m = (ma)a∈A.

– Next is extended to coalitions in a natural way: given m = (ma)a∈A ∈
Mov(`, A), we let Next(`, A,m) denote the restriction of Next(`) to locations
reachable from ` when every player Aj ∈ A makes the move mAj .

Strategies and outcomes. Let C be a CGS. A computation of C is an infinite
sequence ρ = `0`1 . . . of locations such that for any i, `i+1 ∈ Next(`i). We write
ρi for the i-th suffix of ρ, and ρ[i...j] for part of ρ between `i and `j . In particular,
ρ[i] denotes the i + 1-st location `i. A strategy for a player Ai ∈ Agt is a
function fAi that maps any finite prefix of a computation to a possible move
for Ai, i.e., satisfying fAi(`0 . . . `m) ∈ Mov(`m, Ai). A strategy is memoryless if
it only depends on the current state (i.e., fAi(`0 . . . `m) = fAi(`m)). A strategy
for a coalition A of agents is a set of strategies, one for each agent in the coalition.
The set of strategies (resp. memoryless strategies) for A is denoted Strat(A) (resp.
Strat0(A)).

A strategy for Aj induces a set of computations from `, called the outcomes
of fAj from ` and denoted Out(`, fAj), that player Aj can enforce: `0`1 . . . ∈
Out(`, fAj) iff `0 = ` and `i+1 ∈ Next(`i, Aj , fAj (`0 . . . `i)) for any i. Given a
coalition A, a strategy for A is a tuple FA containing one strategy for each player
in A: FA = {fAj |Aj ∈ A}. The domain of FA (dom(FA)) is A. The strategy fAj
for Aj is also denoted (FA)|Aj ; more generally, (FA)|B (resp. (FA)\B) denotes the
restriction of FA to the coalition A ∩B (resp. A\B). The outcomes of FA from
a location ` are the computations enforced by the strategies in FA: `0`1 . . . ∈
Out(`, FA) iff `0 = ` and for any i, `i+1 ∈ Next(`i, A, (fAj (`0, . . . , `i))Aj∈A). Note
that Out(`, FA) ⊆ Out(`, (FA)|B) for any coalitions A and B, and in particular
that Out(`, F∅) represents the set of all computations from `.

It is also possible to combine two strategies F ∈ Strat(A) and F ′ ∈ Strat(B),
resulting in a strategy F◦F ′ ∈ Strat(A∪B) defined as follows: (F◦F ′)|Aj (`0 . . . `m)
equals F|Aj (`0 . . . `m) if Aj ∈ A, and it equals F ′|Aj (`0 . . . `m) if Aj ∈ B rA.

Finally, given a strategy F , an execution ρ and some integer i ≥ 0, we define
the strategy F ρ,i corresponding to the behaviour of F after prefix ρ[0...i] as
follows: F ρ,i(π) = F (ρ[0 . . . i] · π). Note that if F is memoryless, then F ρ,i = F .

Bounded-memory strategies. Between general strategies (without bound over its
resources) and memoryless strategies, we can consider bounded-memory strategies.
Let s be a (binary-encoded) integer representing the size of the memory. We
define a bounded memory strategy as a memoryless strategy over the locations
of the CGS and a set of memory cells [11, 16]: choosing the move depends on
both the location and the current memory cell, and after every move, the player
can “update” its memory by moving to another cell. The size of the memory is
then defined as the number of cells. Let Cell be the set of s + 1 memory cells
{0, . . . , s}.

Formally an s-memory strategy FA for Player A is a 3-tuple (Fmov, F cell, c)
where: Fmov is a mapping from Cell× Loc to M that associates a move with the
current memory cell and the current location of the CGS, F cell is a mapping
from Cell × Loc to Cell that updates the memory cell, and c is the current
memory cell of this strategy. For the sake of readability, given a bounded-memory
strategy FA = (Fmov, F cell, c), we still write FA(`) for Fmov(c, `).

The notions of computations and outcomes are easily extended to this new
setting: the set Next(`, A, FA(`)) contains the possible successor locations when
A plays from ` according to FA. Of course, the memory cell of FA changes along
an execution ρ, and we define F ρ,iA as the strategy (Fmov, F cell, ci) where ci is
defined inductively with: c0 = c and cj+1 = F cell(ρ[j], cj). Finally the outcomes
Out(`, FA) are the executions ρ = `0`1 . . . such that `j+1 ∈ Next(`j , A, F

ρ,j
A (`j)).

Coalitions are handled the usual way: we use pairs (A, s) to represent a
coalition A ⊆ Agt and a memory-bounds vector s ∈ (N∪{∞})A which associates
a size s(Aj) with the memory that agent Aj ∈ A can use for its strategy. The set
of strategies for A with memory bound s is denoted Strats(A), and we omit to
mention the memory bound when none is imposed.

2.3 The logic ATL?
sc,∞

We now define the logic ATL?sc,∞ that extends ATL? with strategy contexts and
bounded-memory strategy quantifiers:

Definition 2. The syntax of ATL?sc,∞ is defined by the following grammar:

ATL?sc,∞ 3 ϕs, ψs ::= P | ¬ϕs | ϕs ∨ ψs | 〈·A, s·〉ϕp | ·〉A〈·ϕs
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕp Uψp

with P ∈ AP, A ⊆ Agt and s ∈ (N ∪ {∞})A. Formulas defined as ϕs are called
state formulas, while ϕp defines path formulas.

An ATL?sc,∞ formula Φ is interpreted over a state ` of a CGS C within a
strategy context F ∈ Strat(B) for some coalition B; this is denoted by ` |=F Φ.

The semantics is defined as follows:

` |=F 〈·A, s·〉ϕp iff ∃FA ∈ Strats(A). ∀ρ ∈ Out(`, FA◦F). ρ |=FA◦F ϕp,

` |=F ·〉A〈·ϕs iff ` |=F\A ϕs,

ρ |=F ϕs iff ρ[0] |=F ϕs,

ρ |=F Xϕp iff ρ1 |=Fρ,1 ϕp,

ρ |=F ϕp Uψp iff ∃i. ρi |=Fρ,i ψp and ∀0 ≤ j < i. ρj |=Fρ,j ϕp.

Given a CGS C with initial location `0, and an ATL?sc,∞ formula Φ, the
model-checking problem consists in deciding whether2 `0 |=∅ Φ.

The formula 〈·A, s·〉ϕ holds on a location ` within a context F for a coalition B
iff there exists a s-memory strategy for A to enforce ϕ when B plays according to
the strategy F . We use 〈·A·〉 to denote the modality with no restriction over the
memory allowed for the strategies of A (i.e., the modality 〈·A,∞A·〉); and we use
〈·A0·〉 as an abbreviation for 〈·A, 0A·〉 to consider only memoryless strategies.

Conversely the modality ·〉A〈· removes the strategy for A from the current
context under which the formula is interpreted. The operator ·〉Agt〈· allows
us to empty the current context, and then we clearly have: ` |=F ·〉Agt〈·ϕ ⇔
` |=F ′ ·〉Agt〈·ϕ for any context F and F ′.

This entails that ATL?sc,∞ contains ATL? (thus also CTL?). Indeed the classical
strategy quantifier of ATL?, namely 〈〈A〉〉 , does not handle strategy contexts:
〈〈A〉〉ϕ holds for a location ` iff A has a strategy to enforce ϕ whatever the choices
of Agt\A. Clearly 〈〈A〉〉ϕ is equivalent to ·〉Agt〈· 〈·A·〉ϕ.

Obviously the existence of an s-memory strategy for A to enforce ϕ entails
the existence of an s′-memory strategy if s′ ≥ s (i.e., s′(Aj) ≥ s(Aj) for all
Aj ∈ A). Note that the converse is not true except for special cases such as ATL
where memoryless strategies are sufficient (see [2, 15]).

We will use standard abbreviations such as > = P ∨ ¬P , ⊥ = ¬>, Fϕ =
>Uϕ, etc.

Now we introduce several fragments of ATL?sc,∞:

– ATL?sc,b (with b ∈ N) is the fragment of ATL?sc,∞ where the quantifiers 〈·A, s·〉
only use memory-bounds less than or equal to b. In particular, ATL?sc,0 only
allows memoryless strategies.

– ATL?sc is the fragment of ATL?sc,∞ where no restriction over the memory is
allowed (any strategy quantifier deals with infinite-memory strategies).

– ATLsc,∞ contains the formulae where every temporal modality is in the
immediate scope of a strategy quantifier (i.e., the path formulae are restricted
to ϕs Uψs, ϕs Rψs— R is the “dual-until” modality—and Xϕs). It follows
from the above assertion that ATLsc,∞ contains ATL and CTL. We also define
the fragments ATLsc,b and ATLsc as above.

2 The context can be omitted when it is empty, and we can directly write ` |= Φ.

3 Expressiveness

In this section, we consider expressiveness issues, first illustrating the ability
of ATL?sc,∞ to state interesting properties, and then comparing it with related
formalisms.

3.1 Some interesting formulas of ATL?
sc,∞

The new modalities 〈·A·〉 allow us to express many interesting properties over
the strategies of different players in a game. In [4], we show how our logics
can express the different properties that motivated the introduction of SL, qDµ

or IATL. Here we just give a few examples.

Nash equilibria. Given two players A1 and A2 having their own objectives Φ1

and Φ2, two strategies F1 and F2 for players 1 and 2 respectively form a Nash
equilibrium if there is no “better” strategy F ′1 for A1 w.r.t. Φ1 when Player 2
plays according to F2, and vice versa. Given a strategy context F = (F1, F2), the
following formula holds in state ` under F iff F1 and F2 form a Nash equilibrium
in `: (

(〈·A1·〉Φ1)⇒ Φ1 ∧ (〈·A2·〉Φ2)⇒ Φ2

)
This provides us with a way of expressing the existence of Nash equilibria having
extra properties.

Winning secure equilibria. The winning secure equilibrium [5] (WSE) is a stronger
notion of equilibrium: two strategies F1 and F2, for players 1 and 2 with objectives
Φ1 and Φ2 respectively, form a WSE if each player has no better strategy for
himself, and no worse strategy for his opponent. Again, the strategy context F is
a winning secure equilibrium in ` iff the following formula holds in ` within F :

(〈·A1·〉Φ1)⇒ Φ1 ∧ (〈·A2·〉Φ2)⇒ Φ2 ∧(
〈·A1·〉 (Φ1 ∧ ¬Φ2)⇒ (Φ1 ∧ ¬Φ2)

)
∧
(
〈·A2·〉 (Φ2 ∧ ¬Φ1)⇒ (Φ2 ∧ ¬Φ1)

)
Client-server intreactions. Given a protocol where a server S has to treat the
requests of differents agents A1, ..., An, we can express that S has a strategy to
ensure that every agent Ai can act in order to make its requests to be granted.
Such a property can be stated as folows:

〈·S·〉G
[∧
i=1...n

(
reqi ⇒ 〈·Ai·〉F granti

)]
Clearly this property requires the use of strategy contexts because every agent
has to cooperate with the server (but not with other agents).

3.2 Expressiveness of ·〉A〈· quantifier

We have illustrated the use of modality ·〉A〈· by expressing the classical ATL?

modality 〈〈A〉〉 with ·〉Agt〈· 〈·A·〉 : we first forget the current strategy context and
then quantify over the existence of a strategy for A: relaxing is necessary because
it has to be a real strategy, i.e., correct for any choice for the other agents. In fact,
this modality does not add expressive power to ATL?sc,∞:

Proposition 3. For any ATL?sc,∞ formula Φ, there exists a formula Ψ containing
no ·〉 · 〈· modality such that Φ ≡ Ψ .

Proof. Given a subset of agents C ⊆ Agt and Φ ∈ ATL?sc,∞, we define formula Φ
C

recursively as follows (in this definition, [·C·]ϕ def= ¬ 〈·C·〉 ¬ϕ):

〈·A, s·〉Φ
C def= 〈·A, s·〉 [·C\A·]ΦC\A ·〉A〈·Φ

C def= Φ
C∪A

ΦUΨ
C def= Φ

C
UΨ

C
XΦ

C def= XΦ
C

Φ ∧ ΨC def= Φ
C ∧ ΨC ¬ΦC def= ¬ΦC

P
C def= P

Now we have the following lemma:

Lemma 4. For any strategy context F , any subset C ⊆ dom(F) and any formula
Φ ∈ ATL?sc,∞ and any path formula Φp, we have:

` |=F\C Φ ⇔ ` |=F Φ
C

ρ |=F\C Φp ⇔ ρ |=F Φp
C

Proof. The proof is done by structural induction over the formula. In this proof
we will use C ′ as an abbreviation for the coalition C \ A. Moreover FB ranges
over strategies for coalition B.

– Ψ
def= 〈·A, s·〉ϕ.

We have the following equivalences : ` |=F 〈·A, s·〉 [·C ′·]ϕC
′

means by definition

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F). ρ |=FC′◦FA◦F ϕ
C′ ,

Then the induction hypothesis yields

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F). ρ |=(FC′◦FA◦F)\(C′)
ϕ,

or equivalently, since (FC′ ◦FA◦F)\C′ = FA◦(F\C):

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F). ρ |=FA◦(F\C) ϕ,

or also
∃FA. ∀ρ ∈ Out(q, FA◦(F\C)). ρ |=(FA◦(F\C)) ϕ,

since we have ⋃
FC′∈Strat(C′)

Out(q, FC′ ◦FA◦F) = Out(q, FA◦(F\C)).

This leads to ` |=F\C 〈·A, s·〉ϕ, which is the desired result.

– Ψ
def= ·〉A〈·ϕ. On the one hand, by the semantics of ATL?sc,∞, we have that:

q` |=F\C ·〉A〈·ϕ iff ` |=F\(C∪A) ϕ.

On the other hand, the induction hypothesis tells us that:

` |=F\(C∪A) ϕ iff ` |=F ϕ
C∪A.

Gathering the two equivalences, we obtain the desired result.

– Ψ
def= ϕUψ. The semantics of ATL?sc,∞ tells us that ρ |=F\C Ψ if and only if

the following formal holds:

∃i. ρi |=(F\C)ρ,i ψ and ∀0 ≤ j < i. ρj |=(F\C)ρ,j ϕ.

By using the induction hypothesis, the above formula is equivalent to the
following one:

∃i. ρi |=Fρ,i ψ
C

and ∀0 ≤ j < i. ρj |=Fρ,j ϕ
C ,

which means that ρ |=F ϕ
C Uψ

C
. We thus obtain the desired result.

– The remaining cases are straightforward.

We can now finish the proof by considerng Ψ = Φ
∅

. �

3.3 Comparison with other formalisms

Figure 1 summarizes the expressiveness results for our logics. An arrow L→ L′

denotes that L ≤ex L′, i.e., that L′ is at least as expressive as L (i.e., for any
formula in L, there exists an equivalent3 formula in L′). Note that in some cases,
the relation is strict and we have L < L′, see the corresponding theorems for
more details. The dotted arrows correspond to results proved in (the long version
of) this paper; plain arrows correspond to literature results (they are labeled
with bibliographic references) or direct syntactic inclusions.

The results about ATL, ATL?, CTL? and AMC are presented in [4]: most of
them are based on the ability of the new modalities with strategy contexts and/or
memory bounds to distinguish models that are alternating-bisimilar (and thus
satisfy the same formulas of the classical AMC fragments). The full version also
contains the proof that adding the quantification over bounded memory increases
the expressive power of ATLsc and ATL?sc.

Here we only develop our results concerning Game Logic, which is a powerful
logic to handle properties over strategies, and we discuss the case of Strategy
Logic.
3 That is, having the same truth value in any location of any CGS under any context.

SL

qDµ

ATL?sc,∞ ATLsc,∞

ATL?sc AMC

GL

ATL?

ATLsc

ATL

IATL

CTL

CTL?

[2]

[2]

Th. 5

×

[6]

×[2]

×

×

Fig. 1. Expressiveness of ATLsc,∞ and ATL?sc,∞ compared to classical logics

Comparison with Game Logic. Game Logic was introduced in [2] in order to
express the module-checking problem [9]. This logic is an extension of ATL? where
the existence of a strategy for A is written ∃∃A, and where it is possible to deal
explicitly with the execution tree induced by a strategy: given such a tree t, it is
possible to quantify (with modalities ∃ and ∀) over the executions inside t and
specify temporal properties. For example, the formula ∃∃A.((∃P UP ′)∧ (∀FP ′′))
specifies the existence of a strategy FA for A s.t. in the tree induced by FA,
we have: (1) there exists a run along which P UP ′ holds and (2) every run
satisfies FP ′′. We have the following result:

Theorem 5. ATL?sc >ex GL

Proof (sketch). First we give a translation from GL into ATL?sc; given a GL
formula ϕ, we inductively define ϕ:

∃∃Aϕ def= 〈〈A〉〉ϕ ∃ϕ def= ¬ 〈·∅·〉 ¬ϕ P
def= P.

The other inductive rules are defined in the natural way. Note that if ϕ is a GL tree-
formula, then ϕ is an ATL?sc state-formula. In this translation, we use a strategy
context to represent the tree used to interpret GL path- and tree-formulae. In the
following, given a state ` of a CGS and a strategy F for some coalition A, we use
ExecTree(`, F) to denote the subtree of the computation tree from ` whose infinite
rooted paths are the elements of Out(`, F). We must show that for any GL path
(resp. tree) formula ϕp (resp. ϕt), any path ρ in some CGS and any strategy F
for some coalition A, we have: (ExecTree(ρ[0], F), ρ) |= ϕp iff ρ |=F ϕp and
ExecTree(ρ[0], F) |= ϕt iff ρ[0] |=F ϕt. Here we just consider the first equivalence
(the second one can be treated in a similar way). The usual induction steps are
straightforward, thus we only consider the following two cases :

– ϕ = ∃∃A.ψ. Then ρ |=F ϕ means that there is a strategy F ′ for coalition A,
s.t. any computation ρ′ in Out(ρ[0], F ′) satisfies ψ. By i.h., this is equivalent
to ∃F ′ ∈ Strat(A). ∀ρ′ ∈ Out(ρ[0], F ′). (ExecTree(ρ[0], F ′), ρ′) |= ψ, hence to
ρ[0] |= ∃∃A.ψ because ψ is a tree formula. Now ∃∃A.ψ is a state formula that
can be interpreted over any execution tree with root ρ[0], in particular over
ExecTree(ρ[0], F).

– ϕ = ∃ψ. Then ρ |=F ϕ means that “not all the computations from ρ[0] and
following the strategy context F do not satisfy ψ”, and is then equivalent
to ∃ρ′ ∈ Out(ρ[0], F). ρ′ |=F ψ. Again from the i.h. we obtain the existence
of a path in ExecTree(ρ[0], F) satisfying ψ, and then ExecTree(ρ[0], F) |= ∃ψ,
which is equivalent to (ExecTree(ρ[0], F), ρ) |= ϕ (as ϕ is a tree formula).

Finally if we consider the case where ϕ is a state formula and F is the empty
strategy, we get that ϕ is an ATL?sc equivalent formula for ϕ.

¬a¬bs0

a bs1

a¬bs2 ¬a bs3

¬a¬bs′0

a bs′1

a¬bs′2 ¬a bs′3

S1 S2

〈1.1.3〉,〈1.2.1〉,〈1.3.2〉
〈2.1.3〉,〈2.2.1〉,〈2.3.2〉

〈1.1.3〉,〈1.2.1〉,〈1.3.2〉
〈2.1.3〉,〈2.2.1〉,〈2.3.2〉
〈3.1.3〉,〈3.2.1〉,〈3.3.2〉

〈1.1.1〉
〈1.3.1〉
〈1.1.2〉
〈1.2.2〉

〈1.1.1〉
〈1.3.1〉
〈1.1.2〉
〈1.2.2〉

〈3.1.1〉
〈3.3.1〉

〈1.2.3〉
〈1.3.3〉
〈2.1.1〉
〈2.3.1〉

〈2.1.2〉
〈2.2.2〉
〈2.3.3〉
〈2.2.3〉

〈1.2.3〉
〈1.3.3〉
〈2.1.1〉
〈2.3.1〉

〈2.1.2〉
〈2.2.2〉
〈2.3.3〉
〈2.2.3〉

〈3.1.2〉
〈3.2.2〉
〈3.2.3〉
〈3.3.3〉

Fig. 2. S1 and S2 cannot be distinguished by GL

We have GL <ex ATL?sc because the ATLsc formula 〈·A1·〉X (〈·A2·〉 X b ∧
〈·A3·〉X a) has no equivalent in GL. Indeed consider the CGSs S1 and S2 in
Figure 2. They satisfy the same GL formulas, since move 3 for Player 1 (in
S2) does not affect the sets of execution trees induced by all strategies for a
fixed coalition: for any coalition A and state q, we have ExecTree(q,StratS1(A)) =
ExecTree(q,StratS2(A)). Yet this move ensures that s′0 satisfies 〈·A1·〉X (〈·A2·〉X b∧
〈·A3·〉X a) (when players 2 and 3 respectively choose moves 2 and 1), while s0
does not. �

Comparison with Strategy Logic [6]. Strategy Logic has been defined in [6]
as an extension of LTL with first-order quantification on strategies. That player A
has a strategy to enforce ϕ is then written ∃σA. ∀σB . ϕ(σA, σB) where the
arguments (i.e., the strategies for the two players) given to ϕ indicate on which
paths ϕ is evaluated.

While this logic has only been defined on 2-player turn-based games, its defini-
tion can easily be extended to our n-player CGS framework. We conjecture that
ATLsc,∞ and SL are incomparable (proving those results seems to be especially
challenging due to the particular syntax of SL):

– SL can explicitly manipulate strategies as first-order elements. It can for
instance state properties such as ∃x1. ∃y1. ∃x2. ∃y2.

[
ϕ1(x1, y1)∧ϕ2(x2, y1)∧

ϕ3(x1, y2) ∧ ϕ4(x2, y2)
]

which (we conjecture) ATLsc,∞ cannot express due
to the circular constraint.

– on the other hand, SL requires subformulas embedded in modalities to be
closed. As a consequence, formula ∃x1. ∀y1. [G (∃y2. [F p](x1, y2))](x1, y1)
is not an SL formula (because ∃y2. [F p](x1, y2) is not closed), while it is
expressed in ATLsc,∞ as 〈·A·〉G (〈·B·〉F p).

However, it should be noticed that the simple one-alternation fragment of SL
can be translated into ATL?sc,∞. Indeed this fragment is built from formulas of
the form ∃x1. ∃y1. ∀x2. ∀y2.

[
ϕ1(x1, y2) ∧ ϕ2(x2, y1) ∧ ϕ3(x1, y1)

]
[6] which we

can express as 〈·A1·〉
[
ϕ1 ∧ 〈·A2·〉 (ϕ3 ∧ ·〉A1〈·ϕ2)

]
.

4 ATLsc,∞ and ATL?
sc,∞ model-checking

We begin with proving that model-checking is decidable for our logic. Still, as is the
case for Strategy Logic, the resulting algorithm is non-elementary. We thus mainly
focus on simpler cases (namely, memoryless and bounded-memory strategies),
where more efficient algorithms can be obtained.

Theorem 6. Model checking ATL?sc,∞ formulas over CGS is decidable.

Proof (sketch). Our logic ATL?sc can be translated into qDµ (see [4] for more
details). This yields decidability of ATL?sc. Moreover, as we will see in Section 4.2,
it is possible to encode the bounded-memory strategies as memoryless strategies
over an extended CGS. Since memorylessness can be expressed with qDµ, this
provides an indirect algorithm for ATL?sc,∞ model checking. �

4.1 Model-checking ATL?
sc,0 and ATLsc,0

Theorem 7. The model checking problems for ATL?sc,0 and ATLsc,0 over CGSs
are PSPACE-complete.

Proof. We only address the membership in PSPACE. The hardness proof is similar
to that of [3] (and is also detailled in [4]).

Let C be a CGS, ` a location and F a memoryless strategy context, assigning
a memoryless strategy to each player of some coalition A. Since F contains only
memoryless strategies, it associates with each location one move for each agent
in A. Dropping the other moves of those agents, we get a CGS, denoted (C, F),
whose set of executions is exactly the set of outcomes of F in C.

From this and the fact that a memoryless strategy can be stored in spaceO(|Q|),
we get a simple PSPACE model-checking algorithm for ATL?sc,0 that relies on a
(PSPACE) model-checking algorithm for LTL. The main difficulty is that strategy
contexts prevent us from proceeding in a standard bottom-up fashion. As a conse-
quence, our algorithm consists in enumerating strategies starting from outermost
strategy quantifiers.

If ϕ is an ATL?sc,0 path formula, we denote by Φ(ϕ) the set of outermost
quantified ϕ subformulae (i.e. of the form 〈·A·〉ψ), and by σ(ϕ) the corresponding

LTL formula where all subformulae ψ ∈ Φ(ϕ) have been replaced by new proposi-
tions aψ. We enumerate all possible contexts, recursively calling the algorithm at
each step of the enumeration, and thus gradually taking care of each labelling aψ.
Algorithm 1 describes the procedure. �

Algorithm 1 : MC-ATL?sc,0(C, F, `0, ϕ) – ATL?sc,0 model checking

Require: a CGS C, F ∈ Strat0(A), l0 ∈ Loc and an ATL?sc,0 path formula ϕ
Ensure: YES iff ∀λ ∈ Out(`0, F), λ |=F ϕ
C′ := (C, F)
foreach ψ ∈ Φ(ϕ) do

case ψ = 〈·B0·〉ψ′ :
for FB ∈ Strat0(B), ` ∈ Loc do

if MC-ATL?sc,0(C, FB◦F, l, ψ′), then label l with aψ
case ψ = ·〉B〈·ψ′ :

for l ∈ Loc do
if MC-ATL?sc,0(C, F\B , l, ψ′), then label l with aψ

return MC LTL (C′, l0, Aσ(ϕ))

Remark 1. Note that PSPACE-completeness straightforwardly extends to “mem-
oryless” extensions (i.e., with quantification over memoryless strategies) of ATL?

and SL. Since ATL objectives do not require memory, ATL0 is the same as ATL,
and its model-checking problem is PTIME-complete. Moreover a similar algorithm
would work for symbolic CGSs, a succinct encoding of CGS proposed in [8, 10].
Also notice that both the above algorithm and the PSPACE-hardness proof can
be adapted to IATL. This corrects the ∆P

2 -completeness result of [1].

4.2 Bounded-memory strategies

The case of bounded-memory strategies can be handled in a similar way as
memoryless strategies. Indeed as explained in Section 2.2, we can see an s-
bounded strategy for Player Ai as a memoryless strategy over an extended
structure containing the original CGS C and a particular CGS controlled by Ai
and describing its memory. Formally, for a player Ai, we define the CGS Ms

Ai
as

follows: Ms
Ai

= (Agt, Locis,∅, Locis × Locis,∅,Mi
s ∪ {⊥},Movis,Edgis) where

– Locis = {0, . . . , s} is the set of (unlabeled) locations;
– Mi

s is isomorphic to Locis (and we identify both sets),
– Movis and Edgis do not depend on the location: Movis allows only one move ⊥

to each player, except for player Ai, who is allowed to play any move in Mi
s.

Then Edgis returns the location chosen by Ai.

Let s ∈ NAgt be a memory-bound vector. Now considering the product
structure Cs =

∏
Ai∈Agt Ms(Ai)

Ai
× C, for all players Aj we can very simply export

s(Aj)-memory-bounded strategies of C to some memoryless strategies over Cs.

Indeed, given a player Aj , we do not want to consider all memoryless strategies f
over Cs but only the ones where Aj exclusively uses the information from Ms(Aj)

Aj

(i.e., such that f(i1, . . . , ij , . . . , ik, l) = f(0, . . . , ij , . . . , 0, l)). Let RStrat0Cs(Aj) be
this restricted set of such strategies ; clearly we have RStrat0Cs(Aj) ⊆ Strat0Cs(Aj).
Adapting the proof of Theorem 7 to memory-bounded strategies, we get:

Proposition 8. Let C = (Agt, Loc, `0,AP, Lab,M,Mov,Edg) be a CGS. Let ϕ ∈
ATL?sc,b involving only s-memory quantifiers. Then ϕ can be checked in exponential
space.

Proof. We run the algorithm of Theorem 7 over the structure Cs, restricting the
enumerations of Strat0Cs(B) to those of RStrat0Cs(B). �

Remark 2. – If the memory-bounds s were given in unary, our algorithm would
be PSPACE, since the LTL model-checking over the product structure can be
performed on-the-fly.

– Note that this algorithm can deal with formulas containing several subfor-
mulas 〈·A, s1·〉ϕ1, . . . , 〈·A, sp·〉ϕp with different memory bounds si (for the
same coalition A).

– Since our algorithm consists in enumerating the strategies, it could cope with
games of incomplete information, where the strategies would be based on
(some of) the atomic propositions labeling a location, rather than on the
location itself [15].

– Bounded-memory quantification can be defined also for the other formalisms
where memory-based strategies are needed, e.g. ATL? or SL. Our EXPSPACE
algorithm could easily be adapted to that case.

5 Conclusion

In this paper we propose powerful extensions of ATL and ATL? logics. These
extensions allow us to express many interesting and complex properties that have
motivated the definition of new formalisms in the past. An advantage of these
extensions is to treat strategies through modalities as in ATL and ATL?.

As future work, we plan to study the exact complexity of model-checking
ATLsc,∞ and ATL?sc,∞, with the aim of finding reasonably efficient algorithms for
fragments of these expressive logics. Finally we think that the ability to deal
explicitly with bounded-memory strategies is an interesting approach to develop.

References

1. Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time
temporal logics with irrevocable strategies. In Proceedings of the 11th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK’07), pages 15–24,
June 2007.

2. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49(5):672–713, 2002.

3. Christel Baier, Tomáš Brázdil, Marcus Größer, and Antońın Kučera. Stochastic
game logic. In Proceedings of the 4th International Conference on Quantitative
Evaluation of Systems (QEST’07), pages 227–236. IEEE Comp. Soc. Press, 2007.

4. Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey.
ATL with strategy contexts and bounded memory. Technical Report LSV-08-14,
Lab. Specification et Verification, February 2008.

5. Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. Games with
secure equilibria. Theoretical Computer Science, 365(1-2):67–82, 2006.

6. Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic.
In Proceedings of the 18th International Conference on Concurrency Theory (CON-
CUR’07), LNCS, pages 59–73. Springer-Verlag, September 2007.

7. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronous
skeletons using branching-time temporal logic. In Proceedings of the 3rd Workshop
on Logics of Programs (LOP’81), volume 131 of LNCS, pages 52–71. Springer, 1981.

8. Wojciech Jamroga and Jürgen Dix. Do agents make model checking explode
(computationally)? In Proceedings of the 4th International Central and Eastern
European Conference on Multi-Agent Systems (CEEMAS’05), volume 3690 of LNCS.
Springer, 2005.

9. Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. Module checking. Information
and Computation, 164(2):322–344, January 2001.

10. François Laroussinie, Nicolas Markey, and Ghassan Oreiby. On the expressiveness
and complexity of ATL. In Proceedings of the 10th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS’07), volume
4423 of LNCS, pages 243–257, Braga, Portugal, 2007. Springer.

11. René Mazala. Infinite games. In Automata, Logics, and Infinite Games, volume
2500 of LNCS, pages 23–42. Springer-Verlag, 2002.

12. Sophie Pinchinat. A generic constructive solution for concurrent games with expres-
sive constraints on strategies. In Proceedings of the 5th International Symposium
on Automated Technology for Verification and Analysis (ATVA’07), volume 4762
of LNCS, pages 253–267. Springer-Verlag, October 2007.

13. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE
Comp. Soc. Press, October-November 1977.

14. Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium on Pro-
gramming (SOP’82), volume 137 of LNCS, pages 337–351. Springer-Verlag, April
1982.

15. Pierre-Yves Schobbens. Alternating-time logic with imperfect recall. In Proceed-
ings of the 1st Workshop on Logic and Communication in Multi-Agent Systems
(LCMAS’03), volume 85 of ENTCS. Elsevier, 2004.

16. Wolfgang Thomas. On the synthesis of strategies in infinite games. In Proceedings
of the 12th Symposium on Theoretical Aspects of Computer Science (STACS’95),
volume 900 of LNCS, pages 1–13. Springer-Verlag, March 1995.

