
On the Expressiveness of TPTL and MTLI,II

Patricia Bouyer, Fabrice Chevalier, Nicolas Markey

LSV, ENS Cachan & CNRS
61, avenue du Président Wilson,

94230 Cachan, France
{bouyer,chevalie,markey }@lsv. ens-cachan. fr

Abstract

TPTL and MTL are two classical timed extensions of LTL. In this paper, we prove
the 20-year-old conjecture that TPTL is strictly more expressive than MTL. But
we show that, surprisingly, the TPTL formula proposed in [AH90] for witnessing
this conjecture can be expressed in MTL. More generally, we show that TPTL
formulae using only modality F can be translated into MTL.

1. Introduction

Temporal logics.. Temporal logics are a widely used framework in the field
of specification and verification of reactive systems [Pnu77]. In particular,
Linear-time Temporal Logic (LTL) allows to express properties about each
individual execution of a model, such as the fact that any occurrence of a problem
eventually triggers the alarm. LTL has been extensively studied, both w.r.t its
expressiveness [Kam68, GPSS80, Mar03] and for model-checking purposes [SC85,
VW86, Var96].

Timed temporal logics.. At the beginning of the 90s, real-time constraints have
naturally been added to temporal logics [Koy90, ACD90], in order to add
quantitative constraints to temporal logic specifications. The resulting logics
allow to express e.g. that any occurrence of a problem in a system will trigger
the alarm within at most 5 time units.

When dealing with dense time, we may consider two different semantics
for timed linear-time temporal logics, depending on whether the formulae are
evaluated over timed words (i.e., over a discrete sequence of observations of the
system; this is the pointwise semantics) or over timed state sequences (i.e., over
the continuous observation of the system; this is the interval-based semantics).
We refer to [AH92b, Hen98, Ras99] for surveys on linear-time timed temporal
logics.
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Expressiveness of TPTL and MTL.. Two interesting timed extensions of LTL are
MTL (Metric Temporal Logic) [Koy90, AH93] and TPTL (Timed Propositional
Temporal Logic) [AH94].

MTL extends LTL by adding subscripts to temporal operators: for instance,
the above property can be written in MTL as

G (problem⇒ F≤5 alarm).

TPTL is “more temporal” [AH94] in the sense that it uses real clocks in order
to assert temporal constraints. A TPTL formula can “reset” a formula clock
at some point, and later compare the value of that clock to some integer. The
property above would then be written as

G (problem⇒ x.F (alarm ∧ x ≤ 5))

where “x.'” means that x is reset at the current position, before evaluating '.
This logic also allows to easily express that, for instance, within 5 time units
after the occurrence of a problem, the system triggers the alarm and then enters
a failsafe mode:

G (problem⇒ x.F (alarm ∧ F (failsafe ∧ x ≤ 5))). (1)

While it is clear that any MTL formula can be translated into an equivalent
TPTL one, Alur and Henzinger state in [AH92b, AH93] that there is no intuitive
MTL equivalent to formula (1). It has thus been conjectured that TPTL would
be strictly more expressive than MTL [AH92b, AH93, Hen98], formula (1) being
proposed as a possible witness not expressible in MTL.

Our contributions.. We consider that problem for the aforementioned semantics
(pointwise and interval-based) over infinite sequences. We prove that

∙ the conjecture does hold for both semantics;

∙ for the pointwise semantics, formula (1) witnesses the expressiveness gap,
i.e., it cannot be expressed in MTL;

∙ for the interval-based semantics, formula (1) can be expressed in MTL,
but we exhibit another TPTL formula that cannot be expressed in MTL,
confirming the conjecture.

Our study also yields several interesting side-results:

∙ we prove that, for the interval-based semantics, MITL (a restriction of MTL
where timing constraints are restricted to be non-singular [AFH96]) cannot
express property (1). This result is counter-intuitive, since formula (1)
does not involve any punctual constraint.

∙ MTL is strictly more expressive under the interval-based semantics than
under the pointwise one, since it can express formula (1) only in the first
case. This had recently and independently been remarked in [DP07] in the
case of finite words;
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∙ we also get that, for both semantics, MTL+Past and MITL+Past (where the
past-time modality “since” is used [AFH96]) are strictly more expressive
than their respective pure-future fragments.

∙ our main result also extends to the branching-time logic TCTL with explicit
clock [HNSY94], which we prove is strictly more expressive than TCTL
with subscripts [ACD93], as conjectured in [Alu91, Yov93].

Finally, we prove that, under the interval-based semantics, the fragment
of TPTL where only the modality F is allowed (which we call the existential
fragment1 of TPTL, and write TPTLF) can be translated into MTL (actually,
into the corresponding existential fragment MTLF of MTL). This generalizes the
fact that formula (1) can be expressed in MTL (in formula (1), the subformula
under G is in TPTLF , and can thus be expressed in MTL).

Those results are summarised on Figure 1 (where edges going upwards indicate
gaps in expressiveness).

MTL

TPTL

MITL

MTLF TPTLF

MTL+Past

MITL+Past

interval-based semantics

MTL

TPTL

MITL

MTLF

TPTLF

MTL+Past

MITL+Past

pointwise semantics

Figure 1: Summary of our expressiveness results (dashed edges indicate folk results)

Related work.. Over the last 15 years, many researches have focused on expres-
siveness questions for timed temporal logics (over both integer and real time).
We refer to [AH92a, AH93, AH94, BL95, AFH96, RSH98, FR07] for original
works, and to [Ost92, Hen98, Ras99] for surveys on that topic.

MTL and TPTL have also been studied for the purpose of verification. If the
underlying time domain is discrete, then MTL and TPTL have decidable verifica-
tion problems [AH93, AH94]. When considering dense time, verification problems
(satisfiability, model-checking) become much harder: [AFH96] proves that the
satisfiability problem for MTL is undecidable when considering the interval-based
semantics. This result of course carries on to TPTL. It has recently been proved
that model-checking and satisfiability are decidable (but non-primitive recursive)
for MTL over finite words under the pointwise semantics [OW05], while they are
still undecidable for TPTL [AH94].

1Not to be confused with the existential fragment of branching-time logics.
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Recently, MTL and TPTL have been investigated in the scope of monitoring
and path-checking. [TR05] proposes an (exponential) monitoring algorithm
for MTL under the pointwise semantics. [MR06] shows that, in the interval-
based semantics, MTL formulae can be verified on lasso-shaped timed state
sequences in polynomial time, while TPTL formulae require at least polynomial
space.

Plan of the paper.. The paper is organized as follows: in Section 2, we define
the logics TPTL and MTL together with the two semantics we consider. In Sec-
tion 3, we present our main result, namely that TPTL is strictly more expressive
than MTL (for both semantics), whereas the last section (Section 4) focuses on
the “existential” fragments of TPTL and MTL, where only the modality F is
allowed.

2. Timed Linear-Time Temporal Logics

Basic definitions.. In the sequel, AP represents a non-empty, countable set
of atomic propositions. We let ℝ (resp. ℝ≥0, ℚ, ℚ≥0, ℕ, ℕ>0) denote the set
of reals (resp. nonnegative reals, rationals, nonnegative rationals, nonnegative
integers, positive integers). An interval is a convex subset of ℝ. An interval I ′

is adjacent to another interval I when I ∩ I ′ = ∅, I ∪ I ′ is an interval and for all
x ∈ I, for all y ∈ I ′, x < y. Given an interval I and a real number t, we write
I − t for the interval {t′ ∈ ℝ ∣ t′ + t ∈ I}. We denote by ℐℝ (resp. ℐℝ≥0

, ℐℚ) the
set of intervals whose bounds are in ℝ (resp. ℝ≥0, ℚ).

Given a finite set X of variables called clocks, a clock valuation over X is a
mapping v : X → ℝ≥0 which assigns to each clock a time value in ℝ≥0. Given
a valuation v and a nonnegative real t, we write v[x 7→ t] for the valuation v′

such that v′(x) = t and v′(y) = v(y) for all y ∈ X ∖ {x}. We write 0 for the
valuation such that 0(x) = 0 for all x ∈ X.

Timed state sequences and timed words.. An interval sequence over ℝ≥0

is an infinite sequence I = I0I1 . . . of non-empty intervals of ℐℝ≥0
satisfying the

following properties:

∙ (adjacency) the intervals Ii and Ii+1 are adjacent for all i ≥ 0;

∙ (progress) every nonnegative real belongs to some interval Ii.

A timed state sequence over 2AP is a pair � = (�, I) where � = �0�1 . . . is an
infinite sequence of elements of 2AP and I = I0I1 . . . is an interval sequence. A
timed state sequence can equivalently be seen as an infinite sequence of elements
in 2AP × ℐℝ≥0

.
Let � = (�, I) be a timed state sequence, and t ∈ ℝ≥0. Let i ∈ ℕ be the

unique integer such that t ∈ Ii. We write �(t) for the set �i ⊆ AP. We also
define the suffix of � at date t as being the timed state sequence �′ = (�′, I ′)
such that, for all k ∈ ℕ, �′k = �i+k and I ′k = (Ii+k − t) ∩ ℝ≥0.
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A time sequence over ℝ≥0 is an infinite sequence � = �0�1 . . . of nonnegative
reals satisfying the following properties:

∙ (initialization) �0 = 0;

∙ (monotonicity) the sequence is nondecreasing: �i+1 ≥ �i for any i ∈ ℕ;

∙ (progress) every time value is eventually reached: ∀t ∈ ℝ≥0. ∃i ∈ ℕ. �i > t.

A timed word over 2AP is a pair � = (�, �), where � = �0�1 . . . is an infinite
sequence of elements of 2AP and � = �0�1 . . . a time sequence over ℝ≥0. It can
equivalently be seen as an infinite sequence of elements ⟨�i, �i⟩ of 2AP × ℝ≥0.

Let � = (�, �) be a timed word, and i ∈ ℕ. We write �(�i) for �(i), and define
the i-th suffix of � to be the timed word �′ = (�′, � ′) such that, for all k ∈ ℕ,
�′k = �k+i and � ′k = �k+i − �i.

We force timed words to satisfy �0 = 0 in order to have a natural way of
defining initial satisfiability of a temporal logic formula. This is no loss of
generality since it can be obtained by adding a silent action to the alphabet.

2.1. Timed Propositional Temporal Logic (TPTL)

The logic TPTL [AH94, Ras99] is a timed extension of LTL [Pnu77] which
uses extra variables (clocks) explicitly in the formulae. Formulae of TPTL are
built from atomic propositions, boolean connectives, the modality “until”, clock
constraints and clock resets. Formally:

TPTL ∋ ' ::= p ∣ ' ∧ ' ∣ ¬' ∣ 'U ' ∣ x ∼ c ∣ x.'

where p ranges over AP, x ranges over a finite set of clock variables, c ranges
over ℚ, and ∼ ∈ {≤, <,=, >,≥}.

There are two main semantics for TPTL, the interval-based semantics which
interprets TPTL formulae over timed state sequences, and the pointwise seman-
tics, which interprets them over timed words. This last semantics is less general
since, as we will see below, formulae can only be interpreted at points in time
when actions occur.

In the literature, both semantics have been considered, and results highly
depend on the underlying semantics. For example, a recent result by Ouaknine
and Worrell [OW05] states that the satisfiability of a formula in MTL (a subset
of TPTL, see below) is decidable under the pointwise semantics, whereas it is
known to be undecidable under the interval-based semantics [AFH96].

Interval-based semantics.. In the interval-based semantics, models are timed
state sequences �, and formulae are evaluated at a date t ∈ ℝ≥0 with a valuation
v : X → ℝ≥0 (where X is the set of formula clocks) representing the date at
which each clock has been reset last. The satisfaction relation, denoted with
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�, t, v ∣=ib ' (we might omit the index ib, and simply write �, t, v ∣= ', when it
is clear from the context), is defined inductively as follows:

�, t, v ∣=ib p iff p ∈ �(t),

�, t, v ∣=ib '1 ∧ '2 iff �, t, v ∣=ib '1 and �, t, v ∣=ib '2,

�, t, v ∣=ib ¬' iff it is not the case that �, t, v ∣=ib ',

�, t, v ∣=ib '1 U '2 iff ∃t′ > t such that �, t′, v ∣=ib '2,

and ∀t < t′′ < t′, �, t′′, v ∣=ib '1

�, t, v ∣=ib x ∼ c iff t− v(x) ∼ c,
�, t, v ∣=ib x.' iff �, t, v[x 7→ t] ∣=ib '.

We write � ∣=ib ' when �, 0,0 ∣=ib '. We interpret “x.'” as a reset operator.
Note also that the semantics of U is strict in the sense that, in order to satisfy
'1 U '2, a timed state sequence is not required to satisfy '1; this semantics is
more expressive than the non-strict semantics (see section 2.5).

In the following, we use classical shorthands: ⊤ stands for p ∨ ¬p, '1 ⇒ '2

stands for ¬'1 ∨ '2, F ' stands for ⊤U ' (and means that ' eventually holds
at a strict future time), and G ' stands for ¬(F ¬') (and means that ' always
holds in the strict future).

Pointwise semantics.. In this semantics, models are timed words �, and
satisfiability is no longer interpreted at a date t ∈ ℝ≥0 but at a position i ∈ ℕ
along the timed word. For a timed word � = (�, �), with � = (�i)i≥0 and
� = (�i)i≥0, a position i ∈ ℕ and a valuation v, we define the satisfaction relation
�, i, v ∣=pw ' inductively as follows:

�, i, v ∣=pw p iff p ∈ �i,
�, i, v ∣=pw '1 ∧ '2 iff �, i, v ∣=pw '1 and �, i, v ∣=pw '2,

�, i, v ∣=pw ¬' iff it is not the case that �, i, v ∣=pw ',

�, i, v ∣=pw '1 U '2 iff ∃j > i such that �, j, v ∣=pw '2,

and ∀i < k < j. �, k, v ∣=pw '1,

�, i, v ∣=pw x ∼ c iff �i − v(x) ∼ c,
�, i, v ∣=pw x.' iff �, i, v[x 7→ �i] ∣=pw '.

We write � ∣=pw ' whenever �, 0,0 ∣=pw '. We might omit the index pw when it
is clear from the context.

Example 1. Consider the timed word � = ⟨a, 0⟩⟨a, 1.1⟩⟨b, 2⟩ . . ., and the TPTL
formula ' = x.F (x = 1 ∧ y.F (y = 1 ∧ b)). Then � ∕∣=pw ', because � contains
no action at date 1.

Now, a timed word can be seen as a special case of timed state sequence. For
instance, � corresponds to the timed state sequence

� = ⟨{a}, [0, 0]⟩⟨∅, (0, 1.1)⟩⟨{a}, [1.1, 1.1]⟩⟨∅, (1.1, 2)⟩⟨{b}, [2, 2]⟩ . . .

But in that case, � ∣=ib '.
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2.2. Metric Temporal Logic (MTL)

The logic MTL [Koy90, AH93] extends the logic LTL with time restrictions
on “until” modalities. Formulae of MTL are built from atomic propositions,
boolean connectives and time-constrained “until”:

MTL ∋ ' ::= p ∣ ' ∧ ' ∣ ¬' ∣ 'UI '

where p ranges over the set AP of atomic propositions, and I ranges over ℐℚ.
In the interval-based semantics, formulas of MTL are evaluated at a certain

date t ∈ ℝ≥0 along a timed state sequence �:

�, t ∣=ib p iff p ∈ �(t),

�, t ∣=ib '1 ∧ '2 iff �, t ∣=ib '1 and �, t ∣=ib '2,

�, t ∣=ib ¬' iff it is not the case that �, t ∣=ib ',

�, t ∣=ib '1 UI '2 iff ∃t′ > t such that t′ − t ∈ I and �, t′ ∣=ib '2,

and ∀t < t′′ < t′, �, t′′ ∣=ib '1.

Again, we use the shorthand � ∣= ' for �, 0 ∣= ' when ' ∈ MTL.
The pointwise semantics of MTL is defined at a position i ∈ ℕ along a timed

word w as follows:

�, i ∣=pw p iff p ∈ �i,
�, i ∣=pw '1 ∧ '2 iff �, i ∣=pw '1 and �, i ∣=pw '2,

�, i ∣=pw ¬' iff it is not the case that �, i ∣=pw ',

�, i ∣=pw '1 UI '2 iff ∃j > i such that �j − �i ∈ I and �, j ∣=pw '2,

and ∀i < k < j. �, k ∣=pw '1.

We omit the constraint on modality U when (0,∞) is assumed. We write
U∼c for UI when I = {t ∣ t ∼ c}. As previously, we use classical shorthands
such as FI or GI .

Note that we could have defined MTL as a fragment of TPTL: '1 UI '2 is
equivalent2 to x.('1 U (x ∈ I ∧ '2)). As a consequence, TPTL is at least as
expressive as MTL.

Example 2. In MTL, the formula ' of Example 1 can be expressed as F=1 F=1 b.
In the interval-based semantics, this formula is equivalent to F=2 b, but this is
not the case in the pointwise semantics.

2.3. Metric Interval Temporal Logic (MITL)

MITL [AFH96] is a restricted version of MTL where the interval decorating
the “until” modality cannot be singular (i.e., reduced to a single point). Relaxing
punctuality has the great benefit of making model-checking and satisfiability
decidable: under the interval-based semantics, both problems can be achieved in
exponential space, while they are undecidable for MTL [AFH96].

2We leave it to the keen reader to formalize this statement.
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2.4. Adding Past-Time Modalities

The logics defined above only allow formulas to deal with future time points.
It is classical to also define a symmetric version of the “until” modality, named
“since”, which deals with events that occurred in the past [Kam68, LPZ85].
The semantics of that modality is defined symmetrically:

∙ For the interval-based semantics:

�, t, v ∣=ib '1 S '2 iff ∃t′ < t such that �, t′, v ∣=ib '2

and ∀t′ < t′′ < t, �, t′′, v ∣=ib '1.

∙ For the pointwise semantics:

�, i, v ∣=pw '1 S '2 iff ∃j < i such that �, j, v ∣=pw '2

and ∀j < k < i �, k, v ∣=pw '1.

The corresponding MTL modality SI is defined in the obvious way. Then,
for instance, the TPTL formula x.(p S (q ∧ x ≤ −2)) expresses that q held
2 time units ago or earlier, and that p has been holding since then. It would be
written pS(−∞,−2] q, or equivalently pS≤−2 q, in MTL.

We note MTL+Past (resp. MITL+Past, TPTL+Past) the logic MTL (resp.
MITL, TPTL) extended with the “since” modality. Such extensions have been
defined and studied in [AH92a, AH93].

2.5. Relative Expressiveness

Let S be a set of models, and ℒ and ℒ′ two logical languages interpreted
over models in S. We say that a formula ' ∈ ℒ is equivalent to '′ ∈ ℒ′ if
for every � ∈ S, � satisfies ' iff � satisfies '′. The language ℒ′ is at least as
expressive as ℒ over S iff all formulae in ℒ have an equivalent formula in ℒ′. It
is strictly more expressive if, moreover, there exists a formula in ℒ′ which has
no equivalent in ℒ. We say that ℒ and ℒ′ are equally expressive whenever each
language is at least as expressive as the other.

Let us mention some classical results about expressiveness of (untimed)
linear-time temporal logics:

∙ first of all, it can be proved that (the logic made of boolean combinators
and) the strict until is at least as expressive as (the logic with) the non-
strict one. The converse inclusion does not hold in general: along a timed
word, for instance, the strict until can distinguish between two consecutive
occurrences of the same letter, while the non-strict one cannot [Rey03,
FR07].

∙ adding past-time modalities to LTL does not increase its expressive power:
any LTL+Past formula can be expressed in LTL [Kam68, GPSS80], even
though there are cases where the resulting LTL formula is exponentially
larger [LMS02, Mar03]. Those results don’t carry on to timed tempo-
ral logics: [AH92a] shows that past-time modalities strictly increase the
expressive power of MITL under the interval-based semantics.
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Proving expressiveness results is sometimes involved. In order to prove that a
given formula ' cannot be expressed in a logic ℒ, the naive technique is to build
two models M and N that ' can distinguish (or separate) (i.e., ' evaluates to
true on one model and to false on the other one), and prove that no formula of ℒ
can distinguish those two models. That technique turns out to be too restrictive
for proving that TPTL is strictly more expressive than MTL: consider any two
models that TPTL can separate (i.e., there is a TPTL formula that holds on
only one of those models, and fails to hold on the other one). The models are
therefore different: there exists an atomic proposition a and a date t such that
the MTL formula F=t a holds on one of the models and fails to hold on the other
one3. This naive approach only compares the distinguishing power of the logics,
which is coarser than the expressive power. The remark above indicates that
TPTL and MTL have the same distinguishing power. Conversely, it can easily
be seen that LTL has less distinguishing power than TPTL (i.e. there exists two
models that TPTL can separate but that LTL cannot).

A more involved technique, that we will use in the sequel, consists in building
two families of models (Mi) and (Ni) such that ' distinguishes between Mi

and Ni for all i, and such that no formula in ℒ with size less than i distinguishes
between Mi and Ni. This technique has already been applied successfully e.g.
in [EH86, Eme91, Lar95, BCL05].

Other techniques involve translations of temporal logics to other formalisms,
such as automata theory, language theory, algebraic structures or pebble games.
Many examples can be found in the literature [Kam68, GPSS80, AH92a, TW96,
Mar03].

3. TPTL is Strictly More Expressive Than MTL

3.1. Alur & Henzinger’s Formula is not a Good Witness...

It has been conjectured in [AH92b, AH93, Hen98] that TPTL is strictly more
expressive than MTL, and in particular that a TPTL formula such as

G (a⇒ x.F (b ∧ F (c ∧ x ≤ 2)))

cannot be expressed in MTL. The following proposition immediately entails that
this formula is not a good witness formula for proving that TPTL is strictly more
expressive than MTL.

Proposition 1. The TPTL formula x.F (b∧F (c∧ x ≤ 2)) can be expressed in
MTL for the interval-based semantics.

Proof. Let Φ be the TPTL formula x.F (b ∧ F (c ∧ x ≤ 2)). This formula
expresses that, along the timed state sequence, from the current point on, there

3It could be the case that t /∈ ℚ≥0, and that the resulting formula is not in MTL. Still, since
our models have finite variability, t could be replaced by some interval with rational bounds.
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is a b followed by a c, and the delay before that occurrence of c is less than
2 time units. For proving the proposition, we build an MTL formula Φ′ which
is equivalent to Φ over timed state sequences. Formula Φ′ is defined as the
disjunction Φ′ = Φ′1 ∨ Φ′2 ∨ Φ′3 where:⎧⎨⎩

Φ′1 = (F≤1 b) ∧ (F[1,2] c)

Φ′2 = F≤1 (b ∧ F≤1 c)

Φ′3 = F≤1 [(F≤1 b) ∧ (F=1 c)]

Let � be a timed state sequence. If � ∣= Φ′, it is clear enough that � ∣= Φ.
Suppose now that � ∣= Φ; then there exists 0 < t1 < t2 ≤ 2 such that �, t1,0 ∣= b
and �, t2,0 ∣= c. If t1 ≤ 1 then � satisfies Φ′1 or Φ′2 (or both) depending on t2
being smaller or greater than 1. If t1 ∈]1, 2] then there exists a date t′ in (0, 1]
such that �, t′ ∣= (F≤1 b) ∧ (F=1 c) which implies that � ∣= Φ′3. We illustrate the
three possible cases on Figure 2. □

0
∣= Φ′1

0
∣= Φ′2

0
∣= Φ′3

1 2

1 2

1 2

b c

b c

b c

(F≤1 b) ∧ (F=1 c)

Figure 2: Translation of TPTL formula Φ in MTL

From the proposition above we get that the TPTL formula G (a ⇒ Φ) is
equivalent over timed state sequences to the MTL formula G (a⇒ Φ′).

3.2. The Detriment of Relaxing Punctuality

The MTL formula proposed in the previous section involves a punctual
constraint F=1 . It is natural to wonder if it is really needed since, at first sight,
the original property does not involve punctuality. Surprisingly:

Proposition 2. The formula Φ = x.(F (b ∧ F (c ∧ x ≤ 2))) cannot be expressed
in MITL for the interval-based semantics.

We need several extra definitions before tackling the proof. Given a formula ',
we define its granularity p by p =

∏
a
b appears in ' b. Clearly enough, any constant

that appears in a formula ' is a multiple of 1
p , where p is the granularity of '.

We write MITLp (resp. MTLp) for the set of MITL- (resp. MTL-) formulae with
granularity p.
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Proof. We construct two families of (timed words seen as) timed state sequences
(An)n∈ℕ>0 and (ℬn)n∈ℕ>0 such that:

(a) An ∣= Φ whereas ℬn ∕∣= Φ for every n ∈ ℕ>0,

(b) for any p ∈ ℕ>0 and any ' ∈ MITLp, Ap ∣= ' ⇐⇒ ℬp ∣= '.

Proposition 2 immediately follows: if Φ were to have an MITL equivalent Ψ,
then Ψ would satisfy both (a) and (b), which is contradictory.

An

2− 1
n

2
a c b c b c b

1
8n

1
4n

ℬn
a c b c b

Figure 3: Models An and ℬn

The two families of models are depicted in Figure 3. Note that, along An
and ℬn, there is an a at date 0 and no action between dates 0 and 2− 1

n . After
date 2 − 1

n , the word An is periodic with a period 1
2n : atomic proposition c

holds at dates 2− 7
8n + i

2n with i ≥ 0 whereas b holds at dates 2− 5
8n + i

2n . The
word ℬn is obtained from An by dropping the second and third events.

We first show that, for any p ∈ ℕ>0, any MITLp formula is uniformly true or
false on certain intervals of Ap and ℬp. For any integers p and i with 1 ≤ i ≤ 2p,
we write Ji,p for the interval (2− i

p −
1
8p , 2−

i
p + 5

8p ) ∩ ℝ≥0.

Lemma 3. For any integers p and i with 1 ≤ i ≤ 2p, any ' ∈ MITLp, and any
x, y ∈ Ji,p,

ℬp, x ∣= ' ⇐⇒ ℬp, y ∣= '.

Proof. We prove this lemma by induction on i. We first prove the induction
step: assume the result holds up to i− 1. We show the result for i by a second
induction on the structure of '. This induction is obvious if ' is an atomic
proposition, or if it is the conjunction or negation of smaller subformulae.

The last case is when ' = '1 UI '2. In the sequel, q stands for 1
p . Since ' ∈

MITLp, then I is one of I = (k1q, k2q), I = [k1q, k2q), I = (k1q, k2q] or I =
[k1q, k2q], with k1 < k2. We show the induction hypothesis for all four cases
by proving the stronger fact that, if there exists x ∈ Ji,p such that ℬp, x ∣=
'1 U[k1q,k2q] '2, then for all y ∈ Ji,p, ℬp, y ∣= '1 U(k1q,k2q) '2.

To prove this implication, we assume the existence of a position x of Ji,p such
that '1 U[k1q,k2q] '2 holds in that position along ℬp. We pick a position y ∈ Ji,p,
and prove that ℬp, y ∣= '1 U(k1q,k2q) '2.

By construction of x, ℬp, x + t ∣= '2 for some k1q ≤ t ≤ k2q, and for any
t′ ∈ (0, t), ℬp, x+ t′ ∣= '1. By induction hypothesis for '1, we know that for any
z ∈ Ji,p, ℬp, z ∣= '1. This holds in particular between y and x if y < x.
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We now have to distinguish between several cases depending on the values
of x, y and t:

∙ Case k1q < x + t − y < k2q: this is the case where the witness for x is
also correct for y. Taking t′ = x+ t− y, we know that '1 holds between y
and x, so that ℬp, y ∣= '1 U(k1q,k2q) '2.

∙ Case x+ t− y ≤ k1q (in particular x ≤ y):

– If k1 = 0, then we have x + t ≤ y < 2 − iq + 5q
8 . So by i.h., we

have that '1 and '2 are satisfied everywhere in the interval Ji,p, so
ℬp, y ∣= '1 U(k1q,k2q) '2.

– If k1 ≥ i: w.l.o.g., we assume that ∣x− y∣ < q
2 . The general case can

be recovered by considering z = (x+y)
2 and applying the lemma twice.

We have that x + t > 2 − iq − q
8 + k1q ≥ 2 − q

8 . As the suffixes
of ℬp starting at x + t and x + t + q

2 are the same, we have that
ℬp, x + t + q

2 ∣= '2. The point x + t + q
2 will be the witness for

'1 U(k1q,k2q) '2 being true in y. We have to ensure

1. that '1 is satisfied between the old witness (x+ t) and the new
one (x+ t+ q

2 ): this holds because for any 0 ≤ z < q
2 , the suffixes

of ℬp starting at x+ t+ z and x+ t+ z − q
2 are identical, and

ℬp, x+ t+ z − q
2 satisfies '1.

2. that t′ = x+t−y+ q
2 is in the interval (k1q, k2q): t

′ ≤ k1q+ q
2 < k2q

(because x+ t− y ≤ k1q) and t′ > t ≥ k1q (because ∣x− y∣ < q
2 ).

– If 0 < k1 < i (which entails that i > 1), we prove the existence of a
witness in the interval Ji−k1,p.

We have that x + t > 2 − iq − q
8 + k1q = 2 − (i − k1)q − q

8 , and

x+ t = x+ t− y + y < k1q + 2− iq + 5q
8 , so that x+ t is in Ji−k1,p.

We apply the i.h. at level i− k1, and get that '1 and '2 are satisfied

everywhere in Ji−k1,p. Taking t′ = k1q + 2−iq+5q/8−y
2 , it is easily

verified that k1q < t′ < k2q and y + t′ ∈ Ji−k1,p.

∙ Case x+ t− y ≥ k2q (in particular x > y):

– If k2 ≥ i: we again assume that ∣x− y∣ < q
2 .

Since x+t = x+t−y+y > k2q+2−iq− q
8 ≥ 2− q

8 and ℬp, x+t ∣= '2,
we get that ℬp, x+ t− q

2 ∣= '2. There remains to show that the new
witness t′ = x+t−y− q

2 is in the correct interval: we have t′ < t ≤ k2q
since ∣x− y∣ < q

2 , and t′ ≥ k2q − q
2 > k1q. Also, as shown earlier, '1

is satisfied between y and x.

– If k2 < i (thus i > 1), we build another witness in the interval Ji−k2,p.

Again, x+t = x+t−y+y > 2+k2q−iq− q
8 and x+t < 2−iq+5 q8 +k2q

so x + t is in Ji−k2,p. We apply the i.h. at level i − k2, and get
that both '1 and '2 are satisfied everywhere in Ji−k2,p. Taking

t′ = k2q − y−(2−iq−q/8)
2 , we easily conclude that it is a witness for

'1 U(k1q,k2q) '2 being true in y.
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The case i = 1 follows from the proof above, since the induction hypothesis is
only needed in cases where i > 1. □

We now easily deduce the following result:

Lemma 4. For all p ∈ ℕ>0, for all ' ∈ MITLp, Ap, 0 ∣= ' ⇐⇒ ℬp, 0 ∣= '.

Proof. Let ' be in MITLp. Then

Ap, 0 ∣= ' ⇐⇒ ℬp,
p

2
∣= ' since the suffixes Ap, 0 and ℬp,

p

2
are equal,

⇐⇒ ∀x ∈
[
0,

5p

8

)
ℬp, x ∣= ' by Lemma 3,

⇐⇒ ℬp, 0 ∣= '

□

As a side result, Propositions 1 and 2 entail the following theorem:

Theorem 5. MTL is strictly more expressive than MITL in the continuous
semantics.

This result was already known: MITL formulas can be translated into timed
automata [AFH96], and thus can only express time-regular properties, while
MTL can express non-timed-regular languages.

3.3. TPTL vs MTL in the Pointwise Semantics

We now show the following result:

Proposition 6. The TPTL formula Φ = x.(F (b ∧ F (c ∧ x ≤ 2))) has no
equivalent MTL formula for the pointwise semantics.

Proof. We keep the notations of Section 3.2, and in particular we consider
again the families of models (now seen as timed words) (An)n∈ℕ>0

and (ℬn)n∈ℕ>0

depicted on Figure 3. As previously, MTLp denotes the fragment of MTL with
formulae of granularity p. As in the previous section, we will prove that:

(a) Ap ∣= Φ whereas ℬp ∕∣= Φ for every p ∈ ℕ>0,

(b) for all p ∈ ℕ>0 and all ' ∈ MTLp, Ap ∣= ' ⇐⇒ ℬp ∣= '.

Equation (a) is obvious. We prove Equation (b) with the following two lemmas:

Lemma 7. For any p ∈ ℕ>0, for any k, k′ ≥ 1 such that k = k′ mod 2, and
for any formula ' ∈ MTLp,

Ap, k ∣= ' ⇐⇒ ℬp, k ∣= ' ⇐⇒ Ap, k′ ∣= ' ⇐⇒ ℬp, k′ ∣= '.

This result is straightforward, since the suffixes Ap, k, ℬp, k, Ap, k′, and ℬp, k′
are the same.
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Lemma 8. For all p ∈ ℕ>0 and all ' ∈ MTLp, Ap, 0 ∣= ' ⇐⇒ ℬp, 0 ∣= '.

We proceed by induction on the structure of formula '. The case of atomic
propositions is easy, as well as the induction steps for conjunction and negation.
Again, we write q for 1

p .
Assume ' = '1 UI '2. Note that for all k ∈ ℕ there is no action at time kq

in Ap or ℬp. It follows that for all k1, k2 ∈ ℕ,

Ap ∣= '1 U[k1q,k2q] '2 ⇐⇒ Ap ∣= '1 U(k1q,k2q] '2

⇐⇒ Ap ∣= '1 U[k1q,k2q) '2 ⇐⇒ Ap ∣= '1 U(k1q,k2q) '2

and the same holds for ℬp. W.l.o.g., we can assume that I = (k1q, k2q).
In what follows, we write �i for the date associated to position i in Ap, and

� ′j for the time associated to position j in ℬp.

∙ We first suppose that Ap, 0 ∣= ', and show that ℬp, 0 ∣= '. We know that
there exists i > 0 with �i ∈ I, Ap, i ∣= '2, and such that for any 0 < k < i,
Ap, k ∣= '1. We distinguish between two subcases:

– If i ≥ 3: we take j = i − 2; then � ′j = �i, and � ′j ∈ I. By Lemma 7,
we get that ℬp, j ∣= '2. Since Ap, 1 and Ap, 2 satisfy '1, this lemma
also entails that for any k > 0, ℬp, k ∣= '1. Thus ℬp, 0 ∣= '1 UI '2

– If 1 ≤ i ≤ 2: then �i ∈ {2 − 7q
8 , 2 −

5q
8 }, which entails k2q ≥ 2.

Taking j = i and applying Lemma 7, we obtain that ℬp, j ∣= '2 and,
for all 0 < k < j, ℬp, k ∣= '1. Since j = i, we have � ′j = �i + q

2 ,
so that � ′j ≥ �i > k1q and � ′j ≤ 2 − q

8 ≤ 2 ≤ k2q. Thus, ℬp, 0 ∣=
'1 U(k1q,k2q) '2, and a fortiori ℬp, 0 ∣= '1 UI '2

∙ Conversely, assume that ℬp, 0 ∣= '. Then there exists j > 0 such that � ′j ∈
I, ℬp, j ∣= '2, and for any 0 < k < j, ℬp, k ∣= '1. Two subcases may arise:

– If j ≥ 3: we then take i = j + 2. In that case, �i = � ′j , and �i ∈ I.
From Lemma 7, we deduce that Ap, i ∣= '2. Again, since ℬp, 1 and
ℬp, 2 satisfy '1, Lemma 7 entails that for any k > 0, Ap, k ∣= '1.
Thus Ap, 0 ∣= '1 UI '2

– If 1 ≤ j ≤ 2: then � ′j ∈ {2−
3q
8 , 2−

q
8}, which entails that k1q ≤ 2− q.

We take i = j: Lemma 7 ensures that Ap, i ∣= '2 and that, for
any 0 < k < i, Ap, k ∣= '1. We also have �i = � ′j −

q
2 , so that �i <

� ′j ≤ k2p and �i ≥ 2− 7q
8 > 2− q ≥ k1q. So Ap, 0 ∣= '1 U(k1q,k2q) '2,

and Ap, 0 ∣= '1 UI '2. □

As a direct corollary of Proposition 6, we have:

Theorem 9. TPTL is strictly more expressive than MTL for the pointwise
semantics.

Since the MITL+Past formula F≤2 (c ∧ ⊤S b) also distinguishes between the
families (Ap)p∈ℕ>0

and (ℬp)p∈ℕ>0
, we get the following corollary:
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Corollary 10. Under the pointwise semantics, MTL+Past and MITL+Past are
strictly more expressive than MTL and MITL, resp.

The result for MITL was already proved differently in [AH92b]. To our
knowledge, the result concerning MTL was not known before (though it was
expected since, on finite timed words, MTL is decidable while MTL+Past is not).
Note that Corollary 10 constitutes a main difference between the timed and the
untimed framework, where it is well-known that adding past-time modalities does
not increase the expressive power of LTL over discrete time [Kam68, GPSS80].

3.4. TPTL vs MTL in the Interval-Based Semantics

According to Proposition 1, the formula which has been used for the pointwise
semantics can not be used for the interval-based semantics. We will instead
prove the following proposition:

Proposition 11. The TPTL formula Φ = x.F (a ∧ x ≤ 1 ∧G (x ≤ 1 ⇒ ¬b))
has no equivalent in MTL for the interval-based semantics.

Proof. Let p ∈ ℕ>0, and q = 1
p . Assume that Φ is equivalent to an MTL

formula Ψ. Even if it means increasing the temporal height (i.e., the maximal
number of nested modalities), we may assume that Ψ only involves constraints
of the form ∼ q, with ∼ ∈ {<,=, >}. We write MTL−p,n for the fragment of MTL
using only ∼ q constraints and with temporal height at most n, and assume that
Ψ ∈ MTL−p,n0

for some n0.
The proof consists in building two families of timed state sequences (Ap,n)n≥3

and (ℬp,n)n≥3 such that, for any n ≥ 3,

(a) Φ holds initially in Ap,n but not in ℬp,n.

(b) Ap,n and ℬp,n cannot be distinguished by any formula in MTL−p,n−3.

We first define Ap,n. Along that timed state sequence, atomic proposition a
holds exactly at time points q

4n + � q
2n , where � may be any nonnegative integer.

Atomic proposition b will hold exactly at times (�+ 1) ⋅ q2 −
4q
6n , with � ∈ ℕ.

As for ℬp,n, it has exactly the same a’s, while b holds exactly at time points
(�+ 1) ⋅ q2 −

q
6n , with � ∈ ℕ.

The portions between 0 and q
2 of both timed state sequences is represented

on Figure 4. Both timed state sequences are in fact periodic, with period q
2 .

Note that the situation around time point 1 is similar to the situation around q
2 .

Hence Φ holds in Ap,n and fails to hold in ℬp,n.
The following lemma is straightforward since, for each equivalence, the suffixes

of the paths are the same.

Lemma 12. For any positive p and n, for any nonnegative real x, and for any

15



Ap,n

0 q
2

a a a a a a a a ab

q
2n

q
12n

ℬp,n
a a a a a a a a ab

Figure 4: Two timed paths Ap,n and ℬp,n

MTL-formula ', letting q = 1
p , we have the following properties:

Ap,n, x ∣= ' ⇐⇒ ℬp,n, x+
q

2n
∣= ' (2)

Ap,n, x ∣= ' ⇐⇒ Ap,n, x+
q

2
∣= ' (3)

ℬp,n, x ∣= ' ⇐⇒ ℬp,n, x+
q

2
∣= ' (4)

We can now prove the following lemma:

Lemma 13. Let p ∈ ℕ>0, and q = 1
p . For any k ≤ n, for any ' ∈ MTL−p,k, for

any x ∈
[
0, q2 −

(k+2)q
2(n+3)

)
, for any � ∈ ℕ, we have

Ap,n+3, �
q

2
+ x ∣= ' ⇐⇒ ℬp,n+3, �

q

2
+ x ∣= '

Proof. The proof is by induction on both k and the structure of the formula '.
In order to (try to) improve readability, we write A and ℬ for Ap,n+3 and ℬp,n+3,
resp., and we let � = q

2(n+3) .

∙ The case where k = 0 is easy, since ' may only be an atomic proposition,
and all positions in the interval we consider are labeled with the same
propositions.

∙ Assume the result holds for some k < n. We prove it for k + 1.

– the case of atomic propositions and boolean combinations is still
straightforward.

– Assume ' = '1 U=q '2: pick some value x ∈
[
0, q2 − ((k + 1) + 2)�

)
and � ∈ ℕ, and assume A, � q2 + x ∣= '1 U=q '2. Then '2 holds at
position (� + 2) q2 + x, and '1 holds at all intermediate positions.
Applying the induction hypothesis, we get that ℬ, (�+ 2) q2 + x ∣= '2.
We also obtain that '1 holds along ℬ at positions between � q2 + x
and � q2 + x+ �. It also holds at positions between � q2 + x+ � and
(�+ 2) q2 + x thanks to equation (2). This entails that ℬ, � q2 + x ∣= '.

Conversely, assume that ℬ, � q2 + x ∣= '1 U=q '2. With the induction
hypothesis, we get that A, (�+ 2) q2 + x ∣= '2. From equation (2), we
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know that '1 holds between � q2 + x and (� + 2) q2 + x − � along ℬ.
Last, equation (3) ensures that it also holds between (�+ 2) q2 + x− �
and (�+ 2) q2 + x, which completes the proof.

– Assume ' = '1 U<q '2: pick some value x ∈
[
0, q2 − ((k + 1) + 2)�

)
and � ∈ ℕ, and assume A, � q2 + x ∣= '1 U<q '2.

∗ If the witness for '2 lies between � q2 + x and (�+ 1) q2 + x, then
by applying equation (2), we get that ℬ, � q2 +x+ � ∣= '1 U< q

2
'2.

The induction hypothesis ensures that '1 holds on timed state
sequence ℬ between � q2 + x and � q2 + x+ �, and we deduce that
ℬ, � q2 + x ∣= '1 U<q '2.

∗ Now, if the witness lies between (�+ 1) q2 + x and (�+ 2) q2 + x,
with equation (3), there is also a possible witness between � q2 +x
and (�+ 1) q2 + x, and we apply the previous proof.

Conversely, assume ℬ, � q2 + x ∣= '1 U<q '2. We still consider two
cases:

∗ If the witness for '2 lies between � q2 + x and � q2 + x + �, we
can apply the induction hypothesis to '1 and '2, and we get the
result.

∗ Otherwise, it suffices to apply equation (2).

– Last, assume that ' = '1 U>q '2: Pick some value x in the interval[
0, q2 − ((k + 1) + 2)�

)
and � ∈ ℕ, and assumeA, � q2+x ∣= '1 U>q '2.

By applying equation (2), and the induction hypothesis for '1, we
get that ℬ, � q2 + x ∣= '1 U>q '2.

Conversely, if ℬ, (�+ 2) q2 + x ∣= '1 U>q '2, if the witnessing position
for '2 lies after � q2 +x+�, it suffices to apply equation (2). Otherwise,
equation (3) ensures that we can find another witness for '2 satisfying
this condition. This completes the proof. □

As a corollary of this lemma, when k = n and � = x = 0, we get that
any formula in MTL−p,n cannot distinguish between models Ap,n+3 and ℬp,n+3.
In particular, formula Ψ should satisfy both (a) and (b) for n = n0, which is
contradictory. This concludes the proof of Proposition 11.

The following theorem immediately follows:

Theorem 14. TPTL is strictly more expressive than MTL for the interval-based
semantics.

Note that the formula x.F (a∧x ≤ 1∧G (x ≤ 1⇒ ¬b)) does not use modality U,
so the fragment of TPTL using only modalities F and G is also strictly more
expressive than the corresponding fragment of MTL. This is not the case for the
fragment of TPTL using only the F modality (see Section 4).

17



Now, clearly enough, the MTL+Past formula F=1 (¬bS a) distinguishes be-
tween the two families of models4 (Ap,n)p∈ℕ>0,n∈ℕ>0 and (ℬp,n)p∈ℕ>0,n∈ℕ>0 .
So does the more involved MITL+Past formula

F≥1 (¬a ∧ F−1≥−1 (G−1 ¬a) ∧ ¬bS a). (5)

Indeed, the subformula F−1≥−1 (G−1 ¬a) requires that there is a point not too far
away in the past (at most 1 time unit ago) such that a has never been true in
the past. That point is necessarily between dates 0 and q

4n , and F−1≥−1 (G−1 ¬a)
is true precisely between dates 0 and 1 + q

4n . Thus, formula (5) states that there
is a point between dates 1 and 1 + q

4n at which ¬bS a holds. This formula is
satisfied in Ap,n, for any n and p, and it is not satisfied in any ℬp,n. We then
get the following corollary:

Corollary 15. MTL+Past (resp. MITL+Past) is strictly more expressive than
MTL (resp. MITL) for the interval-based semantics.

To our knowledge, these are the first expressiveness results for timed linear-
time temporal logics using past-time modalities under the interval-based seman-
tics.

4. On the Existential Fragments of MTL and TPTL

TPTLF is the fragment of TPTL which only uses modality F (and not the
general modality U) and restricts negation to atomic propositions. Formally,
TPTLF is defined by the following grammar:

TPTLF ∋ ' ::= p ∣ ¬p ∣ '1 ∨ '2 ∣ '1 ∧ '2 ∣ F ' ∣ x ∼ c ∣ x.'.

An example of a TPTLF formula is x.F (b ∧ F (c ∧ x ≤ 2)) (see Subsection 3.1).
Similarly we define the fragment MTLF of MTL where only F-modalities are
allowed:

MTLF ∋ ' ::= p ∣ ¬p ∣ '1 ∨ '2 ∣ '1 ∧ '2 ∣ FI '.

From Subsection 3.3, we know that, under the pointwise semantics, TPTLF
is strictly more expressive than MTLF , since formula x.F (b ∧F (c ∧ x ≤ 2)) has
no equivalent in MTL (thus in MTLF). On the other hand, when considering
the interval-based semantics, we proved that the formula above can be expressed
in MTLF (see Subsection 3.1). In this section, we generalize the construction
of Subsection 3.1, and prove that TPTLF and MTLF have the same expressive
power in the interval-based semantics.

Theorem 16. TPTLF and MTLF are equally expressive for the interval-based
semantics.

4Note that this formula is not equivalent to the formula used in Proposition 11, but that it
is sufficient for our purpose that it distinguishes between the two families of models.
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Proof. We assume w.l.o.g. that all constants appearing in formulae of TPTLF
are integers. For every TPTLF formula, we build an equivalent MTLF formula for
the interval-based semantics. The construction proceeds in six steps. Example 4,
displayed on page 26, illustrates the whole transformation.

1. Normal form of TPTLF formulae.. Even if it means adding extra clocks, we
assume that all occurrences of the F-modality are directly embedded into some
reset operator “x.”, and that any clock x appearing in the formula is reset only
once. Thus, we only consider formulae of the logic defined by

' ::= p ∣ ¬p ∣ ' ∧ ' ∣ ' ∨ ' ∣ x ∼ c ∣ x.F ' (6)

and such that each clock appears at most once in a reset quantifier “x.F ”.

We now recursively build a normal form for TPTLF formulae, which is some
kind of disjunctive normal form. We call atom an atomic proposition or its
negation.

Definition 17. A TPTLF formula is simple if it is generated by the grammar

 ::= a ∣ x ∼ c ∣ x.F  ∣  ∧  

where a is an atom and x ∼ c is a clock constraint.

The following lemma is straightforward, using the property that x.F ('1∨'2)
is equivalent to (x.F '1) ∨ (x.F '2).

Lemma 18. Every TPTLF formula is equivalent to some positive Boolean com-
bination of simple TPTLF formulae.

The initial problem thus reduces to constructing equivalent MTLF formulae for
simple TPTLF formulae.

2. From simple TPTLF formulae to systems of difference inequations.. In this
part, we recursively transform a TPTLF formula into a system of inequations,
where we will associate with every eventuality ' = x.F  a date y at which  will
hold, and a date y' at which ' will hold. This yields conditions between variables
and the other dates and clocks which already appear in the transformation.

We first define what we call systems of difference inequations, which will be
associated to TPTLF formulae.

Definition 19. Let X be a finite set of clocks, and Y be a finite set of variables,
disjoint from X. A system S over X and Y is a pair (V,J ) where V : Y → MTLF
associates with every variable y ∈ Y an MTLF formula V (y), and J is a Boolean
combination of (difference) inequations of the form x− x′ ∼ c or x ∼ c where
x, x′ are elements of X ∪ Y , ∼ ∈ {<,≤,=,≥, >}, and c ∈ ℤ is an integer.
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Intuitively, such a system S represents a property over timed state sequences
where MTLF formulae given by V have to be satisfied at dates satisfying the
constraints given by J .

Let S = (V,J ) be a system over X and Y , � be a timed state sequence,
v : Y → ℝ≥0 be a function assigning a time-point to every variable y ∈ Y , and
v′ : X → ℝ≥0 a valuation for clocks in X. We say that �, v, v′ ⊢ S when, writing
v ⊔ v′ for the function naturally extending v and v′, the following properties are
satisfied:

v ⊔ v′ ∣= J and ∀y ∈ Y, �, v(y) ∣=ib V (y).

The satisfaction relation for systems is then defined by5:

�, t, v′ ∣= S iff ∃v : Y → ℝ≥0 s.t. �, v, v′ ⊢ S,

∀ y ∈ Y, v(y) ≥ t and ∃y0 ∈ Y, v(y0) = t.

Let ' be a simple TPTLF formulas with set of formula clocks X'. We explain
how to inductively build a system S' = (V',J') over X' and some set of
variables Y' such that:

�, 0, v′ ∣=ib ' iff �, 0, v′ ∣= S'. (7)

∙ If ' is an atom, the set of variables Y' contains a single variable y', the
system has no constraint, and V'(y') = '.

∙ If ' is a clock constraint x ∼ c, the set Y' contains a single variable y', the
system J' is (y' − x ∼ c), and V'(y') = ⊤. Intuitively, y' will represent
the date at which x ∼ c needs to hold, whereas x will represent the date
at which clock x is reset.

∙ We assume that ' is of the form x.F  . We assume we have already
computed a system S = (V ,J ) over X and Y which corresponds
to  in the sense of equivalence (7). The construction of the system
S' = (V',J') is then done as follows. The set of variables Y' is Y ∪{y'}
where y' is a fresh variable representing the date at which formula '
will hold. For every variable y ∈ Y', V'(y) = V (y) if y ∈ Y , and
V'(y') = ⊤. The system J' is defined as

⋀
y∈Y (y' < y) ∧ J [x ← y'],

where J [x← y'] is the system J in which variable x has been replaced
by y' (roughly, the current date, represented by variable y', corresponds
to the date at which clock x is reset).

∙ We assume that ' is of the form
⋀ℎ
k=1 'k, where 'k is a simple TPTLF

formula. We assume we have already computed, for each 1 ≤ k ≤ ℎ,
a system S'k = (V'k ,J'k) over X'k and Y'k which corresponds to 'k in

5As the system is evaluated at time t, at least one of the variables of the valuation will be
mapped to t.
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the sense of equivalence (7). The construction of the system S' = (V',J')

is then achieved as follows. The set of variables Y' is
∪ℎ
k=1(Y'k ∖ {y'k})∪

{y'}, where y' is a fresh variable representing the date at which the
subformula ' will hold. The system S' = (V',J') is then defined as
follows: V'(y') =

⋀
1≤k≤ℎ V'k(y'k), and V'(y) = V'k(y) if y ∈ Y'k ∖{y'k}.

The system J' is defined as(
ℎ⋀
k=1

J'k [y'k ← y']

)
∧

⎛⎝ ⋀
y∈Y'

y' ≤ y

⎞⎠
Remark 1. ∙ Note that, by construction, for every formula ', there is a

variable y' ∈ Y' such that J' implies y' ≤ y for every y ∈ Y'.

∙ Note that writing S' = (V',J'), if ' is closed (i.e., if every clock x ∈ X' is
under the scope of the resetting operator ‘x.’), then there are no constraints
on variables of X' in the inequation system J'.

Example 3. For the formula x1.F (a ∧ x2.F (b ∧ x1 ≤ 2)), the system obtained
from the above inductive transformation is:

S =

⎧⎨⎩ V : y1 7→ a
y2 7→ b

J = (y2 − y0 ≤ 2) ∧ (y1 < y2) ∧ (y0 < y1) ∧ (y0 < y2)

It is just a technical matter to prove the following lemma, establishing the
correctness of the construction:

Lemma 20. �, t, v′ ∣=ib ' ⇐⇒ �, t, v′ ∣= S'.

Proof. The proof is by induction on the structure of '. The case of atoms and
clock constraints is obvious. We next assume that ' is of the form x.F  .

�, t, v′ ∣=ib x.F  

⇐⇒ ∃ t′ > t s.t. �, t′, v′[x 7→ t] ∣=ib  

⇐⇒ ∃ t′ > t s.t. �, t′, v′[x 7→ t] ∣= S (by induction hypothesis)

⇐⇒ ∃ t′ > t. ∃v : Y → ℝ≥0 s.t.

⎧⎨⎩ �, v, v′[x 7→ t] ⊢ S 
∀y ∈ Y . v(y) ≥ t′
v(y ) = t′

(by definition, and because y is the smallest variable in J )

⇐⇒ ∃ t′ > t. ∃v : Y' → ℝ≥0 s.t.

⎧⎨⎩

v∣Y ⊔ v′[x 7→ t] ∣= J 
∀y ∈ Y . �, v(y) ∣=ib V (y)
∀y ∈ Y . v(y) ≥ t′
v(y ) = t′

v(y') = t
�, v(y') ∣=ib V'(y') = ⊤
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⇐⇒ ∃v : Y' → ℝ≥0 s.t.

⎧⎨⎩
v ⊔ v′[x 7→ t] ∣= J'
∀y ∈ Y'. �, v(y) ∣=ib V'(y)
∀y ∈ Y'. v(y) ≥ t
v(y') = t

(by definition of S')

⇐⇒ �, t, v′ ∣= S' (because J' does not constrain variable x)

We finally assume that ' is of the form
⋀ℎ
k=1 'k.

�, t, v′ ∣=ib

ℎ⋀
k=1

'k ⇐⇒ ∀1 ≤ k ≤ ℎ. �, t, v′ ∣=ib 'k

⇐⇒ ∀1 ≤ k ≤ ℎ. �, t, v′ ∣= S'k
(by induction hypothesis)

⇐⇒

⎧⎨⎩
∀1 ≤ k ≤ ℎ. ∃vk : Y'k → ℝ≥0 s.t.⎧⎨⎩

∀y ∈ Y'k . vk(y) ≥ t,
vk(y'k) = t,
vk ⊔ v′ ∣= J'k ,
∀y ∈ Y'k , �, vk(y) ∣=ib V'k(y)

⇐⇒ ∃v : Y' → [t,+∞) s.t.

⎧⎨⎩ v(y') = t,
v ⊔ v′ ∣= J',
∀y ∈ Y', �, v(y) ∣= V'(y)

⇐⇒ �, t, v′ ∣= S'

This concludes the proof of Lemma 20. □

3. Some properties of systems of difference inequations.. Let S be a system
over Y and  be an MTLF formula. We say that S and  are equivalent if, for
every timed state sequence �,

�, 0,0 ∣= S iff �, 0 ∣=ib  .

Our goal is thus to build an MTLF formula  equivalent to S', where ' is a
simple TPTLF formula.

We say that two systems S = (V,J ) and S ′ = (V ′,J ′) are equivalent
whenever V = V ′, and J and J ′ have the same solutions. Note that two
equivalent systems represent TPTLF formulae that are equivalent over timed
state sequences.

The following lemma holds rather straightforwardly.

Lemma 21. Let S1 = (V,J1) and S2 = (V,J2) be two systems over X and Y .
Let S = (V,J ) be a system over X and Y such that the set of solutions of J is
the union of the sets of solutions of J1 and J2. Then

�, t, v′ ∣= S ⇐⇒ �, t, v′ ∣= S1 or �, t, v′ ∣= S2.
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Proof. Assume that �, t, v′ ∣= S. There exists v : Y → ℝ≥0 such that �, v, v′ ⊢
S, for all y ∈ Y , v(y) ≥ t, and there exists y0 ∈ Y such that v(y0) = t. By
definition of the ⊢ satisfaction relation, we have that v ⊔ v′ ∣= J , and for every
y ∈ Y , �, v(y), v′ ∣=ib V (y). As the set of solutions of J is the union of the sets
of solutions of J1 and J2, there exists i ∈ {1, 2} such that v ⊔ v′ ∣= Ji. Thus we
get that �, t, v′ ∣= Si.

Conversely, assume that �, t, v′ ∣= Si for some i ∈ {1, 2}. There exists
v : Y → ℝ≥0 such that �, v, v′ ⊢ Si, for all y ∈ Y , v(y) ≥ t, and there exists
y0 ∈ Y such that v(y0) = t. By definition of the ⊢ satisfaction relation, we
have that v ⊔ v′ ∣= Ji, and for every y ∈ Y , �, v(y), v′ ∣=ib V (y). As the set of
solutions of J is the union of the sets of solutions of J1 and J2, we get that
v ⊔ v′ ∣= J , and thus that �, t, v′ ∣= S. □

Thanks to this lemma, we have the following property: if 'i is an MTLF
formula equivalent to a system Si (for i ∈ {1, 2}), then '1 ∨ '2 is an MTLF
formula equivalent to S.

4. Reduction to bounded systems of difference inequations.. We fix a system
S = (V,J ), assuming J = {xi−xj ≺i,j mi,j ∣ i, j = 0 . . . n} is a set of constraints
in normal form (i.e., all constraints are tightened) with x0 = 0. We assume
in addition (even if it means duplicating the system, adding constraints of the
form xi ≤ xj , renaming variables, and applying Lemma 21) that constraints
in J imply that xi−1 ≤ xi for every 0 < i ≤ n, and we let M be the maximal
constant appearing in J . For every b : {1, . . . , n} → {≤, >}, we define a new set
of constraints J b where constraints {xi − xi−1 b(i) M ∣ 1 ≤ i ≤ n} are added
to J . We claim the following two lemmas:

Lemma 22. (ai)0≤i≤n is a solution of J iff it is a solution of J b for some
b : {1, . . . , n} → {≤, >}.

Lemma 23. We pick some b : {1, . . . , n} → {≤, >} such that J b is consistent
(i.e., J b has a solution), and write ≡b for the following equivalence on indices:

i ≡b j iff for all i ≤ k < j, b(k) = ≤.

Then J b is equivalent to

{xi − xj ≺i,j mi,j ∣ i ≡b j} ∪ {xi − xi−1 b(i)M ∣ 1 ≤ i ≤ n}.

This is a straightforward consequence of the fact that M is the maximal
constant appearing in J , and of the fact that xi−1 ≤ xi for every 0 < i ≤ n.

Lemma 23 can be depicted as follows:

0

x0 x1 x2 . . .

xn
bounded bounded

>M >M
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On this picture, each point on the line represents a variable, and a part denoted
“bounded” gathers variables whose differences are bounded by the system of
inequations J b. Two “bounded” parts are separated by more than M time
units.

From Lemmas 22 and 21, if  b is an MTLF formula equivalent to Sb, then the
disjunction of all  b’s, when b ranges over the whole set of functions {1, . . . , n} →
{≤, >}, is equivalent to S. It remains to explain how we construct a formula
equivalent to a system Sb.

We fix a b : {1, . . . , n} → {≤, >}, and denote by (Ii)0≤i≤p the equivalence
classes for ≡b (in increasing order). For each 0 ≤ i ≤ p, we denote by ni
the largest index in Ii. We assume we have a procedure for computing MTLF
formulae equivalent to systems S = (V,J ) where J implies that all variables
are bounded. We will describe such a procedure at step 6 below. The resulting
MTLF formula is denoted by Ψ(S). By a decreasing induction on i, we define
systems (Si)0≤i≤p as follows: Si = (Vi,Ji) is a system over {xj ∣ j ∈ Ii} and⎧⎨⎩
{
Vi(xj) = V b(xj) if i = p and j ∈ Ii, or if j ∈ Ii ∖ {ni}
Vi(xni) = V b(xni) ∧ F>M Ψ(Si+1) if i ∕= p

Ji = J b
∣Ii is the restriction of J b to variables {xj ∣ j ∈ Ii}

From Lemmas 20 and 23, formula  b is equivalent to formula Ψ(S0) defined
above. That way, we have reduced our initial problem to that of finding MTLF
formulae equivalent to systems S = (V,J ) where constraints in J imply that all
variables are bounded.

5. Decomposition of bounded systems of difference inequations.. We fix S =
(V,J ). We assume that the variables involved in J are {xi ∣ 0 ≤ i ≤ n},
and that they are bounded by M . Following region decompositions of timed
automata [AD94], we split J into systems where constraints are regions. Roughly,
a region specifies in which elementary intervals (interval of the form (c; c+ 1)
or singleton {c} for c ≤ M) lie the differences xi − xj . It is then sufficient to
find MTLF formulae for systems SR = (VR,JR) where JR represents a bounded
region: indeed, if  R is an MTLF formula equivalent to the system SR = (V,JR)
where JR contains all the constraints of J and all constraints defining the region
R (which equivalently means that JR corresponds to R because R is either
included in J or disjoint from J ), then the formula

⋁
R⊆J  R is equivalent to S

(applying Lemma 21).

A region R can be equivalently characterized by an integral value for every
variable xi (0 ≤ i ≤ n) and by variables (Xi)0≤i≤p (that form a partition of
{xi ∣ 0 ≤ i ≤ n}) such that6

6In the sequel, ⟨x⟩ represents the fractional part of x, and ⌊x⌋ represents the lower bound
of the interval in which variable x lies in R (if x is in {c} or (c; c + 1), then ⌊x⌋ is c).
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∙ x ∈ X0 if, and only if, ⟨x⟩ = 0 (where ⟨x⟩ denotes the fractional part of
clock x),

∙ x, y ∈ Xi if, and only if, ⟨x⟩ = ⟨y⟩,

∙ x ∈ Xi and y ∈ Xj with i < j implies ⟨x⟩ < ⟨y⟩,

Let S ′ = (V ′,J ′) be the system over {Xi ∣ 1 ≤ i ≤ p} (Xi’s are viewed as
variables here) such that for every 1 ≤ i ≤ p, V ′(Xi) =

⋀
x∈Xi F=⌊x⌋ V (x), and

J ′ is the system 0 < X1 < . . . < Xp < 1. If  ′ is an MTLF formula equivalent
to S ′, then the formula

(⋀
x∈X0

F=⌊x⌋ V (x)
)
∧  ′ is equivalent to the whole

system S.

6. MTLF formulae for simple systems.. It remains to find MTLF formulae
Ψ[1...p],r equivalent to systems Sp,r = (V,Jp,r) over {Xi ∣ 1 ≤ i ≤ p}, where r is
any rational and Jp,r is the set of constraints 0 < X1 < ⋅ ⋅ ⋅ < Xp < r. Note that,
even if this is an abuse of notation, we assume we have a unique function V which
is used for all systems Sp,r. We inductively build formulae Ψ[ℎ...ℎ+k],r, which
handle the case of variables Xℎ to Xℎ+k on the interval (0, r). When k < 0,
the formula is true. When k = 0, we have Ψ[ℎ],r = F<r V (Xℎ). For k + 1
variables Xℎ to Xℎ+k, Ψ[ℎ...ℎ+k],r is the disjunction of the following four formulae
Φ1 to Φ4, distinguishing between the possible positions of the variables:

∙ if there is no variable in the interval
(

0, r
k+1

]
and all variables (Xℎ+i)0≤i≤k

are in the interval
(

r
k+1 , r

)
:

Φ1 = Θ1 ∨ F< r
k+1

(Θ1) .

where

Θ1 = F< r
k+1

[
k⋁
i=1

((
F=r− ir

k+1
V (Xℎ+k)

)
∧Ψ[ℎ...ℎ+k−1],r− ir

k+1

)]

The formula Φ1 distinguishes between the possible positions for the last

variable Xℎ+k: it is in one of the punctual intervals
[
r − ir

k+1 , r −
ir
k+1

]
or

in one of the open intervals
(
r − ir

k+1 , r −
(i−1)r
k+1

)
for some 1 ≤ i ≤ ℎ+ k.

Note that Φ1 does not exactly express the above property: it may contain
some more cases, but it always implies that 0 < X1 < ⋅ ⋅ ⋅ < Xp < r. The
same remark also applies for the other three formulae.

∙ if there are 1 ≤ l ≤ k variables in the interval
(

0, r
k+1

)
and k − l + 1

variables in the interval
(

r
k+1 , r

)
:

Φ2 =

k⋁
l=1

(
Ψ[ℎ...ℎ+l−1], r

k+1
∧ F= r

k+1

(
Ψ[ℎ+l...ℎ+k],r− r

k+1

))
.

25



∙ if there are 0 ≤ l ≤ k variables in the interval
(

0, r
k+1

)
, one variable at

date r
k+1 , and k − l variables in the interval

(
r

k+1 , r
)

:

Φ3 =

k⋁
l=0

(
Ψ[ℎ...ℎ+l−1], r

k+1
∧ F= r

k+1

(
V (Xℎ+l) ∧Ψ[ℎ+l+1...ℎ+k],r− r

k+1

))
.

∙ finally, if all variables are in the interval
(

0, r
k+1

)
:

Φ4 = F< r
k+1

(
V (Xℎ) ∧ F< r

k+1

(
V (Xℎ+1) ∧ ( ⋅ ⋅ ⋅ )

))
It can easily be proved, by induction, that the resulting formula is equivalent
to Sp,r. □

Example 4. We illustrate all the steps of the above construction on the formula:

' = x.F
(
a ∧ x ≥ 1 ∧ F (b ∧ x ≤ 3) ∧ y.F (¬a ∧ x ≤ 3 ∧ y > 1)

)
Step 1. The normal form of ' is

x.F
(
a ∧ x ≥ 1 ∧ z.F (b ∧ x ≤ 3) ∧ y.F (¬a ∧ x ≤ 3 ∧ y > 1)

)
Step 2. Then, the system associated with this simple formula is

J =

⎧⎨⎩
z0 = 0 z2 > z1
z1 − z0 ≥ 1 z3 > z1
z2 − z0 ≤ 3 z1 > z0
z3 − z0 ≤ 3 z2 > z0
z3 − z1 > 1 z3 > z0

⎫⎬⎭ V :

⎧⎨⎩
z0 7→ ⊤
z1 7→ a
z2 7→ b
z3 7→ ¬a

Schematically, these constraints can be understood as follows:

x.F
(
a ∧ x ≥ 1 ∧ z.F (b ∧ x ≤ 3) ∧ y.F (¬a ∧ x ≤ 3 ∧ y > 1)

)
z0 z1 z2 z3

where:

∙ z0 represents the initial time, i.e. the date at which formula ' has
to hold (typically z0 = 0);

∙ z1, z2 and z3 are three witness dates for the three eventualities (i.e.,
the three parenthesised subformulas).
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Step 4. The above system of inequations does not constrain the order of z2
and z3; there are solutions of the system in which z2 < z3, and other
solutions in which z3 ≤ z2. We thus split the system of inequations
into two systems, that will be dealt separately; the formula for the global
system will be the disjunction of the two formulas obtained from each new
system. One of two systems will correspond to the previous constraints
plus z2 < z3—we write Sz2<z3 for the resulting system—, and the other
system will correspond to the previous constraints plus z3 ≤ z2—we write
Sz3≤z2 for the resulting system. Below we will first focus on the system
Sz3≤z2 , and then explain how we can deal with the difficult part of the
system Sz2<z3 .

The system Jz3≤z2 , illustrated on the next picture, is bounded (two
consecutive clocks are never separated by more than 3 time units, the
maximal constant); there is no need to further split the system.

z0

0

z1 z3 z2

≤ 3

≥ 1 > 1

≤ ≤ ≤

Step 5. This system of inequations we are focusing on can be decomposed into
regions. For example, it contains the region defined by the constraints:⎧⎨⎩

z0 = 0 1 < z1 < 2
2 < z2 < 3 2 < z3 < 3
z2 − z1 = 1 0 < z3 − z1 < 1

0 < z2 − z3 < 1

⎫⎬⎭
We want to have only constants 0 and 1, we thus shift the above system
and get the following one:

J ′ =

⎧⎨⎩
z′0 = 0 0 < z′1 < 1

0 < z′2 < 1 0 < z′3 < 1
z′2 − z′1 = 0 0 < z′1 − z′3 < 1

0 < z′2 − z′3 < 1

⎫⎬⎭ V ′ :

⎧⎨⎩
z′0 7→ ⊤
z′1 7→ F=1 a
z′2 7→ F=2 b
z′3 7→ F=2 ¬a

Setting X0 = {z′0}, X1 = {z′1, z′2} and X2 = {z′3}, we get the new system

J ′′ = {0 = X0 < X1 < X2 < 1} V ′′ :

⎧⎨⎩ X0 7→ ⊤
X1 7→ (F=1 a) ∧ (F=2 b)
X2 7→ F=2 ¬a
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Step 6. We now build the formula corresponding to the region we have selected
in Sz3≤z2 : Φ = Φ1 ∨ Φ2 ∨ Φ3 ∨ Φ4 with

Φ1 = Θ1 ∨ F<0.5 Θ1 with Θ1 = F<0.5 (F=1 a ∧ F=2 b) ∧ F=2.5 ¬a)

Φ2 = F<0.5 (F=1 a ∧ F=2 b) ∧ F(2.5,3) ¬a
Φ3 = F=0.5 (F=1 a ∧ F=2 b ∧ F(2,2.5) ¬a)∨

(F=0.5 (F=1 a ∧ F=2 b) ∧ F=2.5 ¬a)

Φ4 = F<0.5 (F=1 a ∧ F=2 b ∧ F(2,2.5) ¬a).

Note that this formula is only one part of the MTLF formula equivalent
to our original formula '. There are other formulas which come from the
decompositions we have made in the 4-th and 5-th steps. To illustrate all
aspects of the construction, we now consider one subcase of the system
Sz2<z3 .

Step 4bis. At the end of Step 4, we had selected the system Sz3≤z2 because it was
bounded, meaning that two consecutive variables were not separated by
more than 3 time units. We now consider the system Sz2<z3 , which is
illustrated below.

z0

0

z1 z3z2

≤ 3

≥ 1 > 1

≤ ≤ <

In this system, nothing prevents z3−z2 from being larger than 3. We thus
split the system into two systems: the first one with the constraint
z3−z2 ≤ 3, and the second one with the constraint z3−z2 > 3. The first
case is bounded, its treatment being similar to what we have previously
done. We thus only focus on the second system, which reduces to:

J̃ =

{
z̃0 = 0, z̃1 − z̃0 ≥ 1

z̃2 − z̃1 > 0 z̃2 − z̃0 ≤ 3

}
Ṽ :

⎧⎨⎩ z̃0 7→ true
z̃1 7→ a
z̃2 7→ b ∧ F>3 ¬a

because the only constraint on z3 is z3 − z2 > 3, hence replacing z2 by
variable z̃2, we write that b must hold at z̃2, and later, strictly after 3
time units, ¬a has to hold (former position z3).

Step 5bis. As previously, we select one region included in the previous zone, for
instance:

J̃ =

{
z̃0 = 0, 1 < z̃1 − z̃0 < 2

0 < z̃2 − z̃1 < 1 2 < z̃2 − z̃0 < 3

}
Ṽ :

⎧⎨⎩ z̃0 7→ true
z̃1 7→ a
z̃2 7→ b ∧ F>3 ¬a
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We then shift the constraints to only obtain constants 0 and 1, and we
get the system:

J̃ = {0 = z̃′0 < z̃′2 < z̃′1 < 1} Ṽ :

⎧⎨⎩ z̃′0 7→ true
z̃′1 7→ F=1 a
z̃′2 7→ F=2 (b ∧ F>3 ¬a)

Step 6bis. We get the following formula for the selected subsystem of Sz2<z3 :

F[0,0.5) (F<2.5 (b ∧ F>3 ¬a) ∧ F=1.5 a)

∨ F<2.5 (b ∧ F>3 ¬a) ∧ F=1.5 a

∨ F=0.5 (F=2 (b ∧ F>3 ¬a) ∧ F<1.5 a)

∨ F<0.5 (F=2 (b ∧ F>3 ¬a) ∧ F1.5 a).

Our construction from TPTLF to MTLF is exponential. We first compute the
normal form of the TPTLF formula ' by choosing for every disjunction one of the
disjuncts: the normal form is then the disjunction of all the formulae obtained
by such choices. This gives an exponential number of formulae whose disjunction
corresponds to ', the size of each formula being linear in the size of '. The
reduction to bounded systems produces for each formula an exponential number
of systems (whose size is polynomial in the size of '). Then for each system
we compute the corresponding MTL formula which has an exponential size in
the size of the system. The MTL formula for ' is finally a combination of this
exponential number of exponential formulae, its size is thus simply exponential.

Our construction above also yields a procedure for the satisfiability of a
TPTLF formula. It is known [AFH96] that the satisfiability problem for TPTL
and MTL is undecidable for the interval-based semantics, whereas it has been
proved recently that the satisfiability problem for MTL over finite paths is
decidable but non primitive recursive for the pointwise semantics [OW05]. With
the construction above, we get:

Corollary 24. The satisfiability problem for TPTLF (and MTLF) is NP-com-
plete for the interval-based semantics.

Proof. If  is a TPTLF formula, first guess for each disjunction of  one of the
disjuncts, and build the system S = (V,J ) for the new formula which is directly
in normal form (this is achieved in polynomial time); then guess an order on
the variables which is consistent with the constraints in J ; finally solve a simple
linear programming problem. For each guess, the problem can be solved in
polynomial time and all guesses are independent, we thus get that the problem is
in NP. Hardness in NP directly follows from that of 3SAT (an instance of 3SAT
can be viewed as a special instance of MTLF or TPTLF satisfiability). □
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5. Conclusion

We have proved the conjecture (first proposed in [AH90]) that the logic TPTL
is strictly more expressive than MTL. In the meantime, many interesting and
surprising expressiveness properties have appeared as side results: expressiveness
of past-time operators, expressiveness of MITL, ...

We also derived a surprisingly efficient algorithm for the satisfiability of
TPTLF under the interval-based semantics: it is not harder than boolean satisfi-
ability, while satisfiability of MTL or TPTL is undecidable.

Linear models we have used for proving our expressiveness results can be
viewed as special cases of branching-time models. Our main result thus applies to
the branching-time logic TCTL (by replacing the modality U with the modality
AU, and translates as: TCTL with explicit clocks [HNSY94] is strictly more
expressive than TCTL with subscripts [ACD93], as conjectured in [Alu91, Yov93].

Studying the expressiveness of various timed temporal logics is still a very ac-
tive topic [HR06, DP06, DMMP06, HR07, FR07, DP07, DHV07]. In particular,
our work has opened the way for several works on the expressiveness of timed
temporal logics, e.g. [DP07, DHV07], which discuss the relative expressiveness
of MTL+Past (resp. TPTL+Past) in the pointwise and continuous semantics,
or [DP06, DMMP06], which discuss the expressiveness of different fragments
of MTL+Past.
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