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Abstract. We propose a framework for model-based diagnosis of sys-
tems with mobility and variable topologies, modelled as graph transfor-
mation systems. Generally speaking, model-based diagnosis is aimed at
constructing explanations of observed faulty behaviours on the basis of
a given model of the system. Since the number of possible explanations
may be huge we exploit the unfolding as a compact data structure to
store them, along the lines of previous work dealing with Petri net mod-
els. Given a model of a system and an observation, the explanations can
be constructed by unfolding the model constrained by the observation,
and then removing incomplete explanations in a pruning phase. The the-
ory is formalised in a general categorical setting: constraining the system
by the observation corresponds to taking a product in the chosen cate-
gory of graph grammars, so that the correctness of the procedure can be
proved by using the fact that the unfolding is a right adjoint and thus
it preserves products. The theory thus should be easily applicable to a
wide class of system models, including graph grammars and Petri nets.

1 Introduction

The event-oriented model-based diagnosis problem is a classical topic in discrete
event systems [7, 15]. Given an observed alarm stream, the aim is to provide ex-
planations in terms of actual system behaviours. Some events of the system are
observable (alarms) while others are not. In particular, fault events are usually
unobservable; therefore, fault diagnosis is the main motivation of the diagnosis
problem. Given a sequence (or partially ordered set) of observable events, the
diagnoser has to find all possible behaviours of the model explaining the obser-
vation, thus allowing the deduction of invisible causes (faults) of visible events
(alarms). The paper [16] provides a survey on fault diagnosis in this direction.

Since the number of possible explanations may be huge, especially in the case
of highly concurrent systems, it is advisable to employ space-saving methods.
In [16, 10], the global diagnosis is obtained as the fusion of local decisions: this
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distributed approach allows one to factor explanations over a set of local observers
and diagnoses, rather than centralizing the data storage and handling.

We will build here upon the approach of [5] where diagnoses are stored in
the form of unfoldings. The unfolding of a system fully describes its concurrent
behaviour in a single branching structure, representing all the possible compu-
tation steps and their mutual dependencies, as well as all reachable states; the
effectiveness of the approach lies in the use of partially ordered runs, rather than
interleavings, to store and handle explanations extracted from the system model.

While [5] and subsequent work in this direction was mainly directed to Petri
nets, here we face the diagnosis problem in mobile and variable topologies. This
requires the development of a model-based diagnosis approach which applies to
other, more expressive, formalisms. Unfoldings of extensions of Petri nets where
the topology may change dynamically were studied in [8, 6]. Here we focus on
the general and well-established formalism of graph transformation systems.

In order to retain only the behaviour of the system that matches the obser-
vations, it is not the model itself that is unfolded, but the product of the model
with the observations, which represents the original system constrained by the
observation; under suitable observability assumptions, a finite prefix of the un-
folding is sufficient. The construction is carried out in a suitably defined category
of graph grammars, where such a product can be shown to be the categorical
product. A further pruning phase is necessary in order to remove incomplete
explanations that are only valid for a prefix of the observations.

We show the correctness of this technique, i.e., we show that the runs of
the unfolding properly capture all those runs of the model which explain the
observation. This non-trivial result is obtained by using the fact that unfolding
for graph grammars is a coreflection, hence it preserves limits (and especially
products, such as the product of the model and the observation). In order to
ensure that the product is really a categorical product, special care has to be
taken in the definition of the category.

Additional technical details and the proofs of all the results can be found in
the full version of the paper [1].

2 Graph Grammars and Grammar Morphisms

In this section we summarise the basics of graph rewriting in the single-pushout
(spo) approach [13]. We introduce a category of graph grammars, whose mor-
phisms are a variation of those in [3] and we characterise the induced categorical
product, which turns out to be adequate for expressing the notion of composition
needed in our diagnosis framework. Then we show that the unfolding semantics
smoothly extends to this setting, arguing that the unfolding construction can
still be characterised categorically as a universal construction. The proof relies
on the results in [3]; this motivates our choice of the spo approach as opposed
to the more classical double-pushout (dpo) approach, for graph rewriting.
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2.1 Graph Grammars and their Morphisms

Given a partial function f : A ⇀ B we write f(a) ↓ whenever f is defined on
a ∈ A and f(a)↑ whenever it is undefined. We will denote by dom(f) the domain
of f , i.e., the set {a ∈ A | f(a)↓}. Let f, g : A ⇀ B be two partial functions. We
will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

For a set A, we denote by A∗ the set of sequences over A. Given f : A ⇀

B, the symbol f∗ : A∗ → B∗ denotes its extension to sequences defined by
f∗(a1 . . . an) = f(a1) . . . f(an), where it is intended that the elements on which
f is undefined are “forgotten”. Specifically, f∗(a1 . . . an) = ε whenever f(ai) ↑
for any i ∈ {1, . . . , n}. Instead, f⊥:A∗ ⇀ B∗ denotes the strict extension of f to
sequences, satisfying f⊥(a1 . . . an) ↑ whenever f(ai) ↑ for some i ∈ {1, . . . , n}.

A (hyper)graph G is a tuple (NG, EG, cG), where NG is a set of nodes, EG is
a set of edges and cG : EG → N∗

G is a connection function. Given a graph G we
will write x ∈ G to say that x is a node or edge in G, i.e., x ∈ NG ∪ EG.

Definition 1 (partial graph morphism). A partial graph morphism f : G ⇀

H is a pair of partial functions f = 〈fN : NG ⇀ NH , fE : EG ⇀ EH〉 such that:

cH ◦ fE ≤ f⊥
N ◦ cG (*)

We denote by PGraph the category of hypergraphs and partial graph mor-
phisms. A morphism is called total if both components are total, and the corre-
sponding subcategory of PGraph is denoted by Graph.

Notice that, according to condition (*), if f is defined on an edge then it must
be defined on all its adjacent nodes: this ensures that the domain of f is a well-
formed graph. The inequality in condition (*) ensures that any subgraph of a
graph G can be the domain of a partial morphism f : G ⇀ H.

We will work with typed graphs [9, 14], which are graphs labelled over a
structure that is itself a graph, called the graph of types.

Definition 2 (typed graph). Given a graph T , a typed graph G over T is
a graph |G|, together with a total morphism tG : |G| → T . A partial morphism
between T -typed graphs f : G1 ⇀ G2 is a partial graph morphism f : |G1| ⇀ |G2|
consistent with the typing, i.e., such that tG1

≥ tG2
◦f . A typed graph G is called

injective if the typing morphism tG is injective. The category of T -typed graphs
and partial typed graph morphisms is denoted by T -PGraph.

Definition 3 (graph production, direct derivation). Fixing a graph T of
types, a (T -typed graph) production q is an injective partial typed graph mor-

phism Lq

rq

⇀ Rq. It is called consuming if rq is not total. The typed graphs Lq

and Rq are called left-hand side and right-hand side of the production.

Given a typed graph G and a match, i.e., a total injective
morphism g : Lq → G, we say that there is a direct derivation
δ from G to H using q (based on g), written δ : G ⇒q H, if
there is a pushout square in T -PGraph as on the right.

Lq

g
��

rq
/ Rq

h
��

G
d

/ H

Roughly speaking, the rewriting step removes from G the image of the items
of the left-hand side which are not in the domain of rq, namely g(Lq −dom(rq)),
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Fig. 1. Dangling edge removal in spo rewriting.

adding the items of the right-hand side which are not in the image of rq, namely
Rq − rq(dom(rq)). The items in the image of dom(rq) are “preserved” by the
rewriting step (intuitively, they are accessed in a “read-only” manner). Addi-
tionally, whenever a node is removed, all the edges incident to such a node are
removed as well. For instance, consider production fail at the bottom of Fig. 2.
Its left-hand side contains a unary edge (i.e., an edge connected to only one node)
and its right-hand side is the empty graph. Nodes and edges are represented as
circles and boxes, respectively. The application of fail to a graph is illustrated
in Fig. 1, where the match of the left-hand side is indicated as shaded.

Definition 4 (typed graph grammar). A (T -typed) spo graph grammar G
is a tuple 〈T,Gs, P, π, Λ, λ〉, where Gs is the (typed) start graph, P is a set
of production names, π is a function which associates to each name q ∈ P a
production π(q), and λ : P → Λ is a labelling over the set Λ. A graph grammar
is consuming if all the productions in the range of π are consuming.

As standard in unfolding approaches, in the paper we will consider consuming
graph grammars only, where each production deletes some item. Hereafter, when
omitted, we will assume that the components of a given graph grammar G are
〈T,Gs, P, π, Λ, λ〉. Subscripts carry over to the component names.

For a graph grammar G we denote by Elem(G) the set NT ∪ ET ∪ P . As
a convention, for each production name q the corresponding production π(q)

will be Lq

rq

⇀ Rq. Without loss of generality, we will assume that the injective
partial morphism rq is a partial inclusion (i.e., that rq(x) = x whenever defined).
Moreover we assume that the domain of rq, which is a subgraph of both |Lq|
and |Rq|, is the intersection of these two graphs, i.e., that |Lq|∩ |Rq| = dom(rq),
componentwise. Since in this paper we work only with typed notions, we will
usually omit the qualification “typed”, and, sometimes, we will not indicate
explicitly the typing morphisms.

In the sequel we will often refer to the runs of a grammar defined as follows.

Definition 5 (runs of a grammar). Let G be a graph grammar. Then Runs(G)

contains all sequences r1r2 . . . rn where ri ∈ P and Gs
r1⇒ G1

r2⇒ G2 . . .
rn⇒ Gn.

Example. As a running example we will consider the graph grammar M whose
start graph and productions are given in Fig. 2. It models a network with mo-
bility whose nodes are either senders (labelled S), receivers (R) or intermediary
nodes (I). Senders may send messages which can then cross connections and
should finally arrive at a receiver. However, a connection may be spontaneously
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corrupted, which causes the corruption of any message which crosses it. The
network is variable and of unbounded size as we allow the creation of a new
connection between existing intermediary nodes and the creation of a new con-
nection leading from an existing intermediary node to a new intermediary node.

Productions (and the corresponding partial morphisms) are depicted as fol-
lows: edges that are deleted or created are drawn with solid lines, whereas edges
that are preserved are indicated with dashed lines. Nodes which are preserved
are indicated with numbers, whereas newly created nodes are not numbered.

Productions that should be observable (a notion that will be made formal in
Section 4) are indicated by bold face letters.

We next define the class of grammars which will focus on in the development.

Definition 6 (semi-weighted SPO graph grammars). A grammar G is
semi-weighted if (i) the start graph Gs is injective, and (ii) for each q ∈ P , for
any x, y in |Rq| − |Lq| if tRq

(x) = tRq
(y) then x = y, i.e., the right-hand side

graph Rq is injective on the “produced part” |Rq| − |Lq|.

Intuitively, conditions (i) and (ii) ensure that in a semi-weighted grammar each
item generated in a computation has a uniquely determined causal history, a
fact which is essential for the validity of Theorem 15.

Note that grammar M of Fig. 2 is not semi-weighted (if we assume the
simplest type graph that contains one node and exactly one edge for every edge
label). It could easily be converted into a semi-weighted grammar, for instance by
creating the start graph (which is not injectively typed) step by step. However,
for the sake of simplicity we do not carry out this construction in the paper.

A grammar morphism consists of a (partial) mapping between production
names and a component specifying the (multi)relation between the type graphs.
A morphism must “preserve” the graphs underlying corresponding productions
of the two grammars as well as the start graphs. Since these conditions are
exactly the same as in [3] and they are not relevant for understanding this paper,
in the sequel we will refer to the morphisms in [3], making explicit only the new
condition regarding the labelling. The interested reader can find the details in
the full version [1].

Definition 7 (grammar morphism). Let Gi (i ∈ {1, 2}) be graph grammars
such that Λ2 ⊆ Λ1. A grammar morphism f : G1 → G2 is a morphism in
the sense of [3, Def. 15] where the component on productions, i.e., the partial
function fP : P1 ⇀ P2, additionally satisfies, for all q1 ∈ P1

fP (q1) ↓ iff λ1(q1) ∈ Λ2 and, in this case, λ2(fP (q1)) = λ1(q1).

Note that a morphism from G1 to G2 might exist only when Λ2 ⊆ Λ1.

Definition 8 (category of graph grammars). We denote by GG the cate-
gory where objects are spo graph grammars and arrows are grammar morphisms.
By SGG we denote the full subcategory of GG having semi-weighted graph gram-
mars as objects.

The choice of grammar morphisms and, in particular, the conditions on the la-
belling, lead to a categorical product suited for composing two grammars G1 and
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Fig. 2. Example grammar M: message passing over possibly corrupted connections.
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G2: productions with labels in Λ1∩Λ2 are forced to be executed in a synchronous
way, while the others are executed independently in the two components.

Proposition 9 (product of graph grammars). Let G1 and G2 be two graph
grammars. Their product object G = G1 × G2 in GG is defined as follows:

– T = T1 ⊎ T2;
– Gs = Gs1 ⊎ Gs2, with the obvious typing;
– P = {(p1, p2) | λ1(p1) = λ2(p2)} ∪{(p1, ∅) | λ1(p1) 6∈ Λ2}

∪{(∅, p2) | λ2(p2) 6∈ Λ1};
– π(p1, p2) = π1(p1) ⊎ π2(p2), where πi(∅) is the empty rule ∅ → ∅;
– Λ = Λ1 ∪ Λ2;
– λ(p1, p2) = λi(pi), for any i ∈ {1, 2} such that pi 6= ∅;

where, p1 and p2 range over P1 and P2, respectively, and disjoint unions are
taken componentwise. If G1,G2 are both semi-weighted grammars, then G as
defined above is semi-weighted, and it is the product of G1 and G2 in SGG.

2.2 Occurrence Grammars and Unfolding

A grammar G is safe if (i) for all H such that Gs ⇒∗ H, H is injective, and
(ii) for each q ∈ P , the left- and right-hand side graphs Lq and Rq are injective.

In words, in a safe grammar each graph G reachable from the start graph is
injectively typed, and thus we can identify it with the corresponding subgraph
tG(|G|) of the type graph. With this identification, a production can only be
applied to the subgraph of the type graph which is the image via the typing
morphism of its left-hand side. Thus, according to its typing, we can think that
a production produces, preserves or consumes items of the type graph, and using
a net-like language, we speak of pre-set, context and post-set of a production,
correspondingly. Intuitively the type graph T stands for the places of a net,
whereas the productions P represent the transitions.

Definition 10 (pre-set, post-set and context of a production). Let G be
a graph grammar. For any production q ∈ P we define its pre-set •q, context q

and post-set q• as the following subsets of ET ∪ NT :
•q = tLq

(|Lq| − |dom(rq)|) q = tLq
(|dom(rq)|) q• = tRq

(|Rq| − rq(|dom(rq)|)).

Symmetrically, for each item x ∈ T we define •x = {q ∈ P | x ∈ q•}, x• = {q ∈
P | x ∈ •q}, x = {q ∈ P | x ∈ q}.

Causal dependencies between productions are captured as follows.

Definition 11 (causality). The causality relation of a grammar G is the (least)
transitive relation < over Elem(G) satisfying, for any node or edge x ∈ T , and
for productions q, q′ ∈ P ,

1. if x ∈ •q then x < q;
2. if x ∈ q• then q < x;
3. if q• ∩ q′ 6= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by ⌊x⌋ the set of causes of x in P , namely {q ∈ P | q ≤ x}.
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As in Petri nets with read arcs, the fact that a production application not
only consumes and produces, but also preserves a part of the state, leads to a
form of asymmetric conflict between productions; for a thorough discussion of
asymmetric event structures see [2].

Definition 12 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation ր over the set of productions, defined by:

1. if q ∩ •q′ 6= ∅ then q ր q′;
2. if •q ∩ •q′ 6= ∅ and q 6= q′ then q ր q′;
3. if q < q′ then q ր q′.

Intuitively, whenever q ր q′, q can never follow q′ in a computation. This holds
when q preserves something deleted by q′ (Condition 1), trivially when q and q′

are in conflict (Condition 2) and also when q < q′ (Condition 3). Conflicts (in
acyclic grammars) are represented by cycles of asymmetric conflict: if q1 ր q2 ր
. . . ր qn ր q1 then {q1, . . . , qn} will never appear in the same computation.

An occurrence grammar is an acyclic grammar which represents, in a branch-
ing structure, several possible computations beginning from its start graph and
using each production at most once. Recall that a relation R ⊆ X×X is finitary
if for any x ∈ X, the set {y ∈ X | R(y, x)} is finite.

Definition 13 (occurrence grammar). An occurrence grammar is a safe
grammar O = 〈T,Gs, P, π, Λ, λ〉 such that

1. causality < is irreflexive, its reflexive closure ≤ is a partial order, and, for
any q ∈ P , the set ⌊q⌋ is finite and asymmetric conflict ր is acyclic on ⌊q⌋;

2. the start graph Gs is the set Min(O) of minimal elements of 〈Elem(O),≤〉
(with the graphical structure inherited from T and typed by the inclusion);

3. any item x in T is created by at most one production in P , i.e., |•x| ≤ 1;

A finite occurrence grammar is deterministic if relation ր+, the transitive clo-
sure of ր, is irreflexive. We denote by OGG the full subcategory of GG with
occurrence grammars as objects.

Note that the start graph of an occurrence grammar O is determined by Min(O).
An occurrence grammar is deterministic if it does not contain conflicts (cycles
of asymmetric conflict) so that all its productions can be executed in the same
computation. In the sequel, the productions of an occurrence grammar will often
be called events.

The notion of configuration captures the intuitive idea of (deterministic)
computation in an occurrence grammar.

Definition 14 (configuration). Let O = 〈T, P, π〉 be an occurrence grammar.
A configuration is a subset C ⊆ P such that (i) for any q ∈ C it holds ⌊q⌋ ⊆ C

and (ii) րC , the asymmetric conflict restricted to C, is acyclic and finitary.

It can be shown that, indeed, all the productions in a configuration can be
applied in a derivation exactly once in any order compatible with ր.

Since occurrence grammars are particular semi-weighted grammars, there is
an inclusion functor I : OGG → SGG. Such functor has a right adjoint.
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Theorem 15. The inclusion functor I : OGG → SGG has a right adjoint,
the so-called unfolding functor U : SGG → OGG.

As a consequence of the above result U , as a right adjoint, preserves all limits
and in particular products.

The result is a corollary of [3], which, in turn, is obtained through the explicit
definition of the unfolding U(G). Given a grammar G the unfolding construction
produces an occurrence grammar which fully describes its behaviour recording
all the possible graph items which are generated and the occurrences of pro-
ductions. The unfolding is obtained by starting from the start graph (as type
graph), applying productions in any possible way, without deleting items but
only generating new ones, and recording such production instances in the type
graph. The result is an occurrence grammar U(G) and a grammar morphism
f : U(G) → G, called the folding morphism, which maps each item (instance
of production or graph item) of the unfolding to the corresponding item of the
original grammar. Because of space limitations, the construction is not formally
defined here. In Section 4 we will show an example of an unfolding.

3 Interleaving Structures

Interleaving structures [4] are a semantic model which captures the behaviour
of a system as the collection of its possible runs. They are used as a simpler
intermediate model which helps in stating and proving the correctness of the
diagnosis procedure.

An interleaving structure is essentially a collection of runs (sequences of
events) satisfying suitable closure properties. Given a set E, we will denote by
E⊙ the set of sequences over E in which each element of E occurs at most once.

Definition 16 (interleaving structures). A (labelled) interleaving structure
is a tuple I = (E,R,Λ, λ) where E is a set of events, λ:E → Λ is a labelling of
events and R ⊆ E⊙ is the set of runs, satisfying: (i) R is prefix-closed, (ii) R

contains the empty run ε, and (iii) every event e ∈ E occurs in at least one run.

The category of interleaving structures, as defined below, is adapted from [4]
by changing the notion of morphisms in order to take into account the labels.
This is needed to obtain a product which expresses a suitable form of synchro-
nised composition.

Definition 17 (interleaving morphisms). Let Ii with i ∈ {1, 2} be inter-
leaving structures. An interleaving morphism from I1 to I2 is a partial function
θ:E1 ⇀ E2 on events such that

1. Λ2 ⊆ Λ1;
2. for each e1 ∈ E1, θ(e1)↓ iff λ1(e1) ∈ Λ2 and, in this case, λ2(θ(e1)) = λ1(e1);
3. for every r ∈ R1 it holds that θ∗(r) ∈ R2.

Morphism θ is called a projection if θ is surjective on runs (as a function from
R1 to R2). The category of interleaving structures and morphisms is denoted Ilv.
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An occurrence grammar can be easily mapped to an interleaving structure,
by simply taking all the runs of the grammar.

Definition 18 (interleaving structures for occurrence grammars). For
an occurrence grammar G we denote by Ilv(G) the interleaving structure which
consists of all runs of G, i.e., Ilv(G) = (P,Runs(G), Λ, λ).

We next characterise the categorical product in Ilv, which turns out to be,
as in GG, the desired form of synchronised product.

Proposition 19 (product of interleaving structures). Let I1 and I2 be
two interleaving structures. Then the product object I1 × I2 is the interleaving
structure I = (E,R,Λ, λ) defined as follows. Let

E′ = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, λ1(e1) = λ2(e2)}

∪ {(e1, ∗) | e1 ∈ E1, λ1(e1) 6∈ Λ2} ∪ {(∗, e2) | e2 ∈ E2, λ2(e2) 6∈ Λ1}

and let πi : E ⇀ Ei be the obvious (partial) projections. Then R = {r ∈ (E′)⊙ |
π∗

1(r) ∈ R1, π
∗
2(r) ∈ R2}, E = {e′ ∈ E′ | e occurs in some run r ∈ R}, Λ =

Λ1 ∪ Λ2 and λ is defined in the obvious way.

4 Diagnosis and Pruning

In this section we use the tools introduced so far in order to formalise the di-
agnosis problem. Then we show how, given a graph grammar model and an
observation for such a grammar, the diagnosis can be obtained by first taking
the product of the model and the observation, considering its unfolding and
finally pruning such unfolding in order to remove incomplete explanations. As
already mentioned, typically only a subset of the productions in the system is
observable. Hence, for this section, we fix a graph grammar G with Λ as the
set of labels, and a subset Λ′ ⊆ Λ of observable labels; an event or production
is called observable if it has an observable label. In order to keep explanations
finite, we will only consider systems that satisfy the following observability as-
sumption (compare [15, 11]): any infinite run must contain an infinite number of
observable productions.

In the sequel we will need to consider the runs of a system which have a num-
ber of observable events coinciding with the number of events in the observation.
For this aim the following definition will be useful.

Definition 20 (n-runs of a grammar). Let G be a graph grammar. For a
given n ∈ N we denote by Runsn(G) the set of all runs for which the number of
observable productions equals n.

The outcome of the diagnosis procedure is an occurrence grammar which,
intuitively, collects all the behaviours of the grammar G modelling the system,
which are able to “explain” the observation.

An observation can be a sequence (in the case of a single observer) or a set
of sequences (in the case of multiple distributed observers) of alarms (observable
events). Here we consider, more generally, partially ordered sets of observations,
which can be conveniently modelled as deterministic occurrence grammars O.
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Fig. 3. A graph grammar representing an observation O.

Definition 21 (observation grammar). An observation grammar for a given
grammar G, with observable labels Λ′, is a (finite) deterministic occurrence gram-
mar labelled over Λ′.

Given a sequence of observed events, we can easily construct an observation
grammar O having that sequence as observable behaviour. It will have a pro-
duction for each event in the sequence (with the corresponding label). Each such
production consumes a resource generated by the previous one in the sequence
(or an initial resource in the case of the first production). The same construction
applies to general partially ordered sets observations.

Example. In the example grammar M (see Fig. 2), assume that we have the
following observation: snd2 cconn crcv2, i.e., we observe, in sequence, the send-
ing of a message, the creation of a connection and the reception of a corrupted
message. These three observations can be represented by a simple grammar O
(see Fig. 3) with three productions, each of which either consumes an initial
resource or a resource produced by the previous production. These resources are
modeled as 0-ary edges (labelled X, Y , Z). The initial graph is depicted with
bold lines, and the left- and right-hand sides of the productions of the occurrence
grammar are indicated by a Petri-net-like notation: events are drawn with black
rectangles connected to the respective edges by dashed lines.

When unfolding the product of a grammar G with its observation O, we
obtain a grammar U = U(G × O) with a morphism π:U → O, arising as the
image through the unfolding functor of the projection G × O → O (since the
unfolding of an occurrence grammar is the grammar itself). Now, as grammar
morphisms are simulations, given the morphism π:U → O we know that any
computation in U is mapped to a computation in O. Say that a computation
in U is a full explanation of O if it is mapped to a computation of O including
all its productions. As U can still contain events belonging only to incomplete
explanations, the aim of pruning is to remove such events.

Definition 22 (pruning). Let π:U → O be a grammar morphism from an
occurrence grammar U to an observation O. We define the pruning of π, denoted
by Pr(π), to be the grammar obtained from U by removing all events (including
their consequences) not belonging to the following set:

{q ∈ PU | ∃C ∈ Conf (U): (q ∈ C ∧ π(C) = PO)}

Discussing the efficiency of pruning algorithms is outside the scope of the
paper; for sequential observations an on-the-fly algorithm is discussed in [5].

As described above, the diagnosis is constructed by first taking the product
of G with the observation (this intuitively represents the system constrained by
the observation). This product is then unfolded to get an explicit representation
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of the possible behaviours explaining the observation. Finally, a pruning phase
removes from the resulting occurrence grammar the events belonging (only) to
incomplete explanations. This is formalised in the definition below.

Definition 23 (diagnosis grammar). Let G be the grammar modelling the
system of interest and let O be an observation. Take the product G×O, the right
projection ϕ : G ×O → O and consider π = U(ϕ) : U(G ×O) → O.

Then the occurrence grammar Pr(π) is called the diagnosis grammar of the
model and the observation and denoted by D(G,O).

Note that since the observability assumption holds, it can easily be shown
that the diagnosis grammar is finite, whenever the observation is finite.

Example. We can compute the product of grammars M and O and unfold it.
For reasons of space Fig. 4 shows only a prefix of the unfolding that depicts
one possible explanation: here the message is sent (event a) and crosses the
first connection (b). Possibly concurrently a new connection between the two
intermediate nodes is created (c), which is then also crossed by the message
(d). Again in a possibly concurrent step the last connection is corrupted (e),
leading to the corruption of the message (f) and its reception by the receiver
(g). Observable events are indicated by bold face letters.

Several events of the unfolding have been left out due to space constraints,
for instance:

– Events belonging to alternative explanations: the corruption of the first con-
nection or the corruption of the newly created middle connection (or the
corruption of any non-empty subset of these connections). Alternatively it
might also have been the case that the other sender/receiver pair handles the
message, while the connection (which is not involved in any way) is created
between the two intermediate nodes.

– Events that happen concurrently but are not directly related to the failure,
such as the corruption of a connection over which no message is sent.

Furthermore there are events belonging to prefixes of the unfolding that
cannot be extended to a full observation. For instance, the unfolding would
contain concurrent events representing sending by the right-hand sender and
the creation of a new connection leading from right to left instead of left to
right. However, this is a false trail since this would never cause the reception of
a message by the right-hand receiver. These incomplete explanations are removed
from the unfolding in the pruning phase.

Note that—due to the presence of concurrent events—the unfolding is a
much more compact representation of everything that might have happened in
the system than the set of all possible interleavings of events.

5 Correctness of the Diagnosis

We now show our main result, stating that the runs of the diagnosis grammar
properly capture all those runs of the system model which explain the obser-
vation. This is done by exploiting the coreflection result (Theorem 15) and by
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Fig. 4. Running example: prefix of the unfolding of the product.

additionally taking care of the pruning phase (Definition 22). We first need some
technical results.

Lemma 24. Let G1,G2 be two occurrence grammars. Consider the product of the
two grammars and its image through the Ilv functor as shown below. Furthermore
consider the product of the interleaving structures Ilv(G1), Ilv(G2). Then the
mediating morphism δ is a projection which is total on events.

Ilv(G1) Ilv(G1) × Ilv(G2)
δ1

oo
δ2

// Ilv(G2)

Ilv(G1 × G2)
π1

jjUUUUUUUU
π2

44iiiiiiii
δ

OO

To lighten the notation, hereafter, given an interleaving structure I we write
λ∗(I) for λ∗(RI). Recall that, given f : Λ1 ⇀ Λ2, f∗ : Λ∗

1 → Λ∗
2 denotes the

(non-strict) extension of f to sequences. Then f−1 : P(Λ∗
2) → P(Λ∗

1) is its
inverse.

Lemma 25. Let G1,G2 be two occurrence grammars and let fi:Λ1 ∪ Λ2 ⇀ Λi

(i ∈ {1, 2}) be the obvious partial inclusions. Then it holds that

λ∗(Ilv(G1 × G2)) = f−1

1 (λ∗
1(Ilv(G1))) ∩ f−1

2 (λ∗
2(Ilv(G2))).

The next proposition shows that considering the product of the original gram-
mar G and of the observation O, taking its unfolding and the corresponding
labelled runs, we obtain exactly the runs of G compatible with the observation.

Proposition 26. Let G be a grammar and O an observation, where Λ is the set
of labels of G and Λ′ ⊆ Λ the set of labels of O. Furthermore let f :Λ ⇀ Λ′ be
the obvious partial inclusion. Then it holds that:

λ∗(Ilv(U(G ×O))) = λ∗(Runs(G)) ∩ f−1(λ∗(Runs(O))).

We can conclude that the described diagnosis procedure is complete, i.e.,
given an observation of size n, the runs of the diagnosis grammar D(G,O) with
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Fig. 5. Spurious runs in a diagnosis grammar.

n observable events are in 1-1 correspondence with those runs of G that provide
a full explanation of the observation. As a preliminary result, on the basis of
Proposition 26 one could have shown that the same holds replacing the diag-
nosis grammar with U(G × O), i.e., the unpruned unfolding. The result below
additionally shows that no valid explanation is lost during the pruning phase.

Theorem 27 (correctness of the diagnosis). With the notation of Proposi-
tion 26 it holds that:

λ∗(Runsn(D(G,O))) = λ∗(Runs(G)) ∩ f−1(λ∗(Runsn(O))).

That is, the maximal interleavings of the diagnosis grammar (seen as label se-
quences) are exactly the runs of the model which explain the full observation.

Observe that, due to the nondeterministic nature of the diagnosis grammar,
events which are kept in the pruning phase as they are part of some full ex-
planantion of the observation, can also occur in a different configuration. As a
consequence, although all inessential events have been removed, the diagnosis
grammar can still contain spurious configurations which cannot be extended to
full explanations. As an example, consider the graph grammar G in Fig. 5, given
in a Petri-net-like notation. Assume we observe three unordered events a, b,
c. Then the unfolding of the product basically corresponds to G itself. In the
pruning phase nothing is removed. However there is a configuration (indicated
by the dashed closed line) that cannot be further extended to an explanation.

6 Conclusion

In this paper we formalised event-based diagnosis for systems with variable
topologies, modelled as graph transformation systems. In particular we have
shown how to exploit the coreflection result for the unfolding of graph grammars
in order to show the correctness of a diagnosis procedure generating partially
ordered explanations for a given observation.

We are confident that the approach presented in the paper, although devel-
oped for tranformation systems over hypergraphs, can be generalised to the more
abstract setting of adhesive categories. In particular we are currently working
on a generalization of the unfolding procedure that works for spo-rewriting in
(suitable variations of) adhesive categories [12]. This would allow one to have
a kind of parametric framework which can be used to instantiate the results of
this paper to more general rewriting theories.
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We are also interested in distributed diagnosis where every observer sepa-
rately computes possible explanations of local observations that however have
to be synchronized. In [4] we already considered distributed unfolding of Petri
nets; for diagnosis however, the non-trivial interaction of distribution and prun-
ing has to be taken into account. Distribution will require the use of pullbacks
of graph morphisms, in addition to products.
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