Distributed Timed Automata with Independently
Evolving Clocks*

S. Akshay3, Benedikt Bollig, Paul Gastih, Madhavan Mukung and
K. Narayan Kumat

1 LSV, ENS Cachan, CNRS, France
{akshay, bol I'i g, gasti n}@ sv. ens-cachan. fr
2 Chennai Mathematical Institute, Chennai, India
{madhavan, kunar }@mi . ac.in
3 The Institute of Mathematical Sciences, Chennai, India

Abstract. We propose a model of distributed timed systems where eath co
ponent is a timed automaton with a set of local clocks thatvevat a rate in-
dependent of the clocks of the other components. A clock earebd by any
component in the system, but it can only be reset by the adtonigbelongs to.
There are two natural semantics for such systems.ufingersalsemantics cap-
tures behaviors that hold under any choice of clock rateghindividual com-
ponents. This is a natural choice when checking that a syaheays satisfies a
positive specification. However, to check if a system aveidsegative specifi-
cation, it is better to use thexistentialsemantics—the set of behaviors that the
system can possibly exhibit under some choice of clock rates

We show that the existential semantics always describegudareset of behav-
iors. However, in the case of universal semantics, chec&ingtiness turns out
to be undecidable. As an alternative to the universal seosante propose ee-
activesemantics that allows us to check positive specificatiodsyahdescribes
a regular set of behaviors.

1 Introduction

In today’s world, it is becoming increasingly important tik at networks of timed
systems, which allow real-time systems to operate in aildigeed manner. Many real-
life systems, such as mobile phones, computer serversaén@y crossings, depend
crucially on timing while usually consisting of many intetimg systems. In general,
there is no reason to assume that different timed systenigeindtworks refer to the
same time or evolve at the same rate.

Timed automata [2] are a well-studied formalism to descsippgtems that require
timing. However, networks of timed automata, under the mgdion of knowledge of a
global time, as done in [5, 10], do not really reflect the dtstred model. In this paper,
we provide a framework to look at distributed systems wittiejpendently evolving
local clocks. Each constituent system is modeled by a timednaaton. All clocks

* Partially supported by ARCUS, DOTS (ANR-06-SETIN-003),daf2R MODISTE-
COVER/RNP Timed-DISCOVERI.



belonging to this timed automaton evolve at the same rateieder clocks belonging
to different processes are allowed to evolve at rates tleaindependent of each other.
We allow clocks belonging to one process to be read/checkeddther but we require
that a clock can only be reset by the automaton it belongstaddlition, since we have
differing time values on different processes, we are istekin the underlying untimed
behaviors of these distributed timed automata rather thein timed behaviors. Thus,
the clocks (and time itself) are implementation or synciration tools rather than
being a part of the observation. To ensure that we focus @npttiblem of varying
local time rates, we move to a more general setting with shiawemory, which allows
us to describe more general systems such as networks of eisyadhronous automata.

It is now natural to look at different semantics dependingtenspecifications that
we want our system to satisfy. When we want to guarantee tirasystem exhibits a
positive specification, we look at thmiversalsemantics. This semantics describes the
behaviors exhibited by the system no matter how time evalvéise constituent pro-
cesses. However, if we want to check that our system avoiggative specification,
then we prefer to look at thexistentialsemantics. This is the set of behaviors that the
system might exhibit under some (bad) choice of local tinkesran the constituent pro-
cesses. We perform a region construction on our distribtiteeld automata to show
that the existential semantics always gives a regular setitihed behaviors. Thus the
model checking problem of distributed timed automata agjaggular negative speci-
fications is decidable as well. On the other hand, we showctiedtking emptiness for
the universal semantics is undecidable. This is done by actih from Post’s corre-
spondence problem (PCP) by encoding a PCP instance in tértims local time rates
and ensuring that there is a solution to the PCP instancedibaly if there is a valid
behavior under all local time rates. This result is furthegrsgthened to a bounded case,
where we have restrictions on the relative time rates. Bintl be able to synthesize
and check for positive specifications, we introduce a marétive reactivesemantics,
which has the additional advantage of ensuring decidgbiliis model corresponds to
being able to make sure, step by step, that a positive spaficis exhibited by our
system. This is formally done by defining an equivalent aliting automaton, gener-
ating a regular behavior.

Related work In [6, 12], classical timed automata are equipped with anitichel
parameterd, which allows a clock to diverge over a periodrom its actual value by
At. This model conforms, in a sense, to our existential serogntihere we restrict
the set of clock rates to those correspondingitgsee Section 5). Syntactically, our
model coincides with that from [7]: A clock can only be resgtthe owner process,
whereas it can be read by any process. However, the above difiidr from ours since
they consider timed words rather than untimed languagds.al$o explains why our
automata differ from hybrid automata [9]. In the model of, [@pcks are not shared and
clocks on different processes drift only as long as the maee do not communicate.
These assumptions make partial-order—reduction tecbaigpplicable. A fundamental
difference between all these approaches and our work igvehdbd not restrict to system
configurations that can be reached unslamelocal-time behavior. We also tackle the
problem of checking positive specifications by providingaatics that can check if a
system exhibits some behavior unddirrelative clock speeds.



Structure of the paper In Section 2, we introduce our distributed automaton model
with independently evolving clocks, and define its exissdr@nd universal semantics.
Section 3 extends the regions of a timed automaton to ouwildigéd setting, allow-
ing us to compute a finite automaton recognizing the existes¢mantics. Section 4
shows that checking emptiness of the universal semantigsdecidable. This result is
sharpened towards bounded clock drifts in Section 5. Seétideals with the reactive
semantics, and Section 7 identifies some directions fordutork.

A full version of this paper is available [1].

2 Distributed timed automata

Preliminaries For a set, we letX* andX“ denote the set of finite and, respectively,
infinite words overX. The empty word is denoted by We setyX> = X* y Xv
andX*t = X* \ {e}. The concatenation of words € ¥* andv € X is denoted
by u - v. An alphabetis a non-empty finite set. Given an alphabietwe denote by
X, the setX U {e}. The set of non-negative real numbers is denoted®by. For
t € R>g, |t] andfract(t) refer to the integral and, respectively, fractional part, éfe.,
t = [t] + fract(t).

The sefform(Z) of clock formulasover a set of clocks is given by the grammar
@ == true | false | z 1 C' | = | v1 A w2 | v1 V p2 Wherez is a clock fromZ,
< € {<,<,>,>,=}, andC ranges oveN. A clock valuationover Z is a mapping
v: Z — R>o. We say thav satisfiesp € Form(Z), writtenv |= ¢, if ¢ evaluates to
true using the values given by For R C Z, v[R] denotes the clock valuation defined
by v[R](x) = 0if x € R andv[R](z) = v(x), otherwise.

The model Let us recall the fundamental notion of timed automata [2leSe will
constitute the building blocks of our distributed timedauata. Atimed automatotis
atupled = (S, X, 2,4,1,., F) whereS is a finite set ofstates X' is the alphabet of
actions Z is a finite set ofclocks 6 € S x X. x Form(Z) x 2% x S is the finite
set oftransitions I : S — Form(Z) associates with each state iamariant, . € S is
theinitial state, andF' C S is the set offinal states We let Reset(A) = {z € Z |
there is(s, a, p, R, s’) € § such thatr € R} be the set of clocks that might be reset in
A. Without loss of generality, we will assume in this papet th@) is satisfied by the
clock valuation oveZ that maps each clock to

We will now extend the above definition to a distributed seftiFirst, we fix a non-
empty finite setProc of processes (unless otherwise stated). For a futlat is indexed
by Proc, t,, refers to the projection afontop € Proc.

Definition 1. A distributed timed automaton (DTA)ver the set of processé3oc is a
structureD = ((Ap)peproc, ™) Where thed, = (S,, Xy, Z,,0p, I, 1p, F),) are timed
automata andr is a mapping from J Z, to Proc such that, for eaclp € Proc,
we haveReset(A,) C = (p) C Z,.

p€& Proc

Note thatZ, is the set of clocks that might occur in the timed automatgn either
as clock guard or reset. The same clock may occur in Bgtnd Z,, since it may be
read as a guard in both processes. However, any clock evabaesding to the time



A <1 a, {z} Ad: bes1 YS b ocrct
a, Y= ) , T 2 s T
) )

Fig. 1. A distributed timed automaton ov¢p, ¢}

evolution of some particular process. This clock is thed sabelongto that process,
and theownermap,r, formalizes this in the above definition. This will becomermo
clear when we describe the formal semantics later in thisaed-urther, we assume
that a clock can only be reset by the process it belongs to.

Example 2.SupposeProc = {p, q}. Consider the DTAD as given by Figure 1. It
consists of two timed automata,, and.4,. In both automata, we suppose all states to
be final. Moreover, the owner mappirgmaps clockr to p and clocky to ¢. Note that
Reset(A,) = {z} andReset(A,) = (). Before we define the semanticsBfformally
and in a slightly more general setting, let us give some fiito$ on the behavior db.

If both clocks are completely synchronized, i.e., theydaithe same local clock rate,
then our model corresponds to a standard network of timezhzath [5]. For example,
we might execute within one time unit, and, after one time unit, exechjtending up
in the global staté€s;,r;) and a clock valuatiow(z) = v(y) = 1. If we now wanted
to perform a furtheb, this should happen instantaneously. But this also regaireset
of z in the automatom,, and, in particular, a time elapse greater than zero, viajati
the invariant at the local statg. Thus, the word:bab will not be in the semantics that
we associate witl wrt. synchronized local-time evolution. Now suppose clgakins
slower than clocke. Then, having executegh, we might safely execute a further
while resettingr and, then, let some time elapse without violating the iramtiThus,
abab will be contained in theexistentialsemantics, as there are local time evolutions
that allow for the execution of this word. Observe thandaa are the only sequences
that can be executed no matter what the relative time speedshe guardy < 1 is
always satisfied for a while. But we cannot guarantee thagtieedz > 1 and the
invarianty < 1 are satisfied at the same time, which prevents a word contgiirfrom
being in theuniversalsemantics oD.

The semantics The semantics of a DTA depends on the (possibly dynamichiyng-
ing) time rates at the processes. To model this, we assunmdhthse rates depend
on some absolute time, i.e., they are given by a tuple: (7,)peproc Of functions
T, : R>9o — R>g. Thus, each local time function maps every point in globaktito
some local time instant. Then, we require (justifiably) tinse functions are continu-
ous, strictly increasing, and divergent. Further, theisBat,,(0) = 0 for all p € Proc.
The set of all these tuplesis denoted byRates. We might consider as a mapping
R>o — (R>0)?¢ so that, fort € R, 7(¢) denotes the tuplér, (t))pe proc-

A distributed system can usually be described with an asymcius product of
automata. Indeed, the semantics of a DTA can be defined with aproduct and a
mapping that assigns any clock to its owner processTtet ((Ap)peProc, ™) With
Ap = (Sp, Xy, 2p,0p, Ip, 1p, F,) be some DTA. We assign t& the asynchronous
productBp = (S, X, Z,0,1,., F,m) as one might expect: We sft = Hpepmc Sps
Y =Upeproc 2o 2 = Upeproc Zpr t = (tp)peProc, andE = [ p,.,. I,. Moreover,

foranys € S, we letl(s) = A cp,,.Ip(sp)- Finally, fors,s" € S, a € X, o €



Form(Z), andR C Z, we let (s a,p,R,s") € ¢ if there isp € Proc such that
(sp,a,p, R,s;) € §, ands, = s for eachg € Proc \ {p}.

Actually, most variants of a shared memory model and thegimantics can be uni-
fied by considering one single state space. This motivagefotiowing definition:

Definition 3. Atimed automaton with independently evolving clock3A) over Proc
isatupleB = (S, X, Z,6,1,, F,n) where(S, X, Z,6,1,., F) is a timed automaton
andr : Z — Proc maps each clock to a process.

Thus, the structur@p that we assigned to a DTR is anicTA. Most of the fol-
lowing definitions and results are based on this more genetain of a timed system
and therefore automatically carry over to the special cadaTés. We will now de-
fine a run of ancTA. Intuitively, this is done in the same spirit as a run of med
automaton over a timed word except for one difference. Trhe gvolution, though ac-
cording to absolute time, is perceived by each process Ecabtimeevolution. So let
B=(SX, 2,01, F,)beancTA. Given a clock valuatior over Z and a tuple €
RFr¢, we let the valuatiow+¢ be given by(v+t)(z) = v(x)+t,(, forallz € Z. For

ay,ty Ayt

T € Rates, aT-run of B is a sequencésy, vg) —— (s1,v1) -+ - (Sn—1,Vn—1)
(Sn,vn) Wheren >0, s, € S, a; € X, and(t;)1<i<n iS @ non-decreasing sequence of
values fromR>g. Further,y; : Z — R with v9(z) = 0 for all z € Z. Finally, for
alli € {1,...,n}, there arep; € Form(Z) andR; C Z such that the following hold:
(si_l,ai,cpi,Ri,si) € 9, Vi_1+7'(t)—7'( ) ': I(SZ 1) for eacht’ € [1 1,ti],
Vie1+7(t)—71(tic1) E <p1,ul = (Vi—1+7(t;) —7(ti—1))[R:], andy; E I(sl) In that
case, we Writd3, 7) : so " s, or also(B, 1) : g =M 5 ST, o to
abstract from the time instances. The latter thus deno&#tban, readingu, go from

s Via s; to s, while respecting the local-time behaviar

Definition 4. LetB = (S, X, Z,6,1,., F,7) be anicTA andr € Rates. Thelanguage
of B wrt. 7, denoted by..(B, 7), is the set of wordsy € X* such that(B,7) : ¢ ~ s
for somes € F'. Moreover, we definés(B) = . pases L(B, 7) to be theexistential
semantic®nd Ly (B) = [, ¢ pates L(B, ) to be theuniversal semantiosf 3.

If | Proc| = 1, then aricTA B actually reduces to an ordinary timed automaton and we
haveLy(B) = L(B,7) = L3(B) for anyT € Rates. Moreover, if|Proc| > 1 and

T € Rates exhibits, for allp € Proc, the same local time evolution, théi{3, 7) is the
language of3 considered as an ordinary timed automaton.

Example 5.A sampleicTA B over set of processds, ¢} andX' = {a, b, c} is depicted
in Figure 2. Assuming-—!(p) = {z} andn~!(q) = {y}, we haveLy(B) = {a,ab},
L(B,id) = {a,ab,b}, andL3(B) = {a,ab, b, c} where id, is the identity onR> for
all p € Proc (i.e., id models synchronization of any process with theohlis time).

It is worthwhile to observe thak(5, 7) can, in general, have bizarre (non-regular)
behavior, ifr is itself a “weird” function. This is one more reason to lodkree existen-
tial and universal semantics. Let us quantify this with aaregle. Consider the simple
icTA B over Proc = {p,q} fom Figure 3, where® = {a,b}, 7~ 1(p) = {z}, and



a b
=1 y=1

<1<y 0<z<l1 r<l=y
ANO<y<l1 Fig. 3. A “weird” icTA

Fig. 2. An icTA B with independent clocks andy

n1(q) = {y}. Further, letr = (id,, 7,), wherer, is any continuous, strictly increas-

ing function such that,(0) = 0 andr,(n) = 2™ — 0.1 foranyn > 1. Then,L(B, 1) is

the set of finite prefixes of the infinite wobdb?ab*abBab'®a . . ., which is not regular.
Finally, the semantics of a DTA is formally described in teraf itsicTA.

Definition 6. For a DTAD andr € Rates, we setL(D,7) = L(Bp,7) to be the
languageof D wrt. 7, and we definds(D) = U, c gares L(D, 7) as well asLy(D) =
M. c rates L(D, T) to obtain its existential and universal semantics, respebt

Example 7.For the DTAD from Figure 1, we can formalize what we had described
intuitively: L(D,id) = Pref({aab,aba,baa}), L3(D) = Pref({aab, abadb,baab}),
andLy(D) = Pref({aa}) where, forL C X*, Pref(L) = {u | u,v € X*,u-v € L}.

3 Region abstraction and the existential semantics

Given anicTA B and a seBad of undesired behaviors, it is natural to asiifs robust
against the (unknown) relative clock speeds and faithfallgids executing action se-
quences fronBad. This corresponds to checkingiifs(3) N Bad = §. In this section,
we show that this question is indeed decidable, given that is a regular language.
To this aim, we define a partitioning of clock valuations ifitotely many equivalence
classes and generalize the well-known region construftiotimed automata [2].

LetB = (S, X, Z,4,1,., F,7) be anicTA. For a clockz € Z, letC, € N be the
largest value the clock is compared with in3 (we assume that such a value exists).
We say that two clock valuationsandy’ over Z areequivalentf the following hold:

— foreache € Z,v(z) > C, iff V/(z) > Cy,

— foreachr € Z, v(z) < C, implies both|v(z)] = |/ (x)] and (fract(v(x)) =0
iff fract(v'(x)) = 0), and

— for eachp € Proc andz,y € 7' (p) such thaw(z) < C, andv(y) < C,, we
havefract(v(z)) < fract(v(y)) iff fract(v'(x)) < fract(v'(y)).
Note that this constraint only applies to clocks that belantipe same process.

An equivalence class of a clock valuation is callexlack region(of B). For a valuation
v, [v] denotes the clock region that containsThe set of clock regions d is denoted
by Regions(B). Lety and~’ be two clock regions, say with representativeand.’,
respectively. We say that' is aaccessibldrom ~, written~ < ~/, if v/ = v or if
there ist € (R-o)"™¢ such that”’ = v + t. Note that=< is a partial-order relation.
The successorelation, writteny < +/, is as usual defined by < 4/ and+” = ~ or
~"" = ~' for all clock regionsy” with v < ~" < ~/.



Y0 1o

m vy
T T | 1
2 G 2 G

= _J =

s = T = - T

Fig. 4. Accessible and non-accessible regions

0 1 2 3 D
Fig. 5. dir(7) = 010...

Example 8.The accessible-regions relation is illustrated in Figur8udppose we deal
with two processes, one owning clocks andz, the other owning a single clogk
Suppose furthermore that, in tiidA at hand, all clocks are compared to the constant
2. Consider the prismsg, 1,72, 71, V4, €ach representing a non-border clock region,
which are given by the clock constraints = (0 < z2 < 1 < ) A (0 <y < 1),
N=0<z2<1 —1<DHAO0<y<l)ym=>_0A<z<21 <2))N(0<y<1),
Yo=(1<z1<z2<2)A(l<y<2),andy=(1<z2<z1 <2)A(l<y<2).

We haveyy < 71 < 2. Howeveryo £ 71 andyy £ 5.

LetB = (S, X, Z,6,1,., F, ) be anicTA over Proc. We associate witl a non-
deterministic finite automatoRz = (5’, X, §', ¢/, F'), called theregion automatornf
B, which is defined as followss” = S x Regions(B), " = (v, [v]) wherev(x) = 0 for
allz € Z, F' = F x Regions(B), and fora € Y., s,s' € S, andy,~’ € Regions(B),
¢’ contains((s, ), a, (s',v")) if

—a=¢,s=¢,y =<+, andv = I(s) for somer’ €+
(we then call((s, ), a, (s',7")) atime-elapse transition or

— there arev € yand(s,a, p, R,s’) € 0 suchthav = ¢ A I(s), v[R] = I(s'), and
v[R] € ~' (we then call((s, ), a, (s',7’)) adiscrete transitiol

A part of the region automaton for tteTA from Figure 2 is shown in Figure 10.
Indeed, the languagk(R g) of the non-deterministic finite automat@®, which
is defined as usual, coincides with the existential semswofifs:

Lemma9. LetB = (S, X, Z,6,1,., F,7) be anicTA and letC be the largest constant
a clock is compared with i8. Then, the number of states Bfz is bounded byS]| -
(2C +2)!21 .| Z|! and we havd.(Rp) = L3(B).

Thus, we solved the verification problem stated at the béginof this section:

Theorem 10. Model checkingc TAs wrt. regular negative specifications is decidable.

4 The universal semantics

While the existential semantics allows us to verify negasigecifications, the universal
semantics is natural when we want to check if our system hame sgood behavior.
By good we mean a behavior that is robust against clock vanstUnfortunately, this



problemis undecidable. This is shown foFAs first and then will be extended to DTAs.
Moreover, it turns out to be undecidable if, for a positivedficationGood containing
the behaviors that a systemustexhibit and ancTA 5, we haveGood C Ly(B).

Theorem 11. The following problem is undecidable|iProc| > 2: Given anicTA B
over Proc, doesLy(B) # 0 hold?

Proof. The proof is by reduction from Post’s correspondence pral{leCP). An in-
stancelnst of the PCP consists of an alphabgand two morphismg andg from A~
to {0,1}*. A solution of Inst is a wordw € A™ such thatf (w) = g(w).

SupposeProc = {p, q} and letr € Rates. One may associate withtwo sequences
t-dir(t) = tita ... € (R>o)“ of time instances andir(7) = didz ... € {0, 1,2}* of
directionsas follows: fori > 1, we let first (assumingy = 0) t; = min{t > ¢;—1 |
7-(t) — 7+ (ti—1) = 2 for somer € Proc}. With this, we set

0 if Tp(ti) — Tp(tifl) =2andl < Tq(ti) — Tq(tifl) <2
d;i=<1 |if Tq(ti) — Tq(tifl) =2andl < Tp(ti) — Tp(tifl) <2
2 otherwise

The construction ofiir (7) is illustrated in Figure 5. The idea is to allow the shape ef th
relative time-rate function (from) to encode a word if0, 1, 2}*. We do this usin@ x
2-square regions, each consisting of 4 sub-squares as sHdtarate function leaves
this region by the upper boundary or right boundary of thatrigpper sub-square, then
we write 1 or 0, respectively. If it leaves by any other bouyda by end-points of any
sub-square, then we write 2. A new square region is startdtegioint where the rate
function left the old one. Thus, the direction sequencestjmarthe space of time rates.

Roughly speaking, a word is accepted universally bic@A iff it is accepted for all
directions. Our trick will be to define anTA such that, the PCP instance has a solution
w iff the wordwb is accepted by thieTA for all directions. Thus, if there is no solution
to the PCP, there will be some direction sequence (respdgtiocal time rates) for
which theicTA does not accept.

Let an instancdnst of the PCP be given by an alphabét= {aq,...,ax} with
k > 1 and two corresponding morphisnfsand g. We will construct ancTA 5 =
(S, X, Z,6,1,., F, ) overthe set of process&soc = {p,q} andX = {ay,...,ax, b}
such thatLy(B) = {wb | w € At andf(w) = g(w)}. First, letZ = {z,y} with
7(z) = pandrn(y) = ¢. Ford € {0, 1,2}, we set

r=2AN1<y<2 ifd=0
guard(d) =< y=2 AN l<z <2 ifd=1
(x<1vVva=2)Ay=2)V (y<1 Az=2)ifd=2

Moreover, letguard(d) = \/ g ¢ (0,123 (a3 Juard(d’).

The final encoding of the given PCP instance in terms ofdh& is given by Fig-
ure 7. Hereby, given € Aando = d; ...d,, € {0,1,2}* (with d; € {0,1, 2} forany
j €{1,...,n}), atransition of the form



<, guard(dz) e, guard(ds)

a, guard(di) e, guard(dy)

a, guard(dy)

e, guard(dz)

oy ey (.0}
Fig. 6. Transition macro

will actually stand for the sequence of transitions thatdpidted in Figure 6, say, with
intermediate states; 4 -.1), - - - S(i,a,r,n—1)-

Example 12.Consider the PCP instandest given by A = {a1,a2}, f(a1) = 101,
g(a1) =1, f(a2) = 1, g(az) = 01110 with the obvious solutiom = a;asa,. One can
check thatu;asa1b € Ly(B). This is illustrated in Figure 8. In the tree depicted, any
path corresponds to a finite prefix (of length + 1) of some sequence of directions.
The edges are labeled by this sequence, where a left-edgads/Award is 2 and right-
edge is 1. Thus, intuitively, a worab is in the universal language iff all paths of the
tree correspond to accepting runsBnNow, lets verify that the wordvb is accepted
by B. If clock rater is such thatdir(r) € f(w) - d - {0,1,2}* with d € {0,1}, then
the accepting run oB is the path shown in the left figure, which assigns statet®
nodes of the tree and finishessgt If d = 2, then the accepting run @& is the path
in the figure on right, which assigns statgsappropriately, crucially using the fact that
f(w) = g(w), and finally ends ai;. If the clock rater hasdir(r) different from above
case, it is easy to see that there is an accepting run in whiokaches state; by
passing through statg.

Let us show that our reduction is indeed correct. In the falhg, let < denote the usual
prefix relation on words.



Fig. 8. The tree generated hy = a1a2a1b with respect tof andg.

L, guard(dy) e, guard(dz) €, guard(ds) e, guard (dn)

e, guard(dz)

< ’ ’ T <
y<1 y<1 y<1 y<1 y<1

Fig. 9. Transition macro for the distributed setting

Claim 13. ForT € Rates andw € A™, the following hold:
(1) f(w) < dir(t) iff (B,7): 50 — 1
(2) g(w) < dir(r) iff (B,7) : 50 = s2
() f(w) £ dir(r)iff (B,7): 50 — 71

With Claim 13, whose proof can be found in the full version (g can now show
both directions of the correctness of the constructiofs.of

Let T € Rates and suppos¢(w) = g(w). We distinguish three cases:dfr(r) €
fw)-{0,1}-{0,1,2}*, then, by (1)(B,7) : so > 51 = ;. If dir(r) € f(w)-2-
{0,1,2}, then(B,7) : so — s2 LN sy. This follows from (2), sincg(w) = f(w). If
f(w) £ dir(7), then, by (3)(B, ) : s — 1 LA sy. Hencewd € Ly(B).

Letw € At and supposeb € Ly(B). PickT € Rates such thatdir(7) € f(w) -
2-{0,1,2}*. As f(w) < dir(r), we have, by (3)(B,7) : s £» 1 and(B,7) : so —
s1 72 Thus, we must haveB, 7) : 5o — s 5 sy. Hence, by (2)g(w) - 2 < dl’r’(T)
As f(w),g(w) € {0,1}*, we have bothf(w) - 2 < dir(r) andg(w) - 2 < dir(7),
which impliesf (w) = g(w). O
Our result can be strengthened and extended to the digidisetting as follows:

Theorem 14. SupposeProc| > 2. For DTASD over Proc, the emptiness diy (D) is
undecidable.



Proof. We fix Proc = {p, ¢} and the clock distributio®, = {z} andZ, = {y}. Each
process will be a copy of the automaton that is depicted iy, except for one
difference: for procesg, the transition macro from Figure 6 is replaced with thatrfro
Figure 9 wherd. is the lettera € A andR is the singleton sefx}; for process;, we
use the same new macro, but now we hiave ¢ andR = {y}.

To see how this works, we will just point out the difficultiastewhy the additional
states with invariants angttransitions fix them. In the transition macro in Figure 6,
clocksz andy belonging to different processes are reset at the same 8mehere
we have two copies of the same automaton doing the same siomukaut resetc in
the automaton for procegs andy in the other. But this is not enough, since in the
truly distributed setting, we cannot ensure that the clesets are in sync. This might
allow one process to wait while the other has reset its clockthereby enable (wrong)
transitions to state;, thus allowing the two automata copies to differ in the siatioh.

To ensure that the same path is followed, we split each statepts; andr;) into two.
The invariant on the first part then ensures that, before ¢ixétransition is enabled by
the guard (which happens in the second part), both have leseh r

Let us examine this in more detail. Being in two identical iespof a state with an
outgoinge-transition, thes-transitions might indeed be taken asynchronously and
q. However, the following transitions will be performed shnanously by both pro-
cesses. Assume first thatfollows a transition of the forngs,, a, guard(d), {x}, s},)
before procesg moves. Asguard(d), whered € {0, 1}, is satisfied whep goes tos;,,
the value of both clocks exceeds 1. Butais reset at the same time whereggis not,
the invariant associated wit) is violated, which is a contradiction. Thughas to take
the corresponding transition, which is of the fofs, a, guard(d), {y}, s;), simultane-
ously. This explains why we ugex 2-squares as in Figure 5 and corresponding guards.
In DTAs, they allow us to check when one clock has been reskbtirer has not. Now
consider the case whegeperforms a transition of the forrfs,,, a, guard(d), ), s,,).
Whenp executes its transition, at least one clock has reachedatbe2: As this clock
cannot be reset anymorgis obliged to follow instantaneously the correspondingtra
sition of the form(s,, a, guard(d), 0, s;), to reach a final state. 0

Along the lines of the proofs of Theorems 11 and 14, we can shewollowing
theorem, from which we derive the subsequent negativetrésad [1] for details):

Theorem 15. Suppose thatProc| > 2. For DTAsD over Proc, it is undecidable if
Ly(D) = X* (whereX is the set of actions dip).

Theorem 16. Model checking DTAs over at least two processes againstaegosi-
tive specifications is undecidable.

5 Playing with local time rates

We have shown that it is undecidable to check if there is sowr what is accepted
under all clock rates by a givenoTA B. It is natural to ask if it is possible to restrict
the independence of local time rates in some way to get deiitgaFor instance, we

could insist that the ratio or the difference of local timeddifferent processes must



always be bounded. Unfortunately, this does not help. It flamirns out that our proof
in Section 4 can be used to show that both these restrictrers@ady undecidable.
Let us formalize this. We will restrict to two processé8pc = {p,q}. We note
however that the following definitions can be easily geneealto more processes. For
a rational numbek > 1, we defineRatesma(k) = {7 = (7,7,) € Rates | +
Tpgt; < kforallt € Ryo}. This is the set of all rate-function tuples such that thE)rat
of the local times in the two processes are always boundecdkeég fationals. Further,
for a rational numbet > 0, Ratesgit(¢) = {1 = (1, 7,) € Rates | |7p(t) — 14(t)| < ¢
forall t € R>¢}. These are the rate function tuples for which the differehlmween
the local times in the two processes are bounded by someattnsiccordingly, for
anicTA or a DTA B, we defineLi™* (B) = ¢ puseancr) L(B,7) and LY (B) =

ﬂTE Ratesqit (£) L(B’ T)'
Theorem 17. For icTAs or DTAsB over Proc = {p, ¢},

1. the emptiness df®"! (B) = LI"°(B) is decidable.
2. the emptiness dﬂ;”_“”“(B) is undecidable for every rationdl > 1.
3. the emptiness dfdv'f’Z(B) is undecidable for every rationdl> 0.

To prove the theorem, we need the following lemma.

Lemma 18. Letk > 1, ¢ > 0 be some fixed rationals. For a#t € {0, 1,2}, there
existsT € Ratesrai(k) N Ratesqit(€) such that is a prefix ofdir (7).

Proof. Let 0 = dids...d, € {0,1,2}* be of lengthn. We definer (in terms of
n + 1 points) as follows:, is the piecewise linear function with,(2i) = z; for
i €{0,...,n}andr,(2n +t) = x, + t forall t € R>(. Similarly, 7, is defined as the
piecewise linear function with, (2i) = y; fori = {0,...,n} andr,(2n+t) = y, +t
for t € R>q. The points(z;, y;) are defined byy = yo = 0 and, fori € {1,...,n},
x; = 2i —aldy...d;i|y andy; = 2i — ald; ...d;i|o (Jo’|a denoting the number of
occurrences of in ¢’), wherea is a rational parameter to be fixed.

With the above definition, We observe that, forialve havex; —y;| < i, and, for
i>0,wehavel — 3 < < 5 / . Thus, by choosing = min {£,2(1 — 1)}, we
can check that € Ratesrat(k) ﬂ Ratesd.f( ). Also itis easy to see thair(r) = -2,
which proves the lemma. a

Now, we can prove Theorem 17. F&r = 1 or ¢ = 0, the setsRatesa(k) and
Ratesqir(£) consist of exactly the tuples in which time evolves at theesaate in both
processes. Thus the sets are identical and correspond taliany timed automaton
so that emptiness is decidable.

Now, letk > 1 and/ > 0. Given a PCP instance as before, we again consider
theicTA (or DTA) B from Section 4. We want to show that € A™ is solution iff
wb € Ly(B) = L@‘Lk(B) = L@“(B). One direction is trivial. If, forw € AT, we
havef(w) = g(w), thenwb € Ly(B), and this implies thatb Lrvatk(B) andwb €
LI (B). On the other hand, ibb € L2 (B) orwb € LI*(B), then, by Lemma 18,
we pickT € Ratesrai(k)NRatesqit(¢) such thatdir(r) = f(w)-2-2¢, and the remaining
part of the proof follows as before.



6 The reactive semantics

The universal semantics described in the previous sedianpossible way to imple-
ment positive specifications, i.e, to make sure that ouesyshust satisfy some behav-
ior irrespective of the time/clock evolution. Unfortunigtesince emptiness is undecid-
able even for bounded restrictions, it is not of any prattise. We would indeed like
a semantics that describes only regular behaviors.

There is another subtle point for looking for other semantithen we want to
check if the system satisfies a positive specification, welavike to be able to design
a controller which can actually do this. For this, the sentartias to be “reactive” in
some sense. The universal semantics fails in this, in theesimat, to choose a correct
run in the system, we might need to know the future time rates.

In this section, we introduce a new game-like semanticssblaes both the above
mentioned worries. It is regular and it is “reactive”. Fottpave will describe it using
an alternating automaton, which is based on the region attwnintroduced in Sec-
tion 3. Intuitively, time-elapsdransitions are controlled by the environment whereas
discretetransitions are controlled by the system that aims at etthipsome behavior.
This gameis notturn-basedbecause the system should be able to execute several dis-
crete transitions while staying in the same region. Aftevimg from some region to a
successor region, the environment hands over the conttbétsystem so that the sys-
tem always has a chance to execute some discrete tran§iothe other hand, after
executing some discrete transition, the system may eitbep khe control or hand it
over to the environment.

As suggested, our reactive semantics will be described teynalting automata.
SinceicTAs or DTAs haves-transitions, we define aalternating automaton witla-
transitions(e-AA) as a tupled = (S, X, 4, ¢, F') whereS is a finite set oktates. € S
is theinitial state, FF C S is the set offinal statesandd : S x Y. — B*(S) is the
alternating transition functionHere, B (.S) denotes positive boolean combinations of
states fron5.

As usual, a run of am-AA will be a (doubly) labeled finite tree. We assume the
reader to be familiar with the notion of trees and only manttwat we deal with struc-
tures(V, o, 1) whereV is the finite set of nodes with a distinguished root, and both
o andy are node-labeling functions. Given a nodec V, the set of children of; is
denotecthildren(u). Letw = ay ... a),| € £* be a finite word. A run ofd onw is a
doubly labeled finite trep = (V, o, 1) whereo : V' — S is thestate-labelingunction
andp : V — {0,...,|w|} is theposition-labelingfunction such that, for each node
u € V, the following hold:

— if u is the root, therv(u) = ¢+ andu(u) = 0 (we start in the initial state at the
beginning of the word),
— if uwis not a leaf (i.e.children(u) # (), then we have
o eitherp(u’) = p(u) forallu’ € children(u) and in this case
{o(u') | v € children(u)} = d(o(u),€)
o orp(u') = pu(u) +1 =1 <nforallw € children(u) and in this case
{o(u) | v € children(u)} = §(o(u), a;).



P ey Sy
AN, T N
GGG GED GRD) GED

e | i | B

Fig. 10.Part of the region/alternating automaton for the icTA froigufe 2

The runis accepting if all leaves are labeled whtkx {|w|}. The set of words fron*
that come with an accepting run is denotedljyA).

Lemma 19 (cf.[4]).Given anez—AAA with n states, one can construct a non-determin-
istic finite automaton witR©(*") states that recognizes(.A).

LetB = (S, X, 2,4,1,.,F,m) be anicTA over Proc. We associate witl8 an e-
AA A = (5',X,0,/, F") as follows: First, letS” = S x Regions(B) x {0,1}.
Intuitively, tag 0 is forsystem positionshile tag1 is for environment positiongecall
that the environment controls how time elapses whereasytera wants to accept
some word). Then, = (i, [v],0) wherev(z) = 0 for eachx € Z, andF’ = F x
Regions(B) x {0, 1}. Finally, for (s,v) € S x Regions(B) anda € X., we let

0'((s,7,1),a) =False ifa#e ' ((s,v,1),e) = A{(s,7,0) | v <~}
5 ((5,7,0),a) = V{(,7,0) | (5,7) Zq (s',7)} if a # € ory maximal
Y (5,7, 1) VV{(s,7,0) | (5,7) Za (s',9)} otherwise

whereﬁd denotes a discrete transition of the region automa&tgr(Section 3).

Definition 20. For anicTA B, let L,c..:(B) = L(.Ag) be thereactive semantiosf 5.
Moreover, for a DTAD, Lieact(D) = Lreact(Bp) is thereactive semantiosf D.

Example 21.Consider thecTA B from Figure 2. A part of its-AA Ag is shown in
Figure 10. States with tag 0 are depicted as ovals and areseti# (non-deterministic)
states and states with tag 1 are depicted as rectangleseandiaersal states. We have,
e.g.,0'(r1,e) = r3sArgArs. Note, however, that a transition from an oval to a rectamgle
should actually be split into two transitions, which is ait in the picture. For exam-
ple, there is a state, betweeny andr; which resembles; but is tagged. Similarly,
there is another staig between, andrz, and we havé’(rg,a) = r} vV 5.

The following theorem follows from Lemma 19:

Theorem 22. Let B = (S, X, Z,6,1,., F,n) be anicTA and letn be the number of
states ofR 5 (Which is bounded bS5 |- (2 C'+-2)/%1-| Z|! whereC is the largest constant
a clock is compared with i8). Then,L,...:(B) is regular and one can compute a non-

deterministic finite automaton witt(**) states that recognizes,cq..(B).



The following inclusion property, whose proof can be found1], allows us to check
anicTA for positive specifications. The subsequent proposititen establishes that
inclusion actually forms a strict hierarchy of our semastic

Proposition 23. For anyicTA B, Lyeact(B) C Ly(B).

Proposition 24. Suppose thdtProc| > 2. There are some DTR over Proc and some
7 € Rates such thatl,c..+(D) & Ly(D) & L(D,7) & La(D).

Proof. Consider theécTA B from Figure 2. Recall thaL,c..:(8) = {a}, Lv(B) =
{a,ab}, L(B,id) = {a,ab,b}, andL3(B) = {a,ab,b,c}. As B does not employ any
reset, we may view it as a DTA whetfemodels a process owning cloegk and where
a second process, owning clogkdoes nothing, but is in a local accepting state. O

7 Future work

We plan to investigate the expressive power of DTAs and, iiqudar, thesynthesis
problem For which (global) specificationSpec can we generate a DTR (over some
given system architecture) such that....(D) = Spec? A similar synthesis problem
has been studied in [8] in the framework of untimed distéuthannel systems. There,
additional messages are employed to achieve a given glabalior. In this context,
it would be favorable to have partial-order based specifindanguages and a partial-
order semantics for DTAs (see, for example, [11]).

References

1. S. Akshay, B. Bollig, P. Gastin, M. Mukund, and K. Narayaantar. Distributed timed
automata with independently evolving clocks. ResearchoRe5V-08-19, ENS Cachan,
2008.

2. R. Alur and D. L. Dill. A theory of timed automatd.CS 126(2):183—-235, 1994.

3. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partiaéordductions for timed systems. In
Proc. of CONCUR’98pages 485-500. Springer, 1998.

4. J.-C. Birget. State-complexity of finite-state devicgate compressibility and incompress-
ibility. Mathematical Systems TheoB6(3):237—269, 1993.

5. P.Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldfogsetworks of timed automata.
In Proc. of ATVA'06volume 4218 oLNCS Springer, 2006.

6. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robuswand implementability of
timed automata. IfProc. of FORMATS'04 and FTRTFT'Qdolume 3253 oLLNCS pages
118-133. Springer, 2004.

7. C. Dima and R. Lanotte. Distributed time-asynchronousraata. InProc. of ICTAC'07
volume 4711 oLNCS Springer, 2007.

8. B. Genest. On implementation of global concurrent systeiith local asynchronous con-
trollers. InProc. of CONCUR’05volume 3653 of.NCS pages 443-457, 2005.

9. T. A. Henzinger. The theory of hybrid automata.Proc. of LICS’96 1996.

10. K. G. Larsen, P. Pettersson, and W. Yi. Compositional @mdbolic model-checking of
real-time systems. IRroc. of RTSS’95age 76. IEEE Computer Society, 1995.

11. D. Lugiez, P. Niebert, and S. Zennou. A partial order sgimsiapproach to the clock explo-
sion problem of timed automataC§ 345(1):27-59, 2005.

12. A. Puri. Dynamical properties of timed automaklziscrete Event Dynamic System€(1-
2):87-113, 2000.



