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Abstract. We propose a model of distributed timed systems where each com-
ponent is a timed automaton with a set of local clocks that evolve at a rate in-
dependent of the clocks of the other components. A clock can be read by any
component in the system, but it can only be reset by the automaton it belongs to.
There are two natural semantics for such systems. Theuniversalsemantics cap-
tures behaviors that hold under any choice of clock rates forthe individual com-
ponents. This is a natural choice when checking that a systemalways satisfies a
positive specification. However, to check if a system avoidsa negative specifi-
cation, it is better to use theexistentialsemantics—the set of behaviors that the
system can possibly exhibit under some choice of clock rates.
We show that the existential semantics always describes a regular set of behav-
iors. However, in the case of universal semantics, checkingemptiness turns out
to be undecidable. As an alternative to the universal semantics, we propose are-
activesemantics that allows us to check positive specifications and yet describes
a regular set of behaviors.

1 Introduction

In today’s world, it is becoming increasingly important to look at networks of timed
systems, which allow real-time systems to operate in a distributed manner. Many real-
life systems, such as mobile phones, computer servers, and railway crossings, depend
crucially on timing while usually consisting of many interacting systems. In general,
there is no reason to assume that different timed systems in the networks refer to the
same time or evolve at the same rate.

Timed automata [2] are a well-studied formalism to describesystems that require
timing. However, networks of timed automata, under the assumption of knowledge of a
global time, as done in [5,10], do not really reflect the distributed model. In this paper,
we provide a framework to look at distributed systems with independently evolving
local clocks. Each constituent system is modeled by a timed automaton. All clocks
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belonging to this timed automaton evolve at the same rate. However clocks belonging
to different processes are allowed to evolve at rates that are independent of each other.
We allow clocks belonging to one process to be read/checked by another but we require
that a clock can only be reset by the automaton it belongs to. In addition, since we have
differing time values on different processes, we are interested in the underlying untimed
behaviors of these distributed timed automata rather than their timed behaviors. Thus,
the clocks (and time itself) are implementation or synchronization tools rather than
being a part of the observation. To ensure that we focus on this problem of varying
local time rates, we move to a more general setting with shared memory, which allows
us to describe more general systems such as networks of timedasynchronous automata.

It is now natural to look at different semantics depending onthe specifications that
we want our system to satisfy. When we want to guarantee that our system exhibits a
positive specification, we look at theuniversalsemantics. This semantics describes the
behaviors exhibited by the system no matter how time evolvesin the constituent pro-
cesses. However, if we want to check that our system avoids a negative specification,
then we prefer to look at theexistentialsemantics. This is the set of behaviors that the
system might exhibit under some (bad) choice of local time rates in the constituent pro-
cesses. We perform a region construction on our distributedtimed automata to show
that the existential semantics always gives a regular set ofuntimed behaviors. Thus the
model checking problem of distributed timed automata against regular negative speci-
fications is decidable as well. On the other hand, we show thatchecking emptiness for
the universal semantics is undecidable. This is done by a reduction from Post’s corre-
spondence problem (PCP) by encoding a PCP instance in terms of the local time rates
and ensuring that there is a solution to the PCP instance if and only if there is a valid
behavior under all local time rates. This result is further strengthened to a bounded case,
where we have restrictions on the relative time rates. Finally, to be able to synthesize
and check for positive specifications, we introduce a more intuitive reactivesemantics,
which has the additional advantage of ensuring decidability. This model corresponds to
being able to make sure, step by step, that a positive specification is exhibited by our
system. This is formally done by defining an equivalent alternating automaton, gener-
ating a regular behavior.

Related work In [6, 12], classical timed automata are equipped with an additional
parameter∆, which allows a clock to diverge over a periodt from its actual value by
∆t. This model conforms, in a sense, to our existential semantics, where we restrict
the set of clock rates to those corresponding to∆ (see Section 5). Syntactically, our
model coincides with that from [7]: A clock can only be reset by the owner process,
whereas it can be read by any process. However, the above works differ from ours since
they consider timed words rather than untimed languages. This also explains why our
automata differ from hybrid automata [9]. In the model of [3], clocks are not shared and
clocks on different processes drift only as long as the processes do not communicate.
These assumptions make partial-order–reduction techniques applicable. A fundamental
difference between all these approaches and our work is thatwe do not restrict to system
configurations that can be reached undersomelocal-time behavior. We also tackle the
problem of checking positive specifications by providing semantics that can check if a
system exhibits some behavior underall relative clock speeds.



Structure of the paper In Section 2, we introduce our distributed automaton model
with independently evolving clocks, and define its existential and universal semantics.
Section 3 extends the regions of a timed automaton to our distributed setting, allow-
ing us to compute a finite automaton recognizing the existential semantics. Section 4
shows that checking emptiness of the universal semantics isundecidable. This result is
sharpened towards bounded clock drifts in Section 5. Section 6 deals with the reactive
semantics, and Section 7 identifies some directions for future work.

A full version of this paper is available [1].

2 Distributed timed automata

Preliminaries For a setΣ, we letΣ∗ andΣω denote the set of finite and, respectively,
infinite words overΣ. The empty word is denoted byε. We setΣ∞ = Σ∗ ∪ Σω

andΣ+ = Σ∗ \ {ε}. The concatenation of wordsu ∈ Σ∗ andv ∈ Σ∞ is denoted
by u · v. An alphabetis a non-empty finite set. Given an alphabetΣ, we denote by
Σε the setΣ ·∪ {ε}. The set of non-negative real numbers is denoted byR≥0. For
t ∈ R≥0, ⌊t⌋ andfract(t) refer to the integral and, respectively, fractional part oft, i.e.,
t = ⌊t⌋ + fract(t).

The setForm(Z) of clock formulasover a set of clocksZ is given by the grammar
ϕ ::= true | false | x ⊲⊳ C | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 wherex is a clock fromZ,
⊲⊳ ∈ {<,≤, >,≥, =}, andC ranges overN. A clock valuationoverZ is a mapping
ν : Z → R≥0. We say thatν satisfiesϕ ∈ Form(Z), writtenν |= ϕ, if ϕ evaluates to
true using the values given byν. ForR ⊆ Z, ν[R] denotes the clock valuation defined
by ν[R](x) = 0 if x ∈ R andν[R](x) = ν(x), otherwise.

The model Let us recall the fundamental notion of timed automata [2]. These will
constitute the building blocks of our distributed timed automata. Atimed automatonis
a tupleA = (S, Σ,Z, δ, I, ι, F ) whereS is a finite set ofstates, Σ is the alphabet of
actions, Z is a finite set ofclocks, δ ⊆ S × Σε × Form(Z) × 2Z × S is the finite
set oftransitions, I : S → Form(Z) associates with each state aninvariant, ι ∈ S is
the initial state, andF ⊆ S is the set offinal states. We letReset(A) = {x ∈ Z |
there is(s, a, ϕ, R, s′) ∈ δ such thatx ∈ R} be the set of clocks that might be reset in
A. Without loss of generality, we will assume in this paper that I(ι) is satisfied by the
clock valuation overZ that maps each clock to0.

We will now extend the above definition to a distributed setting. First, we fix a non-
empty finite setProc of processes (unless otherwise stated). For a tuplet that is indexed
by Proc, tp refers to the projection oft ontop ∈ Proc.

Definition 1. A distributed timed automaton (DTA)over the set of processesProc is a
structureD = ((Ap)p∈Proc, π) where theAp = (Sp, Σp,Zp, δp, Ip, ιp, Fp) are timed
automata andπ is a mapping from

⋃

p∈Proc
Zp to Proc such that, for eachp ∈ Proc,

we haveReset(Ap) ⊆ π−1(p) ⊆ Zp.

Note thatZp is the set of clocks that might occur in the timed automatonAp, either
as clock guard or reset. The same clock may occur in bothZp andZq, since it may be
read as a guard in both processes. However, any clock evolvesaccording to the time



Ap:

s0 s1 s2

a, y ≤ 1 a, {x}
Aq :

r0 r1 r2

y ≤ 1
b, x ≥ 1 b, 0 < x < 1

Fig. 1. A distributed timed automaton over{p, q}

evolution of some particular process. This clock is then said to belongto that process,
and theownermap,π, formalizes this in the above definition. This will become more
clear when we describe the formal semantics later in this section. Further, we assume
that a clock can only be reset by the process it belongs to.

Example 2.SupposeProc = {p, q}. Consider the DTAD as given by Figure 1. It
consists of two timed automata,Ap andAq. In both automata, we suppose all states to
be final. Moreover, the owner mappingπ maps clockx to p and clocky to q. Note that
Reset(Ap) = {x} andReset(Aq) = ∅. Before we define the semantics ofD formally
and in a slightly more general setting, let us give some intuitions on the behavior ofD.
If both clocks are completely synchronized, i.e., they follow the same local clock rate,
then our model corresponds to a standard network of timed automata [5]. For example,
we might executea within one time unit, and, after one time unit, executeb, ending up
in the global state(s1, r1) and a clock valuationν(x) = ν(y) = 1. If we now wanted
to perform a furtherb, this should happen instantaneously. But this also requires a reset
of x in the automatonAp and, in particular, a time elapse greater than zero, violating
the invariant at the local stater1. Thus, the wordabab will not be in the semantics that
we associate withD wrt. synchronized local-time evolution. Now suppose clocky runs
slower than clockx. Then, having executedab, we might safely execute a furthera

while resettingx and, then, let some time elapse without violating the invariant. Thus,
abab will be contained in theexistentialsemantics, as there are local time evolutions
that allow for the execution of this word. Observe thata andaa are the only sequences
that can be executed no matter what the relative time speeds are: the guardy ≤ 1 is
always satisfied for a while. But we cannot guarantee that theguardx ≥ 1 and the
invarianty ≤ 1 are satisfied at the same time, which prevents a word containingb from
being in theuniversalsemantics ofD.

The semantics The semantics of a DTA depends on the (possibly dynamically chang-
ing) time rates at the processes. To model this, we assume that these rates depend
on some absolute time, i.e., they are given by a tupleτ = (τp)p∈Proc of functions
τp : R≥0 → R≥0. Thus, each local time function maps every point in global time to
some local time instant. Then, we require (justifiably) thatthese functions are continu-
ous, strictly increasing, and divergent. Further, they satisfy τp(0) = 0 for all p ∈ Proc.
The set of all these tuplesτ is denoted byRates. We might considerτ as a mapping
R≥0 → (R≥0)

Proc so that, fort ∈ R≥0, τ(t) denotes the tuple(τp(t))p∈Proc .
A distributed system can usually be described with an asynchronous product of

automata. Indeed, the semantics of a DTA can be defined with such a product and a
mapping that assigns any clock to its owner process: LetD = ((Ap)p∈Proc, π) with
Ap = (Sp, Σp,Zp, δp, Ip, ιp, Fp) be some DTA. We assign toD the asynchronous
productBD = (S, Σ,Z, δ, I, ι, F, π) as one might expect: We setS =

∏

p∈Proc
Sp,

Σ =
⋃

p∈Proc
Σp, Z =

⋃

p∈Proc
Zp, ι = (ιp)p∈Proc, andF =

∏

p∈Proc
Fp. Moreover,

for any s ∈ S, we let I(s) =
∧

p∈Proc
Ip(sp). Finally, for s, s′ ∈ S, a ∈ Σε, ϕ ∈



Form(Z), andR ⊆ Z, we let (s, a, ϕ, R, s′) ∈ δ if there is p ∈ Proc such that
(sp, a, ϕ, R, s′p) ∈ δp andsq = s′q for eachq ∈ Proc \ {p}.

Actually, most variants of a shared-memory model and their semantics can be uni-
fied by considering one single state space. This motivates the following definition:

Definition 3. A timed automaton with independently evolving clocks (icTA) overProc

is a tupleB = (S, Σ,Z, δ, I, ι, F, π) where(S, Σ,Z, δ, I, ι, F ) is a timed automaton
andπ : Z → Proc maps each clock to a process.

Thus, the structureBD that we assigned to a DTAD is an icTA. Most of the fol-
lowing definitions and results are based on this more generalnotion of a timed system
and therefore automatically carry over to the special case of DTAs. We will now de-
fine a run of anicTA. Intuitively, this is done in the same spirit as a run of a timed
automaton over a timed word except for one difference. The time evolution, though ac-
cording to absolute time, is perceived by each process as itslocal timeevolution. So let
B = (S, Σ,Z, δ, I, ι, F, π) be anicTA. Given a clock valuationν overZ and a tuplet ∈
RProc, we let the valuationν+t be given by(ν+t)(x) = ν(x)+tπ(x) for all x ∈ Z. For

τ ∈ Rates , a τ -run ofB is a sequence(s0, ν0)
a1,t1
−−−→ (s1, ν1) . . . (sn−1, νn−1)

an,tn
−−−→

(sn, νn) wheren ≥ 0, si ∈ S, ai ∈ Σε, and(ti)1≤i≤n is a non-decreasing sequence of
values fromR≥0. Further,νi : Z → R≥0 with ν0(x) = 0 for all x ∈ Z. Finally, for
all i ∈ {1, . . . , n}, there areϕi ∈ Form(Z) andRi ⊆ Z such that the following hold:
(si−1, ai, ϕi, Ri, si) ∈ δ, νi−1 + τ(t′) − τ(ti−1) |= I(si−1) for eacht′ ∈ [ti−1, ti],
νi−1 +τ(ti)−τ(ti−1) |= ϕi, νi = (νi−1 +τ(ti)−τ(ti−1))[Ri], andνi |= I(si). In that

case, we write(B, τ) : s0
a1·...·an−−−−−→ sn or also(B, τ) : s0

a1·...·ai−−−−−→ si
ai+1·...·an

−−−−−−−→ sn to
abstract from the time instances. The latter thus denotes thatB can, readingw, go from
s0 via si to sn, while respecting the local-time behaviorτ .

Definition 4. LetB = (S, Σ,Z, δ, I, ι, F, π) be anicTA andτ ∈ Rates. Thelanguage
of B wrt. τ , denoted byL(B, τ), is the set of wordsw ∈ Σ∗ such that(B, τ) : ι

w
−→ s

for somes ∈ F . Moreover, we defineL∃(B) =
⋃

τ∈Rates
L(B, τ) to be theexistential

semanticsandL∀(B) =
⋂

τ∈Rates
L(B, τ) to be theuniversal semanticsofB.

If |Proc| = 1, then anicTA B actually reduces to an ordinary timed automaton and we
haveL∀(B) = L(B, τ) = L∃(B) for any τ ∈ Rates . Moreover, if |Proc| > 1 and
τ ∈ Rates exhibits, for allp ∈ Proc, the same local time evolution, thenL(B, τ) is the
language ofB considered as an ordinary timed automaton.

Example 5.A sampleicTA B over set of processes{p, q} andΣ = {a, b, c} is depicted
in Figure 2. Assumingπ−1(p) = {x} andπ−1(q) = {y}, we haveL∀(B) = {a, ab},
L(B, id) = {a, ab, b}, andL∃(B) = {a, ab, b, c} where idp is the identity onR≥0 for
all p ∈ Proc (i.e., id models synchronization of any process with the absolute time).

It is worthwhile to observe thatL(B, τ) can, in general, have bizarre (non-regular)
behavior, ifτ is itself a “weird” function. This is one more reason to look at the existen-
tial and universal semantics. Let us quantify this with an example. Consider the simple
icTA B over Proc = {p, q} fom Figure 3, whereΣ = {a, b}, π−1(p) = {x}, and



s0

s1

s2

s3

t1

t2

a

0 < x < 1
∧ 0 < y < 1

a

0 < x < 1
∧ 0 < y < 1

b

y ≤ 1 ≤ x

b

x < 1 = y

b

y ≤ 1 ≤ x

c

x < 1 < y

Fig. 2.An icTA B with independent clocksx andy

a
x = 1
{x}

b
y = 1
{y}x, y ≤ 1

Fig. 3. A “weird” icTA

π−1(q) = {y}. Further, letτ = (idp, τq), whereτq is any continuous, strictly increas-
ing function such thatτq(0) = 0 andτq(n) = 2n − 0.1 for anyn ≥ 1. Then,L(B, τ) is
the set of finite prefixes of the infinite wordbab2ab4ab8ab16a . . ., which is not regular.

Finally, the semantics of a DTA is formally described in terms of its icTA.

Definition 6. For a DTA D and τ ∈ Rates, we setL(D, τ) = L(BD, τ) to be the
languageof D wrt. τ , and we defineL∃(D) =

⋃

τ∈Rates
L(D, τ) as well asL∀(D) =

⋂

τ∈Rates
L(D, τ) to obtain its existential and universal semantics, respectively.

Example 7.For the DTAD from Figure 1, we can formalize what we had described
intuitively: L(D, id) = Pref ({aab, aba, baa}), L∃(D) = Pref ({aab, abab, baab}),
andL∀(D) = Pref ({aa}) where, forL ⊆ Σ∗, Pref (L) = {u | u, v ∈ Σ∗, u · v ∈ L}.

3 Region abstraction and the existential semantics

Given anicTA B and a setBad of undesired behaviors, it is natural to ask ifB is robust
against the (unknown) relative clock speeds and faithfullyavoids executing action se-
quences fromBad . This corresponds to checking ifL∃(B) ∩ Bad = ∅. In this section,
we show that this question is indeed decidable, given thatBad is a regular language.
To this aim, we define a partitioning of clock valuations intofinitely many equivalence
classes and generalize the well-known region constructionfor timed automata [2].

Let B = (S, Σ,Z, δ, I, ι, F, π) be anicTA. For a clockx ∈ Z, let Cx ∈ N be the
largest value the clockx is compared with inB (we assume that such a value exists).
We say that two clock valuationsν andν′ overZ areequivalentif the following hold:

– for eachx ∈ Z, ν(x) > Cx iff ν′(x) > Cx,
– for eachx ∈ Z, ν(x) ≤ Cx implies both⌊ν(x)⌋ = ⌊ν′(x)⌋ and (fract(ν(x)) = 0

iff fract(ν′(x)) = 0), and
– for eachp ∈ Proc andx, y ∈ π−1(p) such thatν(x) ≤ Cx andν(y) ≤ Cy, we

havefract(ν(x)) ≤ fract(ν(y)) iff fract(ν′(x)) ≤ fract(ν′(y)).
Note that this constraint only applies to clocks that belongto the same process.

An equivalence class of a clock valuation is called aclock region(of B). For a valuation
ν, [ν] denotes the clock region that containsν. The set of clock regions ofB is denoted
by Regions(B). Let γ andγ′ be two clock regions, say with representativesν andν′,
respectively. We say thatγ′ is a accessiblefrom γ, written γ � γ′, if γ′ = γ or if
there ist ∈ (R>0)

Proc such thatν′ = ν + t. Note that� is a partial-order relation.
Thesuccessorrelation, writtenγ ≺· γ′, is as usual defined byγ ≺ γ′ andγ′′ = γ or
γ′′ = γ′ for all clock regionsγ′′ with γ � γ′′ � γ′.
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Example 8.The accessible-regions relation is illustrated in Figure 4. Suppose we deal
with two processes, one owning clocksx1 andx2, the other owning a single clocky.
Suppose furthermore that, in theicTA at hand, all clocks are compared to the constant
2. Consider the prismsγ0, γ1, γ2, γ

′
1, γ

′
2, each representing a non-border clock region,

which are given by the clock constraintsγ0 = (0 < x2 < x1 < 1) ∧ (0 < y < 1),
γ′
1 = (0 < x2 < x1 − 1 < 1)∧ (0 < y < 1), γ1 = (1 < x2 < x1 < 2)∧ (0 < y < 1),

γ′
2 = (1 < x1 < x2 < 2)∧ (1 < y < 2), andγ2 = (1 < x2 < x1 < 2)∧ (1 < y < 2).

We haveγ0 � γ1 � γ2. However,γ0 6� γ′
1 andγ0 6� γ′

2.

Let B = (S, Σ,Z, δ, I, ι, F, π) be anicTA overProc. We associate withB a non-
deterministic finite automatonRB = (S′, Σ, δ′, ι′, F ′), called theregion automatonof
B, which is defined as follows:S′ = S ×Regions(B), ι′ = (ι, [ν]) whereν(x) = 0 for
all x ∈ Z, F ′ = F × Regions(B), and fora ∈ Σε, s, s′ ∈ S, andγ, γ′ ∈ Regions(B),
δ′ contains((s, γ), a, (s′, γ′)) if

– a = ε, s = s′, γ ≺· γ′, andν′ |= I(s) for someν′ ∈ γ′

(we then call((s, γ), a, (s′, γ′)) a time-elapse transition), or
– there areν ∈ γ and(s, a, ϕ, R, s′) ∈ δ such thatν |= ϕ ∧ I(s), ν[R] |= I(s′), and

ν[R] ∈ γ′ (we then call((s, γ), a, (s′, γ′)) adiscrete transition).

A part of the region automaton for theicTA from Figure 2 is shown in Figure 10.
Indeed, the languageL(RB) of the non-deterministic finite automatonRB, which

is defined as usual, coincides with the existential semantics ofB:

Lemma 9. LetB = (S, Σ,Z, δ, I, ι, F, π) be anicTA and letC be the largest constant
a clock is compared with inB. Then, the number of states ofRB is bounded by|S| ·
(2 C + 2)|Z| · |Z|! and we haveL(RB) = L∃(B).

Thus, we solved the verification problem stated at the beginning of this section:

Theorem 10. Model checkingicTAs wrt. regular negative specifications is decidable.

4 The universal semantics

While the existential semantics allows us to verify negative specifications, the universal
semantics is natural when we want to check if our system has some good behavior.
By good we mean a behavior that is robust against clock variations. Unfortunately, this



problem is undecidable. This is shown foricTAs first and then will be extended to DTAs.
Moreover, it turns out to be undecidable if, for a positive specificationGood containing
the behaviors that a systemmustexhibit and anicTA B, we haveGood ⊆ L∀(B).

Theorem 11. The following problem is undecidable if|Proc| ≥ 2: Given anicTA B
overProc, doesL∀(B) 6= ∅ hold?

Proof. The proof is by reduction from Post’s correspondence problem (PCP). An in-
stanceInst of the PCP consists of an alphabetA and two morphismsf andg from A+

to {0, 1}+. A solution ofInst is a wordw ∈ A+ such thatf(w) = g(w).
SupposeProc = {p, q} and letτ ∈ Rates. One may associate withτ two sequences

t -dir (τ) = t1t2 . . . ∈ (R≥0)
ω of time instances anddir(τ) = d1d2 . . . ∈ {0, 1, 2}ω of

directionsas follows: fori ≥ 1, we let first (assumingt0 = 0) ti = min{t > ti−1 |
τr(t) − τr(ti−1) = 2 for somer ∈ Proc}. With this, we set

di =











0 if τp(ti) − τp(ti−1) = 2 and1 < τq(ti) − τq(ti−1) < 2

1 if τq(ti) − τq(ti−1) = 2 and1 < τp(ti) − τp(ti−1) < 2

2 otherwise

The construction ofdir (τ) is illustrated in Figure 5. The idea is to allow the shape of the
relative time-rate function (fromτ ) to encode a word in{0, 1, 2}ω. We do this using2×
2-square regions, each consisting of 4 sub-squares as shown.If the rate function leaves
this region by the upper boundary or right boundary of the right-upper sub-square, then
we write 1 or 0, respectively. If it leaves by any other boundary or by end-points of any
sub-square, then we write 2. A new square region is started atthe point where the rate
function left the old one. Thus, the direction sequences partition the space of time rates.

Roughly speaking, a word is accepted universally by anicTA iff it is accepted for all
directions. Our trick will be to define anicTA such that, the PCP instance has a solution
w iff the wordwb is accepted by theicTA for all directions. Thus, if there is no solution
to the PCP, there will be some direction sequence (respectively, local time rates) for
which theicTA does not accept.

Let an instanceInst of the PCP be given by an alphabetA = {a1, . . . , ak} with
k ≥ 1 and two corresponding morphismsf andg. We will construct anicTA B =
(S, Σ,Z, δ, I, ι, F, π) over the set of processesProc = {p, q} andΣ = {a1, . . . , ak, b}
such thatL∀(B) = {wb | w ∈ A+ andf(w) = g(w)}. First, letZ = {x, y} with
π(x) = p andπ(y) = q. Ford ∈ {0, 1, 2}, we set

guard(d) =











x = 2 ∧ 1 < y < 2 if d = 0

y = 2 ∧ 1 < x < 2 if d = 1

((x ≤ 1 ∨ x = 2) ∧ y = 2) ∨ (y ≤ 1 ∧ x = 2) if d = 2

Moreover, letguard(d) =
∨

d′∈{0,1,2}\{d} guard(d′).

The final encoding of the given PCP instance in terms of theicTA is given by Fig-
ure 7. Hereby, givena ∈ A andσ = d1 . . . dn ∈ {0, 1, 2}+ (with dj ∈ {0, 1, 2} for any
j ∈ {1, . . . , n}), a transition of the form



s si

ri

a, guard(d1) ε, guard(d2) ε, guard(dn)

{x, y} {x, y} {x, y}

a, guard(d1) ε, guard(d2)
ε, guard(d3) ε, guard(dn)

. . .

Fig. 6.Transition macro

s1

s0

s2

sf

r1 r2

(ai, f(ai)) (ai, g(ai))

b

guard(2)
b

guard(2)

b

A Σ
(ai, f(ai)) (ai, g(ai))

Fig. 7. Encoding of PCP

s

ri

si

(a, σ)

will actually stand for the sequence of transitions that is depicted in Figure 6, say, with
intermediate statess(i,a,τ,1), . . . , s(i,a,τ,n−1).

Example 12.Consider the PCP instanceInst given byA = {a1, a2}, f(a1) = 101,
g(a1) = 1, f(a2) = 1, g(a2) = 01110 with the obvious solutionw = a1a2a1. One can
check thata1a2a1b ∈ L∀(B). This is illustrated in Figure 8. In the tree depicted, any
path corresponds to a finite prefix (of length|w| + 1) of some sequence of directions.
The edges are labeled by this sequence, where a left-edge is 0, downward is 2 and right-
edge is 1. Thus, intuitively, a wordwb is in the universal language iff all paths of the
tree correspond to accepting runs inB. Now, lets verify that the wordwb is accepted
by B. If clock rateτ is such thatdir (τ) ∈ f(w) · d · {0, 1, 2}ω with d ∈ {0, 1}, then
the accepting run ofB is the path shown in the left figure, which assigns statess1 to
nodes of the tree and finishes atsf . If d = 2, then the accepting run ofB is the path
in the figure on right, which assigns statess2 appropriately, crucially using the fact that
f(w) = g(w), and finally ends atsf . If the clock rateτ hasdir (τ) different from above
case, it is easy to see that there is an accepting run in whichB reaches statesf by
passing through stater1.

Let us show that our reduction is indeed correct. In the following, let≤ denote the usual
prefix relation on words.
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Fig. 8. The tree generated byw = a1a2a1b with respect tof andg.
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Fig. 9. Transition macro for the distributed setting

Claim 13. For τ ∈ Rates andw ∈ A+, the following hold:

(1) f(w) ≤ dir (τ) iff (B, τ) : s0
w
−→ s1

(2) g(w) ≤ dir (τ) iff (B, τ) : s0
w
−→ s2

(3) f(w) 6≤ dir (τ) iff (B, τ) : s0
w
−→ r1

With Claim 13, whose proof can be found in the full version [1], we can now show
both directions of the correctness of the construction ofB.

Let τ ∈ Rates and supposef(w) = g(w). We distinguish three cases: Ifdir(τ) ∈

f(w) · {0, 1} · {0, 1, 2}ω, then, by (1),(B, τ) : s0
w
−→ s1

b
−→ sf . If dir (τ) ∈ f(w) · 2 ·

{0, 1, 2}ω, then(B, τ) : s0
w
−→ s2

b
−→ sf . This follows from (2), sinceg(w) = f(w). If

f(w) 6≤ dir(τ), then, by (3),(B, τ) : s0
w
−→ r1

b
−→ sf . Hence,wb ∈ L∀(B).

Let w ∈ A+ and supposewb ∈ L∀(B). Pick τ ∈ Rates such thatdir (τ) ∈ f(w) ·

2 · {0, 1, 2}ω. As f(w) ≤ dir(τ), we have, by (3),(B, τ) : s0 6
w
−→ r1 and(B, τ) : s0

w
−→

s1 6
b
−→. Thus, we must have(B, τ) : s0

w
−→ s2

b
−→ sf . Hence, by (2),g(w) · 2 ≤ dir (τ).

As f(w), g(w) ∈ {0, 1}∗, we have bothf(w) · 2 ≤ dir (τ) andg(w) · 2 ≤ dir (τ),
which impliesf(w) = g(w). ⊓⊔

Our result can be strengthened and extended to the distributed setting as follows:

Theorem 14. Suppose|Proc| ≥ 2. For DTAsD overProc, the emptiness ofL∀(D) is
undecidable.



Proof. We fix Proc = {p, q} and the clock distributionZp = {x} andZq = {y}. Each
process will be a copy of the automaton that is depicted in Figure 7, except for one
difference: for processp, the transition macro from Figure 6 is replaced with that from
Figure 9 whereL is the lettera ∈ A andR is the singleton set{x}; for processq, we
use the same new macro, but now we haveL = ε andR = {y}.

To see how this works, we will just point out the difficulties and why the additional
states with invariants andε-transitions fix them. In the transition macro in Figure 6,
clocksx andy belonging to different processes are reset at the same time.So, here
we have two copies of the same automaton doing the same simulation but resetx in
the automaton for processp, andy in the other. But this is not enough, since in the
truly distributed setting, we cannot ensure that the clock resets are in sync. This might
allow one process to wait while the other has reset its clock and thereby enable (wrong)
transitions to stateri, thus allowing the two automata copies to differ in the simulation.
To ensure that the same path is followed, we split each state (exceptsi andri) into two.
The invariant on the first part then ensures that, before the next transition is enabled by
the guard (which happens in the second part), both have been reset.

Let us examine this in more detail. Being in two identical copies of a state with an
outgoingε-transition, theε-transitions might indeed be taken asynchronously byp and
q. However, the following transitions will be performed synchronously by both pro-
cesses. Assume first thatp follows a transition of the form(sp, a, guard(d), {x}, s′p)
before processq moves. Asguard(d), whered ∈ {0, 1}, is satisfied whenp goes tos′p,
the value of both clocks exceeds 1. But asx is reset at the same time whereasy is not,
the invariant associated withs′p is violated, which is a contradiction. Thus,q has to take
the corresponding transition, which is of the form(sq, a, guard(d), {y}, s′q), simultane-
ously. This explains why we use2×2-squares as in Figure 5 and corresponding guards.
In DTAs, they allow us to check when one clock has been reset and other has not. Now
consider the case wherep performs a transition of the form(sp, a, guard(d), ∅, s′p).
Whenp executes its transition, at least one clock has reached the value2. As this clock
cannot be reset anymore,q is obliged to follow instantaneously the corresponding tran-
sition of the form(sq, a, guard(d), ∅, s′q), to reach a final state. ⊓⊔

Along the lines of the proofs of Theorems 11 and 14, we can showthe following
theorem, from which we derive the subsequent negative result (see [1] for details):

Theorem 15. Suppose that|Proc| ≥ 2. For DTAsD over Proc, it is undecidable if
L∀(D) = Σ∗ (whereΣ is the set of actions ofBD).

Theorem 16. Model checking DTAs over at least two processes against regular posi-
tive specifications is undecidable.

5 Playing with local time rates

We have shown that it is undecidable to check if there is some word that is accepted
under all clock rates by a givenicTA B. It is natural to ask if it is possible to restrict
the independence of local time rates in some way to get decidability. For instance, we
could insist that the ratio or the difference of local times in different processes must



always be bounded. Unfortunately, this does not help. In fact, it turns out that our proof
in Section 4 can be used to show that both these restrictions are already undecidable.

Let us formalize this. We will restrict to two processes,Proc = {p, q}. We note
however that the following definitions can be easily generalized to more processes. For
a rational numberk ≥ 1, we defineRates rat(k) = {τ = (τp, τq) ∈ Rates | 1

k ≤
τp(t)
τq(t) ≤ k for all t ∈ R>0}. This is the set of all rate-function tuples such that the ratio
of the local times in the two processes are always bounded by fixed rationals. Further,
for a rational numberℓ ≥ 0, Ratesdif(ℓ) = {τ = (τp, τq) ∈ Rates | |τp(t)− τq(t)| ≤ ℓ

for all t ∈ R≥0}. These are the rate function tuples for which the differencebetween
the local times in the two processes are bounded by some constant. Accordingly, for
an icTA or a DTA B, we defineL

rat,k
∀ (B) =

⋂

τ∈Ratesrat(k) L(B, τ) andL
dif,ℓ
∀ (B) =

⋂

τ∈Ratesdif(ℓ)
L(B, τ).

Theorem 17. For icTAs or DTAsB overProc = {p, q},

1. the emptiness ofLrat,1
∀ (B) = L

dif,0
∀ (B) is decidable.

2. the emptiness ofLrat,k
∀ (B) is undecidable for every rationalk > 1.

3. the emptiness ofLdif,ℓ
∀ (B) is undecidable for every rationalℓ > 0.

To prove the theorem, we need the following lemma.

Lemma 18. Let k > 1, ℓ > 0 be some fixed rationals. For allσ ∈ {0, 1, 2}∗, there
existsτ ∈ Rates rat(k) ∩ Ratesdif(ℓ) such thatσ is a prefix ofdir (τ).

Proof. Let σ = d1d2 . . . dn ∈ {0, 1, 2}∗ be of lengthn. We defineτ (in terms of
n + 1 points) as follows:τp is the piecewise linear function withτp(2i) = xi for
i ∈ {0, . . . , n} andτp(2n + t) = xn + t for all t ∈ R≥0. Similarly,τq is defined as the
piecewise linear function withτq(2i) = yi for i = {0, . . . , n} andτq(2n + t) = yn + t

for t ∈ R≥0. The points(xi, yi) are defined byx0 = y0 = 0 and, fori ∈ {1, . . . , n},
xi = 2i − α|d1 . . . di|1 andyi = 2i − α|d1 . . . di|0 (|σ′|d denoting the number of
occurrences ofd in σ′), whereα is a rational parameter to be fixed.

With the above definition, we observe that, for alli, we have|xi−yi| ≤ iα, and, for
i > 0, we have1 − α

2 ≤ xi

yi
≤ 1

1−α/2 . Thus, by choosingα = min { ℓ
n , 2(1 − 1

k )}, we
can check thatτ ∈ Rates rat(k) ∩ Ratesdif(ℓ). Also it is easy to see thatdir (τ) = σ ·2ω,
which proves the lemma. ⊓⊔

Now, we can prove Theorem 17. Fork = 1 or ℓ = 0, the setsRates rat(k) and
Ratesdif(ℓ) consist of exactly the tuples in which time evolves at the same rate in both
processes. Thus the sets are identical and correspond to an ordinary timed automaton
so that emptiness is decidable.

Now, let k > 1 andℓ > 0. Given a PCP instance as before, we again consider
the icTA (or DTA) B from Section 4. We want to show thatw ∈ A+ is solution iff
wb ∈ L∀(B) = L

rat,k
∀ (B) = L

dif,ℓ
∀ (B). One direction is trivial. If, forw ∈ A+, we

havef(w) = g(w), thenwb ∈ L∀(B), and this implies thatwb ∈ L
rat,k
∀ (B) andwb ∈

L
dif,ℓ
∀ (B). On the other hand, ifwb ∈ L

rat,k
∀ (B) or wb ∈ L

dif,ℓ
∀ (B), then, by Lemma 18,

we pickτ ∈ Rates rat(k)∩Ratesdif(ℓ) such thatdir(τ) = f(w)·2·2ω , and the remaining
part of the proof follows as before.



6 The reactive semantics

The universal semantics described in the previous section is a possible way to imple-
ment positive specifications, i.e, to make sure that our system must satisfy some behav-
ior irrespective of the time/clock evolution. Unfortunately, since emptiness is undecid-
able even for bounded restrictions, it is not of any practical use. We would indeed like
a semantics that describes only regular behaviors.

There is another subtle point for looking for other semantics. When we want to
check if the system satisfies a positive specification, we would like to be able to design
a controller which can actually do this. For this, the semantics has to be “reactive” in
some sense. The universal semantics fails in this, in the sense that, to choose a correct
run in the system, we might need to know the future time rates.

In this section, we introduce a new game-like semantics thatsolves both the above
mentioned worries. It is regular and it is “reactive”. Formally, we will describe it using
an alternating automaton, which is based on the region automaton introduced in Sec-
tion 3. Intuitively, time-elapsetransitions are controlled by the environment whereas
discretetransitions are controlled by the system that aims at exhibiting some behavior.
This gameis not turn-basedbecause the system should be able to execute several dis-
crete transitions while staying in the same region. After moving from some region to a
successor region, the environment hands over the control tothe system so that the sys-
tem always has a chance to execute some discrete transition.On the other hand, after
executing some discrete transition, the system may either keep the control or hand it
over to the environment.

As suggested, our reactive semantics will be described by alternating automata.
SinceicTAs or DTAs haveε-transitions, we define analternating automaton withε-
transitions(ε-AA) as a tupleA = (S, Σ, δ, ι, F ) whereS is a finite set ofstates, ι ∈ S

is the initial state, F ⊆ S is the set offinal states, andδ : S × Σε → B+(S) is the
alternating transition function. Here,B+(S) denotes positive boolean combinations of
states fromS.

As usual, a run of anε-AA will be a (doubly) labeled finite tree. We assume the
reader to be familiar with the notion of trees and only mention that we deal with struc-
tures(V, σ, µ) whereV is the finite set of nodes with a distinguished root, and both
σ andµ are node-labeling functions. Given a nodeu ∈ V , the set of children ofu is
denotedchildren(u). Let w = a1 . . . a|w| ∈ Σ∗ be a finite word. A run ofA on w is a
doubly labeled finite treeρ = (V, σ, µ) whereσ : V → S is thestate-labelingfunction
andµ : V → {0, . . . , |w|} is theposition-labelingfunction such that, for each node
u ∈ V , the following hold:

– if u is the root, thenσ(u) = ι andµ(u) = 0 (we start in the initial state at the
beginning of the word),

– if u is not a leaf (i.e.,children(u) 6= ∅), then we have
• eitherµ(u′) = µ(u) for all u′ ∈ children(u) and in this case
{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ε)

• or µ(u′) = µ(u) + 1 = i ≤ n for all u′ ∈ children(u) and in this case
{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ai).
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Fig. 10.Part of the region/alternating automaton for the icTA from Figure 2

The run is accepting if all leaves are labeled withF ×{|w|}. The set of words fromΣ∗

that come with an accepting run is denoted byL(A).

Lemma 19 (cf. [4]).Given anε-AAA with n states, one can construct a non-determin-
istic finite automaton with2O(n2) states that recognizesL(A).

Let B = (S, Σ,Z, δ, I, ι, F, π) be anicTA over Proc. We associate withB an ε-
AA AB = (S′, Σ, δ′, ι′, F ′) as follows: First, letS′ = S × Regions(B) × {0, 1}.
Intuitively, tag 0 is forsystem positionswhile tag1 is for environment positions(recall
that the environment controls how time elapses whereas the system wants to accept
some word). Then,ι′ = (ι, [ν], 0) whereν(x) = 0 for eachx ∈ Z, andF ′ = F ×
Regions(B) × {0, 1}. Finally, for (s, γ) ∈ S × Regions(B) anda ∈ Σε, we let

δ′((s, γ, 1), a) = False if a 6= ε δ′((s, γ, 1), ε) =
∧

{(s, γ′, 0) | γ ≺· γ′}

δ′((s, γ, 0), a) =

{

∨

{(s′, γ′, 0) | (s, γ)
a
−→d (s′, γ′)} if a 6= ε or γ maximal

(s, γ, 1) ∨
∨

{(s′, γ′, 0) | (s, γ)
ε
−→d (s′, γ′)} otherwise

where
a|ε
−−→d denotes a discrete transition of the region automatonRB (Section 3).

Definition 20. For an icTA B, let Lreact(B) = L(AB) be thereactive semanticsof B.
Moreover, for a DTAD, Lreact(D) = Lreact(BD) is thereactive semanticsof D.

Example 21.Consider theicTA B from Figure 2. A part of itsε-AA AB is shown in
Figure 10. States with tag 0 are depicted as ovals and are existential (non-deterministic)
states and states with tag 1 are depicted as rectangles and are universal states. We have,
e.g.,δ′(r1, ε) = r3∧r4∧r5. Note, however, that a transition from an oval to a rectangles
should actually be split into two transitions, which is omitted in the picture. For exam-
ple, there is a stater′1 betweenr0 andr1 which resemblesr1 but is tagged0. Similarly,
there is another stater′2 betweenr0 andr2, and we haveδ′(r0, a) = r′1 ∨ r′2.

The following theorem follows from Lemma 19:

Theorem 22. Let B = (S, Σ,Z, δ, I, ι, F, π) be anicTA and letn be the number of
states ofRB (which is bounded by|S|·(2 C+2)|Z| ·|Z|! whereC is the largest constant
a clock is compared with inB). Then,Lreact(B) is regular and one can compute a non-
deterministic finite automaton with2O(n2) states that recognizesLreact(B).



The following inclusion property, whose proof can be found in [1], allows us to check
an icTA for positive specifications. The subsequent propositionthen establishes that
inclusion actually forms a strict hierarchy of our semantics.

Proposition 23. For any icTA B, Lreact(B) ⊆ L∀(B).

Proposition 24. Suppose that|Proc| ≥ 2. There are some DTAD overProc and some
τ ∈ Rates such thatLreact(D) $ L∀(D) $ L(D, τ) $ L∃(D).

Proof. Consider theicTA B from Figure 2. Recall thatLreact(B) = {a}, L∀(B) =
{a, ab}, L(B, id) = {a, ab, b}, andL∃(B) = {a, ab, b, c}. As B does not employ any
reset, we may view it as a DTA whereB models a process owning clockx, and where
a second process, owning clocky, does nothing, but is in a local accepting state. ⊓⊔

7 Future work

We plan to investigate the expressive power of DTAs and, in particular, thesynthesis
problem: For which (global) specificationsSpec can we generate a DTAD (over some
given system architecture) such thatLreact(D) = Spec? A similar synthesis problem
has been studied in [8] in the framework of untimed distributed channel systems. There,
additional messages are employed to achieve a given global behavior. In this context,
it would be favorable to have partial-order based specification languages and a partial-
order semantics for DTAs (see, for example, [11]).
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