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Abstract. We provide a framework for distributed systems that impose tim-
ing constraints on their executions. We propose a timed model of communicat-
ing finite-state machines, which communicate by exchangingmessages through
channels and use event clocks to generate collections of timed message sequence
charts (T-MSCs). As a specification language, we propose a monadic second-
order logic equipped with timing predicates and interpreted over T-MSCs. We
establish expressive equivalence of our automata and logic. Moreover, we prove
that, for (existentially) bounded channels, emptiness andsatisfiability are decid-
able for our automata and logic.

1 Introduction

One of the most famous connections between automata theory and classical logic, es-
tablished in the early sixties by Büchi and Elgot [7], is the equivalence of finite-state
machines and monadic second-order logic (MSO) over words. This study of relations
between logical formalisms and automata has had many generalizations including ex-
tensions and abstractions of the definition of words themselves.

A natural extension, for instance, are timed words which arevery important in the
context of verification of safety critical timed systems. For this, we have automata mod-
els such as timed automata [1] and event-clock automata (ECA) [2]. The latter have
implicit clocks allowing them to record or predict time lapses. This is well-suited for
real-time specifications (such as bounded response time) and allows for a suitable logi-
cal characterization by a timed MSO over timed words as shownin [9].

On the other hand, in a distributed setting, we might have several agents interacting
to generate a global behavior. This interaction can be specified using message sequence
charts (MSCs) which generalize words and reflect the causality of events in a system
execution. MSCs have been known for a long time independently, as they serve as
documentation of design requirements that are referred throughout the design process
and even in the final system integration and acceptance testing. MSCs are used for
describing the behavior of communicating finite-state machines (CFMs) [6], which are a
fundamental model for concurrent systems and communicating protocols. These CFMs
have communicating channels between the constituent finite-state automata and a single
MSC diagram subsumes a whole set of sequential runs of the CFM.

Our goal is to merge the timed and distributed approaches mentioned above. For
this, we first consider timed MSCs (T-MSCs) which are just MSCs with time stamps
at events (as in timed words). These are ideal to describe real-time system executions,
keeping explicitly the causal relation between events. Next, we consider MSCs with
timing constraints (TC-MSCs) where we associate lower and upper bounds on the time



interval between certain pairs of events. This is more suitable for a specifier and also
useful to describe a (possibly infinite) family of T-MSCs in afinite way.

We introduce event clock communicating finite-state machines (EC-CFM) recog-
nizing timed MSCs. These are CFMs equipped with implicit event clocks allowing
us to record or predict time lapses as in the ECA. For the logical framework, we use a
timed version of monadic second-order logic (TMSO) with additional timing predicates
to specify necessary timing constraints. We interpret bothEC-CFMs and TMSO over
T-MSCs and prove a constructive equivalence between them, with and without bounds
on channels. This is done by lifting the corresponding results from the untimed case
[12, 11, 5] by using TC-MSCs, since they can be seen as MSCs whose labelings are
extended by timing information and also as a representationof infinite sets of T-MSCs.

Further, we prove that, over “existentially bounded” channels, the emptiness check-
ing of our automaton model and, thus, the satisfiability problem of our logic are de-
cidable. Our approach consists of constructing a global finite timed automaton that can
simulate the runs of the EC-CFM (which is a distributed machine) and so, reduce the
problem to emptiness checking on a timed automaton. The hardpart of the construction
lies in “cleverly” maintaining the partial-order information (of the T-MSC) along the
sequential runs of the global timed automaton, while using only finitely many clocks.

Related WorkPast approaches to timing in MSCs with a formal semantics andanalysis
have been looked at in [3, 4, 8, 13]. While [3] and [4] only consider single MSCs or
high-level MSCs, one of the first attempts to study channel automata in the timed set-
ting goes back to Krcal and Yi [13], who provide local timed automata with the means
to communicate via FIFO channels. They do not consider MSCs as a semantics of their
automata but rather look at restricted channel architectures (e.g., one-channel systems)
to transfer decidability of reachability problems from theuntimed to the timed set-
ting. A similar automaton model was independently introduced by Chandrasekaran and
Mukund in [8], who even define its semantics in terms of timed MSCs. They propose a
practical solution to a very specific matching problem usingthe tool UPPAAL.

Outline We define MSCs in Section 2, together with their timed extensions. Our logic
and the automaton model are introduced in Section 3. We describe the equivalence
results between our automata and logic over timed MSCs in Section 4. In Section 5, it
is shown that emptiness of automata is decidable for existentially bounded channels.

2 Timed Message Sequence Charts

We fix a finite setAg of at least twoagentsor processes. The set ofcommunication
actionson processp is Actp = {p!q | q ∈ Ag \ {p}} ∪ {p?q | q ∈ Ag \ {p}}, where
p!q means that processp sends a message to processq andp?q means that processp
receives a message from processq. Furthermore, we letAct =

⋃

p∈Ag Actp.
An Act-labeled partial orderis a tripleM = (E,�, λ) where(E,�) is a finite

partial order (elements fromE are calledevents) andλ : E → Act is a labeling
function. Fore ∈ E, ↓e denotes{e′ ∈ E | e′ � e}. We define a message relation
MsgM ⊆ E × E matching send events with their corresponding receives, assuming a
FIFO architecture on the channels. That is,(e, e′) ∈ MsgM if λ(e) = p!q andλ(e′) =
q?p for somep, q ∈ Ag , and|↓e ∩ λ−1(p!q)| = |↓e′ ∩ λ−1(q?p)|.



A message sequence chart(MSC) is anAct-labeled partial orderM = (E,�, λ)
such that (i) for anyp ∈ Ag , the restriction of� to processp (denoted�p) is a total
order, (ii) the partial order� is the transitive closure ofMsgM ∪

⋃

p∈Ag�p, and (iii)
for any distinctp, q ∈ Ag, the number of send events is equal to the number of receive
events, i.e,|λ−1(p!q)| = |λ−1(q?p)|.
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Fig. 1.An MSC

Fig. 1 depicts an MSC as a diagram. The events of each process
are arranged along the vertical lines and messages are shownas hor-
izontal or downward-sloping directed edges. Note thatλ(e1) = p!q,
λ(e2) = q?p, e1 �p e

′
1, (e′2, e3) ∈ MsgM ande1 � e3. The lin-

earizations of an MSC form a word language overAct underλ. E.g.,
(p!q)(q?p)(q!r)(p!r)(r?q)(r?p) is one linearization of the MSC in
Fig. 1. An MSC is uniquely determined by one of its linearizations.

The first natural attempt while trying to add timing information to MSCs would
be to add time stamps to the events of the MSCs. This is motivated from timed words
where we have words with time stamps added at each action. This approach is quite
realistic when we want to model the real-time execution of concurrent systems.

Definition 1. A timed MSC(T-MSC) is a tuple(E,�, λ, t) where(E,�, λ) is an MSC
and t : E → R≥0 is a function such that ife1 � e2 thent(e1) ≤ t(e2). The set of all
T-MSCs is denotedTMSC.

A timed linearizationof a T-MSC is a possible execution in terms of a word from
(Act × R≥0)∗, which thus respects both the causal order and the order imposed by the
time stamping. A T-MSC is shown in 2(a). Note that it has several timed linearizations
as the concurrent eventse4 andf3 occur at the same time. A possible timed linearization
is (p!q, 2)(q?p, 2.1)(p!r, 3)(r?p, 3)(p!q, 4)(q?p, 4.5)(p!r, 6)(q!r, 6)(r?q, 6)(r?p, 7).

Now a family of T-MSCs with the same induced MSC can be specified by timing
constraints on pairs of events of the MSC. This approach is better suited to a specifier
who can then decide and enforce constraints between occurrences of events. As an
example consider Fig. 2(b). The label(0, 1] on message frome1 to f1 specifies the
lower bound and upper bound on the delay of message delivery.The label[1, 5] from
f1 to e′3 represents the bounds on the delay betweenf1 ande′3 and so on.

The question here is how flexible do we want this timing to be, i.e, between which
pairs of events do we allow constraints. For an MSCM = (E,�, λ), one obvious set
of pairs is given byMsgM which allows us to time messages. A more flexible approach
is to allow timing between the next (or previous) event of anyaction and an event in the
MSC. For this, we define the relationsNextM

σ ,PrevM
σ for everyσ ∈ Act as follows:

• NextM
σ = {(e, e′) | λ(e′) = σ, e ≺ e′, (e ≺ e′′ ∧ λ(e′′) = σ) =⇒ e′ � e′′}

• PrevM
σ = {(e, e′) | λ(e′) = σ, e′ ≺ e, (e′′ ≺ e ∧ λ(e′′) = σ) =⇒ e′′ � e′}

E.g., in Fig. 2(b),(e2, e4) ∈ NextM
p!r, (f1, e

′
3) ∈ NextM

r?p, and(e4, e3) ∈ PrevM
p!q. Note

that these relations are in fact partial maps and hence one can also writef = NextM
σ (e)

for (e, f) ∈ NextM
σ and similarly forPrevM

σ . In fact MsgM can also been seen as a
partial functionE 99K E mapping a send event to its corresponding receive in the MSC
M . Further, we remark that these relations can all be defined for a T-MSCT as well.
Since they depend only on the underlying partial order, we write MsgT , NextT

σ , etc.
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Fig. 2.A T-MSC and a TC-MSC

Let us denote the set of symbols{Msg} ∪ {Prevσ | σ ∈ Act} ∪ {Nextσ | σ ∈
Act} by TC (for timing constraints). For an MSC (or T-MSC)M , we let TCM =
⋃

α∈TC(αM ) be our set of allowed timing pairs. This is flexible enough to specify
what we need. It also generalizes the approach of D’Souza [9]in the timed words case.
Further, this is similar to the approach adopted by Alur et al. [3] to time MSCs and so
we can use their analysis tool to check consistency of the timing constraints in an MSC.

To specify timing constraints we will use rational bounded intervals over the real
line. These can be open or closed intervals but we require them to be nonempty and the
bounds to be rational. The set of all such intervals is denoted byI.

Definition 2. AnMSC with timing constraints(TC-MSC) is a tuple(E,�, λ, τ ) where
M = (E,�, λ) is an MSC andτ : TCM

99K I is a partial function. The TC-MSC is
calledmaximally definedif τ is a total function.

With this definition, TC-MSCs can be considered as abstractions of T-MSCs and
timed words. LetM = (E,�, λ, τ ) be a TC-MSC. A T-MSCT = (E,�, λ, t) is a
realizationofM if, for all (e, e′) ∈ dom(τ ), we have|t(e)− t(e′)| ∈ τ (e, e′). Thus for
instance, the T-MSC in Fig. 2(a) is a realization of the TC-MSC in Fig. 2(b).

3 Logic and Automata for Timed MSCs

Monadic Second-Order LogicWe will define several monadic second-order logics as a
means to describe sets of T-MSCs. Their syntax depends on a set R of (binary) relation
symbols, which settles the access to the partial-order relation of an MSC or T-MSC. One
example isR� = {�,Msg} containing symbols for the partial order and the message
relation. The formal syntax of our logicTMSO(R) is given by:

ϕ ::= Pσ(x) | x ∈ X | x = y | R(x, y) | δ(x, α(x)) ∈ I | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

whereσ ∈ Act, R ∈ R, α ∈ TC, I ∈ I, x, y are individual (or first-order) variables,
andX is a set (or second-order) variable (each from an infinite supply of variables).

Let T = (E,�, λ, t) be a T-MSC and letI be aninterpretationthat maps first-order
variables to elements inE and second-order variables to subsets ofE. Let us define
whenT, I |= ϕ for ϕ ∈ TMSO(R). As usual,Pσ(x) expresses thatx is labeled withσ,
i.e.,λ(I(x)) = σ. The novelty is the timing predicateδ(x, α(x)) ∈ I by which we mean
that the time difference betweenx andαT (x) is contained inI, i.e.,T, I |= δ(x, α(x)) ∈
I if I(x) ∈ dom(αT ) and|t(I(x))− t(αT (I(x)))| ∈ I. For the setR of binary relation



symbols we will useR� = {�,Msg} or R≺· = {≺·p | p ∈ Ag} ∪ {Msg}. The
interpretation of≺·p is the immediate successor relation on processp: ≺·p := ≺p \≺p

2.
The interpretation ofMsg is indeedMsgT . The rest of the semantics is classical for
MSO logics. For sentencesϕ in this logic, we defineLtime(ϕ) = {T ∈ TMSC |
T |= ϕ}. Theexistentialfragment ofTMSO(R), which is denoted byETMSO(R),
comprises all formulas∃X1 . . . ∃Xnϕ such thatϕ does not contain any set quantifier.

We will give TMSO formulas a natural semantics in terms of TC-MSCs, too. The
only noteworthy difference is in the atomic predicateδ(x, α(x)) ∈ I. For a TC-MSC
M = (E,�, λ, τ ), we defineM, I |= δ(x, α(x)) ∈ I if τ (I(x), αM(I(x))) ⊆ I,
which implicitly implies I(x) ∈ dom(αM ) and(I(x), αM(I(x))) ∈ dom(τ ). The set
of TC-MSCs that satisfy a TMSO sentenceϕ is denoted byLTC(ϕ). The following
implication is easy to see. Its converse holds in a restricted case, as we will see later.

Lemma 3. Let a T-MSCT be a realization of some TC-MSCM and letϕ be a TMSO
formula. Then,M ∈ LTC (ϕ) impliesT ∈ Ltime(ϕ).

Event-Clock Communicating Finite-State Machines (EC-CFMs) A natural model of
communication protocols are communicating finite-state machines [6], which consist
of finite-state machines with message channels between any pair of them. To introduce
the timed model we attach recording and predictingclocks(as in [2]) to these machines.

Definition 4. An EC-CFM is a tupleA = (C, (Ap)p∈Ag , F ) whereC is a finite set of
control messages,Ap = (Qp,→p, ιp) is a finite transition system overActp× [TC 99K

I]×C (i.e.,ιp ∈ Qp is the initial state and→p is afinite subset ofQp×Actp×[TC 99K

I] × C × Qp) with [TC 99K I] denoting the set of partial maps fromTC to I, and
F ⊆

∏

p∈Ag Qp is a set of global final states.

The input of an EC-CFMA is a T-MSCT = (E,�, λ, t). Consider a mapr : E →
⋃

p∈Ag Qp labeling each event of processp with a state fromQp. Definer− : E →
⋃

p∈Ag Qp as follows: For evente in processp, if there is an evente′ in processp such
thate′ ≺·p e, then we setr−(e) = r(e′). Otherwise, we setr−(e) = ιp. Thenr is said
to be arun of A onT if, for all (e, e′) ∈ MsgT with e in processp ande′ in processq,
there are guardsg, g′ ∈ [TC 99K I] and a control messagec ∈ C such that

(1) (r−(e), λ(e), g, c, r(e)) ∈ →p and(r−(e′), λ(e′), g′, c, r(e′)) ∈ →q,
(2) for allα ∈ dom(g), we havee ∈ dom(αT ) and|t(e) − t(αT (e))| ∈ g(α), and
(3) for allα ∈ dom(g′), we havee′ ∈ dom(αT ) and|t(e′) − t(αT (e′))| ∈ g′(α).

Let r be a run ofA onT . We definesp = r(ep), whereep is the maximal event in
processp. If there are no events on processp, we setsp = ιp. Then runr is successful
if the tuple(sp)p∈Ag belongs toF . A T-MSC isacceptedby an EC-CFMA if it admits
a successful run. We denote byLtime(A) the set of T-MSCs that are accepted byA.

As in the logic, we can give EC-CFMs a semantics in terms of TC-MSCs as well.
For defining a run on TC-MSCM = (E,�, λ, τ ) we just replace condition (2) above by
saying that, for allα ∈ dom(g), we must havee ∈ dom(αM ) andτ (e, αM (e)) ⊆ g(α).
We do the same for condition (3). Then, with the same notion ofacceptance as above,
we can denote the set of all TC-MSCs accepted by a given EC-CFMA asLTC(A).

Lemma 5. LetT be a realization of some TC-MSCM and letA be an EC-CFM. Then,
M ∈ LTC (A) impliesT ∈ Ltime(A).



4 Equivalence of EC-CFMs and MSO Logic

In [5], the equivalence between EMSO formulas (with restricted signature) and CFMs
over MSCs has been established. In [11], the equivalence between full MSO formulas
and CFMs over MSCs has been described in the context of bounded channels. We will
lift these theorems to the timed setting, using the conceptsfrom the previous sections.

Theorem 6. LetL be a set of T-MSCs. The following are equivalent:
1. There is an EC-CFMA such thatLtime(A) = L.
2. There isϕ ∈ ETMSO(R≺·) such thatLtime(ϕ) = L.

The construction of an ETMSO formula from an EC-CFM follows the similar con-
structions applied, for example, to finite and asynchronousautomata. In addition, we
have to cope with guards occurring on local transitions of the given EC-CFM. Assume
thatg : TC 99K I is such a guard. To ensure that the timing constraints that come along
with g are satisfied we use the formula

∧

α∈dom(g) δ(x, α(x)) ∈ g(α).
The rest of this section is devoted to the construction of an EC-CFM from an

ETMSO formula, whose size is elementary in the size of the formula. The basic idea is
to reduce this to an analogous untimed result, which has alsobeen applied in the settings
of words and traces [9, 10]. For this, we establish a connection between TMSO and or-
dinary MSO logic without timing predicate, and between EC-CFMs and their untimed
variant. Usually, these untimed formalisms are parametrized by a finite alphabetΣ to
speak about structures whose labelings are provided byΣ. Hence, in our framework,
we need to find a finite abstraction of the infinite set of possible time stamps. Applying
this finite abstraction, we move from T-MSCs to TC-MSCs and establish the converse
of Lemmas 3 and 5 in Lemmas 8 and 9, resp. This finally allows us to translate ETMSO
formulas into EC-CFMs. We provide more details below.

First, we define proper interval sets. We call a set of intervals S ⊆ I proper if it
forms a finite partition ofR≥0. We say that an interval setrefinesanother interval set if
every interval of the latter is the union of some collection of intervals of the former. For
any finite interval set, we can easily obtain a proper interval set refining it.

Let T = (E,�, λ, t) be a T-MSC andS be a proper interval set. We introduce the
TC-MSCMS

T := (E,�, λ, τ ) where, for any(e, e′) ∈ TCT , τ (e, e′) is defined to be
the unique interval ofS containing|t(e) − t(e′)|.

Lemma 7. LetT be a T-MSC and letS be a proper interval set. Then,MS
T is the unique

maximally defined TC-MSC that uses intervals fromS and admitsT as realization.

Given a TMSO formulaϕ, we let Int(ϕ) denote the finite set of intervalsI for
whichϕ has a sub-formula of the formδ(x, α(x)) ∈ I. Similarly, for any EC-CFMA,
we have afiniteset, denotedInt(A), of intervals occurring inA as guards. Now look at
any proper interval setS that refinesInt(ϕ). We can translate the TMSO formulaϕ to
another TMSO formulaϕS by replacing each sub-formula of the formδ(x, α(x)) ∈ I
by the formula

∨

J∈S:J⊆I δ(x, α(x)) ∈ J . Using Lemma 7, we can show the following
Lemmas, which then enable us to prove the reverse direction of Theorem 6.

Lemma 8. Given a T-MSCT , a TMSO formulaϕ, and a proper interval setS that
refinesInt(ϕ), we haveT |= ϕ iff MS

T |= ϕ iff MS
T |= ϕS .



Lemma 9. LetA be an EC-CFM and letS be a proper interval set that refinesInt(A).
For a T-MSCT , we haveT ∈ Ltime(A) iff MS

T ∈ LTC (A).

Proof (of Theorem 6, (2)→ (1)). Observe that any TC-MSC can be viewed as an MSC
with an additional labeling by removing the intervals from pairs of events and attaching
them to the corresponding events. More precisely, a TC-MSCM = (E,�, λ, τ ) can be
represented as an MSCM = (E,�, λ, γ) with additional labelingγ : E → (TC 99K

I) describing the timing constraints, i.e.,γ(e)(α) = τ (e, αM (e)) if e ∈ dom(αM ) and
(e, αM (e)) ∈ dom(τ ); otherwise,γ(e)(α) is undefined. This view will allow us to ap-
ply equivalences between logic and automata in the untimed case. So far, however, the
additional labelingγ is over an infinite alphabet, as there are infinitely many intervals
that might act as constraints. So, for any proper interval set S, we defineTCMSC(S)
as the set of TC-MSCsM = (E,�, λ, τ ) such thatτ (e, e′) ∈ S for any (e, e′) ∈
dom(τ ). Note that, ifM ∈ TCMSC(S) andI ∈ S thenM, I |= δ(x, α(x)) ∈ I iff
τ (I(x), αM(I(x))) = I iff γ(I(x))(α) = I. Hence a timing predicate can be trans-
formed into a labeling predicate: for anyϕ ∈ TMSO such thatInt(ϕ) ⊆ S, there is an
untimedMSO formulaϕ such thatM, I |= ϕ iff M, I |= ϕ for all M ∈ TCMSC(S).
In the following, we denote byLu(ϕ) the set of MSCs with additional labelingγ that
satisfy an untimed MSO sentenceϕ. We can build an untimedMSO(R≺·) sentenceµS

≺·

such thatLu(µS
≺·) is the set ofmaximally definedMSCsM = (E,�, λ, γ) with addi-

tional labelingγ using intervals fromS, i.e., for alle ∈ E, we haveα ∈ dom(γ(e)) iff
e ∈ dom(αM ) and in this caseγ(e)(α) ∈ S.

Similarly, an EC-CFMA can be interpreted over MSCs with the additional labeling
γ by replacing conditions (2) and (3) of runs byγ(e) = g andγ(e′) = g′, resp. We
denote byLu(A) the untimed MSCs with additional labelingγ that are accepted byA.
Here, for a TC-MSCM ∈ TCMSC(S) and an automatonA with guards in[TC 99K

S], we haveM ∈ Lu(A) impliesM ∈ LTC(A). The converse does not hold in general.
Let ϕ ∈ ETMSO(R≺·) be the given formula and letS be a proper interval set that

refinesInt(ϕ). Consider the untimedMSO(R≺·)-formulaψ = ϕS ∧ µS
≺·. By [5], there

is an EC-CFMA with guards from[TC 99K S] such thatLu(A) = Lu(ψ). We will
show thatLtime(ϕ) = Ltime(A).

LetT be a T-MSC. By Lemma 8 we haveT |= ϕ iff MS
T |= ϕS . SinceInt(ϕS) ⊆ S

andMS
T ∈ TCMSC(S) we haveMS

T |= ϕS iff M
S
T |= ϕS . Now,MS

T is maximally

defined, hence we obtainM
S
T |= µS

≺·. Therefore,T ∈ Ltime(ϕ) iff M
S
T ∈ Lu(ψ) =

Lu(A). We have seen above that this impliesMS
T ∈ LTC (A). We show that here

the converse holds, too. IfMS
T ∈ LTC (A) we can build a TC-MSCM ′ = (E,�

, λ, τ ′) such thatdom(τ ′) ⊆ dom(τ ), τ ′(e, e′) = τ (e, e′) for all (e, e′) ∈ dom(τ ′), and
M

′
∈ Lu(A). Now,Lu(A) ⊆ Lu(µS

≺·) henceM
′
is maximally defined and we obtain

M ′ = MS
T . To summarize, we have shown thatT ∈ Ltime(ϕ) iff MS

T ∈ LTC (A), and
we conclude with Lemma 9 that this is equivalent toT ∈ Ltime(A). ⊓⊔

To characterize EC-CFMs in terms of full TMSO, we need to define restrictions on
the channel size. For an integerB > 0, a wordw ∈ Act∗ is B-boundedif, for any
p, q ∈ Ag and any prefixu of w, the number of occurrences ofp!q in u exceeds that of
q?p by at mostB. An MSCM is said to beexistentiallyB-bounded(∃-B-bounded) if



it has someB-bounded linearization. A T-MSC(E,�, λ, t) is said to beuntimed-∃-B-
boundedif (E,�, λ) is∃-B-bounded. Note that, directly lifting the definition of bounds
from MSCs to T-MSCs is not completely intuitive: there are untimed-∃-1-bounded T-
MSCs whose minimal channel capacity for a timed linearization exceeds 1.

Following the same lines as in the proof of Theorem 6 but usingthe equivalence
result from [11], we can show the following theorem.

Theorem 10. LetB > 0 and letL be a set of untimed-∃-B-bounded T-MSCs. There is
an EC-CFMA with Ltime(A) = L iff there isϕ ∈ TMSO(R�) with Ltime(ϕ) = L.
Both directions are effective.

5 Deciding Emptiness of EC-CFMs

In this section, we investigate emptiness checking for EC-CFMs. While the problem is
of course undecidable in its full generality, we give a partial solution to it.

Theorem 11. The following problem is decidable:
INPUT: An EC-CFMA and an integerB > 0.
QUESTION: Is thereT ∈ Ltime(A) such thatT has aB-bounded timed linearization?

Here, a timed linearization ofT isB-bounded if the channel size never exceedsB
during its execution.

We fix an EC-CFMA = (C, (Ap)p∈Ag , F ), with Ap = (Qp,→p, ιp), andB > 0.
FromA, we build a(finite) timed automatonthat accepts a timed wordw ∈ (Act ×
R

≥0)∗ iff w is aB-bounded timed linearization of some T-MSC inLtime(A). As empti-
ness is decidable for finite timed automata [1], we have shownTheorem 11.

Let us first recall the basic notion of a timed automaton. For asetZ of clocks, the
setForm(Z) of clock formulasoverZ is given by the grammarϕ ::= true | false |
x ∼ c | x − y ∼ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 wherex, y ∈ Z, ∼ ∈ {<,≤, >,≥,=},
andc ranges overR≥0.

A timed automaton (withε-transitions)overΣ is a tupleB = (Q,Z, δ, ι, F ) where
Q is a set ofstates, Z is a set ofclocks, ι ∈ Q is theinitial state, F ⊆ Q is the set of
final states, andδ ⊆ Q × (Σ ·∪ {ε}) × Form(Z) × 2Z × Q is the transition relation.
The definition of a run ofB and its languageL(B) ⊆ (Σ × R≥0)∗ are as usual.

To keep track of the clock constraints used inA, we need to recover a partial order
from a word. Firstly, the partial order of an MSC can be recovered from any of its
linearizations. Ifw is a linearization of MSCM , thenM is isomorphic to the unique
MSC (E,�, λ) such thatE = {u ∈ Act∗ | u 6= ε andw = uv for somev} (i.e.,
E is the set of nonempty prefixes ofw), λ(uσ) = σ for u ∈ Act∗ andσ ∈ Act ,
and�p = {(u, v) ∈ E × E | u is a prefix ofv andλ(u), λ(v) ∈ Actp}. Thus, we
might consider the partial-order relation ofM to be a relation over prefixes of a given
linearization ofM . We go further to describe deterministic finite automata (DFA) that
actually run on words that are linearizations of an MSC and accept if the first and last
letter of it are related under�, PrevM

σ , or NextM
σ . More precisely, our finite automata

will run on linearizations of MSCs with additional labelings in{0, . . . , B− 1}. We say
that such an MSC(E,�, λ, ρ) (with ρ : E → {0, . . . , B − 1}) is B-well-stampedif,
for anye ∈ E, ρ(e) = |↓e ∩ λ−1(λ(e))| mod B.



Lemma 12. There are DFAC⊳ = (Q⊳, δ⊳, s⊳
0, F

⊳) and C⊲ = (Q⊲, δ⊲, s⊲
0, F

⊲) over
Act × {0, . . . , B − 1} with |Q⊳| = |Q⊲| = BO(|Ag|2) (for B ≥ 2) such that, for any
w = (σ,m)w′(τ, n) ∈ (Act × {0, . . . , B − 1})∗ andu, v ∈ (Act × {0, . . . , B − 1})∗,
the following holds: Ifuwv is a linearization of someB-well-stamped MSCM , then

• w ∈ L(C⊳) iff (u(σ,m)w′(τ, n) , u(σ,m)) ∈ PrevM
σ and

• w ∈ L(C⊲) iff (u(σ,m) , u(σ,m)w′(τ, n)) ∈ NextM
τ .

From now on, we supposeC⊳ = (Q⊳, δ⊳, s⊳
0, F

⊳) andC⊲ = (Q⊲, δ⊲, s⊲
0, F

⊲) from
the above lemma to be fixed. We moreover suppose that thepreviousautomatonC⊳ has
a unique sink states⊳

sink , from which there is no final state reachable anymore.

The Timed AutomatonLet us describe a timed automatonB that simulates the EC-
CFM A. To simplify the presentation, we allow infinitely many clocks and infinitely
many states, though on any run only finitely many states and clocks will be seen. Later,
we will modify this automaton in order to get down to finitely many states and clocks.

We useInd = Act × N as (an infinite) index set. A state of the timed automaton
B = (QB,Z, δ, ιB, FB) will be a tuplest = (s, χ, η, ξ⊳, ξ⊲, γ⊲, γm) where

• s = (sp)p∈Ag ∈
∏

p∈AgQp is a tuple of local states,
• χ : Ag2 → C≤B describes the contents of the channels,
• η : Act → {0, . . . , B − 1} gives the number that should be assigned to the next

occurrence of an action,
• ξ⊳ : Ind 99K Q⊳ andξ⊲ : Ind 99K Q⊲ associate with “active” indices, states in the

previousandnextautomata as given by Lemma 12,
• γ⊲ : Ind 99K Int(A) associatesnextconstraints with active indices, and
• γm : Ag2×{0, . . . , B−1} 99K Int(A) describes the guards attached to messages.

The initial state isιB = ((ιp)p∈Ag , χ0, η0, ξ
⊳
0 , ξ

⊲
0 , γ

⊲
0 , γ

m
0 ) whereχ0 andη0 map any

argument to the empty word and0, resp., and the partial mapsξ⊳
0 , ξ⊲

0 , γ⊲
0 , andγm

0 are
nowhere defined. We will use clocks from the (infinite) setZ = {z⊳

σ,i, z
⊲
σ,i | (σ, i) ∈

Ind}∪{zm
p,q,i | (p, q, i) ∈ Ag2 ×{0, . . . , B−1}}. Then,δ ⊆ QB ×Act ×Form(Z)×

2Z×QB contains((s, χ, η, ξ⊳, ξ⊲, γ⊲, γm), τ, ϕ,R, (s′, χ′, η′, ξ′⊳, ξ′⊲, γ′⊲, γ′m)) if there
is a local transition(sp, τ, g, c, s

′
p) ∈ →p on processp such that

• s′r = sr for all r ∈ Ag \ {p}.
• if τ = p!q, thenχ′(p, q) = c · χ(p, q) andχ′(r, s) = χ(r, s) for (r, s) 6= (p, q).
• if τ = p?q, thenχ(q, p) = χ′(q, p) · c andχ′(r, s) = χ(r, s) for (r, s) 6= (q, p).
• η′(τ ) = (η(τ ) + 1) mod B andη, η′ coincide on all other actions.
• The states of thepreviousautomata are updated. We initialize a new copy starting

on the current position in order to be able to determine whichlatter positions are
related with the current one byPrevT

τ . We also reset a corresponding new clockz⊳
τ,i

(see below). Indeed, all existing copies ofC⊳ are updated except those that would
reach thes⊳

sink state which are released since they will not be needed anymore.

ξ′⊳(σ, i) =



















δ⊳(s⊳
0, (τ, η(τ ))) if σ = τ ∧ i = min(N \ dom(ξ⊳(σ)))

δ⊳(ξ⊳(σ, i), (τ, η(τ ))) if (σ, i) ∈ dom(ξ⊳) ∧

δ⊳(ξ⊳(σ, i), (τ, η(τ ))) 6= s⊳
sink

undefined otherwise,



• The states of thenextautomata are updated similarly, starting a new copy ofC⊲ for
each actionσ such that there is aNextσ constraint on the local transition. We also
reset corresponding new clocksz⊲

σ,i (see below).

ξ′⊲(σ, i) =



















δ⊲(s⊲
0, (τ, η(τ ))) if Nextσ ∈ dom(g) ∧ i = min(N \ dom(ξ⊲(σ)))

δ⊲(ξ⊲(σ, i), (τ, η(τ ))) if (σ, i) ∈ dom(ξ⊲) ∧ (σ 6= τ ∨

δ⊲(ξ⊲(σ, i), (τ, η(τ ))) /∈ F ⊲)

undefined otherwise.

• Thenextguards are updated. Each guard generating a new copy ofC⊲ is recorded
with the same new index. Guards that were registered before and are matched by
the current action are released. All other recorded guards are kept unchanged.

γ′⊲(σ, i) =











g(Nextσ) if Nextσ ∈ dom(g) ∧ i = min(N \ dom(ξ⊲(σ)))

undefined ifσ = τ ∧ ξ′⊲(τ, i) ∈ F ⊲

γ⊲(σ, i) otherwise.

• The guards attached to message constraints are updated similarly.

γ′m(r, s, i) =











g(Msg) if Msg ∈ dom(g) ∧ τ = r!s ∧ i = η(τ )

undefined ifτ = s?r ∧ i = η(τ )

γm(r, s, i) otherwise.

• The guardϕ makes sure that all constraints that getmatchedat the current event
are satisfied. E.g., if the local transition contains aPrevσ constraint, then we have
to checkz⊳

σ,i ∈ g(Prevσ) for the (unique)i such thatξ′⊳(σ, i) ∈ F ⊳. If there is no
suchi then there is noσ in the past of the current event and thePrevσ constraint of
the local transition cannot be satisfied. In this case, we setϕ to false.

ϕ =
∧

(σ,i) | Prevσ∈dom(g)
andξ′⊳(σ,i)∈F ⊳

z⊳
σ,i ∈ g(Prevσ) ∧

∧

σ | Prevσ∈dom(g)
and{i|ξ′⊳(σ,i)∈F ⊳}=∅

false

∧
∧

i∈dom(γ⊲(τ)) |
ξ′⊲(τ,i)∈F ⊲

z⊲
τ,i ∈ γ⊲(τ, i) ∧

∧

(q,p,i)∈dom(γm) |
τ=p?q, η(τ)=i

zm
q,p,i ∈ γm(q, p, i)

• All newly defined clocks have to be reset, so we setR to be the union of sets
{z⊳

τ,i | i = min(N \ dom(ξ⊳(τ )))}, {zm
p,q,i | τ = p!q andi = η(τ )}, and{z⊲

σ,i |
Nextσ ∈ dom(g) andi = min(N \ dom(ξ⊲(σ)))}.

Finally, the set of accepting statesFB consists of all tuples(s, χ, η, ξ⊳, ξ⊲, γ⊲, γm)
in QB such thats ∈ F , χ = χ0, and the partial mapsγ⊲ andγm are nowhere defined.
This ensures that each registered guard has been checked. Indeed, a constraint registered
in γ⊲ or γm is released only when it is checked with the guardϕ.

One critical observation here is that, once we have specifiedthe local transition
of A, this global transition ofB gets determined uniquely. Thus, this step is always
deterministic. Note that the above automatonB has noε-transitions either.

Theorem 13. B accepts precisely theB-bounded timed linearizations ofLtime(A).



A Finite Version ofB To get down to a finite timed automaton that is equivalent toB,
we have to bound the number of copies of the automataC⊳ andC⊲ that are active along
a run. We can show that the number of active copies ofC⊳ is already bounded:

Proposition 14. Assume that(s, χ, η, ξ⊳, ξ⊲, γ⊲, γm) is a reachable state ofB. Then,
dom(ξ⊳) ⊆ Act × {0, . . . , |Q⊳|}.

We deduce that, for thepreviousconstraints, we can restrict to thefinite index set
Ind⊳ = Act × {0, . . . , |Q⊳|}: in a reachable state,ξ⊳ is a partial map fromInd⊳ toQ⊳.
This also implies thatB uses finitely manypreviousclocks from{z⊳

σ,i | (σ, i) ∈ Ind⊳}.

The remaining source of infinity comes fromnextconstraints. The situation is not
as easy as forpreviousconstraints. The problem is that the number of registeredNextσ

constraints,|dom(γ⊲)|, may be unbounded. Assume that(σ, i), (σ, j) ∈ dom(γ⊲) for
somei 6= j. Then, also(σ, i), (σ, j) ∈ dom(ξ⊲) and the clocksz⊲

σ,i andz⊲
σ,j have been

reset. If we haveξ⊲(σ, i) = ξ⊲(σ, j) then the constraints associated withi andj will be
matched simultaneously. When matched, the guard on the transition ofB will include
bothz⊲

σ,i ∈ γ⊲(σ, i) andz⊲
σ,j ∈ γ⊲(σ, j). The idea is to keep the stronger constraint and

to release the other one. To determine the stronger constraint we have to deal separately
with the upper parts and the lower parts of the constraints. An additional difficulty
comes from the fact that the two clocks have not been reset simultaneously.

Let x ∼ c andx′ ∼′ c′ be twoupper-guards which means that∼,∼′ ∈ {<,≤}.
We say thatx ∼ c is stronger thanx′ ∼′ c′ if, when evaluated at the same instant,
x ∼ c holds impliesx′ ∼′ c′ holds as well. The stronger constraint can be determined
with a diagonal guard:x ∼ c is stronger thanx′ ∼′ c′ if eitherx′ − x < c′ − c or else
x′ − x ≤ c′ − c and (∼ = < or ∼′ = ≤). The relationstronger thanis transitive and
total among upper-guards. We can define similarlystronger thanfor lower-guards, i.e,
when∼,∼′ ∈ {>,≥}. We havex ∼ c stronger thanx′ ∼′ c′ if eitherx′ − x > c′ − c
or elsex′ − x ≥ c′ − c and (∼ = > or ∼′ = ≥).

Now, we get back to our problem and show how to changeB so that the size of
dom(ξ⊲) in a statest = (s, χ, η, ξ⊳, ξ⊲, γ⊲, γm) can be bounded by|Act | · (2|Q⊲| + 1).
Note thatdom(γ⊲) = dom(ξ⊲). A transition ofB may initiate at most|Act | new copies
of C⊲ (one for eachσ ∈ Act such thatNextσ ∈ dom(g). Hence, we say that statest is
safeif for all σ ∈ Act we have|dom(ξ⊲(σ))| ≤ 2|Q⊲|. The transitions ofB are kept in
the new automatonB′ only when they start in a safe state.

If st is not safe, then|{i | ξ⊲(σ, i) = q}| > 2 for someσ ∈ Act andq ∈ Q⊲. In this
case, we say thatst is unsafe for(σ, q) and letActive(σ, q) = {i | ξ⊲(σ, i) = q}.

If Active(σ, q) 6= ∅, let iu ∈ Active(σ, q) be such that the upper-guard defined
by z⊲

σ,iu
∈ γ⊲(σ, iu) is stronger than all upper-guards defined byz⊲

σ,j ∈ γ⊲(σ, j) for
j ∈ Active(σ, q). Further, letiℓ ∈ Active(σ, q) be defined similarly for lower-guards.

From the definition of the relationstronger thanwe know that all constraintsz⊲
σ,j ∈

γ⊲(σ, j) for j ∈ Active(σ, q) are subsumed by the conjunction ofz⊲
σ,iℓ

∈ γ⊲(σ, iℓ) and
z⊲
σ,iu

∈ γ⊲(σ, iu). Therefore, we can release allnextconstraints associated with(σ, j)
with j ∈ Active(σ, q) \ {iℓ, iu}.

To do this, we add toB′ an ε-transition (st, ϕ(σ, q, iℓ, iu), ε, ∅, st′). The guard
should evaluate totrue if iℓ and iu determine stronger lower- and upper-constraints
among those defined byActive(σ, q). Since the relationstronger thancan be expressed



with diagonal constraints, we haveϕ(σ, q, iℓ, iu) ∈ Form(Z). We have that, in state
st′ = (s, χ, η, ξ⊳, ξ′⊲, γ′⊲, γm), only thenextinformation is changed:

γ′⊲(τ, i) =

{

undefined ifτ = σ andi ∈ Active(σ, q) \ {iℓ, iu}

γ⊲(τ, i) otherwise

ξ′⊲(τ, i) =

{

undefined ifτ = σ andi ∈ Active(σ, q) \ {iℓ, iu}

ξ⊲(τ, i) otherwise.

Then,{i | ξ′⊲(σ, i) = q} = {iℓ, iu} andst′ is safe for(σ, q).
We deduce that in the automatonB′, we can restrict to thefinite index setInd⊲ =

Act ×{0, . . . , 2|Q⊲|} for the partial mapsξ⊲ andγ⊲ used for thenextconstraints. Con-
sequently,B′ uses finitely manynextclocks from{z⊲

σ,i | (σ, i) ∈ Ind⊲}. The following
proves Theorem 11, from which we deduce a decidability result for our logic.

Theorem 15. The timed automatonB′ is finite. It hasBO(|Ag|2) many clocks (forB ≥
2), and we haveL(B′) = L(B).

Corollary 16. The following problem is decidable:
INPUT: ϕ ∈ TMSO(R�) and an integerB > 0.
QUESTION: Is thereT ∈ Ltime(ϕ) such thatT has aB-bounded timed linearization?
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