D4-2: Results on case studies from literature

Steve Kremer

LSV, CNRS & ENS Cachan & INRIA
The results presented in this report are based on joint work with S. Delaune, M. Ryan and B. Smyth

In this report we give an overview of our work on analyzing e-voting protocols from the lit-
erature. In [DKR09], we have analysed the privacy-type properties for three protocols: Fujioka
et al. [FOO92], Okamaoto [Oka96] and Lee et al. [LBDT04]. In [KRS10], we have analysed ver-
ifiability properties of the protocols by Fujioka et al. [FO092] and Juels et al. [JCJ05] recently
implemented as Civitas [CCMO08]. For each of these two families of properties we summarize our
formal model of the protocols and the properties as well as the results on the case studies. More
detailed information can be found in the full papers which are appended to this report.

1 Privacy-type properties

In this section we describe our work on privacy type properties. We distinguish three types of
privacy properties:

— Vote-privacy: the fact that a particular voter voted in a particular way is not revealed to
anyone.

— Receipt-freeness: a voter does not gain any information (a receipt) which can be used to prove
to a coercer that she voted in a certain way.

— Coercion-resistance: a voter cannot cooperate with a coercer to prove to him that she voted
in a certain way.

The weakest of the three, called vote-privacy, roughly states that the fact that a voter voted in
a particular way is not revealed to anyone. When stated in this simple way, however, the property
is in general false, because if all the voters vote unanimously then everyone will get to know how
everyone else voted. The formalisation we give in fact says that no party receives information
which would allow them to distinguish one situation from another one in which two voters swap
their votes.

Receipt-freeness says that the voter does not obtain any artefact (a “receipt”) which can be used
later to prove to another party how she voted. Such a receipt may be intentional or unintentional
on the part of the designer of the system. Unintentional receipts might include nonces or keys
which the voter is given during the protocol. Receipt-freeness is a stronger property than privacy.
Intuitively, privacy says that an attacker cannot discern how a voter votes from any information
that the voter necessarily reveals during the course of the election. Receipt-freeness says the same
thing even if the voter voluntarily reveals additional information.

Coercion-resistance is the third and strongest of the three privacy properties. Again, it says
that the link between a voter and her vote cannot be established by an attacker, this time even if
the voter cooperates with the attacker during the election process. Such cooperation can include
giving to the attacker any data which she gets during the voting process, and using data which the
attacker provides in return. When analysing coercion-resistance, we assume that the voter and the
attacker can communicate and exchange data at any time during the election process. Coercion-
resistance is intuitively stronger than receipt-freeness, since the attacker has more capabilities.

Of course, the voter can simply tell an attacker how she voted, but unless she provides convinc-
ing evidence the attacker has no reason to believe her. Receipt-freeness and coercion-resistance
assert that she cannot provide convincing evidence. Coercion-resistance cannot possibly hold if the
coercer can physically vote on behalf of the voter. Some mechanism is necessary for isolating the
voter from the coercer at the moment she casts her vote. This can be realised by a voting booth,

which we model here as a private and anonymous channel between the voter and the election
administrators.

Note that in literature the distinction between receipt-freeness and coercion-resistance is not
very clear. The definitions are usually given in natural language and are insufficiently precise
to allow comparison. The notion of receipt-freeness first appeared in the work of Benaloh and
Tuinstra [BT94]. Since then, several schemes [BT94,0ka96] were proposed in order to meet the
condition of receipt-freeness, but later shown not to satisfy it. One of the reasons for such flaws is
that no formal definition of receipt-freeness has been given. The situation for coercion-resistance is
similar. Systems have been proposed aiming to satisfy it; for example, Okamoto [Oka97] presents
a system resistant to interactive coercers, thus aiming to satisfy what we call coercion-resistance,
but this property is stated only in natural language. A rigorous definition in a computational
model has been proposed by Juels et al. for coercion-resistance [JCJ05] and in the UC framework
by Moran and Naor [MNO06] and Unruh and Miiller-Quade [UM10]. To the best of our knowledge
our definition is the first “formal methods” definition of receipt-freeness and coercion-resistance.
It is difficult to compare our definition and the ones proposed in [JCJ05,MN06,UM10] due to the
inherently different models. Our work has later been extended by Backes et al. [BHMO08] who aim
automation of coercion-resistance using ProVerif.

This section is based on the results published in [DKR09].

1.1 Formalising voting protocols

Before formalising security properties, we need to define what is an electronic voting protocol in
the applied pi calculus. Different voting protocols often have substantial differences. However, we
believe that a large class of voting protocols can be represented by processes corresponding to the
following structure.

Definition 1 (Voting process). A voting process is a closed plain process
VP=via.(Voy |- | Vo | A1 |-+ | Am).

The Vo, are the voter processes, the Ajs the election authorities which are required to be honest
and the i are channel names. We also suppose that v € dom(o;) is a variable which refers to the
value of the vote. We define an evaluation context S which is as VP, but has a hole instead of two
of the Vo,.

In order to prove a given property, we may require some of the authorities to be honest, while
other authorities may be assumed to be corrupted by the attacker. The processes Aq,..., A,
represent the authorities which are required to be honest. The authorities under control of the
attacker need not be modelled, since we consider any possible behaviour for the attacker (and
therefore any possible behaviour for corrupt authorities). In this case the communication channels
are available to the environment.

1.2 Vote-privacy

The privacy property aims to guarantee that the link between a given voter V' and his vote v
remains hidden. Anonymity and privacy properties have been successfully studied using equiva-
lences, e.g. [SS96] . However, the definition of privacy in the context of voting protocols is rather
subtle. While generally most security properties should hold against an arbitrary number of dis-
honest participants, arbitrary coalitions do not make sense here. Consider for instance the case
where all but one voter are dishonest: as the results of the vote are published at the end, the dis-
honest voter can collude and determine the vote of the honest voter. A classical trick for modelling
anonymity is to ask whether two processes, one in which V4 votes and one in which Vg votes, are
equivalent. However, such an equivalence does not hold here as the voters’ identities are revealed
(and they need to be revealed at least to the administrator to verify eligibility). In a similar way,
an equivalence of two processes where only the vote is changed does not hold, because the votes

are published at the end of the protocol. To ensure privacy we need to hide the link between the
voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that at least two voters
are honest. We denote the voters V4 and Vp and their votes a, respectively b. We say that a voting
protocol respects privacy whenever a process where V4 votes a and Vg votes b is observationally
equivalent to a process where V4 votes b and Vg votes a. Formally, privacy is defined as follows.

Definition 2 (Vote-privacy). A voting protocol respects vote-privacy (or just privacy) if

SWVal®/o} | VB /o me SIVa{/u} | VB{/0}]
for all possible votes a and b.

The intuition is that if an intruder cannot detect if arbitrary honest voters V4 and Vp swap
their votes, then in general he cannot know anything about how V4 (or V) voted. Note that this
definition is robust even in situations where the result of the election is such that the votes of V4
and Vg are necessarily revealed. For example, if the vote is unanimous, or if all other voters reveal
how they voted and thus allow the votes of V4 and Vg to be deduced.

As already noted, in some protocols the vote-privacy property may hold even if authorities are
corrupt, while other protocols may require the authorities to be honest. When proving privacy,
we choose which authorities we want to model as honest, by including them in Definition 1 of VP
(and hence S).

1.3 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formalised as an observational equivalence. We also
formalise receipt-freeness using observational equivalence. However, we need to model the fact that
V4 is willing to provide secret information, i.e., the receipt, to the coercer. We assume that the
coercer is in fact the attacker who, as usual in the Dolev-Yao model, controls the public channels.
To model V4’s communication with the coercer, we consider that V4 executes a voting process
which has been modified. We denote by P°" the plain process P that is modified as follows: any
input of base type and any freshly generated names of base type are output on channel ch. We do
not forward restricted channel names, as these are used for modelling purposes, such as physically
secure channels, e.g. the voting booth, or the existence of a PKI which securely distributes keys (the
keys themselves are forwarded but not the secret channel name on which the keys are received).
In the remainder, we assume that ch & fn(P) U bn(P) before applying the transformation. Given
an extended process A and a channel name ch, we to define the extended process A\°ut(ch:) a5
vch.(A |lin(ch, z)). Intuitively, such a process is as the process A, but hiding the outputs on the
channel ch.

We are now ready to define receipt-freeness. Intuitively, a protocol is receipt-free if, for all
voters V4, the process in which V4 votes according to the intruder’s wishes is indistinguishable
from the one in which she votes something else. As in the case of privacy, we express this as an
observational equivalence to a process in which V4 swaps her vote with Vg, in order to avoid the
case in which the intruder can distinguish the situations merely by counting the votes at the end.
Suppose the coercer’s desired vote is ¢. Then we define receipt-freeness as follows.

Definition 3 (Receipt-freeness). A wvoting protocol is receipt-free if there exists a closed plain
process V' such that

_ V/\out(chc,~) ~2p VA{a/v}y
- S[VA{C/H}C}LC ‘ VB{a/v}] ~e S[V/ | VB{C/v}]y

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities that are assumed
to be honest. V' is a process in which voter V4 votes a but communicates with the coercer C' in
order to feign cooperation with him. Thus, the second equivalence says that the coercer cannot
tell the difference between a situation in which V4 genuinely cooperates with him in order to cast
the vote ¢ and one in which she pretends to cooperate but actually casts the vote a, provided
there is some counter-balancing voter that votes the other way around. The first equivalence of
the definition says that if one ignores the outputs V' makes on the coercer channel chc, then V’
looks like a voter process V4 voting a.

The first equivalence of the definition may be considered too strong; informally, one might con-
sider that the equivalence should be required only in a particular S context rather than requiring
it in any context (with access to all the private channels of the protocol). This would result in a
weaker definition, although one which is more difficult to work with. In fact, the variant definition
would be only slightly weaker; it is hard to construct a natural example which distinguishes the
two possibilities, and in particular it makes no difference to the case studies of later sections.
Therefore, we prefer to stick to Definition 3.

According to intuition, if a protocol is receipt-free (for a given set of honest authorities), then
it also respects privacy (for the same set):

Proposition 1. If a voting protocol is receipt-free then it also respects privacy.

1.4 Coercion-Resistance

Coercion-resistance is a stronger property as we give the coercer the ability to communicate
interactively with the voter and not only receive information. In this model, the coercer can prepare
the messages he wants the voter to send. As for receipt-freeness, we modify the voter process. In
the case of coercion-resistance, we give the coercer the possibility to provide the messages the
voter should send. The coercer can also decide how the voter branches on if-statements.

We denote by P<:“2 the plain process P that is modified as follows: any input of base type and
any freshly generated names of base type are output on channel ¢;. Moreover, when M is a term
of base type, any output out(u, M) is replaced by in(cz, z).out(u, z) where z is a fresh variable and
any occurence of if M = N is replaced by in(cg, z). if = true.

As a first approximation, we could try to define coercion-resistance in the following way: a
protocol is coercion-resistant if there is a V' such that

SWa{' /oy [VB{*/o}] e SIV' | VB{/u}]. (1)

On the left, we have the coerced voter Va{’/,}¢:°2; no matter what she intends to vote (the “?”),
the idea is that the coercer will force her to vote c. On the right, the process V' resists coercion,
and manages to vote a. Unfortunately, this characterisation has the problem that the coercer could
oblige Va{"/,}°1°2 to vote ¢’ # c. In that case, the process V{¢/,} would not counter-balance
the outcome to avoid a trivial way of distinguishing the two sides.

To enable us to reason about the coercer’s choice of vote, we model the coercer’s behaviour as
a context C' that defines the interface c1, co for the voting process. The context C' coerces a voter
to vote c¢. Thus, we can characterise coercion-resistance as follows: a protocol is coercion-resistant
if there is a V’ such that

SICWVa{?fo}r 2] | Ve{®/u} = SICIV'] | VB{*/}), (2)

where C'is a context ensuring that the coerced voter V4{’/,}°*° votes c. The context C' models
the coercer’s behaviour, while the environment models the coercer’s powers to observe whether the
coerced voter behaves as instructed. We additionally require that the context C does not directly
use the channel names 7 restricted by S. Formally one can ensure that V4{’/,}* votes ¢ by
requiring that C[Va{"/,}¢0¢] = Va{¢/,}"°. We actually require a slightly weaker condition,
S[CIVa{" o} | VB{®/u}] =~¢ S[Va{¢/u}" | VB{®/,}], which results in a stronger property.
Backes et al. [BHMOS] propose a variant of our definitions: instead of forcing the coercer’s vote

to ¢, they require the existence of an extractor process which extracts the vote of the coercer to
enable counter-balancing.
Putting the above ideas together, we get to the following definition:

Definition 4 (Coercion-resistance). A wvoting protocol is coercion-resistant if there exists a
closed plain process V' such that for any C = veywes. (- | P) satisfying n N fn(C) = O and
SICIVa{? [} 2] | VB{*/o}] = SIVaA{/u}" | VB{®/.}], we have

= CIV\leher) g Va{e/,},
= SICWVa{* o} =2] | Vi{®/u}) e SICIV'] | V(e .

Note that Va{’/,}°***2 does not depend on what we put for “?”.

The condition that S[C[Va{’/,}"?] | VB{®/,}] ~¢ S[Va{¢/s}"¢ | VB{®/,}] means that
the context C' outputs the secrets generated during its computation; this is required so that the
environment can make distinctions on the basis of those secrets, as in receipt-freeness. The first
bullet point expresses that V' is a voting process for A which fakes the inputs/outputs with C' and
succeeds in voting a in spite of the coercer. The second bullet point says that the coercer cannot
distinguish between V' and the really coerced voter, provided another voter Vz counter-balances.

As in the case of receipt-freeness, the first equivalence of the definition could be made weaker
by requiring it only in a particular S context. But we chose not to adopt this extra complication,
for the same reasons as given in the case of receipt-freeness.

Remark 1. The context C' models the coercer’s behaviour; we can see its role in equivalence (2)
as imposing a restriction on the distinguishing power of the environment in equivalence (1). Since
the coercer’s behaviour is modelled by C while its distinguishing powers are modelled by the
environment, it would be useful to write (2) as

CISVal’ o} | Vs{® /Y]] e OISV | VB{/W}]]- (3)
We have shown that equivalences (2) and (3) are the same.

Remark 2. Note that our definition of coercion-resistance cannot cover attacks such as the ballot-
as-signature attack (also known as the Italian attack) [DC] where the number of possible votes is
extremely high and therefore a particular vote is unlikely to appear twice and can therefore be
identified by a coercer.

According to intuition, if a protocol is coercion-resistant then it respects receipt-freeness too
(as before, we keep constant the set of honest authorities):

Proposition 2. If a voting protocol is coercion-resistant then it also respects receipt-freeness.

1.5 Case studies

We have analysed the above discussed privacy-type properties for three protocols: Fujioka et
al. [FO092], Okamaoto [Oka96] and Lee et al. [LBDT04]. As we only model authorities that are
required to be honest for these protocols to hold we are able to identify which authorities need to
be trusted for these particular properties. When analysing these three properties the existence of
the process V' for receipt-freeness and coercion-resistance turned out to be easy. In the protocol
specification these processes are generally described as the way of achieving the properties. The
equivalence properties could however not be proved automatically and required hand proofs. We
were however able to rely on ProVerif for some Lemmas on static equivalence. We summarise the
results of these three case studies in Figure 1.

Property Fujioka et al. Okamoto Lee et al.
Vote-privacy v v v
trusted authorities none timeliness mbr. administrator
Receipt-freeness X v v
trusted authorities n/a timeliness mbr. admin. & collector
Coercion-resistance X X v
trusted authorities n/a n/a admin. & collector

Fig. 1. Summary of protocols and properties

2 Election verifiability

We present a definition of election verifiability which captures three desirable aspects: individ-
ual, universal and eligibility verifiability. We formalise verifiability as a triple of Boolean tests
PV, UV dEY which are required to satisfy several conditions on all possible executions of the
protocol. @'V is intended to be checked by the individual voter who instantiates the test with her
private information (e.g., her vote and data derived during the execution of the protocol) and the
public information available on the bulletin board. #YV and $&V can be checked by any external
observer and only rely on public information, i.e., the contents of the bulletin board.

The consideration of eligibility verifiability is particularly interesting as it provides an assurance
that the election outcome corresponds to votes legitimately cast and hence provides a mechanism
to detect ballot stuffing. We note that this property has been largely neglected in previous work
and an earlier work of ours [SRKKO09] only provided limited scope for.

A further interesting aspect of our work is the clear identification of which parts of the voting
system need to be trusted to achieve verifiability. All untrusted parts of the system will be con-
trolled by the adversarial environment and do not need to be modelled. Ideally, such a process
would only model the interaction between a voter and the voting terminal; that is, the messages
input by the voter. In particular, the voter should not need to trust the election hardware or
software. However, achieving absolute verifiability in this context is difficult and one often needs
to trust some parts of the voting software or some administrators. Such trust assumptions are
motivated by the fact that parts of a protocol can be audited, or can be executed in a distributed
manner amongst several different election officials. For instance, in Helios 2.0 [Adi08], the bal-
lot construction can be audited using a cast-or-audit mechanism. Whether trust assumptions are
reasonable depends on the context of the given election, but our work makes them explicit.

Of course the tests 'V, &YV and &V need to be verified in a trusted environment (if a test
is checked by malicious software that always evaluates the test to hold, it is useless). However,
the verification of these tests, unlike the election, can be repeated on different machines, using
different software, provided by different stakeholders of the election. Another possibility to avoid
this issue would be to have tests which are human-verifiable as discussed in [Adi06, Chapter 5].

This section is based on the results presented in [KRS10].

2.1 Formalising voting protocols for verifiability properties

To model verifiability properties we add a record construct to the applied pi calculus. We assume
an infinite set of distinguished record variables r,r1,. ... The syntax of plain processes is extended
by the construct rec(r, M').P. We write fn(A) and fn(M) for the set of record variables in a process
and a term. Intuitively, the record message construct rec(r, M).P introduces the possibility to enter
special entries in frames. We suppose that the sort system ensures that r is a variable of record
sort, which may only be used as a first argument of the rec construct or in the domain of the
frame. Moreover, we make the global assumption that a record variable has a unique occurrence
in each process. Intuitively, this construct will be used to allow a voter to privately record some
information which she may later use to verify the election.

As discussed in the introduction we want to explicitly specify the parts of the election protocol
which need to be trusted. Formally the trusted parts of the voting protocol can be captured using
a voting process specification.

Definition 5 (Voting process specification). A voting process specification is a tuple (V, A)
where V' is a plain process without replication and A is a closed evaluation context such that

fo(V) ={v} and fn(V) = 0.

For the purposes of individual verifiability the voter may rely on some data derived during
the protocol execution. We must therefore keep track of all such values, which is achieved using
the record construct. Given a finite process P without replication we denote by R(P), the process
which records any freshly generated name and any input, ¢.e., we replace any occurence of vn with
vn.rec(r,n) and in(u,) with in(u,).rec(r,) for some fresh record variable r for each replacement.

Definition 6. Given a voting process specification (V, A), integer n € N, and names s1, . .., S,, we
build the augmented voting process VP! (s1,...,8,) = A[V]" | -+ | V] where V;T = R(V){*¢ /. }{" /» |
r € fn(R(V))}.

Given a sequence of record variables 7, we denote by 7; the sequence of variables obtained by
indexing each variable in 7 with 7. The process VP:(sl, ..., 8y) models the voting protocol for n
voters casting votes s1, ..., S,, who privately record the data that may be needed for verification
using record variables 7;.

2.2 Election verifiability

We formalise election verifiability using three tests @V, YV, $EV. Formally, a test is built from
conjunctions and disjunctions of atomic tests of the form (M =g N) where M, N are terms. Tests
may contain variables and will need to hold on frames arising from arbitrary protocol executions.
We now recall the purpose of each test and assume some naming conventions about variables.
Individual verifiability: The test "V allows a voter to identify her ballot in the bulletin board. The
test has:

— a variable v referring to a voter’s vote.

— a variable w referring to a voter’s public credential.

— some variables z, T, Z,... expected to refer to global public values pertaining to the election,
e.g., public keys belonging to election administrators.

— a variable y expected to refer to the voter’s ballot on the bulletin board.

— some record variables rq, ..., r; referring to the voter’s private data.

Universal verifiability: The test ®YV allows an observer to check that the election outcome corre-
sponds to the ballots in the bulletin board. The test has:

a tuple of variables ¥ = (v1,...,v,) referring to the declared outcome.
— some variables x,Z, Z,... as above.
— a tuple § = (y1,...,yn) expected to refer to all the voters’ ballots on the bulletin board.

some variables z, Z, Z,... expected to refer to outputs generated during the protocol used for
the purposes of universal and eligibility verification.

Eligibility verifiability: The test ®EV allows an observer to check that each ballot in the bulletin
board was cast by a unique registered voter. The test has:

— a tuple w = (wy, . ..,w,) referring to public credentials of eligible voters.
— a tuple g, variables z,z,Z,... and variables z,Zz, 2,... as above.

Individual and universal verifiability. The tests suitable for the purposes of election verifia-
bility have to satisfy certain conditions: if the tests succeed, then the data output by the election
is indeed valid (soundness); and there is a behaviour of the election authority which produces
election data satisfying the tests (effectiveness). Formally these requirements are captured by the
definition below. We write T ~ T’ to denote that the tuples T and T” are a permutation of each
others modulo the equational theory, that is, we have T = Ti,...T,, T' = T{,...T) and there
exists a permutation x on {1,...,n} such that for all 1 <i <n we have T; =g T",(;).

Definition 7 (Individual and universal verifiability). A voting specification (V, A) satisfies
individual and universal verifiability if for all n € N there exist tests &'V, ®YV such that fn(d"V) =
m(@Y) = (@) =0, (@) C m(R(V)), and for all names § = (s1,...,5,) the conditions
below hold. Let 7 = fn(®V) and &I = &V {*/, 7 /;}.

Soundness. For all contexts C' and processes B such that C[VP/ (s1,...,s,)] = B and ¢(B) =
vn.o, we have:

Vi,j. OYoANPYo=i=j (4)
Vo AWV /3}o = To ~ o (5)
/\ Vi) Yo ndVo = 5~ 0 (6)
1<i<n

Effectiveness. There exists a context C and a process B, such that C[VP/ (s1,...,s,)] = B,

¢(B) = vn.o and
N 2V /o ndWo (7)

1<i<n

An individual voter should verify that the test 'V holds when instantiated with her vote s;, the
information 7; recorded during the execution of the protocol and some bulletin board entry. Indeed,
Condition (4) ensures that the test will hold for at most one bulletin board entry. (Note that &LV
and @'jv are evaluated with the same ballot yo provided by C[].) The fact that her ballot is counted
will be ensured by #YV which should also be tested by the voter. An observer will instantiate the
test ®UV with the bulletin board entries 7 and the declared outcome @. Condition (5) ensures the
observer that ®YV only holds for a single outcome. Condition (6) ensures that if a bulletin board
contains the ballots of voters who voted s, ...,s, then ®YV only holds if the declared outcome
is (a permutation of) these votes. Finally, Condition (7) ensures that there exists an execution
where the tests hold. In particular this allows us to verify whether the protocol can satisfy the
tests when executed as expected. This also avoids tests which are always false and would make
Conditions (4)—(6) vacuously hold.

Eligibility verifiability. To fully capture election verifiability, the tests ¢V and @YV must be
supplemented by a test $EV that checks eligibility of the voters whose votes have been counted.
We suppose that the public credentials of eligible voters appear on the bulletin board. &V allows
an observer to check that only these individuals (that is, those in possession of credentials) cast
votes, and at most one vote each.

Definition 8 (Election verifiability). A voting specification (V, A) satisfies election verifiabil-
ity if for all n € N there exist tests PV, &V SV such that fn(®V) = (V) = fn(dEY) =
fn(@YVY) = (@) =0, (V) C fm(R(V)), and for all names § = (s1,...,s,) we have:

1. The tests "V and OV satisfy each of the conditions of Definition 7;
2. The additional conditions 8, 9, 10 and 11 below hold.

Let 7 = fn(®V), &V =V {si/, 7 /z ¥ [}, X = fu(PEV)\domVP (s1,...,sn)

Soundness. For all contexts C and processes B such that C[VPY (s1,...,s,)] = B and ¢(B) =
vn.o, we have:

Vo NV {T [, |z € X\Glo = o ~ @0 (8)
N Vo nd® {7 /zle = do~io (9)

1<i<n
Vo ANBEV{ [, |z e X\b}o = jo ~ o (10)
Effectiveness. There exists a context C' and a process B such that C[VP}(s1,...,s,)] = B,

¢(B) = vn.c and
N 2VondVondse (11)
1<i<n

The test $EV is instantiated by an observer with the bulletin board. Condition (8) ensures that,
given a set of ballots o, provided by the environment, & succeeds only for one list of voter public
credentials. Condition (9) ensures that if a bulletin board contains the ballots of voters with public
credentials wo then ®EY only holds on a permutation of these credentials. Condition (10) ensures
that, given a set of credentials w, only one set of bulletin board entries § are accepted by ®EV
(observe that for such a strong requirement to hold we expect the voting specification’s frame to
contain a public key, to root trust). Finally, the effectiveness condition is similar to Condition (7)
of Definition 7.

2.3 Case studies

We have analysed verifiability in the protocols by Fujioka et al. [FO0O92] and Juels et al. [JCJO05]
recently implemented as Civitas [CCMO08]. In particular for each of these protocols we identify the
exact parts of the system and software that need to be trusted. As an illustration we consider the
protocol by Fujioka et al. [FOO92].

Definition 9. The voting process specification (Vioo, Afoo) is defined as
Voo = vrnd.outv.outrnd — and Agool-] = -

Intuitively, this specification says that the voter only needs to enter into a terminal a fresh random
value rnd and a vote v. The voter does not need to trust any other parts of the system or the
administrators. Whether, a voter can generate a fresh random value (which is expected to be
used as the key for a commitment), enter it in a terminal and remember it for verifiability or
whether some software is trustworthy to achive this task is questionable. Our analysis makes this
hypothesis explicit. We have shown that the above voting specification indeed respects individual
and universal verifiability.

Theorem 1. (Vioo, Afoo) satisfies individual and universal verifiability.

However, the protocol by Fujioka et al. does not satisfy eligibility verifiability (even if all the parts
of the protocol are trusted).
JCJ/Civitas does achieve full election verifiability considering the following trust assumptions.

— The voter is able to construct her ballot; that is, she is able to generate nonces m, m’, construct
a pair of ciphertexts and generate a zero-knowledge proof.

— The registrar constructs distinct credentials d for each voter and constructs the voter’s public
credential correctly. (The latter assumption can be dropped if the registrar provides a proof
that the public credential is correctly formed [JCJ05].) The registrar also keeps the private
part of the signing key secret.

The analyses were carried out by hand, but the proofs were surprisingly straightforward.

References

[Adi06]
[Adi08]
[BHMOS]
[BT94]

[CCMO8]

(DC]
[DKR09]

[FO092)

[JCJ05]

[KRS10]

Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT, 2006.

Ben Adida. Helios: Web-based open-audit voting. In Proc. 17th Usenixz Security Symposium,
pages 335—348. USENIX Association, 2008.

Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In Proc. 21st IEEE Computer Security Foundations
Symposium, (CSF’08), pages 195-209. IEEE Comp. Soc. Press, 2008.

Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended abstract). In
Proc. 26th Symposium on Theory of Computing (STOC’94), pages 544-553, Montréal, Québec,
1994. ACM Press.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure voting
system. In Proc. Symposium on Security and Privacy (SP’08), pages 354-368, Washington, DC,
USA, 2008. IEEE Computer Society.

Roberto Di Cosmo. On privacy and anonymity in electronic and non electronic voting: the
ballot-as-signature attack.

Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435-487, July 2009.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting scheme for large
scale elections. In J. Seberry and Y. Zheng, editors, Advances in Cryptology — AUSCRYPT ’92,
volume 718 of Lecture Notes in Computer Science, pages 244-251. Springer, 1992.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In
Proc. Workshop on Privacy in the Electronic Society (WPES’05), Alexandria, USA, 2005. ACM
Press.

Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability in electronic voting pro-
tocols. In Dimitris Gritzalis and Bart Preneel, editors, Proceedings of the 15th European Sym-
posium on Research in Computer Security (ESORICS’10), Lecture Notes in Computer Science,
Athens, Greece, September 2010. Springer. To appear.

[LBD%04] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo.

[MNO06]

[Oka96]

[Oka97]

Providing receipt-freeness in mixnet-based voting protocols. In Jong In Lim and Dong Hoon
Lee, editors, Proc. Information Security and Cryptology (ICISC’03), volume 2971 of Lecture
Notes in Computer Science, pages 245—258, Seoul, Korea, 2004. Springer.

T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting privacy. In
Advances in Cryptology - CRYPTO’06, volume 4117 of Lecture Notes in Computer Science,
pages 373-392. Springer, 2006.

Tatsuaki Okamoto. An electronic voting scheme. In Proc. IFIP World Conference on IT Tools,
pages 21-30, Canberra, Australia, 1996.

Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections. In Proc. 5th
Int. Security Protocols Workshop, volume 1361 of Lecture Notes in Computer Science, pages
25-35, Paris, France, 1997. Springer.

[SRKK09] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Election verifiability in elec-

[$596]

[UM10]

tronic voting protocols (preliminary version). In Olivier Pereira, Jean-Jacques Quisquater, and
Francois-Xavier Standaert, editors, Proceedings of the 4th Benelux Workshop on Information
and System Security (WISSEC’09), Louvain-la-Neuve, Belgium, November 2009.

Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. 4th European Sym-
posium On Research In Computer Security (ESORICS’96), volume 1146 of Lecture Notes in
Computer Science, pages 198—218. Springer, 1996.

Dominique Unruh and Jérn Miiller-Quade. Universally composable incoercibility. In Advances
in Cryptology - CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
411-428, 2010.

Verifying privacy-type properties of
electronic voting protocols *

Stephanie Delaun®, Steve Kreme't, Mark Ryar

& School of Computer Science, University of Birmingham, UK
PLSV, CNRS & ENS Cachan & INRIA Futurs projet SECSI, France

Abstract

Electronic voting promises the possibility of a convenjesfticient and secure facility
for recording and tallying votes in an election. Recentlghtighted inadequacies of im-
plemented systems have demonstrated the importance oéfgraerifying the underly-
ing voting protocols. We study three privacy-type propestof electronic voting proto-
cols: in increasing order of strength, they are vote-pgiveeceipt-freeness, and coercion-
resistance.

We use the applied pi calculus, a formalism well adapted tdetlimg such protocols,
which has the advantages of being based on well-understmozkpts. The privacy-type
properties are expressed using observational equivalartae show in accordance with
intuition that coercion-resistance implies receipt-fregs, which implies vote-privacy.

We illustrate our definitions on three electronic votingtpomls from the literature. Ide-
ally, these three properties should hold even if the elaatificials are corrupt. However,
protocols that were designed to satisfy receipt-freenessercion-resistance may not do
so in the presence of corrupt officials. Our model and dedingiallow us to specify and
easily change which authorities are supposed to be trugtyor

Key words: voting protocol, applied pi calculus, formal methods, ady and anonymity
properties.

* This work has been partly supported by the EPSRC projectE®P833,Verifying
Properties in Electronic Voting Protocotnd EP/E040829/Merifying anonymity and pri-
vacy properties of security protocolhie ARA SESUR project AVOE and the ARTIST2
NoE.

1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a con-
venient, efficient and secure facility for recording andiytal votes. It can be used
for a variety of types of elections, from small committeenfline communities
through to full-scale national elections. Electronic ugtprotocols are formal pro-
tocols that specify the messages sent between the votemdamdistrators. Such
protocols have been studied for several decades. Theytb#gpossibility of ab-
stract analysis of the voting system against formallyestadroperties.

In this paper, we recall some existing protocols which hasenbdeveloped over
the last decades, and some of the security properties teeytanded to satisfy.
We focus on privacy-type properties. We present a framevi@mrknalysing those
protocols and determining whether they satisfy the progert

From the protocol point of view, the main challenge in desigran election system
is to guarante®ote-privacy We may distinguish three main kinds of protocols in
the literature, classified according to the mechanism th@yl@y to guarantee pri-
vacy. Inblind signature schem¢$5,24,30,35], the voter first obtains a token, which
is a message blindly signed by the administrator and knovwyntorthe voter her-
self. The signature of the administrator confirms the veteligibility to vote. She
later sends her vote anonymously, with this token as proehgibility. In schemes
usinghomomorphic encryptiof6,27], the voter cooperates with the administrator
in order to construct an encryption of her vote. The admiaist then exploits ho-
momorphic properties of the encryption algorithm to conepilie encrypted tally
directly from the encrypted votes. A third kind of schemesussndomisation (for
example by mixnets) to mix up the votes so that the link betweaster and vote is
lost [16,17]. Our focus in this paper is on protocols of thstfiype, although our
methods can probably be used for protocols of the second Bgmause it involves
mixes, which are probabilistic, the third type is hard tor@dd with our methods
that are purely non-deterministic.

Properties of electronic voting protocols. Some properties commonly sought
for voting protocols are the following:

¢ Eligibility: only legitimate voters can vote, and only once

e Fairness: no early results can be obtained which could infei¢he remaining
voters.

¢ Individual verifiability: a voter can verify that her vote waeally counted.

e Universal verifiability: the published outcome really i€tbum of all the votes.

e \ote-privacy: the fact that a particular voter voted in atjgatar way is not re-
vealed to anyone.

e Receipt-freeness: a voter does not gain any informatisegq@ip) which can be
used to prove to a coercer that she voted in a certain way.

e Coercion-resistance: a voter cannot cooperate with a eosy@rove to him that
she voted in a certain way.

The last three of these are broagiyvacy-typeproperties since they guarantee that
the link between the voter and her vote is not revealed by b gol.

The weakest of the three, calledte-privacyroughly states that the fact that a voter
voted in a particular way is not revealed to anyone. Wheragtatthis simple way,
however, the property is in general false, because if althers vote unanimously
then everyone will get to know how everyone else voted. Tha#&tisation we give

in this paper in fact says that no party receives informatrbich would allow them
to distinguish one situation from another one in which twteve swap their votes.

Receipt-freenessays that the voter does not obtain any artefact (a “regangtich
can be used later to prove to another party how she voted. Sueteipt may be
intentional or unintentional on the part of the designehefsystem. Unintentional
receipts might include nonces or keys which the voter isrgtgring the protocol.
Receipt-freeness is a stronger property than privacyitiveely, privacy says that
an attacker cannot discern how a voter votes from any infoomahat the voter
necessarily reveals during the course of the election.iBefreeness says the same
thing even if the voter voluntarily reveals additional infaation.

Coercion-resistances the third and strongest of the three privacy propertigmia,

it says that the link between a voter and her vote cannot ladblesdied by an at-
tacker, this time even if the voter cooperates with the k&aduring the election
process. Such cooperation can include giving to the attaankg data which she
gets during the voting process, and using data which thekattgrovides in return.
When analysing coercion-resistance, we assume that teead the attacker can
communicate and exchange data at any time during the elquticess. Coercion-
resistance is intuitively stronger than receipt-freenssee the attacker has more
capabilities.

Of course, the voter can simply tell an attacker how she vdbetl unless she
provides convincing evidence the attacker has no reasoeltevb her. Receipt-
freeness and coercion-resistance assert that she cammwdegiconvincing evi-
dence.

Coercion-resistance cannot possibly hold if the coercemptysically vote on be-
half of the voter. Some mechanism is necessary for isolatiegvoter from the
coercer at the moment she casts her vote. This can be rebjisedoting booth,
which we model here as a private and anonymous channel hetiee/oter and
the election administrators.

Note that in literature the distinction between receipefiess and coercion-resistance
is not very clear. The definitions are usually given in ndtla@guage and are insuf-
ficiently precise to allow comparison. The notion of recdipeness first appeared
in the work of Benaloh and Tuinstra [7]. Since then, sevethkses [7,39] were
proposed in order to meet the condition of receipt-fregnasislater shown not to
satisfy it. One of the reasons for such flaws is that no forneéihdion of receipt-
freeness has been given. The situation for coercion-aggistis similar. Systems
have been proposed aiming to satisfy it; for example, Okarj#fi] presents a sys-
tem resistant to interactive coercers, thus aiming tofgatrbat we call coercion-
resistance, but this property is stated only in naturallagg. Recently, a rigorous
definition in a computational model has been proposed by &ueal. for coercion-
resistance [31]. We present in this paper what we believeetthb first “formal
methods” definition of receipt-freeness and coercionstasce. It is difficult to
compare our definition and the one proposed by Jetets. [31] due to the inher-
ently different models.

Verifying electronic voting protocols. Because security protocols in general are
notoriously difficult to design and analyse, formal verifioa techniques are par-
ticularly important. In several cases, protocols which evlrought to be correct
for several years have, by means of formal verification teghes, been discovered
to have major flaws. Our aim in this paper is to use and devetoification tech-
niques, focusing on the three privacy-type properties ropatl above. We choose
the applied pi calculug?] as our basic modelling formalism, which has the ad-
vantages of being based on well-understood concepts. Thieadpi calculus has

a family of proof techniques which we can use, and it is pastlpported by the
ProVerif tool [8]. Moreover, the applied pi calculus allows to reason about equa-
tional theories in order to model the wide variety of cryptgghic primitives often
used in voting protocols.

As it is often done in protocol analysis, we assume the Dykw-abstraction:
cryptographic primitives are assumed to work perfectly] Hre attacker controls
the public channels. The attacker can see, intercept aed imessages on public
channels, but can only encrypt, decrypt, sign messagesrforpeother crypto-
graphic operations if he has the relevant key. In generahssame that the attacker
also controls the election officials, since the protocoldanvestigate are supposed
to be resistant even if the officials are corrupt. Some of tieéggols explicitly re-
quire a trusted device, such as a smart card; we do not assanthé attacker
controls those devices.

How the properties are formalised. As already mentioned, the vote-privacy
property is formalised as the assertion that the attackes dot receive informa-
tion which enables him to distinguish a situation from aeotbne in which two
voters swap their votes. In other words, the attacker cagistihguish a situation

in which Alice votesa and Bob vote$, from another one in which they vote the
other way around. This is formalised as an observationalalgnce property in
applied pi.

Receipt-freeness is also formalised as an observationalagnce. Intuitively, a
protocol is receipt-free if the attacker cannot detect éekhce between Alice
voting in the way he instructed, and her voting in some othay,wrovided Bob
votes in the complementary way each time. As in the case wqyj Bob’s vote is
required to prevent the observer seeing a different numibastes for each candi-
date. Alice cooperates with the attacker by sharing sedratghe attacker cannot
interact with Alice to give her some prepared messages.

Coercion-resistance is formalised as an observationavagquce too. In the case
of coercion-resistance, the attacker (which we may alddhtetoercer) is assumed
to communicate with Alice during the protocol, and can prepaessages which
she should send during the election process. This givesdbeer much more
power.

Ideally, these three properties should hold even if thetieleofficials are corrupt.
However, protocols that were designed to satisfy voteagsiyvreceipt-freeness or
coercion-resistance do not necessarily do so in the presaincorrupt officials.
Our model and definitions allow us to specify and easily cleamngich authorities
are supposed to be trustworthy.

Related properties and formalisations. The idea of formalising privacy-type
properties as some kind of observational equivalence ilmegss algebra or calcu-
lus goes back to the work of Schneider and Sidiropoulos [@Rhilar ideas have
been used among others by Fournet and Abadi [23], Maual. [36] as well as
Kremer and Ryan [34]. Other formalizations of anonymity laased on epistemic
logics, e.g. [26]. All of these definitions are mainly conued with possibilistic
definitions of anonymity. It is also possible to defpr@babilisticanonymity, such
asin [41,44,26,11], which gives a more fine-grained charesation of the level of
anonymity which has been achieved. In [20,43,12], inforamatheoretic measures
have been proposed to quantify the degree of anonymityidrptiper we only fo-
cus onpossibilisticflavours of privacy-type properties and assume that channel
are anonymous (without studying exactly how these chararelsnplemented).

Receipt-freeness and coercion-resistance are more shdatisimple privacy. They
involve the idea that the voter canmbve how she voted to the attacker. This is
a special case of incoercible multi-party computation,chihas been explored
in the computational security setting [10]. Similarly teethdefinition, we define
incoercibility as the ability to present the coercer witkdalata which matches the
public transcript as well as the real data. Our definitioncggises the setting to
electronic voting, and is designed for a Dolev-Yao-like rlod

Independently of our work, Jonker and de Vink [28] give a tadicharacterisa-
tion of the notion of receipt in electronic voting processkmker and Pieters [29]
also define receipt-freeness in epistemic logic. Howevailenthese formalisms
may be appealing to reason about the property, they seersuisd for modelling

the protocol and attacker capabilities. These logics aagegkto expressing prop-
erties rather than operational steps of a protocol. Thusletfing protocols using

epistemic-logic-based approaches is tedious and reqaihégh degree of exper-
tise. Baskaet al.[4] present a promising approach defining an epistemic Iagic

a protocol language.

The “inability to prove” character of coercion-resistarened receipt-freeness is
also shared by the property callause-freeness contract-signing protocols. A
contract-signing protocol is abuse-free if signer Alicamat prove to an observer
that she is in a position to determine the outcome of the aohtAbuse-freeness
has been formalised in a Dolev-Yao-like setting [32] as th#itg to provide a
message that allows the observer to test whether Alice iagh a position. This
notion of test is inspired by static equivalence of the aappi calculus. However,
this notion of test is purelpffling which is suitable for abuse-freeness. In our for-
malization the voter may provide data that allows an actilxeesary to distinguish
two processes which yields a more general notion of recpipb@bly too general
for abuse-freeness).

To the best of our knowledge, our definitions constitute th&t bservational
equivalence formalisations of the notion bt being able to proven the formal
methods approach to security.

Electronic voting in the real world. Governments the world over are trialling
and adopting electronic voting systems, and the securpigcs have been con-
troversial. For example, the electronic voting machinesdus recent US elec-
tions have been fraught with security problems. ReseasdB8f have analysed the
source code of the Diebold machines used in 37 US statesamnhlgsis has pro-
duced a catalogue of vulnerabilities and possible attddkse recent work [21]
has produced a security study of the Diebold AccuVote-T3ngomachine, in-
cluding both hardware and software. The results showsttigavulnerable to very
serious attacks. For example, an attacker who gets physicaks to a machine or
its removable memory card for as little as one minute cowtalhmalicious code,
which could steal votes undetectably, modifying all respidgs, and counters to
be consistent with the fraudulent vote count it createsyTaigo showed how an
attacker could create malicious code that spreads autcatigtirom machine to
machine during normal election activities. In another gtwdDutch voting ma-
chine was reprogrammed to play chess, rather than courg,wetech resulted in
the machine being removed from use [25].

These real-world deployments do not rely on the kind of fdrpratocols studied

in this paper, and therefore our work has no direct bearinthem. The protocols
studied here are designed to ensure that vote stealingpsognaphically impos-
sible, and the properties of individual and universal valility provide guaran-
tee that voters can verify the outcome of the election théraselt is hoped that
work such as ours in proving the security properties of suotogols will promote

their take-up by makers of electronic voting equipment.dpldyed, these proto-
cols would—at least to some extent—remove the requirenognii$t the hardware
and software used by election officials, and even to trusttfi@als themselves.

This paper. We recall the basic ideas and concepts of the applied pi lcalcu
in Section 2. Next, in Section 3, we present the frameworkdamalising voting
protocols from the literature, and in Section 4 we show how ttiree privacy-
like properties are formalised. Also in Section 4, we inigege the relationships
between the properties and we show that the expected imiphsahold between
them. In Sections 5, 6 and 7 we recall three voting protoaasfthe literature,
and show how they can be formalised in our framework. We @ealyhich of the
properties they satisfy.

Some of the results have been published in two previous p4p4r18]. This pa-
per extends and clarifies our results, provides more exanipétter explanations,
additional case studies and includes proofs. In particalardefinition of coercion-
resistance in this paper is much simpler than our previofisitien [18], where we
relied on a notion we calleddaptive simulationThat notion turned out to have
some counter-intuitive properties, and we have removed it.

2 The applied pi calculus

The applied pi calculus [2] is a language for describing corent processes and
their interactions. It is based on the pi calculus, but isndied to be less pure and
therefore more convenient to use. The applied pi calculus 8me sense, similar
to the spi calculus [3]. The key difference between the twonfdisms concerns
the way that cryptographic primitives are handled. The afiidus has a fixed set
of primitives built-in (symmetric and public-key encrypti), while the applied pi
calculus allows one to define less usual primitives (oftemdus electronic vot-
ing protocols) by means of an equational theory. The apgielculus has been
used to study a variety of security protocols, such as atermathentication proto-
col [23] or a key establishment protocol [1].

2.1 Syntax and informal semantics

To describe processes in the applied pi calculus, one stétfisa set ofnames
(which are used to name communication channels or otheriatdata), a set of
variables and asignatureX: which consists of théunction symbolsvhich will be
used to defingerms In the case of security protocols, typical function synsbol
will include enc for encryption, which takes plaintext and a key and retuhes t
corresponding ciphertext, anidc for decryption, taking ciphertext and a key and
returning the plaintext. Terms are defined as names, vagabhd function sym-
bols applied to other terms. Terms and function symbols ared, and of course
function symbol application must respect sorts and aritasthe means of an
equational theor§ we describe the equations which hold on terms built from the
signature. We denoteg the equivalence relation induced ByA typical example
of an equational theory useful for cryptographic proto@®tec(enc(x, k), k) = z.

In this theory, the term%; = dec(enc(enc(n, k1), k2), k2) andT, = enc(n, k;) are
equal, we havé’ =g T (while obviously the syntactic equalify} = 7> does not
hold). Two terms are related byg only if that fact can be derived from the equa-
tions inE. When the set of variables occurring in a tefhis empty, we say thaf

is ground

In the applied pi calculus, one hatain processesandextended processeBlain
processes are built up in a similar way to processes in thalpilus, except that
messages can contain terms (rather than just names). Inrdh@@r described
below, M and N are terms;: is a name,r a variable and: is a metavariable,
standing either for a name or a variable.

PQ,R:= plain processes
0 null process
P|Q parallel composition
P replication
vn.P name restriction
if M = N thenP else) conditional
in(u, x).P message input
out(u, N).P message output

We use the notatiom(u, =M) to test whether the input om is equal (modulo
E) to the termM/ (if it doesn’t, the process blocks). Moreover, we sometiuss
tuples of terms, denoted by parentheses, while keepinggbatienal theory for
these tuples implicit.

Extended processes addtive substitutionand restriction on variables:

A B,C = extended processes
P plain process

A|B parallel composition

vn. A name restriction
ve.A variable restriction
{M/.} active substitution

{M/.} is the substitution that replaces the variablith the terma/. Active sub-
stitutions generalise “let”. The process.({*/,} | P) corresponds exactly to the
process “letr = M in P”. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We wrjtg A), bv(A), fn(A) andbn(A)

for the sets of free and bound variables and free and boundsafr, respectively.

We also assume that, in an extended process, there is at mestbstitution for
each variable, and there is exactly one when the variabkstsicted. We say that

an extended processdtosedif all its variables are either bound or defined by an
active substitution.

Active substitutions are useful because they allow us to amegxtended process

to its frame ¢(A) by replacing every plain process i with 0. A frame is an
extended process built up frotnand active substitutions by parallel composition
and restriction. The frame(A) can be viewed as an approximationfthat ac-
counts for the static knowledgé exposes to its environment, but nds dynamic
behaviour.

Example 1 Forinstance, consider the extended processes {*'/,,} | {*2/.,} | P
and A, = {1/, } | {*/,,} | P.. Even if these two processes are different from
the point of view of their dynamic behaviour, the framég,) and¢(A,) are equal.
This witnesses the fact thdt and A, have the same static knowledge.

The domain of a frame, denoted bylom(yp), is the set of variables for which
defines a substitution (those variablefor which ¢ contains a substitutiof /. }
not under a restriction on).

An evaluation context[_] is an extended process with a hole instead of an ex-
tended process. Structural equivalence, netgid the smallest equivalence relation
on extended processes that is closed undeonversion on names and variables,
by application of evaluation contexts, and such that

PAR-0 Al0=A REPL lP=P|P

PAR-A A|(B|C)=(A|B)|C Rewrite {M/.} ={"/.}

PAR-C A|B=B|A if M =g N
NEW-0 vn.0 =0 ALias v {M/,} =0

NEw-C vu.vv.A = vv.vu. A SuBst {M/. 31 A={M/}]| A{M/.}

NEW-PAR A |vu.B = vu.(A|B) ifué fn(A)Ufu(A)

Example 2 Consider the following process:
vs.vk.(out(cy,enc(s, k)) | in(cy,y).out(cs, dec(y, k))).

The first component publishes the messagés, k) by sending it ore;. The second
receives a message on, uses the secret kdyto decrypt it, and forwards the
resulting plaintext ore,. The procesg’ is structurally equivalent to the following
extended process4:

A= Vs,k,xl.(out(cl,xl) | in(cy,y).0ut(cy, dec(y, k)) | {enc(s’k)/wl})

We havep(A) = vs, k,z,.{*"*F) /. } = 0 (sincex, is under a restriction).
The following lemma will be useful in the remainder of the pap

Lemma3 LetC} = vuy.(- | By) andCy = vio.(- | B2) be two evaluation
contexts such that, N (fv(Bz) U fn(By)) = @ anday N (fo(By) U fn(By)) = 0.
We have tha€',[Cy[A]] = C,[C1[A]] for any extended process

PROOF. Let A be an extended process. We have that
C1[Cs[A]] = viy.(vue.(A | By) | By)
= vig.viy.((A| By) | Ba) sinceuy € fu(By) U fn(B;)
= viy.(viy.(A | By) | By) sincedy € fu(By) U fn(Bs)
= C[C1[4]] O

2.2 Semantics

The operational semantics of processes in the applied pulcal is defined by
structural rules defining two relationstructural equivalencébriefly described in
Section 2.1) andhternal reduction noted—. Internal reduction— is the smallest
relation on extended processes closed under structuratdepce and application
of evaluation contexts such that

(Comm) out(a,z).P |in(a,z).Q — P | Q

(THEN) if M = M thenP elseQ — P

(ELSE) if M = N thenP else — @

for any ground termd/ and N such thatV/ #g N.
The operational semantics is extended lgteelledoperational semantics enabling

10

us to reason about processes that interact with their enwieot. Labelled opera-
tional semantics defines the relati&nwhereq is either an input, or the output of
a channel name or a variable of base type.

(IN) in(a, z).p "M, praya
(OuT-ATOM) out(a, u).P 24“Y, p
out(a,u) ’
A—5A uF#a

(OPEN-ATOM)

vu.out

vu.A & A’

(Scop®) A% A wdoes not occur im
vu. A 2, vu. A’
(PAR) A% A bu(a) N fo(B) = bn(a) N fa(B) =0
A|BS A | B
A=B B4 B A=p
(STRUCT)

AS A

Note that the labelled transition is not closed under appibo of evaluation con-
texts. Moreover the output of a ter needs to be made “by reference” using a
restricted variable and an active substitution.

Example 4 Consider the procesB defined in Example 2. We have
Po= v ka(out(er,) | in(ey,y).0ut(es,dec(y, b)) | {1/, })
vay.out(c1,r1) vs, k.(in(cy, y).out(cy, dec(y, k)) | {enc(&k)/m})
O, s, k.(0ut(es, dec(ay, k)) | {969/, 1)

= vs, k, w.(0Ut(cz, w2) [{1€M) [} [{0/, })
vxa.out(c1,x2) Vs, k'({enc(s,k)/m} | {dec(xl,k)/m})

Let A be the extended process obtained after this sequence dftienlsteps. We
have thatp(A) = vs.vk.{erek) /s /Y,
2.3 Equivalences

We can now define what it means for two frames tstagically equivalenf2].

11

Definition 5 (Static equivalence £,)) Two termsV/ and N areequal in the frame
¢, written (M =g N)¢, if, and only if there exist8 and a substitutior such that
¢ =vin.o, Mo =g No,andn N (fn(M)U fn(N)) = 0.

Two framesp; and ¢, are statically equivalenty; ~g ¢, when:

e dom(¢;) = dom(¢,), and
e forall termsM, N we have thatM =g N)¢, if and only if (M =g N)¢ps.

Two extended processe$ and B are said to be statically equivalent, denoted
by A =~ B, if we have that)(A) ~, ¢(B).

Example 6 Let oy = vk.op and ¢, = vk.o; whereg, = {ectok)/ F/ 1
oy = {ecbuk))/ F /) and sg,s; and k are names. LeE be the theory de-
fined by the axiondec(enc(x, k), k) = x. We havedec(xy, z2)00 =g so but not
dec(z1,x2)01 =g so. Therefore we have, %, ;. However, note that we have
Vk,_{enc(so,k)/ml} ~3 Vk.{enc(sl,k’)/ml}.

Definition 7 (Labelled bisimilarity (~,)) Labelled bisimilarityis the largest sym-
metric relationR on closed extended processes, such th@& B implies

(1) A=, B,

(2) if A— A’,thenB —* B’and A’ R B’ for someB’,

() if A= A'andfv(a) C dom(A) andbn(a)Nfn(B) = 0, thenB —*—* B’
and A’ R B’ for someB’.

The definition of labelled bisimilarity is like the usual defion of bisimilarity,
except that at each step one additionally requires that ribeepses are statically
equivalent. It has been shown that labelled bisimilarityncmles with observa-
tional equivalence [2]. We prefer to work with labelled bidarity, rather than
observational equivalence, because proofs for labellsonbarity are generally
easier. Labelled bisimilarity can be used to formalise msagurity properties, in
particular anonymity properties, such as those studiekisnpaper.

When we model protocols in applied pi calculus, we model theelst parties as
processes. The dishonest parties are considered to be ttvedeontrol of the at-
tacker, and are not modelled explicitly. The attacker (togewith any parties it
controls) form the environment in which the honest processa. This arrange-
ment implies that we consider only one attacker; to put irtla@roway, we consider
that all dishonest parties and attackers share informatmitrust each other, thus
forming a single coalition. This arrangement does not aliswo consider attackers
that do not share information with each other.

12

3 Formalising voting protocols

Before formalising security properties, we need to definatidan electronic vot-

ing protocol in applied pi calculus. Different voting protds often have substantial
differences. However, we believe that a large class of gqgpirotocols can be rep-
resented by processes corresponding to the followingtsiieic

Definition 8 (Voting process) A voting process is a closed plain process
VP=vn.(Voy |- | Vo, | A1 |-+ | An).

TheV g, are the voter processes, thgs the election authorities which are required
to be honest and th& are channel names. We also suppose that dom(s;) is

a variable which refers to the value of the vote. We define afuation contexts
which is asVP, but has a hole instead of two of the;.

In order to prove a given property, we may require some of ththaities to be
honest, while other authorities may be assumed to be ceduptthe attacker. The
processes\, ..., A,, represent the authorities which are required to be honbst. T
authorities under control of the attacker need not be mede#lince we consider
any possible behaviour for the attacker (and therefore asgiple behaviour for
corrupt authorities). In this case the communications nbbnare available to the
environment.

We have chosen to illustrate our definition with three clesselectronic voting
protocols of the literature: a protocol due to Fujiodaal. [24], a protocol due to
Okamoto [39] and one due to Le al. [35]. After a brief and informal descrip-
tion of those protocols, we formalise them in the appliedgdcelus framework in
Sections 5, 6 and 7.

4 Formalising privacy-type properties

In this section, we show how the anonymity properties, imflty described in the
introduction, can be formalised in our setting and we shovadcordance with in-
tuition, that coercion-resistance implies receipt-fiess which implies privacy. It
is rather classical to formalise anonymity properties aseskind of observational
equivalence in a process algebra or calculus, going bachketavbrk of Schnei-
der and Sidiropoulos [42]. However, the definition of anortyrproperties in the
context of voting protocols is rather subtle.

13

4.1 \ote-privacy

The privacy property aims to guarantee that the link betveegimen votel” and his
vote v remains hidden. Anonymity and privacy properties have lsmcessfully
studied using equivalences. However, the definition ofgmyvin the context of
voting protocols is rather subtle. While generally mostusiig properties should
hold against an arbitrary number of dishonest participaartsitrary coalitions do
not make sense here. Consider for instance the case whdyetahe voter are
dishonest: as the results of the vote are published at thelendishonest voter can
collude and determine the vote of the honest voter. A claksick for modelling
anonymity is to ask whether two processes, one in whighvotes and one in
which V votes, are equivalent. However, such an equivalence dadsithere
as the voters’ identities are revealed (and they need tousalexl at least to the
administrator to verify eligibility). In a similar way, argeivalence of two processes
where only the vote is changed does not hold, because thea@@ublished at the
end of the protocol. To ensure privacy we need to hiddithebetween the voter
and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we needuppose that at
least two voters are honest. We denote the votérand Vs and their votes:,
respectivelyb. We say that a voting protocol respects privacy whenevepegss
whereVl/, votesa andV votesh is observationally equivalent to a process whére
votesh andVp votesa. Formally, privacy is defined as follows.

Definition 9 (Vote-privacy) A voting protocol respectgote-privacy(or just pri-
vacy) if

SWal®/ok | VB /o3 e SIVa{"/u} | Va{"/u}]

for all possible votes andb.

The intuition is that if an intruder cannot detect if arbiyréionest votery’, andVp
swap their votes, then in general he cannot know anythingtatowy V4 (or Vg)
voted. Note that this definition is robust even in situatiatere the result of the
election is such that the votes Bf andVz are necessarily revealed. For example,
if the vote is unanimous, or if all other voters reveal howytheted and thus allow
the votes ofl’, andV5 to be deduced.

A protocol satisfying privacy also allows arbitrary per@tibns of votes between
voters. For example, we may prove that

SWVa{®/o} [VB{"/u} | Vel /Y] me SVa{®/u} | VB{/u} | Vel /u}]

14

as follows:

S[VA{Q/U} ‘ VB{b/v} ‘ VC{C/U}]
~e SIVa{®/o} | Ve{®/o} | Ve{©/u}] using privacy, withS” = S[_ | Vo{/.}]
~e S[Val®/o} | Ve{/u} | Ve{?/.}] using privacy, withS” = S[Vo{"/.} |]

As already noted, in some protocols the vote-privacy pryparay hold even if au-

thorities are corrupt, while other protocols may requiredlthorities to be honest.
When proving privacy, we choose which authorities we wanhamel as honest,
by including them in Definition 8 of/P (and hence).

4.2 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formaliseda observational equiv-
alence. We also formalise receipt-freeness using obsenzhtequivalence. How-
ever, we need to model the fact thét is willing to provide secret information, i.e.,
the receipt, to the coercer. We assume that the coercerastitfe attacker who, as
usual in the Dolev-Yao model, controls the public chanriedsnodelV4’s commu-
nication with the coercer, we consider that executes a voting process which has
been modified: any input of base type and any freshly gerceretees of base type
are forwarded to the coercer. We do not forward restricteshokl names, as these
are used for modelling purposes, such as physically sebareels, e.g. the voting
booth, or the existence of a PKI which securely distribuegskthe keys themself
are forwarded but not the secret channel name on which treddeyreceived).

Definition 10 (ProcessP") Let P be a plain process andh a channel name. We
defineP" as follows:

ch = 0
P |)ch =~ Pch | Qch
vn.P)" = vn.out(ch, n). P whenn is name of base type,
vn.P)" = yn. P otherwise,
u

[]
. (
° (
* (
e (in(u,r).P)" = in(u, z).out(ch, z).P» whenz is a variable of base type,
e (in(u,z).P)" =in(u,z).P" otherwise,
e (out(u, M).P)*" = out(u, M).P",
° (;)ch =~ 'PCh,

o (if M = N thenP elseQ)"* = if M = N thenP elseQ“".

In the remainder, we assume that ¢ fn(P) U bn(P) before applying the trans-
formation.

15

Given an extended procegsand a channel namé:, we need to define the ex-
tended procesd *“(<") Intuitively, such a process is as the procdssut hiding
the outputs on the channgl.

Definition 11 (ProcessA**!(")) Let A be an extended process. We define the
processA*“#ch) asych.(A |lin(ch,).

We are now ready to define receipt-freeness. Intuitivelypéogol is receipt-free if,
for all votersV/y,, the process in whicl’, votes according to the intruder’s wishes
is indistinguishable from the one in which she votes somettglse. As in the
case of privacy, we express this as an observational eguislto a process in
which V4, swaps her vote witlvz, in order to avoid the case in which the intruder
can distinguish the situations merely by counting the vatdbe end. Suppose the
coercer’s desired vote is Then we define receipt-freeness as follows.

Definition 12 (Receipt-freeness)A voting protocol igeceipt-freaf there exists a
closed plain procesg” such that

o Voutlehe) o~ Vu{/,},
o S[Va{®/u}" | VB{*/u}] = SIV' | VB{/.}],

for all possible votes andc.

As before, the context in the second equivalence includes those authorities that
are assumed to be honegt.is a process in which votér, votesa but communi-
cates with the coercer' in order to feign cooperation with him. Thus, the second
equivalence says that the coercer cannot tell the differéetween a situation in
which V4 genuinely cooperates with him in order to cast the vond one in
which she pretends to cooperate but actually casts theaygteovided there is
some counterbalancing voter that votes the other way arduelfirst equivalence

of the definition says that if one ignores the outpldtsnakes on the coercer chan-
nelche, thenV’ looks like a voter process, voting a.

The first equivalence of the definition may be considered tomng; informally,
one might consider that the equivalence should be requingdio a particular
S context rather than requiring it in any context (with accessll the private
channels of the protocol). This would result in a weaker d&im, although one
which is more difficult to work with. In fact, the variant dettion would be only
slightly weaker; it is hard to construct a natural examplecidistinguishes the
two possibilities, and in particular it makes no differenc¢he case studies of later
sections. Therefore, we prefer to stick to Definition 12.

According to intuition, if a protocol is receipt-free (foigaven set of honest author-
ities), then it also respects privacy (for the same set):

Proposition 13 If a voting protocol is receipt-free then it also respects/pcy.

16

Before we prove this proposition we need to introduce a lemma

Lemma 14 Let P be a closed plain process and a channel name such that
ch & fn(P) U bn(P). We have Peh)\out(ch-) ~, P,

PROOF. (sketch, see Appendix A for details)

We show by induction on the size @t that for any channel namé&: such that
ch & fn(P)Ubn(P), the equivalencé"\°u(<") ~, P holds. The base case where
P = 0is trivial. Then, we consider the different possibilities building P. a

PROOF. (of Proposition 13)
By hypothesis, there exists a closed plain prodéssuch that

° V/\out(chc,-) ~ VA{a/v}1 and
o SVa{e/u}" | VB{®/u} me SIV' | VB{/u}]-

By applying the evaluation contexthc.(_ |lin(che, z)) on both sides we obtain
S[VA{C/U}C]’LC ‘ VB{Q/U}]\Out(ChC,~) ~ S[V, | VB{C/U}]\OM(C}IC’.)-

By using Lemma 3, we obtain that:

° S[VA{c/v}chc | VB{a/U}]\out(chc,-) = S[(VA{c/v}chc)\out(chc,~) ‘ VB{a/v}]a
o S[V'| VB{C/U}]\out(chc,~) = S[vl\out(chc,-) | Ve{¢/u .

Lastly, thanks to Lemma 14 and the fact that labelled bisirityl is closed under
structural equivalence, we deduce that

SIWVa{*/o} | Va{"/}] me SV | Vip{e/,}].

Since we havé/"\eutcher) ~, v, {e/ 1 we easily conclude. O
4.3 Coercion-Resistance

Coercion-resistance is a stronger property as we give teecep the ability to
communicatenteractivelywith the voter and not only receive information. In this
model, the coercer can prepare the messages he wants thaovetnd. As for
receipt-freeness, we modify the voter process. In the chseeaycion-resistance,
we give the coercer the possibility to provide the messagesater should send.
The coercer can also decide how the voter branchéfs-statements.

Definition 15 (ProcessP*?) Let P be a plain process and;, c; be channel
names. We definé“-° inductively as follows:

17

02 =0,

(P ’ Q)Cl €2 = Pe1,c2 ’ QCI e

(vn.P)2 = pyn.out(cq, n). P2 whenn is a name of base type,

(vn.P)2 = yn. P2 otherwise,

(in(u, z).P)* = in(u, x).out(cy, z). P> whenz is a variable of base type,

(in(u, z).P)* = in(u, z). P otherwise,

(out(u M).P)“ =in(cq, z).0ut(u, z). P> whenM is a term of base type
andz is a fresh variable,

(out(u, M).P)+2 = out(u, M).P*2 otherwise,

o (IP)erc2 = |peea

e (if M = N thenP elseQ)** = in(cy, x). if z = true then P> else)**
wherez is a fresh variable and true is a constant.

As a first approximation, we could try to define coercionssice in the following
way: a protocol is coercion-resistant if there i§ asuch that

SWVal' /o | Ve {*/o}] e SIV! | VB{*/u}]. (1)

On the left, we have the coerced voiér{’/,}"*2; no matter what she intends to
vote (the “?7), the idea is that the coercer will force her taex. On the right, the
process)/’ resists coercion, and manages to veté&nfortunately, this character-
isation has the problem that the coercer could obligé¢’/, }¢*2 to voted # c.

In that case, the proce${“/,} would not counterbalance the outcome to avoid a
trivial way of distinguishing the two sides.

To enable us to reason about the coercer’s choice of vote, agelnthe coercer’s
behaviour as a context that defines the interfacg, ¢, for the voting process. The
contextC' coerces a voter to vote Thus, we can characterise coercion-resistance
as follows: a protocol is coercion-resistant if there i8’asuch that

SICIVa{' [} | VB{"/u}] ~e SICIV] | VB {/}, (@)

where C' is a context ensuring that the coerced vataf’/,}<2 votesc. The
contextC' models the coercer’'s behaviour, while the environment risoithe co-
ercer’s powers to observe whether the coerced voter belaaviestructed. We ad-
ditionally require that the context’ does not directly use the channel names
restricted byS. Formally one can ensure thit {*/, }¢*2 votesc by requiring that
CVa{?/ Y] =y Va{¢/,}". We actually require a slightly weaker condition,
S[CIVa{" /o3 | VB{%/u}] ~¢ S[Va{¢/u}" | Vs{*/,}], which results in a
stronger property.

Putting these ideas together, we arrive at the followingnitedn:

Definition 16 (Coercion-resistance)A voting protocol icoercion-resistantthere
exists a closed plain proce$8 such that for anyC' = vey.ve,.(- | P) satisfying
AN fn(C) = 0andS[C[Va{* [} | VE{"/u}] e SIVa{*/o}" | VB{"/.}, we

18

have

° C[V/]\out(chc,-) ~ VA{Q/U}’
o S[CIVa{'/u}r2] | VB{*/u}] = SICIV'] | VE{*/u}].

Note thatV4{*/,}“2 does not depend on what we put for “?".

The condition thatS[C[Va{?/,}4?] | Ve{*/u}] ~¢ S[Va{¢/u} | Vs{*/u}]
means that the contekt outputs the secrets generated during its computation; this
is required so that the environment can make distinctiontherasis of those se-
crets, as in receipt-freeness. The first bullet point exg@aeshal’’ is a voting pro-
cess forA which fakes the inputs/outputs with and succeeds in votingin spite

of the coercer. The second bullet point says that the coeeserot distinguish be-
tweenV’ and the really coerced voter, provided another vbigcounterbalances.

As in the case of receipt-freeness, the first equivalencletlefinition could be
made weaker by requiring it only in a particuldrcontext. But we chose not to
adopt this extra complication, for the same reasons as givtire case of receipt-
freeness.

Remark 17 The contextC' models the coercer’'s behaviour; we can see its role
in equivalence (2) as imposing a restriction on the distisging power of the
environment in equivalence (1). Since the coercer’s behavs modelled by
while its distinguishing powers are modelled by the enviment, it would be useful
to write (2) as

CISWVal' /o] | Va{®/u}]] e CISIV | Va{*/,}]. 3)
Equivalences (2) and (3) are the same (Lemma 3).

According to intuition, if a protocol is coercion-resistahen it respects receipt-
freeness too (as before, we keep constant the set of horiketitias):

Proposition 18 If a voting protocol is coercion-resistant then it also resfs receipt-
freeness.

PROOF. Let C' be an evaluation context such th@t= vc,.vce.(- | P) for some
plain process? and S[C[Va{"/.,}?] | Vi{®/}] m0 SIVal*/u}" | Va{®/u}):
Note that such &' can be constructed directly from the vote procés8y hypoth-
esis, we know that there exists a closed plain prot&ssich that

° C[vl]\out(chc,-) ~ VA{Q/U}’
o S[CIVa{'/u}r=] | VB{*/u}] = SICIV'] | VB{/u}].

We need to show that there exi$t§ such that

19

° V//\out(chc,.) R~ VA{a/U}’
o SVa{e/u}" | VB{*/u}l = SIV" | VB{/u}].

Let V/ = C[V']. We directly obtain the first requirement. For the second aree
take the hypotheses

o S[CIVa{®/u}=2] | VB{"/u}] m¢ S[C[V'] | VB{°/.}], and
o SCIVa{ o} [VB{*/u}] =0 SIVa{/u}" [VB{*/u}].

By transitivity of ~,, we obtainS[Va{¢/,}"¢ | Ve{®/.,}] ¢ S[C[V'] | Vs{¢/.}].
Lastly, we replac&”[V’] on the right byl”. O

Using the definition of coercion-resistance. To show that a voting protocol sat-
isfies coercion-resistance, it is necessary to give a psdcesand it is necessary
to show the two bullet points in the definition for all context which satisfy the
requirement stated in the definition. In case studies, iffi€dlt to reason about all
possible context§’, and our analysis is rather informal. In future work, we htape
provide better methods for doing that.

To show that a voting protocol does not satisfy coerciofstasce, it is necessary
to show that for alll’’, there exists a context' for which the bullet points fail.
In practice, one may try to give a singlé which works for allV’. Since this is a
stronger condition, it is sufficient.

5 Protocol due to Fujioka, Okamoto and Ohta

In this section we study a protocol due to Fujioka, Okamotb@hta [24]. We first
give an informal description of the protocol (see Sectiah).5Then, we show in
Section 5.2 how this protocol can be modelled in the appliegiculus. Lastly, in
Section 5.3, we show that the protocol respects privacy. é¥ew the protocol is
not receipt-free [39]. The Fujioka, Okamoto and Ohta protegas also analysed
by Nielseret al.[38], but their focus is on properties such as verifiabildygibility,
and fairness, rather than the privacy-type propertiesisfaper.

5.1 Description

The protocol involves voters, an administrator, verifythgt only eligible voters
can cast votes, and a collector, collecting and publishiegvbtes. In comparison
with authentication protocols, the protocol also uses samesual cryptographic
primitives such as secure bit-commitment and blind sigeatuMoreover, it relies

20

on anonymous channels. We deliberately do not specify tlyahese channels are
handled as any anonymiser mechanism could be suitable diegemm the precise
context the protocol is used in. One can use MIX-nets intceduoy Chaum [13]
whose main idea is to permute and modify (by using decryptiore-encryption)
some sequence of objects in order to hide the correspondstaeen elements
of the original and the final sequences. Some other impleatiens may also be
possible, e.g. onion routing [45].

A bit-commitment scheme allows an ageatto commit a valuev to another
agentB without revealing it immediately. MoreoveR is ensured thatl cannot
change her mind afterwards and that the value she laterlsewdbbe the same as
she thinks at the beginning. For thi$ encrypts the value in some way and sends
the encryption td3. The agent3 is not able to recover until A sends him the key.

A blind signature scheme allows a requester to obtain a gignaf a message:
without revealing the messageto anyone, including the signer. Hence, the signer
is requested to sign a message blindly without knowing weai@ns. This mech-
anism is very useful in electronic voting protocol. It allewhe voter to obtain a
signature of her vote by an authority who checks that sheighsto vote without
revealing it to the authority.

In a first phase, the voter gets a signature on a commitmets tote from the ad-
ministrator. To ensure privacy, blind signatures [14] ased) i.e. the administrator
does not learn the commitment of the vote.

e \oter I/ selects a vote and computes the commitment= (v r) using the
commitment schemgand a random key;

e IV computes the message-= x(z,b) using a blinding functiorny and a random
blinding factorb;

e V digitally signse and sends her signatuse (e¢) to the administratod together
with her identity;

e A verifies thatl” has the right to vote, has not voted yet and that the signature
is valid; if all these tests hold4 digitally signse and sends his signatueg, (e)
toV;

e VV nowunblindsc4(e) and obtaing; = o4(x), i.e. a signed commitment 3’s
vote.

The second phase of the protocol is the actual voting phase.

e V sendg, A’s signature on the commitment tds vote, to the collecto€' using
an anonymous channel;

e (' checks correctness of the signatyrend, if the test succeeds, entéfsr, y)
into a list as arf-th item.

21

The last phase of the voting protocol starts, once the dolletecides that he re-
ceived all votes, e.g. after a fixed deadline. In this phasegadlters reveal the random
key r which allowsC' to open the votes and publish them.

e C publishes the list/;, x;, y;) of commitments he obtained,;

e V verifies that her commitmentis in the list and seidsto C' via an anonymous
channel;

e (' opens thée-th ballot using the randomand publishes the vote

Note that we need to separate the voting phase into a comntifpi@ase and an
opening phase to avoid releasing partial results of theieleand to ensure privacy.
This is ensured by requiring synchronisation between tfierdnt agents involved
in the election.

5.2 The model in applied pi

In this section we describe the applied pi calculus modehef firotocol. Note
that we use phase separation commands, introduced by tMerPrtwol [8] as
global synchronization commands. The process first exe@lkénstructions of a
given phase before moving to the next phase. The separdtitire grotocol in
phases is crucial for privacy to hold. As our processes daigsetreplication such
synchronization can be easily implemented using interoadraunications.

Cryptographic primitives as an equational theory. We model cryptography in
a Dolev-Yao style as being perfect. The equations are gieéwb

open(commit(m,r),r) = m
checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m,r),r) = m
unblind(sign(blind(m, r), sk),r) = sign(m, sk)

In this model we can note that bit commitment (modelled byftimetionscommit
and open) is identical to classical symmetric-key encryption. Fondicity, we
identify host names and public keys. Our model of cryptogi@aprimitives is an
abstraction; for example, bit commitment gives us perfedibg and hiding. Digi-
tal signatures are modeled as being signatures with messameery, i.e. the signa-
ture itself contains the signed message which can be eattasting thehecksign
function. To model blind signatures we add a pair of fundibind andunblind.
These functions are again similar to perfect symmetric keyygption and bit com-
mitment. However, we add a second equation which permite egttact a signa-

22

(* private channels)

v privCh.r pkaChly pkaCh2 v skaChvr skvaChv skvbCh.
(» adm nistrators =*)

(processK | processA| processA| processC | processC |
(* voters =)

(let skvCh = skvaChin let v = a in processV) |

(let skvCh = skvbChin let v = b in processV))

Process 1. Main process

ture out of a blind signature, when the blinding factor iswnoNote that the equa-
tion modelling commitment cannot be applied on the tepen(commit(m,ry),)
Whenrl 7& rs.

Process synchronisation. As mentioned, the protocol is divided into three phases,
and it is important that every voter has completed the firasptbefore going onto
the second one (and then has completed the second one befdirruing to the
third). We enforce this in our model by the keywasghch. When a process en-
counterssynch n, it waits until all the other process that could encousteich n
arrive at that point too. Then all the processes are allowesntinue.

If there arek processes that can encoundgrich n, we can implement the syn-
chronisation as follows. The commasghch n is replaced byut(n,0);in(n,=1)
wheren is a globally declared private channel. Moreover we assumaditional
procesgin(n,=0);...;in(n,=0);0ut(n, 1);...;out(n, 1) that has: ins andk outs.
This simple encoding is fine for our purpose since the valueazin be inferred by
inspecting the code; it would not work if new processes wesated, e.g. with “1”.

Main (Process 1). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the privasmrels are for key
distribution. We only model the protocol for two voters aadrch two copies of

the administrator and collector process, one for each .voter

Keying material (Process 2). Our model includes a dedicated process for gener-
ating and distributing keying material modelling a PKI. Atitwhally, this process
registers legitimate voters and also distributes the putdis of the election au-
thorities to legitimate voters: this is modelled using riegtd channels so that the
attacker cannot provide false public keys.

Voter (Process 3). First, each voter obtains her secret key from the PKI as well
as the public keys of the administrator. The remainder okfexification follows

23

processK=
(* private keys *)
v ska. v skva. v skvb.
(* correspondi ng public keys *)
let (pka, pkva, pkvb)=(pk(ska), pk(skva), pk(skvbn
(* public keys disclosure x)
out(ch,pka). out(ch, pkva). out(ch, pkvb).
(* register legitimte voters =*)
(out(privCh , pkva) out(privCh , pkvb) |
(* keys disclosure on private channels)
out(pkaChl, pka)| out(pkaChl, pka)| out(pkaCh2,pka) |
out(pkaCh2,pka)| out(skaCh,ska) | out(skaCh,ska) |
out(skvaCh,skva)| out(skvbCh, skvb))

Process 2. Administrator for keying material

processV = (*» paraneters: skvCh, v x)
(* her private key =)
in(skvCh,skv).
(* public keys of the administrator =)
in(pkaChl, pubka).
v blinder. v r.
let committedvote = commit(v,r)in
let blindedcommittedvote=blind(committedvote , blindei
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
synch 2.
in(ch4 ,(l,=committedvote ,=sighedcommittedvote)) .
out(chs5,(1,r))

Process 3. Voter process

directly the informal description given in Section 5.1.

Administrator (Process 4). The administrator first receives through a private
channel his own public key as well as the public key of a letate voter. Le-
gitimate voters have been registered on this private chamieocess 2 described
above. The received public key has to match the voter whgiisgito get a signed
ballot from the administrator. If the public key indeed nieds, then the adminis-
trator signs the received message which he supposes to beladballot.

24

processA =
(* administrator’s private key *)
in (skaCh,skadm).
(* register leginmtate voters =)
in(privCh , pubkv).
in(chl,ml).
let (pubkeyv,sig) = mlin
if pubkeyv = pubkvthen
out(ch2,sign(checksign(sig, pubkeyv),skadm))

Process 4. Administrator process

processC =
(* administrator’s public key =*)
in(pkaCh2, pkadmin).
synch 1.in(ch3,(m3,m4)).
if checksign(m4,pkadmin) = m3hen
synch 2.
v |.
out(ch4 ,(1,m3,m4)).
in (ch5,(=1,rand)) .
let voteV=open(m4,rand)in
out(ch,voteV)

Process 5. Collector process

Collector (Process 5). When the collector receives a committed vote, he asso-
ciates a fresh labell with this vote. Publishing the list of votes and labels is mod
elled by sending those values on a public channel. Then tiee an send back the
random number which served as a key in the commitment scregether with the

label. The collector receives the key matching the label@rehs the vote which
he then publishes.

5.3 Analysis

Vote-privacy. According to our definition, to show that the protocol respexi-
vacy, we need to show that

SWVa{®/u} | Ve{"/o} = SVal®/o} [Vs{*/}]. (4)

whereV, = processV{skvaCh /o cn}, Vg = processV{skCh /o o} and S is de-
fined as the parallel composition of the voter processesylitita hole instead of
the two voter processes. We do not require that any of theodtiés are honest,
so they are not modelled ifi, but rather left as part of the attacker context. To

25

establish this equivalence, we show that

vpkaChl.(Va{®/,} | Vg{®/,}| processK)
~ (5)
vpkaChl.(V4{®/,} | V{?/,}| processK)

Note that this implies privacy (equivalence 4) only in theeaf precisely two vot-
ers (i.e.,S doesn’t contain any additional voters). To deduce equncded for an
arbitrary contexts, one would like to use the fact that labelled bisimilaritglissed
under application of evaluation contexts. Unfortunatilg, contextpkaChl._pre-
vents us from easily making this inference (recall thietCh1 is the channel on
which the voters receive the public key of the administiaOur proof is formally
valid only for two voters, although a similar proof can eadie made for other
numbers.

Note that to ensure privacy we do not need to require any okefye to be secret.
However, we need to ensure that both voters use the same fallifor the ad-
ministrator. Therefore, we send this public key on a privdtannel, although the
secret key itself is a free name. Werename the bounded variables and names in
the two voter processes in a straightforward way. AlthougVerif is not able to
prove this observational equivalence directly, we were &btheck all of the static
equivalences on the frames below using ProVerif (see Leni@asnd 20).

We denote the left-hand processfaand the right-hand process@sWe have that
bothprocessK start with the output of all the keys. None of these transgidepend
on the value of the vote, and so they commute in the same waly fovd). For
the sake of readability, we do not detail this part. The onipartant point is that
the output of the administrator’s public key is sent on agiewchannel yielding an
internal reduction. We have that

Pin

vy .out(ch,z1)

(skvaCh,skva) in(skvbCh,skvb)
Py Py =7

VbA.VTA.VbB.VTB.<P3 | {(pk(skva),sign(blind(commit(a,rA),bA),skva))/ml}
v .out(ch,z2) I/bA-VTA-VbB-VTB-<P4 | {(pk(skva),sign(blind(commit(a,rA),bA),skva)/xl}

‘ {(pk(skvb),sign(blind(commit(b,rg),bB),skvb)/xz})

26

Similarly,

in(skvaCh,skva) in(skvbCh,skuvb)

Q 1 Q2 —*

vzy.out(ch,z1) I/bAJ/TA~VbB-V7"B~(Q3 | {(pk(skva),sign(blmd(commit(b,rA),bA),skva))/361}

vaz.out(ch,a2) l/bA.I/TA.VbB.I/TB.(Q4 | {(pk(skva),sign(blind(commit(b,rA),bA),skva)/ml}

| {(pk(sk’vb),sign(blind(commit(a,rB),bB),skvb)/mZ})

We could have considered any permutation of these transitdich respects the
partial order dictated by the processes. Note that for tbgemputs we may con-
sider any public term, i.e. term that does not use boundecksaiithe processes.
For the next input of both voters, we need to consider twoaséher the input
of both voters corresponds to the expected messages froadthmistrator or at
least one input does not correspond to the correct adnatoss signature. In the
second case, one of the voters will block, as testing coresst of the message
fails and hence they cannot synchronise. In the first cagh,ymers synchronise
at phasel. Until that point any move of votev,{*/,} on the left-hand side has
been imitated by votev,{’/,} on the right-hand side and equally for the second
voter. However, from now on, any move of votéi{*/,} on the left-hand side
will be matched with the corresponding movelgf{*/,} on the right-hand side
and similarly for the second voter. The voters will now outiiie committed votes
signed by the administrator. The corresponding framesesertbed below and are
statically equivalent.

prl = I/bA.I/TA.VbB.I/TB. {(pk(skva),sign(blind(commit(a,rA),bA),skva))/:El} |
{(pk:(skvb),sign(blind(commit(b,TB),bB),skvb))/xQ} ’
{(commit(a,rA),sign(commit(a,rA),sk’a))/13} |

{ (commit(b,rp),sign(commit(b,rg),ska)) /934 }

¢Q’ = VbA.I/T’A.VbB.VTB. {(pk(sk:va),sign(blind(commit(b,rA),bA),skva))/zl} |

{(pk(skvb),sign(blind(commit(a,rg),bB),skvb))/IQ} |
{(commit(a,’rB),sign(commit(a,rg),ska))/IB} ’
{(commit(b,rA),sign(commit(b,rA),Ska))/im}

The following result can be establish using ProVerif.

Lemma 19 The frames)p and ¢ are statically equivalent.

For the following input, we again consider two cases: eitherinput of both voters

corresponds to the expected messages or at least one ilggihdbsucceed the

27

tests. In the second case, one of the voters will block, amgesorrectness of the
message fails and hence they cannot synchronise. In thedgst we obtain at the
end the two frames below which are again statically equntale

¢P” = I/bA.I/TA.I/bB.I/TB. {(pk(skva),sign(blind(commit(a,rA),bA),skva))/xl}
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/xQ} ‘
{(commit(a,rA),sign(commit(a,rA),sk’a))/$3} |

{(commit(b,rB),sign(commit(b,rg),ska))/x4} |

{ara) o} {0 [0}

QbQ” = VbA.VTA.VbB.VTB- {(pk(skva),sign(blind(commit(b,rA),bA),skva))/:El} |

{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/mz} |
{(commit(a,rB),sign(commit(a,rB),ska))/xs} ‘

{(commit(b,rA),sign(commit(b,rA),ska))/x4} ‘

(Oara) [, } [{08)

Again, ProVerif is able to establish the following result.
Lemma 20 The frames)p» and ¢~ are statically equivalent.

Note that it is sufficient to prove static equivalences férahchable final states.
Thus, Lemma 19 is actually a consequence of Lemma 20.

Note that the use of phases is crucial for privacy to be reésge®When we omit
the synchronisation after the registration phase with thmiaistrator, privacy is
violated. Indeed, consider the following scenario. Vdtgrcontacts the adminis-
trator. As no synchronisation is considered, vdtgrcan send his committed vote
to the collector before votéry contacts the administrator. As voteg could not
have submitted the committed vote, the attacker can lirdkk¢dbmmitment to the
first voter’s identity. This problem was found during a firsteanpt to prove the
protocol where the phase instructions were omitted. Thggrai paper divides the
protocol into three phases but does not explain the crugipbrtance of the syn-
chronisation after the first phase. Our analysis emphatfigeseed and we believe
that it increases the understanding of some subtle defaite @rivacy property in
this protocol. We may also note that we do not make any assongpabout the
correctness of the administrator or the collector, who nmeagdrrupt, However, we
need to assume that both voters use the same value for thaeistator’'s public
key. Otherwise, privacy does not hold.

28

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter givesyathe random numbers
for blinding and commitment, i.é., andr4, the coercer can verify that the com-
mitted vote corresponds to the coercer’s wish and by unisighthe first message,
the coercer can trace which vote corresponds to this pkaticoter. Moreover,

the voter cannot lie about these values as this will immetlidie detected by the
coercer.

In our framework, this corresponds to the fact that therstexiol’” such that:

o Veutleher) o~ Vu{/,},
o S[Va{/u}" | VB{*/u}] = SV | VB{/u}].

We show that there is nB’ by proving that the requirements 6ff are not satis-
fiable. We have that4{¢/,}"* outputs the values, andb, on the channethc.
This will generate entries in the frame. Hent@,needs to generate similar entries
in the frame. The coercer can now verify that the valugsandb, are used to
encode the vote in the message sent to the administrator. Thuss not able to
commit to a value different from, in order to satisfy the second equivalence. But
thenV” will not satisfy the first equivalence, since he will be ureatd change his
vote afterwards as the commitmenttbas been signed by the administrator. Thus,
the requirements o’ are not satisfiable.

The failure of receipt-freeness is not due to the possildbatiesty of the admin-
istrator or collector; even if we include them as honestigsyithe protocol still
doesn't guarantee receipt-freeness. It follows that ¢oefesistance doesn’t hold
either.

6 Protocol due to Okamoto

In this section we study a protocol due to Okamoto [39] whicswlesigned to
be incoercible. However, Okamoto himself shows a flaw [4@c&ding to him,
one of the reasons why the voting scheme he proposed had dlash ia that no
formal definition and proof of receipt-freeness and coercisistance have been
given when the concept of receipt-freeness has been irdeadby Benaloh and
Tuinstra [7].

6.1 Description

The authorities managing the election are an administfateegistration, a collec-
tor for collecting the tokens and a timeliness member (dehby7T") for publishing

29

the final tally. The main difference with the protocol due tgikaet al.is the use

of a trap-door bit commitment scheme [22] in order to rewiegceipt-freeness.
Such a commitment scheme allows the agent who has perfotmeezbmmitment
to open it in many ways. Hence, trap-door bit commitment daesind the voter
to the votev. Now, to be sure that the voter does not change her mind atnithe e
(during the opening stage) she has to say how she wants tohgpeommitment
during the voting stage. This is done by sending the requméarmation toT’
through an untappable anonymous channel, i.e. a physipatajus by which only
voter V' can send a message to a party, and the message is perfectlyteeall
other parties.

The first phase is similar to the one of the protocol due todkajet al. The only
change is thag is a trap-door bit commitment scheme.

The second phase of the protocol is the actual voting phase, the voter has to
say how she wants to open her commitment to the timeliness@e

e VV sendgy, A’s signature on the trap-door commitmentf& vote, to the collec-
tor C' using an anonymous channel;

e (' checks correctness of the signatyrand, if the test succeeds, entéisy)
into a list.

e IV sendqu,r, z) to the timeliness membé&r through an untappable anonymous
channel.

The last phase of the voting protocol starts, once the dolletecides that he re-
ceived all votes, e.g. after a fixed deadline.

e (' publishes the listz;, y;) of trap-door commitments he obtained,;

e 1/ verifies that her commitment is in the list;

e T publishes the list of the vote in random order and also proves that he knows
the permutationr and ther;’s such thate, ;) = £(v;, ;) without revealingr or
ther;’s.

We have chosen to not entirely model this last phase. Inqudati we do not
model the zero-knowledge proof performed by the timelimassnberT’, as it is
not relevant for illustrating our definitions of privacycespt-freeness and coercion-
resistance. This proof of zero-knowledge is very usefuhsuee thafl” outputs the
correct vote chosen by the voter. This is important in ordegrisure correctness,
even in the case thdt is dishonest. However, the proof of knowledge is unimpor-
tant for anonymity properties. In particular,ifis the coercer himself, then he can
enforce the voter to vote as he wants as in the protocol duejiokia et al. Indeed,
the timeliness membdr can force the voter to give him the trap-door she has used
to forge her commitment and then he can not only check if thertmas vote as he
wanted, but he can also open her vote as he wants.

30

(* private channels)

v privCh. v pkaChl. v pkaCh2.

v skaCh. v skvaCh. v skvbCh.wv chT.

(* administrators x)

(processK | processA| processA| processC| processC |
processT | processT |

(* voters =)

(let skvCh=skvaChin let v=a in processV) |

(let skvCh=skvbChin let v=b in processV))

Process 6. Main process

6.2 The modelin applied pi

Cryptographic primitives as an equational theory. The equations modelling
public keys and blind signatures are the same as in Secoif®@model trap-door
bit commitment, we consider the two following equations:

open(tdcommit(m,r,td),r) = m

tdcommit(my, r, td) = tdcommit(m,, f(my, r, td, m,), td)

Firstly, the termtdcommit(m, r, td) models the commitment of the messagein-
der the keyr by using the trap-dootd. The second equation is used to model
the fact that a commitmenticommit(m;, r, td) can be viewed as a commitment
of any valuem,. However, to open this commitment as one has to know the
key f(my, r, td, m;). Note that this is possible only if one knows the keysed to
forge the commitmenidcommit(m, r, td) and the trap-dootd.

Main (Process 6). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the privaerels are for key dis-
tribution. The channethT is the untappable anonymous channel on which voters
send tol’ how they want to open their commitment.

We have also a dedicated process for generating and distglbkeying material
modelling a PKI. This process is the same as the one we hage fpvthe protocol
due to Fujiokeet al. (see Section 5).

Voter (Process 7). This process is very similar to the one given in the previous
section. We use the primitivelcommit instead okcommit and at the end, the voter
sends, through the chanreIT, how she wants to open her commitment.

31

processV = (*» paraneters: skvCh, v x)
(* her private key =)
in(skvCh,skv).
(* public keys of the adm nistrator =*)
in(pkaChl, pubka).
v blinder. v r. v td.
let committedvote = tdcommit(v,r,td)n
let blindedcommittedvote=blind (committedvote , blindei
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
out(chT,(v,r,committedvote))

Process 7. Voter process

processC =
(* adm nistrator’s public key *)
in(pkaCh2, pkadmin).
synch 1.
in(ch3,(m3,m4)).
if checksign(m4,pkadmin) = m3hen
synch 2.
out(chBB,(m3,m4))

Process 8. Collector process

Administrator. The administrator process is exactly the same as the one igive
Section 5 to model the protocol due to Fujicizal.

Collector (Process 8). When(' receives a commitment, he checks the correct-
ness of the signature and if he succeeds, he enters thimpa@ list. This list is
published in a second phase by sending the values contaitieel list on the public
channekhBB.

Timeliness Member (Process 9). The timeliness member receives, througf,
messages of the forrivt, rt, xt) wherevt is the value of the votext the trap-door

bit commitment andt the key he has to use to open the commitment. In a second
phase, he checks that he can obtaiby opening the commitmert with rt. Then,

he publishes the vote: on the board. This is modelled by sendiwtgon a public
channel.

32

processT =
synch 1.
(* reception du commitnent =)
in(chT,(vt,rt,xt)).
synch 2.
if open(xt,rt) = vt then
out(board, vt)

Process 9. Timeliness process

6.3 Analysis

Unfortunately, the equational theory which is required todel this protocol is
beyond the scope of ProVerif and we cannot rely on automaggtication.

Vote-privacy. Privacy can be established as in the protocol due to Fujbled.
Note that the equivalence proved there does not hold herehaWe to hide the
outputs on the channehT. Hence, we establish the following equivalence

vpkaChl.vchT.(Va{%/,} | VB{%/,}| processK | processT | processT)
~y

vpkaChl.uchT.(V4{®/,} | VB{®/,}| processK | processT | processT)

Below we show that the protocol respects receipt-freenedshance privacy also
holds.

Receipt-freeness. To show receipt-freeness one needs to construct a prétess
which successfully fakes all secrets to a coercer. The sléaril’’ to votea, but
when outputting secrets to the coerdéflies and gives him fake secrets to pretend
to cast the vote. The crucial part is that, using trap-door commitment araohkis

to the fact that the key used to open the commitment is semtigfran untappable
anonymous channel, the value given by the voter to the tmasé member’ can

be different from the one she provides to the coercer. Heheeyoter who forged
the commitment, provides to the coercer the one allowingcthexcer to retrieve
the votec, whereas she sends’tothe one allowing her to cast the vate

We describe such a procdssin Process 10. To prove receipt-freeness, we need to
show that

° V/\out(chc,-) R~y VA{a/v}a and
o SIVa{e/u} | VB{®/u} = SIV' | VB{/u}].

33

processV =
(* her private key =)
in(skvCh,skv).out(chc,skv).
(* public keys of the adm nistrator =*)
in(pkaChl, pubka). out(chc, pubka).
v blinder. v r. v td.
out(chc, blinder). out(chc,f(a,r,td,c)). out(chc,td).
let committedvote = tdcommit(a,r,td)n
let blindedcommittedvote=blind (committedvote , blindeiih
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
out(chc,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
out(chc,(committedvote ,signedcommittedvote)).
out(chT,(a,r,committedvote)) .
out(chc,(c,f(a,r,td,c),committedvote))

Process 10. V'- Receipt-freeness

The contextS we consider here is the same we have used to establish privacy
i.e. vpkaChl.vchT.(_ | processK | processT | processT); thus, as for Fujiokaet

al., the proof is valid for two voters. The first equivalence mayskeen informally

by considering/’ without the instructionsdut(chc, . ..)", and comparing it visu-

ally with V4{*/,,}. The two processes are the same.

To see the second labelled bisimulation, one can inforncalihsider all the execu-
tions of each side. We denote the left-hand proces8 aad the right-hand ag.
Both processK start with the output of all the keys. For sake of readabiity ignore
these outputs which are not really important for what we viessehow. We denote
by 7 the sequence of nameg, r4,tda, bg, g, tdg. After distribution of keying
material which can be done in the same way on both sides, wenabshat the
instructions oft/4{¢/, }<"* can be matched with those &f. Similarly, execution
steps performed bys{*/,} on the left are matched withz{¢/,} on the right.
We need, of course, to consider all the possible executibtiseatwo processes.
However, to argue that the processes are bisimilar, we denbelow a particular
execution and we describe the interesting part of the twodsawe obtained after
execution of the first phase by the two processes.

34

p in(skvaCh,skva) vzi.out(chc,z1) P1 | {Skva/xl} in(skvbCh,skvb) _x P2 | {Skva/ml}

veg.out(che,xa) vas.out(che,xs) vaa.out(che,xa)

2O, s (Py | {599} | PR [} | 4} |}] {44 })

vze.out(ch,ze)

viv (Py | {5/ a } [{PHOR) [} {0 o} L faid {9 s}
’ {(pk(sk’va),sign(blind(tdcommit(c,rA,tdA),bA),sk’va))/xG})
vr.out(che,zr) - skva ska r
— 5 v (P [{0 PR Lo P e T i} T}
| {(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/xG} | {xs/$7})
vxs.out(ch,rg) - a a r
———— i (Po [{0 o b [{PPR o} [{0 o} {74} {4 0}

| {(pk(sk’va),sign(blind(tdcommit(c,rA,tdA),bA),sk’va))/z6} ‘ {x6/$7})

|{(pk(skvb),sign(blind(tdcommit(a,rg,tdB),bB),skvb))/ })
xzs S)

Similarly,

in(skvaCh,skva)

Q

vry.out(che,xy) Ql | {Skva/xl} in(skvbCh,skvb) L QQ | {Skva/{rl}

veg.out(che,xa) ves.out(che,xs) vra.out(che,zy)

ves.out(che,xs)
_ T4

s
N

(@5 [o} PR [} [{08 o} [{T@ratdad) [3 [{1940 })
Qa7 o AP o} [{04} [e atdac) [3 | {404 /0 }

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/ })
z6

Qs | {70 o} [{PRERD [y} 1 {04 g } | {T 07009 o | {1 /0 }

‘ {(pk(sk'ua),sign(blind(tdcommit(a,rA,tdA),bA),skva))/xs} ’ {$6/17})

(Qo | {70 [} [{PRERD [y} 104 oy } | {Tl0m 009 [| {1 /0 }

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/xG} | {xg/$7}

vze.out(ch,ze)
_—

S
N

ver.out(che,xr)
B Y

<
il

vg.out(ch,xg)
_ 5

<
i

‘{(pk:(skvb),sign(blind(tdcommit(c,rg,tdB),bB),skvb))/ })
xzg)

We argue informally that the frames obtained at the end sffttst phase are stati-
cally equivalent. In particular, note that the test

open(unblind(checksign(proja(xg), pk(x1)),X3),Xx4) = €

is true in both frames. Indeed, if we dendt the process obtained on the left

35

hand-side after this first phase, we have that

open(unblind(checksign(proja(xg), pk(x1)),X3),X4)0
= open(tdcommit(a, ra, tda), f(a, ra, tda,c))
= open(tdcommit(c, f(a, ra, tda, c), tda), f(a, ra, tda,c))

=cC
wherep(B') = vin.o.

For the “first input”, of both voters, we need to consider tvases: either the input
of both voters corresponds to the expected messages froadthmistrator or at
least one input does not correspond to the correct adnatoss signature. In the
second case, one of the voters will block, as testing caresstof the message fails
and hence the voters cannot synchronise. In the first casebia@ at the end the
two frames below.

Opr = v {0 o b [PR [} 1 {04 fan b [{74 2} [{9425} |

{(pk(sk:w),sign(blind(tdcommit(c,rA,tdA),bA),skmua))/m } | {$6/x } |
6 7
{(pk(skvb),sign(blind(tdcommit(a,rB,tdB),bB),skvb))/$ } |
3
{(tdcommit(c,rA,tdA),sign(tdcommit(c,rA,tdA),ska))/ } | {:1:9/ } |
Z9 Z10

{(tdcommit(a,rB tdp),sign(tdcommit(a,rg,tdg),ska)) / } ‘
T11

((oratteommitersti) [} [{0y} | (o)

b = i {00} | (PR [,) | oa),) | {Fleratdnd)] Y| fiaaf,) |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/ } | {16/ } |
z6 x7
{(pk(skvb),sign(blind(tdcommit(c,rs,tdB),bB),skvb))/I } |
8
{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/$ } | {xg/ } |
9 Z10

{(tdcommit(c,rB tdp),sign(tdcommit(c,rp,tdg),ska)) / } |
Z11

{(c,f(a,rA,tdA,c),tdcommz‘t(a,rA,tdA))/:m} ‘ {a/:cm} ‘ {C/x14}

We observe that the frames are statically equivalent. Itiqudar, note that the
testtdcommit(c, x4, x5) = proji(x9) IS true in both frames and the attacker cannot
distinguish the termsdcommit(a, rg, tdg) andtdcommit(c, rg, tdg) Since he is not
able to open this commitment. As the goal of this section iustrate our defini-
tions and as tool support is not provided for this equatitmabry we do not give a
formal proof of this static equivalence.

36

processC|[] =
vcl.ve2. (.|
(* private key of V x)
in(cl,x1). out(chc,x1).
(* public keys of the administrator =*)
in(cl,x2). out(chc,x2).
v blinder. v r. v td.
(* nonces of V - blinder, r, td *)
in(cl,x3). out(chc, blinder).
in(cl,x4). out(chc,r).
in(cl,x5). out(chc,td).

let committedvote = tdcommit(c,r,td)n
let blindedcommittedvote=blind(committedvote , blindei
out(c2,(pk(xl),sign(blindedcommittedvote ,x1))).

(* signature of the adm nistrator =)

in(cl,x6). out(chc,x6).

let result = checksign(x6,x2)in

if result = blindedcommittedvotethen
out(c2,true).

let signedcommittedvote=unblind (x6, blinderin
synch 1.

out(c2,(committedvote ,signedcommittedvote)) .
out(c2,(c,r,committedvote))

Process 11. Context - coercion-resistance

Coercion-resistance. This scheme is not coercion-resistant [40]. If the coercer
provides the coerced voter with the commitment that he hasédout without re-
vealing the trap-door, the voter cannot cast her own udagece the voter cannot
produce fake outputs as she did for receipt-freeness. imstef our definition, we
need to show that there is #3 such that for all coercet' satisfyingn N fn(C') = 0)
and S[C[Va{" /2] | Va{%/o} =¢ S[Va{¢/,}" | VB{%/,}], we have the two
bullet points of the definition of coercion-resistance. [gagel’ was such a pro-
cess. LetC be the context given as Process 11 (note that it is, in fagepandent
of V’). In order to satisfy the second bullet poift; has to use the commitment
provided by the coercer, for otherwise this would yield aservable. But then it
cannot give to the timeliness member the key to open the coment to obtain
the voter’s desired vote, in order to satisfy the first bulkatcel”’ does not know
the trap-door. Hence, for the given, the requirements olf’ are not satisfiable
simultaneously.

37

7 Protocol due to Leeet al.

In this section we study a protocol based on the éea. protocol [35]. One of the
main advantages of this protocol is that iviste and govoters need to participate
in the election only once, in contrast with [24] and [39] (s&ections 5 and 6),
where all voters have to finish a first phase before any of themparticipate in
the second phase. We simplified the protocol in order to aun&ie on the aspects
that are important with respect to privacy, receipt-fressnend coercion-resistance.
In particular we do not consider distributed authorities.

7.1 Description

The protocol relies on re-encryption and on a less usualtegypphic primitive:
designated verifier proofs (DVP) of re-encryption. We startexplaining these
primitives.

A re-encryption of a ciphertext (obtained using a randothisecryption scheme)
changes the random coins, without changing or revealinglthetext. In the EIGa-
mal scheme for instance, (it, y) is the ciphertext, this is simply done by comput-
ing (zg",yh"), wherer is arandom number, andandh are the subgroup generator
and the public key respectively. Note that neither the oreaftthe original cipher-
text nor the person re-encrypting knows the random coing imsthe re-encrypted
ciphertext, for they are a function of the coins chosen by lpairties. In particular,
a voter cannot reveal the coins to a potential coercer whioleme this information
to verify the value of the vote, by ciphering his expectecewsith these coins.

A DVP of the re-encryption proves that the two ciphertextstam indeed the same
plaintext. However, a designated verifier proof only cooesone intended person,
e.g., the voter, that the re-encrypted ciphertext conttiasoriginal plaintext. In
particular this proof cannot be used to convince the coefi@ahnically, this is
achieved by giving the designated verifier the ability to \dee the transcripts
of the proof. A more abstract description is the followingDXP for a designated
verifier A of a statemenp is a proof of the statemeng*Vv | know A’s private key”.
As A is the only one to know his own private key a proof that has eretigenerated
by himself must be a proof of the statementhile A himself can generate a proof
of the second part of the disjunction.

Our simplified protocol can be described in three steps.

e Firstly, the voter encrypts his vote with the collector'dopa key (using the El-
Gamal scheme), signs the encrypted vote and sends it to aimiattator on a
private channel. The administrator checks whether the v@gelegitimate voter
and has not voted yet. Then the administragsencryptsthe given ciphertext,

38

signs it and sends it back to the voter. The administrator@isvides a DVP that
the two ciphertexts contain indeed the same plaintext. dctpre, this first stage
of the protocol can be done using a voting booth where elitilof the voter
is tested at the entrance of the booth. The booth containsgetaproof device
which performs re-encryptions, signatures and DVP proofs.

e Then, the voter sends (via an anonymous channel) the rggadrvote, which
has been signed by the administrator to the public board.

¢ Finally, the collector checks the administrator's sigmatan each of the votes
and, if valid, decrypts the votes and publishes the finalltesu

7.2 The model in applied pi

Cryptographic primitives as an equational theory. The functions and equa-
tions that handle public keys and digital signature are aslusee Section 5 for
instance). To model re-encryption we add a functiemcrypt, that permits us to
obtain a different encryption of the same message with @noémdom coin which

is a function of the original one and the one used during threniryption. We also
add a pair of functiondvp andcheckdvp: dvp permits us to build @esignated ver-
ifier proof of the fact that a message is a re-encryption of another ashehatkdvp
allows the designated verifier to check that the proof isdvaliote thatcheckdvp
also succeeds forfake dvpcreated using the designated verifier’s private key. We
have the following equations:

decrypt(penc(m, pk(sk),r),sk) = m
rencrypt(penc(m, pk(sk), rl),r2) = penc(m, pk(sk), f(rl,r2))
checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok
checkdvp(dvp(x,y, z,skv), x, y, pk(skv)) = ok

Main (Process 12). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the privamrels are for key
distribution. The private channehA; (resp.chA,) is a private channel between
the voter and her administrator. This is motivated by thétfaat the administrator
corresponds to a tamper-proof hardware device in this pobtdVe only model the
protocol for two voters and launch two copies of the admiatst and collector
process, one for each voter.

Keying material (Process 13). Our model includes a dedicated process for gen-
erating and distributing keying material modelling a PKtditionally, this process

39

(* private channels)

v privCh. v pkaChl. v pkaCh2. v pkcCh. rv skaCh. v skcCh.
v skvaCh.v skvbCh.v chAl. v chA2.

(* administrators x)

(processK | processC | processC |

(* voters =)

(let chA = chAl in processA |

(let skvCh = skvaChin let v = a in processV)) |

(let chA = chA2 in processA |

(let skvCh = skvbChin let v = b in processV)))

Process 12. Main process

processK =
(* private key =*)
v ska. v skc. v skva. v skvb.
(* correspondi ng public keys =)
let (pka, pkc) = (pk(ska), pk(skc))in
let (pkva, pkvb) = (pk(skva), pk(skvb))n
(* publik keys disclosure =)
out(ch,pka). out(ch,pkc). out(ch,pkva). out(ch, pkvb).
(* register legitinate voters =)
(out(privCh , pkva) out(privCh , pkvb) |
(* keys disclosure on private channels *)
out(pkaCh,pka) | out(pkaCh,pka) | out(pkaCh,pka) |
out(pkaCh,pka) | out(skaCh,ska)| out(skaCh,ska)|
out(pkcCh,pkc) | out(pkcCh,pkc) | out(skcCh,skc)|
out(skcCh,skc)| out(skvaCh,skva)| out(skvbCh, skvb))

Process 13. Administrator for keying material

registers legitimate voters and also distributes the putdys of the election au-
thorities to legitimate voters: this is modelled using riegtd channels so that the
attacker cannot provide false public keys.

Voter (Process 14). First, each voter obtains her secret key from the PKI as well
as the public keys of the election authorities. Then, a frasdom number is gen-
erated to encrypt her vote with the public key of the collediext, she signs the
result and sends it on a private channel to the administrittire voter has been
correctly registered, she obtains from the administratoe-encryption of her vote
signed by the administrator together with a designatedigeproof of the fact that
this re-encryption has been done correctly. If this proafasrect, then the voter
sends her re-encrypted vote signed by the administratbwetodllector.

Note that we used the synchronisation command to model thieeps. This com-
mand is crucial for privacy to hold in presence of a corrugtector. This ensures

40

processV = (*» paraneters: skvCh, v x)
(* her private key =)
in(skvCh,skv).
(* public keys of the adm nistrators =)
in(pkaChl, pubka).in(pkcCh, pubkc).
synch 1.v r.
let e = penc(v, pubkc,r)in
out(chA,(pk(skv),e,sign(e,skv))).
in(chA,m2).
let (re,sa,dvpV) = m2in
if checkdvp(dvpV,e,re,pk(skv)) = ok
then if checksign(sa,pubka) = re
then out(ch,(re,sa))

Process 14. Voter process

processA =
(» administrator’s private key x)
in(skaCh, skadm).
(» register a legimtate voter x)
in(privCh , pubkv).
synch 1.
in(chA,ml).
let (pubv,enc, sig)=mlin
if pubv=pubkv then
if checksign(sig,pubv)= enc
then v rl.
let reAd=rencrypt(enc,rl)in
let signAd=sign (reAd,skadm)in
let dvpAd=dvp(enc,reAd,rl,pubv)n
out(chA,(reAd, signAd ,hdvpAd))

Process 15. Administrator process

that key distribution is finished before any of the two voteyqeeds. Otherwise an
attack on privacy can be mounted since the attacker canmgreve of the vot-
ers from obtaining her keys. One may also note that this pobis vote and go
even if synchronisation is used the voters participatealgtionly during one of the
synchronised phases.

Administrator (Process 15). The administrator first receives through a private
channel his own private key as well as the public key of a ilegite voter. The
received public key has to match the voter who is trying toageg-encryption of
her vote signed by the administrator. The administratordiss to prove to the
voter that he has done the re-encryption properly. For Hashuilds a designated
verifier proof which will be only convincing for the voter.

41

processC =
(* collector’s private key *)
in(skcCh, privc) .
(* administrator’s public key =)
in(pkaCh2, pkadmin).
synch 1.
in(ch,m3).
let (ev,sev) = m3in
if checksign(sev,pkadmin) = ev
then let voteV = decrypt(ev, privc)in
synch 2.
out(ch,voteV)

Process 16. Collector process

Collector (Process 16). First, the collector receives all the signed ballots. He
checks the signature and decrypts the result with his grivay to obtain the value
of the vote in order to publish the results. Although it is n@ntioned in the de-
scription of the protocol [35], it seems reasonable to thhmt the collector does
not accept the same ballot twice. For sake of readabilitydavaot model this fea-
ture in Process 16; however, we will model it when we come teip-freeness,
since it is crucial there. Finally, when all votes have beebnsitted to the col-
lector (synchronisation is achieved using the synchraioisanstruction), they are
published.

7.3 Analysis

Let VA — V{SkvaCh/Sk’Uch}{ChAl/ChA} and VB — V{SkvbCh/skah}{ChA2/chA}-
Note that again we have to establish all the equivalencesuatign ProVerif is

not able to deal with equational theories such as this one.

Vote privacy. We show that the protocol respects privacy. For this, webéista
the following equivalence

SWal®/o} | VEL"/u}] e SIVa{"/o} | V{"/u}]

whereS = vpkaChl, pkcCh, skaCh, chAl, chA2.(_ | processK
| processA{"1/ a}

| processA{"2/ A })

As for the other case studies, we prove orivacy only for tree e two voters.

42

Privacy does not require any of the keys to be secret. Howexeneed to ensure
that both voters use the same public key for the administeatd for the collector.

Therefore, we send public keys on a private channel, althalig corresponding
private keys can be considered as free names. We assumethatdministrators

have the same private key and that both voters have the agloté. If any of these
conditions is not satisfied, privacy does not hold.

We denote the left-hand processfaand the right-hand process@sTheprocessK
starts with the output of all the keys. For the sake of rediighie ignore some of
these outputs which are not important for our analysis andvrite v instead of
the sequencer,.vrg.vry.vrs.

in(skvaCh,skva) « n(skvbCh,skub)
H

P —* P

raoutlehm) g (P | {ene(apkef(rair)).sign(penc(aphef(ra;r)ska) [

vaz-out(ch,za) Vi (Py | {(Penclapke,f(ra,r)),sign(penc(a.phe.f(ra,r)).ska) | Y

| {(penc(b,pkc,f(rB,7"2)),sign(penc(b,pkc,f(rB ,r2)),ska) /332})

Similarly,
Q in(skvaCh,skva) « n(skvbCh,skuvb) _x Ql
vy .out(ch,x1) UT. (Q2 | {(penc a,pke, f(rg,r2)),sign(penc(a,pke, f(rg,r2) ska)/ }
vapout(chea) (Qy | {(penclapke,f(rpra) sign(penclapke,f(rp.ra)) ska) /Y

| {(penc b,pke,f(ra,r1)),sign(penc(b,pke,f(ra,r1)), ska/ })

The resulting frames are statically equivalent. Note tthating key distribution, the
processV4{?/,} is matched with’,{®/, }, while afterwards’4{*/, } is matched
with Vz{*/,}. Therefore, we require a phase after the keying distributio

Receipt-freeness. To show receipt-freeness one needs to construct a prétess
which can successfully fake all secrets to a coercer. Treeiglthatl”’ votesa, but
when outputting secrets to the coert@iprepares all outputs as if she was voting
The crucial part is that, using her private key, she provalése DVP stating that
the actual re-encryption of the encryption of vatis a re-encryption of the encryp-
tion of votec. Given our equational theory, the two resulting frames &aBcslly
equivalent because for both the real and the fake RWdkdvp returnsok.

To establish receipt-freeness, we have to assume that Heetoo is trusted. In-
deed, it is important to be sure that its private key remagtset. Otherwise, an
attack against receipt-freeness can be mounted: if theeoknows the collector’s

43

processV'’=
(* her private key =)
in(skvaCh,skv).out(chc,skv).
(* public keys of administrators x)
in(pkaCh, pubka).out(chc, pubka).
in(pkcCh, pubkc).out(chc, pubkc).
synch 1.
v r. out(chc,r).
let e = penc(a, pubkc,r)in
out(chAl,(pk(skv),e,sign(e,skv))).

(» message fromthe adm nistrator =)
in(chAl,m2).

let (re,sa,dvpV) = m2in

if checkdvp(dvpV,e,re,pk(skv))=okhen
vor.

let fk=dvp(penc(c,pubkc,r), re,r’,skv)in
out(chc,(re,sa,fk)).

if checksign(sa,pubka) = rethen
out(ch,(re,sa))

Process 17. ProcesB’ - Receipt-Freeness

private key he can directly decrypt the re-encryption aneckhvhether the vote
is ¢ rather than relying on the designated verifier proof. No&, tim reality [35], a
threshold encryption scheme is used and decryption has petbermed by mul-
tiple collectors. Hence, their scheme can deal with someaupbrcollectors. It is
also important that the private key of the administratoragms secret. Otherwise
an attacker can forge any vote and submit it to the collector.

Process 17 shows a possiié To prove receipt-freeness, we need to show

° V/\out(chc,-) ~ VA{a/v}u and
o SIVa{e/u} | Va{®/u} me SIV' | VB{/u}]-

whereS represents all of the remaining process.

The first labelled bisimulation may be seen informally by sideringV” with the
“out(che, ...)” commands removed, and comparing it visually with. To see the
second labelled bisimulation, one can informally considkrthe executions of
each side.S consists of the Main process, and therefore inclugtesessK, the
two processA’s, and the twoprocessC’s, but it has a hole for the two voter pro-
cesses. As shown above, the hole is filledihy </, }<"* | Vz{*/,} on the left and
by V' | Vg{¢/,} on the right. Executions oF4{¢/,}" are matched with those
of V'; similarly, Vz{*/,} on the left is matched with/z{¢/,} on the right. To
illustrate this, we consider a particular execution on #it hnd we give the corre-
sponding execution on the right. Here the procBsss the one obtained after key

44

distribution. The sequence of nameslenotes 4, r1, g, r2, " and alsaskvb, skc
andska but notskva (coerced voter). We writpkva instead ofpk(skva) and as-
sume that public keys are in the frame. We denote by= penc(c, pke, f(ra,r1))

and bypg = penc(a, pke, f(rp,r3)).

vzy.out(ch,x - r
Py), g (P | {74 })

”CCQ‘OUt(Ch’“); mzb_(p3 ’ {m/ml} ’ {(PA75’5971(PA75]9‘1)7dvp(p3nC(C’PkC,TA)aPA7T17kaa))/x2})

”9”3'0“'5(0}"9”3)) Vf.(P4 | {m/m} | {(pA7si9n(pA7ska),dvp(pen0(c,pkc,m)7pA,r1,pkva))/$2}

| {(PA7SZ'QVL(PA,5>’/€0L)/I3 })

), i (P | {74} | {25t @ashe) dontoenccphernparshue) /)

| {(pA,sign(pmska)/m} ‘ {(pB,sign(pBﬁka))/M})

Similarly, we have that

vy .out(ch,x1) - r
Q1 ——— vi(Q2 | {"/z,})

vaa.out(ch,z2) I/ﬁ-(Qg | {rA/xl} ‘ {(qA,sz’gn(qA,ska),dvp(penc(c,pkc,rA),qA,r/,skva))/xz})

M Vﬁ.(Q4 | {TA/QH} | {(qA,sign(qA,sk’a),dvp(penc(c,pk’c,rA),qA,r’,skva))/:m}

| {(QA75i9n(QA75ka)/z3 })

vz4.out(ch,z4) Vﬁ-(QS | {TA/:El} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r/,skva))/xQ}

| {(QA,sign(QA,ska)/IB} ‘ {(qB,sign(qB,ska))/M})

wheregs = penc(a, pke, f(ra,r1)) andgg = penc(c, pke, f(rp,r3)).

Note that, the testheckdvp(projs(x2), penc(c, pke, x1), proji (x2), pk(skva)) = ok is
true in both frames. Now, for the input of the collector, werdndo consider any
public terms. There are essentially two cases. Either tpetiof both collectors
corresponds to the votes submitted by both voters or at twastof the inputs
does not. In the last case, since the attacker is not ablewderfake inputs of the
expected form, i.e. the input needs to be signed by the adtrator, this means that
either the collector will block or that both inputs are exathe same. To prevent
the last case, we have to ensure that the collector doescegtizac same vote twice.
This can be modelled by adding a process in charge of chedkinlgle votes and by
slightly modifying theprocessC. The additional process is described in Process 18.
In the collector process we add the following instructionst jpefore “synch 2”:
out(privDbIChk, ballot).in(privDbIChk, x). if x = ok then]. ..] whereprivDblChk is

a restricted channel.

45

doubleCheck =
in(privDblChk, ballotl). out(privDbIChk, ok).
in(privDbIChk , ballot2).
if ballotl=ballot2 then 0 else outfprivDbIChk , ok)

Process 18. Process to prevent double ballot

We know that if the tests succeeded, both collectors symiteat phase 2. Up to
that point any move of the collector that received the votgdf/, } on the left-
hand side has been imitated on the right-hand side by theatollthat received the
vote of the vote/z{°/,}, and similarly for the second collector. The interesting
part of the frames obtained after a complete execution isritesi below.

¢P’ = un. ({TA/JJI} | {(pA,sign(pA,ska),dvp(penc(c,pkc,rA),pA,7'1,pkva))/xz}

| {{passtontpasske) [} | {@ostontvmskad) [, 31 {0 o} 1 {26 })

d)Q’ = vh. ({T‘A/ml} ’ {(‘IA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r’,skva))/m}

| {(aasinansko) /) | {Gmsiontamstkad [, | {2y} | {/})

Coercion-resistance. We prove coercion resistance by constructifigwhich is
similar to the one for receipt-freeness. However, for clogrcesistance the coercer
also provides the inputs for the messages to send out. Thariks fact that

SICWAL /oy] [Vi{® /o] =0 SIVA{/u}" | VB{*/u}],

we know that the coercer prepares messages correspondihg tven votec.
Hence,

e /' fakes the outputs as in the case of receipt-freeness; thegeneed voter will
counter-balance the outcome, by choosing the ¥pte
e 1/ simply ignores the inputs provided by the coercer.

Such a procesB’ is shown in Process 19. Similar reasoning to the one usedeabov
(for receipt freeness) can be used here, to establish thabtiditions

o ClV/\outleher) ooy Vy{2/,}
o SICIVa{?/u}r | VB{*/u}] = SICIV'] | VB{°/u}],

hold, thus establishing coercion resistance. It is a bitenttifficult to perform this
reasoning since we have to consider any contéxt vc;.vcs.(- | P) such that

a0 fn(C) =0 andS[CVa{*/u} 2] | Ve{*/u}] me SVa{/u} | VB{*/.}].

46

For the first condition, we can see that if the proc@gi’]\°*(¢"*) does not block
then it has the same behaviourlas{*/,} sinceV’ completely ignores the inputs
provided byC. The only point is to ensure th&t’ can fake the outputs t0' as in
the case of receipt-freeness. This is indeed possible t@ dinse the voter does
not have to know any private data used by the coercer to prepamessages. (For
instance, the voter does not have to know the nonce used lwp#dreer when he
encrypts the vote.)

To obtain the second condition, it is sufficient to show thatéquivalence
SV Ve{*/u}] me SICIV'T | VB{*/s}]

holds, wherel’” is the process provided for receipt-freeness (ProcessNiie
that the processeS[V’] and V" are not bisimilar by themselves, because some
tests involving messages outputted driAl allows us to distinguish them. In-
deed, it may be possible that the coercer (i.e. the coni@xthooses to gener-
ate his own nonce, to encrypt his votec and does not use the one provided
by the voter. In such a case, the coercer has to outpwin the channethc,
and does not forward the nonce provided by the voter, in orolensure that
S[CIVa{"/uye2] | VB{/u} =~ S[Va{¢/,}"¢ | V{?/,}]. This means that the
outputs performed onhc by V" on the left hand-side and by the coerc¢épn the
right hand-side are not quite the same. However, those ¢astsot be performed
when these processes are put inside the costexécausehAl is restricted.

8 Conclusion

We have defined a framework for modelling cryptographicngtprotocols in the
applied pi calculus, and shown how to express in it the ptaseof vote-privacy,
receipt-freeness and coercion-resistance. Within thadveork, we can stipulate
which parties are assumed to be trustworthy in order to pibtes desired property.
We investigated three protocols from the literature. Ogults are summarised in
Figure 1.

We have proved the intuitive relationships between thestpreperties: for a fixed
set of trusted authorities, coercion-resistance impkesgipt-freeness, and receipt-
freeness implies vote-privacy.

Our definition of coercion-resistance does not attempt twllea‘fault attacks”, in
which the coercer supplies material which forces the vaierate randomly, or
to vote incorrectly resulting in an abstention (these &tare respectively called
randomisatiorandforced abstentioattacks in the work of Juekt al.[31]). A pro-
tocol which succumbs to such attacks could still be consmleoercion-resistant
according to our definition. In our model, the coercer camtadle votes for each
candidate, so it seems to be in fact impossible to resist &ialcks fully.

47

processV'’=
(* her private key =)
in(skvaCh,skv).out(cl, skv).
(* public keys of administrators x)
in(pkaCh, pubka).out(cl, pubka).
in(pkcCh, pubkc).out(cl, pubkc).
synch 1.
v r. out(cl,r).
let e = penc(a, pubkc,r)in
(* instruction fromthe coercer *)
in(c2,x1).
let (pi,ei,si) = x1in
out(chAl,(pk(skv),e,sign(e,skv))).

(* nmessage fromthe admnistrator)
in(chAl,m2).

let (re,sa,dvpV) = m2in

if checkdvp(dvpV,e,re,pk(skv)) = okhen
v r',

let fk = dvp(ei,re,r’,skv)in
out(cl,(re,sa,fk)).

if checksign(sa,pubka) = rethen
in(c2,x2). out(ch,(re,sa))

Process 19. ProcesE’ - coercion-resistance

Property Fujioka etal. Okamoto et al. Leeetal.
Vote-privacy v v v
trusted authorities none timeliness mbr. administrator
Receipt-freeness X v v
trusted authorities n/a timeliness mbr. admin. & collector
Coercion-resistance X X v
trusted authorities n/a n/a admin. & collector

Fig. 1: Summary of protocols and properties

Our reasoning about bisimulation in applied pi is ratheoinfal. In the future, we
hope to develop better techniques for formalising and aatmg this reasoning.
The ProVerif tool goes some way in this direction, but théntegue it uses is fo-
cused on process which have the same structure and diffenrotihe choice of
terms [9]. The sort of reasoning we need in this paper oftealves a bisimula-

tion relation which does not follow the structure of the msses.

For example, in

proving vote-privacy for Fujiokat al., early on we match,{*/,} on the left-hand
side withV4{®/,,} on the right-hand side, while later we maf¢h{®/,} on the left

48

with Vz{*/, } on the right. It would be useful to automate this kind of reuasg, or
to investigate more general and more powerful methods tabkshing bisimula-
tion. Symbolic reasoning has proved successful for realitygroperties [37,5],
in which terms input from the environment are representeslyagolic variables,
together with some constraints. One direction we are ilyatstg is the develop-
ment of symbolic bisimulation and corresponding decisimtpdures for the finite
applied pi calculus. This work has been initiated in [19].

Our definition of coercion-resistance involves quantifmabver all possible con-
texts which satisfy a certain condition, and this makesritiita work with in prac-
tice. Coercion-resistance may thus be seen as a kind ofwvabseral equivalence
but with a restriction on the powers of the observer. Ouiegplaper [18] included
a notion which we calleédaptive simulatiopa variant of bisimulation which at-
tempts to model the coerced voter’s ability to adapt her aoteording to the in-
structions of the coercer. Unfortunately, we have found tiotion to have some
undesirable properties, and we have not used it in this phptre future, we hope
to find a corresponding restriction of labelled bisimilgrivhich will help us to
reason with coercion-resistance more effectively.

Acknowledgments Michael Clarkson read our CSFW paper [18] and asked us
several challenging questions, which were instrumentakiping us prepare this
paper. Anonymous reviewers of this journal article prodigeany detailed com-
ments which were very useful in helping us to improve its gual

References

[1] Martin Abadi, Bruno Blanchet, andé@ric Fournet. Just fast keying in the pi calculus.
In Proc. 13th European Symposium on Programming (ESOR0dlume 2986 of
LNCS pages 340-354. Springer, 2004.

[2] Martin Abadi and @dric Fournet. Mobile values, new names, and secure
communication. InProc. 28th ACM Symposium on Principles of Programming
Languages (POPL'01pages 104-115, London, UK, 2001. ACM.

[3] Martin Abadi and Andrew D. Gordon. A calculus for cryptographiatpcols: The spi
calculus. InProc. 4th ACM Conference on Computer and Communicationsribgc
(CCS’97) pages 36—47. ACM Press, 1997.

[4] A. Baskar, R. Ramanujam, and S.P. Suresh. Knowledgeebamdelling of voting
protocols. InProc. 11th Conference on Theoretical Aspects of Ratignalitd
Knowledge (TARK’'07)pages 62—-71, 2007.

[5] Mathieu Baudet. Deciding security of protocols agami$tline guessing attacks. In
Proc. 12th ACM Conference on Computer and CommunicationarBe (CCS’05)
pages 16-25, Alexandria, Virginia, USA, 2005. ACM Press.

49

[6] Josh BenalohVerifiable Secret Ballot Election$hD thesis, Yale University, 1987.

[7]1 Josh Benaloh and Dwight Tuinstra. Receipt-free seoadibt elections (extended
abstract). IrProc. 26th Symposium on Theory of Computing (STOC9dges 544—
553. ACM Press, 1994.

[8] Bruno Blanchet. An efficient cryptographic protocol ifier based on prolog rules. In
Proc. 14th IEEE Computer Security Foundations Workshop-{€981), pages 82—-96.
IEEE Comp. Soc. Press, 2001.

[9] Bruno Blanchet, Maih Abadi, and @dric Fournet. Automated Verification of
Selected Equivalences for Security Protocols?iioc. 20th IEEE Symposium on Logic
in Computer Science (LICS 200®ages 331-340. IEEE Comp. Soc. Press, 2005.

[10] Ran Canetti and Rosario Gennaro. Incoercible multypesmputation. IrProc. 37th
Symposium on Foundations of Computer Science (FOC¥%es 504-513. IEEE
Comp. Soc. Press, 1996.

[11] Konstantinos Chatzikokolakis and Catuscia Palansides Probable innocence
revisited. InProc. 3rd Formal Aspects in Security and Trust (FAST,@8jume 3866
of LNCS pages 142-157. Springer, 2006.

[12] Konstantinos Chatzikokolakis, Catuscia Palamidessil P. Panangaden. Anonymity
protocols as noisy channels. Froc. 2nd Symposium on Trustworthy Global
Computing (TGC'06)LNCS. Springer, 2006. To appear.

[13] David Chaum. Untraceable electronic mail, return addes, and digital pseudonyms.
Communications of the ACN24(2):84—88, February 1981.

[14] David Chaum. Blind signatures for untraceable paymelmAdvances in Cryptology
— CRYPTO’82pages 199-203. Plenum Press, 1983.

[15] David Chaum. Elections with unconditionally-secratlbts and disruption equivalent
to breaking RSA. Imdvances in Cryptology — Eurocrypt’88olume 330 ofLNCS
pages 177-182. Springer, 1988.

[16] David Chaum. Secret-ballot receipts: True voterfiaie elections.|IEEE Security
and Privacy 2(1):38-47, 2004.

[17] David Chaum, Peter Y. A. Ryan, and Steve Schneider. Atma, voter-verifiable
election scheme. IiProc. 10th European Symposium On Research In Computer
Security (ESORICS’05yolume 3679 oL NCS pages 118-139. Springer, 2005.

[18] Stephanie Delaune, Steve Kremer, and Mark D. Ryan. Coer@sistance and
receipt-freeness in electronic voting. Rroc. 19th Computer Security Foundations
Workshop (CSFW’06pages 28—-39. IEEE Comp. Soc. Press, 2006.

[19] Stephanie Delaune, Steve Kremer, and Mark D. Ryan. Symbdimbiation for the
applied pi-calculus. IfProc. 27th Conference on Foundations of Software Techyolog
and Theoretical Computer Science (FSTTCS'QRCS. Springer, 2007. To appear.

[20] Claudia Daz, Stefaan Seys, Joris Claessens, and Bart Preneel. deowerasuring
anonymity. InProc. 2nd International Workshop on Privacy Enhancing Texdtbgies
(PET'02), volume 2482 oLLNCS pages 54-68. Springer, 2002.

50

[21] Ariel J. Feldman, J. Alex Halderman, and Edward W. Relté&Security analysis of
the diebold accuvote-ts voting machire.t p: / /i t pol i cy. pri ncet on. edu/
voti ng/, 2006.

[22] Marc Fischlin. Trapdoor Commitment Schemes and Their Applicatid?isD thesis,
Fachbereich Mathematik Johann Wolfgang Goethe-Unidrgitankfurt am Main,
2001.

[23] Cédric Fournet and Mairt Abadi. Hiding names: Private authentication in the agpli
pi calculus. InProc. International Symposium on Software Security (I8&Svolume
2609 of LNCS pages 317-338. Springer, 2003.

[24] Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. Agtical secret voting scheme
for large scale elections. idvances in Cryptology — AUSCRYPT ,92lume 718 of
LNCS pages 244-251. Springer, 1992.

[25] Rop Gonggrijp, Willem-Jan Hengeveld, Andreas BogkrkDEngling, Hannes
Mehnert, Frank Rieger, Pascal Scheffers, and Barry Wels.dapl&roenendaal
ES3B voting computer: a security analysis. www. Wi j vertrouwenst em
comput er sni et. nl / ot her/ es3b- en. pdf . Retrieved 24 October 2007.

[26] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity andfdrmation hiding in
multiagent systemslournal of Computer Security3(3):483-512, 2005.

[27] Martin Hirt and Kazue Sako. Efficient receipt-free vaibased on homomorphic
encryption. InAdvances in Cryptography — Eurocrypt’0@lume 1807 ofLNCS
pages 539-556. Springer, 2000.

[28] Hugo L. Jonker and Erik P. de Vink. Formalising Recdipeeness. IrProc.
Information Security (ISC’06)olume 4176 o NCS pages 476—-488. Springer, 2006.

[29] Hugo L. Jonker and Wolter Pieters. Receipt-freeness sfgecial case of anonymity
in epistemic logic. InProc. AVoSS Workshop On Trustworthy Elections (WOTE'06)
2006.

[30] Wen-Sheng Juang and Chin-Laung Lei. A secure and pedotiectronic voting
scheme for real world environments.IEICE Transaction on Fundamentals of
Electronics, Communications and Computer Science, E8®B4—71, January 1997.

[31] Ari Juels, Dario Catalano, and Markus Jakobsson. Goenesistant electronic
elections. InProc. Workshop on Privacy in the Electronic Society (WPBS'ACM
Press, 2005.

[32] Detlef Kahler, Ralf Kisters, and Thomas Wilke. A Dolev-Yao-based Definition
of Abuse-free Protocols. IdProc. 33rd International Collogium on Automata,
Languages, and Programming (ICALP’Q8)olume 4052 ofLNCS pages 95-106.
Springer, 2006.

[33] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, ddan S. Wallach. Analysis
of an electronic voting system. Rroc. 25th IEEE Symposium on Security and Privacy
(SSP’04) pages 27-28. IEEE Comp. Soc. Press, 2004.

51

[34] Steve Kremer and Mark D. Ryan. Analysis of an electrorwting protocol in the
applied pi-calculus. IfProc. 14th European Symposium On Programming (ESOR’05)
volume 3444 oL.NCS pages 186—-200. Springer, 2005.

[35] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kimpdgmo Yang, and
Seungjae Yoo. Providing receipt-freeness in mixnet-ba&séidg protocols. IrProc.
Information Security and Cryptology (ICISC’Q3)olume 2971 oLNCS pages 245-
258. Springer, 2004.

[36] Sjouke Mauw, Jan H.S. Verschuren, and Erik P. de Vinkodfalization of anonymity
and onion routing. IfProc. 9th European Symposium on Research Computer Security
(ESORICS’04)volume 3193 oL NCS pages 109-124. Springer, 2004.

[37] Jonathan K. Millen and Vitaly Shmatikov. Constrainfvéog for bounded-process
cryptographic protocol analysis. IRroc. 8th ACM Conference on Computer and
Communications Security (CCS’'Qpages 166—175. ACM Press, 2001.

[38] Christoffer Rosenkilde Nielsen, Esben Heltoft Andsrsand Hanne Riis Nielson.
Static analysis of a voting protocol. Proc. 2nd Workshop on Automated Reasoning
for Security Protocol Analysis (ARSPA'Q2)005.

[39] Tatsuaki Okamoto. An electronic voting schemePhoac. IFIP World Conference on
IT Tools pages 21-30, 1996.

[40] Tatsuaki Okamoto. Receipt-free electronic votingesols for large scale elections.
In Proc. 5th Int. Security Protocols Workshomlume 1361 olLNCS pages 25-35.
Springer, 1997.

[41] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymifgr web transactions.
ACM Trans. Inf. Syst. Secut(1):66-92, 1998.

[42] Steve Schneider and Abraham Sidiropoulos. CSP andyamon In Proc. 4th
European Symposium On Research In Computer Security (EE0%d) volume
1146 ofLNCS pages 198-218. Springer, 1996.

[43] Andrei Serjantov and George Danezis. Towards an in&tion theoretic metric for
anonymity. InProc. 2nd International Workshop on Privacy Enhancing Textbgies
(PET’02), volume 2482 oLLNCS pages 41-53. Springer, 2002.

[44] Vitaly Shmatikov. Probabilistic analysis of anonymit In Proc. 15th Computer
Security Foundations Workshop (CSFW’(Q2ages 119-128. IEEE Comp. Soc. Press,
2002.

[45] Paul F. Syverson, David M. Goldschlag, and Michael Gedke Anonymous
connections and onion routing. IAroc. 18th IEEE Symposium on Security and
Privacy (SSP'97)pages 44-54. IEEE Comp. Soc. Press, 1997.

52

Appendix A Proof of Lemma 14

Lemma 14 Let P be a closed plain process and a channel name such that
ch & fn(P) U bn(P). We have Pe")\out(ch) ~, P,

PROOF. Let P be a closed plain process. We show by induction on the size of
that for any channel nam such thath ¢ fn(P)Ubn(P) we haveP\ou(<h) ~, P,
The size of the null process is defined tobé&refixing the procesB by a restric-
tion, an input or an output or putting it under a replicati@dsy to its size. The
size of the proces® | @ (resp. if M = N thenP else(Q) is the sum of the size
of P and(@ plus1.

The base case where = 0 is trivial. Let ch be a channel name such that ¢
fn(P) U bn(P). The possibilities for building® are the following:

e P = P, | P, Insuch a case, we have:

peh\out(ch,) = (Plch | PQCh)\out(ch,.)
= vch.(P" | B, |lin(ch, x))
~ veh.(Py™ |lin(ch, 2)) | veh.((Py)*" |lin(ch, x))
sincein(ch, .) occurs neither ilP" nor in Pt
rop PEMut(ehs) | peh\out(ch.)
~y P | P, by induction hypothesis
= P

e P =uvn.P,. We have:

Pch\out(ch,.) — (Vn‘Pl)ch\out(ch,.)
= ych.(vn.out(ch,n).P" |lin(ch, x))
~y vch.(vn. Py |lin(ch, x))

vn.veh.(P" lin(ch, x)) sincen # ch

vn. P, ch\out(ch,.)

I

Q

¢ vn.Py by induction hypothesis
= P

53

e P =in(c,y).P . Note thatc # ch. We have:

Pch\out(ch,.) — (in(c, y).Pl)Ch\OUt(Ch")
= wch.(in(c,y).out(ch, y). P |lin(ch, x))

~, in(c,y).vch.(out(ch,y). P |lin(ch, z))
~y in(c,y).vch.(P |lin(ch, z))

= in(c, y).Pfh\OUt(Ch")

~y in(c,y). Py

To establish the last step, we can see that for any ground€rthe processes

Q1 andQ, such thain(c,). ") 22, q, andin(c,).P, 2 Q,

are such thaQ), = P, {*/, }Ch\"“t (h) and@, = P,{/,}. By induction hy-
pothesis, we have thal; and(), are bisimilar. Note that for this step we assume
thatw.l.o.gch € fu(M). This can always be obtained byrenaming-h. Lastly,
we conclude thanks to the fact thatc, y).P, = P.

e P =out(c, M).P;. Note thatc # ch. We have:

peh\out(ch,.) _ (out(c, M)'P)ch\out(ch,.)
(out(c, M).P¢" |lin(ch, x))
M).vch.(Pf" lin(ch, x))
= out(c, M).p{"\)
M).Py by induction hypothesis

e P =!P,. Insuch a case, we have:

Pch\out(ch,.) = (!Pl)ch\out(ch,.)
= vch.(\Pf lin(ch, x))
~¢ veh.! (P lin(ch, x))

~¢ (veh.(P{" |lin(ch, x))) sincein(ch,.) does not occur iP¢"
N !Plch\out(ch,.)

~y Py by induction hypothesis
=P

e P =if M = N thenP,; elseP,. Hence, we have:

54

peeut(ch.) — (if M = N thenP; elsePy)™\ (")

vch.(if M = N thenPh else Pt |lin(ch, x))

~y vch.(if M = N then (P |lin(ch, z) else Ps" |lin(ch, x)))

~, veh.(if M = N then Pf" |lin(ch, z) else @™ |lin(ch, z)))

~, if M = N thenvch.(P" |lin(ch, z)) elsevch.(Ps" |lin(ch, z))

I

sincein(ch, .) occurs neither i’ nor in Pgh
= if M = N thenpP"\oeh) g|gg peiout(ch.)
~, if M = N thenP, elseP,
= P
This last case conludes the proof.

55

Election verifiability in
electronic voting protocols*

Steve Kremer!, Mark Ryan?, and Ben Smyth??

LSV, ENS Cachan & CNRS & INRIA, France
2Sd}ool of Computer Science, University of Birmingham, UK
3Ecole Normale Supérieure, CNRS, INRIA, Paris, France

Technical Report CSR-10-06

April 9, 2010
(Revised: June 28, 2010)

Abstract

We present a symbolic definition of election verifiability for electronic
voting protocols in the context of the applied pi calculus. Our definition
is given in terms of boolean tests which can be performed on the data
produced by an election. The definition distinguishes three aspects of
verifiability, which we call individual verifiability, universal verifiability,
and eligibility verifiability. It also allows us to determine precisely which
aspects of the system’s hardware and software must be trusted for the pur-
pose of election verifiability. In contrast with earlier work our definition
is compatible with a large class of electronic voting schemes, including
those based on blind signatures, homomorphic encryption and mixnets.
We demonstrate the applicability of our formalism by analysing two pro-
tocols which have been deployed; namely Helios 2.0, which is based on
homomorphic encryption, and Civitas, which uses mixnets. In addition
we consider the FOO protocol which is based on blind signatures.

1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries
to provide more efficient voting procedures with an increased level of security.

*This work has been partly supported by the EPSRC projects UbiVal (EP/D076625/2),
Trustworthy Voting Systems (EP/G02684X/1) and Verifying Interoperability Requirements
in Pervasive Systems (EP/F033540/1); the ANR SeSur AVOTE project; and the Direction
Générale pour ’Armement (DGA).

However, the security of electronic elections has been seriously questioned [9, 19,
8, 23]. A major difference with traditional paper based elections is the lack of
transparency. In paper elections it is often possible to observe the whole process
from ballot casting to tallying, and to rely on robustness characteristics of the
physical world (such as the impossibility of altering the markings on a paper
ballot sealed inside a locked ballot box). By comparison, it is not possible
to observe the electronic operations performed on data. Moreover, computer
systems may alter voting records in a way that cannot be detected by either
voters or election observers. For example, a voting terminal’s software might be
infected by malware which could change the vote entered by the user, or even
execute a completely different protocol than the one expected. The situation
can be described as voting on Satan’s computer, analogously with [5]. Computer
systems and election administrators should therefore be considered to be part
of the adversary model.

The concept of election verifiability that has emerged in the academic lit-
erature, for example, [17, 18, 10, 3], aims to address this problem. It should
allow voters and election observers to verify independently that votes have been
recorded, tallied and declared correctly. To emphasise a voter’s ability to ver-
ify the results of the entire election process, it is sometimes called end-to-end
verifiability [20, 2]. The verification is performed using hardware and software
of the verifier’s own choice, and is completely independent of the hardware and
software running the election. One generally distinguishes two aspects of verifi-
ability.

e Individual verifiability: a voter can check that her own ballot is included
in the bulletin board.

o Universal verifiability: anyone can check that the election outcome corre-
sponds to the ballots published on the bulletin board.

We identify another aspect of verifiability which is sometimes included in uni-
versal verifiability.

o FEligibility verifiability: anyone can check that each vote in the election
outcome was cast by a registered voter and there is at most one vote per
voter.

We explicitly distinguish eligibility verifiability as a distinct property for com-
patibility with a larger class of protocols.

In this paper we present a symbolic definition of election verifiability for
electronic voting protocols which captures the three desirable aspects. We model
voting protocols in the applied pi calculus and formalise the different aspects
of verifiability as a triple of boolean tests ®/V, ®YV ®FV . The test &V is
intended to be checked by the individual voter who instantiates the test with
her private information (for example, her vote and data derived during the
execution of the protocol) and the public information available on the bulletin
board. The tests ®VV and ®F" can be checked by any external observer and
only rely on public information, that is, the contents of the bulletin board which

may include, for example, the set of ballots cast by voters, the list of eligible
voters and the declared outcome. Our definition requires that these tests satisfy
several conditions on all possible executions of the protocol. The consideration of
eligibility verifiability is particularly interesting because it is essential to provide
an assurance that the election outcome corresponds to votes legitimately cast
and hence provides a mechanism to detect ballot stuffing.

A further interesting aspect of our work is the clear identification of which
parts of the voting system need to be trusted to achieve verifiability. As al-
ready discussed it is not reasonable to assume voting systems behave correctly.
Accordingly, when modelling a voting protocol as a process, we only model the
parts of the protocol that we need to trust for the purpose of verifiability; all
the remaining parts of the system will be controlled by the adversarial environ-
ment. Ideally, such a process would only model the interaction between a voter
and the voting terminal; that is, the messages input by the voter. In particular,
the voter should not need to trust the election hardware or software. However,
achieving absolute verifiability in this context is difficult and we sometimes need
to make explicit trust assumptions about which parts of the voter and admin-
istrator processes need to be trusted. As an example, when showing that the
protocol by Fujioka et al. [15] ensures individual and universal verifiability we
model the protocol as vr.¢(v).¢(r): the voter needs to generate a fresh nonce
r and then give her vote v and r to the voting terminal, which is part of the
adversarial environment. When the protocol is executed correctly this nonce is
used to compute a commitment to the vote. This can be checked by the tests
that ensure verifiability. The fact that vr is part of the protocol model implies
that the nonce needs to be fresh for verifiability to hold. Hence, in this example
the voter either needs to have a means to provide a fresh nonce or trust some
part of the process to generate it freshly. Such trust assumptions are motivated
by the fact that parts of a protocol can be audited, or because they can be ex-
ecuted in a distributed manner amongst several different election officials. For
example, in the Helios 2.0 voting protocol [3], ballot construction can be audited
using a cast-or-audit mechanism. Since any third party software can be used to
audit the ballots the voters are assured that the ballots cast were constructed
according to the protocol specification with high probability. Whether these
trust assumptions are reasonable depends on the context of the given election.

We also note that the tests ®V, ®YV and ®FV are assumed to be verified
in a trusted environment. Indeed, if a test is checked by malicious software
that always evaluates the test to hold, it is not of great value. However, the
verification of these tests, unlike the election, can be repeated sufficiently many
times, on different machines and using different software, which could be pro-
vided by different stakeholders of the election. Another possibility to avoid this
issue would be to have tests which are human-verifiable as discussed for instance
in [2, Chapter 5].

We demonstrate the applicability of our definition with three case studies:
the protocol by Fujioka, Okamoto and Ohta [15]; the Helios 2.0 protocol [4]
which was effectively used in recent university elections in Belgium; and the
protocol by Juels, Catalano and Jakobsson [18], which has been implemented

by Clarkson, Chong and Myers as Civitas [13, 12]. Among other properties
we show that the Helios protocol does not guarantee eligibility verifiability and
is therefore vulnerable to ballot stuffing by dishonest administrators. As the
protocol description does not mandate this property we do not claim this to be
an attack, but simply clarify which aspects of verifiability are satisfied.

1.1 Owur contribution

Our contribution is as follows:

1. A symbolic definition of election verifiability that considers a large class of
protocols; including schemes based on: mixnets, homomorphic encryption
and blind signatures. (In contrast, our preliminary work presented in [21]
only considers blind signature schemes.)

2. Sound and intuitive consideration for eligibility verifiability. (A property
which has been largely neglected and which our earlier work [21] provided
only limited scope for.)

3. Formal treatment of trust assumptions for the purpose of verifiability.

In addition, the applicability of our work is demonstrated with respect to three
case studies; namely, Helios 2.0, Civitas and FOO. The consideration of Helios
2.0 and Civitas is of particular interest since these systems have been imple-
mented and deployed.

1.2 Related work

Juels et al. [17, 18] present a definition of universal verifiability in the prov-
able security model. Their definition assumes voting protocols produce non-
interactive zero-knowledge proofs of knowledge demonstrating the correctness
of tallying. Here we consider definitions in a symbolic model. Universal verifia-
bility was also studied by Chevallier-Mames et al. [11] with the aim of showing
an incompatibility result: protocols cannot satisfy verifiability and vote privacy
in an unconditional way (without relying on computational assumptions). But
as witnessed by [17, 18], weaker versions of these properties can hold simulta-
neously. Our case studies demonstrate that our definition allows privacy and
verifiability to coexist (see [14, 6] for a study of privacy properties in the applied
pi calculus). Baskar et al. [7] and subsequently Talbi et al. [22] have formalised
individual and universal verifiability with respect to the protocol by Fujioka et
al. [15]. Their definitions are tightly coupled to that particular protocol and
cannot easily be generalised. Moreover, their definitions characterise individual
executions as verifiable or not; whereas such properties should be considered
with respect to every execution (that is, the entire protocol).

In our earlier work [21] a preliminary definition of election verifiability was
presented with support for automated reasoning. However, that definition is too
strong to hold on protocols such as [18, 4]. In particular, our earlier definition

was only illustrated on a simplified version of [18] which did not satisfy privacy
because we omitted the mixnets. Hence, this is the first general, symbolic
definbition which can be used to show verifiability for many important protocols,
such as the ones studied in this paper.

2 Applied pi calculus

The applied pi calculus [1, ?] is a language for modelling concurrent, commu-
nicating processes. It is an extension of the pi calculus which was explicitly
designed for modelling cryptographic protocols. For this purpose, the applied
pi calculus allows processes to send terms constructed over a signature rather
than just names. This term algebra can be used to model cryptographic primi-
tives.

2.1 Syntax
The calculus assumes an infinite set of names a, b, c, k, m,n, s,t,..., an infinite
set of variables v,x,y, z,... and a finite signature X, that is, a finite set of

function symbols each with an associated arity. A function symbol of arity 0
is a constant. We use metavariables u,w to range over both names and vari-
ables. Terms L, M, N, T,U,V are built by applying function symbols to names,

variables and other terms. Tuples uy, ..., u; and My, ..., M, are occasionally ab-
breviated @ and M. We write {M1/4,,..., M1/, } for substitutions that replace
variables x1,...,x; with terms My,..., M;.

The applied pi calculus relies on a simple sort system. Terms can be of sort
Channel for channel names or Base for the payload sent out on these channels.
In addition we assume an infinite set of record variables. Function symbols can
only be applied to, and return, terms of sort Base. A term is ground when it
does not contain variables.

The grammar for processes is shown in Figure 1 where u is either a name or
variable of channel sort. Plain processes are standard constructs, except for the
record message rec(r, M).P construct which we discuss below. Extended pro-
cesses introduce active substitutions which generalise the classical let construct:
the process v x.({M/,} | P) corresponds exactly to the process let z = M in P.
As usual names and variables have scopes which are delimited by restrictions
and by inputs. All substitutions are assumed to be cycle-free.

A frame ¢ is an extended process built from 0 and active substitutions
{M/,}; which are composed by parallel composition and restriction. The do-
main of a frame ¢ is the set of variables that ¢ exports. Every extended process
A can be mapped to a frame ¢(A) by replacing every plain process in A with 0.

The record message construct rec(r, M).P introduces the possibility to enter
special entries in frames. We suppose that the sort system ensures that r is
a variable of record sort, which may only be used as a first argument of the
rec construct or in the domain of the frame. Moreover, we make the global
assumption that a record variable has a unique occurrence in each process.

Figure 1 Applied pi calculus grammar

PQ,R:= processes A, B, C ::=extended processes
0 null process P plain process
P|Q parallel A|B parallel
P replication vn.A name restriction
vn.P name restriction vz.A4 variable restriction
u(z).P message input {M/,} active substitution
u({M).P message output
rec(r, M).P record message

if M = N then P else () conditional

Intuitively, this construct will be used to allow a voter to privately record some
information which she may later use to verify the election; for example, nonces
constructed during an execution of the protocol and/or messages received as
input.

The sets of free and bound names, respectively variables, in process A are
denoted by fn(A4), bn(A), fv(A4), bv(A). We also write fn(M), fv(M) for the
names, respectively variables, in term M. Similarly, we write rv(A) and rv(M)
for the set of record variables in a process, respectively a term. An extended
process A is closed if it has no free variables. A context C[] is an extended
process with a hole. We obtain C[A] as the result of filling C[_]’s hole with A.
An evaluation context is a context whose hole is not under a replication, a
conditional, an input, or an output.

The signature X is equipped with an equational theory E, that is, a finite
set of equations of the form M = N. We define =g as the smallest equivalence
relation on terms, that contains E and is closed under application of function
symbols, substitution of terms for variables and bijective renaming of names.

Example 1. Let ¥ = {pair(-,-),fst(:),snd(-)} and E be defined over the equa-
tions

fst(pair(z,y)) =« snd(pair(z,y)) =y

That is, the theory that models pairing and projection. Hence we have that
fst(snd(pair(a, pair(b,¢)))) =g b.

In this paper we tacitly assume that all signatures and equational theories
contain the function symbols pair(,-), fst(:),snd(-) and equations for pairing as
well as some constant L. As a convenient shortcut we then write (71,...7,)
for pair(T1, pair(..., pair(Ty, L))) and ;(T) for fst(snd"~*(T)).

2.2 Semantics

We now define the operational semantics of the applied pi calculus by the means
of three relations: structural equivalence, internal reductions and labelled re-
duction.

Structural equivalence (=) is the smallest equivalence relation closed under -
conversion of both bound names and variables and application of evaluation
contexts such that:

PAR-0 A0 = A

PAR-A Al(B|C) = (A|B)|C
PAR-C A|B = B|A
REPL P = PP
NEW-0 vn0 = 0

NEw-C vurvw.A = vwruA
NEW-PAR AlvuB = vu.(A|B)

if u ¢ fn(A)Utv(A)

ALIAS ve M/} = 0
SUBST M/} A = {M/.}| A{M/,}
REWRITE M/} = {N/a}

if M =g N

Internal reduction (—) is the smallest relation closed under structural equiva-
lence, application of evaluation contexts and such that:

REC rec(r, M).P — P | {M/,}
ComMM ¢(z).P|c(x).Q — P|Q
THEN if N =N then P else Q@ — P
ELSE if L =M then P else Q — @
for ground terms L, M where L #p M

Labelled reduction (=) extends internal reduction and enables the environment
to interact with the processes using the rules defined below. The label « is
either an input, or the output of a channel name or a variable of base sort.

a(z).P “M pivs Y (M) =0

alu).p 24, p
AT A g

vu.a(u)
N vu A —= A
A= A u does not occur in o

vu. A 5 vu. A
AL A bw(a)Nfu(B) = bn(a)N fn(B) =10

A|BS A B
A=B B&S B A=pB
A A

We write = for (—*-%—*)*, that is, the reflexive transitive closure of the
labelled reduction. We will not discuss these semantics in detail but give an
example illustrating them (Figure 2).

Figure 2 A sequence of reductions in the applied pi semantics
Let P = va,b.rec(r,a).¢{(a,b)).c(z).if z = a then ¢(f(a)). Then we have that

P = vab(e(la,b))c(z).if 2 = a then (f(a)) | {/,})

= e by (e(y)c()if o = a then e(f(a)) | {{(*?)/,, 1) | {2/ })
veele) (c(x).if = = a then &(f(a)) | {{(=*) /,,} [{*/,})
(
(e
(if

va,b.

— va,b.
ra-em@), if a = a then 2(f(a)) | {(=2)/,.} | {2/, })

(e {0 1 o)
va,b.(if a = a then g(f(a)) | {{(=*)/, } | 7@/, [{2/,)

Observe that each labelled output is done by reference and extends the domain
of the process’s frame.

!

va,b.
vy2.2(y2)
y2-clb2)

3 Formalising voting protocols

As discussed in the introduction we want to explicitly specify the parts of the
election protocol which need to be trusted (that is, those parts of the system for
which no verifiable proof of correct behaviour is provided). Formally the trusted
parts of the voting protocol can be captured using a voting process specification.

Definition 1 (Voting process specification). A voting process specification is
a tuple (V, A) where V is a plain process without replication and A is a closed
evaluation context such that fu(V) = {v} and ro(V) = 0.

Given a voting process specification (V, A), integer n € N, and names
S1,-..,8, we can build the voting process

VP’IL(Sl?"‘?STL) = A[V‘i | | Vn]

where V; = V{*/,}. Intuitively, VP, (s1,...,$,) models the protocol with n
voters casting votes for candidates si,...,s,. Note that the votes s1,...,sy,
are not required to be distinct (several voters may cast votes for the same
candidate).

Example 2. Consider the following simple raising hands protocol. FEvery voter
simply outputs her signed vote. We suppose that a trusted administrator first
distributes keying material and outputs a list of signed public keys correspond-
ing to the public credentials of eligible voters. Signatures are modeled by the
equations

checksign(pk(z), sign(z,y)) = true getmsg(sign(x,y)) =y

The administrator generating and distributing keys via a private channel d is
modelled by the following context.

A = vd.vskA.(lvskv.d{skv).c(sign(skA, pk(skv))) | {pk(SkA)/wpkA} |)

The active substitution {pk(SkA)/rpkA} models the fact that the administrator’s
public key is known, e.g. published on the election bulletin board. The voter,
whom receives his private key and then outputs his signed vote is modelled by
the process:

Vv = d(xskv)~6<qpk(xskv)v Sign(xskvv ’U) D>

We will prove that this protocol trivially satisfies individual and universal veri-
fiability in Section 4; and eligibility verifiability in Section 5.

For the purposes of individual verifiability the voter may be reliant on some
data derived during the execution of the protocol. We must therefore keep track
of all such values. Definition 2 achieves this objective using the record message
construct.

Definition 2. Let rv be an infinite list of distinct record variables. We define
the function R on a finite process P without replication as R(P) = Ry (P) and,
for all lists rv:

R (0) = 0

Rr'u(P Q) = Rodd(rv) (P) | Reven(rv) (Q)
Ryv(vn.P) = wvn.rec(head(rv),n).Rqi(rv) (P)
Ryv(u(z).P) = u(x).rec(head(rv), z).Riqi(rv) (P)

Ry (u(M).P) = u(M).R.(P)

Ryw(if M = N then P else Q) = if M = N then R, (P) else Ry, (Q)

where the functions head and tail are the usual ones for lists, and odd (resp.
even) returns the list of elements in odd (resp. even) position.

In the above definition odd and even are used as a convenient way to split an
infinite list into two infinite lists. A voting process can now be constructed such
that the voter V records the values constructed and input during execution.

Definition 3. Given a voting process specification (V, A), integer n € N, and
names Si,...,Sn , we build the augmented voting process

VP (s1,...,sn) = A[ViH |-+ | V)
where V.t = R(V){* [, }{"/» | r € ro(R(V))}.

For notational purposes, given a sequence of record variables 7, we denote by
7; the sequence of variables obtained by indexing each variable in 7 with ¢. The
process VP (sy,...,s,) models the voting protocol for n voters casting votes
S1,---,8n, who privately record the data that may be needed for verification
using record variables 7;.

4 Election verifiability

We formalize election verifiability using three tests ®/V', ®UV ®FV . Formally,
a test is built from conjunctions and disjunctions of atomic tests of the form

(M =g N) where M, N are terms. Tests may contain variables and will need
to hold on frames arising from arbitrary protocol executions. The test ®/V has
record variables which will be substituted by the records stored in the frame;
and variables expected to correspond to the voter’s ballot and other public
information, which will be other variables in the domain of the frame. The tests
®UV ®FV gubstitute only public information, that is, (plain) variables in the
frame’s domain and hence are suitable for the use by election observers. The
designers of electronic voting protocols need not explicitly specify cryptographic
tests @1V, ®UV | FV since our definition assumes the existence of tests (perhaps
devised after design) which satisfy our conditions. Now we recall the purpose of
each test and assume some conventions about how variables are named in the
tests.

Individual verifiability: The test ®V allows a voter to identify her ballot in the
bulletin board. The test has:

e a variable v referring to a voter’s vote.

e a variable w referring to a voter’s public credential.

e some variables x,Z,Z,... expected to refer to global public values per-
taining to the election, for example, public keys belonging to election
administrators.

e a variable y expected to refer to the voter’s ballot on the bulletin board.
e some record variables 71, ..., 7 referring to the voter’s private data.

Universal verifiability: The test ®YV allows an observer to check that the elec-
tion outcome corresponds to the ballots in the bulletin board. The test has:

e a tuple of variables © = (vq,...,v,) referring to the declared outcome.

e some variables x,Z,Z,... as above.

e a tuple § = (y1,-..,Yyn) expected to refer to all the voters’ ballots on the
bulletin board.

e some variables z,Z,Z,... expected to refer to outputs generated during

the protocol used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ®FV allows an observer to check that each
ballot in the bulletin board was cast by a unique registered voter. The test has:

a tuple w = (wy, ..., w,) referring to public credentials of eligible voters.
e some variables x,Z,Z,... as above.

e a tuple y as above.

e some variables z,z,Z,... as above.

The remainder of this section will focus on the individual and universal aspects
of our definition; eligibility verifiability will be discussed in Section 5.

10

4.1 Individual and universal verifiability

The tests suitable for the purposes of election verifiability have to satisfy cer-
tain conditions: if the tests succeed, then the data output by the election is
indeed valid (soundness); and there is a behaviour of the election authority
which produces election data satisfying the tests (effectiveness). Formally these
requirements are captured by the definition below. We use the notation T~ T
to denote that the tuples T and 7" are a permutation of each others mod-
ulo the equational theory, that is, we have T = Ty,...T,, T" = TY,... T) and
there exists a permutation x on {1,...,n} such that for all 1 < ¢ <n we have
T; =5 T'y(s)-

Definition 4 (Individual and universal verifiability). A wvoting specification
(V, A) satisfies individual and universal verifiability if for all n € N there ex-
ist tests @IV ®UV such that fn(®TV) = f(®YV) = ry(@YY) = 0, rv(®!V) C
ro(R(V)), and for all names § = (s1,...,8,) the conditions below hold. Let
7= ru(®) and @IV = @IV {1/, 7i/:}.

Soundness. For all contexts C and processes B such that CNP; (s1,...,5,)]
= B and ¢(B) = vi.o, we have:

Vi,j. ®/Von®Vo=i=j (1)

Vo AdUV{Y)i} = To ~T0 (2)

/\ Vi)Yo ANO"V o = F~i0 (3)
1<i<n

Effectiveness. There exists a context C and a process B, such that C[VP;(
S1y.-+,8n)] = B, ¢(B) =vn.oc and

A @i/ naVe (4)

1<i<n

We now discuss how voters and observers use these tests and what are the
guarantees given by the conditions stated in Definition 4.

An individual voter should verify that the test ®/V holds when instantiated
with her vote s;, the information 7; recorded during the execution of the protocol
and some bulletin board entry (which she needs to identify in some way, maybe
by testing all of them). Indeed, Condition (1) ensures that the test will hold for
at most one bulletin board entry. This allows the voter to convince herself that
her ballot has been counted. (To understand the way the condition is encoded,
notice that in the first conjunct, the test succeeds with the ith voter’s data
and a ballot yo provided by the context C[]; in the second conjunct, the test
succeeds with j’s data and the same ballot.) The fact that her ballot contains
her vote will be ensured by ®YY which should also be tested by the voter.

An observer will instantiate the test ®VV with the bulletin board entries §
and the declared outcome 9. Condition (2) ensures the observer that ®VV only

11

holds for one outcome. (In the first and second conjuncts, the test succeeds with
declared outcomes vo and v'c respectively, where both 9o and v’'o are provided
by the context C[].)

Condition (3) ensures that if a bulletin board contains the ballots of vot-
ers who voted si,...,5, then ®”V only holds if the declared outcome is (a
permutation of) these votes.

Finally, Condition (4) ensures that there exists an execution where the tests
hold. In particular this allows us to verify whether the protocol can satisfy the
tests when executed as expected. This also avoids tests which are always false
and would make Conditions (1)-(3) vacuously hold.

Example 3. We show that the raising hands protocol (Ezample 2) satisfies our
definition. Note that in the augmented voting process, the voter will record his
private key; we will denote the ith voter’s private key with the record variable
Tskv; - For all n € N we define the tests

UV = /\ getmsg(ma(y:)) =E v;

1<i<n
We now show that Conditions (1)-(3) of Definition 4 are satisfied.
(1) Suppose that ®'V o and <I>§Vo hold, that is,

(I)IV = Y =E (ka(rskv)a Sign(rskm U)D

Yyo =g qpk(rskvi 0')7 SIgn(rskvi g, Si)D

yo =g (pk(rskv,;0),sign(rskv;0,55))
From the equational theory it follows that rsgy,0 =g Tskv; 0. Moreover,
it follows from the wvoting process specification and the semantics of the
applied pi calculus that for every o, such that C[VP/} (s1,...,s,)] = B

and ¢(B) = vio, i # j implies that rspy,0 #E Tsko;0. Hence we conclude
that Condition (1) holds.

(2) For any substitution o, the premise of Condition (2) implies \,<,<,, vio =g
vio and hence vo ~ v'o.

(3) For any substitution o, the premise of Condition (3) implies N\, <, Si =F
m1(yio) A mi(yio) =g vio and hence 5 ~ vo. o

To see that Condition (4) holds let C = _. It is easy to see that VP (s1,...,sp)
= B, such that

d)(B) = vskA, skv ... Skvn.{pk(skA)/zpkA7(ka(skv1),sign(skv17sl)D /y1 ’Sk’ul /TSMI’

. (ka(skfun);ign(skvnaSn)D/yn ,Skvn /Tskvn}

and that ®Vo A YV o hold.

Example 4. Consider the postal vote protocol whereby all voters simply send
their vote to an administrator who publishes the list of cast votes. The voting
process specification is simply (¢(v), -). Such a protocol is obviously not verifiable
and violates our definition. It is indeed not possible to design a test ®'V such
that Condition (1) holds when s; = s; for some i # j.

12

4.2 Case study: FOO

The protocol by Fujioka, Okamoto and Ohta [15], FOO for short, was an early
protocol based on blind signatures and has been influential for the design of
later protocols.

How FOO works. The FOO protocol involves voters, a registrar and a tal-
lier. The voter first computes her ballot as a commitment to her vote m’ =
commit(rnd, v) and sends the signed blinded ballot sign(sky, blind(rnd’, m’)) to
the registrar. The registrar checks that the signature belongs to an eligible voter
and returns sign(skg, blind(rnd’, m’)) the blind signed ballot. The voter verifies
that this input corresponds to the registrar’s signature and unblinds the mes-
sage to recover her ballot signed by the registrar m = sign(skr,m’). The voter
then posts her signed ballot to the bulletin board. Once all votes have been cast
the tallier verifies all the entries and appends an identifier [to each valid entry.
The voter then checks the bulletin board for her entry, the triple (I, m',m), and
appends the commitment factor rnd. Finally, using rnd the tallier opens all of
the ballots and announces the declared outcome.

Equational theory. We model blind signatures and commitment as follows.

checksign(pk(x),sign(z,y)) = true getmsg(sign(z,y)) =y
unblind(y, sign(z, blind(y, 2))) = sign(z,z) unblind(x, blind(z,3)) =
open(z,commit(z,y)) = vy

Model in applied pi. As discussed in the introduction, the parts of the pro-
tocol that need to be trusted for achieving verifiability are surprisingly simple.
The name rnd models the randomness that is supposed to be used to compute
the commitment of the vote. All a voter needs to ensure is that the randomness
used for the commitment is fresh. To ensure verifiability, all other operations
such as computing the commitment, blinding and signing can be performed by
the untrusted terminal.

Definition 5. The voting process specification (Vioo, Afoo) is defined where
Vioo = vrnd.c{v).c(rnd) and Agool-] = -

The name rnd models the randomness that is supposed to be used to com-
pute the commitment of the vote. All a voter needs to ensure is that the random-
ness used for the commitment is fresh. To ensure verifiability, all other opera-
tions such as computing the commitment, blinding and signing can be performed
by the untrusted terminal. The augmented voting process VP (s1,...,s,) is
v rnd.rec(ry, rnd).¢{s1).¢{rnd) | ... | v rnd.rec(ry,, rnd).¢(s,).c{rnd).

Individual and universal verifiability. We define the tests

oV =y =5 (r,commit(r,v)) UV = /\ v; =g open(mi(y), m2(y))
1<i<n

13

Intuitively, a bulletin board entry y should correspond to the pair formed of the
random generated by voter ¢ and commitment to her vote.

Theorem 1. (Vioo, Afoo) satisfies individual and universal verifiability.
Proof. We show that the Conditions (1)—(3) of Definition 4 hold.

(1) Suppose C, B, i, j are such that C[VP}(s1,...,s,)] = B, ¢(B) = vn.o,
®/Vo and ®fVo. Then my(y)o = rio by ®/Vo, and my(y)o = rjo by
(I)§VO', so 10 = rjo. But since these are randoms freshly generated by the
processes V; and Vj, it follows that ¢ = j. (This can be easily shown by
induction on the derivation which produces B.)

(2) For any o we have for all 1 <i <n that

v;o =g open(my1(y;)o, m2(yi)o) A vio =g open(mi (yio), m2(yio))
= v;0 =g vio

(3) Tt follows from the equational theory that for all 1 <4 < n and substitution
o that

yio =g (r;o,commit(r;o, s;)) A vio =g open(m1(y;0), m2(y;o)

)
= 5=

E@O’

It is also easy to see that a context modelling the entire FOO protocol would
satisfy effectiveness (Condition (4)). One may for instance slightly adapt the
modelling of the FOO protocol given in [14] for this purpose. O

Our model of FOO does not rely on the blind signatures. While this part
is crucial for privacy properties it does not contribute to verifiability. Similarly,
the voter’s signature on the blinded committed vote and the confidentiality of
the secret signing key are not required for individual and universal verifiability;
they are however essential for eligibility.

4.3 Case study: Helios 2.0

Helios 2.0 [4] is an open-source web-based election system, based on homomor-
phic tallying of encrypted votes. It allows the secret election key to be dis-
tributed amongst several trustees, and supports distributed decryption of the
election result. It also allows independent verification by voters and observers
of election results. Helios 2.0 was successfully used in March 2009 to elect the
president of the Catholic University of Louvain, an election that had 25,000
eligible voters.

14

How Helios works. An election is created by naming a set of trustees and
running a protocol that provides each of them with a share of the secret part
of a public key pair. The public part of the key is published. Each of the
eligible voters is also provided with a private pseudo-identity. The steps that
participants take during a run of Helios are as follows.

1. To cast a vote, the user runs a browser script that inputs her vote and
creates a ballot that is encrypted with the public key of the election. The
ballot includes a ZKP that the ballot represents an allowed vote (this is
needed because the ballots are never decrypted individually).

2. The user can audit the ballot to check if it really represents a vote for
her chosen candidate; if she elects to do this, the script provides her with
the random data used in the ballot creation. She can then independently
verify that the ballot was correctly constructed, but the ballot is now
invalid and she has to create another one.

3. When the voter has decided to cast her ballot, the voter’s browser submits
it along with her pseudo-identity to the server. The server checks the ZKPs
of the ballots, and publishes them on a bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board.
Any observer can check that the ballots that appear on the bulletin board
represent allowed votes, by checking the ZKPs.

5. The server homomorphically combines the ballots, and publishes the en-
crypted tally. Anyone can check that this tally is done correctly.

6. The server submits the encrypted tally to each of the trustees, and obtains
their share of the decryption key for that particular ciphertext, together
with a proof that the key share is well-formed. The server publishes these
key shares along with the proofs. Anyone can check the proofs.

7. The server decrypts the tally and publishes the result. Anyone can check
this decryption.

Equational theory. We use a signature in which penc(Zpk; ZTrand; Trext) de-
notes the encryption with key z,x and random Zyang of the plaintext Tte., and
Zciph * Yeiph denotes the homomorphic combination of ciphertexts Zciph and yciph
(the corresponding operation on plaintexts is written 4+ and on randoms o). The
term ballotPf(zpk, Zrand, S, Thallot) Tepresents a proof that the ballot @paer con-
tains some name s and random ,ng With respect to key xpx; decKey(@sk, Zciph) is
a decryption key for zcpn w.r.t. public key pk(ze); and decKeyPf(zek, Zciph, Tdk)
is a proof that xqk is a decryption key for zcpn w.r.t. public key pk(zs). We use
the equational theory that asserts that 4+, *, o are commutative and associative,

15

and includes the equations:
dec(msh PenC(Pk(ﬂfsk)7 Lrand, xtext)) = Ttext

dec(decKey(zs, ciph), ciph) = Zplain
where ciph = penc(pk(Zsk), Trand, Tplain)

PenC(UCplu Yrand, ytext) * Pe“C(iUpka Zrand ztext) = penc(mph Yrand © Zrands Ytext T Ztext)

checkBallotPf (zpk, ballot, ballotPf(xpk, Zrand, s, ballot)) = true
where ballot = penc(Zpk; Zrand; 5)

checkDecKeyPf(pk(xsk), ciph, dk, decKeyPf(xq, ciph, dk)) = true
where ciph = penc(pk(xsk), Trand, Tpiain)and dk = decKey(z, ciph)

Note that in the equation for checkBallotPf we have that s is a name and not a
variable. As the equational theory is closed under bijective renaming of names
this equation will hold for any name, but will fail if one replaces the name by a
term, for example, s+ s. We suppose that all names are possible votes but give
the possibility to check that a voter does not include a term s + s which would
allow her to add an additional vote to the outcome.

Model in applied pi. The parts of the system that are not verifiable are:

e The browser script that constructs the ballot. Although the voter cannot
verify it, the trust in this script is motivated by the fact that she is able
to audit it. She does that by creating as many ballots as she likes and
checking all but one of them, and then casting the one she didn’t verify.

e The trustees. Although the trustees’ behaviour cannot be verified, voters
and observers may want to trust them because trust is distributed among
them.

We model these two components as trusted parts, by including them in the
context Apelios Of our voting process specification.

Definition 6. The voting process specification (Vielios, Anelios) @S defined where

Vhelios = d(Zpia). d{(v). d(Tpaliot)- d(@baltotpf) -C((W; Tbalot, Thallotpf))
Anetios|-] = vsk, d. (¢(pk(sk)) | (lvpid. d(pid)) | (\B) | T'| -)
B = vm. d(xyore)-d{penc(pk(sk), m, Tyote))-
d(ballotPf(pk(sk), m, Zyote, penc(pk(sk), m, Tyote)))
T = ¢(xrany). ¢{(decKey(sk, Tiany), decKeyPf(sk, ziany, decKey(sk, ztaiy))))

We suppose that the recording function records the inputs of xpid, Thaier and
Thallotpf in Tecord variables 1piq, Thatior a0d Tpatiotp s Tespectively. The voter Vielios
receives her voter id pid on a private channel. She sends her vote on the channel
to Apelios; Which creates the ballot for her. She receives the ballot and sends it
(paired with pid) to the server. Apejos represents the parts of the system that

16

are required to be trusted. It publishes the election key and issues voter ids.
It includes the ballot creation script B, which receives a voter’s vote, creates
a random m and forms the ballot, along with its proof, and returns it to the
voter. Apelios also contains the trustee T', which accepts a tally ciphertext and
returns a decryption key for it, along with the proof that the decryption key
is correct. We assume the trustee will decrypt any ciphertext (but only one).
In practice, of course, the trustee should ensure that the ciphertext is the right
one, namely, the homomorphic addition of all the ballots posted to the bulletin
board.

The untrusted server is assumed to publish the election data. In our for-
malism, we expect the frame to have a substitution o that defines the election
public key as x,; and the individual pid’s and ballots as y; for each voter i.
It also contains the homomorphic tally zi, of the encrypted ballots, and the
decryption key zdeckey and its proof of correctness zgeckeyps Obtained from the
trustees. When the protocol is executed as expected the resulting frame should
have substitution o such that

zpro = pk(sk)
yio = (pid;, penc(pk(sk), m;, v;),
ballotPf(pk(sk), m;, v;, penc(pk(sk), m;, v;)))
Ztally0 = mo(y1) * - * W (yn)o
Zdeckeyo = decKey(sk, 2ty)0
ZdecKeyPfO = deCKefo(Sk, Ztally ZdecKey)U

The server then decrypts the tally to obtain the outcome of the election.

Individual and universal verifiability. For the purposes of individual and
universal verifiability, the tests ®/V and ®Y" are introduced. Accordingly, given
n € N we define:

q)IV
@UV

Y=E (ITpm, Tballot T’bazzof,pr

Zrally = T2 (Y1) * -+ * T2(Yn)

A Ni_, (checkBallotPf (zpk, w2 (i), m3(yi)) =F true)

A\ checkDecKefo(mPh Ztally s ZdecKey) ZdecKefo) =g true
ANvy+---+v, =g dec(zdecKeya Ztally)

1

The test ®'V checks that the voter’s ballot is recorded on the bulletin board.
The test ®YY checks that the tally is correctly computed; it checks the proof
for the decryption key; and it checks the decrypted tally corresponds to the
declared outcome v.

Theorem 2. (Vielios, Anelios) Satisfies individual and universal verifiability.
Proof. Suppose n € N and test ®/V, ®YV are given above. We will now show
that for all § = (s1,...,s,) that the conditions of Definition 4 are satisfied.

(1) Suppose C, B, i, j are such that C[VP/!(s1,...,s,)] = B, ¢(B) =
vi.o, and ®/Vo and <I>]I-Va hold. Then m3(y)o = Tpaiier.i0 by @1V, and

17

m2(Y)0 = Tbaliot,jO by <I>§Vo, SO Thallot,i0 = Tbailot,;0- But since these
are randoms freshly generated for the processes V; and Vj, it follows that
i= 3.

(2) Let o be any substitution and suppose that ®Y o and ®VV{? /;}o. Then
(V14 +vp)o = (V) + - +v},)0 = dec(2deckey; 2tally)o. Moreover, @V o
we have that A]_, (checkBallotPf(zpk, 72(y;), 73(y;)))o which implies that
each v;0 and vio is a name. Hence 90 ~ ¥/0.

(3) Let o be any substitution and suppose that A\, ., ®IV{vi/ }oand @V 0.
From each ®!V{vi/,}o, we have that m2(y;)o = penc(pk(sk),m;,s;)o for
some m;. From ®YVeo, we have znyo = (m2(y1) * - - * m2(y,))o, and by
the equation for homomorphic encryption, this is penc(pk(sk),mj o---o
My, $1+ -+ + s,). From the decryption key proof and the decryption, we
have (v1+ -+ +vp)o = (s1+ -+ Sp), and from the ballot proofs, we can
conclude that § ~ vo.

(4) The context C must marshal the election data on the frame in such a
way that zpr0, 10, 2taily0, ZdeckeyT, and zdeckeypro are as defined above.
Moreover, it finds some names #1,...,t, such that zaiyo = t1 + - + ¢y,
and sets the declared outcome vo to be (t1,...,t,). O

5 Eligibility verifiability

In order to fully capture election verifiability, the tests ®'V and ®YVY must be
supplemented by a test ®FV that checks eligibility of the voters whose votes
have been counted in the outcome. We suppose that the public voter creden-
tials appear on the bulletin board. Moreover, these credentials actually belong
to eligible voters; verifying this is beyond the scope of this paper. One approach
may involve publishing the list of credentials alongside the real names and ad-
dresses of the electorate, the validity of this list can then be scrutinised by the
observer. The test ®FV allows an observer to check that only these individu-
als (that is, those in posession of credentials) cast votes, and at most one vote
each. The test is instantiated with the list of public credentials, and other pub-
lic outputs of the election process, such as the public keys, the voters’ ballots,
and any other outputs such as proofs. We use the variable naming convention
introduced in the previous section.

Definition 7 (Election verifiability). A wvoting specification (V, A) satisfies elec-
tion verifiability if for all n € N there exist tests ®'V ®UVV ®FV such that
(@) = (@0V) = f@FY) = n(@UV) = (@) = 0, ra(@®!V) C
ro(R(V)), and for all names § = (s1,...,$,) we have:

1. The tests ®V and ®UV satisfy each of the conditions of Definition 4;

2. The additional conditions 5, 6, 7 and 8 below hold.
Let 7 = ro(@TV), @IV = &IV {5/, 7i/zvi/,} and X = fo(®EV)\dom(VP] (s1,
sn)

18

Soundness. For all contexts C and processes B such that C[VP (s1,...,s5)]
= B and ¢(B) = vi.o, we have:

Vo NBEVY |z € X\}o = o ~ 0o (5)
N eVoneBV{" /st = o ~ilo (6)

1<i<n

Ve NBEVY |z € X\b}o = jjo ~ o (7)

Effectiveness. There erists a context C and a process B such that C[VPT (s1,
.y 8$n)] = B, ¢(B) = vn.oc and

N eVono"Vonaet s (8)

1<i<n

The test ®FV is instantiated by an observer with the bulletin board. Condition
(5) ensures that, given a set of ballots jjo, provided by the environment, ®FV
succeeds only for one list of voter public credentials. Condition (6) ensures that
if a bulletin board contains the ballots of voters with public credentials wo then
®EV only holds on a permutation of these credentials. Condition (7) ensures
that, given a set of credentials w, only one set of bulletin board entries y are
accepted by ®FV (observe that for such a strong requirement to hold we expect
the voting specification’s frame to contain a public key, to root trust). Finally,
the effectiveness condition is similar to Condition (4) of the previous section.

Example 5. The raising hands protocol satisfies eligibility verifiability. Let

EV = /\ (checksign(xpkA,wi) =g true A m1(y;) =g getmsg(w;)
1<i<n

A checksign(m1(y1), m2(yi)) =g true)

We also need to slightly strengthen ®'V which is defined as

q)IV = Y=E (ka(Tskv)a Sign(rskva U)D A gethg(w) —E pk(rs}“’)
A checksign(zpka, w) =g true

Conditions (1) — (4) can be proved as previously (Example 3). It remains to
show that Conditions (5) — (8) hold.

(5) Suppose ®FVeo and @Ev{x,/w | x € X\g}o hold; for all 1 < i < n we
have

getmsg(w;)o =g m1(y;)o A 71 (y;)o =g getmsg(w))o

A checksign(w;, zpra)o =g true A checksign(w}, zpp4)0 =g true

By inspection of the equational theory we have that w0 =g Wo.

19

(6) Suppose that \,<;<, ®IVo and ®FVo hold; hence for all 1 < i < n we
have o

getmsg(w;)o =g getmsg(w})o
A checksign(zpra, w;)o =g checksign(w}, zppa)0 = true

. ~
Again we have W;0 =g W;0.

(7) Suppose ®FVa A BEV{*' /. | x € X\w}o hold; for all 1 < i < n we have

71 (yi)o =g getmsg(w;)o =g 71 (y;)o A checksign(xpa,w;)o =F true A
checksign(m1(y;), m2(yi))o =g true A checksign(mi(y;), m2(y;))o =g true

For any o such that C[NVP (s1,...,8,)] = B and ¢(B) = vi.c we have
that if checksign(zpra,w;)o =g true then getmsg(w;)o =g pk(skv;) for
some j € [l.n]. Moreover, if checksign(pk(skv;),m2(z))o =g true then
getmsg(ma(y;))o =g sj. Hence we have that for all 1 < i < n that
o (y;)o =g m2(yi)o. Finally we conclude §o =g §'o.

Case studies: FOO and Helios 2.0. Neither FOO nor Helios use public
voting credentials in a manner suitable for eligibility verifiability. In FOO, the
administrator is responsible for ensuring eligibility, that is, checking the validity
of the voter’s ballots; whereas in Helios, there are no public voting credentials.
It follows immediately that Condition (7), in particular, cannot be satisfied.

5.1 Case study: JCJ-Civitas

The protocol due to Juels, Catalano & Jakobsson [18] is based on mixnets and
has been implemented by Clarkson, Chong & Myers [13, 12] as an open-source
voting system called Civitas. The schemes, which we call JCJ-Civitas, are the
first to provide election verifiability.

How JCJ-Civitas works. An election is created by naming a set of registrars
and talliers. The protocol is divided into four phases: setup, registration, voting
and tallying. We now detail the steps of the protocol, starting with the setup
phase.

1. The registrars (respectively talliers) run a protocol which constructs a
public key pair and distributes a share of the secret part amongst the
registrars’ (respectively talliers’). The public part pk(skr) (respectively
pk(skg)) of the key is then published. In addition, the registrars construct
a distributed signing key pair sskg, pk(sskgr).

The registration phase then proceeds as follows.

20

3.
4.

The registrars generate and distribute voter credentials: a private part d
and a public part penc(pk(skgr), m”,d) (the probabilistic encryption of d
under the registrars’ public key pk(skg)). This is done in a distributed
manner, so that no registrar learns the value of any private credential d.

The registrars publish the signed public voter credentials.

The registrars announce the candidate list £ = (t1,...,1).

The protocol then enters the voting phase.

5.

Each voter selects her vote s € and computes two ciphertexts M = penc(
pk(skr),m,s) and M’ = penc(pk(skr), m’,d) where m, m’ are nonces. M
contains her vote and M’ her credential. In addition, the voter constructs a
non-interactive zero-knowledge proof of knowledge demonstrating the cor-
rect construction of her ciphertexts and validity of the candidate (s € #).
(The ZKP provides protection against coercion resistance, by preventing
forced abstention attacks via a write in, and binds the two ciphertexts for
eligibility verifiability.) The voter derives her ballot as the triple consisting
of her ciphertexts and zero-knowledge proof and posts it to the bulletin
board.

After some predefined deadline the tallying phase commences in order to com-
pute the election outcome.

6.

10.

The talliers read the n’ ballots posted to the bulletin board by voters (that
is, the triples comnsisting of the two ciphertexts and the zero-knowledge
proof) and discards any entries for which the zero-knowledge proof does
not hold.

The elimination of re-votes is performed on the ballots using pairwise
plaintext equality tests (PET) on the ciphertexts containing private voter
credentials. (A PET [16] is a cryptographic predicate which allows a key-
holder to provide a proof that two ciphertexts contain the same plaintext.)
Re-vote elimination is performed in a verifiable manner with respect to
some publicly defined policy, e.g., by the order of ballots on the bulletin
board.

The talliers perform a verifiable re-encryption mix on the ballots (ballots
consist of a vote ciphertext and a public credential ciphertext; the link
between both is preserved by the mix.) The mix ensures that a voter
cannot trace her vote, allowing the protocol to achieve coercion-resistance.

The talliers perform a verifiable re-encryption mix on the list of public
credentials published by the registrar. This mix anonymises public voter
credentials, breaking any link with the voter for privacy purposes.

Ballots based on invalid credentials are weeded using PETs between the
mixed ballots and the mixed public credentials. Both have been posted to
the bulletin board. (Using PETSs the correctness of weeding is verifiable.)

21

11. Finally, the talliers perform a verifiable decryption and publish the result.

Equational theory. The protocol uses a variant of the ElGamal encryption
scheme [18]. Accordingly we adopt the signature and associated equational
theory from the Helios case study. The zero-knowledge proof demonstrating
correct construction of the voter’s ciphertexts is modelled by the equation

/! / !/
checkBallot(ballotPf (xpk, Trands Ttexts Tpks Trands Trext)s
/ / /
penc(xpk, Lrand; xtext)a penc(zpw Lrands ‘Ttext)) = true

(For simplicity the zero-knowledge proof does not demonstrate that the voter’s
vote s is a valid vote, that is, s € ¢; this is of importance for privacy properties,
not verifiability.) Plaintext equivalence tests are modelled by the equation

pet(petPf (z, ciph, ciph’), ciph, ciph') = true

where ciph = penc(pk(Zsk); Trands Trext) and ciph’ = penc(pk(Tsk), Thangs Ttext)-
Re-encryption is defined with respect to the standard equation

I'enc(yrandv Pe”C(Pk(xsk)7 Lrand, xtext)) = PenC(Pk(stk), f(xrandv yrand)a xtext)~

In addition we consider verifiable re-encryption mixnets and introduce for each

permutation y on {1,...,n} the equation:
CheCkMiX(miXPf(l‘ciph,l, - -« Lciph,n,
ciphy, ..., ciphy, Zrand, 1y -« Zrand,n);
Tciph,1y - - - s Leiph,ns CIDR1, . . ., ciphy) = true

where ciph; = renc(zrand,i; Teiph,y(i))- We also define re-encryption with respect

to pairs of ciphertexts and introduce for each permutation x on {1,...,n} the
equation:
checkMixPair(mixPairPf((z1,), . .., (zn, z,),
(1017011])7 ey (Icna C{nDa (1217 le])y ey 627“ Z;D)v
(z1,21), .-y (0, 2L), (c1,¢1), - -+, (cn,) = true

where ¢; = renc(z;, 2y (;)) and ¢; = renc(z, 2 (;))-
The following lemmata demonstrate useful properties of our equational the-

ory. We make use of the notation M 2 M’ to denote that the ciphertext
tuples M, M’ are defined over the same plaintexts with respect to some public
key K, that is, we have M =g (penc(K, Ry, N1),...penc(K, R,, Ny,)), M =g
(penc(K, R}, N{),...penc(K, R/, N!)) for some tuples N, N’, R, R and there
exists a permutation x defined over {1,...,n} such that for all 1 < i < n we

have N; =g N)’((i) The relation ~ is trivially seen to be an equivalence relation.
Moreover, if M ~ N and M ~ M’, then M’ 2 N.

22

Lemma 1. Given terms L, M, N, if pet(L, M, N) =g true, then M 2 N.
Lemma 2. Given terms L, M, N, if checkMix(L, M, N) =g true, then M ~N.

Lemma 3. Given terms L,M,N, if checkMixPair(L, M,N) =g true, then
(WZ(Ml)”’/Ti(MU\;ﬂ)) ~ (7T1(N1)7,7T1(N‘N|))

Model in applied pi. We make the following trust assumptions for verifia-
bility:

e The voter is able to construct her ballot; that is, she is able to gener-
ate nonces m,m’, construct a pair of ciphertexts and generate a zero-
knowledge proof.

e The registrar constructs distinct credentials d for each voter and con-
structs the voter’s public credential correctly. (The latter assumption can
be dropped if the registrar provides a proof that the public credential is
correctly formed [18].) The registrar also keeps the private part of the
signing key secret.

Although neither voters nor observers can verify that the registrars adhere to
such expectations, they trust them because trust is distributed. The trusted
components are modelled by the voting process specification (Ajq, Vig) (Defi-
nition ??). The context Ajq publishes public keys and defines a sub-process
R to model the registrar. The registrar R constructs a fresh private creden-
tial d and sends the private credential along with the signed public part (that
is, sign(sskg, penc(xpr,, m”,d))) to the voter; the registrar also publishes the
signed public credential on the bulletin board. The voter Vi receives the pri-
vate and public credentials from the registrar and constructs her ballot; that is,
the pair of ciphertexts and a zero-knowledge proof demonstrating their correct
construction.

Definition 8. The voting process specification Aj, Vig is defined where:

Aje
Viej

va,sskp.(R | {Pk(skr) [y, Pk(sskr) [y pk(skT) /0 3])
vm,m'.a(Tered)-

let ciph = penc(zpi,, m,v) in

let ciph’ = penc(xpry, ', T1(Tered)) in

let zkp = ballotPf(2pr,, m, v, Tpky, M, T1(Tered)) in

¢((ciph, ciph’, zkp))

R = wvd,m". let sig = sign(sskg, penc(xpr,, m”, d)) in a{(d, sig)).¢(sig)

> 1>

At the end of the election the bulletin board is represented by the frame.
In our formalism we expect the frame to contain the substitution ¢ which de-
fines the voters’ public credentials as wy,...,w,, public keys of the registrars
as Tpkp, Tspky and talliers’ public key as zp,. Triples yi,...,y, consisting of
each voter’s ciphertexts and zero-knowledge proofs. The mixed re-encryptions
of the voter’s ciphertexts zpal,1,. - ., 2bal,n, along with a proof zmixpairps that the

23

mix was performed correct. For verifiable decryption we assume zgeckey,; is de-
fined as a decryption key associated with the proof zgecps;. For the purposes
of eligibility verifiability we also expect the mixed re-encryptions of the voter’s
public credentials zcred,1, - - -, Zcred,1 along with a proof of correctness zmixps. For
convenience a reordering Zered1; - - - ; Zcred,n, Of these re-encryptions is also com-
puted. Finally, we expect PET proofs zpetps,1, - - -, Zpetpf,n for the reencryption
of the ciphertext constructed by the voter on her private credential (that is, the
output of the verifiable mix in Step 8 of the protocol) and the reencryption of
the voter’s public credential constructed by the registrars (that is, the output
of the mix in Step 9); such that the PET holds, that is, the pair of ciphertexts
contain the same private credential. Accordingly we expect o to be such that
forall 1 <¢<n:

w;o = sign(sskgr,c!)

TpkpO = pk(skgr)

TsphpO = pk(sskgr)

Tply O = pk(skr)

Yio = (¢, ¢, ballotPf(pk(skr), m;, s;, pk(skr), m}, d;))

Zbal ;0 = (Irenc(mi,cx(i)),renc(m;,c;(i))])

Zmixpaicpf0 = pfMixPair((c1,c), ..., (cn,c;,), (renc(ring, cy (1)), renc(rif, c;(l))l),
<o, (renc(my,, ey (n)), renc(mmy,, c;((n))]), (11, my), ..., (1hn, M)

ZdecKey,i0 = decKey(skr,renc(mm;, cy(i)))

ZdecPf,iC0 = decKeyPf(skr, renc(m;, c,(;)), decKey(skr, renc(1ivg, cy())))

Zcred,i0 = renc(m;/7 C;é’(i))

fereaio = renc(iny o1))))

ZmixPfO = pfMix(cf,..., c%,renc(m’lﬂ c;é,(l)): ... renc(m!, c;,(n)), my, ..., ml

ZpetPf,i0 = petPf(skg, renc(m;,c;((i)), renc(m;(x,,l(i)),c;(i)))

where ¢; = penc(pk(skr),m, s;), ¢, = penc(pk(skgr),m',d;), ¢ = penc(pk(skg),
m”,d;) and x,x’ are permutations on {1,...,n}.

Election verifiability. For the purpose of election verifiability we introduce
the tests @V, ®UV ®FV. Without loss of generality suppose the recording
function uses record variables 7 = (rcred, "'m, T'm/) = rv(R(V)) (corresponding to
the variable x.r.q and names m, m’ appearing in the process V). Accordingly,
given n € N we define:

OV = y=p (penc(Tpky, Tm, V), PENC(Tpkgs T s T1 (Tered))
ballotPf(xpky s Ty U, Tpkgs T/ s T1 (Tered))) A W = Ta(Tered)
PUV = checkMixPair(zmixpairpfs (71 (Y1), T2(¥1)), - - -5 (71 (Yn), 2 (yn)),
Zbal,ls -« - Zbal,n) =g true
A /\?zl dec(zdecKey,iv 1 (Zbal,i)) =E U;
A /\?:1 checkDecKefo(:vpkw T (Zbal,i)7 ZdecKey,is ZdecPf,i) =g true
OEV = AT, checkBallot(ms(v:), m1(yi), m2(y:))
A checkMixPair (zmixpairpf, (71 (Y1), T2(y1)), - - -5 (71 (yn), T2(yn)),
Zbal,1s - - - Zbal,n) =F true

24

A /\?:1 pet(zpetPf,i; 772(Zbal,i)7 2cred,i) =g true
A (Izcred,la ey Zcred,nD = (Iécred,la cey écred,nD

A checkMix(zmixpf, getmsg(w1), . . ., getmsg(wn,), Zered, 15 - - - » Zered,n) =E true

A N, checksign(z gk, w;)

The test &7V checks that the voter’s ballot and public credential are recorded
on the bulletin board. The test @YV checks that the tally is correctly computed;
that is, the mix is checked, the validity of decryption keys have been verified
and the decrypted tally corresponds to the declared outcome. Finally, the test
®FV checks that only eligible ballots are considered; that is, ballots are correctly
formed, mixes have been handled in suitable manner, PETs have been verified
and only authentic public voter credentials are considered.

Theorem 3. (A, Vi) satisfies election verifiability.

Proof. Suppose n € N and the tests &'V, ®UV ®FV are given above. We will
now show that for all names § = (s1, ..., s,) that the conditions of Definition 7
hold.

(1) Suppose C' is a context, B is a process and i,j are integers such that
CIVP#(s1,...,8,)] = B, ¢(B) = vir.o and &V {% /, i /z}o N®IV % /,,
7j/7}o. It follows that 71 (y)o =g penc(Zpky, T'm.i, 5i)0 =E PeNc(Tpky, T'm.j,
sj)o and by inspection of the equational theory it is the case that r,, ;o0 =
Tm,jO. Since the record variables 7y, ;, 7p ; are handles for fresh nonces
created by name restriction in the voter process it follows immediately
from 7y, ;0 = Ty, ;0 that i = j.

(2) We prove a stronger result, namely for any o the condition holds. Suppose
®UV o ARUV{Y /1o and hence

n

/\ dec(Zdeckey,i» T1(2bal,i))0 =F V;0 =F Vjo.
=1

It follows immediately that v =g ¥'0.

(3) Again, we will show that the condition holds for all substitutions o. Sup-
pose &IV {%i /, 7i/z i/, }o holds for 1 <i < n and hence

/\ T1(Yi)0 =E Penc(Tpkr, T'm,i; $i)0.
1<i<n

Moreover suppose YV ¢ holds and therefore

checkMixPair (zmixpairpt, (71 (y1), m2(y1)), - - -,

(71(Yn), m2(Yn))s Zbal,1s - - - » Zbal,n)0 =E true

holds. By inspection of the equational theory we have

™ (Zbahi)o' =E penc('rkaz f(rm,x(i)7 Ri)) Sx(i))a

25

for some permutation x defined over {1,...,n} and terms Ry, ..., R, (note
Ry,..., R, appear in zmxpairpfo). By our hypothesis, we also have for all
1 < i < n that

CheCkDeCKefo(kaT, B! (Zbal,i)7 ZdecKey,is ZdecPf,i)U =g true

and hence zgeckey,i0 is a decryption key for 7y (zpai;)o. It follows that
/\ dec(zdecKey,i7 '/Tl(Zbal,i))U =FE Sx(i)
1<i<n
Finally, by hypothesis, we also have
/\ dec(Zdeckey,i» T1(2bal,i))0 =E Vo
1<i<n
and hence it follows that § ~ 2.
We prove a stronger result, namely Condition 8 below.

Suppose C' is a context and B is a process such that C[VP/(sq,...,
sn)] = B, ¢(B) = vir.o, and ®FVo A BEV{*' /. | © € X\g}o. We
have for all 1 < i < n that checkBallot(ms(y;), 71(y:), m2(yi))o =g true
and it follows by inspection of the equational theory that

m2(yi)o =g penc(K;, Si, M;)

for some terms K;,S;, M;. Since checkMixPair(zmixpairpf, (71(y1), m2(y1)),
oo (m1(Yn), m2(Yn)), 2bal 15 - - - Zbal.n)0 =g true and checkMixPair (zmixpairpf’,
(171 (yl)v 7T2(y1)])v AR (I7r1 (yn)7 WQ(yn)Da Z{)al,lv ce 7Zéa|,n)0- =g true, it follows
by Lemma 3 and transitivity of 2 that

(m2(2bal,1), - -+ > T2(2bal,n)0 = (T2(2hat 1) - - - » T2 (Zpaln)0

Moreover, we have for all 1 < i < n that pet(zpetps,i, T2(Zbal i), Zcred,i)0 =E
true and pet(2pepr ;s T2 (Zpal ;)s Zered,i)0 =F true; by Lemma 1 it follows that

~ ~ ~l ol
(Zcred,17) ZCTEd,n)J = (Zcred,h cee 7Zcred,n)g'
~ (% 2 / /
We have qzcred,h ey Zcred,nDU = (Izcred,h ceey Zcred,nDUa (Izcred717 ceey Zcredmb
02 (Zed 1> -+ Zared.n) and hence we trivially derive
2o /
(Zcred,h) ZCTEd,n)J — (Zcred,h cee 7Zcred,n)g'
Since checkMix(zmixpr, getmsg(wi), . . . , getmsg(wy,), Zered,15 - - - » Zcred,n)0 =E
H / / / / /
true and checkMix(zmixps’, getmsg(wy), - - ., getmsg(wy,), Z{red 15+ - - » Zered.n)

=g true; it follows by Lemma 2 that

(getmsg(w1), . . ., getmsg(w,))o ~ (getmsg(w)), . .. , getmsg(w),))o.

26

We have for all 1 < i < n that checksign(zspr,,w;)o0 =g true and
checksign(zspip, wi)o =g true where g0 = pk(sskg) and sskr €
n. By inspection of the equational theory it is the case that w;oc =g
sign(sskr, M;)o and wjo =g sign(sskr, M/)o for some terms M;, M].
Furthermore, since for all 1 < i < n we have getmsg(w;)o0 =g M;,
getmsg(w;)o =g M/ and because (getmsg(wi),...,getmsg(w,))o 2
(getmsg(w)), . .., getmsg(w!,))o, it follows that M ~ M’. Now, since the
signing key is under restriction, and by inspection of the voting process
and its possible outputs, it follows that for all 1 < i < n we have

getmsg(w;)o =g penc(pk(skr), m)), dy())
getmsg(w})o =g penc(pk(skR),m;,(i)7 dy(i))

where d;, m are names under restriction in the registrar process R, Zpi,0
=g pk(skr) and x, X’ are permutations defined over {1,...,n}. Finally
we conclude wo ~ w'o.

Suppose C' is a context and B is a process such that C[VP[(sq,...,
sn)] = B, ¢(B) = vi.o, and A\ ., ®Vo A ®FV{? /;10 holds. We
have for all 1 < i < n that w;o = T2(rereq,)0 and by inspection of the
voting process we have

wo =F (Sign(SSkR, penc(pk(8k3)7 mlllv dl))7
...,sign(sskg, penc(pk(skg),m., dy,))).

In addition we have 3 (y;)o =g penc(pk(skr), m},d;) for all 1 < i <n and
by similar reasoning to the above (see Condition 5.1) we derive wo ~ w'o.

Suppose C' is a context and B is a process such that C[VP[(sq,...,
sn)] = B, ¢(B) = viro, and ®EVe A BEV{' /| 2 € X\w}o. We
have for all 1 < < n that checksign(zspky, w;)o =g true where xspi,0 =
pk(sskr) and sskr € n. By inspection of the equational theory it is the
case that

w;o =g sign(sskgr, M;)o

for some term M;. Since the signing key is under restriction, and by
inspection of the voting process, it follows that for all 1 < ¢ < n we have

Mi —F penc(pk(skR), mga dl)

where d;, m; are names under restriction in the registrar process R and

Tpkpo =g Pk(skr). Since checkMix(zmixpf, getmsg(wi), ..., getmsg(ws,),
Zered,1s - - - 5 Zered,n)0 = true, checkMix(zmixpe’, getmsg(w1), . . ., getmsg(wy,),
Zlred 1 s Zred n)0 =5 true and for all 1 < ¢ < n we have getmsg(w;)o =g

M; it follows that

(= ceredn)o 2 (2] redn)
cred,1s -« -y Zcred,n)0 = cred,1> "+ * 7 “cred,n g

27

Zcred nl)o' = (Iécred 15+ Zcred nDU and
s Zered. n) 0 1t trivially follows that

by Lemma 2. We have (zcred 1, -

!/ !/ 2!
(Izcred,l’ tet Zcred,nba = (Izcred,17 te

sl

’ Zcred,n)o—'

~ A e
(Zcred,la ceey Zcred,n)a = (Zcred,17 ce.

Moreover, we have for all 1 < i < n that pet(zpetpt,i, ™2(Zbal i), Zcred,i)0 =E
true and pet(2peipr ;s T2(2hal i)s Zered,i)0 =F true; hence by Lemma 1 it fol-
lows that

L]

~ (m2(2pal,1); - - - T2(Zbal,n))0-

(m2(2bat,1); - - -, T2(2bal,n))0

By checkMixPair (zmixpairpf, (71(y1), m2(y1)), - - -5 (71 (Yn)s T2(Yn)), Zbal,1s -+ -5
Zbaln)0 =g true, checkMixPair(zmixpairps’, (71(y1), m2(y1)), - - -, (71 (yy,)s
72(Yn))s Zhal 15+ - - » 2bat n)0 =E true and Lemma 3 we have

(yn))o (Yn))o
We have for all 1 < ¢ < n that checkBallot(ms(y;), 71(y:), m2(v:))o =g

true and checkBallot(ms(y}), m1(y}), m2(y;))o =g true. By inspection of
a,/TQ(yn))O— = (7r2(y,1)7)

(772(y1);-~-,772 é(ﬂ'Q(?ji),...,ﬂ'g

the equational theory and because (mwa(y1),. ..

ma(yl))o 2 (penc(pk(skgr), m{,dy1),...,penc(pk(skgr),m!' d,)) it is the
case that
m3(yi)o =g ballotPf(PKr,, R;i, Ni, pk(skr), Si, dy (i)
7T3(y§)o' a2 ba”OtPf(PKth{mNz/7pk(SkR)7S;7dx’(z))

for some terms PKr,, R;, Ny, S;, PK7, , R, N{, S; and permutations x, x’
defined over {1,...,n}. Since for all 1 < ¢ < n the name d; is under
restriction in the voting process specification, it follows that

m3(yi)o =g baIIotPf(pk(skT),mX(i),sx(i),pk(sk‘R),m;((i),dX(i))
71'3(:(/;)0' =E baIIotPf(pk(skTLmX/(i),sX/(i),pk(skR),m;,(i),dX/(i))

(that is, m53(y;)o, m3(y})o are the zero-knowledge proofs output by the
voters) and moreover by the validity of the proof, we have

US| (yi)a =E Penc((SkT)a My (4, Sx(z))
m(yi)o =g penc(pk(skr), mys (i), Sy (i)
m(yi)o =g penc(pk(skr),m X@ dy(iy)
71—2(:%)0- =E penc(pk(sk))7dX (1))

Finally we conclude go ~ ¢'c. (Formally we should also show that |g| =
|§'|. We omitted this detail from our test ®*" for simplicity, however,
in this instance it could be incorporated with the additional conjunct

y = (m(y), m2(y), m3(y))-)

This can be witnessed by modelling the complete JCJ-Civitas protocol as
the context C[]. O

28

6 Conclusion

We present a symbolic definition of election verifiability which allows us to
precisely identify which parts of a voting system need to be trusted for veri-
fiability. The suitability of systems can then be evaluated and compared on
the basis of trust assumptions. We also consider eligibility verifiability, an as-
pect of verifiability that is often neglected and satisfied by only a few protocols,
but nonetheless an essential mechanism to detect ballot stuffing. We have ap-
plied our definition to three protocols: FOO, which uses blind signatures; Helios
2.0, which is based on homomorphic encryption, and JCJ-Civitas, which uses
mixnets and anonymous credentials. For each of these protocols we discuss the
trust assumptions that a voter or an observer needs to make for the protocol to
be verifiable. Since Helios 2.0 and JCJ-Civitas have been implemented and de-
ployed, we believe our formalisation is suitable for analysing real world election
systems.

Acknowledgements

We are particularly grateful to Michael Clarkson for careful reading of an earlier
draft, and for his perceptive questions and comments.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure com-
munication. In POPL’01: Proceedings of the 28th ACM Symposium on
Principles of Programming Languages, pages 104-115, New York, USA,
2001. ACM.

[2] B. Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT,
2006.

[3] B. Adida. Helios: Web-based open-audit voting. In Proceedings of the Sev-
enteenth Usenixz Security Symposium, pages 335—-348. USENIX Association,
2008.

[4] B. Adida, O. de Marneffe, O. Pereira, and J.-J. Quisquater. Electing a
university president using open-audit voting: Analysis of real-world use of
Helios. In Flectronic Voting Technology/Workshop on Trustworthy Elec-
tions (EVT/WOTE), 2009.

[5] R. Anderson and R. Needham. Programming Satan’s Computer. In Jan
van Leeuwen, editor, Computer Science Today: Recent Trends and Devel-
opments, volume 1000 of LNCS, pages 426—440. Springer, 1995.

[6] M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote
electronic voting protocols in the applied pi-calculus. In CSF’08: Proceed-

29

[10]

[16]

ings of the 21st IEEE Computer Security Foundations Symposium, pages
195-209, Washington, USA, 2008. IEEE.

A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling
of voting protocols. In TARK’07: Proceedings of the 11th International
Conference on Theoretical Aspects of Rationality and Knowledge, pages
62-71, New York, USA, 2007. ACM.

D. Bowen. Secretary of State Debra Bowen Moves to Strengthen
Voter Confidence in Election Security Following Top-to-Bottom Re-
view of Voting Systems. California Secretary of State, press re-
lease DB07:042 http://www.sos.ca.gov/elections/voting_systems/
ttbr/db07_042_ttbr_system_decisions_release.pdf, August 2007.

Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use
of voting computers in 2005 Bundestag election unconstitutional. Press
release 19/2009 http://www.bundesverfassungsgericht.de/en/press/
bvg09-019en.html, March 2009.

D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical, voter-verifiable
election scheme. In Proc. 10th European Symposium On Research In Com-
puter Security (ESORICS’05), volume 3679 of Lecture Notes in Computer
Science, pages 118-139. Springer, 2005.

B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traore.
On Some Incompatible Properties of Voting Schemes. In WOTE’06:
Proceedings of the International Association for Voting Systems Sciences
Workshop on Trustworthy Elections, 2006.

M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure
voting system. Technical Report 2007-2081, Cornell University, May 2007.
Revised March 2008. http://hdl.handle.net/1813/7875.

M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure
voting system. In SE&P’08: Proceedings of the 2008 IEEE Symposium on
Security and Privacy, pages 354-368, Washington, DC, USA, 2008. IEEE
Computer Society.

S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties
of electronic voting protocols. Journal of Computer Security, 2009. To
appear.

A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for
Large Scale Elections. In ASTACRYPT’92: Proceedings of the Workshop
on the Theory and Application of Cryptographic Techniques, pages 244-251,
London, 1992. Springer.

M. Jakobsson and A. Juels. Mix and match: Secure function evaluation
via ciphertexts. In ASTACRYPT °00: Proceedings of the 6th International

30

[19]

22]

[23]

Conference on the Theory and Application of Cryptology and Information
Security, pages 162-177, London, UK, 2000. Springer.

A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic
Elections. Cryptology ePrint Archive, Report 2002/165, 2002.

A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic
elections. In WPES “05: Proceedings of the 2005 ACM workshop on Privacy
in the electronic society, pages 61-70, New York, NY, USA, 2005. ACM.
See also http://www.rsa.com/rsalabs/node.asp?id=2860.

Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Nether-
land’s Ministry of the Interior and Kingdom Relations). Stemmen
met potlood en papier (Voting with pencil and paper). Press release
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/
nieuws--en/112441/stemmen-met-potlood, May 2008.

Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl
accord. http://www.dagstuhlaccord.org/, 2007.

B. Smyth, M. D. Ryan, S. Kremer, and M. Kourjieh. Towards automatic
analysis of election verifiability properties. In Joint Workshop on Auto-
mated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security (ARSPA-WITS’10), Lecture Notes in Computer Science. Springer,
2010. To appear.

M. Talbi, B. Morin, V. V. T. Tong, A. Bouhoula, and M. Mejri. Specifi-
cation of Electronic Voting Protocol Properties Using ADM Logic: FOO
Case Study. In ICICS’08: Proceedings of the 10th International Conference
on Information and Communications Security Conference, pages 403418,
London, 2008. Springer.

UK Electoral Commission. Key issues and conclusions: May 2007 electoral
pilot schemes. http://www.electoralcommission.org.uk/elections/
pilots/May2007.

31

