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Abstract

Helios 2.0 is an open-source web-based end-to-end verifiable electronic
voting system, suitable for use in low-coercion environments. In this re-
port, we present a cryptographic description of the Helios protocol and a
model in the applied pi calculus, suited to the analysis of privacy.

1 Introduction

Paper-based elections derive privacy properties from physical characteristics of
the real-world, for example, the indistinguishability of an individual’s ballot
from an arbitrary ballot, and the inability of a coercer to collaborate with a voter
inside a polling booth. Similarly, the physical world provides transparency by
allowing observation of the whole process (that is, from ballot casting to tallying)
and robustness characteristics, for example, by ensuring that the markings on
paper ballot sealed inside a locked ballot box cannot be altered. Replicating
these attributes in a digital setting has proven to be difficult and, hence, is an
active research topic [1, 2, 3].

Informally, privacy [4, 5, 6] and verifiability [3, 7, 8] properties for electronic
voting systems are characterised as follows.

Ballot secrecy. A voter’s vote is not revealed to anyone.

Receipt freeness. A voter cannot gain information which can be used to
prove, to a coercer, how she voted.

Coercion resistance. A voter cannot collaborate, with a coercer, to gain in-
formation which can be used to prove how she voted.

Individual verifiability. A voter can check that her own ballot is published
on the election’s bulletin board.

Universal verifiability. Anyone can check that all the votes in the election
outcome correspond to ballots published on the election’s bulletin board.
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The verifiability properties (also called end-to-end verifiability [3, 9, 10, 7, 11])
allow voters and election observers to verify – independently of the hardware
and software running the election – that votes have been recorded, tallied and
declared correctly, thereby simulating the transparency and robustness charac-
teristics found in paper-based elections.

Helios is an open-source web-based electronic voting system. The scheme is
claimed to satisfy ballot secrecy [12], but the nature of remote voting makes the
possibility of satisfying stronger privacy properties difficult, and Helios does not
satisfy receipt freeness nor coercion resistance. In addition to ballot secrecy, the
system provides end-to-end verifiability (cf. [8, 13] and [14, Chapter 3] for an
analysis of end-to-end verifiability in Helios). Helios is particularly significant
due to its real-world deployment: the International Association of Cryptologic
Research used Helios to elect its board members [15], following a successful
trial in a non-binding poll [16]; the Catholic University of Louvain adopted
the system to elect the university president [12]; and Princeton University used
Helios to elect the student vice president [17].

Contribution of this report. In this report we present a cryptographic
description of the Helios protocol and a model in the applied pi calculus which
is suitable for the analysis of ballot secrecy.

2 Helios 2.0

Helios exploits the additive homomorphic [18, 19, 20] and distributed decryp-
tion [21, 22] properties of ElGamal [23]. We will recall these cryptographic
details before presenting the Helios protocol.

2.1 Background: Additive homomorphic ElGamal

Given cryptographic parameters (p, q, g) and a number n ∈ N of trustees, where
p and q are large primes such that q | p − 1 and g is a generator of the multi-
plicative group Z∗

p of order q, the following operations are defined by ElGamal.

Distributed key generation. Each trustee i ∈ n selects a private key share
xi ∈R Z∗

q and computes a public key share hi = gxi mod p. The public
key is h = h1 · . . . · hn mod p.

Encryption. Given a message m and a public key h, select a random nonce
r ∈R Z∗

q and derive the ciphertext (a, b) = (gr mod p, gm · hr mod p).

Re-encryption. Given a ciphertext (a, b) and public key h, select a random
nonce r′ ∈R Z∗

q and derive the re-encrypted ciphertext (a′, b′) = (a ·
gr′

mod p, b · hr′
mod p).

Homomorphic addition. Given two ciphertexts (a, b) and (a′, b′), the homo-
morphic addition of plaintexts is computed by multiplication (a · a′ mod
p, b · b′ mod p).
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Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-
putes the partial decryption ki = axi . The plaintext m = logg M is
recovered from M = b/(k1 · . . . · kn) mod p.

The computation of a discrete logarithm logg M is hard in general. However,
if M is chosen from a restricted domain, then the complexity is reduced; for
example, if M is an integer such that 0 ≤M ≤ n, then the complexity is O(n)
by linear search or O(

√
n) using the baby-step giant-step algorithm [24] (see

also [25, §3.1]).
For secrecy, each trustee i ∈ n must demonstrate knowledge of a discrete

logarithm logg hi, that is, they proof that hi has been correctly constructed;
this prevents, for example, a trustee constructing their public key share hi =
h. For integrity of decryption, each trustee i ∈ n must demonstrate equality
between discrete logarithms logg hi and loga ki; this prevents, for example, a
trustee constructing the public key share hi = gm+xi and providing the partial
decryption ki = axi . In addition, the voter must demonstrate that a valid vote
has been encrypted. These proofs can be achieved using signatures of knowledge
(see Appendix A for details).

2.2 Protocol description

An election is created by naming an election officer, selecting a set of trustees,
and generating a distributed public key pair. The election officer publishes, on
the bulletin board, the public part of the trustees’ key (and proof of correct
construction), the candidate list t̃ = (t1, . . . , tl) ∪ {ε} (where ε represents a
vote of abstention), and the list of eligible voters ĩd = (id1, . . . , idn); the officer
also publishes the election fingerprint, that is, the hash of these parameters.
Informally, the steps that participants take during a run of Helios are as follows.

1. The voter launches a browser script that downloads the election parame-
ters and recomputes the election fingerprint. The voter should verify that
the fingerprint corresponds to the value published on the bulletin board.
(This ensures that the script is using the trustees’ public key; in partic-
ular, it helps prevent encrypting a vote with an adversary’s public key.
Such attacks have been discussed in the context of Direct Anonymous At-
testation by Rudolph [26]; although, the vulnerability was discounted, in
the trusted computing setting, by Leung, Chen & Mitchell [27].)

2. The voter inputs her vote v ∈ t̃ to the browser script, which creates a ballot
consisting of her vote encrypted by the trustees’ public key, and a proof
that the ballot represents a permitted vote (this is needed because the
ballots are never decrypted individually, in particular, it prevents multiple
votes being encoded as a single ballot). The ballot is displayed to the voter.

3. The voter can audit the ballot to check if it really represents a vote for her
chosen candidate; if she decides to do this, then the script provides her with
the random data used in the ballot creation. She can then independently
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reconstruct her ballot and verify that it is indeed well-formed, but the
ballot is now invalid. (Invalidating audited ballots provides some practical
resistance against vote selling.) See Benaloh [28, 29] for further details on
ballot auditing.

4. When the voter has decided to cast her ballot, she submits it to the election
officer. The election officer authenticates the voter and checks that she is
eligible to vote. The election officer also verifies the proof and publishes
the ballot, appended with the voter’s identity id, on the bulletin board.
(In practice, the election officer also publishes the hash of the ballot, we
omit this detail for brevity.)

5. Individual voters can check that their ballots appear on the bulletin board
and, by verifying the proof, observers are assured that ballots represent
permitted votes.

6. After some predefined deadline, the election officer homomorphically com-
bines the ballots and publishes the encrypted tally on the bulletin board.
Anyone can check that tallying is performed correctly.

7. Each of the trustees publishes a partial decryption of the encrypted tally,
together with a signature of knowledge proving the partial decryption’s
correct construction. Anyone can verify these proofs.

8. The election officer decrypts the tally and publishes the result. Anyone
can check this decryption.

Formally, Step 1 is defined in Figure 1. (For simplicity the ballot construction
algorithm in Figure 1 considers a vote v ∈ t̃, this can be generalised [12] to
consider a vote ṽ ⊆ t̃.) Checking voter eligibility (Step 4) is beyond the scope
of Helios and [12] proposes the use of existing infrastructure. The remaining
steps follow immediately from the application of cryptographic primitives (see
Section 2.1 for details).

2.3 Software implementation

Helios 3.0 is an extension of Helios 2.0 which adds numerous practical features,
including: integration of authentication with various web-services (for example,
Facebook, GMail and Twitter), bulk voter registration using pre-existing elec-
toral rolls, and simplification of administration with multiple trustees. Helios 3.0
has been implemented and is publicly available: http://heliosvoting.org/.

3 Formal model

In this section, we formally model the Helios 2.0 protocol using the applied
pi calculus [30, 31]. (This suitability of this calculus for evaluating security
properties of electronic voting protocols has previously been shown; see, for
example, [32, 6, 8].)
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Figure 1 Ballot construction by the browser script

Input: Cryptographic parameters (p, q, g), public key h, candidate list t̃ =
(t1, . . . , tl) ∪ {ε} and vote v.

Output: Encrypted vote (a1, b1), . . . , (al, bl), signatures of knowledge (ā1, b̄1, c̄1,
s̄1, ā

′
1, b̄

′
1, c̄

′
1, s̄

′
1), . . . , (āl, b̄l, c̄l, s̄l, ā

′
l, b̄

′
l, c̄

′
l, s̄

′
l) and signature of knowledge

(ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′).

1. If v 6∈ t̃ then the script terminates.

2. Encode the vote v as a bitstring. For all 1 ≤ i ≤ l, let

mi =
{

1 if v = ti
0 otherwise

3. The bitstring representing the vote is encrypted. For all 1 ≤ i ≤ l, let

(ai, bi) = (gri mod p, gmi · hri mod p)

where ri ∈R Z∗
q .

4. For all 1 ≤ i ≤ l, let (āi, b̄i, c̄i, s̄i, ā
′
i, b̄

′
i, c̄

′
i, s̄

′
i) be a signature of knowledge

demonstrating that the ciphertext (ai, bi) contains either 0 or 1, that is,
each candidate can receive at most one vote.

5. Let (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) be a signature of knowledge demonstrating that
the ciphertext (a1 · . . . · al, b1 · . . . · bl) contains either 0 or 1, that is, at
most one candidate receives one vote.

3.1 Applied pi calculus

We first recall the applied pi calculus setting [30]. We assume an infinite set
of names a, b, c, . . . , k, . . . ,m, n, . . . , s, . . ., an infinite set of variables x, y, z, . . .,
and a signature Σ consisting of a finite set of function symbols, each with an
associated arity. We use metavariables u,w to range over both names and
variables. Terms L,M,N, T, U, V are built by applying function symbols to
names, variables, and other terms. We write {M/x} for the substitution that
replaces the variable x with the term M . Arbitrarily large substitutions can be
written as {M1/x1, . . . ,Ml/xl} and the letters σ and τ range over substitutions.
We write Nσ for the result of applying σ to the free variables of term N . A
term is ground when it does not contain variables.

The signature Σ is equipped with an equational theory E, that is, a set of
equations of the form M = N , where the terms M,N are defined over the
signature Σ. We define equality modulo the equational theory, written =E , as
the smallest equivalence relation on terms that contains E and is closed under
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Figure 2 Syntax for processes

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

application of function symbols, substitution of terms for variables and bijective
renaming of names. We write M =E N when the equation M = N is in the
theory E, and keep the signature implicit. When E is clear from its usage, we
may abbreviate M =E N as M = N . The negation of M =E N is denoted
M 6=E N (and similarly abbreviated M 6= N).

Processes and extended processes are defined in the usual way (Figure 2). We
write ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1. · · · .ν ul.
The active substitution {M/x} can replace the variable x for the term M in ev-
ery process it comes into contact with and this behaviour can be controlled
by restriction, in particular, the process ν x.({M/x} | P ) corresponds exactly
to let x = M in P . Arbitrarily large active substitutions can be obtained by
parallel composition and we occasionally abbreviate {M1/x1} | . . . | {Ml/xl} as
{M1/x1, . . . ,Ml/xl} or {M̃/x̃}. We also use σ and τ to range over active substi-
tutions, and write Nσ for the result of applying σ to the free variables of N .
Extended processes must have at most one active substitution for each variable
and there is exactly one when the variable is under restriction. The only minor
change compared to [30] is that conditional branches now depend on formulae
φ, ψ ::= M = N |M 6= N | φ ∧ ψ. If M and N are ground, we define [[M = N ]]
to be true if M =E N and false otherwise. The semantics of [[ ]] is then extended
to formulae in the standard way.

The scope of names and variables are delimited by binders u(x) and ν u. The
set of bound names is written bn(A) and the set of bound variables is written
bv(A); similarly we define the set of free names fn(A) and free variables fv(A).
Occasionally, we write fn(M) (and fv(M) respectively) for the set of names (and
respectively variables) which appear in term M . An extended process is closed
when every variable x is either bound or defined by an active substitution.
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We define a context C[ ] to be an extended process with a hole. We ob-
tain C[A] as the result of filling C[ ]’s hole with the extended process A. An
evaluation context is a context whose hole is not in the scope of a replication,
a conditional, an input, or an output. A context C[ ] closes A when C[A] is
closed.

A frame, denoted ϕ or ψ, is an extended process built from the null process
0 and active substitutions {M/x}, which are composed by parallel composition
and restriction. The domain dom(ϕ) of a frame ϕ is the set of variables that ϕ
exports, that is, the set of variables x for which ϕ contains an active substitution
{M/x} such that x is not under restriction. Every extended process A can be
mapped to a frame ϕ(A) by replacing every plain process in A with 0.

3.1.1 Operational semantics

The operational semantics are defined by three relations: structural equiva-
lence (≡), internal reduction (−→), and labelled reduction ( α−→). These relations
satisfy the rules in Figure 3 and are defined such that: structural equivalence
is the smallest equivalence relation on extended processes that is closed by α-
conversion of both bound names and bound variables, and closed under ap-
plication of evaluation contexts; internal reduction is the smallest relation on
extended processes closed under structural equivalence and application of eval-
uation contexts; and for labelled reductions α is a label of the form c(M), c〈u〉,
or ν u.c〈u〉 such that u is either a channel name or a variable of base type.

3.1.2 Equivalence

The definition of observational equivalence [30] quantifies over all contexts which
makes proofs difficult, therefore we adopt labelled bisimilarity in this paper.
Labelled bisimilarity relies on an equivalence relation between frames, called
static equivalence.

Definition 1 (Static equivalence) Two closed frames ϕ and ψ are statically
equivalent, denoted ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set of names
ñ and substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for all terms
M,N such that ñ∩(fn(M)∪fn(N)) = ∅, we have Mσ =E Nσ holds if and only if
Mτ =E Nτ holds. Two closed extended processes A,B are statically equivalent,
written A ≈s B, if their frames are statically equivalent; that is, ϕ(A) ≈s ϕ(B).

The relation ≈s is called static equivalence because it only examines the current
state of the processes, and not the processes’ dynamic behaviour. The following
definition of labelled bisimilarity captures the dynamic part.

Definition 2 (Labelled bisimilarity) Labelled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that A R B implies:

1. A ≈s B;

2. if A −→ A′, then B −→∗ B′ and A′ R B′ for some B′;
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Figure 3 Semantics for processes

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P

New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

Comm c〈x〉.P | c(x).Q −→ P | Q

Then if φ then P else Q −→ P if [[φ]] = true

Else if φ then P else Q −→ Q otherwise

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−−−→ P

Open-Atom
A

c〈u〉−−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′
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3. if A α−→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then
B −→∗ α−→−→∗ B′ and A′ R B′ for some B′.

3.2 Modelling Helios in applied pi

In the applied pi calculus, it is sufficient to model the parts of the voting system
which need to be trusted for a particular security property. Ultimately, our
model will be used to consider ballot secrecy, so we shall consider the trusted
components required for this property; all the remaining parts of the system
are controlled by the adversarial environment. Accordingly, we assume the
existence of at least two honest voters A, B; since this avoids the scenario where
ballot secrecy of an individual voter is compromised by collusion amongst all
the remaining voters. In addition, the following trust assumptions are required.

• At least one trustee is honest

• The election officer runs the bulletin board honestly:

– Voters A, B have authentic channels with the bulletin board
– Signatures of knowledge are checked for dishonest voters*
– Replays of honest ballots (that is, those cast by A or B) are rejected*
– The tally is correctly computed*
– The trustees have an authentic channel with the bulletin board

• The browser script is trusted and has the correct public key of the election

(Assumptions marked with * could be performed by an honest trustee, rather
than the bulletin board.) Although neither voters nor observers can verify that
there exists an honest trustee, an assurance of trust is provided by distribution.
The necessity to trust the election officer to run the bulletin board is less de-
sirable and work-in-progress [33] aims to weaken this assumption; moreover, to
further distribute trust assumptions, the trustees could also check signatures
and tallying. Finally, trust in the browser script can be obtained by using
software written by a reputable source or writing your own code.

The Helios voting system is modelled in Section 3.2.2 and in Section 3.2.1 we
construct a suitable signature Σ to capture the cryptographic primitives used
by the scheme and define an equational theory E to capture the relationship
between these primitives.

3.2.1 Signature

We adopt the following signature.

Σ = {ok, zero, one,⊥, fst, snd, pair, ∗,+, ◦, partial, checkspk, penc, spk, }

Functions ok, zero, one,⊥ are constants; fst, snd are unary functions; dec, pair,
partial, ∗,+, ◦ are binary functions; checkspk, penc are ternary functions; and
spk is a function of arity four. We adopt infix notation for ∗,+, and ◦.
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The term penc(T,N,M) denotes the encryption of plaintext M , using ran-
dom nonceN and key T . The term U∗U ′ denotes the homomorphic combination
of ciphertexts U and U ′, the corresponding operation on plaintexts is written
M + M ′ and N ◦ N ′ on nonces. The partial decryption of ciphertext U using
key L is denoted partial(L,U). The term spk(T,N,M,U) represents a signature
of knowledge that proves U is a ciphertext on the plaintext M using nonce N
and such that M is either the constant zero or one. We introduce tuples using
pairings and, for convenience, pair(M1, pair(. . . , pair(Mn,⊥))) is occasionally ab-
breviated as (M1, . . . ,Mn), and fst(sndi−1(M)) is denoted πi(M), where i ∈ N.
We use the equational theory E that asserts functions +, ∗, ◦ are commutative
and associative, and includes the equations:

fst(pair(x, y)) = x (1)

snd(pair(x, y)) = y (2)

zero + one = one (3)

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain (4)

dec(partial(xsk, ciph), ciph) = xplain (5)
where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, yplain) ∗ penc(xpk, zrand, zplain)
= penc(xpk, yrand ◦ zrand, yplain + zplain) (6)

checkspk(xpk, ball, spk(xpk, xrand, zero, ball))=ok (7)
where ball = penc(xpk, xrand, zero)

checkspk(xpk, ball, spk(xpk, xrand, one, ball))=ok (8)
where ball = penc(xpk, xrand, one)

Equation 5 allows plaintextM to be recovered from ciphertext penc(pk(L), N,M)
given partial decryption partial(L, penc(pk(L), N,M)), when the partial decryp-
tion is constructed using the private key L. Equation 6 represents the homomor-
phic combination of ciphertexts. The equations 7 and 8 allow the verification
of signatures of knowledge spk(T,N,M, penc(T,N,M)), when M ∈ {zero, one}.
The remaining equations are standard.

Example 1 Given randomness N,N ′, plaintexts (M,M ′) ∈ {(zero, zero), (zero,
one), (one, zero)}, and public key T , one can construct a signature of knowledge
L = spk(T,N ◦N ′,M+M ′, penc(T,N,M)∗penc(T,N ′,M ′)). Then checkspk ap-
plied to the public key T , the homomorphically combined ciphertexts penc(T,N,
M) ∗ penc(T,N ′,M ′), and the signature L is equal to ok using Equations 3,6,7,
and 8

3.2.2 Helios process specification

In an election with two candidates, the trusted components are modelled by
the administration process Aφ

n and voting process V defined in Figure 4. For
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Figure 4 Helios process specification

Given the number of voters n ≥ 2 and Helios process specification φ, the ad-
ministration process Aφ

n and voting process V are defined below

V = ν r .
let ciph = penc(zpk, r, xvote) in
let spk = spk(zpk, r, xvote, ciph)) in
ν r′ .
let ciph′ = penc(zpk, r

′, x′vote) in
let spk′ = spk(zpk, r

′, x′vote, ciph
′)) in

let ŝpk = spk(zpk, r ◦ r′, xvote + x′vote, ciph ∗ ciph′) in
xauth〈(ciph, ciph′, spk, spk′, ŝpk)〉

Aφ
n = ν skT , a1, a2, d . ( | BBφ

n | T | {pk(skT )/zpk})

BBφ
n = a1(y1) . c〈y1〉 . a2(y2) . c〈y2〉 .

a3(y3) . if φ{y3/yballot} then
· · · an(yn) . if φ{yn/yballot} then
let tally = π1(y1) ∗ · · · ∗ π1(yn) in
let tally′ = π2(y1) ∗ · · · ∗ π2(yn) in
d〈(tally, tally′)〉 .
d(ypartial) .
c〈ypartial〉 .
c〈(dec(π1(ypartial), tally), dec(π2(ypartial), tally′))〉

T = d(ytally) .
d〈(partial(skT , π1(ytally)), partial(skT , π2(ytally)))〉

generality, the administration process Aφ
n is parametrised by the number of

voters n and a formula φ; the latter corresponds to the checks performed by the
bulletin board before accepting a ballot.

Definition 3 (Helios process specification) A formula φ is a Helios pro-
cess specification, if fv(φ) ⊆ {y1, y2, yballot, zpk}.

The voting process V contains free variables xvote, x
′
vote to represent the

voter’s vote (which is expected to be encoded as constants zero and one), and
the free variable xauth represents the channel shared by the voter and the bul-
letin board. The definition of the process V corresponds to the description of
the browser script (Figure 1). The administration process Aφ

n is parametrised
by the number of voters n and Helios process specification φ. The restricted
name skT models the tallier’s secret key and the public part pk(skT ) is included
in the process’s frame. The restricted names a1, a2 model authentic channels
between the two honest voters and the bulletin board, and the channel name d
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captures the authentic channel with the honest trustee. To ensure the adversary
has access to messages sent on private channels, communication is relayed on
the public channel c. The sub-process BBφ

n represents the bulletin board and
T represents the tallier. The bulletin board accepts ballots from each voter and
checks they are valid using the Helios process specification φ (this predicate
will be discussed in more detail below). Once all ballots have been submitted,
the bulletin board homomorphically combines the ciphertexts and sends the
encrypted tallies to the tallier for decryption. (The necessity for all voters to
participate is included for simplicity, in particular, our bulletin does not weed
ballots containing invalid proofs.) The tallier receives the homomorphic com-
binations of ballots ytally and derives a partial decryption for each candidate;
these partial decryptions are sent to the bulletin board and the election result
is published.

Example 2 Given a Helios process specification φ, an election with voters A
and B who select votes (m1,m

′
1), (m2,m

′
2) ∈ {(zero, zero), (zero, one), (one, zero)}

and such that the other n − 2 voters are controlled by the adversary, can be
modelled by the process Aφ

n[V {a1/xauth}σ | V {a2/xauth}τ ], where σ = {m1/xvote,
m′

1/x′
vote
} and τ = {m2/xvote,m

′
2/x′

vote
}.

Ballot validity. In Helios 2.0, the election officer considers a ballot to be valid
if the signature proofs of knowledge hold. Accordingly, we can model the Helios
administration by the process Aφorig

n where the Helios process specification φorig

is defined as follows.

φorig , checkspk(zpk, π1(yballot), π3(yballot)) = ok

∧ checkspk(zpk, π2(yballot), π4(yballot)) = ok

∧ checkspk(zpk, π1(yballot) ∗ π2(yballot), π5(yballot)) = ok

3.2.3 Limitations

The limitations of our model, which we introduced to simplify the presenta-
tion, are detailed below. We consider a model with with two honest voters for
compatibility with the (standard) definitions of ballot secrecy [4, 5, 32]. The ad-
ministrative process Aφ

n enforces an ordering on voters (namely, the voter using
private channel a1 must vote first, followed by the voter using private channel
a2, and then any remaining voters – controlled by the adversarial environment
– can vote) and Aφ

n does not permit revoting. The signature and equational
theory do not capture low-level technical details surrounding the correct con-
struction of public keys; in particular, we do not use signatures of knowledge
to verify correct key construction. We also omit signatures of knowledge that
demonstrate correct construction of partial decryptions.
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4 Summary and future work

In this report we present a cryptographic description of the Helios protocol
and a model in the applied pi calculus. Our formal description can be used to
analyse ballot secrecy based upon Kremer et al. [4, 5, 32]. In this definition, two
voters A, B and two candidates t, t′ are considered. Ballot secrecy is captured
by the assertion that an adversary (controlling arbitrary many dishonest voters)
cannot distinguish between a situation in which voter A votes for candidate t
and voter B votes for candidate t′, from another situation in which A votes t′

and B votes t. This can be expressed by the following equivalence.

A(t) | B(t′) ≈l A(t′) | B(t)

This formal definition of ballot secrecy has been used to analyse the electronic
voting protocols due to: Fujioka, Okamoto & Ohta [1], Okamoto [2], Lee et
al. [34], and Juels, Catalano & Jakobsson [3, 35, 36]. It therefore seems natural
to check whether Helios satisfies ballot secrecy as well, and formally this can be
expressd as follows.

Definition 4 (Ballot secrecy) Given a Helios process specification φ, we say
ballot secrecy is satisfied if for all (m1,m

′
1), (m2,m

′
2) ∈ {(zero, zero), (zero, one),

(one, zero)} and integers n ≥ 2, we have

Aφ
n[V {a1/xauth}σ | V {a2/xauth}τ ] ≈ Aφ

n[V {a1/xauth}τ | V {a2/xauth}σ]

where σ = {m1/xvote,m
′
1/x′

vote
} and τ = {m2/xvote,m

′
2/x′

vote
}.

Future work will analyse whether the Helios process specification φorig satisfies
ballot secrecy.

Appendix

A Signatures of knowledge

Helios is reliant on signatures of knowledge to ensure secrecy and integrity of
the ElGamal scheme, and to ensure voters encrypt valid votes. This appendix
presents suitable cryptographic primitives. Let H denote a hash function. In
Helios, H is defined to be SHA-256.

Knowledge of discrete logs. Given the aforementioned cryptographic pa-
rameters (p, q, g), a signature of knowledge demonstrating knowledge of a dis-
crete logarithm h = logg g

x can be derived, and verified, as defined by [37, 38,
39].

Sign. Given x, select a random nonce w ∈R Z∗
q . Compute witness g′ = gw mod

p, challenge c = H(g′) mod q and response s = w + c · x mod q.

13



Verify. Given h and signature g′, s, check gs ≡ g′ · hc (mod p), where c =
H(g′) mod q.

A valid proof asserts knowledge of x such that x = logg h; that is, h ≡ gx mod p.

Equality between discrete logs. Given the aforementioned cryptographic
parameters (p, q, g), a signature of knowledge demonstrating equality between
discrete logarithms logf f

x and logg g
x can be derived, and verified, as defined

by [21, 22].

Sign. Given f, g, x, select a random nonce w ∈R Z∗
q . Compute witnesses f ′ =

fw mod p and g′ = gw mod p, challenge c = H(f ′, g′) mod q and response
s = w + c · x mod q.

Verify. Given f, g, h, k and signature f ′, g′, s, check fs ≡ f ′ · hc (mod p) and
gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k; that is, there exists x, such that h ≡
fx mod p and k ≡ gx mod p. This signature of knowledge scheme can be ex-
tended to a disjunctive proof of equality between discrete logs (see below).

For our purposes, given a ciphertext (a, b), each trustee would derive a sig-
nature on g, a, xi, where xi is the trustee’s private key share. The ith trustee’s
signature g′i, a

′
i, ci, si would be verified with respect to g, a, hi, ki, where hi is the

trustee’s share of the public key and ki is the trustee’s partial decryption; that
is, the proof asserts logg hi = loga ki, as required for integrity of decryption.

Disjunctive proof of equality between discrete logs. Given the afore-
mentioned cryptographic parameters (p, q, g), a signature of knowledge demon-
strating that a ciphertext (a, b) contains either 0 or 1 (without revealing which),
can be constructed by proving that either logg a = logh b or logg a = logh b/g

m;
that is, a signature of knowledge demonstrating a disjunct proof of equality
between discrete logarithms [18, 20]. Observe for a valid ciphertext (a, b) that
a ≡ gr mod p and b ≡ hr · gm mod p for some nonce r ∈ Z∗

q ; hence the for-
mer disjunct logg g

r = logh h
r · gm is satisfied when m = 0, and the latter

logg g
r = logh(hr · gm)/gm when m = 1.

This technique is generalised by [12] to allow a signature of knowledge
demonstrating that a ciphertext (a, b) contains message m, where m ∈ {min, . . . ,
max} for some system parameters min,max ∈ N. Formally, a signature of knowl-
edge demonstrating a disjunct proof of equality between discrete logarithms can
be derived, and verified, as follows [12, 18, 20].

Sign. Given ciphertext (a, b) such that a ≡ gr mod p and b ≡ hr · gm mod p
for some nonce r ∈ Z∗

q , where plaintext m ∈ {min, . . . ,max}. For all
i ∈ {min, . . . ,m−1,m+1, . . . ,max}, compute challenge ci ∈R Z∗

q , response
si ∈R Z∗

q and witnesses ai = gsi/aci mod p and bi = hsi/(b/gi)ci mod p.
Select a random nonce w ∈R Z∗

q . Compute witnesses am = gw mod
p and bm = hw mod p, challenge cm = H(amin, bmin, . . . , amax, bmax) −∑

i∈{min,...,m−1,m+1,...,max} ci (mod q) and response sm = w+r ·cm mod q.

14



Verify. Given (a, b) and (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax), for each
min ≤ i ≤ max check gsi ≡ ai ·aci (mod p) and hsi ≡ bi ·(b/gi)ci (mod p).
Finally, check H(amin, bmin, . . . , amax, bmax) ≡

∑
min≤i≤max ci (mod q).

A valid proof asserts that (a, b) is a ciphertext containing the message m such
that m ∈ {min, . . . ,max}.
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