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Summary Security protocols are short programs that aim at securing communication over a
public network. Their design is known to be error-prone with flaws found years later. That is why
they deserve a careful security analysis, with rigorous proofs. Two main lines of research have been
(independently) developed to analyze the security of protocols. On the one hand, formal methods
provide with symbolic models and often automatic proofs. On the other hand, cryptographic mod-
els propose a tighter modeling but proofs are more difficult to write and to check. There are two
competing approaches to the verification of cryptographic protocols. In the so-called formal (also
called Dolev-Yao) model, data are specified using abstract data types (algebraic specification) and
are manipulated by honest agents and adversaries according to the operations of the abstract data
types. In other words, the abstract data types give an abstract specification of the cryptographic
primitives and of the computational power of the adversaries that try to break the security prop-
erties. The verification techniques discussed in the previous tasks are based on this model. On the
other hand, in the complexity-theoretic model, also called the computational model, the adversary
can be any polynomial-time probabilistic algorithm. That is, data manipulation is not restricted
to programs that are sequences of operations taken from a fixed finite set of operations but can
be performed using any polynomial-time probabilistic algorithm. Moreover, in this model security
properties are expressed in terms of the probability of success of any polynomial-time attack. At-
tacks are usually defined in terms of probabilistic games, where the adversary has access to some
oracles and wins the game, if she correctly answers a question. A typical question is to distinguish
between a data computed by the cryptographic system and a randomly chosen value. While the
complexity-theoretic framework is more realistic and gives stronger security guarantees, the sym-
bolic framework allows for a higher level of automation. Because of this an approach, developed
during the last decade, consists in bridging the two approaches, showing that symbolic models are
sound w.r.t. symbolic ones, yielding strong security guarantees using automatic tools, in order to
get the best of both worlds. These results have been developed for several cryptographic primitives
(e.g. symmetric and asymmetric encryption, signatures, hash) and security properties.

In the previous deliverable D3.1, we have presented a survey of the existing results on the
computational soundness of symbolic indistinguishability relations in the presence of a passive
adversary, for which several results were obtained by the members of the AVOTÉ project.

In this report, we look at the soundness in presence of active adversaries. As stated earlier
the soundness of the Dolev-Yao model for protocols that use asymmetric encryption, symmetric
encryption, signature and hash functions has been studied. More precisely, it has been established
that for trace properties under suitable assumptions about these primitives the non-existence of
a symbolic attack implies that the probability of polynomial-time attacks in the computational
model is negligible. This report summarize the following papers:

• Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observational
equivalence. In Proceedings of the 15th ACM Conference on Computer and Communications
Security (CCS’08), Alexandria, Virginia, USA, October 2008. ACM Press [CLC08]. See
Section 1.1.

• Hubert Comon-Lundh and Véronique Cortier. How to prove security of communication
protocols? a discussion on the soundness of formal models w.r.t. computational ones. In
Proceedings of the 28th Annual Symposium on Theoretical Aspects of Computer Science
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(STACS’11), volume 9 of Leibniz International Proceedings in Informatics, 2011 [CC11].
See Section 1.2.

• Judicaël Courant, Marion Daubignard, Pascal Lafourcade Cristian Ene, and Yassine Lahknech.
Towards automated proofs for asymmetric encryption schemes in the random oracle model.
In Proc. 15th ACM Conference on Computer and Communications Security, (CCS’08),
Alexandria, USA, 2008. [CDCEL08, CDE+11]. See Section 2.1.

• Yassine Lakhnech Martin Gagné, Pascal Lafourcade and Reihaneh Safavi-Naini. Automated
proofs for encryption modes. In 13th Annual Asian Computing Science Conference Focusing
on Information Security and Privacy: Theory and Practice (ASIAN’09), 2009 [MGSN09].
See Section 2.2.

• Cristian Ene, Yassine Lakhnech, and Van Chan Ngo. Formal indistinguishability extended
to the random oracle model. ESORICS 2009, 14th European Symposium on Research in
Computer Security, Saint-Malo, France, 2009 [ELN09]. See Section 2.3.

For each of these results, the corresponding publication is appended to this report.

1 Computational Soundness

1.1 Computational Soundness of Observational Equivalence [CLC08]

Many security properties are naturally expressed as indistinguishability between two versions of a
protocol. We show that computational proofs of indistinguishability can be considerably simplified,
for a class of processes that covers most existing protocols. More precisely, we show a soundness
theorem, following the line of research launched by Abadi and Rogaway in 2000: computational
indistinguishability in presence of an active attacker is implied by the observational equivalence of
the corresponding symbolic processes. We prove our result for symmetric encryption. There is a
well-known similar notion in concurrency theory: observational equivalence, introduced by Milner
and Hoare in the early 80s. Two processes P and Q are observationally equivalent, denoted by
P ∼O Q, if for any process O (a symbolic observer) the processes P ||O and Q||O are equally
able to emit on a given channel. This means that O cannot observe any difference between P

and Q. Observational equivalence is therefore a natural candidate for the symbolic counterpart
of indistinguishability, the attacker being replaced by the observer. And indeed, we show a result
of the form “two networks of machines are indistinguishable if the processes they implement
are observationally equivalent”. As a consequence, proving computational indistinguishability
can be reduced to proving observational equivalence (for a class of protocols and assuming some
standard security hypotheses on the cryptographic primitives). This is a simpler task, which
can be completely formalized and sometimes automated as for instance in Proverif tool. We
prove our result for symmetric encryption and pairing, using a fragment of the applied pi-calculus
for specifying protocols and relying on standard cryptographic assumptions (IND-CPA and INT-
CTXT) as well as hypotheses. The fragment of applied pi-calculus we consider allows to express an
arbitrary (unbounded) number of sessions of a protocol. The main technical ingredient of our proof
is the introduction of tree soundness in the case of passive attackers and the use of intermediate
structures, which we called computation trees: on one end such trees roughly correspond to the
labeled transition semantics of some process algebra, and, on the other end, they are interpreted
as an encryption oracle, scheduled by the attacker. These notions are defined independently
of the cryptographic setting. Tree soundness captures the fact that even a passive attacker can
adaptively choose its requests. We can then derive a general method for proving that observational
equivalence implies computational indistinguishability.

1.2 A Discussion on the Soundness of Formal Models [CC11]

While proving soundness of symbolic models is a very promising approach, several technical de-
tails are often not satisfactory. We focus on symmetric encryption and we describe the difficulties
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and limitations of the available results. Among all the limitations we will discuss, the main one
is to consider only honestly generated keys (or a certifying infrastructure), which is completely
unrealistic. There are (at least) two main ways to overcome this assumption. A first possibility,
consists in enriching the symbolic model by letting the adversary create new symbolic equalities
when building new (dishonest) keys. In this way, many protocols should still be provably secure
under the IND-CCA assumption, yet benefiting from a symbolic setting for writing the proof. A
second option is to seek for stronger security assumptions by further requesting non-malleability.
The idea is that a ciphertext should not be opened to a different plaintext, even when using
dishonest keys. This could be achieved by adding a commitment to the encryption scheme. How-
ever all these limitations also demonstrate that it is difficult to make symbolic and computational
models coincide. Even for standard security primitives, soundness results are very strong since
they provide with a generic security proof for any possible protocol (contrary to CryptoVerif).
For primitives with many algebraic properties like Exclusive Or or modular exponentiation, the
gap between symbolic and computation models is even larger and would require a lot of efforts.
We still believe that computational proofs could benefit from the simplicity of symbolic models,
yielding automated proofs.

An alternative approach to soundness results could consist in developing directly a logic for
proving automatically the results in computational world. It is the approach followed by members
of AVOTÉ project that is presented in the next Section.

2 Logic Approach

2.1 Hoare Logic for proving encryption schemes [CDCEL08, CDE+11]

Many generic constructions for building secure cryptosystems from primitives with lower level
of security have been proposed. Providing security proofs has also become standard practice.
There is, however, a lack of automated verification procedures that analyze such cryptosystems
and provide security proofs. In [CDCEL08, CDE+11], we present an automated proof method for
analyzing generic asymmetric encryption schemes in the random oracle model (ROM). Generic
encryption schemes aim at transforming schemes with weak security properties, such as oneway-
ness, into schemes with stronger security properties, specifically security against chosen ciphertext
attacks. We propose a compositional Hoare logic for proving IND-CPA security. An important fea-
ture of our method is that it is not based on a global reasoning as it is the case for the game-based
approach. Instead, it is based on local reasoning. Indeed, both approaches can be considered
complementary as the Hoare logic-based one can be considered as aiming at characterizing by
means of predicates the set of contexts in which the game transformations can be applied safely.

Moreover in [CDCEL08] we present a simple criterion for plaintext awareness (PA). Plaintext
awareness has been introduced by Bellare and Rogaway. It has then been refined later such that
if an encryption scheme is PA and IND-CPA then it is IND-CCA. Intuitively, PA ensures that an
adversary cannot generate a valid cipher without knowing the plaintext, and hence, the decryption
oracle is useless for him. The definition of PA is complex and proofs of PA are also often complex.
We present a simple syntactic criterion that implies plaintext awareness. Roughly speaking the
criterion states that the cipher should contain as a sub-string the hash of a bitstring that contains
as substrings the plaintext and the random seed. This criterion applies for many schemes and
easy to check. Although (or maybe because) the criterion is simple, the proof of its correctness is
complex. Putting together these two results, we get a proof method for IND-CCA security.

2.2 Hoare Logic for Encryption Modes [MGSN09]

In the same line of work as the previous works, we also propose a compositional Hoare logic for
proving semantic security of modes of operation for symmetric key block ciphers. We notice that
many modes use a small set of operations such as xor, concatenation, and selection of random
values. We introduce a simple programming language to specify encryption modes and an assertion
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language that allows to state invariants and axioms and rules to establish such invariants. The
assertion language requires only four predicates: one that allows us to express that the value of a
variable is indistinguishable from a random value when given the values of a set of variables, one
that states that an expression has not been yet submitted to the block cipher, and two bookkeeping
predicates that allow us to keep track of “fresh” random values and counters. Transforming the
Hoare logic into an (incomplete) automated verification procedure is quite standard. Indeed, we
can interpret the logic as a set of rules that tell us how to propagate the invariants backwards.
Using our method, an automated prover could verify semantic security of several encryption modes
including CBC, CFB, CTR and OFB. Of course our system does not prove ECB mode, because
ECB is not semantically secure.

2.3 Formal indistinguishability extended to the ROM [ELN09]

Several generic constructions for transforming one-way functions to asymmetric encryption schemes
have been proposed. One-way functions only guarantee the weak secrecy of their arguments. That
is, given the image by a one-way function of a random value, an adversary has only negligible
probability to compute this random value. Encryption schemes must guarantee a stronger secrecy
notion. They must be at least resistant against indistinguishability-attacks under chosen plain-
text text (IND-CPA). Most practical constructions have been proved in the random oracle model.
Such computational proofs turn out to be complex and error prone. We would like to be able to
treat generic encryption schemes that transform one-way functions to IND-CPA secure encryption
schemes. Bana et al. in [BM+06] have introduced Formal Indistinguishability Relations, (FIR for
short) as an appropriate abstraction of computational indistinguishability. We extend Bana et
al.’s approach by introducing a notion of symbolic equivalence that allows us to prove security of
encryption schemes symbolically. Therefore, three problems need to be solved. First, we need to
cope with one-way functions. This is another example where static equivalence does not seem to
be appropriate. The second problem that needs to be solved is related to the fact that almost all
practical provably secure encryption schemes are analyzed in the random oracle model. Thus, we
need to be able to symbolically prove that a value of a given expression a cannot be computed by
any adversary. To cope with this problem, our notion of symbolic indistinguishability comes along
with a non-derivability symbolic relation. Thus in our approach, we start from an initial pair of
a non-derivability relation and a frame equivalence relation. Then, we provide rules that define
a closure of this pair of relations in the spirit of Bana et al.’s work. Also in our case, soundness
of the obtained relations can be checked by checking soundness of the initial relations. The third
problem is related to the fact that security notions for encryption schemes such IND-CPA and
real-or-random indistinguishability of cipher-text under chosen plaintext involve a generated from
of active adversaries. Indeed, these security definitions correspond to two-phase games, where the
adversary first computes a value, then a challenge is produced, the the adversary tries to solve the
challenge. Static equivalence and FIR (as defined in [BM+06]) consider only passive adversaries.
To solve this problem we consider frames that include variables that correspond to adversaries.
As frames are finite terms, we only have finitely many such variables. This is the reason why we
only have a degenerate form of active adversaries which is enough to treat security of encryption
schemes and digital signature, for instance. We illustrate the framework by considering security
proofs of the construction of Bellare and Rogaway and Hash El Gamal.
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ABSTRACT
Many security properties are naturally expressed as indis-
tinguishability between two versions of a protocol. In this
paper, we show that computational proofs of indistinguisha-
bility can be considerably simplified, for a class of processes
that covers most existing protocols. More precisely, we show
a soundness theorem, following the line of research launched
by Abadi and Rogaway in 2000: computational indistin-
guishability in presence of an active attacker is implied by
the observational equivalence of the corresponding symbolic
processes.
We prove our result for symmetric encryption, but the same
techniques can be applied to other security primitives such
as signatures and public-key encryption. The proof requires
the introduction of new concepts, which are general and can
be reused in other settings.

Categories and Subject Descriptors
D.2.4 [Verification]: Formal methods

General Terms
Verification

1. INTRODUCTION
Two families of models have been designed for the rigor-

ous analysis of security protocols: the so-called Dolev-Yao
(symbolic, formal) models on the one hand and the cryp-
tographic (computational, concrete) models on the other
hand. In symbolic models messages are formal terms and
the adversary can only perform a fixed set of operations on
them. The main advantage of the symbolic approach is its
relative simplicity which makes it amenable to automated
analysis tools [14] In cryptographic models, messages are
bit strings and the adversary is an arbitrary probabilistic
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polynomial-time (ppt) Turing machine. While the proofs in
such models yield strong security guarantees, they are often
quite involved and seldom suitable for automation.

Starting with the seminal work of Abadi and Rogaway [4],
a lot of efforts has been directed to bridging the gap between
the two approaches. The goal is to obtain the best of both
worlds: simple, automated security proofs that entail strong
security guarantees. The numerous relevant works can be
divided into two categories. In the first one ([1, 12, 31] and
many others), the authors generalize Abadi and Rogaway re-
sult, typically considering a larger set of security primitives.
However, they still only consider a passive adversary. This
rules out the so-called “man-in-the-middle attacks”. Ana-
lyzing real protocols requires to consider active adversaries,
which is the aim of the second category of papers (e.g. [8,
18, 22, 30]). It is also the aim of the present paper. We
consider however a wider class of security properties.

Trace properties vs. Equivalence properties. We
call here a trace property a formal statement that something
bad never occurs on any trace of a protocol. (Formally, this
is a property definable in linear time temporal logic). In-
tegrity and authentication are examples of trace properties.
That is why they were the first for which computational
guarantees were derived out of symbolic ones [10, 32].
There are however several security properties, which cannot
be defined (or cannot be naturally defined) as trace proper-
ties.

• Anonymity states that any two execution traces, in
which names are swapped, cannot be distinguished by
an attacker. More precisely, anonymity requires two
instances of the protocol PAB and PBA, the names
A, B being switched in the second copy. An adver-
sary interacting with one of the two copies should not
be able to tell (with non-negligible probability) with
which copy he is interacting. There is no known way
to reduce this problem to a property of a single proto-
col copy.
Privacy related properties involved in electronic vot-
ing protocols [23] also use an equivalence and cannot
be expressed in linear temporal logic.

• Similarly, in the computational worlds, anonymity of
group signatures [5] is defined through the indistin-
guishability of two games where different identities are
used in each game. A similar definition is proposed for
“blindness” of signatures in [27].

• The “computational secrecy” states that the protocol
does not leak any piece of the secret (this is sometimes



called “real or random”). Such a property is naturally
expressed as an indistinguishability property: the at-
tacker cannot distinguish between two games, one of
which is the real protocol, and, in the other one, the
secret has been replaced by a random string. There
are several works [32, 9, 22, 26, 18, 21]showing how to
soundly abstract it as a trace property in the symbolic
model, in a number of particular cases. It is not clear,
however, that such a property can be expressed as a
trace property in general. Consider e.g. the case of a
hash function and assume that a protocol reveals the
hash h(s) of some secret s. Then s cannot be computed
(by one-wayness of h), which, from the trace property
point of view, would be sufficient for confidentiality.
On the other hand, an attacker certainly learns some-
thing about s and the computational secrecy is not
preserved.

• Strong (also called “black-box”) simulatability [11, 29],
states that, given a real protocol P and an ideal func-
tionality F , there is a simulator S such that P can-
not be distinguished from S‖F by any environment.
Again, this is not a property of any particular trace,
but rather a relationship between the real traces and
the ideal ones. Various notions of universal compos-
ability [17, 19] can be defined in a similar way.

This shows the importance and generality of indistinguisha-
bility properties compared to trace properties.

The main question is then: “is it possible to get sound ab-
straction results for computational indistinguishability, anal-
ogous to the results obtained so far for trace properties ?”
This is the question, which we want to address in this paper,
for a sample set of cryptographic primitives.

Our contribution. There is a well-known similar no-
tion in concurrency theory: observational equivalence, intro-
duced by Milner and Hoare in the early 80s. Two processes
P and Q are observationally equivalent, denoted by P ∼o Q,
if for any process O (a symbolic observer) the processes P‖O
and Q‖O are equally able to emit on a given channel. This
means that O cannot observe any difference between P and
Q. Observational equivalence is therefore a natural can-
didate for the symbolic counterpart of indistinguishability,
the attacker being replaced by the observer. And indeed, we
show in this paper a result of the form “two networks of ma-
chines are indistinguishable if the processes they implement
are observationally equivalent”. As a consequence, proving
computational indistinguishability can be reduced to prov-
ing observational equivalence (for a class of protocols and
assuming some standard security hypotheses on the crypto-
graphic primitives). This is a simpler task, which can be
completely formalized and sometimes automated [15, 24].

We prove our result for symmetric encryption and pair-
ing, using a fragment of the applied pi-calculus [2] for spec-
ifying protocols and relying on standard cryptographic as-
sumptions (IND-CPA and INT-CTXT) as well as hypothe-
ses, which are similar to those of [8]. The main difference
with this latter work is that we prove the soundness of ob-
servational equivalence, which covers more properties. The
fragment of applied pi-calculus we consider allows to express
an arbitrary (unbounded) number of sessions of a protocol.

To prove our result, we need first to show that any compu-
tational trace is, with overwhelming probability, an instance
of a symbolic one. This lemma is similar to [22, 26], though

with different hypotheses and in a different model. A naive
idea would be then to consider any pair of related symbolic
traces: by observational equivalence (and actually labeled
bisimilarity) the two traces are statically equivalent. Then
we could try to apply soundness of static equivalence on
these traces (using results in the passive case, e.g. [4, 1,
12, 31]). This idea does not work, since the computational
traces could be spread over the symbolic ones: if there is only
one computational trace corresponding to a given symbolic
trace, then the symbolic traces indistinguishability does not
tell us anything relevant on the computational ones.

That is why we need a new tool; the main technical in-
gredient of our proof is the introduction of tree soundness
in the case of passive attackers and the use of intermedi-
ate structures, which we called computation trees: on one
end such trees roughly correspond to the labeled transition
semantics of some process algebra, and, on the other end,
they are interpreted as an encryption oracle, scheduled by
the attacker. These notions are defined independently of the
cryptographic setting. Tree soundness captures the fact that
even a passive attacker can adaptively choose its requests.
It seems related to “adaptive soundness of static equiva-
lence” as defined in [28] though no precise relationship has
been established yet. We can then derive a general method
for proving that observational equivalence implies compu-
tational indistinguishability. We believe our techniques are
general and can be reused in other settings. In particular,
using our generic approach, it should not be difficult to ex-
tend our result to other security primitives like asymmetric
encryption and signatures.

Related Work. In a series of papers starting with Mic-
ciancio and Warinschi [32] and continued with e.g. [22, 26],
the authors show trace mapping properties: for some se-
lected primitives (public-key encryption and signatures in
the above-cited papers) they show that a computational
trace is an instance of a symbolic trace, with overwhelm-
ing probability. We have a similar result for symmetric
encryption in the present paper, but this is not our main
contribution.

There is a huge amount of work on simulatability/universal
composability, especially the work of Backes et. al. and
Canetti [17, 11, 10, 8, 9]. In the black-box simulatability
approach of [11], which we refer to as BPW, the symbolic
model is different than ours: there are essential construc-
tions such as handles, which we do not have in our (more
abstract) symbolic model, that is a standard process alge-
bra. The BPW model also requires to construct a simulator,
within the model, which we do not require. Therefore, we
must be cautious with any comparison.

BPW-simulatability roughly states that [[P ]] ≈ P‖S: the
computational interpretation of the process P is indistin-
guishable from the simulated version of P . As shown in [7],
this implies the trace mapping property, hence that symbolic
trace properties transfer to the computational level. The
BPW-simulatability should also imply the soundness of ob-
servational equivalence of the corresponding BPW-processes
in a simple way (D. Unruh, private communication). The
precise relationships with our work are worth being further
investigated.

Conversely, if a simulated process S‖P could be seen as
the computational interpretation of a process Q, then the
BPW-simulatability itself could be seen as an instance of
our result.



Our work can also be seen as a generalization of soundness
results for static equivalence [4, 3, 12] from a passive attacker
to an active one. However, as we sketched above and as
we will see on an example later, these results cannot be
used directly in the active attacker case, which is the one we
consider.

In [18] the authors show how to encode an equivalence
property (actually computational secrecy for a given set of
primitives) in the symbolic trace, using patterns. This allows
to show how an indistinguishability property can be lifted to
the symbolic case. The method, contrary to ours, is however
dedicated to this particular property.

The work of Mitchell et. al. [33] also aims at faithfully
abstracting the model of interactive Turing machines. Their
results concern general processes and not only a small frag-
ment, as we do here. In this respect, they are much more
general than us. However, on the other hand, they abstract
much less: there are still computations, coin tossing and
probabilistic transitions in their model. Our aim is really to
show that it makes no difference if the attacker is given only
a fixed set of operations (encryption, decryption, name gen-
eration...) and if there is no probabilities nor coin tossing.

To our knowledge, the only previous work formally con-
necting observational equivalence and computational indis-
tinguishability is [6]. In this paper, the authors give sound-
ness and completeness results of a cryptographic implemen-
tation of processes. The major difference with our work is
that they do not have explicit cryptographic constructions
in the formal model. For instance encryption keys cannot
be sent or leaked since they are implicit. Most standard
security protocols cannot be described at this level of ab-
straction without possibly missing attacks. The results of
[6] are useful in designing secure implementations of abstract
functionalities, not for the verification of existing protocols.

Finally, the work on automation and decision of observa-
tional equivalence [25, 15, 24] shows that there exist sys-
tematic ways of deriving such equivalences in the symbolic
world. This is also the advantage of using a standard process
algebra as a symbolic model.

Organization of the paper: we first give the definitions
of our computational model in section 2. Next we recall some
of the general definitions of applied π-calculus in section 3.
Note that, in the following, we only consider a fragment of
the calculus for the protocol description (as usual), and we
will only consider a particular equational theory correspond-
ing to symmetric encryption. The relationship between the
two models, as well as the protocol description language is
given in section 4. In section 5 we give our main result
and outline the proof. More details, including intermediate
lemmas, the notions of computation trees, tree oracles, tree
soundness are provided in section 6. We omit details and
proofs in this short paper: they can be found in [20].

2. COMMUNICATINGTURINGMACHINES
Randomized Turing machines are Turing machines with

an additional random tape. We assume w.l.o.g. that these
machine first draw an infinite random input string on the
random tape, and then compute deterministically. Commu-
nicating Turing machines are randomized machines equipped
with input/output tapes and two special instructions: send

and receive. They are restricted to work in polynomial time
with respect to their original input (see [11] for a discussion).
The adversary is a special CTM with an additional schedul-

ing tape. A network F‖A consists of an adversary A and a
family of CTMs F = (Mn)n∈N. We also call F the envi-
ronment of A. This model is a simplification of interactive
Turing machines of [17], keeping only the essential features.

In brief, in the initial configuration, each machine of the
network has the security parameter in unary on its input
tape and possibly other data such as secret keys. For sim-
plicity we do not model here the key distribution. Moves be-
tween configurations are defined according to the attacker’s
view: in each configuration, the attacker decides to perform
an internal move, to ask for the initialization of a new ma-
chine or to schedule a communication. In the latter case,
the identity of the recipient is written on the scheduling
tape and either a send or a receive action is performed. In
case of a send, the contents of the sending tape is copied to
the receiving tape of the scheduled recipient, who performs
(in one single step) all its computations, until (s)he is wait-
ing for another communication. In case of a receive action,
the whole content of the sending tape of the scheduled ma-
chine is copied on the receiving tape of the attacker. The
number of CTMs in the network is unbounded. Note that
this setting does allow dynamically corrupted parties as in
most results relating symbolic and computational models.
Initially corrupted machines simply send their keys on the
network.

We say that a function f : N → N is negligible if, for
every polynomial P , ∃N ∈ N,∀η > N, f(η) < 1

P (η) . We

write Pr{x : P (x)} the probability of event P (x) when the
sample x is drawn according to an appropriate distribution
(the key distribution or the uniform distribution; this is kept
implicit).

Two families of machines are indistinguishable if any ad-
versary cannot tell with which family he is connected with
non negligible probability:

Definition 1. Two environments F and F ′ are indistin-
guishable, which we write F ≈ F ′, if, for every attacker A,

|Pr{r, r : (F(r)‖A(r))(0η) = 1}−Pr{r, r : (F ′(r)‖A(r))(0η) = 1}|

is negligible. r is the sequence of random inputs of the ma-
chines in F (resp. F ′), including keys. r is the random
input of the attacker.

As described in introduction, the computational secrecy
of s can be expressed as follows. In F0, the machines using
s are set with s0 while in F1, they are set with s1. The
values s0 and s1 could also be chosen by the attacker. Then
the data s is computationally secret if F0 ≈ F1. Note that
the environments Fb may contain corrupted machines, not
holding si, that start by leaking their private information to
the adversary.

Anonymity of group signatures [5] is defined through the
following game: the adversary chooses a message m and two
identities i0 and i1. Then in F0, the machines sign m with
identity i0 while in F1, the machines sign m with identity
i1. Again the property is defined by F0 ≈ F1.

3. THE APPLIED PI-CALCULUS
We use the applied π-calculus of [2] as a symbolic model.

There are several reasons for this choice. First, there are
verification tools relying on this model [15]. Next, Though
only a small fragment of this process calculus is used in



the present paper, we plan several extensions in various di-
rections: considering more primitives (and equational theo-
ries), enriching the control structure, e.g. with conditionals
and sequential composition,... The applied π-calculus is well
suited for such extensions.

We recall the definitions in this section. Note that we will
only consider a small fragment of the applied-π-calculus for
the protocol descriptions and only a particular equational
theory for our main result.

3.1 Syntax
A signature is a finite set of function symbols with an

arity. It represents the security primitives (e.g. encryp-
tion, pairing, decryption). Given a signature Σ, an infi-
nite set N of names and an infinite set X of variables,
T (N ,X ) is the set of terms, the least set containing N ,X
and closed by application of a symbol in Σ. We assume
that Σ contains a binary pairing function < u, v >, the cor-
responding projections functions π1, π2, and a length func-
tion l, which is a morphism from T (N ,X ) to N. We as-
sume infinitely many names of any length. Terms represent
messages and names stand for (randomly) generated data.
α, β, . . . are meta-variables that range over names and vari-
ables. We confuse the name generation and the local vari-
ables using the same ν construction, as they obey the same
scoping/renaming rules. u stands for a sequence u1, . . . , un.
σ = {x1 )→ s1, . . . , xk )→ sk} is the substitution that re-
places the variable xi with the term si. The domain of σ,
denoted by dom(σ) is the set {x1, . . . , xk}.

Example 3.1. Σ0 is the signature consisting of the bi-
nary pairing < ·, · >, the two associated projections π1, π2,
the binary decryption dec and the ternary symbol {·}·· for
symmetric encryption: {x}r

k stands for the encryption of x
with the key k and the random r. Σ0 also contains constants
with in particular a constant 0l of length l for every l.

The syntax of processes and extended processes is dis-
played in Figure 1. In what follows, we restrict ourselves
to processes with public channels. P is a set of predicate
symbols with an arity. A difference with [2] is that we
consider conditionals with arbitrary predicates. This leaves
some flexibility in modeling various levels of assumptions on
the cryptographic primitives. Typical examples are the abil-
ity (or not) to check whether a decryption succeeds, or the
ability (or not) to check that two ciphertexts are produced
using the same encryption key. Other examples are typing
predicates, which we may want (or not). In [2] the condition
is always an equality. Encoding the predicate semantics with
equalities is (only) possible when there is no negative con-
dition: it suffices then to express when a predicate is true.
We believe that predicates allow to better reflect the abil-
ity of the adversary, with less coding. As we will see in the
section 4, the predicates will be interpreted as polynomially
computable Boolean functions.

Note that we use unbounded (un-guarded) replication of
processes. This does not prevent from getting both sound-
ness and completeness w.r.t. the computational interpreta-
tion: we show that if there is a computational attack, then
there is a symbolic one (soundness). This symbolic attack
does not depend on the security parameter: in this respect,
it is a constant size attack. Interpreting back the attack in
the computational world, this means that there is an attack
whose size is independent of the security parameter.

φ, ψ ::= conditions
p(s1, . . . , sn) predicate application
φ ∧ ψ conjunction

P, Q, R ::= processes
c(x).P input
c(s).P output
0 terminated process
P ‖ Q parallel composition
!P replication
(να)P restriction
if φ then P else Q conditional

A, B, C ::= extended processes
P plain process
A‖B parallel composition
(να)A restriction
{x )→ s} active substitution

Figure 1: Syntax of processes

In the paper, we often confuse “process”an “extended pro-
cess” (and do not follow the lexicographic convention A, B...
vs P.Q, ...).

3.2 Operational semantics
We briefly recall the operational semantics of the applied

pi-calculus (see [2] for details). E is a set of equations on the
signature Σ, defining an equivalence relation =E on T (N ),
which is closed under context. =E is meant to capture sev-
eral representations of the same message. Predicate symbols
are interpreted as relations over T (N )/ =E. This yields a
structure M.

Example 3.2. The equations E0 corresponding to Σ0 are
dec({x}z

y, y) = x π1(< x, y >) = x π2(< x, y >
) = y

They can be oriented, yielding a convergent rewrite sys-
tem: every term s has a unique normal form s ↓. We may
also consider the following predicates:

• M is unary and holds on a (ground) term s iff s ↓ does
not contain any projection nor decryption symbols.

• EQ is binary and holds on s, t iff M(s), M(t) and s ↓=
t ↓: this is a strict interpretation of equality.

• Psamekey is binary and holds on ciphertexts using the
same encryption key: M |= Psamekey(s, t) iff

∃k, u, v, r, r′.EQ(s, {u}r
k) ∧ EQ(t, {v}r′

k ).

• EL is binary and holds on s, t iff M(s), M(t) and s, t
have the same length. we assume that there is a length
function, which is defined on terms as a homomor-
phism from terms to natural numbers.

The structural equivalence is the smallest equivalence re-
lation on processes that is closed under context application
and that satisfies the relations of Figure 2. fn(P ) (resp.
fv(P )) is the set of names (resp. variables) that occur free
in P . Bound names are renamed thus avoiding captures.
P{x )→ s} is the process P in which free occurrences of



A ‖ 0 ≡ A
A ‖ B ≡ B ‖ A

(A ‖ B) ‖ C ≡ A ‖ (B ‖ C)
(να)(νβ)A ≡ (νβ)(να)A

(να)(A ‖ B) ≡ A ‖ (να)B if α /∈ fn(A) ∪ fv(A)
(νx){x )→ s} ≡ 0

(να)0 ≡ 0
!P ≡ P ‖ !P

{x )→ s} ‖ A ≡ {x )→ s} ‖ A{x )→ s}
{x )→ s} ≡ {x )→ t} if s =E t

Figure 2: Structural equivalence

x are replaced by s. An evaluation context is a process
C = (να)([·] ‖ P ) where P is a process. We write C[Q] for
(να)(Q ‖ P ). A context (resp. a process) C is closed when
fv(C) = ∅ (there might be free names).

Possible evolutions of processes are captured by the rela-
tion →, which is the smallest relation, compatible with the
process algebra and such that:

(Com) c(x).P ‖ c(s).Q → {x )→ s} ‖ P ‖ Q
(Cond1) if φ then P else Q → P if M |= φ
(Cond2) if φ then P else Q → Q if M /|= φ

∗
−→ is the smallest transitive relation on processes con-

taining ≡ and −→ and closed by application of contexts. We

write P
c(t)
−−→ Q (resp. P

c(t)
−−→ Q) if there exists P ′ such that

P
∗
−→ c(x).P ′ and {x )→ t}‖P ′ ∗

−→ Q (resp. P
∗
−→ c(t).P ′

and P ′ ∗
−→ Q).

Definition 2. The observational equivalence relation ∼o

is the largest symmetric relation S on closed extended pro-
cesses such that ASB implies:

1. if, for some context C, term s and process A′,
A

∗
−→ C[c(s) · A′] then for some context C′, term s′

and process B′, B
∗
−→ C′[c(s′) · B′].

2. if A
∗
−→ A′ then, for some B′, B

∗
−→ B′ and A′SB′

3. C[A]SC[B] for all closed evaluation contexts C

Example 3.3 (Group signature). Group signature as
defined in [5] can be modeled as observational equivalence
as follows. Let P (x, i) be the protocol for signing message
x with identity i. Let P1 = c(y).P (π1(y),π1(π2(y))) and
P2 = c(y).P (π1(y), π2(π2(y))). Intuitively, the adversary
will send < m,< i1, i2 >> where m is a message to be signed
and i1, i2 are two identities. P1 signs m with i1 while P2

signs m with i2. Then P preserves anonymity if P1 ∼o P2.

3.3 Simple processes
We do not need the full applied pi-calculus to symbolically

represent CTMs. For example, CTMs do not communicate
directly: all communications are controlled by the attacker
and there is no private channel. Thus we consider the frag-
ment of simple processes built on basic processes. Simple
processes capture the usual fragment used for security pro-
tocols. A basic process represents a session of a protocol

role where a party waits for a message of a certain form and
when all equality tests succeed, outputs a message accord-
ingly. Then the party waits for another message and so on.
The sets of basic processes B(i, n, x), where x is a variable
sequence, i is a name, called pid, standing for the process id
and n is a name sequence (including for instance fresh and
long-term keys), are the least sets of processes such that
0 ∈ B(i, n, x) and

• If B ∈ B(i, n, x), s ∈ T (n, x), φ is a conjunction of
EQ and M atomic formulas such that fn(φ) ⊆ n and
fv(φ) ⊆ x, ⊥ is a special error message, then if
φ then cout(s) · B else cout(⊥) · 0 ∈ B(i, n, x).
Intuitively, if all tests are satisfied, the process sends a
message depending on its inputs.

• if B ∈ B(i, n, x, x) and x /∈ x, then

cin(x). if EQ(π1(x), i) then B else cout(⊥) · 0

∈ B(i, n, x). Intuitively, on input x, the basic process
first checks that it is the expected recipient of the mes-
sage, before processing it.

cout and cin are two special names, representing resp. the
send tape and the receive tape.

Example 3.4. The Wide Mouth Frog [16] is a simple pro-
tocol where a server transmits a session key from an agent
A to an agent B.

A → S : A, {Na, B, Kab}Kas

S → B : {Nb, A,Kab}Kbs

A session of role A played by agent a can be modeled by the
basic process

A(a, b) = if true then cout(< a, {< na, < b, kab >>}r
kas

>)·0

else cout(⊥) · 0

Similarly a session of role S played for agents a, b and whose
id is l, can be modeled by

S(a, b, l) = cin(x). if EQ(π1(x), l) then

if π1(π2(x)) = a ∧ π1(π2(deckas(π2(π2(x))))) = b then

cout({< nb, < a,π2(π2(deckas(π2(π2(x))))) >>}r
kbs

) · 0

else cout(⊥) · 0 else cout(⊥) · 0

A simple process combines any number of instances of the
protocol roles, hiding names that are meant to be (possibly
shared) secrets:

(νn)[ (νx1, n1B1‖σ1)‖ · · · ‖(νxk, nkBk‖σk)

!(νy1, l1, m1cout(l1)B
′
1) ‖ · · · ‖ !(νyn, ln, mn.cout(ln)B′

n) ]

where Bj ∈ B(ij , n2nj , xj), dom(σj) ⊆ xj , B′
j ∈ B(lj , n2

mj , yj). Note that each basic process B′
j first publishes its

identifier lj , so that an attacker can communicate with it.
Each process of the form !((νyi, li)cout(li).B

′
i) is a replicated

process.
In the definition of simple processes, we assume that for

any subterm {t}v
k occurring in a simple process, v is a name

that does not occur in any other term, and belongs to the
set of restricted names n. (Still, there may be several occur-
rences of {t}v

k, unlike in [4]).



Example 3.5. Continuing Example 3.4, a simple process
representing unbounded number of sessions in which A plays
a (with b) and s plays S (with a, b) for the Wide Mouth Frog
protocol is

ν(kas, kbs) ( !((νkab, na, r, l)cout(l).A(a, b))

‖ !((νx,nb, r, l)cout(l).S(a, b, l)) )

For simplicity, we have only considered sessions with the
same agent names a, b.

3.4 Deduction and static equivalence
As in the applied pi calculus [2], message sequences are

recorded in frames φ = νn.σ, where n is a finite set of names,
and σ is a ground substitution. n stands for fresh names that
are a priori unknown to the attacker.

Given a frame φ = νn.σ that represents the information
available to an attacker, a ground term s is deducible, which
we write νn.(σ 3 s) if σ 3 s can be inferred using the fol-
lowing rules:

if ∃x ∈ dom(σ)
s.t. xσ = s

or s ∈ N ! nσ 3 s

σ 3 s1 . . . φ 3 s"
f ∈ Σ

σ 3 f(s1, . . . , s")

σ 3 s
M |= s = s′

σ 3 s′

Example 3.6. Consider the signature and equational the-
ory of example 3.2. Let φ = νn1, n2, n3, r1, r2, r3.σ with σ =
{x1 )→ {n1}

r1

k1
, x2 )→< {n2}r2

n1
, {n3}r3

n2
>}. Then

νn1, n2, n3, r1, r2, r3.(σ 3 n3).

Deduction is not sufficient for expressing the attacker’s
knowledge. We have also to consider its distinguishing ca-
pabilities. Using the predicate symbols, we get the following
slight extension of static equivalence:

Definition 3 (static equivalence). Let φ be a frame,
p be a predicate and s1, . . . , sk be terms. We say that φ |=
p(s1, . . . , sk) if there exists n such that φ = νn.σ, fn(si) ∩ n = ∅
for any 1 ≤ i ≤ k and M |= p(s1, . . . , sk)σ. We say that
two frames φ1 = νn.σ1 and φ2 = νn′.σ2 are statically equiv-
alent, and write φ1 ∼ φ2 when dom(φ1) = dom(φ2), and

∀s1, . . . , sk ∈ T (N ,X ),∀p ∈ P .

φ1 |= p(s1, . . . , sk) ⇔ φ2 |= p(s1, . . . , sk).

Example 3.7. Consider (again for the theory of Example
3.2) the two frames φ1 = νn1, r1, r2.{x )→ {{k}r1

n1
}r2

n1
} and

φ2 = νn2, r3.{x )→ {s}r3
n2

}. If s has the same length as
{k}r1

n1
, then the two frames are statically equivalent

4. COMPUTATIONAL INTERPRETATION
Given a security parameter η and a mapping τ from names

to actual bitstrings of the appropriate length, which de-
pends on η, the computational interpretation [[s]]τη of a term
s is defined as a F-homomorphism: for each function sym-
bol f there is a polynomially computable function [[f ]] and

[[f(t1, . . . , tn)]]τη
def
= [[f ]]([[t1 ]]

τ
η , . . . , [[tn]]τη).

In addition, for names, [[n]]τη
def
= τ (n). Such an inter-

pretation must be compatible with the equational theory:
∀s, t, η, τ. s =E t ⇒ [[s]]τη = [[t]]τη .

Similarly, each predicate symbol p gets a computational
interpretation [[p]] as a PPT that outputs a Boolean value.
This is extended to conditions, using the standard inter-
pretation of logical connectives. Given an interpretation
M of the predicates symbols in the symbolic model we as-
sume that [[p]] is an implementation of this interpretation
p ⊆ (T (N ))n, that is

Pr{(x1, . . . , xn)
R
←− [[t1, . . . , tn]]η : [[p]](x1, . . . , xn) = 1 − b}

is negligible for any t1, . . . , tn, where b = 1 if M |= p(t1, . . . , tn)
and 0 otherwise.

Example 4.1. Consider the predicate symbols of Exam-
ple 3.2. Assume that the decryption and projection functions
return an error message ⊥ when they fail. Then here are
possible interpretations of some predicates:

• [[M ]] is the set of bitstrings, which are distinct from
⊥. [[M ]] implements M if the encryption scheme is
confusion-free (a consequence of INT-CTXT [31]).

• [[EQ]] is the set of pairs of identical bitstrings, which
are distinct from ⊥. It is an implementation of EQ as
soon as [[M ]] implements M .

Given a random tape τ and a security parameter η, a sim-
ple process P is implemented as expected. In particular, we
assume that shared names are distributed to the expected
machines in an initialization phase and random number are
computed according to the random tape. The implementa-
tion of P is denoted by [[P ]]τη .

5. MAIN RESULT

5.1 Assumptions and result

Encryption scheme.
We assume that it is IND-CPA (more precisely “type 3”-

secure of [4]) and INT-CTXT, as defined in [13]. Moreover,
we assume that each time the adversary needs a new key,
it requests it to the protocol (e.g. using a corrupted party).
The parties are supposed to check that the keys they are
using have been properly generated.

Key hierarchy.
A term u which occurs at least once in t at another po-

sition than a key or a random number (third argument in
encryption) is called a plaintext subterm of t. E.g. k1 and k3

occur in plaintext in < k1, {{k3}
r2

k2
}r1

k1
> but not k2. We say

that k encrypts k′ in a set of terms S if S contains a subterm
{u}r

k such that k′ is a plaintext subterm of u. We assume a
key hierarchy, i.e. an ordering on private keys such that, for
any execution of the protocol no key encrypts a greater key.
If there is a key hierarchy, no key cycle can be created. Note
that, when comparing two processes, the two key hierarchies
do not need to be identical.

Parsing.
To ease parsing operations, we assume that the pairing,

key generation and encryption functions add a typing tag
(which can be changed by the attacker), which includes
which key is used in case of encryption. This can be eas-
ily achieved by assuming that a symmetric key k consists of



two parts (k1, k2), k1 being generated by some standard key
generation algorithm and k2 selected at random. Then one
encrypts with k1 and tags the ciphertext with k2.

We are now ready to state our main theorem: observa-
tional equivalence implies indistinguishability.

Theorem 4. Let P1 and P2 be two simple processes such
that each Pi admits a key hierarchy. Assume that the en-
cryption scheme is joint IND-CPA and INT-CTXT. Then
P1 ∼o P2 implies that [[P1]] ≈ [[P2]].

For example, anonymity of group signature as defined in
section 2 is soundly abstracted by the property defined in
Example 3.3. Computational secrecy as defined in section 2
can be soundly abstracted by strong secrecy: a secret x is
strongly secret in P if P (s) ∼o P (s′) for any term s, s′.

5.2 Overview of the proof
The rest of the paper is devoted to the proof sketch of

Theorem 4.

A first approach.
Let us first show why the naive ideas do not work. Assume

we have proved that any computational trace is an interpre-
tation (for some sample input) of a symbolic trace. Assume
moreover that we have a soundness result showing that, if
s1, . . . , sn and u1, . . . , un are two equivalent sequences of
terms, then the distributions [[s1, . . . , sn]] and [[u1, . . . , un]]
are indistinguishable. Assume finally that the traces of P1

and the traces of P2 can be pairwise associated in statically
equivalent traces (as a consequence of observational equiva-
lence).

One could think that it is possible to conclude, pretending
that [[P2]] ≈ [[P1]] since [[t1]] ≈ [[t2]] for each trace t1 of P1 and
the corresponding trace t2 of P2. This is however incorrect.
Indeed, an attacker can choose his requests (hence the trace)
depending on the sample input. In the equivalence [[t1]] ≈
[[t2]], we use an average on the samples, while the choice of
t1 (and t2), may depend on this sample: there is a circular
dependency.

To be more concrete, here is a toy example. Assume that
an attacker, given a random input τ , first gets [[s]]τ (in both
experiments) and then, schedules his requests depending on
the ith bit of [[s]]τ : at the ith step, he will get tj

i (resp. uj
i

in the second experiment), where j is the ith bit of [[s]]τ .
Assume that, for any sequence of bits j1, . . . , jn,

[[s, tj1
1 , . . . , tjn

n ]] ≈ [[s, uj1
1 , . . . , ujn

n ]]

but that, for the particular sample τ such that [[s]]τ = j1 · · · jn,
the attacker outputs 1 on input [[s, tj1

1 , . . . , tjn
n ]]τ and out-

puts 0 on input [[s, uj1
1 , . . . , ujn

n ]]τ . This may happen as the
distributions could be indistinguishable while distinguished
on one particular sample value. Note that, in the distribu-
tion equivalence, we draw again a sample, while the choice
of j1, ..., jn depended precisely of that sample. Then the
attacker always outputs 1 in the first experiment since he
precisely chose from τ the sequence j1, ...jn. Similarly, he
always outputs 0 in the second experiment: he gets a signif-
icant advantage, distinguishing the two processes.

The example shows that we cannot simply use the sound-
ness of static equivalence on traces. The idea is to consider
trees labeled with terms, instead of sequences of terms. Then
we do not commit first to a particular trace (as choosing

j1, ..., jn above). Considering such trees requires an exten-
sion of the results of Abadi and Rogaway, which are proved
for sequences of terms.

Proof sketch.
We associate a tree TP with each process P , which we

call process computation tree and define symbolic and com-
putational equivalences (denoted respectively ∼ and ≈) on
process computation trees (see the definitions in the section
6). Such trees record the possible behaviors of the symbolic
process, depending on the input they get from the environ-
ment: TP is a labeled transition system, whose initial state
is P . We use process computation trees as an intermediate
step and show the following implications:

P ∼o Q ⇒ TP ∼ TQ ⇒ TP ≈ TQ ⇒ [[P ]] ≈ [[Q]]

P ∼o Q ⇒ TP ∼ TQ : (Lemma 7) It holds for any term al-
gebra, relying however on the particular fragment of
process algebra (simple processes). This is similar to
the classical characterization of observational equiva-
lence as labeled bisimilarity.

TP ∼ TQ ⇒ TP ≈ TQ : (Lemma 11) It uses the (tree) sound-
ness in the ground case. This is a new concept, which
generalizes the soundness of static equivalence from se-
quences to trees. It is necessary for the preservation of
trace equivalences.

As a (very simple) example, consider the trees TP and TQ

whose edges are labeled with any possible pair of symbolic
messages. The path labeled < u1, v1 >, . . . , < un, vn >
yields a node labeled with {u1}

r1

k , . . . , {un}
rn
k in TP and

yields a node labeled with {v1}
r1

k , . . . , {vn}
rn
k . This corre-

sponds to a Left-Right oracle of an IND-CPA game. The
tree soundness states in this case that the two trees are in-
distinguishable: even if the attacker adaptatively chooses
his requests (i.e. a path in the tree), he cannot make a dif-
ference between the two experiments. IND-CCA2 could be
also expressed in this way. Here we consider more general
experiments, specified by the two processes P, Q.

TP ≈ TQ ⇒ [[P ]] ≈ [[Q]] (Lemma 13) It uses trace lifting: we
need to prove that a computational trace is, with an
overwhelming probability, an instance of a symbolic
trace.

For instance in the above IND-CPA game, we cheated a
little bit since the requests of the attacker were instances
of symbolic requests, while in a true IND-CPA game they
can be arbitrary bitstrings. This last step shows that it is
actually not cheating: it does not make a significant differ-
ence (actually it does not make any difference at all in an
IND-CPA game).

The two last implications are proved here in the context of
pairing and symmetric encryption only. However, we believe
that the use of computation trees and the way we get rid of
encryption, can be extended to other primitives.

6. COMPUTATION TREES
We first define a general notion of trees that could serve to

design oracles: the main purpose is to lift static equivalence
(of frames) to trees, i.e. in an adaptative setting. Trees
defined by the protocols (processes) are special cases, as we
will see next. But we use the general definition in further
transformations of the oracles.



6.1 General Computation Trees
Let S = T (N ) be a set of labels, typically a pair < i, u >

of a pid and a term for a request u to the process i, or a
request to start a new process. For i = 1, 2, let φi = νnσi be
two frames. We write t ∈ φ1 if t = xσ1 for some x ∈ dom(σ1)
and φ1 ⊆ φ2 if xσ1 = xσ2 for all x ∈ dom(σ1).

Definition 5. A computation tree T is a mapping from
a prefix closed subset of S∗ (Pos(T ), the positions of T ) to
pairs (P, φ) where P is a simple process and φ is a ground
frame over T (N ). If p ∈ Pos(T ) and T (p) = (P, φ), we write
φ(T, p) the frame φ. Moreover T must satisfy the following
conditions:

• for every positions p, q, if p > q, then φ(T, q) ⊆ φ(T, p)

• for every position p · t, t ∈ φ(T, p · t)

• for every positions p · t, p · u, if t =E u, then t = u.
This ensures that there is no two branches labeled with
the same (equivalent) message.

Such trees will be used in the next section to represent all
possible behaviors of the processes, in a structured way.
Since we have unbounded replication, the trees need not
to be bounded in depth: there may be infinite paths. They
may also be infinitely branching, as, at any time, the possi-
ble attacker’s actions are unbounded

In this definition, positions need not to be closed lexico-
graphically. The definition of static equivalence ∼ is ex-
tended to computation trees. T |p is the sub-tree of T at
position p.

Definition 6. ∼ is the largest equivalence relation on
computation trees such that if T1 ∼ T2, then φ(T1, ε) ∼
φ(T2, ε) and there is an one-to-one mapping β from T (N )
to itself such that, for any length 1 position t of T1, T1|t ∼
T2|β(t).

Typically, requests sent by the adversary need not to be
identical, but must be equivalent. Then β is a mapping,
which depends on T1, T2, which associates the messages in
the labels of T1 with equivalent messages labeling T2.

6.2 Process computation trees
We organize all possible symbolic executions of a simple

process P in a tree TP . Each node of TP is labeled by (Q,φ)
where Q is the current state of the process and φ represents
the sequence of messages sent over the network by P so far.

Let P ≡ νn, νx. Q1‖σ1‖ · · · ‖QN‖σN‖S be a simple pro-
cess where S = S1‖ · · · ‖Sk is the composition of a finite
number of replicated processes Si and every Qi ∈ B(li, ni, xi)
is either 0 or a basic process cin(xi).Pi and σi is a ground
substitution whose domain contains only free variables of
Pi. Note that li is the pid of Qi. The process computation
tree TP is defined as follows. The labeling and positions are
defined by induction on the position length: TP(ε) = (P , id)
where id denotes the empty frame, and, for any p ∈ Pos(TP),
let

TP(p) = (νnνx. Qp
1‖σ

p
1‖ · · · ‖Q

p
N‖σp

N‖S , νnσ)

where each Qp
j is either 0 or cin(x

p
j ).P

p
j . Then q = p · α ∈

Pos(TP) if α =< li, u >, Qp
i /≡ 0, νnσ 3 α and

Qp
i

cin(α)
−−−→

cout(α1)···cout(αm)
−−−−−−−−−−−−→ Qq

i ‖σ
p
i ‖{x

p
i )→ α}

in which case

TP(p · α) = (νnνx.Qq
1‖σ

q
1‖ · · · ‖Q

q
N‖σq

N ,
νn.σ ∪ {xα )→ α} ∪

Sm
i=1 {xαi )→ αi})

where, for every j /= i, Qq
j = Qp

j , σq
j = σp

j , Qq
i is either 0

or cin(x
q
i ).P (xq

i ) and σq
i = σp

i ◦ {xp
i )→ α}. This corresponds

to the case where an attacker sends a message to an active
process Q of pid li. The attacker may also ask for the ini-
tialization of a process. S = S1‖ · · · ‖Sk and there is a fixed
ordering on the Sj (which correspond to the roles of the pro-
tocol). Then q = p ·newj ∈ Pos(TP), where newj is a special
constant (1 ≤ j ≤ k). Let Sj =!(νyνl cout(l).B). Then

TP(p · newj) = (νnνxνy. Qp
1‖σ

p
1‖ · · · ‖Q

p
N‖σp

N‖B‖S ,
νnσ ∪ {z )→ l})

where z is a fresh variable and assuming by renaming that
the names of y do not appear free in Qp

1‖σ
p
1‖ · · · ‖Q

p
N‖σp

N .
Note that by construction, B ∈ B(l, nl, xl) thus l is the
identifier of B. l is first published such that the intruder
can use it to schedule B.

A process computation tree is a computation tree. Ob-
servational equivalence yields equivalence between the cor-
responding process computation trees:

Lemma 7. Let P and Q be two simple processes.
If P ∼o Q then TP ∼ TQ.

This does not follow directly from [2] (see the proof in [20]).

6.3 Scheduled computation trees
When all behaviors of a concrete attacker are instances of

behaviors of a symbolic attacker, the concrete attacker can
be seen as a machine which schedules the behavior of the
symbolic attacker. That is what we try to capture here.

We assume that, given a security parameter η and a map-
ping τ from names to actual bitstrings, there is a parsing
function κτ

η that maps bitstring to their symbolic represen-
tation. This parsing function is assumed to be total, using
possibly constants or new names of the appropriate length.

For any symbolic computation tree T , and random tape τ ,
we let OT,τ be an oracle, whose replies depend on the tree T
and the sample τ . When T is a process computation tree, the
oracle can be simply understood as simulating the network
and answering to attacker’s messages. This is convenient for
an intuitive understanding of OT,τ , but we will transform the
tree T later on. That is why we need a general definition.

Intuitively, the tree specifies how the oracle can be adap-
tively queried and what are its answers. This is formalized
as follows.

When queried with mn, after being queried successively
with m1, . . . , mn−1,

• the oracle first computes κτ
η(mn). Let rj = κτ

η(mj) for
1 ≤ j ≤ n.

• the oracle returns 0 if r1 · · · rn is not a position of T

• otherwise, let φ1 = νn1σ1 = φ(T, r1 · · · rn−1), φ2 =
νn2σ2 = φ(T, r1 · · · rn) be the labels of the two suc-
cessive nodes of T . For any name k that occurs in σ2

and not in σ1, the oracle draws a random number τ (k)
using its random tape τ . If k /∈ n2 then the oracle
returns τ (k) (the value is public in that case).

Next, the oracle returns [[xσ2]]τ for all x ∈ dom(σ2) \
dom(σ1). Intuitively, the oracle replies by sending back



the (interpretation of the) terms labeling the target
node of the tree that have not been already given.

In the last case, the oracle answer corresponds, in case T
is a process computation tree, to the messages sent by the
process answering the attacker’s message.

Definition 8. Given two symbolic computation trees T1, T2,
the two trees are computationally indistinguishable, which
we write T1 ≈ T2 if, for any PPT A, |Pr{τ : AOT1,τ (0η) =
1}− Pr{τ : AOT2,τ (0η) = 1}| is negligible.

7. MAIN STEPS OF THE PROOF
From now on, we fix the signature Σ0, the equations E0

and the predicate set P0, defined in Example 3.2 and in the
following examples of Section 3.2.

7.1 Getting rid of encryption
The function Ψk on trees replaces terms under encryption

by constants 0l of the same length and is used later for
stepwise simplifications:

Ψk(n) = n if n is a name or a constant
Ψk(< t1, t2 >) = < Ψk(t1), Ψk(t2) >

Ψk({t}r
k) = {0l(t)}r

k

Ψk({t}r
k′) = {Ψk(t)}r

k′ if k /= k′

Then Ψk is extended to computation trees by applying
Ψk on the requests and frames. Intuitively, the underlying
process remains the same but the adversary is given a view of
the execution where any encryption by k has been replaced
by an encryption of zeros by k. If k is not deducible, then
an intruder is unable to make a difference:

Lemma 9. For any computation tree T and for any name
k such that k is not deducible from any frame labeling a node
of T , then T ∼ Ψk(T ).

The lemma is proved by choosing Ψk for the one-to-one
function β.

Now, once every encryption has been replaced by encryp-
tion of zeros then static equivalence coincides with equality
up-to name renaming:

Lemma 10. Let φ1 and φ2 be two frames such that for
any subterm of φ1 or φ2 of the form {u}r

k, we have u = 0l

for some l ∈ N. If Psamekey is in the set of predicates, then
φ1 ∼ φ2 iff φ1 and φ2 are equal up-to name renaming.

7.2 Soundness of static equivalence on trees
Static equivalence on process trees can be transferred at

a computational level.

Lemma 11. Let P1 and P2 be two simple processes such
that each Pi admits a key hierarchy. Let TPi be the process
computation tree associated to Pi. If TP1

∼ TP2
then TP1

≈
TP2

or the encryption scheme is not joint IND-CPA and
INT-CTXT.

This key lemma is proved by applying the functions Ψk

following the key ordering, to the trees TPi . We preserve
equivalence on trees thanks to Lemma 9. If we find a key k
such that Ψk(TPi) /≈ TPi , then we can construct an attacker
who breaks IND-CPA. Otherwise we are left to trees labeled
with frames whose only subterms of the form {u}r

k are such
that u = 0l for some l. In this case, we show that equivalence
of such frames coincides with equality using Lemma 10.

7.3 Relating concrete and symbolic traces
We need here to show that concrete traces are, with over-

whelming probability, interpretations of symbolic ones. We
first define formally what it means.

Given P , η, τ, A, the behavior of the network A‖[[P ]]τ is
deterministic.

Its computation can be represented as
m1 · · ·mn, the sequence of messages sent by the adversary.

If T is a process computation tree and p ∈ Pos(T ), p
fully abstracts the computation sequence m1 · · ·mn if p =
u1 · · ·un and, for every j ≤ n, [[uj ]]

τ = mj . In other
words, p fully abstracts a computation sequence if it defines
a symbolic trace whose interpretation is that computation
sequence.

Lemma 12. Assume that the encryption scheme is INT-
CTXT and IND-CPA. Let P be a simple process that ad-
mits a key ordering and TP be its process computation tree.
Let A be a concrete attacker. The probability over all sam-
ples τ , that any computational sequence of A‖[[P ]]τ is fully
abstracted by some path p in TP , is overwhelming.

To prove this lemma, we first simplify the trees by applying
the functions Ψk thanks to Lemmas 11 and 9. Then, we
investigate in which cases the adversary may produce traces
that cannot be lifted and, in each situation, we break either
INT-CTXT or IND-CPA.

In the last lemma, we simply apply the previous result.
Since traces can be lifted, an attacker on the concrete pro-
cesses is actually a scheduler of the computation trees, hence
distinguishing the concrete processes amounts to distinguish
the corresponding computation trees.

Lemma 13. Let P1 and P2 be two simple processes admit-
ting a key hierarchy. Let TPi be the process computation tree
associated to Pi. If the encryption scheme is joint IND-CPA
and INT-CTXT, then TP1

≈ TP2
implies that [[P1]] ≈ [[P2]].

Theorem 4 is now a straightforward consequence of Lemma 7,
11 and 13.

8. EXTENSIONS
Following our proof scheme, we believe that our results

can be extended to other security primitives, e.g. public-key
encryption or signatures. We also wish to extend the sim-
ple process, for instance addind conditionals and sequential
composition.

There are harder extensions. For instance, can we drop
the requirement that private keys are not dynamically dis-
closed? As explained in [8], there is a commitment problem
if we rely on a simulator. We could also extend our results
to a wider class of equational theories by extending in par-
ticular Lemma 11.
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How to prove security of communication
protocols?
A discussion on the soundness of formal models
w.r.t. computational ones.∗
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Abstract
Security protocols are short programs that aim at securing communication over a public network.
Their design is known to be error-prone with flaws found years later. That is why they deserve
a careful security analysis, with rigorous proofs. Two main lines of research have been (indepen-
dently) developed to analyse the security of protocols. On the one hand, formal methods provide
with symbolic models and often automatic proofs. On the other hand, cryptographic models
propose a tighter modeling but proofs are more difficult to write and to check. An approach
developed during the last decade consists in bridging the two approaches, showing that sym-
bolic models are sound w.r.t. symbolic ones, yielding strong security guarantees using automatic
tools. These results have been developed for several cryptographic primitives (e.g. symmetric
and asymmetric encryption, signatures, hash) and security properties.

While proving soundness of symbolic models is a very promising approach, several technical
details are often not satisfactory. Focusing on symmetric encryption, we describe the difficulties
and limitations of the available results.
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1 Introduction

Security protocols aim at securing communications over public networks. They are typically
designed for bank transfers over the Internet, establishing private channels, or authenticat-
ing remote sites. They are also used in more recent applications such as e-voting procedures.
Depending on the application, they are supposed to ensure security properties such as confi-
dentiality, privacy or authentication, even when the network is (at least partially) controlled
by malicious users, who may intercept, forge and send new messages. While the specifi-
cation of such protocols is usually short and rather natural, designing a secure protocol is
notoriously difficult and flaws may be found several years later. A famous example is the
“man-in-the-middle” attack found by G. Lowe against the Needham-Schroder public key
protocol [41]. A more recent example is the flaw discovered in Gmail (and now fixed) by
Armando et. al. [9].
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During the two last decades, formal methods have demonstrated their usefulness when
designing and analyzing security protocols. They indeed provide with rigorous frameworks
and techniques that allow to discover new flaws. For instance, the two previously mentioned
flaws have been discovered while trying to prove the security of the protocol in a formal
setting. Following the seminal work of Dolev and Yao [33], many techniques have been
developed for analysing the security of protocols, often automatically. For example, the
AVISPA platform [8] and the ProVerif tool [20] are both efficient and practical tools for
automatically proving security properties or finding bugs if any. The security of protocols
is undecidable in general [34]. Checking the secrecy and authentication-like properties is
however NP-complete when the number of sessions is fixed [44]. Several extensions have been
designed, considering more security properties or more security primitives [2, 25, 28, 24, 37].
Bruno Blanchet has developed an (incomplete) procedure based on clause resolution [19] for
analyzing protocols for an unbounded number of sessions. All these approaches rely on a
common representation for messages: they are symbolically modeled by terms where each
function symbol represents a cryptographic primitive, some of their algebraic properties
being reflected in an equational theory. Then protocols are modeled using or adapting
existing frameworks such as fragments of logic, process algebras or constraint systems.

While the symbolic approaches were successful in finding attacks, the security proofs
in these models are questionable, because of the level of abstraction: most cryptographic
details are ignored. This might be a problem: for instance, it is shown in [45] that a protocol
can be proved in a formal, symbolic, model, while there is an attack, that also exploits
some finer details of the actual implementation of the encryption scheme. In contrast,
cryptographic models are more accurate: the security of protocols is based on the security
of the underlying primitives, which in turn is proved assuming the hardness of various
computational tasks such as factoring or computing discrete logarithms. The messages are
bitstrings. The proofs in the computational model imply strong guarantees (security holds
in the presence of an arbitrary probabilistic polynomial-time adversary). However, security
reductions for even moderately-sized protocols become extremely long, difficult, and tedious.
Recently, a significant research effort [6, 43, 13, 15, 11, 26] has been directed towards bridging
the gap between the symbolic and the cryptographic approaches. Such soundness results
typically show that, under reasonable cryptographic assumptions such as IND-CCA2 for the
encryption scheme, proofs in symbolic models directly imply proofs in the more detailed
cryptographic models. These approaches are very promising: they allow to reconcile two
distinct and independently developed views for modeling and analysing security protocols.
Second and more importantly, they allow to obtain the best of the two worlds: strong
security guarantees through the simpler symbolic models, that are amenable to automatic
proofs.

However, such soundness results also assume many other properties regarding the imple-
mentation or even regarding the key infrastructure. In this paper, we discuss these usually
under-looked assumptions, pointing the limitations of current results. In particular, we pro-
vide with several protocols (counter) examples, for which IND-CCA2 does not imply the
security, as soon as a malicious user may chose its own keys at its will. These examples
show that standard symbolic models are not sound w.r.t. cryptographic ones when using
symmetric encryption. We also discuss how to symbolically represent the length of mes-
sages and what are the implications on the implementation. All these examples will be
discussed within the the applied-pi calculus [3], but the counter-examples do not depend on
this particular process algebra: the discussion will stay at a rather informal level and can
be understood without familiarity with the applied-pi calculus.
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Related work. Many soundness results have been established in various settings. We
discuss some of them in Section 3. Fewer works are dedicated to the limitations. Backes
and Pfitzmann have shown that primitives such as Exclusive Or or hash functions cannot
be soundly abstracted in their simulatability library [14]. This is related to the impossibility
of constructing some universally composable primitives [40]. This witnesses the difficulty of
designing sound and accurate models for some primitives. [1] compares CryptoVerif [21], an
automatic tool designed for performing proofs directly in the cryptographic model, and the
use of soundness results, emphasizing the current limitations of the latter.

2 Setting

We recall here briefly part of the syntax and the operational semantics of the applied π-
calculus of [3]. We are going to use a small fragment of this calculus for the formal definition
of the protocols.

2.1 Syntax
In any symbolic model for security protocols, messages are modeled by terms, which are built
on a set of function symbols Σ, that represent the cryptographic primitives (e.g. encryption,
pairing, decryption). Given an infinite set N of names and an infinite set X of variables,
T (N , X ) is the set of terms:

s, t, u ::= terms
x, y, z variable
a, b, c, k, n, r name
f(s1, . . . , sk) function application f ∈ Σ and k is the arity of f .

Terms represent messages and names stand for (randomly) generated data. We assume
the existence of a length function l, which is a Σ-morphism from T (N ) to N.

In what follows, we will consider symmetric encryption and pairing. Let Σ0 consist of
the binary pairing < ·, · >, the two associated projections π1, π2, the binary decryption dec
and the ternary symbol {·}·

· for symmetric encryption: {x}r
k stands for the encryption of x

with the key k and the random r. Σ0 also contains constants, in particular a constant 0l of
length l for every l.

The syntax of processes is displayed in Figure 1. In what follows, we restrict ourselves
to processes with public channels: there is no restriction on name channel. We assume
a set P of predicate symbols with an arity. Such a definition, as well as its operational
semantics coincides with [3], except for one minor point introduced in [26]: we consider
conditionals with arbitrary predicates. This leaves some flexibility in modeling various levels
of assumptions on the cryptographic primitives.

In what follows, we may use expressions of the form let . . . in . . . as a syntactic sugar
to help readability.

2.2 Operational semantics
We briefly recall the operational semantics of the applied pi-calculus (see [3, 26] for details).
E is a set of equations on the signature Σ, defining an equivalence relation =E on T (N ),
which is closed under context. =E is meant to capture several representations of the same
message. This yields a quotient algebra T (N )/ =E , representing the messages. Predicate
symbols are interpreted as relations over T (N )/ =E . This yields a structure M.

STACS’11
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Φ1, Φ2 ::= conditions
p(s1, . . . , sn) predicate application
Φ1 ∧ Φ2 conjunction

P, Q, R ::= processes
c(x).P input
c(s).P output
0 terminated process
P � Q parallel composition
!P replication
(να)P restriction
if Φ then P else Q conditional

Figure 1 Syntax of processes

In what follows, we will consider the equational theory E0 on Σ0 defined by the equations
corresponding to encryption and pairing:

dec({x}z
y, y) = x π1(< x, y >) = x π2(< x, y >) = y

These equations can be oriented, yielding a convergent rewrite system: every term s has
a unique normal form s ↓.

We also consider the following predicates introduced in [26].

M checks that a term is well formed. Formally, M is unary and holds on a (ground)
term s iff s ↓ does not contain any projection nor decryption symbols and for any {u}r

v

subterm of s, v and r must be names. This forbids compound keys for instance.
EQ checks the equality of well-formed terms. EQ is binary and holds on s, t iff M(s), M(t)
and s ↓= t ↓: this is a strict interpretation of equality.
Psamekey is binary and holds on ciphertexts using the same encryption key: M |= Psamekey(s, t)
iff ∃k, u, v, r, r�.EQ(s, {u}r

k) ∧ EQ(t, {v}r�

k ).
EL is binary and holds on s, t iff M(s), M(t) and s, t have the same length.

� Example 2.1. The Wide Mouth Frog [22] is a simple protocol where a server transmits a
session key Kab from an agent A to an agent B. This toy example is also used in [1] as a
case study for both CryptoVerif and soundness techniques. For the sake of illustration, we
propose here a flawed version of this protocol.

A → S : A, B, {Na, Kab}Kas

S → B : A, {Ns, Kab}Kbs

The server is assumed to share long-term secret keys with each agent. For example, Kas

denotes the long-term key between A and the server. In this protocol, the agent A establishes
a freshly generated key Kab with B, using the server for securely transmitting the key to B.

A session la of role A played by agent a with key kas can be modeled by the process

A(a, b, kas, la) def= (νr, na) cout(< la, < a, < b, {< na, kab >}r
kas

>>>) · 0
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Similarly a session of role S played for agents a, b with corresponding keys kas and kbs, can
be modeled by

S(a, b, kas, kbs, ls) def= (νns, r) cin(x). if EQ(π1(x), ls) then let y = π2(dec(π2(π2(π2(x))), kas)) in
if π1(π2(x)) = a ∧ π1(π2(π2(x)) = b ∧ M(y) then
cout(< ls, < a, {< ns, y >}r

kbs
> >) · 0

else cout(⊥) · 0 else cout(⊥) · 0

where ls is the session identifier of the process.
Then an unbounded number of sessions of this protocol, in which A plays a (with b) and

s plays S (with a, b and also with b, c) can be represented by the following process

Pex = ν(kas, kbs) ( !((νkab, la)cout(la).A(a, b, kas, la, r))
� !((νls)cout(ls).S(a, b, kas, kbs, ls)) � !((νls)cout(ls).S(a, c, kas, kcs, ls)) )

To reflect the fact that c is a dishonest identity, its long-term key kcs shared with the server
does not appear under a restriction and is therefore known to an attacker.

The environment is modeled through evaluation context, that is a process C = (να)([·]�P )
where P is a process. We write C[Q] for (να)(Q � P ). A context (resp. a process) C is
closed when it has no free variables (there might be free names).

Possible evolutions of processes are captured by the relation →, which is the smallest
relation, compatible with the process algebra and such that:

(Com) c(x).P � c(s).Q → {x �→ s} � P � Q
(Cond1) if Φ then P else Q → P if M |= Φ
(Cond2) if Φ then P else Q → Q if M �|= Φ

∗−→ is the smallest transitive relation on processes containing −→ and some struc-
tural equivalence (e.g. reflecting the associativity and commutativity of the composition
operator �) and closed by application of contexts.

� Example 2.2. Continuing Example 2.1, we show an attack, that allows an attacker to
learn kab, the key exchanged between a and b. Indeed, an attacker can listen to the first
message < la, < a, < b, {< na, kab >}r1

kas
>>> and replace it with < la, < a, < c, {<

na, kab >}r1
kas

>>>. Thus the server would think that a wishes to transmit her key kab to
c. Therefore it would reply with < a, {< ns, kab >}r2

kcs
>. The attacker can then very easily

decrypt the message and learn Kab. This attack corresponds to the context

Cattack
def= [·] � cout(xla).cout(xls).cout(xma). //listens to sessions ids and the first message

let y = π2(π2(xma)) in
cin(< xls , < a, < c, y >>>). //replays the message, with b replaced by c

cout(xms). //listens to the server’s reply
let y� = dec(π2(π2(xms)), kcs) in cin(π2(y�)).0 //outputs the secret

Then the attack is reflected by the transitions Cattack[Pex] ∗−→ cout(kab) � Q for some process
Q, yielding the publication of the confidential key kab.
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2.3 Observational equivalence
Observational equivalence is useful to describe many properties such as confidentiality or
authentication as exemplified in [5]. It is also crucial for specifying privacy related properties
as needed in the context of electronic voting protocols [32].

� Definition 2.3. The observational equivalence relation ∼o is the largest symmetric relation
S on closed extended processes such that ASB implies:

1. if, for some context C, term s and process A�,
A

∗−→ C[c(s) · A�] then for some context C �, term s� and process B�, B
∗−→ C �[c(s�) · B�].

2. if A
∗−→ A� then, for some B�, B

∗−→ B� and A�SB�

3. C[A]SC[B] for all closed evaluation contexts C

� Example 2.4 (Group signature). The security of group signature has been defined in [7].
It intuitively ensures that an attacker should not be able to distinguish two signatures per-
formed with two distinct identities when they belong to the same group. It can be modeled
as observational equivalence as follows. Let P (x, i) be the protocol for signing message x
with identity i. Let P0 = c(y).P (π1(y), π1(π2(y))) and P1 = c(y).P (π1(y), π2(π2(y))). In-
tuitively, the adversary will send < m, < i0, i1 >> where m is a message to be signed and
i0, i1 are two identities. P0 signs m with i0 while P1 signs m with i1. Then P preserves
anonymity iff P0 ∼o P1.

2.4 Computational interpretation
We assume given an encryption scheme (G, E , D) where G is the generating function for
keys, E is the encryption function and D the decryption function. We also assume given a
pairing function. The encryption, decryption, and pairing functions and their corresponding
projectors form respectively the computational interpretation of the symbols {·}, dec, <, >
, π1, π2. We assume that the decryption and projection functions return an error message ⊥
when they fail. Then, given an interpretation τ of names as bitstrings, [[·]]τ is the (unique)
Σ-morphism extending τ to T (N ); [[t]]τ is the computational interpretation of t. When τ is
randomly drawn, according to a distribution that depends on a security parameter η, we
may write [[t]]η for the corresponding distribution and [[t]] for the corresponding family of
distributions. Then here are possible interpretations of the predicates:

[[M ]] is the set of bitstrings, which are distinct from ⊥. Intuitively [[M ]] implements M
if the encryption scheme is confusion-free (a consequence of INT-CTXT [42]).
[[EQ]] is the set of pairs of identical bitstrings, which are distinct from ⊥. It is an
implementation of EQ as soon as [[M ]] implements M .
[[Psamekey]] is the set of pairs of bitstrings that have the same encryption tag.
[[EL]] is the set of pairs of bitstrings of same length.

Processes can also be interpreted as communicating Turing machines. Such machines
have been introduced in [16, 38] for modeling communicating systems. They are probabilistic
Turing machines with input/output tapes. Those tapes are intuitively used for reading and
sending messages. We will not describe them here and we refer to [26] for more details.

Now, given a process P without replication, one can interpret it as a (polynomial time)
communicating Turing machine. The computational interpretation of P is denoted by [[P ]]
and is intuitively defined by applying the computational counterpart of each function and
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predicate symbols. Then the replicated process !P can also be interpreted by letting the
adversary play with as many copies of [[P ]] as he wants.

Indistinguishability. In computational models, security properties are often stated as in-

distinguishability of games. Two families of machines are indistinguishable if an adversary
cannot tell them apart except with non negligible probability.

A function f : N → N is negligible if, for every polynomial P , ∃N ∈ N, ∀η > N, f(η) <
1

P (η) . We write Pr{x : P (x)} the probability of event P (x) when the sample x is drawn
according to an appropriate distribution (the key distribution or the uniform distribution;
this is kept implicit).

� Definition 2.5. Two environments F and F � are indistinguishable, denoted by F ≈ F �,
if, for every polynomial time communicating Turing Machine A (i.e. for any attacker),

|Pr{r, r : (F(r) � A(r))(0η) = 1} − Pr{r, r : (F �(r) � A(r))(0η) = 1}|

is negligible. r is the sequence of random inputs of the machines in F (resp. F �), including
keys. r is the random input of the attacker.

For example, anonymity of group signatures as discussed in Example 2.4 is defined in [7]
through the following game: the adversary chooses a message m and two identities i0 and
i1. Then in F0, the machines sign m with identity i0 while in F1, the machines sign m with
identity i1. Then the anonymity is defined by F0 ≈ F1. Note that, for i = 1, 2, Fi can be
defined as [[Pi]], implementation of the process Pi of the Example 2.4.

More generally, security properties can be defined by specifying the ideal behavior Pideal of
a protocol P and requiring that the two protocols are indistinguishable. For example, in [4],
authenticity is defined through the specification of a process where the party B magically
received the message sent by the party A. This process should be indistinguishable from the
initial one.

3 Soundness results

Computational models are much more detailed than symbolic ones. In particular, the adver-
sary is very general as it can be any (polynomial) communicating Turing machine. Despite
the important difference between symbolic and computational models, it is possible to show
that symbolic models are sound w.r.t. computational ones.

3.1 A brief survey
There is a huge amount of work on simulatability/universal composability, especially the
work of Backes et. al. and Canetti [23, 13, 15, 11]. When the ideal functionality is the
symbolic version of the protocol, then the black-box simulatability implies the trace mapping
property [11], therefore showing a safe abstraction. Such results can be applied to trace
properties such as authentication but not to indistinguishability. In a recent paper [12],
Backes and Unruh show that the whole applied-pi calculus can be embedded in CoSP, a
framework in which they prove soundness of public-key encryption and digital signatures,
again for trace properties.

Besides [26], which we discuss in more detail below, one of the only results that prove
soundness for indistinguishability properties is [39], for some specific properties (see the end
of section 4 for more details).
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In a series of papers starting with Micciancio and Warinschi [43] and continued with e.g.
[31, 36], the authors show trace mapping properties: for some selected primitives (public-key
encryption and signatures in the above-cited papers) they show that a computational trace
is an instance of a symbolic trace, with overwhelming probability. But, again, this does not
show that indistinguishability properties can be soundly abstracted, except for the special
case of computational secrecy that can be handled in [31] and also in [29] for hash functions
in the random oracle model.

We refer to [30] for a more complete survey of soundness results.

3.2 Observational equivalence implies indistinguishability
The main result of [26] consists in establishing that observational equivalence implies indis-
tinguishability:

� Theorem 3.1. Let P1 and P2 be two simple processes such that each Pi admits a key

hierarchy. Assume that the encryption scheme is joint IND-CPA and INT-CTXT. Then

P1 ∼o P2 implies that [[P1]] ≈ [[P2]].

This result assumes some hypotheses, some of which are explicitly stated above and
informally discussed below (the reader is referred to [26] for the full details). There are
additional assumptions, that are discussed in more details in the next section.

Simple processes are a fragment (introduced in [26]) of the applied-pi calculus. It intuitively
consists of parallel composition of (possibly replicated) basic processes, that do not involve
replication, parallel composition or else branches. Simple processes capture most protocols
without else branch, for an unbounded number of sessions. For example, the process Pex
introduced in Example 2.1 is a basic process.

The most annoying restriction is the absence of conditional branching. Ongoing works
should overcome this limitation, at the price of some additional computational assumptions.
But the extension to the full applied π-calculus is really challenging, because of possible
restrictions on channel names. Such restrictions indeed allow “private” computations, of
which an attacker only observes the computing time (which is not part of the model).

Key hierarchy ensures that no key cycles can be produced on honest keys, even with the
interaction of the adversary. This hypothesis is needed because current security assumptions
such as IND-CPA do not support key cycles (most encryption schemes are not provably
secure in the presence of key cycles). In [26], it is assumed that there exists a strict ordering
on key such that no key encrypts a greater key.

Checking such conditions, for any possible interaction with the attacker, is in general
undecidable, though a proof can be found in many practical cases. (And it becomes decid-
able when there is no replication [27]).

No dynamic corruption assumes that keys are either immediately revealed (e.g. corrupted
keys) or remain secret. Showing a soundness result in case of dynamic key corruption is
a challenging open question, that might require stronger assumptions on the encryption
scheme.

IND-CPA and INT-CTXT are standard security assumptions on encryption schemes. The
IND-CPA assumption intuitively ensures that an attacker cannot distinguish the encryption
of any message with an encryption of zeros of the same length. INT-CTXT ensures that an
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adversary cannot produce a valid ciphertext without having the encryption key. IND-CPA
and INT-CTXT are standard security assumptions [18].

4 Current limitations

We discuss in this section the additional assumptions of Theorem 3.1. Let us emphasize
that such assumptions are not specific to this result: other soundness results have similar
restrictions and/or provide with a weaker result.

4.1 Parsing
Parsing the bitstrings into terms is used in the proof of the soundness results; this function
has actually to computable in polynomial time, since this is part the construction of a
Turing machine used in a reduction. Therefore, Theorem 3.1 assumes that the pairing, key
generation and encryption functions add a typing tag (which can be changed by the attacker),
that indicates which operator has been used and further includes which key is used in case of
encryption. This can be achieved by assuming that a symmetric key k consists of two parts
(k1, k2), k1 being generated by some standard key generation algorithm and k2 selected at
random. Then one encrypts with k1 and tags the ciphertext with k2.

These parsing assumptions are easy to implement and do not restrict the computational
power of an adversary. Adding tags can only add more security to the protocol. However,
current implementations of protocols do not follow these typing hypotheses, in particular
regarding the encryption. Therefore Theorem 3.1 requires a reasonable but non standard
and slightly heavy implementation in order to be applicable.

The parsing assumption might be not necessary. There are ongoing works trying to drop
it.

4.2 Length function
As explained in Section 2, Theorem 3.1 assumes the existence of a length function l, which
is a morphism from T (N ) to N. This length function is needed to distinguish between
ciphertexts of different lengths. For example, the two ciphertext {< n1, n2 >}k and {n1}k

should be distinguishable while {< n1, n2 >}k and {< n1, n1 >}k should not. There are
however cases where it is unclear whether the ciphertexts should be distinguishable or not:

νk.cout({< n1, n2 >}k) ?∼o νk.cout({{n1}k}k).

Whether these two ciphertexts are distinguishable typically depends on the implementation
and the security parameter: their implementation may (or not) yield bitstrings of equal
length. However, for a soundness result, we need to distinguish (or not) these ciphertexts
independently of the implementation.
In other words, if we let length be the length of a bitstring, we (roughly) need the equivalence:

l(s) = l(t) iff ∀τ. length([[s]]τ ) = length([[t]]τ )

This requires some length-regularity of the cryptographic primitives. But even more,
this requires length to be homogenous w.r.t. the security parameter η. To see this, consider
the case where length is an affine morphism:

length([[{t1}r
k]]τ ) = length([[t1]]τ ) + γ × η + α

length([[< t1, t2 >]]τ ) = length([[t1]]τ ) + length([[t2]]τ ) + β

length(τ(n)) = δ × η
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where β cannot be null since some bits are needed to mark the separators between the two
strings [[t1]] and [[t2]]. (Also, γ, δ > 0.)

Now, if we consider an arbitrary term t, length([[t]]τ ) = n1×γ×η+n1×α+n2×β+n3×δ×η.
length([[s]]τ )
length([[t]]τ ) must be independent of η, hence there must exist α�, β� ∈ N, β� > 0 such that
α = α� × η and β = β� × η .

This implies in particular that the pairing function always adds η bits (or a greater
multiple of η) to the bitstrings. Similarly, a ciphertext should be the size of its plaintext
plus a number of bits which is the a multiple of η.

While it is possible to design an implementation that achieves such constraints, this is
not always the case in practice and it may yield a heavy implementation, in particular in
conjunction with the parsing assumptions. Moreover, on the symbolic side, adding a length
function raises non trivial decidability issues.

Adding a symbolic length function is needed for proving indistinguishability as illustrated
by the former examples. It is worth noticing that several soundness results such as [13, 15,
31, 29, 12] do not need to consider a length function. The reason is that they focus on
trace properties such as authentication but they cannot considered indistinguishability-based
properties (except computational secrecy for some of them).

4.3 Dishonest keys
Theorem 3.1 assumes the adversary only uses correctly generated keys. In particular, the
adversary cannot choose his keys at its will, depending on the observed messages. The
parties are supposed to check that the keys they are using have been properly generated.
The assumption could be achieved by assuming that keys are provided by a trusted server
that properly generates keys together with a certificate. Then when a party receives a key,
it would check that it comes with a valid certificate, guaranteeing that the key has been
issued by the server. Of course, the adversary could obtain from the server as many valid
keys as he wants.

However, this assumption is strong compared to usual implementation of symmetric keys
and it is probably the less realistic assumptions among those needed for Theorem 3.1. We
discuss alternative assumptions at the end of this section. It is worth noticing that in all
soundness results for asymmetric encryption, it is also assumed that the adversary only uses
correctly generated keys. Such an assumption is more realistic in an asymmetric setting as a
server could certify public keys. However, this does not reflect most current implementations
for public key infrastructure, where agents generate their keys on their own.

We now explain why such an assumption is needed to obtain soundness.The intuitive
reason is that IND-CCA does not provide any guarantee on the encryption scheme when
keys are dishonestly generated.

� Example 4.1. Consider the following protocol. A sends out a message of the form {c}Kab

where c is a constant. This can be formally represented by the process

A = (νr)cout(< c, {c}r
kab

>).0

Then B expects a key y and a message of the form {{b}y}Kab where b is the identity of B,
in which case, it sends out a secret s (or goes in a bad state).

A → B : (νr) c, {c}r
Kab

B : k, {{b}k}Kab → A : s
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This can be formally modeled by the process

B = cin(z). if EQ(b, dec(dec(π2(z), kab), π1(z)) then cout(s) else 0

Then symbolically, the process (νkab)(νs)A�B never emits s. However, a computational
adversary can forge a key k such that any bitstring can be successfully decrypted to b
using k. In particular, at the computational level, we have dec(c, k) = b. Thus by sending
< k, {c}r

kab
> to B, the adversary would obtain the secret s.

This is due to the fact that security of encryption schemes only provides guarantees on
properly generated keys. More precisely, given an IND-CCA2 (authenticated) encryption
scheme (G, E , D), it is easy to build another IND-CCA2 (authenticated) encryption scheme
(G�, E �, D�), which allows to mount the previous attack: consider G� = 0 · G (all honest keys
begin with the bit 0), E �(m, i.k) = E(m, k) for i ∈ {0, 1} and D� defined as follows:

D�(c, k) = D(c, k�) if k = 0 · k�

D�(c, k) = k� if k = 1 · k�

It is easy to check that (G�, E �, D�) remains IND-CCA2 and allows an adversary to choose a
key that decrypts to anything he wants.

To capture this kind of computational attacks, an idea (from M. Backes [10]) is to enrich
the symbolic setting with a rule that allows an intruder, given a ciphertext c and a message
m, to forge a key such that c decrypts to m. This could be modeled e.g. by adding a
functional symbol fakekey of arity 2 together with the equation

dec(x, fakekey(x, y)) = y

Going back to Example 4.1, this would allow a symbolic intruder to send the message
< fakekey(c, b), {c}r

kab
> to the B process and the process (νkab)(νs)A�B would emit s.

This solution appears however to be insufficient to cover the next examples.

� Example 4.2 (hidden cyphertext). The same kind of attacks can be mounted even when
the ciphertext is unknown to the adversary. We consider a protocol where A sends <<
A, k >, {{k�}r�

k }r
kab

> where k and k� are freshly generated keys. B recovers k� and sends it
encrypted with kab. In case A receives her name encrypted with kab, A emits a secret s.

A → B : (νk, k�, r1, r2) A, k, {{k�}r1
k }r2

Kab

B → A : (νr3) {k�}r3
Kab

A : {A}Kab → B : s

Then symbolically, the process (νkab)(νs)A�B would never emit s while again, a com-
putational adversary can forge a key k such that any bitstring can be successfully decrypted
to a using k.

This attack could be captured, allowing the forged key to be independent of the cipher-
text. This can be modeled by the equation

dec(x, fakekey(y)) = y

where fakekey is now a primitive of arity 1. Some attacks may however require the decryption
to depend from the cyphertext as shown in the next example.

� Example 4.3 (simultaneous cyphertexts). Consider the following protocol where A sends to
B p cyphertexts c1, . . . , cp. Then B encrypts all ciphertexts with a shared key kab together

STACS’11



40 How to prove security of communication protocols?

with a fresh value nb and commits to p other nonces N1, . . . , Np. Then A simply forwards
the cyphertext together with a fresh key k. Then B checks whether each cyphertext ci

decrypts to Ni using the key k received from A, in which case he sends out a secret s.
A → B : c1, . . . , cp

B → A : {Nb, c1, . . . , cp}Kab , N1, . . . , Np

A → B : {Nb, c1, . . . , cp}Kab , k

B : {Nb, {N1}k, . . . , {Np}k}Kab , k → A : s

Then symbolically, the process (νkab)(νs)A�B would never emit s since the Ni are gener-
ated after having received the ci and the nonce Nb protects the protocol from replay attacks.
However, having seen the ci and the Ni, a computational adversary can forge a key k such
that each bitstring ci can be successfully decrypted to Ni using k. More precisely, given an
IND-CCA2 (authenticated) encryption scheme (G, E , D), it is easy to build another IND-
CCA2 (authenticated) encryption scheme (G�, E �, D�), which allows to mount the previous
attack. Indeed, consider G� = 0·G (all honest keys begin with the bit 0), E �(m, i.k) = E(m, k)
for i ∈ {0, 1} and D� defined as follows:

D�(c, k) = D(c, k�) if k = 0 · k�

D�(c, k) = n if k = 1 · c1, n1, · · · c, n · · · cp, np

D�(c, k) = ⊥ otherwise
For dishonest keys, the decryption function D�(c, k) searches for c in k and outputs the
following component when c is found in k. It is easy to check that (G�, E �, D�) remains IND-
CCA2 and allows an adversary to chose a key that decrypts to anything he wants, but with
different possible outputs depending on the ciphertext.

To capture this attack, we need to consider a symbol of arity 2p for any p and an equation
of the form

dec(xi, fakekey(x1, . . . , xp, y1, . . . , yp)) = yi

But this is still not be sufficient as the outcome may also depend on the ciphertext that is
under decryption and on public data. Intuitively, decrypting with an adversarial key may
produce a function depending on the underlying plaintext and on any previously known
data.
Related work. To our best understanding of [13], these examples seem to form counter-
examples of the soundness results for symmetric encryption as presented in [13]. An implicit
assumption that solves this issue [10] consists in forbidding dishonest keys to be used for
encryption or decryption (the simulator would stop as soon as it received a dishonest keys).
As a consequence, only protocols using keys as nonces could be proved secure.

The only work overcoming this limitation in a realistic way is the work of Kuesters
and Tuengerthal [39] where the authors show computational soundness for key exchange
protocols with symmetric encryption, without restricting key generation for the adversary.
Instead, they assume that sessions identifiers are added to plaintexts before encryption. This
assumption is non standard but achievable. It would however not be sufficient in general
as shown by the examples. In their case, such an assumption suffices because the result is
tailored to key exchange protocols and realization of a certain key exchange functionality.

5 Conclusion

Among all the limitations we discuss in this paper, the main one is to consider only honestly
generated keys (or a certifying infrastructure), which is completely unrealistic. There are
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(at least) two main ways to overcome this assumption. A first possibility, already sketched
in the paper, consists in enriching the symbolic model by letting the adversary create new
symbolic equalities when building new (dishonest) keys. In this way, many protocols should
still be provably secure under the IND-CCA assumption, yet benefiting from a symbolic
setting for writing the proof.

A second option is to seek for stronger security assumptions by further requesting non-
malleability. The idea is that a ciphertext should not be opened to a different plaintext,
even when using dishonest keys. This could be achieved by adding a commitment to the
encryption scheme [35].

However all these limitations also demonstrate that it is difficult to make symbolic and
computational models coincide. Even for standard security primitives, soundness results
are very strong since they provide with a generic security proof for any possible protocol
(contrary to CryptoVerif). For primitives with many algebraic properties like Exclusive Or
or modular exponentiation, the gap between symbolic and computation models is even larger
and would require a lot of efforts.

We still believe that computational proofs could benefit from the simplicity of symbolic
models, yielding automated proofs. An alternative approach to soundness results could
consist in computing, out of a given protocol, the minimal computational hypotheses needed
for its security. This is for example the approach explored in [17], though the symbolic model
is still very complex.
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Abstract Many generic constructions for building secure cryptosystems from primi-
tives with lower level of security have been proposed. Providing security proofs has
also become standard practice. There is, however, a lack of automated verification
procedures that analyze such cryptosystems and provide security proofs. In this
paper, we present a sound and automated procedure that allows us to verify that
a generic asymmetric encryption scheme is secure against chosen-plaintext attacks
in the random oracle model. It has been applied to several examples of encryption
schemes among which the construction of Bellare–Rogaway 1993, of Pointcheval at
PKC’2000.

Keywords Provable cryptography · Asymmetric encryption ·
Automated verification · Hoare logic

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to manip-
ulate it securely. This requires solutions based on cryptographic systems (primitives
and protocols). In 1976, Diffie and Hellman invented public-key cryptography [15],
coined the notion of one-way functions and discussed the relationship between
cryptography and complexity theory. Shortly after, the first cryptosystem with a
reductionist security proof appeared [20]. The next breakthrough towards formal
proofs of security was the adoption of computational theory for the purpose of
rigorously defining the security of cryptographic schemes. In this framework, a
system is provably secure if there is a polynomial-time reduction proof from a
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hard problem to an attack against the security of the system. The provable security
framework has been later refined into the exact (also called concrete) security frame-
work where better estimates of the computational complexity of attacks is achieved.
While research in the field of provable cryptography has achieved tremendous
progress towards rigorously defining the functionalities and requirements of many
cryptosystems, little has been done for developing computer-aided proof methods
or more generally for investigating a proof theory for cryptosystems as it exists for
imperative programs, concurrent systems, reactive systems, etc.

In this paper, we present an automated proof method for analyzing generic asym-
metric encryption schemes in the random oracle model (ROM). Generic encryption
schemes aim at transforming schemes with weak security properties, such as one-
wayness, into schemes with stronger security properties, specifically security against
chosen ciphertext attacks. Examples of generic encryption schemes are [7, 8, 13, 18,
19, 21, 23, 25]. In this paper we propose a compositional Hoare logic for proving
IND-CPA security. An important feature of our method is that it is not based on a
global reasoning as it is the case for the game-based approach [9, 22]. Instead, it is
based on local reasoning. Indeed, both approaches can be considered complementary
as the Hoare logic-based one can be considered as aiming at characterizing by
means of predicates the set of contexts in which the game transformations can be
applied safely. In future work [11], we also present a method for proving plaintext
awareness (PA). Plaintext awareness together with IND-CPA security imply IND-
CCA security [3]. Combining the results of this paper with plaintext awareness, leads
to a proof method for verifying the constructions in [7, 18, 19].

Related work We restrict our discussion to work aiming at providing computa-
tional proofs for cryptosystems. In particular, this excludes symbolic verification.
We mentioned above the game-based approach [9, 17, 22]. B. Blanchet and D.
Pointcheval developed a dedicated tool, CryptoVerif, that supports security proofs
within the game-based approach [5, 6]. From the theoretical point of view, the main
differences in our approaches are the following. CryptoVerif is based on observa-
tional equivalence. The equivalence relation induces rewriting rules applicable in
contexts that satisfy some properties. Invariants provable in our Hoare logic can be
considered as logical representations of these contexts. Moreover, as we are working
with invariants, that is we follow a state-based approach, we need to prove results
that link our invariants to game-based properties such as indistinguishability (cf.
Propositions 1 and 3). G. Barthe, J. Cederquist and S. Tarento were among the first
to provide machine-checked proofs of cryptographic schemes without relying on the
perfect cryptography hypothesis. They have provided formal models of the Generic
Model and the Random Oracle Model in the Coq proof assistant, and used this
formalization to prove hardness of the discrete logarithm [1], security of signed El-
Gamal encryption against interactive attacks [10], and of Schnorr signatures against
forgery attacks [24]. Recently in [4], the authors have been developing CertiCrypt,
which provides support for formalizing game-based proofs in the Coq proof assistant.
They have used their formalization to give machine-checked proofs of IND-CPA
for OAEP. Another interesting piece of work to mention is the Hoare-style proof
system proposed by R. Corin and J. Den Hartog for game-based cryptographic proofs
[12]. Yet, there is no computer-assistance for the developed logic. In [14], Datta
et al. present a computationally sound compositional logic (PCL) for key exchange
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protocols. PCL has been applied successfully to the IEEE 802.11i wireless security
standard and the IETF GDOI standard. PCL is a computationally sound Hoare-
like logic for indistinguishability; one important difference is that, being focused on
protocols, PCL does not provide support for standard cryptographic constructions
such as one-way functions.

Outline In Section 2, we introduce notions used in the rest of the paper. In Section 3
we define our programming language and generic asymmetric encryption schemes.
In Section 4, we present our Hoare logic for proving IND-CPA security. In Section 5,
we explain how we can automate our procedure. Finally we conclude in Section 6 .

2 Preliminaries

In this section, we recall some basic definitions as well as poly-time indistinguisha-
bility. To do so, let us first introduce the following notations. If d is a distribution
over a set E, we use v

r← d to denote that an element v ∈ E is sampled according to
distribution d. Moreover, as usual, if d1, . . . , dn are distributions, [u1

r← d1; . . . ; un
r←

dn : (ui1 , . . . , uik)] denotes the distribution obtained by performing the samplings in
the order they are written and returning the result which is specified after the semi-
colon.

We are interested in analyzing generic schemes for asymmetric encryption assum-
ing ideal hash functions. That is, we are working in the random oracle model [7, 16].
Using standard notations, we write H

r← ! to denote that H is chosen uniformly at
random from the set of functions with appropriate domain. By abuse of notation, for
a list H = H1, · · · , Hn of hash functions, we write H r← ! instead of the sequence
H1

r← !, . . . , Hn
r← !. We fix a finite set {H1, . . . , Hn} of hash functions and also a

finite set " of trapdoor permutations. We assume an arbitrary but fixed ordering on
" and H; this allows us to freely switch between set-based and vector-based notation.
A distribution ensemble is a countable sequence of distributions {Xη}η∈ over states,
H and ". We only consider distribution ensembles that can be constructed in
polynomial time in η by probabilistic algorithms that have oracle access to H—
this set is formally defined in the next section. Given two distribution ensembles
X = {Xη}η∈ and X ′ = {X ′

η}η∈ , an algorithm A and η ∈ , we define the advantage
of A in distinguishing Xη and X ′

η as the following quantity:

!"#(A, η, X, X ′) =
∣∣∣$%

[
x

r← Xη : AH(x) = 1
]

− $%
[
x

r← X ′
η : AH(x) = 1

]∣∣∣

The probabilities are taken over X and the random coins used by the probabilistic
adversary A. We insist, above, that for each hash function H, the probabilities are
indeed taken over the set of maps with the appropriate type. Two distribution ensem-
bles X and X ′ are called indistinguishable, denoted by X ∼ X ′, if !"#(A, η, X, X ′)
is negligible as a function of η, for any polynomial-time (in η) probabilistic algorithm
A. All security notions we are going to use are in the ROM, where all algorithms,
including adversaries, are equipped with oracle access to the hash functions.
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3 A Simple Programming Language for Encryption and Decryption Oracles

In this section, we fix a notation for specifying encryption schemes. The notation we
choose is a simple imperative language with random assignment. The language does
not include loops since loops are usually not used for generic encryption schemes.
Moreover, whereas the language allows the application of a trapdoor permutation f ,
it does not include the application of the inverse of a permutation. This choice is due
to the fact that our analysis is carried out on encryption algorithms only, which, in
the case of generic encryption schemes, seldom use permutation inverses.

Let &'% be a finite set of variables. We assume that &'% is large enough to deal
with the considered examples. It should be obvious that our results do not depend on
the size of &'%. Our programming language is built according to the following BNF
described in Table 1, where:

– x
r← U samples a value in Uη and assigns it to x. Here, (Uη)η is the family of

uniform distributions over the set of bit-strings of length τ (x, η), where τ (x, η) is
a polynomial in η.

– x := f (y) applies the trapdoor one-way function f to the value of y and assigns
the result to x.

– x := H(y) applies the hash function H to the value of y and assigns the result to
x. As a side effect, the pair (v, H(v)), where v is the value of y, is added to the
variable H which stores the queries to the hash function H.

– x := y ⊕ z applies the exclusive or operator to the values of y and z and assigns
the result to x.

– x := y||z represents the concatenation of the values of y and z.
– c1; c2 is the sequential composition of c1 and c2.
– N (x, y) : var x1; · · · ; xn; ( is a procedure declaration, where N is its name

(identifier for encryption or decryption procedure), var x1; · · · ; xn; declares the
local variables x1, · · · , xn, ( is the body of the procedure and x and y are the
input and output variables, respectively.

Example 1 The following command encodes the encryption scheme proposed by
Bellare and Rogaway in [7] (shortly f (r)||ine ⊕ G(r)||H(ine||r)):

E(ine, oute) :
var r; a; g; b ; s; c;
r

r← {0, 1}η; a := f (r); g := G(r);
b := ine ⊕ g; s := ine||r; c := H(s);
oute := (a||b)||c; (where f ∈ " and G, H ∈ H)

Semantics In addition to the variables in &'%, we consider variables H1 , . . . , Hn .
Variable Hi is used to record the queries to the hash function Hi. Thus, we consider
states that assign bit-strings to the variables in &'% and lists of pairs of bit-strings to

Table 1 Language grammar

Command ( ::= x
r← U | x := f (y) | x := H(y) | x := y ⊕ z| x := y||z | c; c

Oracle declaration O ::= N (x, y) : var x1; · · · ; xn; (
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Hi . Let H = { H1 , . . . , Hn }. The reader should notice that the variables in H
are not in &'%, and hence, cannot occur in commands.

We assume that all variables range over bit-strings (or pairs of bit-strings) with
polynomial size in the security parameter η, so that domains of the variables in
&'% have a cardinality exponential in η. Given a state S, S( H).")*, respectively
S( H).%+,, denotes the list obtained by projecting each pair in S( H) to its first,
respectively second, element. Also we extend S(·) to expressions in the usual way,
for instance S(y ⊕ z) = S(y) ⊕ S(z), etc.

A program takes as input a conf iguration (S, H, ( f, f −1)) and yields a distribution
on configurations. A configuration is composed of a state S, a vector of hash functions
(H1, . . . , Hn) and a pair ( f, f −1) of a trapdoor permutation and its inverse, drawn
thanks to a generator denoted . Let % denote the set of configurations and Dist(%)

the set of distributions on configurations. The semantics is given in Table 2, where
δ(x) denotes the Dirac measure, i.e. $%[x] = 1 and S( H) · (S(y), v) denotes the
concatenation to H of a query to the hash function and its answer. Notice that
the semantic function of commands can be lifted in the usual way to a function
from Dist(%) to Dist(%). That is, let F : % → Dist(%) be a function. Then, F defines
a unique function F∗ : Dist(%) → Dist(%) such that F∗(D) = [γ r← D; γ ′ r← F(γ ) :
γ ′]. By abuse of notation we also denote the lifted semantics by [[(]].

It is easy to prove that commands preserve the values of H and ( f, f −1).
Therefore, we can, without ambiguity, write S′ r← [[c]](S, H, ( f, f −1)) instead of
(S′, H, ( f, f −1))

r← [[c]](S, H, ( f, f −1)). According to our semantics, commands de-
note functions that transform distributions on configurations to distributions on
configurations. However, only distributions that are constructible are of interest.

A family X of distributions is called constructible, if there is an algorithm A such
that

Xη =
[
( f, f −1)

r← (1η); H r← !; S
r← AH( f, 1η) : (S, H, f, f −1)

]
,

where is a trapdoor permutation generator that on input η generates an η-bit-string
trapdoor permutation pair ( f, f −1), and A is a poly-time probabilistic algorithm with
oracle access to the hash function, and such that A’s queries to the hash oracles are
recorded in the lists H ’s in S. The latter condition should not be understood as a
restriction on the set of considered adversaries. Indeed, it does not mean that the
adversaries need to honestly record their queries in the H lists. It rather means that
in our reduction proofs, when we simulate such adversaries, we need to record their

Table 2 The semantics of the programming language

[[x r← U]](S, H, ( f, f −1)) = [u r← U : (S{x )→ u}, H, ( f, f −1))]
[[x := f (y)]](S, H, ( f, f −1)) = δ(S{x )→ f (S(y))}, H, ( f, f −1))

[[x := H(y)]](S, H, ( f, f −1)) ={
δ(S{x )→ v}, H, ( f, f −1)) if (S(y), v) ∈ H
δ(S{x )→ v, H )→ S( H) · (S(y), v)}, H, ( f, f −1)) if (S(y), v) *∈ H and v = H(H)(S(y))

[[x := y ⊕ z]](S, H, ( f, f −1)) = δ(S{x )→ S(y) ⊕ S(z)}, H, ( f, f −1))

[[x := y||z]](S, H, ( f, f −1)) = δ(S{x )→ S(y)||S(z)}, H, ( f, f −1))

[[c1; c2]] = [[c2]] ◦ [[c1]]
[[N (x, y) : var x; c]](S, H, ( f, f −1)) = ([[c]](S, H, ( f, f −1))){x )→ S(x)}
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queries. We emphasize that the algorithm denoted above by A can, but does not
necessarily represent (only) an adversary, e.g. it can be the sequential composition
of an adversary and a command. We denote by Dist(%, H, ) the set of constructible
families of distributions. Distributions that are element of a constructible family of
distributions are called constructible too.

Notice that [[c]](X) ∈ Dist(%, H, ), for any command c and X ∈ Dist(%, H, ).

3.1 Generic Asymmetric Encryption Schemes

We are interested in generic constructions that convert any trapdoor permutation
into a public-key encryption scheme. More specifically, our aim is to provide an
automatic verification method for generic encryption schemes.

Definition 1 A pair ( ,E(ine, oute) : var x; () defines a generic encryption scheme,
where:

– is a trapdoor permutation generator that on input η generates an η-bit-string
trapdoor permutation pair ( f, f −1),

– E(ine, oute) : var x; ( is a procedure declaration that describes the encryption
algorithm. The variables in x are the local variables of the encryption algorithm.
We require that the outcome of E(ine, oute) only depends on the value of
ine. Formally, for a triple (S, H, ( f, f −1)), let Out(S, H, ( f, f −1)) denote the
distribution:

[
(S′, H, ( f, f −1))

r← [[E(ine, oute)]](S, H, ( f, f −1)) : S′(oute)
]
.

Then, we require that Out(S, H, ( f, f −1)) = Out(S′, H, ( f, f −1)) holds, for
every states S and S′ such that S(ine) = S′(ine).

Let S0 be the state that associates the bit-string 0τ (x,η), for any variable x ∈ &'% that
ranges over {0, 1}τ (x,η), and the empty list [ ] with each variable in H . Then, the usual
definition of the IND-CPA security criterion (e.g. see [3]) can be stated as follows:

Definition 2 Let GE = ( ,E(ine, oute) : var x; () be a generic encryption scheme
and A = (A1,A2) be an adversary. For η ∈ , let

!"#ind−cpa
A,GE (η) = |2.$%[( f, f −1)

r← (1η); H r← !;
(m0, m1, σ )

r← AH
1 ( f );

b
r← {0, 1};

S′ r← [[E(ine, oute)]](S0{ine )→ mb }, H, ( f, f −1)) :
AH

2 ( f, m0, m1, σ, S′(oute)) = b ] − 1|

We insist, above, that A1 outputs bit-strings m0, m1 such that |m0| = |m1|, and an
internal state σ to be forwarded to its guess-phase A2.
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We say that GE is IND-CPA secure if !"#ind−cpa
A,GE (η) is negligible for any

polynomial-time adversary A.

Notice that because of the condition put on generic encryption schemes, the choice
of the state S0 is not crucial. In other words, we can replace S0 by any other state,
we then get the same distribution of S′(oute) as a result. In fact, an equivalent
formulation of Definition 2, consists in considering that the 1st-phase adversary A1

outputs a state S, such that messages m0 and m1 are stored in variables x0 and x1 and
that σ is stored in variable xσ :

!"#ind−cpa
A,GE (η) = |2.$%[( f, f −1)

r← (1η); H r← !;
S

r← AH
1 ( f );

b
r← {0, 1};

S′ r← [[E(ine, oute)]](S{ine )→ s(xb )}, H, ( f, f −1)) :
AH

2 ( f, S(x0), S(x1), S(xσ ), S′(oute)) = b ] − 1|

Thus, we arrive at the following more appropriate equivalent definition of IND-
CPA:

Definition 3 Let GE = ( ,E(ine, oute) : var x; () be a generic encryption scheme
and A be an adversary and X ∈ Dist(%, H, ). For η ∈ , let

!"#ind−cpa
A,GE (η, Xη) = 2.$%[(S, H, ( f, f −1))

r← Xη; b
r← {0, 1};

S′ r← [[E(ine, oute)]](S{ine )→ S(xb )}, H, ( f, f −1)) :
AH( f, S(x0), S(x1), S(sσ ), S′(oute)) = b ] − 1

We say that GE is IND-CPA secure, if !"#ind−cpa
A,GE (η, Xη) is negligible for any

constructible distribution ensemble X and polynomial-time adversary A.

4 A Hoare Logic for IND-CPA Security

In this section, we present our Hoare logic for proving IND-CPA security. We
prove that the presented logic is sound. In addition to axioms that deal with each
basic command and operation, random assignment, concatenation, xor, etc..., our
logic includes the usual sequential composition and consequence rules of the Hoare
logic. In order to apply the consequence rule, we use entailment (logical implication)
between assertions as in Lemma 2.

Our Hoare logic can be easily transformed into a procedure that allows us to
prove properties by computing invariants of the encryption oracle. More precisely,
the procedure annotates each control point of the encryption command with a set
of predicates that hold at that point for any execution. Given an encryption oracle
E(ine, oute) : var x; ( we want to prove that at the final control point, we have an
invariant that tells us that the value of oute is indistinguishable from a random value.
Classically, this implies IND-CPA security.
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First, we present the assertion language we use to express the invariant properties
we are interested in. Then, we present a set of rules of the form {ϕ}({ϕ′}, meaning
that execution of command ( in any distribution that satisfies ϕ leads to a distribution
that satisfies ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}({ϕ′} is
valid. From now on, we suppose that the adversary has access to the hash functions
H, and he is given the trapdoor permutation f , but not its inverse f −1.

4.1 The Assertion Language

Before specifying the assertion language, we give a few definitions and notations that
we use to define the predicates of the language.

Definition 4 The set of variables used as substring of an expression e is denoted
,-.#'%(e): x ∈ ,-.#'%(e) iff e = x or e = e1||e2 and x ∈ ,-.#'%(e1) ∪ ,-.#'%(e2), for
some expressions e1 and e2.

For example, consider the following expression: e = (R||(ine|| f (R||r)))||g ⊕ G(R).
Here, ,-.#'%(e) = {R, ine}, but r, g /∈ ,-.#'%(e).

Definition 5 Let X be a family of distributions in Dist(%, H, ) and V1 and V2 be
sets of local variables or variables in &'%. By D(X, V1, V2) we denote the following
distribution family (on tuples of bit-strings):

D(X, V1, V2)η =
[
(S, H, ( f, f −1))

r← Xη : (S(V1), f (S(V2)), H, f )
]

Here S(V1) is the point-wise application of S to the elements of V1 and f (S(V2)) is
the point-wise application of f to the elements of S(V2). We say that X and X ′ are
V1; V2-indistinguishable, denoted by X ∼V1;V2 X ′, if D(X, V1, V2) ∼ D(X ′, V1, V2).

We emphasize that in the above definition, we have that V1, V2 ⊆ &'%, and since
for any i ∈ {1, . . . , n}, Hi *∈ &'%, we get Hi *∈ V1 ∪ V2 for any i ∈ {1, . . . , n}. Hence,
every time we use the equivalence ∼V1;V2 , the variables Hi are not given to the
adversary.

Example 2 Let S0 be any state and let H1 be a hash function. Recall that we are
working in the ROM. Consider the following distributions: Xη = [β; S := S0{x )→
u, y )→ H1(u)} : (S, H, ( f, f −1))] and X ′

η = [β; u′ r← {0, 1}η; S := S0{x )→ u, y )→
H1(u′)} : (S, H, ( f, f −1))], where β = H r← !; ( f, f −1)

r← (1η); u
r← {0, 1}η. Then,

we have X ∼{y};{x} X ′ but we do not have X ∼{y,x};∅ X ′, because then the adversary
can query the value of H1(x) and match it to that of y.

Definition 6 We write νx · Xη to denote the following distribution:

[
v

r← Uη; (S, H, ( f, f −1))
r← Xη : (S{x )→ v}, H, ( f, f −1))

]
,
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We recall that U is the family of uniform distributions on the values on which
x ranges. We lift this notation to families of distributions in usual way: νx.X =
(νx.Xη)η∈ .

Our assertion language is defined by the following grammar, where ψ defines the
set of atomic assertions:

ψ ::= /0"1,(νx; V1; V2) | 23(x; V1; V2) | 4(H, e)
ϕ ::= 5%-+ | ψ | ϕ ∧ ϕ,

where V1, V2 ⊆ &'% and e is an expression constructible (by the adversary) out of the
variables used in the program, that is to say, possibly using concatenation, xor, hash
oracles or f .

Intuitively, /0"1,(νx; V1; V2) is satisfied by a distribution on configurations, if
given values of variables in V1 and images by f of values of variables in V2, any
polynomial adversary in η has negligible probability to distinguish between the fol-
lowing two distributions: first, the distribution resulting of computations performed
using the original value of x as is in X, secondly, the distribution resulting from
computations performed replacing everywhere the value of x by a random value
of the same length as x. In Section 4.4, in order to analyze schemes using one-way
functions f that are not permutations, we generalize the predicate /0"1, into /0"1, f .
The predicate /0"1, f models the fact that the adversary cannot distinguish between
the value of a variable and the image by f of a random value sampled uniformly. The
assertion 23(x; V1; V2) stands for Weak Secret and is satisfied by a distribution, if
any adversary has negligible probability to compute the value of x, when he is given
the values of the variables in V1 and the image by the one-way permutation of those
in V2. Lastly, 4(H, e) is satisfied when the probability that the value of e has been
submitted to the hash oracle H is negligible.

Notations We use /0"1,(νx; V) instead of /0"1,(νx; V;∅) and /0"1,(νx) instead of
/0"1,(νx;&'%). Similarly 23(x; V) stands for 23(x; V; ∅).

Formally, the meaning of the assertion language is defined by a satisfaction
relation X |= ϕ, which tells us when a family of distributions on configurations X
satisfies the assertion ϕ.

The satisfaction relation X |= ψ is defined as follows:

– X |= 5%-+.
– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.
– X |= /0"1,(νx; V1; V2) iff X ∼V1;V2 νx · X
– X |= 23(x; V1; V2) iff $%[(S, H, ( f, f −1))

r← Xη : AH(S(V1), f (S(V2))) = S(x)]
is negligible, for any adversary AH.

– X |= 4(H, e) iff $%[(S, H, ( f, f −1))
r← Xη : S(e) ∈ S( H).")*] is negligible.

Moreover, we write ϕ ⇒ ϕ′ iff for any family of distributions X such that X |= ϕ,
then X |= ϕ′.
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The relation between our Hoare triples and semantic security is established
by the following proposition that states that if the value of oute is indistinguish-
able from a random value then the scheme considered is IND-CPA (see [2] for
details).

Proposition 1 Let ( ,E(ine, oute) : var x; !,D(ind, outd) : var y; !′) be a generic en-
cryption scheme. It is IND-CPA secure, if {"#$%}!{&'()*(νoute)} is valid.

Indeed, if {5%-+}({/0"1,(νoute)} holds then the encryption scheme is secure with
respect to randomness of ciphertext. It is standard that randomness of ciphertext
implies IND-CPA security.

In the rest of the paper, for simplicity, we omit to write the draw of f and
its inverse, and we do not mention them in the description of the configurations
either.

4.2 Some Properties of the Assertion Language

In this section, we prove properties of our assertions that are useful for proving IND-
CPA security of encryption schemes and soundness of our Hoare Logic.

The predicates /0"1, and 23 are compatible with indistinguishability in the
following sense:

Lemma 1 For any X, X ′ ∈ Dist(%, H, ), any sets of variables V1 and V2, and any
variable x:

1. if X ∼V1;V2 X ′ then X |= &'()*(νx; V1; V2) ⇐⇒ X ′ |= &'()*(νx; V1; V2).
2. if X ∼V1;V2∪{x} X ′ then X |= +,(x; V1; V2) ⇐⇒ X ′ |= +,(x; V1; V2).
3. if X ∼ X ′ then X |= -(H, e) ⇐⇒ X ′ |= -(H, e).

Proof By symmetry of indistinguishability and equivalence, for each proposition, the
conclusion follows from a single implication.

Let us start with the proof of the first item. We assume X ∼V1;V2 X ′ which
is equivalent to X ′ ∼V1;V2 X. Hence, νx.X ∼V1;V2 νx.X ′; this can be justified by
an immediate reduction. Moreover, the hypothesis X |= /0"1,(νx; V1; V2) implies
X ∼V1;V2 νx.X. By transitivity of the indistinguishability relation, we get X ′ ∼V1;V2

νx.X ′. Thus, X ′ |= /0"1,(νx; V1; V2).
We now consider the second item. We prove by reduction that X ′ |=

23(x; V1; V2) must hold, provided that X ∼V1;V2∪{x} X ′ and X |= 23(x; V1; V2).
Given an adversary A that falsifies X ′ |= 23(x; V1; V2), we construct an adversary
B that falsifies X ∼V1;V2∪{x} X ′. Informally, on input values for variables in V1 and
V2, denoted (v, v′), and a value u for f (x), B runs A on (v, v′), which outputs vx, its
guess for x. Then B compares f (vx) to u. If the equality holds, B answers 1 (that is,
the values (v, v′) were sampled according to distribution X ′); otherwise B answers a
bit picked at random uniformly.

Let A denote the event AH(S(V1), f (S(V2)))= f (S(x)) , ¬A denote the event
AH(S(V1), f (S(V2))) *= f (S(x)) and B denote the event BH(S(V1), f (S(V2)),
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f (S(x))) = 1. Moreover, let !"#B abbreviate !"#(BH, η, D(X, V1, V2 ∪ {x})η,
D(X ′, V1, V2 ∪ {x})η). Then, we have

!"#B =
∣∣$%

[
(S, H)

r← X ′
η : B

]
− $%

[
(S, H)

r← Xη : B
]∣∣

=
∣∣$%

[
(S, H)

r← X ′
η : B|A

]
.$%

[
(S, H)

r← X ′
η : A

]

+$%
[
(S, H)

r← X ′
η : B|¬A

]
.$%

[
(S, H)

r← X ′
η : ¬A

]

−$%
[
(S, H)

r← Xη : B|A
]
.$%

[
(S, H)

r← Xη : A
]

−$%
[
(S, H)

r← Xη : B|¬A
]
.$%

[
(S, H)

r← Xη : ¬A
]∣∣

=
∣∣$%

[
(S, H)

r← X ′
η : A

]
+ 1

2
.$%

[
(S, H)

r← X ′
η : ¬A

]

−$%
[
(S, H)

r← Xη : A
]
− 1

2
.$%

[
(S, H)

r← Xη : ¬A
]∣∣

using $%
[
(S, H)

r← X ′
η : B|A

]
= 1 = $%

[
(S, H)

r← Xη : B|A
]

and $%
[
(S, H)

r← X ′
η : B|¬A

]
= 1

2
= $%

[
(S, H)

r← Xη : B|¬A
]

= 1
2
.
∣∣$%

[
(S, H)

r← X ′
η : A

]
− 1

2
.$%

[
(S, H)

r← X : A
]∣∣

using $%
[
(S, H)

r← X ′
η : ¬A

]
= 1 − $%

[
(S, H)

r← X ′
η : A

]

and $%
[
(S, H)

r← Xη : ¬A
]

= 1 − $%
[
(S, H)

r← Xη : A
]

Therefore,
∣∣$%

[
(S, H)

r← X ′
η : A

]
− $%

[
(S, H)

r← Xη : A
]∣∣ = 2!"#B.

Since X |= 23(x; V1; V2), we obtain that
∣∣$%[(S, H)

r← Xη : A]
∣∣ is negligible. Hence∣∣$%[(S, H)

r← X ′
η : A]

∣∣ is negligible if and only if !"#B is negligible.
Concerning the third item, it easy to see that a polynomial adversary dealing

with X ∼ X ′, has access to all variables in &'% ∪ H, and hence he can evaluate the
expression e and check whether the value he gets, is or not among the bit-strings
obtained by projecting the list given by H ∈ H to the first element. 23

We now present a lemma that relates atomic assertions and states some
monotonicity properties:

Lemma 2 Let X ∈ Dist(%, H, ) be a distribution:

1. If X |= &'()*(νx; V1; V2), V ′
1 ⊆ V1 and V ′

2 ⊆ V1 ∪ V2 then X |= &'()*(νx; V ′
1; V ′

2).
2. If X |= +,(x; V1; V2) and V ′

1 ⊆ V1 and V ′
2 ⊆ V1 ∪ V2 then X |= +,(x; V ′

1; V ′
2).

3. If X |= &'()*(νx; V1; V2 ∪ {x}) and x *∈ V1 ∪ V2 then X |= +,(x; V1; V2 ∪ {x}).

Proof The first two properties are straightforward.
To prove the last assertion, we let X ∈ Dist(%, H, ) such that X |=
/0"1,(νx; V1; V2 ∪ {x}). Thus, X ∼V1;V2∪{x} νx.X. Lemma 1 allows us to say
that it is sufficient to prove that νx.X |= 23(x; V1; V2 ∪ {x}) in order to
conclude that X |= 23(x; V1; V2 ∪ {x}). Let us consider an adversary A against
νx.X |= 23(x; V1; V2 ∪ {x}). It takes as input, among others, a value f (u) for f (x),
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with u
r← U . If A successfully computes a value for x, it obviously equals u, so that A

in fact computes the pre-image of the one-way function f on the random value f (u).
This latter event has a negligible probability to happen. Hence, we can conclude that
X |= 23(x; V1; V2 ∪ {x}). 23

An expression e is called constructible from (V1; V2), if it can be constructed
from variables in V1 and images by f of variables in V2, calling oracles if necessary.
Obviously, we can give an inductive definition: if x ∈ V1 then x is constructible from
(V1; V2); if x ∈ V2 then f (x) is constructible from (V1; V2); if e1, e2 are constructible
from (V1; V2) then H(e1), f (e1), e1||e2 and e1 ⊕ e2 are constructible from (V1; V2).
Then /0"1, is preserved by constructible computations.

Lemma 3 For any X, X ′ ∈ Dist(%, H, ), any sets of variables V1 and V2, any
expression e constructible from (V1; V2), and any variable x, if X ∼V1;V2 X ′ then
[[x := e]](X) ∼V1∪{x};V2 [[x := e]](X ′).

Proof We assume X ∼V1;V2 X ′. If we suppose that [[x := e]](X) *∼V1∪{x};V2 [[x :=
e]](X ′), then there exists A a poly-time adversary that, on input V1, x and f (V2)

drawn either from [[x := e]](X) or [[x := e]](X ′), guesses the right initial distribution
with non-negligible probability.
We let B be the following adversary against X ∼V1;V2 X ′:
B(V1, f (V2)):= let x := e in A(V1, x, f (V2)).
The idea is that B can evaluate in polynomial time the expression e using its own
inputs. Hence it can provide the appropriate inputs to A. It is clear that the advantage
of B is exactly that of A, which would imply that it is not negligible, although we
assumed X ∼V1;V2 X ′. 23

Corollary 1 For any X, X ′ ∈ Dist(%, H, ), any sets of variables V1 and V2, any ex-
pression e constructible from (V1; V2), and any variable x, z such that z *∈ {x} ∪ ./#(e)
if X |= &'()*(νz; V1; V2) then [[x := e]](X) |= &'()*(νz; V1 ∪ {x}; V2). We emphasize
that here we use the notation ./#(e) (in its usual sense), that is to say, the variable z
does not appear at all in e.

Proof X |= /0"1,(νz; V1; V2) is equivalent to X ∼V1;V2 νz.X. Using Lemma 3 we
get [[x := e]](X) ∼V1∪{x};V2 [[x := e]](νz.X). Since z *∈ {x} ∪ &'%(e) we have that [[x :=
e]](νz.X) = νz.[[x := e]](X) and hence [[x := e]](X) ∼V1∪{x};V2 νz.[[x := e]](X), that is
[[x := e]](X) |= /0"1,(νz; V1 ∪ {x}; V2). 23

Lemma 4 For any X ∈ Dist(%, H, ), any sets of variables V1 and V2, any expression
e constructible from (V1; V2), and any variable x *= z, if X |= +,(z; V1; V2) then
[[x := e]](X) |= +,(z; V1 ∪ {x}; V2).

Proof If we suppose that [[x := e]](X) *|= 23(z; V1 ∪ {x}; V2), then there exists A
a poly-time adversary that, on input V1, x and f (V2) drawn from [[x := e]](X),
computes the right value for z with non-negligible probability.
We let B be the following adversary against X |= 23(z; V1; V2):
B(V1, f (V2)):= let x := e in A(V1 ∪ {x}, f (V2)).
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Since A and B have the same advantage, we obtain a contradiction, so that [[x :=
e]](X) *|= 23(z; V1 ∪ {x}; V2) cannot be true. 23

4.3 The Hoare Logic

In this section we present our Hoare logic for IND-CPA security. We begin with a
set of preservation rules that tell us when an invariant established at the control point
before a command can be transferred to the control point following the command.
Then, for each command, we present a set of specific rules that allow us to establish
new invariants. The commands that are not considered are usually irrelevant for
IND-CPA security. We summarize all our Hoare logic rules in Table 3 (given at the
end of the paper).

4.3.1 Generic Preservation Rules

We assume z *= x1 and ( is x
r← U or of the form x := e′ with e′ being either t||y or

t ⊕ y or f (y) or H(y) or t ⊕ H(y).
Before getting started, let us notice that for any of these commands (, [[(]] affects

at most x and H . The next lemma directly follows from this remark.

Lemma 5 For every X ∈ Dist(%, H, ), all sets V1 and V2 such that x /∈ V1 ∪ V2, and
all commands c of the form x

r← U or x := e, we have [[!]](X) ∼V1;V2 X.

Proof Let X ∈ Dist(%, H, ).

D([[(]](X), V1, V2)η = D
([

(S, H)
r← [[(]](Xη) : (S, H)

]
, V1, V2

)

=
[
(S, H)

r← Xη; (S′, H)
r← [[(]]((S, H)) :

(
S′(V1), f (S′(V2)), H, f

)]

=
[
(S, H)

r← Xη :
(
S(V1), f (S(V2)), H, f

)]

since x *∈ V1 ∪ V2

= D(X, V1, V2)η

23

We now give generic preservation rules for our predicates. We comment them
right below.

Lemma 6 The following rules are sound, when z *= x, and ! is x
r← U or of the form

x := e′ with e′ being either t||y or t ⊕ y or f (y) or H(y) or t ⊕ H(y):

– (G1) {&'()*(νz; V1; V2)} ! {&'()*(νz; V1; V2)}, provided x *∈ V1 ∪ V2 or e′ is con-
structible from (V1 ! {z}; V2 ! {z}).

– (G2) {+,(z; V1; V2)} ! {+,(z; V1; V2)}, provided x *∈ V1 ∪ V2 or e′ is con-
structible from (V1 ! {z}; V2 ! {z}).

1By x = y we mean syntactic equality.
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Table 3 Summary of our Hoare logic rules

Generic preservation rules: when z *= x1 and ( is x
r← U or of the form x := e′ with e′ being

either t||y or t ⊕ y or f (y) or H(y) or t ⊕ H(y)

(G1) {/0"1,(νz; V1; V2)} ( {/0"1,(νz; V1; V2)}, provided x *∈ V1 ∪ V2 or e′ is constructible from
(V1 ! {z}; V2 ! {z})

(G2) {23(z; V1; V2)} ( {23(z; V1; V2)}, provided x *∈ V1 ∪ V2 or e′ is constructible from
(V1 ! {z}; V2 ! {z})

(G3) {4(H′, e[e′/x])} ( {4(H′, e)}, provided H′ *= H in case c is either x := H(y) or x := t ⊕ H(y)

Here, by convention, e[e′/x] is either e if c is x
r← U or the expression obtained from e by

replacing x by e′ in case c ≡ x := e′

Random assignment rules
(R1) {5%-+} x

r← U {/0"1,(νx)}
(R2) {5%-+} x

r← U {4(H, e)} if x ∈ ,-.#'%(e)
We assume x *= y, for the next two rules
(R3) {/0"1,(νy; V1; V2)}x

r← U{/0"1,(νy; V1 ∪ {x}; V2)}
(R4) {23(y; V1; V2)}x

r← U{23(y; V1 ∪ {x}; V2)}
Hash functions rules: when x *= y, and α is either a constant or a variable

(H1) {23(y; V1; V2) ∧ 4(H, y)}x := α ⊕ 4(y){/0"1,(νx; V1 ∪ {x}; V2)}
(H2) {4(H, y)} x := H(y) {4(H′, e)}, if x ∈ ,-.#'%(e)
(H3) {/0"1,(νy; V1; V2 ∪ {y}) ∧ 4(H, y)} x := H(y) {/0"1,(νx; V1 ∪ {x}; V2 ∪ {y})} if y *∈ V1

We assume x *= y and z *= x for the next rules
(H4) {23(y; V1; V2) ∧23(z; V1; V2) ∧ 4(H, y)}x := H(y) {23(z; V1 ∪ {x}; V2)}
(H5) {4(H, e) ∧23(z; y)}x := H(y){4(H, e)}, if z ∈ ,-.#'%(e) ∧ x /∈ ,-.#'%(e)
(H6) {/0"1,(νy; V1; V2 ∪ {y}) ∧ 4(H, y)} x := H(y) {/0"1,(νy; V1 ∪ {x}; V2 ∪ {y})}, if y *∈ V1

(H7) {/0"1,(νz; V1 ∪ {z}; V2)∧23(y; V1 ∪ {z}; V2)∧4(H, y)}x := H(y){/0"1,(νz; V1 ∪ {z, x}; V2)}
One-way function rules: when y *∈ V ∪ {x}

(O1) {/0"1,(νy; V1; V2 ∪ {y})} x := f (y) {23(y; V1 ∪ {x}; V2 ∪ {y})}
(O2) {/0"1,(νz; V1 ∪ {z}; V2 ∪ {y})} x := f (y) {/0"1,(νz; V1 ∪ {z, x}; V2 ∪ {y})}, if z *= y
(O3) {23(z; V1; V2) ∧ /0"1,(νy; V1; {y, z} ∪ V2)} x := f (y) {23(z; V1 ∪ {x}; V2 ∪ {y})}
(P1){/0"1,(νy; V1; V2 ∪ {y})} x := f (y) {/0"1,(νx; V1 ∪ {x}; V2)}, if y *∈ V1 ∪ V2

(PO1) {/0"1,(νx; V ∪ {x, y}) ∧ /0"1,(νy; V ∪ {x, y})}z := f (x||y){23(x; V ∪ {z})∧
/0"1, f (νz; V ∪ {z})}
(P1’) {/0"1,(νy; V1; V2 ∪ {y})}x := f (y){/0"1, f (νx; V1 ∪ {x}; V2)} if y *∈ V1 ∪ V2

Exclusive or rules: when y *∈ V1 ∪ V2, and y *= x
(X1) {/0"1,(νy; V1 ∪ {y, z}; V2)}x := y ⊕ z{/0"1,(νx; V1 ∪ {x, z}; V2)}
(X2) {/0"1,(νt; V1 ∪ {y, z}; V2)}x := y ⊕ z{/0"1,(νt; V1 ∪ {x, y, z}; V2)}, provided that t *= x, y, z
(X3) {23(t; V1 ∪ {y, z}; V2)}x := y ⊕ z{23(t; V1 ∪ {x, y, z}; V2)}, if t *= x

Concatenation rules
(C1) {23(y; V1; V2)} x := y||z {23(x; V1; V2)}, if x *∈ V1 ∪ V2. A dual rule applies for z
(C2) {/0"1,(νy; V1 ∪ {y, z}; V2) ∧ /0"1,(νz; V1 ∪ {y, z}; V2)} x := y||z {/0"1,(νx; V1 ∪ {x}; V2)},

if y, z *∈ V1 ∪ V2

(C3) {/0"1,(νt; V1 ∪ {y, z}; V2)} x := y||z {/0"1,(νt; V1 ∪ {x, y, z}; V2)}, if t *= x, y, z
(C4) {23(t; V1 ∪ {y, z}; V2)} x := y||z {23(t; V1 ∪ {y, z, x}; V2)}, if t *= x

Consequence and sequential composition rules
(Csq) if ϕ0 ⇒ ϕ1, {ϕ1} ( {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} ( {ϕ3}
(Seq) if {ϕ0} (1 {ϕ1} and {ϕ1} (2 {ϕ2}, then {ϕ0} (1; (2 {ϕ2}
(Conj) if {ϕ0} ( {ϕ1} and {ϕ2} ( {ϕ3}, then {ϕ0 ∧ ϕ2} ( {ϕ1 ∧ ϕ3}

– (G3) {-(H′, e[e′/x])} ! {-(H′, e)}, provided H′ *= H in case c is either x := H(y)

or x := t ⊕ H(y). Here, by convention, e[e′/x] is either e if c is x
r← U or the

expression obtained from e by replacing x by e′ in case c ≡ x := e′.
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The rules deal with predicates on a variable z different from x, y, t appearing in
the command ( that is applied. Thus, the predicates /0"1, and23 are quite intuitively
preserved as soon as either x does not appear in sets V1, V2 the adversary is provided,
or x does appear, but the value of e′ was already deducible from values given for
V1, V2. As for rule (G3), it is meant to express preservation of predicate 4(H′, .).
Intuitively, if for states drawn in distribution X, e[e′/x] has negligible probability to
belong to H before performing x := e′, then e has negligible probability to belong
to H for states drawn in [[x := e′]](X), that is, once the command is performed.

Proof

(G1) The case when e′ is constructible from (V1 ! {z}; V2 ! {z}) follows from
Corollary 1. Let us suppose that x /∈ V1 ∪ V2. The previous lemma en-
tails [[(]](X) ∼V1;V2 X. Then, according to the preservation of properties
through indistinguishability proved in Lemma 1, X |= /0"1,(νz; V1; V2) im-
plies [[(]](X) |= /0"1,(νz; V1; V2). The case of x

r← U is obvious.
(G2) As for (G1) using Lemma 4 instead of Corollary 1.
(G3) Consider any X ∈ Dist(%, H, ) and any [[(]] affecting at most x and

H such that X |= 4(H′, e[e′/x]). Let pη = $%[(S, H)
r← [[(]](Xη) : S(e) ∈

S( H′).")*]. Then pη = $%[S′ r← Xη; S
r← [[(]](S′, H) : S(e) ∈ S( H′).")*].

Now, S′(e[e′/x])2 is equal to S(e) and S′( H′).")* = S( H′).")*. Hence,

pη = $%
[
S′ r← Xη; S

r← [[(]]S′ : S′(e[e′/x]) ∈ S′( H′).")*
]

= $%
[
(S′, H)

r← Xη : S′(e[e′/x]) ∈ S′( H′).")*
]

Since X |= 4(H′, e[e′/x]), the last probability is a negligible function of η.
Therefore pη is also negligible in η and [[(]](X) |= 4(H′, e). 23

4.3.2 Random Assignment

Rule (R1) below states that /0"1,(νx) is satisfied after assigning a randomly sampled
value to the variable x. Rule (R2) takes advantage of the fact that the cardinality
of U is exponential in the security parameter, and that since e contains the freshly
generated x the probability that it has already been submitted to H is small. Rules
(R3) and (R4) state that the value of x cannot help an adversary in distinguishing the
value of y from a random value in (R3) or computing its value in (R4). This is the
case because the value of x is randomly sampled.

Lemma 7 The following rules are sound:

– (R1) {"#$%} x
r← U {&'()*(νx)}

– (R2) {"#$%} x
r← U {-(H, e)} if x ∈ *$01/#(e).

2We recall that in the case of x
r← U, e[e′/x] is actually e.
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Additionally, we have the following preservation rules, where we assume x *= y, are
sound:

– (R3) {&'()*(νy; V1; V2)}x
r← U{&'()*(νy; V1 ∪ {x}; V2)}

– (R4) {+,(y; V1; V2)}x
r← U{+,(y; V1 ∪ {x}; V2)}

Proof

(R1) Immediate.
(R2) The fact that x ∈ ,-.#'%(e) implies that there exists a poly-time function g

such that g(S(e)) = S(x) for any state S (namely g consists in extracting the
right substring corresponding to x from the expression e). We are interested
in bounding

$%
[
S

r← [[x r← U ]](Xη) : S(e) ∈ S( H).")*
]

= $%
[
S

r← Xη; u
r← U; S′ := S{x )→ u} : S′(e) ∈ S′( H).")*

]

= $%
[
S

r← Xη; u
r← U; S′ := S{x )→ u} : S′(e) ∈ S( H).")*

]

= $%
[
S

r← Xη; u
r← U : u ∈ g(S( H).")*)

]

which is negligible for the cardinality of H is bounded by a polynomial.
(R3) The intuition is that x being completely random, providing its value to the

adversary does not help him in any way. We show the result by reduction. As-
sume that there exists an adversary B against [[x r← U ]](X) |= /0"1,(νy; V1 ∪
{x}; V2) that can distinguish with non-negligible advantage between y and a
random value given the values of V1 ∪ {x} and f (V2). Then, we can construct
an adversary A(V1, f (V2)) playing against X |= /0"1,(νy; V1; V2) that has
the same advantage as B: A(V1, f (V2)) draws a value u at random and
runs B(V1, u, f (V2)), and then returns B’s answer. If B has non-negligible
advantage, then so does A, which contradicts our hypothesis.

(R4) The previous reduction can be adapted in a straightforward way to prove
(R4). 23

4.3.3 Hash Functions

In this section, we present a set of proof rules that deal with hash functions in the
random oracle model. We first state properties of hash functions that are used to
prove soundness of our proof rules.

Preliminary Results

In the random oracle model, hash functions are drawn uniformly at random from the
space of functions of suitable type at the beginning of the execution of a program.
Thus, the images that the hash function associates to different inputs are completely
independent. Therefore, one can delay the draw of each hash value until needed.
This is the very idea that the first lemma formalizes. It states that while a hash value
has not been queried, then one can redraw it without this changing anything from
the adversary’s point of view. We introduce the notation H{v )→ u} to denote the
function behaving like H at any point except v, with which it associates u.
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Lemma 8 (Dynamic draw) For any X ∈ Dist(%, H, ) and any y ∈ ./# such that
X |=-(H, y), X ∼([(S,H)

r← Xη; u
r← Uη; H←{H{S(y) )→u}}∪(H!{H}) :(S, H)])η.

Proof Let X ∈ Dist(%, H, ) and y ∈ &'% such that X |= 4(H, y). We denote X ′
η the

distribution [(S, H)
r← Xη; u

r← Uη; H ← {H{S(y) )→ u}} ∪ (H ! {H}) : (S, H)]. Let
us we recall that for X ∈ Dist(%, H, ), all queries that have been made to the hash
oracles are recorded in the lists H .

First, we begin with some remarks which help us bounding the advantage of an ad-
versary A trying to distinguish between X and X ′. Since X |= 4(H, y), and using the
definition of X ′, it follows that the probability $%[(S, H)

r← Xη : S(y) ∈ S( H).")*]
is equal to $%[(S, H)

r← X ′
η : S(y) ∈ S( H).")*] = n(η) where n(·) is a negligible

function. Indeed, the state output by distribution Xη is not modified in the com-
putation of X ′

η. Moreover $%[(S, H)
r← X ′

η : AH(S(&'%)) = 1|S(y) *∈ S( H).")*] =
$%[(S, H)

r← Xη : AH(S(&'%)) = 1|S(y) *∈ S( H).")*], since under the condition
S(y) *∈ S( H).")*, drawing H in ! and redrawing the value of H on S(y) yields
the same distribution as just drawing H in !.

!"#(AH, η, D(X,&'%,∅)η, D(X ′,&'%,∅)η)

=
∣∣$%[(S, H)

r← X ′
η : AH(S(&'%)) = 1]

−$%[(S, H)
r← Xη : AH(S(&'%)) = 1]

∣∣

We then distinguish according to whether S(y) ∈ H .")*

=
∣∣$%[(S, H)

r← X ′
η : AH(S(&'%)) = 1|S(y) *∈ S( H).")*].

$%[(S, H)
r← X ′

η : S(y) *∈ S( H).")*]

+ $%[(S, H)
r← X ′

η : AH(S(&'%)) = 1|S(y) ∈ S( H).")*].

$%[(S, H)
r← X ′

η : S(y) ∈ S( H).")*]

−$%[(S, H)
r← Xη : AH(S(&'%)) = 1|S(y) *∈ S( H).")*].

$%[(S, H)
r← Xη : S(y) *∈ S( H).")*]

−$%[(S, H)
r← Xη : AH(S(&'%)) = 1|S(y) ∈ S( H).")*].

$%[(S, H)
r← Xη : S(y) ∈ S( H).")*]

∣∣

We then take into account the equalities between terms justified above.

=
∣∣$%[(S, H)

r← X ′
η : AH(S(&'%)) = 1|S(y) ∈ S( H).")*]

−$%[(S, H)
r← Xη : AH(S(&'%)) = 1|S(y) ∈ S( H).")*]

∣∣.

$%[(S, H)
r← Xη : S(y) ∈ S( H).")*]

≤ 2.n(η)

23
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We now want to prove something a little stronger, involving the variable H .
Indeed, to execute the command x := α ⊕ H(y), we can either draw a value for H(y)

at random and bind it by storing it in H , or draw x at random and bind H(y) to
be worth x ⊕ α. This uses the same idea as before, but this time we have to carefully
take into account the side effects of the command on H . To deal with rebinding
matters, we introduce a new notation: S( H) • (v, u) means that if v belongs to
S( H).")*, then its associated value in S( H).%+, is replaced by u, otherwise, it
is the concatenation of (v, u) to S( H).

Definition 7 We define %+.10"y)→e
H (S, H) by

(S{ H )→ S( H) • (S(y), S(e))}, H ! {H} ∪ {H{S(y) )→ S(e)}}).

We extend this definition canonically to any family of distributions X ∈
Dist(%, H, ):
%+.10"y)→e

H (X) = ([(S, H)
r← Xη : %+.10"y)→e

H (S, H)])η. It simply denotes the family
of distributions where H(S(y)) is defined to be equal to S(e).

Lemma 9 (Rebinding Lemma) For any X ∈ Dist(%, H, ), any hash function sym-
bol H, any variables x and y, if X |= -(H, y), then

[[x := α ⊕ H(y)]](X) ∼ #%0)'(y)→α⊕x
H (νx · X),

where α is either a constant or a variable.

Proof To lighten the proof, we assume without loss of generality that there is
only one hash function H. First, since X |= 4(H, y), thanks to the dynamic draw
lemma, we know that Xη ∼ [(S, H)

r← Xη; u
r← Uη : (S, H{S(y) )→ u})]. Then, using

a similar reasoning to that used in the proof of Lemma 3 (but this time the adversary
B has to update also the variable TH and to pass it to the adversary A), we get:

[[x :=α⊕H(y)]](Xη) ∼ [[x :=α⊕H(y)]]
([

(S,H)
r← Xη; u

r← Uη : (S, H{S(y) )→u})
])

.

Executing the hash command, the second distribution is in turn equal to
[
(S, H)

r← Xη; u
r← Uη : (S{x )→ S(α)⊕u; H )→ S( H) • (S(y), u)}, H{S(y) )→u})

]
.

Then, we eventually replace the draw of y by that of x, and propagate the side effects
of that change, to obtain another way to denote the same distribution:

[
(S, H)

r← Xη; v
r← Uη : (S{x )→ v, H )→ S( H)

•(S(y), v ⊕ S(α))}, H{S(y) )→ v ⊕ S(α)})
]
.

Now, this last distribution is exactly (%+.10"y)→α⊕x
H (νx · X))η, and we conclude. 23

Now we are interested in formally proving the useful and intuitive following
lemma, which states that to distinguish between a distribution and its ’rebound’
version, an adversary must be able to compute the argument y whose hash value
has been rebound. More precisely,
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Lemma 10 (Hash vs. rebind) For any X ∈ Dist(%, H, ), any two variables x and
y, any two f inite sets of variables V1 and V2, and any hash function H, if X |=
+,(y; V1; V2), then

X ∼V1;V2 #%0)'(
y)→α⊕x
H (X).

where α is either a constant or a variable.

Proof Consider finite sets V1 and V2 and X such that X |= 23(y; V1; V2). The sole
difference between the distributions is the value of H(y). Namely,

D(%+.10"y)→x⊕α
H (X), V1, V2)η = [(S, H)

r← Xη;
S′ ← S{ H )→ S( H) • (S(y), S(α ⊕ x))} :
(S′(V1), f (S′(V2)),H{S(y) )→ S(α⊕x)}∪(H!{H}))]
since H /∈ V1 ∪ V2 by definition,

and it is the only difference between S and S′

= [(S, H)
r← Xη;

S′ ← S{ H )→ S( H) • (S(y), S(α ⊕ x))} :
(S(V1), f (S(V2)),H{S(y) )→ S(α⊕x)} ∪ (H!{H}))]
and since S′ is not used anywhere,

= [(S, H)
r← Xη :

(S(V1), f (S(V2)), H{S(y) )→ S(α⊕x)}∪(H!{H}))]

An adversary trying to distinguish D(X, V1, V2)η from this last distribution can
only succeed if it calls H on S(y). However, the probability of an adversary
computing S(y) is negligible since X |= 23(y; V1; V2). Therefore, D(%+.10"y)→α⊕x

H
(X), V1, V2)η ∼ D(X, V1, V2)η. 23

Proof rules for hash functions

We are now prepared to present and prove our proof rules for hash functions. Rule
(H1) captures the main feature of the random oracle model, namely that the hash
function is a random function. Hence, if an adversary cannot compute the value
of y and this latter has not been hashed yet then he cannot distinguish H(y) from
a random value. Rule (H2) is similar to rule (R2): as the hash of a fresh value
is seemingly random, it has negligible probability to have already been queried to
another hash oracle.

Rule (H3) deserves a more elaborate comment. It concludes to a predicate still
involving variable y, which is why it is different from rule (H1). It states that the
value of variable x is random given first values of V1, x and f (V2) as in rule (H1),
but also the value of f (y). Indeed, as the value of y is seemingly random, we can use
the definition of one-wayness to state that an adversary cannot efficiently compute a
satisfactory value for f −1( f (y)). Hence, the value of y is unlikely to be queried to H,
and the predicate holds.
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Lemma 11 The following basic rules are sound, when x *= y, and α is either a constant
or a variable:

– (H1) {+,(y; V1; V2) ∧ -(H, y)}x := α ⊕ -(y){&'()*(νx; V1 ∪ {x}; V2)}
– (H2) {-(H, y)} x := H(y) {-(H′, e)}, if x ∈ *$01/#(e).
– (H3) {&'()*(νy; V1; V2 ∪ {y}) ∧ -(H, y)} x := H(y) {&'()*(νx; V1 ∪ {x}; V2 ∪

{y})} if y *∈ V1

Proof

(H1) First, we use that X |= 23(y; V1; V2), that provides thanks to rule (R4)
νx.X |= 23(y; V1 ∪ {x}; V2). Hence, the ‘hash-vs-rebind’ Lemma 10 applies,
we obtain the following νx.X ∼V1∪{x};V2 %+.10"

y)→x⊕α
H (νx.X). Then, as we

assumed that X |= 4(H, y), we can use the rebinding lemma, according
to which we have the following %+.10"y)→α⊕x

H (νx · X) ∼V1∪{x};V2 [[x := α ⊕
H(y)]](X). By transitivity of the indistinguishability relation, we thus have
νx.X ∼V1∪{x};V2 [[x := α ⊕ H(y)]](X). Finally, noticing that νx.X ∼V1∪{x};V2

νx.[[x := α ⊕ H(y)]](X) (since carrying out the command only impacts on the
values of x and H these family of distributions are in fact equal), we have by
transitivity νx.[[x := α ⊕ H(y)]](X) ∼V1∪{x};V2 [[x := α ⊕ H(y)]](X). This last
statement is equivalent to [[x := α ⊕ H(y)]](X) |= /0"1,(x; V1 ∪ {x}; V2).

(H2) Consider any X ∈ Dist(%, H, ) such that X |= 4(H, y), and let X ′ =
%+.10"y)→x

H (νx · X). Since X |= 4(H, y), the rebinding lemma implies [[x :=
H(y)]]X ∼ X ′. Consider an expression e such that x ∈ ,-.#'%(e). Using
Lemma 1(3), it suffices to show X ′ |= 4(H′, e), that is, that pη = $%[(S, H)

r←
X ′

η : S(e) ∈ S( H′).")*] is negligible.

pη = $%
[
(S, H)

r← νx · Xη; (S′, H′) ← %+.10"y)→x
H (S, H) :

S′(e) ∈ S( H).")*
]

since S′( H′).")* ⊆ S( H).")* ∪ {S(y)}, we have

≤ $%
[
(S, H)

r← νx · Xη; (S′, H′) ← %+.10"y)→x
H (S, H) :

S′(e) ∈ S( H).")* or S′(e) = S(y)
]

now with S(e) = S′(e) by definition of the rebinding :

= $%
[
(S, H)

r← νx · Xη; (S′, H′) ← %+.10"y)→x
H (S, H) :

S(e) ∈ S( H).")* or S(e) = S(y)
]

we can remove the rebinding, since it does not change the event:

= $%
[
(S, H)

r← νx · Xη : S(e) ∈ S( H).")* or S(e) = S(y)
]

which by definition and because we assume y *= x equals

= $%
[
S1

r← Xη; v
r← U;S ← S1{x )→v} : S(e)∈ S1( H).")* or S(e)= S1(y)

]

and as x ∈ ,-.#'%(e), i.e. x is some substring of e

≤ Card(S1( H).")*) + 1
2|x|
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Moreover, for every state S1, Card(S1( H).")*) is bounded by a polynomial
in η, and variables in &'% have a size polynomial in η too, so that pη is indeed
a negligible function in η.

(H3) Consider any X ∈ Dist(%, H, ). Assume y /∈ V1 and X |= /0"1,(νy; V1; V2 ∪
{y}) ∧ 4(H, y). Then, X |= 23(y; V1; V2 ∪ {y}) follows from the third weak-
ening lemma (see Lemma 2). Consequently, rule H1 provides [[x :=
H(y)]](X) |= /0"1,(νx; V1 ∪ {x}; V2 ∪ {y}). 23

We now comment on four other rules to deal with hash commands which are
stated below. The idea behind (H4) is the following one: an adversary that is not
able to compute the value of y, can not ask this value to H; hence, the value of x
(computed as H(y)) seems completely random; so if z was not efficiently computable
by the adversary given V1, f (V2), it remains so when it is additionally provided x.
Rule (H5) states that the fact that the value of e has probably not been hashed
yet remains true after a hash command, as long as e contains a variable z whose
value is not computable out from y. (H6) and (H7) give necessary conditions to the
preservation of indistinguishability that is based on the apparent randomness of a
hash value. The intuition behind rule (H6) is very similar to that of rule (H3). As for
rule (H7), as we want more than just preserving the seemingly randomness of z with
respect to V1, f (V2), the conditions under which x doesn’t help an adversary are that
y is not easily deductible from V1, V2 and that x is a fresh hash value.

Lemma 12 The following preservation rules are sound provided that x *= y and z *= x:

– (H4) {+,(y; V1; V2) ∧+,(z; V1; V2) ∧ -(H, y)}x := H(y) {+,(z; V1 ∪ {x};
V2)}

– (H5) {-(H, e) ∧+,(z; y)}x := H(y){-(H, e)}, if z ∈ *$01/#(e) ∧ x /∈ *$01/#(e)
– (H6) {&'()*(νy; V1; V2 ∪ {y}) ∧ -(H, y)} x := H(y) {&'()*(νy; V1 ∪ {x}; V2 ∪

{y})}, if y *∈ V1

– (H7) {&'()*(νz; V1 ∪ {z}; V2) ∧+,(y; V1 ∪ {z}; V2) ∧ -(H, y)}x := H(y){&'()*
(νz; V1 ∪ {z, x}; V2)}

Proof

(H4) First, we use rule (R4), to state that since X |= 23(y; V1; V2), νx.X |=
23(y; V1 ∪ {x}; V2). Then, from the hash-vs-rebind Lemma 10 applied on
νx.X, we obtain that νx.X ∼V1∪{x};V2 %+.10"

y)→x
H (νx.X). Now, using the as-

sumption X |= 4(H, y) and the rebinding lemma, %+.10"y)→x
H (νx.X) ∼V1∪{x};V2

[[x := H(y)]](X). Hence, νx.X ∼V1∪{x};V2 [[x := H(y)]](X). Besides, as X |=
23(z; V1; V2), rule (R4) provides the conclusion νx.X |= 23(z; V1 ∪
{x}; V2). With Lemma 1, we can conclude that [[x := H(y)]](X) |= 23(z; V1 ∪
{x}; V2) too.
We could do this proof by reduction too, the main idea being that as the
value of x is random to an adversary, any adversary against 23(z; V1; V2)

before the execution of the command could simulate an adversary against
23(z; V1 ∪ {x}; V2) by providing this latter with a randomly sampled value in
place of x. Both those adversaries would therefore have the same advantage.

(H5) Since z ∈ ,-.#'%(e), there is a polynomial function g such that for every
S, g(S(e)) = S(z) (namely g consists in extracting the right substring
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corresponding to z from the expression e). Given X ∈ Dist(%, H, ), let pη

be equal to:

$%[(S, H)
r← Xη; (S′, H′)

r← [[x := H(y)]](S) : S′(e) ∈ S′( H).")*]

Then, since the command only has an effect on x and H ,

pη = $%[(S, H)
r← Xη; (S′, H′)

r← [[x := H(y)]](S) :
S(e) ∈ S( H).")* ∪ {S(y)}]

≤ $%[(S, H)
r← Xη : S(e) ∈ S( H)] + $%[(S, H)

r← Xη : S(e) = S(y)]

Now, we can bound the second term as follows:

$%[(S, H)
r← Xη : S(e) = S(y)] ≤ $%[(S, H)

r← Xη : g(S(e)) = g(S(y))]

= $%[(S, H)
r← Xη : S(z) = g(S(y))]

for this is how g was defined

Besides, X |= 23(z; y), so that the probability one can extract the value of z
from that of y is negligible. Moreover if X |= 4(H, e) then $%[(S, H)

r← Xη :
S(e) ∈ S( H)] is negligible.

(H6) Consider any X ∈ Dist(%, H, ). Assume y /∈ V1, and X |= /0"1,(νy; V1;
V2 ∪ {y}) ∧ 4(H, y). By rule (R3) for random assignment, since y *= x, νx ·
X |= /0"1,(νy; V1 ∪ {x}; V2 ∪ {y}). Therefore, using that y /∈ V1 and y *= x and
applying Lemma 2.3 we get νx · X |= 23(y; V1 ∪ {x}; V2 ∪ {y}). Now, the
hash-vs-rebind Lemma 10 provides us with %+.10"y)→x

H (νx · X) ∼V1∪{x};V2∪{y}
νx · X. Thus, %+.10"y)→x

H (νx · X) |= /0"1,(νy; V1 ∪ {x}; V2 ∪ {y}) by Lemma 1.
Since X |= 4(H, y), by the rebinding lemma, we have [[x := H(y)]] ∼
%+.10"y)→x

H (νx · X), so that the result follows from applying once more
Lemma 1.

(H7) Consider any X ∈ Dist(%, H, ) such that X |= /0"1,(νz; V1 ∪ {z}; V2) ∧
23(y; V1 ∪ {z}; V2) ∧ 4(H, y). By rule (R3) and (R4) for random assign-
ment, and because x *= z, y, νx · X |= /0"1,(νz; V1 ∪ {z, x}; V2) ∧23(y; V1 ∪
{z, x}; V2). Therefore, the hash-vs-rebind Lemma 10 allows to conclude that
%+.10"y)→x

H (νx · X) ∼V1∪{z,x};V2 νx · X. Thus, by the preservation Lemma 1,
%+.10"y)→x

H (νx · X) |= /0"1,(νz; V1 ∪ {z, x}; V2). Finally, the rebinding lemma
entails [[x := H(y)]](X) ∼ %+.10"y)→x

H (νx · X). Therefore [[x := H(y)]](X) |=
/0"1,(νz; V1 ∪ {z, x}; V2), once more by Lemma 1.

23

4.3.4 One-Way Functions

Rules to deal with one-way functions are given below. The first rule captures one-
wayness of f . Indeed, it states that an adversary can not efficiently compute a pre-
image to an apparently random challenge. Rule (O2) and (O3) are meant to provide
a little more than mere preservation of the properties of z. (O2) is quite obvious
since f (y) is given to the adversary in the precondition. As for rule (O3), it follows
from the fact that since y is apparently random with respect to values V1, z, f (V2),
hence computing x boils down to computing the image by f of a random value.
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Consequently, providing an adversary with the values of x and f (y) does not help it.
Rule (P1) simply ensues from the fact that f is a permutation and is thus surjective.
However, y has to be removed from the sets in the conclusion, otherwise an adversary
could compare the value of f (y) with the value given for x and trivially tell if x is real
or random.

Lemma 13 The following rules are sound when z *= x:

– (O1) {&'()*(νy; V1; V2 ∪ {y})} x := f (y) {+,(y; V1 ∪ {x}; V2 ∪ {y})} if y *∈ V1 ∪
{x}.

– (O2) {&'()*(νz; V1 ∪ {z}; V2 ∪ {y})} x := f (y) {&'()*(νz; V1 ∪ {z, x}; V2 ∪ {y})}, if
z *= y

– (O3) {+,(z; V1; V2) ∧ &'()*(νy; V1; {y, z} ∪ V2)} x := f (y) {+,(z; V1 ∪ {x};
V2 ∪ {y})}

For one-way permutations, we also have the following rule:

– (P1){&'()*(νy; V1; V2 ∪ {y})} x := f (y) {&'()*(νx; V1 ∪ {x}; V2)}, if y *∈ V1 ∪ V2

Proof

(O1) Let X be such that X |= /0"1,(νy; V1; V2 ∪ {y}). It follows from Lemma 2
that X |= 23(y; V1; V2 ∪ {y}). Since f (y) is obviously constructible from
(V1; V2 ∪ {y}), we apply Lemma 4, to obtain [[x := f (y)]](X) |= 23(y; V1 ∪
{x}; V2 ∪ {y}). Notice that the one-wayness of f is not used apparently here.
Indeed, the proof of the weakening lemma (see Lemma 2) uses it, and once
we apply it, there is only a simple rewriting step left to be able to conclude.

(O2) Since f (y) is constructible from (V1 ∪ {z}; V2 ∪ {y}), we apply Corollary 1 to
obtain [[x := f (y)]](X) |= /0"1,(νz; V1 ∪ {z, x}; V2 ∪ {y}).

(O3) If z = y, then the assertion is a consequence of Rule (O1). Hence, we as-
sume z *= y. From X |= /0"1,(νy; V1; V2 ∪ {z, y}) it follows by definition that
X ∼V1;V2∪{z,y} νy.X. Using Lemma 3 we get [[x := f (y)]](X) ∼V1∪{x};V2∪{z,y}
[[x := f (y)]](νy.X). Now using Lemma 1, to be able to conclude to
[[x := f (y)]](X) |= 23(z; V1 ∪ {x}; V2 ∪ {y}), it suffices to prove [[x :=
f (y)]](νy.X) |= 23(z; V1 ∪ {x}; V2 ∪ {y}). Intuitively, this comes from the
randomness of x and y, which allows us to think it is useless to any adver-
sary trying to compute z. Formally, we show that: $%[S r← Xη; u

r← Uη; S1 =
S{y )→ u; x )→ f (u)} : A(S1(V1), S1(x), f (S1(V2)), f (S1(y))) = S1(z)] is neg-
ligible. Now let A be an efficient adversary against 23(z; V1 ∪ {x}; V2 ∪ {y}).
Let B(v) be the adversary against 23(z; V1 ∪ {x}; V2 ∪ {y}) that proceeds as
follows: it samples a value u

r← Uη and replaces every occurrence of y by u,
and every occurrence of x by f (u), in the values v it got as an input. This
provides a tuple of values v′. Adversary B runs A on v′, before outputting
A’s guess for the value of z. This adversary B has the same advantage as A in
falsifying23(z; V1 ∪ {x}; V2 ∪ {y}). As we assumed this latter was an efficient
adversary, B is efficient as well, which contradicts X |= 23(z; V1 ∪ {x}; V2 ∪
{y}).

(P1) Since X |= /0"1,(νy; V1; V2 ∪ {y}) and f (y) is constructible from (V1; V2∪
{y}), we apply Lemma 3 to obtain [[x := f (y)]](X) ∼V1∪{x};V2∪{y} [[x := f (y)]]
(νy.X), and by weakening (see Lemma 2) we get [[x := f (y)]](X) ∼V1∪{x};V2
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[[x := f (y)]](νy.X). Using that f is a permutation and y *∈ V1 ∪ V2, we have
D([[x := f (y)]](νy.X), V1 ∪ {x}, V2) = D(νx.X, V1 ∪ {x}, V2), and hence by
transitivity of indistinguishability, [[x := f (y)]](X) ∼V1∪{x};V2 νx.X. Now we
use νx.X = νx.[[x := f (y)]](X) to conclude.

23

4.3.5 The Exclusive or Operator

In the following rules, we assume y *= z. To understand rule (X1) one should consider
y as a key and think about x as the one-time pad encryption of z with the key y. Of
course, y has to be random given y and z and not just only y; otherwise, there may
exist a some relation between both subterms of x that may allow an adversary to
distinguish this latter from a random value. Rules (X2) and (X3) take advantage of
the fact that is easy to compute x given y and z.

Lemma 14 The following rule is sound when y *∈ V1 ∪ V2, and y *= x:

– (X1) {&'()*(νy; V1 ∪ {y, z}; V2)}x := y ⊕ z{&'()*(νx; V1 ∪ {x, z}; V2)},

Moreover, we have the following rules that are sound:

– (X2) {&'()*(νt; V1 ∪ {y, z}; V2)}x := y ⊕ z{&'()*(νt; V1 ∪ {x, y, z}; V2)}, provided
that t *= x, y, z.

– (X3) {+,(t; V1 ∪ {y, z}; V2)}x := y ⊕ z{+,(t; V1 ∪ {x, y, z}; V2)}, if t *= x.

Proof

(X1) Let X be such that X |= /0"1,(νy; V1 ∪ {y, z}; V2), which means
X ∼(V1∪{y,z};V2) νy.X. Moreover, y ⊕ z is constructible from (V1 ∪ {y, z}; V2).
We apply Lemma 3 to obtain [[x := y ⊕ z]](X) ∼V1∪{x,y,z};V2 [[x :=
y ⊕ z]](νy.X), and by weakening (see Lemma 2) it we get [[x :=
y ⊕ z]](X) ∼V1∪{x,z};V2 [[x := y ⊕ z]](νy.X).

D([[x := y ⊕ z]](νy.X), V1 ∪ {x, z}, V2)η

= [S r← Xη; u
r← Uη; S′ := S{y )→ u}; S′′ r← [[x := y ⊕ z]](S′) :

S′′(V1 ∪ {x, z}), f (S′′(V2))]

= [S r← Xη; u
r← Uη; S′ := S{y )→ u}; S′′ := S′{x )→ u ⊕ S(z)} :

S′′(V1 ∪ {x, z}), f (S′′(V2))]
and since xor is a permutation we can write:

= [S r← Xη; v
r← Uη; S′′ := S{x )→ v; y )→ v ⊕ S(z)} :

S′′(V1 ∪ {x, z}), f (S′′(V2))]
but changing y is useless since y *∈ V1 ∪ V2 ∪ {z}

= [S r← Xη; v
r← Uη; S′′ := S{x )→ v} : S′′(V1 ∪ {x, z}), f (S′′(V2))]

= D(νx.X, V1 ∪ {x, z}, V2)η
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From this equality of distributions, we get [[x := y ⊕ z]](νy.X) ∼V1∪{x,z};V2

νx.X. Then, by transitivity of indistinguishability, we can conclude that [[x :=
y ⊕ z]](X) ∼V1∪{x,z};V2 νx.X. Then, as νx.X = νx.[[x := y ⊕ z]](X), and apply-
ing transitivity once more, we can conclude to [[x := y ⊕ z]](X) ∼V1∪{x,z};V2

νx.[[x := y ⊕ z]](X), which is exactly the definition of [[x := y ⊕ z]](X) |=
/0"1,(νx; V1 ∪ {x, z}; V2).

(X2) Since y ⊕ z is constructible from (V1 ∪ {y, z}; V2), we apply Corollary 1 to
obtain [[x := y ⊕ z]](X) |= /0"1,(νt; V1 ∪ {x, y, z}; V2).

(X3) Since y ⊕ z is constructible from (V1 ∪ {y, z}; V2), we apply Lemma 4 to
obtain [[x := y ⊕ z]](X) |= 23(t; V1 ∪ {x, y, z}; V2).

23

4.3.6 Concatenation

We have four rules to deal with concatenation command x := y||z. Rule (C1) states
that if computing a substring of x out of the elements of V1 and V2 is hard, then
so is computing x itself. The idea behind (C2) is that y and z being random implies
randomness of x, with respect to V1 and V2. Of course, y has to be random given
y and z and not just only y; otherwise, there might exist a dependency between
both substrings of x that allows an adversary to distinguish this latter from a random
value. A similar comment can be made concerning z. Eventually, rules (C3) and
(C4) are more than the simple preservation of the properties of a variable t different
from x, y, z that the preservation rules would provide. The value of x being easily
computable from those of y and z accounts for soundness of these rules.

Lemma 15 The following rules are sound:

– (C1) {+,(y; V1; V2)} x := y||z {+,(x; V1; V2)}, if x *∈ V1 ∪ V2. A dual rule ap-
plies for z.

– (C2) {&'()*(νy; V1 ∪ {y, z}; V2) ∧ &'()*(νz; V1 ∪ {y, z}; V2)} x := y||z {&'()*(νx;
V1 ∪ {x}; V2)}, if y, z *∈ V1 ∪ V2

– (C3) {&'()*(νt; V1 ∪ {y, z}; V2)} x := y||z {&'()*(νt; V1 ∪ {x, y, z}; V2)}, if t *= x,

y, z
– (C4) {+,(t; V1 ∪ {y, z}; V2)} x := y||z {+,(t; V1 ∪ {y, z, x}; V2)}, if t *= x

Proof

(C1) From X |= 23(y; V1; V2), for any adversary A, we have that the probability
$%[S r← Xη : A(S(V1), f (S(V2))) = S(y)] is negligible. This implies that for
any adversary B, $%[S r← Xη : B(S(V1), f (S(V2))) = S(y)||S(z)] is negligible;
otherwise we can build an adversary A that uses B as a subroutine and whose
advantage is the same as B’s advantage as follows. A calls B and then uses the
answer of B to extract the value of S(y) from S(y)||S(z). Since x *∈ V1 ∪ V2, we
get that for any adversary B, $%[S r← [[x := y||z]](Xη) : B(S(V1), f (S(V2))) =
S(x)] = $%[S r← Xη : B(S(V1), f (S(V2))) = S(y)||S(z)], which is negligible.

(C2) We have that X |= /0"1,(νz; V1 ∪ {y, z}; V2) ⇒ X ∼V1∪{y,z};V2 νz.X, so that
in turn νy.X ∼V1∪{y,z};V2 νy.νz.X. But X |= /0"1,(νy; V1 ∪ {y, z}; V2) can be
written as X ∼V1∪{y,z};V2 νy.X. Hence, by transitivity we get X ∼V1∪{y,z};V2

νy.νz.X. Since y||z is constructible from (V1 ∪ {y, z}; V2), we apply Lemma 3
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to obtain [[x := y||z]](X) ∼V1∪{x,y,z};V2 [[x := y||z]](νy.νz.X), and by weaken-
ing (see Lemma 2) we get [[x := y||z]](X) ∼V1∪{x};V2 [[x := y||z]](νy.νz.X).
Using the properties of || and that {y, z} ∩ (V1 ∪ V2) = ∅, we have D([[x :=
y||z]](νy.νz.X), V1 ∪ {x}, V2) = D(νx.X, V1 ∪ {x}, V2), and hence by transi-
tivity of indistinguishability, [[x := y||z]](X) ∼V1∪{x};V2 νx.X.

(C3) Since y||z is constructible from (V1 ∪ {y, z}; V2), we apply Corollary 1 to
obtain [[x := y||z]](X) |= /0"1,(νt; V1 ∪ {x, y, z}; V2).

(C4) Since y||z is constructible from (V1 ∪ {y, z}; V2), we apply Lemma 4 to obtain
[[x := y||z]](X) |= 23(t; V1 ∪ {x, y, z}; V2).

23

4.3.7 Additional General Rules

Classically, to reason on programs built according to the language grammar de-
scribed in Table 1, we additionally need the following couple of rules.

Lemma 16 Let ϕ0,ϕ1,ϕ2,ϕ3 be assertions from our language, and !, !1, !2 be any
commands. The following rules are sound:

– (Csq) if ϕ0 ⇒ ϕ1 and {ϕ1} ! {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} ! {ϕ3}.
– (Seq) if {ϕ0} !1 {ϕ1} and {ϕ1} !2 {ϕ2} then {ϕ0} !1; !2 {ϕ2}.
– (Conj) if {ϕ0} ! {ϕ1} and {ϕ0} ! {ϕ2}, then {ϕ0} ! {ϕ1 ∧ ϕ2}.

We omit the proofs of these classical rules. The soundness of the Hoare logic
follows by induction from the soundness of each rule.

Proposition 2 The Hoare triples given in Section 4.3 are valid.

Example 3 We illustrate our proposition with Bellare & Rogaway’s generic con-
struction [7], which can be written shortly as f (r)||(ine ⊕ G(r))||H(ine||r). Where we
note &'% = {ine, oute, xσ , r, a, g, b , s, c}.

var r; a; g; b ; s; c;
true
1. r

r← {0, 1}n0 using (R1), (R2), and (R2)

/0"1,(νr;&'%) ∧ 4(G, r) ∧ 4(H, ine||r)
2. a := f (r) using (P1), (O1), (G3), and (G3)

/0"1,(νa;&'%! {r}) ∧23(r;&'%! {r})∧
4(G, r) ∧ 4(H, ine||r)
3. g := G(r) using (H7), (H1), (H4), and (G3)

/0"1,(νa;&'%! {r}) ∧ /0"1,(νg;&'%! {r})∧
23(r;&'%! {r}) ∧ 4(H, ine||r)
4. b := ine ⊕ g using (X2), (X1), (X3), and (G3)

/0"1,(νa;&'%! {r}) ∧ /0"1,(νb ;&'%! {g, r})∧
23(r;&'%! {r}) ∧ 4(H, ine||r)
5. s := ine||r using (G1), (G1), (C1), and (G3)

/0"1,(νa;&'%! {r, s})∧
/0"1,(νb ;&'%! {g, r, s})∧
23(s;&'%! {r, s}) ∧ 4(H, s)
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6. c := H(s) using (H7), (H7), and (H1)

/0"1,(νa;&'%! {r, s})∧
/0"1,(νb ;&'%! {r, g, s})∧
/0"1,(νc;&'%! {r, s})
7. oute := a||b ||c using (C2) twice
/0"1,(νoute;&'%! {a, b , c, r, g, s})

4.4 Extensions of the Logic

In this section, we show how our Hoare logic, and hence our verification procedure,
can be adapted to deal with injective partially trapdoor one-way functions. This
extension is motivated by Pointcheval’s construction in [19].

The first observation we have to make is that Proposition 1 is too demand-
ing in case f is not a permutation. Therefore, we introduce a new predicate
/0"1, f (νx; V1; V2) whose meaning is as follows:

X |= /0"1, f (νx; V1; V2) if and only if X ∼V1;V2 [u r← U; (S, H)
r← X : (S{x )→

f (u)}, H)].
Notice that, when f is a bijection, /0"1, f (νx; V1; V2) is equivalent to

/0"1,(νx; V1; V2) ( f can be the identity function as in the last step of Example 4.
Now, let oute, the output of the encryption oracle, have the form a1|| · · · ||an with
ai = fi(xi), where fi are arbitrary functions. Then, we can prove the following:

Proposition 3 Let GE be a generic encryption scheme of the form ( ,E(ine, oute) : !),
and let fi be any functions. Let assume that oute, the output of the encryption oracle,
has the form a1|| · · · ||an with ai = fi(xi).

If {"#$%}!{
n∧

i=1
&'()* fi(νai; a1, . . . , an,./#! {oute)}} is valid then GE is IND-CPA.

The proof of this proposition follows from the transitivity of the relation ∼V1;V2 .
Now, we introduce a new rule for /0"1, f (νx; V1; V2) that replaces rule (P1) in case
the one-way function f is not a permutation:

(P1’) {/0"1,(νy; V1; V2 ∪ {y})} x := f (y) {/0"1, f (νx; V1 ∪ {x}; V2)} if y *∈ V1 ∪ V2.

Many of rules that hold for Indis could be generalized to /0"1, f . For simplicity
we consider only the rules that are needed in the examples. Clearly all preservation
rules can be generalized for /0"1, f . Concretely, we have the following lemma, and
the proof is similar as for the case /0"1,.

Lemma 17 (Generalization to /0"1, f ) Let X, X ′ ∈ Dist(%, H, ) be arbitrary dis-
tributions, let V1 and V2 be arbitrary sets of variables, and let x, y, z, t be arbitrary
variables. Then, the following assertions hold.

1. If X ∼V1;V2 X ′ then X |= &'()* f (νx; V1; V2) ⇐⇒ X ′ |= &'()* f (νx; V1; V2).
2. For any expression e constructible from (V1; V2) such that z *∈ {x} ∪ ./#(e),

if X |= &'()* f (νz; V1; V2) then [[x := e]](X) |= &'()* f (νz; V1 ∪ {x}; V2).
3. If z *= x, and ! is x

r← U or x := e′ with e′ ∈ {t||y, t ⊕ y, f (y), H(y), t ⊕ H(y)},
then
(G1) f {&'()* f (νz; V1; V2)} ! {&'()* f (νz; V1; V2)},
provided that x *∈ V1 ∪ V2 or e′ is constructible from (V1 ! {z}; V2 ! {z}).
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4. (R3) f {&'()* f (νy; V1; V2)} x
r← U {&'()* f (νy; V1 ∪ {x}; V2)}, provided x *= y.

5. (H7) f {&'()* f (νz; V1 ∪ {z}; V2) ∧+,(y; V1 ∪ {z}; V2) ∧ -(H, y)} x := H(y)

{&'()* f (νz; V1 ∪ {z, x}; V2)}, provided that x *= y and z *= x.
6. (X2) f {&'()* f (νt; V1 ∪ {y, z}; V2)}x := y ⊕ z{&'()* f (νt; V1 ∪ {x, y, z}; V2)}, pro-

vided that t *= x, y, z.

The reader should notice that some rules that hold for /0"1, can not be generalized
to /0"1, f . It is the case for (P1), (X1), (C2), etc.

Injective Partially Trapdoor One-way Functions In contrast to the previous section,
we do not assume f to be a permutation. On the other hand, we demand a stronger
property than one-wayness. Let f : X × Y → Z be a function and let f −1 : Z → X
be such that ∀z ∈ ")*( f −1)∃y ∈ Y, z = f ( f −1(z), y). Here f −1 is a partial function.
The function f is said partially one-way, if for any given z = f (x, y), it is computa-
tionally impossible to compute a corresponding x. In order to deal with the fact that f
is now partially one-way, we add the following rules, where we assume x, y *∈ V ∪ {z}
and where we identify f and (x, y) )→ f (x||y):

(PO1){/0"1,(νx; V ∪ {x, y}) ∧ /0"1,(νy; V ∪ {x, y})}z := f (x||y) {/0"1, f (νz; V ∪ {z})
∧23(x; V ∪ {z})}

The intuition behind the first part of (PO1) is that f guarantees one-way secrecy of
the x-part of x||y. The second part follows the same idea that (P1’).

Example 4 We verify Pointcheval’s transformer [19], which can be written shortly as
f (r||H(ine||s))||(ine||s) ⊕ G(r). We note &'% = {ine, oute, xσ , r, s, w, h, a, b}.

var r; s;w; h; a; b ;
true
1. r

r← {0, 1}n0 using (R1) and (R2)

/0"1,(νr;&'%) ∧ 4(G, r)
2. s

r← {0, 1}n0 using (R3), (R1), (G3) and (R2)

/0"1,(νr;&'%) ∧ /0"1,(νs;&'%)∧
4(G, r) ∧ 4(H, ine||s)

3. w := ine||s using (C3), (C1), (G3), and (G3)

/0"1,(νr;&'%) ∧23(w;&'%! {s, w})∧
4(G, r) ∧ 4(H, w)

4. h := H(w) using (H7), (H1), and (G3)

/0"1,(νr;&'%! {w, s})∧
/0"1,(νh;&'%! {w, s}) ∧ 4(G, r)

5. a := f (r||h) using the new rule (PO1) and (G3)

/0"1, f (νa;&'%! {r, s, w, h})∧
23(r;&'%! {r, s, w, h}) ∧ 4(G, r)

6. b := w ⊕ G(r) using (G1) f and (H1)

/0"1, f (νa;&'%! {r, s, w, h})∧
/0"1,(νb ;&'%! {r, s, w, h})

By the Consequence rule using (†)

/0"1, f (νa; a, b ,&'%! {r, s, w, h, oute})∧
/0"1,(νb ; a, b ,&'%! {r, s, w, h, oute})
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7. oute := a||b
/0"1, f (νa; a, b ,&'%! {r, s, w, h, oute})∧ using (G1) f and (G1)

/0"1,(νb ; a, b ,&'%! {r, s, w, h, oute})

(†) /0"1, f (νa; a, V) ∧ /0"1,(νb ; a, b , V) implies /0"1, f (νa; a, b , V ! {x})

5 Automation

We can now fully automate our verification procedure of IND-CPA for the encryp-
tion schemes. The idea is, for a given program, to compute invariants backwards,
starting with the invariant /0"1,(νoute; oute, ine, xσ ) at the end of the program.

As several rules can lead to the same postcondition, we in fact compute a set
of sufficient conditions at all points of the program: for each set (of postcon-
ditions) {φ1, . . . , φn} and each instruction c, we can compute a set of assertions
(preconditions) {φ′

1, . . . , φ
′
m} such that, for each i = 1, . . . , n, there exists a subset J ⊆

[1, . . . , m] such that {∧ j∈J φ′
j}c{φi} can be derived using the rules given Section 4.3,

The set {φ′
1, . . . , φ

′
m} is computed by applying two steps:

1. First, a set of assertions are computed by matching the command and assertion
φi with postconditions of the Hoare axioms. This allows to compute for each
assertion φi a set of preconditions Pre(φi).

2. Next, the consequence rule is applied using Lemma 2, i.e., the assertions
in Pre(φi) are replaced by stronger assertions, leading to the assertions in
{φ′

1, . . . , φ
′
m}.

Since the commands we consider do not include loops, our verification procedure
always terminates. However, this verification is potentially exponential in the num-
ber of instructions in the encryption command as each postcondition may potentially
have several preconditions. This does not seem to be a problem in practice. Indeed,
checking Bellare & Rogaway generic construction, for instance, is instantaneous.
We implemented that procedure as an Objective Caml program, taking as input a
representation of the encryption program.

6 Conclusion

In this paper we proposed an automatic method to prove IND-CPA security of
generic encryption schemes in the random oracle model. Then, IND-CCA can be
proved using a general method for proving plaintext awareness as described in [11].
It does not seem difficult to adapt our Hoare logic to allow a security proof in the
concrete framework of provable security. Another extension of our Hoare logic
could concern OAEP. Here, we need to express that the value of a given variable
is indistinguishable from a random value as long as a value r has not been submitted
to a hash oracle G. This can be done by extending the predicate /0"1,(νx; V1; V2).
The details are future work.

Acknowledgements We thank the anonymous and non-anonymous reviewers for their valuable
comments that greatly helped improving the paper.
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ABSTRACT

Chosen-ciphertext security is by now a standard security
property for asymmetric encryption. Many generic construc-
tions for building secure cryptosystems from primitives with
lower level of security have been proposed. Providing secu-
rity proofs has also become standard practice. There is, how-
ever, a lack of automated verification procedures that ana-
lyze such cryptosystems and provide security proofs. This
paper presents an automated procedure for analyzing generic
asymmetric encryption schemes in the random oracle model.
This procedure has been applied to several examples of en-
cryption schemes among which the construction of Bellare-
Rogaway 1993, of Pointcheval at PKC’2000 and REACT.

Categories and Subject Descriptors: E.3 DATA EN-
CRYPTION: Public key cryptosystems

General Terms: Security, verification.

Keywords: Hoare logics, asymmetric encryption, provable
security, automated proofs, random oracle model.

1. INTRODUCTION
Our day-to-day lives increasingly depend upon informa-

tion and our ability to manipulate it securely. This requires
solutions based on cryptographic systems (primitives and
protocols). In 1976, Diffie and Hellman invented public-key
cryptography, coined the notion of one-way functions and
discussed the relationship between cryptography and com-
plexity theory. Shortly after, the first cryptosystem with
a reductionist security proof appeared (Rabin 1979). The
next breakthrough towards formal proofs of security was
the adoption of computational security for the purpose of
rigorously defining the security of cryptographic schemes.
In this framework, a system is provably secure if there is
a polynomial-time reduction proof from a hard problem to
an attack against the security of the system. The prov-
able security framework has been later refined into the ex-
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act (also called concrete) security framework where better
estimates of the computational complexity of attacks are
achieved. While research in the field of provable cryptog-
raphy has achieved tremendous progress towards rigorously
defining the functionalities and requirements of many cryp-
tosystems, little has been done for developing computer-
aided proof methods or more generally for investigating a
proof theory for cryptosystems as it exists for imperative
programs, concurrent systems, reactive systems, etc...

In this paper, we present an automated proof method for
analyzing generic asymmetric encryption schemes in the ran-
dom oracle model (ROM). Generic encryption schemes aim
at transforming schemes with weak security properties, such
as one-wayness, into schemes with stronger security proper-
ties, especially security against chosen ciphertext attacks.
Examples of generic encryption schemes are [11, 23, 21, 5,
6, 19, 18, 17]. The paper contains two main contributions.
The first one is a compositional Hoare logic for proving IND-
CPA-security. That is, we introduce a simple programming
language (to specify encryption algorithms that use one-way
functions and hash functions) and an assertion language that
allows to state invariants and axioms and rules to establish
such invariants. Compositionality of the Hoare logic means
that the reasoning follows the structure of the program that
specifies the encryption oracle. The assertion language con-
sists of three atomic predicates. The first predicate allows
us to express that the value of a variable is indistinguishable
from a random value even when given the values of a set of
variables. The second predicate allows us to state that it is
computationally infeasible to compute the value of a vari-
able given the values of a set of variables. Finally, the third
predicate allows us to state that the value of a variable has
not been submitted to a hash function.

Transforming the Hoare logic into an (incomplete) au-
tomated verification procedure is quite standard. Indeed,
we can interpret the logic as a set of rules that tell us
how to propagate the invariants backwards. We have done
this for our logic resulting in a verification procedure im-
plemented in less than 250 lines of CAML. We have been
able to automatically verify IND-CPA security of several
schemes among which [5, 18, 17]. Our Hoare logic is in-
complete for two main reasons. First, IND-CPA security
is an observational equivalence-based property, while with
our Hoare logic we establish invariants. Nevertheless, as
shown in Proposition 3.1, we can use our Hoare logic to
prove IND-CPA security at the price of completeness. That
is, we prove a stronger property than IND-CPA. The second
reason, which we think is less important, is that for efficiency



reasons some axioms are stronger than needed.
The second contribution of the paper presents a simple

criterion for plaintext awareness (PA). Plaintext awareness
has been introduced by Bellare and Rogaway in [6]. It has
then been refined in [4] such that if an encryption scheme
is PA and IND-CPA then it is IND-CCA. Intuitively, PA
ensures that an adversary cannot generate a valid cipher
without knowing the plaintext, and hence, the decryption
oracle is useless for him. The definition of PA is complex
and proofs of PA are also often complex. In this paper, we
present a simple syntactic criterion that implies plaintext
awareness. Roughly speaking the criterion states that the
cipher should contain as a sub-string the hash of a bitstring
that contains as substrings the plaintext and the random
seed. This criterion applies for many schemes such as [5,
17, 18] and easy to check. Although (or maybe because) the
criterion is simple, the proof of its correctness is complex.

Putting together these two contributions, we get a proof
method for IND-CCA security.

An important feature of our method is that it is not based
on a global reasoning and global program transformation as
it is the case for the game-based approach [7, 20]. Indeed,
both approaches can be considered complementary as the
Hoare logic-based one can be considered as aiming at char-
acterizing, by means of predicates, the set of contexts in
which the game transformations can be applied safely.

Related work.
We restrict our discussion to work providing computa-

tional proofs for cryptosystems. In particular, this excludes
symbolic verification (including ours). We mentioned above
the game-based approach [7, 20, 15]. In [8, 9] B. Blanchet
and D. Pointcheval developed a dedicated tool, CryptoVerif,
that supports security proofs within the game-based ap-
proach. CryptoVerif is based on observational equivalence.
The equivalence relation induces rewriting rules applicable
in contexts that satisfy some properties. Invariants prov-
able in our Hoare logic can be considered as logical repre-
sentations of these contexts. Moreover, as we work with
invariants, that is we follow a state-based approach, we
need to prove results that link our invariants to game-based
properties such as indistinguishability (cf. Proposition 3.1
and 3.12). Our verification method is fully automated. It
focusses on asymmetric encryption in the random oracle
model, while CryptoVerif is potentially applicable to any
cryptosystem.

G. Barthe and S. Tarento were among the first to provide
machine-checked proofs of cryptographic schemes without
relying on the perfect cryptography hypothesis. They for-
malized the Generic Model and the Random Oracle Model in
the Coq proof assistant, and used this formalization to prove
hardness of the discrete logarithm [1], security of signed
ElGamal encryption against interactive attacks [3], and of
Schnorr signatures against forgery attacks [22]. They are
currently working on formalizing the game-based approach
in Coq [2]. D. Nowak provides in [16] an implementa-
tion in Coq of the game-based approach. He illustrates his
framework by a proof of the semantic security of the en-
cryption scheme ElGamal and its hashed version. Another
interesting work is the Hoare-style proof system proposed by
R. Corin and J. Den Hartog for game-based cryptographic
proofs [10]. The main difference between our logic and theirs
is that our assertion language does not manipulate probabil-

ities explicitly and is at a higher level of abstraction. On the
other hand, their logic is more general. In [12], Datta et al.
present a computationally sound compositional logic for key
exchange protocols. There is, however, no proof assistance
provided for this logic neither.

Outline: In Section 2, we introduce notations used for
defining our programming language and generic asymmetric
encryption schemes. In Section 3, we present our method
for proving IND-CPA security. In Section 4 we introduce
a criterion to prove plaintext awareness. In Section 5 we
explain the automated verification procedure derived from
our Hoare logic. Finally, in Section 6 we conclude.

2. DEFINITIONS
We are interested in analyzing generic schemes for asym-

metric encryption assuming ideal hash functions. That is,
we are working in the random oracle model [13, 5]. Using
standard notations, we write H

r
← Ω to denote that H is

randomly chosen from the set of functions with appropriate
domain. By abuse of notation, for a list !H = H1, · · · , Hn

of hash functions, we write !H
r
← Ω instead of the sequence

H1
r
← Ω, . . . , Hn

r
← Ω. We fix a finite set H = {H1, . . . , Hn}

of hash functions and also a finite set Π of trapdoor per-
mutations and O = Π ∪ H. We assume an arbitrary but
fixed ordering on Π and H; just to be able to switch be-
tween set-based and vector-based notation. A distribution
ensemble is a countable sequence of distributions {Xη}η∈ .
We only consider distribution ensembles that can be con-
structed in polynomial time by probabilistic algorithms that
have oracle access to O. Given two distribution ensembles
X = {Xη}η∈ and X ′ = {X ′

η}η∈ , an algorithm A and
η ∈ , we define the advantage of A in distinguishing Xη

and X ′
η as the following quantity:

Adv(A, η, X, X ′) =
Pr[x

r
← Xη : AO(x) = 1] − Pr[x

r
← X ′

η : AO(x) = 1].

We insist, above, that for each hash function H , the prob-
abilities are also taken over the set of maps with the appro-
priate type. Let Adv(η, X, X ′) = sup

A
(Adv(A, η, X, X ′)), the

maximal advantage taken over all probabilistic polynomial-
time algorithms. Then, two distribution ensembles X and
X ′ are called indistinguishable if Adv(η, X, X ′) is negligi-
ble as a function of η and denoted by X ∼ X ′. In other
words, for any polynomial-time (in η) probabilistic algo-
rithm A, Adv(A, η, X, X ′) is negligible as a function of η.
We insist that all security notions we are going to use are in
the ROM, where all algorithms, including adversaries, are
equipped with oracle access to the hash functions.

2.1 A simple programming language for en-
cryption and decryption oracles

We introduce a simple programming language without
loops in which the encryption and decryption oracles are
specified. The motivation for fixing a notation is obvious: it
is mandatory for developing an automatic verification pro-
cedure. Let Var be an arbitrary finite non-empty set of vari-
ables. Then, our programming language is built according
to the following BNF described in Table 1, where for a bit-
string bs = b1 . . . bk (bi are bits), bs[n, m] = bn . . . bm

1, and

1Notice that bs[n, m] = ε, when m < n and bs[n, m] =
bs[n, k], when m > k



N is the name of the oracle, c its body and x and y are the
input and output variable respectively. Note the command
y[n, m] is only used in the decryptions, it is why we do not
have to consider it in our Hoare logic. With this language
we can sample an uniform value to x, apply a way func-
tion f and its inverse f−1, a hash function, the exclusive-or,
the concatenation and substring function, and perform an
“if-then-else” (used only in the decryption function).

Example 2.1. The following command encodes the en-
cryption scheme proposed by Bellare and Rogaway in [5]
(shortly E(ine; oute) = f(r)||ine ⊕ G(r)||H(ine||r)):

E(ine, oute) :
r

r
← {0, 1}η0 ; a := f(r); g := G(r);

b := ine ⊕ g; s := ine||r; c := H(s);
u := a||b||c; oute := u;
where, f ∈ Π and G, H ∈ H.

Semantics: In addition to the variables in Var, we con-
sider variables H1

, . . . , Hn
. Variable Hi

records the
queries to the hash function Hi and can not be accessed
by the adversary. Thus, we consider states that assign bit-
strings to the variables in Var and lists of pairs of bit-strings
to Hi

. A state associates a value in {0, 1}∗ to each vari-
able in Var and a list of pairs of values to H . For simplic-
ity of the presentation, we assume that all variables range
over large domains, whose cardinalities are exponential in
the security parameter η. u

r
← U is the uniform sampling

of a value u from the appropriate domain. Given a state
S, S( H).dom, respectively S( H).res, denotes the list ob-
tained by projecting each pair in S( H) to its first, respec-
tively second, element.

A program takes as input a configuration (S, !H, (f, f−1))
and yields a distribution on configurations. A configura-
tion is composed of a state S, a vector of hash functions
(H1, . . . , Hn) and a pair (f, f−1) of a trapdoor permutation
and its inverse. Let Γ denote the set of configurations and
Dist(Γ) the set of distributions on configurations. The se-
mantics is given in Table 2, where δ(x) denotes the Dirac
measure, i.e. Pr(x) = 1. Notice that the semantic function
of commands can be lifted in the usual way to a function
from Dist(Γ) to Dist(Γ). By abuse of notation we also
denote the lifted semantics by [[c]].

A notational convention: It is easy to prove that com-
mands preserve the values of !H and (f, f−1). Therefore,

we can, without ambiguity, write S′ r
← [[c]](S, !H, (f, f−1))

instead of (S′, !H, (f, f−1))
r
← [[c]](S, !H, (f, f−1)). According

to our semantics, commands denote functions that transform
distributions on configurations to distributions on configu-
rations. However, only distributions that are constructible
are of interest. Their set is denoted by Dist(Γ, !H, ) and is
defined as the set of distributions of the form:
[(f, f−1)

r
← (1η); !H

r
← Ω; S

r
← A

"H,f,f−1

() : (S, !H, f, f−1)]

where A is an algorithm accessing f , f−1 and !H and which
records its queries to hashing oracles into the H ’s in S.

2.2 Asymmetric Encryption
We study generic constructions that convert any trapdoor

permutation into a public-key encryption scheme. More
specifically, our aim is to provide an automatic verification
method for generic encryption schemes. We also adapt IND-
CPA and IND-CCA security notions to our setting.

Definition 2.1. A generic encryption scheme is defined
by a triple ( , E(ine, oute) : c,D(ind, outd) : c

′) such that:

• is a trapdoor permutation generator that on input η
generates an η-bit string trapdoor permutation (f, f−1)

• E(ine, oute) : c and D(ind, outd) : c
′ are oracle declara-

tions for encryption and decryption.

Definition 2.2. Let GE be a generic encryption scheme
defined by ( ,E(ine, oute) : c,D(ind, outd) : c

′). Let A =
(A1, A2) be an adversary and X ∈ Dist(Γ, !H, ). For α ∈
{cpa, cca} and η ∈ , let

Adv
ind−α
A,GE (η, X) = 2 ∗ Pr[(S, !H, (f, f−1))

r
← X;

(x0, x1, s)
r
← AO1

1 (f); b
r
← {0, 1};

S′ r
← [[E(xb, oute)]](S, !H, (f, f−1)) :

AO2

2 (f, x0, x1, s, S′(oute)) = b] − 1

where if α = cpa then O1 = O2 = !H and if α = cca then
O1 = O2 = !H ∪ {D}.

We insist, above, that A1 outputs x0, x1 such that |x0| =
|x1| and that in the case of CCA, A2 does not ask its or-
acle D to decrypt S′(y). We say that GE is IND-α secure
if Adv

ind−α
A,GE (η, X) is negligible for any constructible distribu-

tion ensemble X and polynomial-time adversary A.

3. IND-CPA SECURITY
In this section, we present an effective procedure to ver-

ify IND-CPA security. The procedure may fail to prove a
secure encryption scheme but never declares correct an in-
secure one. Thus, we sacrifice completeness for soundness,
a situation very frequent in verification2. We insist that our
procedure does not fail for any of the numerous construc-
tions we tried.

We are aiming at developing a procedure that allows us
to prove properties, i.e. invariants, of the encryption oracle.
More precisely, the procedure annotates each control point
of the encryption command with a set of predicates that
hold at that point for any execution except with negligible
probability. Given an encryption oracle E(ine, oute) : c we
want to prove that at the final control point, we have an
invariant that tells us that the value of oute is indistinguish-
able from a random value. As we will show, this implies
IND-CPA security.

A few words now concerning how we present the verifi-
cation procedure. First, we present in the assertion lan-
guage the invariant properties we are interested in. Then,
we present a set of rules of the form {ϕ}c{ϕ′} meaning that
execution of command c in any distribution that satisfies ϕ
leads to a distribution that satisfies ϕ′. Using Hoare logic
terminology, this means that the triple {ϕ}c{ϕ′} is valid.

From now on, we suppose that the adversary has access
to the hash functions !H, and he is given the trapdoor per-
mutation f , but not its inverse f−1.

3.1 The Assertion Language
Our assertion language is defined by the following gram-

mar, where ψ defines the set of atomic assertions:

ψ ::= Indis(νx;V1; V2) | WS(x; V ) | H(H, e)
ϕ ::= true | ψ | ϕ ∧ ϕ,

2We conjecture that the IND-CPA verification problem of
schemes described in our language is undecidable.



Command c ::= x
r
← U | x := f(y) | x := f−1(y) | x := H(y) | x := y[n, m]

| x := y ⊕ z | x := y||z | if x = y then c1 else c2 fi | c; c
Oracle declaration O ::= N (x, y) : c

Table 1: Language grammar.

[[x
r
← U ]](S, !H, (f, f−1)) = [u

r
← U : (S{x )→ u}, !H, (f, f−1))]

[[x := f(y)]](S, !H, (f, f−1)) = δ(S{x )→ f(S(y))}, !H, (f, f−1))
[[x := f−1(y)]](S, !H, (f, f−1)) = δ(S{x )→ f−1(S(y))}, !H, (f, f−1))
[[x := y[n, m]]](S, !H, (f, f−1)) = δ(S{x )→ S(y)[n, m]}, !H, (f, f−1))
[[x := H(y)]](S, !H, (f, f−1)) =

8

<

:

δ(S{x )→ v}, !H, (f, f−1)) ; if (S(y), v) ∈ H

δ(S{x )→ v, H )→ S( H) · (S(y), v)}, !H, (f, f−1)) ;
if (S(y), v) +∈ H and v = !H(H)(S(y))

[[x := y ⊕ z]](S, !H, (f, f−1)) = δ(S{x )→ S(y) ⊕ S(z)}, !H, (f, f−1))
[[x := y||z]](S, !H, (f, f−1)) = δ(S{x )→ S(y)||S(z)}, !H, (f, f−1))
[[c1; c2]] = [[c2]] ◦ [[c1]]

[[if x then c1 else c2 fi]](S, !H, (f, f−1)) =



[[c1]](S, !H, (f, f−1)) if S(x) = 1
[[c2]](S, !H, (f, f−1)) otherwise

[[N (v, y)]](S, !H, (f, f−1)) = [[c]](S{x )→ v}, !H, (f, f−1)) where c is the body of N .

Table 2: The semantics of the programming language

where V1, V2 ⊆ Var and e is an expression, that is, a variable
x or the concatenation of a polynomial number of variables.

Intuitively, Indis(νx;V1; V2) is satisfied by a distribution
on configurations, if any adversary has negligible probability
to distinguish whether he is given the value of x or a random
value, even when he is additionally given the values of the
variables in V1 and the image by the one-way permutation
of those in V2. The assertion WS(x;V ) is satisfied by a
distribution, if any adversary has negligible probability to
compute the value of x, even when he is given the values
of the variables in V . Finally, H(H, e) is satisfied when the
value of e has not been submitted to the hash oracle H .

Notations: We use Indis(νx;V ) instead of Indis(νx; V ; ∅)
and Indis(νx) instead of Indis(νx;Var). We also write V, x
instead of V ∪ {x} and even x, y instead of {x, y}.

Formally, the meaning of the assertion language is defined
by a satisfaction relation X |= ϕ, which tells us when a
distribution on configurations X satisfies the assertion ϕ. In
order to define the satisfaction relation X |= ϕ, we need to
generalize indistinguishability as follows. Let X be a family
of distributions in Dist(Γ, !H, ) and V1 and V2 be sets of
variables in Var. By D(X, V1, V2) we denote the following
distribution family (on tuples of bit-strings):

D(X, V1, V2)η =
[(S, !H, (f, f−1))

r
← X : (S(V1), f(S(V2)), !H, f)]

Here S(V1) is the point-wise application of S to the el-
ements of V1 and f(S(V2)) is the point-wise application
of f to the elements of S(V2). We say that X and X ′

are V1; V2-indistinguishable, denoted by X ∼V1;V2
X ′, if

D(X, V1, V2) ∼ D(X ′, V1, V2).

Example 3.1. Let S0 be any state and let H1 be a hash
function. Recall that we are working in the ROM. Consider
the following distributions: Xη = [β; S := S0{x )→ u, y )→
H1(u)} : (S, !H, (f, f−1))] and X ′

η = [β; u′ r
← {0, 1}p(η); S :=

S0{x )→ u, y )→ H1(u
′)} : (S, !H, (f, f−1))], where β = !H

r
←

Ω; (f, f−1)
r
← (1η); u

r
← {0, 1}p(η), where p is a polyno-

mial. Then, we have X ∼{y};{x} X ′ but we do not have
X ∼{y,x};∅ X ′, because then the adversary can query the
value of H1(x) and match it to that of y.

The satisfaction relation X |= ψ is defined as follows:

• X |= true, X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.

• X |= Indis(νx; V1; V2) iff X ∼V1;V2
[u

r
← U ;

(S, !H, (f, f−1))
r
← X : (S{x )→ u}, !H, (f, f−1))]

• X |= WS(x; V ) iff Pr[(S, !H, (f, f−1))
r
← X : A(S(V ))

= S(x)] is negligible, for any adversary A.

• X |= H(H,e) iff Pr[(S, !H, (f, f−1))
r
← X : S(e) ∈

S( H).dom] is negligible.

The relation between our Hoare triples and semantic security
is established by the following proposition that states that
if the value of oute is indistinguishable from a random value
then the scheme considered is IND-CPA.

Proposition 3.1. Let ( , E(ine, oute) : c,D(ind, outd) :
c
′) be a generic encryption scheme. It is IND-CPA secure if
{true}c{Indis(νoute; oute, ine)} is valid.

If {true}c{Indis(νoute; oute, ine)} holds then the encryption
scheme is secure with respect to randomness of ciphertext.
It is standard that randomness of ciphertext implies IND-
CPA security.

3.2 A Hoare Logic for IND-CPA security
In this section we present our Hoare logic for IND-CPA

security. We begin with a set of preservation axioms that tell
us when an invariant established at the control point before
a command can be transferred to the next control point.
Then, for each command, except x := f−1(y), x := y[n, m]
and conditional, we present a set of specific axioms that



allow us to establish new invariants. The commands that
are not considered are usually not used in encryption but
only in decryption procedures, and hence, are irrelevant for
IND-CPA security.

3.2.1 Generic preservation rules:
We assume z += x and c is either x

r
← U or x := y||t or

x = y ⊕ t or x := f(y) or x := H(y) or x := t ⊕ H(y).

Lemma 3.2. The following axioms are sound, when x +∈
V1 ∪ V2:

• (G1) {Indis(νz; V1; V2)} c {Indis(νz;V1; V2)}

• (G2) {WS(z; V1)} c {WS(z; V1)}

• (G3) {H(H ′, e[e′/x])} x := e′ {H(H ′, e)}, provided
H ′ += H in case e′ ≡ H(y). Here, e[e′/x] is the ex-
pression obtained from e by replacing x by e′.

3.2.2 Random Assignment:

Lemma 3.3. The following axioms are sound:

• (R1) {true} x
r
← U {Indis(νx)}

• (R2) {true} x
r
← U {H(H,e)} if e is x or is of the form

e1||x||e2, x||e2 or e1||x.

Moreover, the following preservation axioms, where we as-
sume x += y 3, are sound:

• (R3) {Indis(νy;V1; V2)}x
r
← U{Indis(νy; V1, x; V2)}

• (R4) {WS(y;V )}x
r
← U{WS(y; V, x)}

Axiom (R1) is obvious. Axiom (R2) takes advantage of the
fact that U is a large set, or more precisely that its cardinal-
ity is exponential in the security parameter, and that since
e contains the fresh generated x the probability that it has
already been submitted to H is small. Axioms (R3) and
(R4) state that the value of x cannot help an adversary in
distinguishing the value of y from a random value in (R3)
or computing its value in (R4). This is the case because the
value of x is randomly sampled.

Henceforth, we write x ∈ var(e) to state that e is x or is
of the form e1||x||e2, x||e2 or e1||x.

3.2.3 Hash Function:

Lemma 3.4. The following basic axioms are sound, when
x += y, and α is either a constant or a variable:

• (H1){WS(y; V ) ∧ H(H,y)}x := α ⊕ H(y)
{Indis(νx;V, x)}

• (H2){H(H, y)} x := H(y){H(H ′, e)}, if e is x or is of
the form e1||x||e2, x||e2 or e1||x.

• (H3){Indis(νy;V ; V ′, y) ∧ H(H,y)}x := H(y)
{Indis(νx;V, x; V ′, y)} if y +∈ V

Axiom (H1) captures the main feature of the random oracle
model, namely that the hash function is a random function.
Hence, if an adversary cannot compute the value of y and
this latter has not been hashed yet then he cannot distin-
guish H(y) from a random value. Axiom (H2) is similar to
axiom (R2). Axiom (H3) uses the fact that the value of y
can not be queried to the hash oracle.
3By x = y we mean syntactic equality.

Lemma 3.5. The following preservation axioms are sound
provided that x += y and z += x:

• (H4) {WS(y;V ) ∧ WS(z; V ) ∧ H(H,y)}x := H(y)
{WS(z;V, x)}

• (H5) {H(H,e) ∧ WS(z; y)}x := H(y){H(H,e)}, if z ∈
var(e) ∧ x /∈ var(e)

• (H6) {Indis(νy;V1; V2, y) ∧ H(H,y)}x := H(y)
{Indis(νy;V1, x; V2, y)}, if y +∈ V1

• (H7) {Indis(νz; V1, z; V2)∧WS(y; V1 ∪V2, z)∧H(H,y)}
x := H(y){Indis(νz;V1, z, x;V2)}

The idea behind (H4) is that to the adversary the value
of x is seemingly random so that it can not help to compute
z. Axiom (H5) states that the value of e not having been
hashed yet reminds true as long as e contains a variable z
whose value is not computable out of y. (H6) and (H7) give
necessary conditions to the preservation of indistinguisha-
bility that is based on the seemingly randomness of a hash
value.

3.2.4 One-way Function:

Lemma 3.6. The following axiom is sound, when y +∈ V ∪
{x}:

• (O1) {Indis(νy;V ; y)} x := f(y) {WS(y;V, x)}.

Axiom (O1) captures the one-wayness of f .

Lemma 3.7. The following axioms are sound when z += x:

• (O2) {Indis(νz;V1, z; V2, y)} x := f(y)
{Indis(νz;V1, z, x;V2)}, if z += y

• (O3) {WS(z;V ) ∧ Indis(νy;V, z; y)} x := f(y)
{WS(z;V, x)}

For one-way permutations, we also have the following axiom:

• (P1){Indis(νy; V1; V2, y)} x := f(y)
{Indis(νx;V1, x; V2)}, if y +∈ V1 ∪ V2

Axiom (O2) is obvious since f(y) is given to the adversary
in the precondition and axiom (O3) follows from the fact
that y and z are independent. Axiom (P1) simply ensues
from the fact that f is a permutation.

3.2.5 The Xor operator
In the following axioms, we assume y += z.

Lemma 3.8. The following axiom is sound when y +∈ V1∪
V2:

• (X1) {Indis(νy;V1, y, z; V2)}x := y ⊕ z
{Indis(νx;V1, x, z; V2)},

Moreover, we have the following axioms that are sound pro-
vided that t += x, y, z.

• (X2) {Indis(νt;V1, y, z; V2)}x := y ⊕ z
{Indis(νt;V1, x, y, z; V2)}

• (X3) {WS(t;V, y, z)}x := y ⊕ z{WS(t;V, y, z, x)}

To understand axiom (X1) one should consider y as a key
and think about x as the one-time pad encryption of z with
the key y. Axioms (X2) and (X3) take advantage of the fact
that is easy to compute x given y and z.



3.2.6 Concatenation:

Lemma 3.9. The following axioms are sound:

• (C1) {WS(y;V )} x := y||z {WS(x;V )}, if x +∈ V . A
dual axiom applies for z.

• (C2) {Indis(νy;V1, y, z; V2)∧Indis(νz; V1, y, z; V2)} x :=
y||z {Indis(νx;V1; V2)}, if y, z +∈ V1 ∪ V2

• (C3) {Indis(νt;V1, y, z; V2)}x := y||z
{Indis(νt;V1, x, y, z; V2)}, if t += x, y, z

• (C4) {WS(t;V, y, z)} x := y||z {WS(t; V, y, z, x)}, if
t += x, y, z

(C1) states that if computing a substring of x out of the
elements of V is hard, then so is computing x itself. The
idea behind (C2) is that y and z being random implies ran-
domness of x, with respect to V1 and V2. Eventually, x being
easily computable from y and z accounts for rules (C3) and
(C4).

In addition to the axioms above, we have the usual sequen-
tial composition and consequence rules of the Hoare logic.
In order to apply the consequence rule, we use entailment
(logic implication) between assertions as in Lemma 3.10.

Lemma 3.10. Let X ∈ Dist(Γ, !H, ) be a distribution
ensemble:

1. If X |= Indis(νx;V1; V2), V ′
1 ⊆ V1 and V ′

2 ⊆ V1 ∪ V2

then X |= Indis(νx;V ′
1 ; V ′

2).

2. If X |= WS(x;V ′) and V ⊆ V ′ then X |= WS(x;V ).

3. If X |= Indis(νx; V1; V2 ∪ {x}) and V ⊆ V1 \ {x} then
X |= WS(x;V ).

The soundness of the Hoare Logic follows by induction from
the soundness of each axiom and soundness of the Conse-
quence and Sequential composition rules.

Proposition 3.11. The Hoare triples of Section 3.2 are
valid.

Example 3.2. We illustrate our proposition with Bellare
& Rogaway’s generic construction [5].

1) r
r
← {0, 1}n0

Indis(νr;Var) ∧ H(G, r) ∧ H(H, ine||r)
2) a := f(r)
Indis(νa;Var − r) ∧ WS(r;Var − r) ∧ H(G, r)∧
H(H, ine||r)
3) g := G(r)
Indis(νa;Var − r) ∧ Indis(νg;Var − r)∧
WS(r;Var − r) ∧ H(H, ine||r)
4) b := ine ⊕ g
Indis(νa;Var − r) ∧ Indis(νb;Var − g − r)∧
WS(r;Var − r) ∧ H(H, ine||r)
5) s := ine||r
Indis(νa;Var − r − s) ∧ Indis(νb;Var − g − r − s)∧
WS(s;Var − r − s) ∧ H(H,s)
6) c := H(s)
Indis(νa;Var − r − s) ∧ Indis(νb;Var − r − g − s)∧
Indis(νc;Var − r − s)
7) oute := a||b||c
Indis(νoute;Var − a − b − c − r − g − s)

1) (R1), (R2), and (R2).
2) (P1), (O1), (G3), and (G3).
3) (H7), (H1), (H4), and (G3).
4) (X2), (X1), (X3), and (G3).
5) (G1), (G1), (C1), and (G3).
6) (H7), (H7), and (H1).
7) (C2) twice.

3.3 Extensions
In this section, we show how our Hoare logic, and hence

our verification procedure, can be adapted to deal with on
one hand injective partially trapdoor one-way functions and
on the other hand OW-PCA (probabilistic) functions. The
first extension is motivated by Pointcheval’s construction
in [18] and the second one by the Rapid Enhanced-security
Asymmetric Cryptosystem Transform (REACT) [17]. For
obvious reasons, we cannot recall the definitions of the se-
curity of these functions; we explain them informally.

The first observation we have to make is that Proposi-
tion 3.1 is too demanding in case f is not a permutation.
Therefore, we introduce a new predicate Indisf (νx;V1; V2)
whose meaning is as follows:

X |= Indisf (νx;V1; V2) if and only if X ∼V1;V2
[u

r
←

U ; (S, !H, (f, f−1))
r
← X : (S{x )→ f(u)}, !H, (f, f−1))].

Notice that, when f is a bijection, Indisf (νx;V1; V2) is
equivalent to Indis(νx;V1; V2) (fi can be the identity function
as in the last step of Example 3.3 and 3.4). Now, let oute, the
output of the encryption oracle, have the form a1|| · · · ||an

with ai = fi(xi). Then, we can prove the following:

Proposition 3.12. We consider GE a generic encryp-
tion scheme of the form ( ,E(ine, oute) : c,D(ind, outd) :
c
′).

If {true}c{
n
V

i=1
Indisfi

(νai; a1, . . . , an, ine)} is valid then GE

is IND-CPA.

Now, we introduce a new axiom for Indisf (νx;V1; V2) that
replaces axiom (P1) in case the one-way function f is not a
permutation:

(P1′) {Indis(νy;V1; V2, y)}
x := f(y)
{Indisf (νx; V1, x; V2)} if y +∈ V1 ∪ V2

Clearly all preservation rules can be generalized for Indisf .
Injective partially trapdoor one-way functions: In

contrast to the previous section, we do not assume f to be
a permutation. On the other hand, we demand a stronger
property than one-wayness. Let f : X × Y → Z be a func-
tion and let f−1 : Z → X be such that ∀z ∈ dom(f−1)∃y ∈
Y, z = f(f−1(z), y). Here f−1 is a partial function. The
function f is said partially one-way, if for any given z =
f(x, y), it is computationally impossible to compute a cor-
responding x. In order to deal with the fact that f is
now partially one-way, we add the following axioms, where
we assume x, y +∈ V ∪ {z} and where we identify f and
(x, y) )→ f(x||y):

(PO1) {Indis(νx;V, x, y) ∧ Indis(νy;V, x, y)}
z := f(x||y)
{ WS(x; V, z) ∧ Indisf (νz; V, z) }

The intuition behind the first part of (PO1) is that f
guarantees one-way secrecy of the x-part of x||y. The second
part follows the same idea that (P1’).



Example 3.3. We verify Pointcheval’s transformer [18].

1) r
r
← {0, 1}n0

Indis(νr;Var) ∧ H(G, r)
2) s

r
← {0, 1}n0

Indis(νr;Var) ∧ Indis(νs;Var) ∧ H(G, r) ∧ H(H, ine||s)
3) w := ine||s
Indis(νr;Var) ∧ WS(w;Var − s − w) ∧ H(G, r) ∧ H(H, w)
4) h := H(w)
Indis(νr;Var − w − s) ∧ Indis(νh;Var − w − s) ∧ H(G, r)
5) a := f(r||h)
Indisf (νa;Var − r − s − w − h)
∧WS(r;Var − r − s − w − h) ∧ H(G, r)
6) b := w ⊕ G(r)
Indisf (νa;a, ine) ∧ Indis(νb; a, b, ine)
7) oute := a||b
Indisf (νa;a, ine) ∧ Indis(νb; a, b, ine)

1) (R1) and (R2); 2) (R3), (R1), (G3) and (R2); 3) (C3),
(C1), (G3), and (G3); 4) (H7), (H1), and (G3); 5) New
rule (PO1) and (G3); 6) Extension of (G1) to Indisf , and
(H1); 7) Extension of (G1) to Indisf , and (G1).

To conclude, we use the fact that Indisf (νa; a, ine) and
Indis(νb;a, b, ine) implies Indisf (νa;a, b, ine)

OW-PCA: Some constructions such as REACT are based
on probabilistic one-way functions that are difficult to invert
even when the adversary has access to a plaintext checking
oracle (PC), which on input a pair (m, c), answers whether
c encrypts m. In order to deal with OW-PCA functions, we
need to strengthen the meaning of our predicates allowing
the adversary to access to the additional plaintext checking
oracle. For instance, the definition of WS(x; V ) becomes:
X |= WS(x;V ) iff Pr[(S, !H, (f, f−1))

r
← X : APCA(S(V )) =

S(x)] is negligible, for any adversary A. Now, we have to
revisit Lemma 3.10 and the axioms that introduce WS(x;V )
in the postcondition. It is, however, easy to check that they
are valid.

Example 3.4. REACT [17]

1) r
r
← {0, 1}n0

Indis(νr;Var)
2) R

r
← {0, 1}n0

Indis(νr;Var) ∧ Indis(νR;Var) ∧ H(G, R)∧
H(H,R||ine||f(R||r)||ine ⊕ G(R))
3) a := f(R||r)
Indisf (νa;Var − r − R) ∧ WS(R;Var − r − R)∧
H(G, R) ∧ H(H, R||ine||a||ine ⊕ G(R))
4) g := G(R)
Indisf (νa;Var − r − R) ∧ Indis(νg;Var − r − R)∧
WS(R;Var − r − R) ∧ H(H, R||ine||a||ine ⊕ g)
5) b := ine ⊕ g
Indisf (νa;Var − r − R) ∧ Indis(νb;Var − g − r − R)∧
WS(R;Var − r − R) ∧ H(H, R||ine||a||b)
6) w := R||ine||a||b
Indisf (νa;Var − r − w − R)
∧Indis(νb;Var − g − r − w − R)
∧WS(w;Var − r − w − R) ∧ H(H,w)
7) c := H(w)
Indisf (νa;a, b, c, ine) ∧ Indis(νb; a, b, c, ine)
∧Indis(νc; a, b, c, ine)
8) oute := a||b||c;
Indisf (νa;a, b, c, ine) ∧ Indis(νb; a, b, c, ine)
∧Indis(νc; a, b, c, ine)

1) (R1)
2) (R3), (R1), (R2) and (R2)
3) (PO1), (G3) and (G3).
4) Extension of (H7) to Indisf , (H1), (H4), and (G3).
5) Extension of (X2) to Indisf , (X1), (X3), and (G3).
6) Extension of (G1) to Indisf , (G1), (C1), and (G3).
7) Extension of (H7) to Indisf , (H7), and (H1).
8) Extension of (G1) to Indisf , (G1) and (G1).

4. PLAINTEXT AWARENESS
Bellare and Rogaway introduced plaintext awareness (PA)

in [6]4. The motivation is to decompose IND-CCA secu-
rity of an encryption scheme into IND-CPA and PA secu-
rity. Indeed, a public-key encryption scheme that satisfies
IND-CPA (in the ROM) and the original definition of PA is
IND-CCA1 (in the ROM). PA has been refined in [4] such
that if an encryption scheme is PA and IND-CPA then it is
IND-CCA. Intuitively, plaintext awareness means that the
decryption oracle can be simulated by a plaintext extractor
that does not have access to the inverse permutation f−1.
Now we introduce a simple analysis that allows us to au-
tomatically verify that an encryption scheme is PA in the
strong sense [4]. Hence, combined with the results of the
previous sections we obtain an analysis that allows to verify
IND-CCA security.

We recall the definition of PA-security following the no-
tations and conventions of [4]. Let GE = ( ,E(ine, oute) :
c,D(ind, outd) : c

′) be a generic encryption scheme. An
adversary B for plaintext awareness is given the public per-
mutation f , oracle access to the encryption algorithm E and
to the ideal hash functions !H = H1, · · · , Hn. His goal is to
output a cipher-text that cannot be correctly decrypted by
the plaintext extractor. Hence, the success of plaintext ex-
tractor K against B in the distribution X ∈ Dist(Γ, !H, )
is defined by:

Succ
pa
K,B,GE(η, X) =

Pr[(S, !H, (f, f−1))
r
← X; (hH, C, y, S′)

r
← BE, "H(f);

S′′ r
← [[D(y, outd)]](S′, !H, (f, f−1)) :

y ∈ C ∨ (y +∈ C ∧ K(hH, C, y, f) = S′′(outd))]

Here by (hH,C, y, S′)
r
← BE, "H(f) we mean the following:

run B on input f with oracle access to Hi, i = 1, · · · , n
and E (which calls f and Hi), recording B’s interaction
with the hash functions in hH and his interaction with E
in C. Thus, hH is a list (hH1, · · · , hHn) of lists. Each
list hHi = ((h1, v1), · · · , (hqi

, vqi
)) records all of B’s Hi-

oracle queries h1, · · · , hqi
and the corresponding answers

v1, · · · , vqi
. The modified state S′ is due to calls of the hash

functions either by B or the encryption oracle. The list C
records the cipher-texts received in reply to E-queries 5. Fi-
nally, y is B’s challenge to the plaintext extractor K. Please
notice that K wins whenever B outputs a value y ∈ C.

Definition 4.1. An encryption scheme given by GE =
( , E(ine, oute) : c,D(ind, outd) : c

′) is PA-secure, if there

4While in the original work by Bellare and Rogaway and
in subsequent ones, plaintext awareness includes semantic
security, we prefer to separate plaintext extraction and se-
mantic security.
5This list was not included in the original definition by
Bellare and Rogaway. Without it only IND-CCA1 can be
proved but not IND-CCA.



is a polynomial-time probabilistic algorithm K such that for
every distribution X ∈ Dist(Γ, !H, ) and adversary B, we
have 1 − Succ

pa
K,B,GE(η, X) is a negligible function in η.

The rest of the section is organized as follows. We first intro-
duce a semantic condition on D that implies the existence of
a plaintext extractor. Then, we provide a syntactic criterion
that implies the semantic criterion.

In the remainder of this section, we consider an encryption
scheme GE that uses the hash functions !H = H1, · · · , Hn.
We assume that c

′ has the following form
c1; h := H1(t);
if V(!x, h) = v then outd := m else outd := ”error” fi,

where !x is a vector of variables (possibly empty) and V is a
function (possibly the identity in which case we do not write
it) such that for given !x and v, Pr[r

r
← U : V(!x, r) = v]

is negligible. Furthermore, we require that the hash func-
tion H1 is not called in c1 and that the encryption algo-
rithm c makes exactly one call to the oracle H1. Consider,
for instance, the scheme in [5], f(r)||ine ⊕ G(r)||H(ine||r).
Here, t gets assigned the value ine||r. We call the condition
V(!x, h) = v (or equivalently V(!x, H1(t)) = v) the ”sanity
check”.

It allows us to discriminate valid cipher-text from arbi-
trary bit-string. We also assume that decryption behaves
correctly with respect to encryption: if y is generated using
the algorithm of encryption, then the value of t as computed
by the decryption oracle coincides with the value used as ar-
gument in the call to H1 by the encryption algorithm.

Example 4.1. Bellare and Rogaway [5]:
D(ind = a∗||b∗||v, outd) :
r∗ := f−1(a∗); g∗ := G(r∗); m∗ := b∗ ⊕ g∗; t := m∗||r∗;
h := H(t);
if h = v then outd := m∗

else outd := ”error” fi

A semantic criterion for PA Our semantic criterion
for PA-security is composed of three conditions. We begin
with an informal presentation of these conditions and how
they will enable us to construct a plaintext extractor.

1. The first condition says that there is an algorithm that
checks whether a given bit-string t∗, that has been
submitted to H1 by B, corresponds to the challenge y.
That is, if the tester answers ”yes” (1), then t∗ matches
with the value of t as computed by the decryption or-
acle and additionally satisfies the sanity check; and if
it answers ”no” (0), then t∗ does not satisfy the sanity
check.

2. The second condition states that it is easy to compute
the plaintext from t∗.

3. The third condition states that for each value of t there
is at most one corresponding ciphertext y.

Assume now that these conditions are satisfied. Then,
we can construct a plaintext extractor K as follows. Using
the algorithm of the first condition, that we call the tester,
scan the list hH1 to find a suitable t∗. If none is found,
answer ”error”. Otherwise, apply the algorithm of the second
condition on the value found for t∗ to extract the plaintext.
The third condition ensures that each value of t∗ corresponds
to at most one ciphertext, which is necessary to ensure that
the extracted plaintext is the correct one. Let us now
tackle the formal treatment of these ideas.

Definition 4.2. We say that GE a generic encryption
scheme satisfies the PA-semantic criterion, if there exist ef-
ficient algorithms T and Ext that satisfy the following con-
ditions:

1. The tester T takes as input (hH,C, y, t∗, f) and re-
turns a value in {0, 1}. We require that for any adver-
sary B and any distribution X ∈ Dist(Γ, !H, ),

1−

Pr[(S, !H, (f, f−1))
r
← X; (hH, C, y, S′)

r
← BE, "H(f);

S′′ r
← [[D(y, outd)]](S′, !H, (f, f−1)); t∗

r
← hH1.dom;

b
r
← T (hH, C, y, t∗, f) :

`

b = 1 ⇒ H1(t∗) = H1(S′′(t))
∧V(S′′(x), H1(t∗)) = S′′(v)

´

∧
`

b = 0 ⇒ V(S′′(x), H1(t∗)) %= S′′(v)
´

]

is negligible.

2. For Ext, we require that for any adversary B and any
distribution X ∈ Dist(Γ, !H, ),

1−

Pr[(S, !H, (f, f−1))
r
← X; (hH,C, y, S′)

r
← BE, "H(f);

S′′ r
← [[D(y, outd)]](S

′, !H, (f, f−1)) :
Ext(hH, C, y, S′′(t), f) = S′′(outd)]

is negligible.

3. Finally, we require that for any adversary B and any
distribution X ∈ Dist(Γ, !H, ),

Pr[(S, !H, (f, f−1))
r
← X; (hH, C, y, y′, S′)

r
← BE, "H (f);

S1
r
← [[D(y, outd)]](S′, !H, (f, f−1));

S2
r
← [[D(y′, outd)]](S′, !H, (f, f−1)) :

y %= y′ ∧ S1(t) = S2(t) ∧ S1(outd) %= ”error”∧
S2(outd) %= ”error”]

is negligible.

Of course there are generic encryption schemes for which the
conditions above are satisfied under the assumption that T
has access to an extra oracle such as a plaintext checking
oracle (PC), or a ciphertext validity-checking oracle (CV),
which on input c answers whether c is a valid ciphertext.
In this case, the semantic security of the scheme has to be
established under the assumption that f is OW-PCA, re-
spectively OW-CVA. Furthermore, our definition of the PA-
semantic criterion makes perfect sense for constructions that
apply to IND-CPA schemes such as Fujisaki and Okamoto’s
converter [14]. In this case, f has to be considered as the
IND-CPA encryption oracle.

Given a tester T and an algorithm Ext as in Definition 4.2,
we construct a plaintext extractor as follows:

KT ,Ext(hH, C, y, f) :
Let L = {t∗ | t∗ ∈ dom(hH1), T (hH, C, y, t∗, f) = 1}

if L = ε then return ”error” else t∗
r
← L;

return Ext(hH,C, y, t∗, f)

Theorem 4.1. Let GE be a generic encryption scheme
that satisfies the PA-semantic criterion. Then, GE is PA-
secure.

An easy syntactic check that implies the PA-semantic crite-
rion is as follows.

Definition 4.3. A generic encryption scheme GE satis-
fies the PA-syntactic criterion, if the sanity check has the
form V(t, h) = v, where D is such that h is assigned H1(t),
t is assigned ine||r, ine is the plaintext and E(ine; r) is the
ciphertext (i.e., r is the random seed of E).



It is not difficult to see that if GE satisfies the PA-syntactic
criterion then it also satisfies the PA-semantic one with a
tester T as follows (Ext is obvious):

Look in hH1 for a bit-string s such that E(x∗; r∗) = y,
where y is the challenge and x∗||r∗ = s.

Here are some examples that satisfy the syntactic criterion
(we use ·∗ to denote the values computed by the decryption
oracle):

Example 4.2. • Bellare and Rogaway [5]: E(ine; r) =
a||b||c = f(r)||ine⊕G(r)||H(ine||r). The ”sanity check”
of the decryption algorithm is H(m∗||r∗) = c∗.

• OAEP+ [19]: E(ine; r) = f(a||b||c), where a = ine ⊕
G(r), b = H ′(ine||r), c = H(s) ⊕ r and s = ine ⊕
G(r)||H ′(ine||r). The ”sanity check” of the decryption
algorithm has the form H ′(m∗||r∗) = b∗.

• Fujisaki and Okamoto [14]: if (K′, E ′,D′) is a pub-
lic encryption scheme (that is CPA) then E(ine; r) =
E ′((ine||r); H(ine||r)). The ”sanity check” of the de-
cryption algorithm is:
E ′(m∗||r∗; H(m∗||r∗)) = ind.

The PA-semantic criterion applies to the following construc-
tions but not the syntactic one:

Example 4.3.

• Pointcheval [18]:
E(ine; r; s) = f(r||H(ine||s))||((ine||s)⊕G(r)), where f
is a partially trapdoor one-way injective function. The
”sanity check” of the decryption oracle D(a||b) has the
form f(r∗||H(m∗||s∗)) = a∗. The tester looks in hG
and hH for r∗ and m∗||s∗ such that E(m∗; r∗; s∗) = y.

• REACT [17]: This construction applies to any trap-
door one-way function (possibly probabilistic). It is
quite similar to the construction in [5]: E(ine; R; r) =
a||b||c = f(R; r)||ine⊕G(r)||H(R||ine||a||b), where a =
f(R; r) and b = ine ⊕G(R). The ”sanity check” of the
decryption algorithm is H(R∗||m∗||a∗||b∗) = c. For
this construction, one can provide a tester T that uses
a PCA oracle to check whether a is the encryption of
R by f . Hence, the PA security of the construction
under the assumption of the OW-PCA security of f .
The tester looks in hH for R∗||m∗||a∗||b∗ such that
c∗ = H(R∗||m∗||a∗||b∗) and a∗ = f(R∗), which can be
checked using the CPA-oracle.

And now some examples of constructions that do not satisfy
the PA-semantic criterion (and hence, not the syntactic one):

Example 4.4. • Zheng-Seberry Scheme [23]:

E(x; r) = a||b = f(r)||(G(r) ⊕ (x||H(x)). The third
condition of the PA-semantic criterion is not satisfied
by this construction. Actually, there is an attack [21]
on the IND-CCA security of this scheme that exploits
this fact.

• OAEP [6]: E(ine; r) = a = f(ine||0k ⊕G(r)||r⊕H(s)),
where s = ine||0k ⊕ G(r). Here the third condition is
not satisfied.

5. AUTOMATION
We can now fully automate our verification procedure of

IND-CCA for the encryption schemes we consider as follows:

1. Automatically establish invariants

2. Check the syntactic criterion for PA.

Point 2 can be done by a simple syntactic analyzer taking
as input the decryption program, but has not been imple-
mented yet.

Point 1 is more challenging. The idea is, for a given pro-
gram, to compute invariants backwards, starting with the
invariant Indis(νoute; oute, ine) at the end of the program.

As several rules can lead to a same postcondition, we in
fact compute a set of sufficient conditions at all points of the
program: for each set {φ1, . . . , φn} and each instruction c,
we can compute a set of assertions {φ′

1, . . . , φ
′
m} such that

1. for i = 1, . . . , m, there exists j such that {φ′
i}c{φj}

can be derived using the rules given section 3.2,

2. and for all j and all φ′ such that {φ′}c{φj}, there ex-
ists i such that φ′ entails φ′

i and that this entailment
relation can be derived using lemma 3.10.

Of course, this verification is potentially exponential in the
number of instructions of the encryption program as each
postcondition may potentially have several preconditions.
However this is mitigated as

• the considered encryption scheme are generally imple-
mented in a few instructions (around 10)

• we implement a simplification procedure on the com-
puted set of invariants: if φi entails φj (for i += j),
then we can safely delete φi from the set of asser-
tions {φ1, . . . , φn}. In other words, we keep only the
minimal preconditions with respect to strength in our
computed set of invariants (the usual Hoare logic cor-
responds to the degenerated case where this set has a
minimum element, called the weakest precondition).

In practice, checking Bellare & Rogaway generic construc-
tion is instantaneous.

We implemented that procedure as an Objective Caml
program, taking as input a representation of the encryption
program. This program is only 230 lines long and is available
on the web page of the authors.

6. CONCLUSION
In this paper we proposed an automatic method to prove

IND-CCA security of generic encryption schemes in the ran-
dom oracle model. IND-CPA is proved using a Hoare logic
and plaintext awareness using a syntactic criterion. It does
not seem difficult to adapt our Hoare logic to allow a se-
curity proof in the concrete framework of provable security.
Another extension of our Hoare logic could concern OAEP.
Here, we need to express that the value of a given variable is
indistinguishable from a random value as long as a value r
has not been submitted to a hash oracle G. This can be done
by extending the predicate Indis(νx;V1; V2). The details are
future work.
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Abstract. We presents a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We
propose a simple programming language to specify encryption modes
and an assertion language that allows to state invariants and axioms and
rules to establish such invariants. The assertion language consists of few
atomic predicates. We were able to use our method to verify semantic
security of several encryption modes including Cipher Block Chaining
(CBC), Cipher Feedback mode (CFB), Output Feedback (OFB), and
Counter mode (CTR).

1 Introduction

A block cipher algorithm (e.g. AES, Blowfish, DES, Serpent and Twofish) is a
symmetric key algorithm that takes a fixed size input message block and pro-
duces a fixed size output block. A mode of operation is a method of using a
block cipher on an arbitrary length message. Important modes of operation are
Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher FeedBack
mode (CFB), Output FeedBack (OFB), and Counter mode (CTR). Modes of op-
erations have different applications and provide different levels of security and
efficiency. An important question when a mode of operation is used for encryp-
tion is the level of security that the mode provides, assuming the underlying
block cipher is secure. The answer to this question is not straightforward. For
example if one uses the naive ECB mode with a “secure” block cipher, then the
encryption scheme obtained is not even IND-CPA secure. Others, like CBC or
CTR, will provide confidentiality only if the initial vector (IV) is chosen ade-
quately.

Recent years have seen an explosion of new modes of operation for block
cipher (IACBC, IAPM [19], XCB [23], TMAC [18, 20], HCTR [5], HCH [7],
EMU [15], EMU* [12], PEP [6], OMAC [16, 17], TET [13], CMC [14], GCM [24],
EAX [4], XEX [25], TAE, TCH, TBC [22, 28] to name only a few). These new
modes of operation often offer improved security guarantees, or additional secu-
rity features. They also tend to be more complex than the traditional modes of
operations, and arguments for proving their security can similarly become much
� This work was supported by ANR SeSur SCALP, SFINCS, AVOTE and iCORE.



more complicated – sometimes so complicated that flaws in the security proofs
could go unnoticed for years.

Proofs generated by automated verification tools can provide us with an
independent argument for the security of modes of operation, thereby increasing
our confidence in the security of cryptographic protocols. While the rules used
by the prover must also be proven by humans, and are therefore also susceptible
to error, they tend to be much simpler than the protocols they will be used to
check, which ensures that mistakes are far less likely to go unnoticed. In this
paper, we take a first step towards building an automated prover for modes of
operation, and show how to automatically generate proofs for many traditional
block cipher modes of operation.

Contributions: We propose a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We notice
that many modes use a small set of operations such as xor, concatenation, and
selection of random values. We introduce a simple programming language to
specify encryption modes and an assertion language that allows to state invari-
ants and axioms and rules to establish such invariants. The assertion language
requires only four predicates: one that allows us to express that the value of a
variable is indistinguishable from a random value when given the values of a set
of variables, one that states that an expression has not been yet submitted to
the block cipher, and two bookkeeping predicates that allow us to keep track of
‘fresh’ random values and counters. Transforming the Hoare logic into an (in-
complete) automated verification procedure is quite standard. Indeed, we can
interpret the logic as a set of rules that tell us how to propagate the invariants
backwards. Using our method, an automated prover could verify semantic secu-
rity of several encryption modes including CBC, CFB, CTR and OFB. Of course
our system does not prove ECB mode, because ECB is not semantically secure.

Related Work: Security of symmetric encryption modes have been studied
for a long time by the cryptographers. In [1] the authors presented different con-
crete security notions for symmetric encryption in a concrete security framework.
For instance, they give a security analysis of CBC mode. In [2] a security analysis
of the encryption mode CBC-MAC [21]. In [26] they propose a new encryption
mode called OCB for efficient authenticated encryption and provide a security
analysis of this new mode. Many other works present proofs of encryption modes.

Other works try to encode security of symmetric encryption modes as a
non-interference property for programs with deterministic encryption. For ex-
ample, [9] presents a computationally sound type system with exact security
bounds for such programs. This type system has been applied to verify some
symmetric encryption modes. The logic presented in this paper can be used to
give a more structured soundness proof for the proposed type system. Moreover,
we believe that our logic is more expressive and can be more easily adapted to
more encryption modes.

A first important feature of our method is that it is not based on a global
reasoning and global program transformation as it is the case for the game-based
approach [3, 27].
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In [8], the authors proposed an automatic method for proving semantic se-
curity for asymmetric generic encryption schemes. Our work continues that line
of work. We extend the input language and axioms of the Hoare logic of [8] in
order to capture symmetric encryption modes.

Outline: In Section 2 we introduce the material for describing the encryp-
tion modes. In Section 3, we present our Hoare Logic for analyzing the semantic
security of encryption modes described with the grammar given in the previous
section. Finally before concluding in the last section, we apply our method to
some examples in Section 4.

2 Definitions

2.1 Notation and Conventions

For simplicity, over this paper, we assume that all variables range over large
domains, whose cardinality is exponential in the security parameter η. We also
assume that all programs have length polynomial in η.

A block cipher is a function E : {0, 1}k × {0, 1}η → {0, 1}η such that for
each K ∈ {0, 1}k, E(K, ·) is a permutation. It takes as input a k-bit key and an
η-bit message block, and returns an η-bit string. We often denote by E(x) the
application of the block cipher to the message block x. We omit the key used
every time to simplify the notation, but it is understood that a key was selected
at random at the beginning of the experiment and remains the same throughout.

For a mode of operation M , we denote by EM the encryption function de-
scribed by M using block cipher E .

For a probability distribution D, we denote by x
$←− D the operation of

sampling a value x according to distribution D. If S is a finite set, we denote by
x

$←− S the operation of sampling x uniformly at random among the values in S.
Given two distribution ensembles X = {Xη}η∈ and X � = {X �

η}η∈ , an
algorithm A and η ∈ , we define the advantage of A in distinguishing Xη and
X �

η as the following quantity:

Adv(A, η,X, X �) = Pr[x $←− Xη : A(x) = 1]− Pr[x $←− X �
η : A(x) = 1].

Two distribution ensembles X and X � are called indistinguishable, denoted by
X ∼ X �, if Adv(A, η,X, X �) is negligible as a function of η for every probabilistic
polynomial-time algorithm A.

2.2 Grammar

We introduce our language for defining a generic encryption mode. The com-
mands are given by the grammar of Figure 1, where:

– x
$←− U denotes uniform sampling of a value and assigning it to x.
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– x := E(y) denotes application of the block cipher E to the value of y and

assigning the result to x.

– Similarly for x := E−1(y), where E−1
denotes the inverse function of E .

– x := y ⊕ z denotes application of the exclusive-or operator to the values of

y and z and assigning the result to x.

– x := y||z represents the concatenation of the values of y and z.

– x := y[n, m] assigns to x the bits at positions between n and m in the

bit-string value of y. I.e., for a bit-string bs = b1 . . . bk, where the bi’s are

bits, bs[n, m] denotes the bits-string bn . . . bm
1
. Then, x := y[n, m] assigns

bs[n, m] to x, where bs is the value of y. Here, n and m are polynomials in

the security parameter η.

– x := y + 1 increments by one the value of y and assigns the result to x. The

operation is carried modulo 2η
.

– c1; c2 is the sequential composition of c1 and c2.

c ::= x
$←− U | x := E(y) | x := E−1(y) | x := y ⊕ z | x := y�z | x := y[n, m] |

| x := y + 1 | c1; c2

Fig. 1. Language grammar

2.3 Generic Encryption Mode

We can now formally define a mode of encryption.

Definition 1 (Generic Encryption Mode). A generic encryption mode M
is represented by EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci, where xi is the set of
variables used in ci, all commands of ci are built using the grammar described
in Figure 1, each mj is a message blocks, and each cj is a cipher block, both of
size n according to the input length of the block cipher E.

We add the additional block c0 to the ciphertext because encryption modes

are usually generate ciphertexts longer than the message. In all examples in

this paper, c0 will be the initialization vector (IV). The definition can easily be

extended for encryption modes that also add one or more blocks at the end.

In Figure 2, we present the famous encryption mode ECBC for a message of

three blocks.

2.4 Semantics

In addition to the variables in Var,2 we consider a variable TE that records

the values on which E was computed and cannot be accessed by the adversary.

1 Notice that bs[n, m] = �, when m < n and bs[n, m] = bs[n, k], when m > k
2 We denote by Var the complete set of variables in the program, whereas var denotes

the set of variables in the program that are not input or output variables.
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ECBC(m1|m2|m3, IV |c1|c2|c3) :
var z1, z2, z3;

IV
$←− U ;

z1 := IV ⊕m1;
c1 := E(z1);
z2 := c1 ⊕m2;
c2 := E(z2);
z3 := c2 ⊕m3;
c3 := E(z3);

Fig. 2. Description of ECBC

Thus, we consider states that assign bit-strings to the variables in Var and lists

of pairs of bit-strings to TE . Given a state S, S(TE).dom and S(TE).res denote

the lists obtained by projecting each pair in S(TE) to its first and second element

respectively.

The state also contains two sets of variables, F and C, which are used for

bookkeeping purposes. The set F contains the variables with values that were

sampled at random or obtained as a result of the computation of the block cipher,

and have not yet been operated on. Those values are called fresh random values.

The set C contains the variables whose value are the most recent increment of a

counter that started at a fresh random value.

A program takes as input a configuration (S, E) and yields a distribution

on configurations. A configuration is composed of a state S, a block cipher E .

Let ΓE denote the set of configurations and Dist(ΓE) the set of distributions

on configurations. The semantics is given in Table 1. In the table, δ(x) denotes

the Dirac measure, i.e. Pr[x] = 1 and TE �→ S(TE) · (x, y) denotes the addition

of element (x, y) to TE . Notice that the semantic function of commands can

be lifted in the usual way to a function from Dist(ΓE) to Dist(ΓE). That is,

let φ : ΓE → Dist(ΓE) be a function. Then, φ defines a unique function φ∗ :
Dist(ΓE) → Dist(ΓE) obtained by point-wise application of φ. By abuse of

notation we also denote the lifted semantics by [[c]].
A notational convention. It is easy to see that commands never alter E .

Therefore, we can, without ambiguity, write S� $←− [[c]](S, E) instead of (S�, E) $←−
[[c]](S, E).

Here, we are only interested in distributions that can be constructed in poly-

nomial time. We denote their set by Dist(Γ,F), where F is a family of block

ciphers, and is defined as the set of distributions of the form:

[E $←− F(1η); S $←− [[p]](I, E) : (S, E)]

where p is a program with a polynomial number of commands, and I is the

“initial” state, in which all variables are undefined and all lists and sets are

empty.
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[[x
$←− U ]](S, E) = [u

$←− U : (S{x �→ u, F �→ F ∪ {x}, C �→ C \ {x}}, E)]
[[x := E(y)]](S, E) =





δ(S{x �→ v, F �→ F ∪ {x} \ {y}, C �→ C \ {x}}, E) if (S(y), v) ∈ S(TE)
δ(S{x �→ v, F �→ F ∪ {x} \ {y}, C �→ C \ {x}, TE �→ S(TE) · (S(y), v)}, E)

if (S(y), v) �∈ S(TE) and v = E(S(y))
[[x := E−1(y)]](S, E) = δ(S{x �→ E−1(S(y)), F �→ F \ {x, y}, C �→ C \ {x}}, E)
[[x := y ⊕ z]](S, E) = δ(S{x �→ S(y)⊕ S(z), F �→ F \ {x, y, z}, C �→ C \ {x}}, E)
[[x := y||z]](S, E) = δ(S{x �→ S(y)||S(z), F �→ F \ {x, y, z}, C �→ C \ {x}}, E)
[[x := y[n, m]]](S, E) = δ(S{x �→ S(y)[n, m], F �→ F \ {x, y}, C �→ C \ {x}}, E)
[[x := y + 1]](S, E) =�

δ(S{x �→ S(y) + 1, C �→ C ∪ {x} \ {y}, F �→ F \ {x, y}}, E) if y ∈ S(F ) or y ∈ S(C)
δ(S{x �→ S(y) + 1, F �→ F \ {x, y}, C �→ C \ {x}}, E) otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 1. The semantics of the programming language

2.5 Security Model

Ideal Cipher Model
We prove the modes of encryption secure in the ideal cipher model. That

is, we assume that the block cipher is a pseudo-random function.3 This is a
standard assumption for proving the security of any block-cipher-based scheme.

The advantage of an algorithm A against a family of pseudo-random function
is defined as follows.

Definition 2. Let P : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions and
let A be an algorithm that takes an oracle and returns a bit. The prf-advantage
of A is defined as follows.

Advprf
A,P = Pr[K $←− {0, 1}k;AP (K,·) = 1]− Pr[R $←− Φn;AR(·) = 1]

where Φn is the set of all functions from {0, 1}n to {0, 1}n.

The security of a symmetric mode of operation is usually proven by first
showing that the mode of operation would be secure if E was a random func-
tion in Φn. As a result, an adversary A against the encryption scheme can be
transformed into an adversary B against the block cipher (as a pseudo-random
function) with a similar running time, such that B’s prf-advantage is similar to
A’s advantage in breaking the encryption scheme.

Encryption Security
Semantic security for a mode of encryption is defined as follows.

3 While block ciphers are really families of permutations, it is well known that pseudo-
random permutations are indistinguishable from pseudo-random functions if the
block size is large enough.
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Definition 3. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryption
mode. A = (A1, A2) be an adversary and X ∈ Dist(Γ, E). For η ∈ , let

Advind−CPA
A,M (η, X)

= 2 ∗ Pr[(S, E) $
←− X;

(x0, x1, p, s) $
←− AO1

1 (η); b $
←− {0, 1};

S� $
←− [[cp]](S{m1| . . . |mp �→ xb}, E) :

AO2
2 (x0, x1, s, S�(c0| . . . |cp)) = b]− 1

where O1 = O2 are oracles that take a pair (m, j) as input, where m is a string
and j is the block length of m, and answers using the jth algorithm in EM . A1

outputs x0, x1 such that |x0| = |x1| and are composed of p blocks. The mode of
operation M is semantically (IND-CPA) secure if Advind−CPA

A,M (η, X) is negligible
for any constructible distribution ensemble X and polynomial-time adversary A.

It is important to note that in this definition, an adversary against the scheme
is only given oracle access to the encryption mode EM , and not to the block cipher
E itself.

Our method verifies the security of an encryption scheme by proving that
the ciphertext is indistinguishable from random bits. It is a classical result that
this implies semantic security.

3 Proving Semantic Security

In this section, we present our Hoare logic for proving semantic (IND-CPA)
security for generic encryption mode defined with our language. We prove that
our logic is sound although not complete. Our logic can be used to annotate
each command of our programming language with a set of invariants that hold
at each point of the program for any execution.

3.1 Assertion Language

We consider new predicates in order to consider properties of symmetric encryp-
tion modes. We use a Hoare Logic based on the following invariants:

ϕ ::= true | ϕ ∧ ϕ | ψ
ψ ::= Indis(νx;V ) | F (x) | E(E , e) | Rcounter(e),

where V ⊆ Var and e is an expression constructible out of the variables used in
the program and the grammar presented in Section 2. Intuitively:

Indis(νx;V ): means that any adversary has negligible probability to distinguish
whether he is given results of computations performed using the value of x
or a random value, when he is given the values of the variables in V .

E(E , e): means that the probability that the value E(e) has already been com-
puted is negligible.
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F (e): means e is a fresh random value.

RCounter(e): means that e is the most recent value of a counter that started

at a fresh random value.

More formally, for each invariant ψ, we define that a distribution X satisfies

ψ, denoted X |= ψ as follows:

– X |= true.
– X |= ϕ ∧ ϕ�

iff X |= ϕ and X |= ϕ�
.

– X |= Indis(νx;V ) iff [(S, E) $←− X : (S(x, V ), E)] ∼ [(S, E) $←− X;u $←− U ;S� =
S{x �→ u} : (S�(x, V ), E)]

– X |= E(E , e) iff Pr[(S, E) $←− X : S(e) ∈ S(TE).dom] is negligible.

– X |= F (e) iff Pr[(S, E) $←− X : e ∈ S(F)] = 1.

– X |= RCounter(e) iff Pr[(S, E) $←− X : e ∈ S(C)] = 1.

3.2 Hoare Logic Rules

We present a set of rules of the form {ϕ}c{ϕ�}, meaning that execution of com-

mand c in any distribution that satisfies ϕ leads to a distribution that satisfies

ϕ�
. Using Hoare logic terminology, this means that the triple {ϕ}c{ϕ�} is valid.

We group rules together according to their corresponding commands. We do

not provide rules for the commands x := E−1(y) or x := y[n, m] since those

commands are only used during decryption.

Notation: For a set V , we write V, x as a shorthand for V ∪ {x}, V − x as a

shorthand for V \ {x}, and Indis(νx) as a shorthand for Indis(νx;Var).

Random Assignment:

– (R1) {true} x
$←− U {F (x) ∧ Indis(νx) ∧ E(E , x)}

– (R2) {Indis(νy;V )} x
$←− U {Indis(νy;V, x)}

Increment:

– (I1) {F (y)} x := y + 1 {RCounter(x) ∧ E(E , x)}
– (I2) {RCounter(y)} x := y + 1 {RCounter(x) ∧ E(E, x)}
– (I3) {Indis(νz;V )} x := y + 1 {Indis(νz;V − x)} if z �= x, y and y �∈ V

Xor operator:

– (X1) {Indis(νy;V, y, z)}x := y ⊕ z{Indis(νx;V, x, z)} where x, y, z �∈ V ,

– (X2) {Indis(νy;V, x)}x := y ⊕ z{Indis(νy;V )} where x �∈ V ,

– (X3) {Indis(νt;V, y, z)} x := y ⊕ z {Indis(νt;V, x, y, z)} if t �= x, y, z and

x, y, z �∈ V
– (X4) {F (y)} x := y ⊕ z {E(E , x)} if y �= z

Concatenation:

– (C1) {Indis(νy;V, y, z)} ∧ {Indis(νz;V, y, z)} x := y�z {Indis(νx;V, x)} if

y, z �∈ V
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– (C2) {Indis(νt;V, y, z)} x := y�z {Indis(νt;V, x, y, z)} if t �= x, y, z

Block cipher:
– (B1) {E(E , y)} x := E(y) {F (x) ∧ Indis(νx) ∧ E(E , x)}
– (B2) {E(E , y) ∧ Indis(νz;V )} x := E(y) {Indis(νz;V )} provided z �= x
– (B3) {E(E , y) ∧Rcounter(z)} x := E(z) {Rcounter(z)} provided z �= x
– (B4) {E(E , y) ∧ E(E , z)} x := E(y) {E(E , z)} provided z �= x, y
– (B5) {E(E , y) ∧ F (z)} x := E(y) {F (z)} provided z �= x, y

Finally, we add a few rules whose purpose is to preserve invariants that are
unaffected by the command.

Generic preservation rules:
Assume that z �= x,w, v and c is either x

$←− U , x := w�v, x := w ⊕ v, or
x := w + 1:

– (G1) {Indis(νz;V )} c {Indis(νz;V )} provided w, v ∈ V
– (G2) {E(E , z)} c {E(E , z)}
– (G3) {RCounter(z)} c {RCounter(z)}
– (G4) {F (z)} c {F (z)}

3.3 Proof Sketches

Due to space restrictions, we cannot present formal proofs of all our rules here.
We present quick sketches instead to give the reader some intuition as to why
each rule holds. The complete proofs are available in our full manuscript [11].

Rules for random assignment.
In rule (R1), F (x) simply follows from the definition of F (·), and Indis(νx)

should be obvious since x has just been sampled at random, independently of all
other values. Also, since the block cipher has been computed only on a polyno-
mial number of values, out of an exponential domain, the probability that x has
been queried to the block cipher is clearly negligible. Rule (R2) is easily proven
using the fact that, at this point, x is independent from all other values in the
program.

Rules for increment.
For rules (I1) and (I2) the behavior of RCounter(·) easily follows from its

definition. Note that since we have either F (y) or RCounter(y), y (and x) were
obtained by repeatedly applying +1 to a random value r, i.e. x = r + k for
some number k. Since E was computed only on a polynomial number of values,
the probability of being less than k away from one of those values is negligible,
therefore the probability that x has been queried to the block cipher is negligible.
In (I3), if Indis(νz;V ) holds, then clearly Indis(νz;V − x) holds as well, and the
values in V − x are unchanged by the command.
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Rules for Xor.
Rules (X1) and (X2) are proven by considering y as a one-time pad applied

to z. As a result, one of x or y will be indistinguishable from random provided
that the other is not known. For (X3), one simply notes that x is easy to construct
from y and z, so if t is indistinguishable from random given y and z, then it is
also indistinguishable from random given x, y and z. For rule (X4), since y is
fresh, it is still independent from all other values, from z in particular. It then
follows that x has the same distribution as y and is independent from all values
except y and therefore, the probability that it has been queried to E is negligible
for the same reason that y is.

Rules for concatenation.
Rules (C1) and (C2) follow simply from the observation that the concatena-

tion of two independent random strings is a random string.

Rules for block cipher.
To prove (B1), in the Ideal Cipher Model, E is sampled at random among all

possible functions {0, 1}η → {0, 1}η. Since y has never been queried to the block
cipher, x := E(y) is indistinguishable from an independent random value, and so
possess the same invariants as if x

$←− U had been executed. Rules (B2) to (B5)
simply preserve invariants that are unaffected by the computation of the block
cipher on a value that has never been queried before.

Generic preservation rules.
The conditions for applying those rules, particularly z �= x,w, v were designed

specifically so that the command would have no effect on the invariant. The
invariant is therefore preserved.

As a result of all this, we have the following:

Proposition 1. In the Ideal Cipher Model, the Hoare triples given in the pre-

vious rules are valid.

As a result, our method can be used to prove the semantic security of an
encryption mode by proving that, from the adversary’s point of view, the ci-
phertexts are indistinguishable from random bits.

Proposition 2. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryp-

tion mode describe with our language, and let IO = {m1, . . . ,mi, c0, . . . , ci}. If

{true}ci
�i

k=0{Indis(νck; IO)} is valid for every i, then EM is IND-CPA secure

in the Ideal Cipher Model.

We conclude with the following, which states that our method of proving
security of encryption modes is sound in the standard model.

Proposition 3. Let EM be an encryption mode proven secure in the Ideal Ci-

pher Model using the method of Proposition 2. If there exists a standard model

algorithm A such that Advind−CPA
A,M (η, X) is non-negligible, then there exists an

algorithm B such that Advprf
B,E is non-negligible.
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4 Examples

In this section we apply our method to the traditional encryption modes (CBC),
(CFB), (OFB) and (CTR) in respectively Figure 3, 4, 5 and 6. For simplic-
ity, we consider messages consisting of only 3 blocks. The reader can easily be
convinced that the same invariant propagation holds for any finite number of
blocks. In order to prove IND-CPA security of these encryption schemes we have
to prove that c0 = IV, c1, c2, c3 are indistinguishable from random bitstrings
when given m1, m2, m3, c0, c1, c2 and c3. Of course our method fails in analyzing
ECB encryption mode and the “counter” version of CBC, which are two insecure
operation modes.

CBC & CFB : In Figure 3 and 4, we describe the application of our set of rules
on CBC and CFB examples. The analysis of these two encryption modes are
similar.

OFB : The order of the commands in our description of OFB may seem strange,
but it is not without reason. The variable zi+1 must be computed before ci

because no rule can preserve the invariant E(E , zi) through the computation of
ci.

CTR : This scheme is the only one of the four encryption modes we have studied
that uses the increment command. The analysis is presented in Figure 6. We can
see how the RCounter invariant is used for proving the IND-CPA security of
this mode.

5 Conclusion

We proposed an automatic method for proving the semantic security of symmet-
ric encryption modes. We introduced a small programming language in order to
describe these modes. We construct a Hoare logic to make assertions about vari-
ables and propagate the assertions with the execution of the commands in the
language. If the program which represents an encryption mode satisfies some
invariants at the end of our automatic analysis then we conclude that the en-
cryption mode is IND-CPA secure.

Future work: An obvious extension to our work would be to add a loop con-
struct to our grammar. This would remove the necessity of having a different
program for each message length within a mode of operation. We are also consid-
ering an extension of our work to prove CCA security of encryption modes using
approaches such as the one proposed in [10] or the method proposed in [8]. An-
other more complex and challenging direction is to propose an extended version
of our Hoare Logic in order to be able to analyze “modern” encryption modes
which use more complex mathematical operation or primitives, or to try to use
our method to prove security properties of other block-cipher based construc-
tion, such as unforgeability for block-cipher based MACs, or collision-resistance
for block-cipher based hash functions.
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ECBC(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ; Var) ∧ F (IV ) ∧ E(E , IV )} (R1)

z1 := IV ⊕m1; {Indis(νIV ; Var− z1) ∧ E(E , z1)} (X2)(X4)

c1 := E(z1); {Indis(νIV ; Var− z1) (B2)

∧ Indis(νc1; Var) ∧ F (c1)} (B1)

z2 := c1 ⊕m2; {Indis(νIV ; Var− z1) (G1)

∧ Indis(νc1; Var− z2) ∧ E(E , z2)} (X2)(X4)

c2 := E(z2); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2; Var) ∧ F (c2)} (B1)

z3 := c2 ⊕m3; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (G1)

∧ Indis(νc2; Var− z3) ∧ E(E , z3)} (X2)(X4)

c3 := E(z3); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2; Var− z3) ∧ Indis(νc3; Var)} (B1)

Fig. 3. Analysis of CBC encryption mode

ECFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ) ∧ F (IV ) ∧ E(E , IV )} (R1)

z1 := E(IV ); {Indis(νIV ) ∧ Indis(νz1) ∧ F (z1)} (B1)(B2)

c1 := z1 ⊕m1; {Indis(νIV ) ∧ Indis(νc1; Var− z1) ∧ E(E , c1)} (G1)(X1)(X4)

z2 := E(c1); {Indis(νIV ) ∧ Indis(νc1; Var− z1) ∧ F (z2)} (B1)(B2)

c2 := z2 ⊕m2; {Indis(νIV ) ∧ Indis(νc1; Var− z1) (G1)

∧ Indis(νc2; Var− z2) ∧ E(E , c2)} (X1) (X4)

z3 := E(c2); {Indis(νIV ) ∧ Indis(νc1; Var− z1) (B2)

∧ Indis(νc2; Var− z2) ∧ F (z3)} (B1)

c3 := z3 ⊕m3; {Indis(νIV ) ∧ Indis(νc1; Var− z1) (G1)

∧ Indis(νc2; Var− z2) (X1)

∧ Indis(νc3; Var− z3)}

Fig. 4. Analysis of CFB encryption mode

EOFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ; Var) ∧ F (IV ) ∧ E(E , IV )} (R1)

z1 := E(IV ); {Indis(νIV ; Var) ∧ {F (z1) ∧ E(E , z1) ∧ Indis(νz1; Var)} (B1)(B2)

z2 := E(z1); {Indis(νIV ; Var) ∧ Indis(νz1; Var) ∧ E(E , z2) (B1)(B2)

∧ F (z2) ∧ Indis(νz2; Var)}
c1 := m1 ⊕ z1; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ E(E , z2) (G1)(G2)(X1)

∧ F (z2) ∧ Indis(νz2; Var)}} (G4)

z3 := E(z2); {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ E(E , z3) (B1)(B2)

∧ Indis(νz2; Var) ∧ F (z3) ∧ Indis(νz3; Var)} (B2)

c2 := m2 ⊕ z2; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (G1)

∧ Indis(νc2; Var− z2) ∧ Indis(νz3; Var) (X1)

c3 := m3 ⊕ z3; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (G1)

∧ Indis(νc2; Var− z2) ∧ Indis(νc3; Var− z3) (X1)

Fig. 5. Analysis of OFB encryption mode
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ECTR(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ; Var) ∧ F (IV ) ∧ E(E , IV )} (R1)

ctr1 := IV + 1; {Indis(νIV ; Var− ctr1) (I3)
∧ Rcounter(ctr1) ∧ E(E , ctr1)} (I1)

z1 := E(ctr1); {Indis(νIV ; Var− ctr1) ∧Rcounter(ctr1) (B2)(B3)
∧ F (z1) ∧ E(E , z1) ∧ Indis(νz1; Var)} (B1)

c1 := m1 ⊕ z1; {Indis(νIV ; Var− ctr1) ∧Rcounter(ctr1) (G1)(G3)
∧ Indis(νc1; Var− z1)} (X1)

ctr2 := ctr1 + 1; {Indis(νIV ; Var− ctr1− ctr2) (I3)
∧ Indis(νc1; Var− z1) (G1)
∧ Rcounter(ctr2) ∧ E(E , ctr2)} (I2)

z2 := E(ctr2); {Indis(νIV ; Var− ctr1− ctr2) (B2)
∧ Indis(νc1; Var− z1) ∧Rcounter(ctr2) (B1)
∧ F (z2) ∧ E(E , z2) ∧ Indis(νz2; Var)} (B3)

c2 := m2 ⊕ z2; {Indis(νIV ; Var− ctr1− ctr2) (G1)
∧ Indis(νc1; Var− z1) ∧Rcounter(ctr2) (G3)
∧ Indis(νc2; Var− z2)} (X1)

ctr3 := ctr2 + 1; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (I3)
∧ Indis(νc1; Var− z1) ∧ E(E , ctr3) (I2)
∧ Indis(νc2; Var− z2) ∧Rcounter(ctr3)} (G1)

z3 := E(ctr3); {Indis(νIV ; Var− ctr1− ctr2− ctr3) (B2)
∧ Indis(νc1; Var− z1) (B1)
∧ Indis(νc2; Var− z2) ∧Rcounter(ctr3) (B3)
∧ F (z3) ∧ E(E , z3) ∧ Indis(νz3; Var)}

c3 := m3 ⊕ z3; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (G1)
∧ Indis(νc1; Var− z1) (X1)
∧ Indis(νc2; Var− z2)
∧ Indis(νc3; Var− z3)}

Fig. 6. Analysis of CTR encryption mode
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Abstract. We presents a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We
propose a simple programming language to specify encryption modes
and an assertion language that allows to state invariants and axioms and
rules to establish such invariants. The assertion language consists of few
atomic predicates. We were able to use our method to verify semantic
security of several encryption modes including Cipher Block Chaining
(CBC), Cipher Feedback mode (CFB), Output Feedback (OFB), and
Counter mode (CTR).

1 Introduction

A block cipher algorithm (e.g. AES, Blowfish, DES, Serpent and Twofish) is a
symmetric key algorithm that takes a fixed size input message block and pro-
duces a fixed size output block. A mode of operation is a method of using a
block cipher on an arbitrary length message. Important modes of operation are
Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher FeedBack
mode (CFB), Output FeedBack (OFB), and Counter mode (CTR). Modes of op-
erations have different applications and provide different levels of security and
efficiency. An important question when a mode of operation is used for encryp-
tion is the level of security that the mode provides, assuming the underlying
block cipher is secure. The answer to this question is not straightforward. For
example if one uses the naive ECB mode with a “secure” block cipher, then the
encryption scheme obtained is not even IND-CPA secure. Others, like CBC or
CTR, will provide confidentiality only if the initial vector (IV) is chosen ade-
quately.

Recent years have seen an explosion of new modes of operation for block
cipher (IACBC, IAPM [19], XCB [23], TMAC [18, 20], HCTR [5], HCH [7],
EMU [15], EMU* [12], PEP [6], OMAC [16, 17], TET [13], CMC [14], GCM [24],
EAX [4], XEX [25], TAE, TCH, TBC [22, 28] to name only a few). These new
modes of operation often offer improved security guarantees, or additional secu-
rity features. They also tend to be more complex than the traditional modes of
operations, and arguments for proving their security can similarly become much
� This work was supported by ANR SeSur SCALP, SFINCS, AVOTE and iCORE.



more complicated – sometimes so complicated that flaws in the security proofs
could go unnoticed for years.

Proofs generated by automated verification tools can provide us with an
independent argument for the security of modes of operation, thereby increasing
our confidence in the security of cryptographic protocols. While the rules used
by the prover must also be proven by humans, and are therefore also susceptible
to error, they tend to be much simpler than the protocols they will be used to
check, which ensures that mistakes are far less likely to go unnoticed. In this
paper, we take a first step towards building an automated prover for modes of
operation, and show how to automatically generate proofs for many traditional
block cipher modes of operation.

Contributions: We propose a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We notice
that many modes use a small set of operations such as xor, concatenation, and
selection of random values. We introduce a simple programming language to
specify encryption modes and an assertion language that allows to state invari-
ants and axioms and rules to establish such invariants. The assertion language
requires only four predicates: one that allows us to express that the value of a
variable is indistinguishable from a random value when given the values of a set
of variables, one that states that an expression has not been yet submitted to
the block cipher, and two bookkeeping predicates that allow us to keep track of
‘fresh’ random values and counters. Transforming the Hoare logic into an (in-
complete) automated verification procedure is quite standard. Indeed, we can
interpret the logic as a set of rules that tell us how to propagate the invariants
backwards. Using our method, an automated prover could verify semantic secu-
rity of several encryption modes including CBC, CFB, CTR and OFB. Of course
our system does not prove ECB mode, because ECB is not semantically secure.

Related Work: Security of symmetric encryption modes have been studied
for a long time by the cryptographers. In [1] the authors presented different con-
crete security notions for symmetric encryption in a concrete security framework.
For instance, they give a security analysis of CBC mode. In [2] a security analysis
of the encryption mode CBC-MAC [21]. In [26] they propose a new encryption
mode called OCB for efficient authenticated encryption and provide a security
analysis of this new mode. Many other works present proofs of encryption modes.

Other works try to encode security of symmetric encryption modes as a
non-interference property for programs with deterministic encryption. For ex-
ample, [9] presents a computationally sound type system with exact security
bounds for such programs. This type system has been applied to verify some
symmetric encryption modes. The logic presented in this paper can be used to
give a more structured soundness proof for the proposed type system. Moreover,
we believe that our logic is more expressive and can be more easily adapted to
more encryption modes.

A first important feature of our method is that it is not based on a global
reasoning and global program transformation as it is the case for the game-based
approach [3, 27].
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In [8], the authors proposed an automatic method for proving semantic se-
curity for asymmetric generic encryption schemes. Our work continues that line
of work. We extend the input language and axioms of the Hoare logic of [8] in
order to capture symmetric encryption modes.

Outline: In Section 2 we introduce the material for describing the encryp-
tion modes. In Section 3, we present our Hoare Logic for analyzing the semantic
security of encryption modes described with the grammar given in the previous
section. Finally before concluding in the last section, we apply our method to
some examples in Section 4.

2 Definitions

2.1 Notation and Conventions

For simplicity, over this paper, we assume that all variables range over large
domains, whose cardinality is exponential in the security parameter η. We also
assume that all programs have length polynomial in η.

A block cipher is a function E : {0, 1}k × {0, 1}η → {0, 1}η such that for
each K ∈ {0, 1}k, E(K, ·) is a permutation. It takes as input a k-bit key and an
η-bit message block, and returns an η-bit string. We often denote by E(x) the
application of the block cipher to the message block x. We omit the key used
every time to simplify the notation, but it is understood that a key was selected
at random at the beginning of the experiment and remains the same throughout.

For a mode of operation M , we denote by EM the encryption function de-
scribed by M using block cipher E .

For a probability distribution D, we denote by x
$
←− D the operation of

sampling a value x according to distribution D. If S is a finite set, we denote by
x

$
←− S the operation of sampling x uniformly at random among the values in S.
Given two distribution ensembles X = {Xη}η∈ and X � = {X �

η}η∈ , an
algorithm A and η ∈ , we define the advantage of A in distinguishing Xη and
X �

η as the following quantity:

Adv(A, η,X, X �) = Pr[x $
←− Xη : A(x) = 1]− Pr[x $

←− X �
η : A(x) = 1].

Two distribution ensembles X and X � are called indistinguishable, denoted by
X ∼ X �, if Adv(A, η,X, X �) is negligible as a function of η for every probabilistic
polynomial-time algorithm A.

2.2 Grammar

We introduce our language for defining a generic encryption mode. The com-
mands are given by the grammar of Figure 1, where:

– x
$
←− U denotes uniform sampling of a value and assigning it to x.
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– x := E(y) denotes application of the block cipher E to the value of y and
assigning the result to x.

– Similarly for x := E−1(y), where E−1 denotes the inverse function of E .
– x := y ⊕ z denotes application of the exclusive-or operator to the values of

y and z and assigning the result to x.
– x := y||z represents the concatenation of the values of y and z.
– x := y[n, m] assigns to x the bits at positions between n and m in the

bit-string value of y. I.e., for a bit-string bs = b1 . . . bk, where the bi’s are
bits, bs[n, m] denotes the bits-string bn . . . bm

1. Then, x := y[n, m] assigns
bs[n, m] to x, where bs is the value of y. Here, n and m are polynomials in
the security parameter η.

– x := y + 1 increments by one the value of y and assigns the result to x. The
operation is carried modulo 2η.

– c1; c2 is the sequential composition of c1 and c2.

c ::= x
$←− U | x := E(y) | x := E−1(y) | x := y ⊕ z | x := y�z | x := y[n, m] |

| x := y + 1 | c1; c2

Fig. 1. Language grammar

2.3 Generic Encryption Mode

We can now formally define a mode of encryption.

Definition 1 (Generic Encryption Mode). A generic encryption mode M

is represented by EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci, where xi is the set of
variables used in ci, all commands of ci are built using the grammar described
in Figure 1, each mj is a message blocks, and each cj is a cipher block, both of
size n according to the input length of the block cipher E.

We add the additional block c0 to the ciphertext because encryption modes
are usually generate ciphertexts longer than the message. In all examples in
this paper, c0 will be the initialization vector (IV). The definition can easily be
extended for encryption modes that also add one or more blocks at the end.

In Figure 2, we present the famous encryption mode ECBC for a message of
three blocks.

2.4 Semantics

In addition to the variables in Var,2 we consider a variable TE that records
the values on which E was computed and cannot be accessed by the adversary.
1 Notice that bs[n, m] = �, when m < n and bs[n, m] = bs[n, k], when m > k
2 We denote by Var the complete set of variables in the program, whereas var denotes

the set of variables in the program that are not input or output variables.
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ECBC(m1|m2|m3, IV |c1|c2|c3) :
var z1, z2, z3;

IV
$←− U ;

z1 := IV ⊕m1;
c1 := E(z1);
z2 := c1 ⊕m2;
c2 := E(z2);
z3 := c2 ⊕m3;
c3 := E(z3);

Fig. 2. Description of ECBC

Thus, we consider states that assign bit-strings to the variables in Var and lists
of pairs of bit-strings to TE . Given a state S, S(TE).dom and S(TE).res denote
the lists obtained by projecting each pair in S(TE) to its first and second element
respectively.

The state also contains two sets of variables, F and C, which are used for
bookkeeping purposes. The set F contains the variables with values that were
sampled at random or obtained as a result of the computation of the block cipher,
and have not yet been operated on. Those values are called fresh random values.
The set C contains the variables whose value are the most recent increment of a
counter that started at a fresh random value.

A program takes as input a configuration (S, E) and yields a distribution
on configurations. A configuration is composed of a state S, a block cipher E .
Let ΓE denote the set of configurations and Dist(ΓE) the set of distributions
on configurations. The semantics is given in Table 1. In the table, δ(x) denotes
the Dirac measure, i.e. Pr[x] = 1 and TE �→ S(TE) · (x, y) denotes the addition
of element (x, y) to TE . Notice that the semantic function of commands can
be lifted in the usual way to a function from Dist(ΓE) to Dist(ΓE). That is,
let φ : ΓE → Dist(ΓE) be a function. Then, φ defines a unique function φ∗ :
Dist(ΓE) → Dist(ΓE) obtained by point-wise application of φ. By abuse of
notation we also denote the lifted semantics by [[c]].

A notational convention. It is easy to see that commands never alter E .
Therefore, we can, without ambiguity, write S� $

←− [[c]](S, E) instead of (S�, E) $
←−

[[c]](S, E).
Here, we are only interested in distributions that can be constructed in poly-

nomial time. We denote their set by Dist(Γ,F), where F is a family of block
ciphers, and is defined as the set of distributions of the form:

[E $
←− F(1η); S $

←− [[p]](I, E) : (S, E)]

where p is a program with a polynomial number of commands, and I is the
“initial” state, in which all variables are undefined and all lists and sets are
empty.

5



[[x
$←− U ]](S, E) = [u

$←− U : (S{x �→ u, F �→ F ∪ {x}, C �→ C \ {x}}, E)]
[[x := E(y)]](S, E) =





δ(S{x �→ v, F �→ F ∪ {x} \ {y}, C �→ C \ {x}}, E) if (S(y), v) ∈ S(TE)
δ(S{x �→ v, F �→ F ∪ {x} \ {y}, C �→ C \ {x}, TE �→ S(TE) · (S(y), v)}, E)

if (S(y), v) �∈ S(TE) and v = E(S(y))
[[x := E−1(y)]](S, E) = δ(S{x �→ E−1(S(y)), F �→ F \ {x, y}, C �→ C \ {x}}, E)
[[x := y ⊕ z]](S, E) = δ(S{x �→ S(y)⊕ S(z), F �→ F \ {x, y, z}, C �→ C \ {x}}, E)
[[x := y||z]](S, E) = δ(S{x �→ S(y)||S(z), F �→ F \ {x, y, z}, C �→ C \ {x}}, E)
[[x := y[n, m]]](S, E) = δ(S{x �→ S(y)[n, m], F �→ F \ {x, y}, C �→ C \ {x}}, E)
[[x := y + 1]](S, E) =�

δ(S{x �→ S(y) + 1, C �→ C ∪ {x} \ {y}, F �→ F \ {x, y}}, E) if y ∈ S(F ) or y ∈ S(C)
δ(S{x �→ S(y) + 1, F �→ F \ {x, y}, C �→ C \ {x}}, E) otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 1. The semantics of the programming language

2.5 Security Model

Ideal Cipher Model

We prove the modes of encryption secure in the ideal cipher model. That
is, we assume that the block cipher is a pseudo-random function.3 This is a
standard assumption for proving the security of any block-cipher-based scheme.

The advantage of an algorithm A against a family of pseudo-random function
is defined as follows.

Definition 2. Let P : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions and
let A be an algorithm that takes an oracle and returns a bit. The prf-advantage
of A is defined as follows.

Advprf
A,P = Pr[K $

←− {0, 1}k;AP (K,·) = 1]− Pr[R $
←− Φn;AR(·) = 1]

where Φn is the set of all functions from {0, 1}n to {0, 1}n.

The security of a symmetric mode of operation is usually proven by first
showing that the mode of operation would be secure if E was a random func-
tion in Φn. As a result, an adversary A against the encryption scheme can be
transformed into an adversary B against the block cipher (as a pseudo-random
function) with a similar running time, such that B’s prf-advantage is similar to
A’s advantage in breaking the encryption scheme.

Encryption Security

Semantic security for a mode of encryption is defined as follows.
3 While block ciphers are really families of permutations, it is well known that pseudo-

random permutations are indistinguishable from pseudo-random functions if the
block size is large enough.
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Definition 3. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryption
mode. A = (A1, A2) be an adversary and X ∈ Dist(Γ, E). For η ∈ , let

Advind−CPA
A,M (η, X)

= 2 ∗ Pr[(S, E) $
←− X;

(x0, x1, p, s) $
←− A

O1
1 (η); b $

←− {0, 1};
S� $
←− [[cp]](S{m1| . . . |mp �→ xb}, E) :

A
O2
2 (x0, x1, s, S

�(c0| . . . |cp)) = b]− 1

where O1 = O2 are oracles that take a pair (m, j) as input, where m is a string
and j is the block length of m, and answers using the jth algorithm in EM . A1

outputs x0, x1 such that |x0| = |x1| and are composed of p blocks. The mode of
operation M is semantically (IND-CPA) secure if Advind−CPA

A,M (η, X) is negligible
for any constructible distribution ensemble X and polynomial-time adversary A.

It is important to note that in this definition, an adversary against the scheme
is only given oracle access to the encryption mode EM , and not to the block cipher
E itself.

Our method verifies the security of an encryption scheme by proving that
the ciphertext is indistinguishable from random bits. It is a classical result that
this implies semantic security.

3 Proving Semantic Security

In this section, we present our Hoare logic for proving semantic (IND-CPA)
security for generic encryption mode defined with our language. We prove that
our logic is sound although not complete. Our logic can be used to annotate
each command of our programming language with a set of invariants that hold
at each point of the program for any execution.

3.1 Assertion Language

We consider new predicates in order to consider properties of symmetric encryp-
tion modes. We use a Hoare Logic based on the following invariants:

ϕ ::= true | ϕ ∧ ϕ | ψ

ψ ::= Indis(νx;V ) | F (x) | E(E , e) | Rcounter(e),

where V ⊆ Var and e is an expression constructible out of the variables used in
the program and the grammar presented in Section 2. Intuitively:

Indis(νx;V ): means that any adversary has negligible probability to distinguish
whether he is given results of computations performed using the value of x

or a random value, when he is given the values of the variables in V .
E(E , e): means that the probability that the value E(e) has already been com-

puted is negligible.
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F (e): means e is a fresh random value.
RCounter(e): means that e is the most recent value of a counter that started

at a fresh random value.

More formally, for each invariant ψ, we define that a distribution X satisfies
ψ, denoted X |= ψ as follows:

– X |= true.
– X |= ϕ ∧ ϕ� iff X |= ϕ and X |= ϕ�.
– X |= Indis(νx;V ) iff [(S, E) $

←− X : (S(x, V ), E)] ∼ [(S, E) $
←− X;u $

←− U ;S� =
S{x �→ u} : (S�(x, V ), E)]

– X |= E(E , e) iff Pr[(S, E) $
←− X : S(e) ∈ S(TE).dom] is negligible.

– X |= F (e) iff Pr[(S, E) $
←− X : e ∈ S(F)] = 1.

– X |= RCounter(e) iff Pr[(S, E) $
←− X : e ∈ S(C)] = 1.

3.2 Hoare Logic Rules

We present a set of rules of the form {ϕ}c{ϕ�}, meaning that execution of com-
mand c in any distribution that satisfies ϕ leads to a distribution that satisfies
ϕ�. Using Hoare logic terminology, this means that the triple {ϕ}c{ϕ�} is valid.
We group rules together according to their corresponding commands. We do
not provide rules for the commands x := E−1(y) or x := y[n, m] since those
commands are only used during decryption.

Notation: For a set V , we write V, x as a shorthand for V ∪ {x}, V − x as a
shorthand for V \ {x}, and Indis(νx) as a shorthand for Indis(νx;Var).

Random Assignment:

– (R1) {true} x
$
←− U {F (x) ∧ Indis(νx) ∧ E(E , x)}

– (R2) {Indis(νy;V )} x
$
←− U {Indis(νy;V, x)}

Increment:

– (I1) {F (y)} x := y + 1 {RCounter(x) ∧ E(E , x)}
– (I2) {RCounter(y)} x := y + 1 {RCounter(x) ∧ E(E, x)}
– (I3) {Indis(νz;V )} x := y + 1 {Indis(νz;V − x)} if z �= x, y and y �∈ V

Xor operator:

– (X1) {Indis(νy;V, y, z)}x := y ⊕ z{Indis(νx;V, x, z)} where x, y, z �∈ V ,
– (X2) {Indis(νy;V, x)}x := y ⊕ z{Indis(νy;V )} where x �∈ V ,
– (X3) {Indis(νt;V, y, z)} x := y ⊕ z {Indis(νt;V, x, y, z)} if t �= x, y, z and

x, y, z �∈ V

– (X4) {F (y)} x := y ⊕ z {E(E , x)} if y �= z

Concatenation:

– (C1) {Indis(νy;V, y, z)} ∧ {Indis(νz;V, y, z)} x := y�z {Indis(νx;V, x)} if
y, z �∈ V
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– (C2) {Indis(νt;V, y, z)} x := y�z {Indis(νt;V, x, y, z)} if t �= x, y, z

Block cipher:

– (B1) {E(E , y)} x := E(y) {F (x) ∧ Indis(νx) ∧ E(E , x)}
– (B2) {E(E , y) ∧ Indis(νz;V )} x := E(y) {Indis(νz;V )} provided z �= x

– (B3) {E(E , y) ∧Rcounter(z)} x := E(z) {Rcounter(z)} provided z �= x

– (B4) {E(E , y) ∧ E(E , z)} x := E(y) {E(E , z)} provided z �= x, y

– (B5) {E(E , y) ∧ F (z)} x := E(y) {F (z)} provided z �= x, y

Finally, we add a few rules whose purpose is to preserve invariants that are
unaffected by the command.

Generic preservation rules:

Assume that z �= x,w, v and c is either x
$
←− U , x := w�v, x := w ⊕ v, or

x := w + 1:

– (G1) {Indis(νz;V )} c {Indis(νz;V )} provided w, v ∈ V

– (G2) {E(E , z)} c {E(E , z)}
– (G3) {RCounter(z)} c {RCounter(z)}
– (G4) {F (z)} c {F (z)}

3.3 Proof Sketches

Due to space restrictions, we cannot present formal proofs of all our rules here.
We present quick sketches instead to give the reader some intuition as to why
each rule holds. The complete proofs are available in our full manuscript [11].

Rules for random assignment.

In rule (R1), F (x) simply follows from the definition of F (·), and Indis(νx)
should be obvious since x has just been sampled at random, independently of all
other values. Also, since the block cipher has been computed only on a polyno-
mial number of values, out of an exponential domain, the probability that x has
been queried to the block cipher is clearly negligible. Rule (R2) is easily proven
using the fact that, at this point, x is independent from all other values in the
program.

Rules for increment.

For rules (I1) and (I2) the behavior of RCounter(·) easily follows from its
definition. Note that since we have either F (y) or RCounter(y), y (and x) were
obtained by repeatedly applying +1 to a random value r, i.e. x = r + k for
some number k. Since E was computed only on a polynomial number of values,
the probability of being less than k away from one of those values is negligible,
therefore the probability that x has been queried to the block cipher is negligible.
In (I3), if Indis(νz;V ) holds, then clearly Indis(νz;V − x) holds as well, and the
values in V − x are unchanged by the command.
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Rules for Xor.

Rules (X1) and (X2) are proven by considering y as a one-time pad applied
to z. As a result, one of x or y will be indistinguishable from random provided
that the other is not known. For (X3), one simply notes that x is easy to construct
from y and z, so if t is indistinguishable from random given y and z, then it is
also indistinguishable from random given x, y and z. For rule (X4), since y is
fresh, it is still independent from all other values, from z in particular. It then
follows that x has the same distribution as y and is independent from all values
except y and therefore, the probability that it has been queried to E is negligible
for the same reason that y is.

Rules for concatenation.

Rules (C1) and (C2) follow simply from the observation that the concatena-
tion of two independent random strings is a random string.

Rules for block cipher.

To prove (B1), in the Ideal Cipher Model, E is sampled at random among all
possible functions {0, 1}η → {0, 1}η. Since y has never been queried to the block
cipher, x := E(y) is indistinguishable from an independent random value, and so
possess the same invariants as if x

$
←− U had been executed. Rules (B2) to (B5)

simply preserve invariants that are unaffected by the computation of the block
cipher on a value that has never been queried before.

Generic preservation rules.

The conditions for applying those rules, particularly z �= x,w, v were designed
specifically so that the command would have no effect on the invariant. The
invariant is therefore preserved.

As a result of all this, we have the following:

Proposition 1. In the Ideal Cipher Model, the Hoare triples given in the pre-
vious rules are valid.

As a result, our method can be used to prove the semantic security of an
encryption mode by proving that, from the adversary’s point of view, the ci-
phertexts are indistinguishable from random bits.

Proposition 2. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryp-
tion mode describe with our language, and let IO = {m1, . . . ,mi, c0, . . . , ci}. If
{true}ci

�i
k=0{Indis(νck; IO)} is valid for every i, then EM is IND-CPA secure

in the Ideal Cipher Model.

We conclude with the following, which states that our method of proving
security of encryption modes is sound in the standard model.

Proposition 3. Let EM be an encryption mode proven secure in the Ideal Ci-
pher Model using the method of Proposition 2. If there exists a standard model
algorithm A such that Advind−CPA

A,M (η, X) is non-negligible, then there exists an
algorithm B such that Advprf

B,E is non-negligible.
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4 Examples

In this section we apply our method to the traditional encryption modes (CBC),
(CFB), (OFB) and (CTR) in respectively Figure 3, 4, 5 and 6. For simplic-
ity, we consider messages consisting of only 3 blocks. The reader can easily be
convinced that the same invariant propagation holds for any finite number of
blocks. In order to prove IND-CPA security of these encryption schemes we have
to prove that c0 = IV, c1, c2, c3 are indistinguishable from random bitstrings
when given m1, m2, m3, c0, c1, c2 and c3. Of course our method fails in analyzing
ECB encryption mode and the “counter” version of CBC, which are two insecure
operation modes.

CBC & CFB : In Figure 3 and 4, we describe the application of our set of rules
on CBC and CFB examples. The analysis of these two encryption modes are
similar.

OFB : The order of the commands in our description of OFB may seem strange,
but it is not without reason. The variable zi+1 must be computed before ci

because no rule can preserve the invariant E(E , zi) through the computation of
ci.

CTR : This scheme is the only one of the four encryption modes we have studied
that uses the increment command. The analysis is presented in Figure 6. We can
see how the RCounter invariant is used for proving the IND-CPA security of
this mode.

5 Conclusion

We proposed an automatic method for proving the semantic security of symmet-
ric encryption modes. We introduced a small programming language in order to
describe these modes. We construct a Hoare logic to make assertions about vari-
ables and propagate the assertions with the execution of the commands in the
language. If the program which represents an encryption mode satisfies some
invariants at the end of our automatic analysis then we conclude that the en-
cryption mode is IND-CPA secure.

Future work: An obvious extension to our work would be to add a loop con-
struct to our grammar. This would remove the necessity of having a different
program for each message length within a mode of operation. We are also consid-
ering an extension of our work to prove CCA security of encryption modes using
approaches such as the one proposed in [10] or the method proposed in [8]. An-
other more complex and challenging direction is to propose an extended version
of our Hoare Logic in order to be able to analyze “modern” encryption modes
which use more complex mathematical operation or primitives, or to try to use
our method to prove security properties of other block-cipher based construc-
tion, such as unforgeability for block-cipher based MACs, or collision-resistance
for block-cipher based hash functions.
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ECBC(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ; Var) ∧ F (IV ) ∧ E(E , IV )} (R1)

z1 := IV ⊕m1; {Indis(νIV ; Var− z1) ∧ E(E , z1)} (X2)(X4)
c1 := E(z1); {Indis(νIV ; Var− z1) (B2)

∧ Indis(νc1; Var) ∧ F (c1)} (B1)
z2 := c1 ⊕m2; {Indis(νIV ; Var− z1) (G1)

∧ Indis(νc1; Var− z2) ∧ E(E , z2)} (X2)(X4)
c2 := E(z2); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2; Var) ∧ F (c2)} (B1)
z3 := c2 ⊕m3; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (G1)

∧ Indis(νc2; Var− z3) ∧ E(E , z3)} (X2)(X4)
c3 := E(z3); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2; Var− z3) ∧ Indis(νc3; Var)} (B1)

Fig. 3. Analysis of CBC encryption mode

ECFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ) ∧ F (IV ) ∧ E(E , IV )} (R1)

z1 := E(IV ); {Indis(νIV ) ∧ Indis(νz1) ∧ F (z1)} (B1)(B2)
c1 := z1 ⊕m1; {Indis(νIV ) ∧ Indis(νc1; Var− z1) ∧ E(E , c1)} (G1)(X1)(X4)
z2 := E(c1); {Indis(νIV ) ∧ Indis(νc1; Var− z1) ∧ F (z2)} (B1)(B2)
c2 := z2 ⊕m2; {Indis(νIV ) ∧ Indis(νc1; Var− z1) (G1)

∧ Indis(νc2; Var− z2) ∧ E(E , c2)} (X1) (X4)
z3 := E(c2); {Indis(νIV ) ∧ Indis(νc1; Var− z1) (B2)

∧ Indis(νc2; Var− z2) ∧ F (z3)} (B1)
c3 := z3 ⊕m3; {Indis(νIV ) ∧ Indis(νc1; Var− z1) (G1)

∧ Indis(νc2; Var− z2) (X1)
∧ Indis(νc3; Var− z3)}

Fig. 4. Analysis of CFB encryption mode

EOFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ; Var) ∧ F (IV ) ∧ E(E , IV )} (R1)

z1 := E(IV ); {Indis(νIV ; Var) ∧ {F (z1) ∧ E(E , z1) ∧ Indis(νz1; Var)} (B1)(B2)
z2 := E(z1); {Indis(νIV ; Var) ∧ Indis(νz1; Var) ∧ E(E , z2) (B1)(B2)

∧ F (z2) ∧ Indis(νz2; Var)}
c1 := m1 ⊕ z1; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ E(E , z2) (G1)(G2)(X1)

∧ F (z2) ∧ Indis(νz2; Var)}} (G4)
z3 := E(z2); {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ E(E , z3) (B1)(B2)

∧ Indis(νz2; Var) ∧ F (z3) ∧ Indis(νz3; Var)} (B2)
c2 := m2 ⊕ z2; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (G1)

∧ Indis(νc2; Var− z2) ∧ Indis(νz3; Var) (X1)
c3 := m3 ⊕ z3; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (G1)

∧ Indis(νc2; Var− z2) ∧ Indis(νc3; Var− z3) (X1)

Fig. 5. Analysis of OFB encryption mode
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ECTR(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ; Var) ∧ F (IV ) ∧ E(E , IV )} (R1)

ctr1 := IV + 1; {Indis(νIV ; Var− ctr1) (I3)
∧ Rcounter(ctr1) ∧ E(E , ctr1)} (I1)

z1 := E(ctr1); {Indis(νIV ; Var− ctr1) ∧Rcounter(ctr1) (B2)(B3)
∧ F (z1) ∧ E(E , z1) ∧ Indis(νz1; Var)} (B1)

c1 := m1 ⊕ z1; {Indis(νIV ; Var− ctr1) ∧Rcounter(ctr1) (G1)(G3)
∧ Indis(νc1; Var− z1)} (X1)

ctr2 := ctr1 + 1; {Indis(νIV ; Var− ctr1− ctr2) (I3)
∧ Indis(νc1; Var− z1) (G1)
∧ Rcounter(ctr2) ∧ E(E , ctr2)} (I2)

z2 := E(ctr2); {Indis(νIV ; Var− ctr1− ctr2) (B2)
∧ Indis(νc1; Var− z1) ∧Rcounter(ctr2) (B1)
∧ F (z2) ∧ E(E , z2) ∧ Indis(νz2; Var)} (B3)

c2 := m2 ⊕ z2; {Indis(νIV ; Var− ctr1− ctr2) (G1)
∧ Indis(νc1; Var− z1) ∧Rcounter(ctr2) (G3)
∧ Indis(νc2; Var− z2)} (X1)

ctr3 := ctr2 + 1; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (I3)
∧ Indis(νc1; Var− z1) ∧ E(E , ctr3) (I2)
∧ Indis(νc2; Var− z2) ∧Rcounter(ctr3)} (G1)

z3 := E(ctr3); {Indis(νIV ; Var− ctr1− ctr2− ctr3) (B2)
∧ Indis(νc1; Var− z1) (B1)
∧ Indis(νc2; Var− z2) ∧Rcounter(ctr3) (B3)
∧ F (z3) ∧ E(E , z3) ∧ Indis(νz3; Var)}

c3 := m3 ⊕ z3; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (G1)
∧ Indis(νc1; Var− z1) (X1)
∧ Indis(νc2; Var− z2)
∧ Indis(νc3; Var− z3)}

Fig. 6. Analysis of CTR encryption mode
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Formal Indistinguishability extended to the Random Oracle

Model
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Abstract. Several generic constructions for transforming one-way functions to asymmetric en-
cryption schemes have been proposed. One-way functions only guarantee the weak secrecy of their
arguments. That is, given the image by a one-way function of a random value, an adversary has
only negligible probability to compute this random value. Encryption schemes must guarantee
a stronger secrecy notion. They must be at least resistant against indistinguishability-attacks
under chosen plaintext text (IND-CPA). Most practical constructions have been proved in the
random oracle model. Such computational proofs turn out to be complex and error prone. Bana
et al. have introduced Formal Indistinguishability Relations, (FIR for short) as an appropriate
abstraction of computational indistinguishability. In this paper, we revisit their work and extend
the notion of FIR to cope with the random oracle model on one hand and adaptive adversaries
on the other hand. Indeed, when dealing with hash functions in the random oracle model and
one-way functions, it is important to correctly abstract the notion of weak secrecy. Moreover, one
needs to extend frames to include adversaries in order to capture security notions as IND-CPA.
To fix these problems, we consider pairs of formal indistinguishability relations and formal non-
derivability relations. We provide a general framework along with general theorems, that ensure
soundness of our approach and then we use our new framework to verify several examples of
encryption schemes among which the construction of Bellare Rogaway and Hashed ElGamal.

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to manipulate it
securely. That is, in a way that prevents malicious elements to subvert the available information
for their own benefits. This requires solutions based on provably correct cryptographic systems
(e.g., primitives and protocols). There are two main frameworks for analyzing cryptographic
systems; the symbolic framework, originating from the work of Dolev and Yao [15], and the
computational approach, growing out of the work of [17]. A significant amount of effort has been
made in order to link both approaches and profit from the advantages of each of them. Indeed,
while the symbolic approach is more amenable to automated proof methods, the computation
approach can be more realistic.

In their seminal paper [1] Abadi and Rogaway investigate the link between the symbolic
model on one hand and the computational model on the other hand. More precisely, they
introduce an equivalence relation on terms and prove that equivalent terms correspond to
indistinguishable distributions ensembles, when interpreted in the computational model. The
work of Abadi and Rogaway has been extended to active adversaries and various cryptographic
primitives in e.g. [20, 19, 14, 18]. An other line of work, also considering active adversaries is
followed by Backes, Pfitzmann and Waidner using reactive simulatability [6, 5] and Canetti [12,
13] using universal composability.

! Grenoble, email:name@imag.fr This work has been partially supported by the ANR projects SCALP, AVOTE
and SFINCS



Related works A recently emerging branch of relating symbolic and computational models for
passive adversaries is based on static equivalence from π-calculus [3], induced by an equational
theory. Equational theories provide a framework to specify algebraic properties of the under-
lying signature, and hence, symbolic computations in a similar way as for abstract data types.
That is, for a fixed equational theory, a term describes a computation in the symbolic model.
Thus, an adversary can distinguish two terms, if he is able to come up with two computations
that yield the same result when applied to one term but different results when applied to the
other term. Such a pair of terms is called a test. This idea can be extended to frames, which
roughly speaking are tuples of terms. Thus, a static equivalence relation is fully determined
by the underlying equational theory, as two frames are statically equivalent, if there is no test
that separates them. In [9] Baudet, Cortier and Kremer study soundness and faithfulness of
static equivalence for general equational theories and use their framework to prove soundness
of exclusive or as well as certain symmetric encryptions. Abadi et al. [2] use static equivalence
to analyze of guessing attacks.

Bana, Mohassel and Stegers [8] argue that even though static equivalence works well to
obtain soundness results for the equational theories mentioned above, it does not work well in
other important cases. Consider for instance the Decisional Diffie Hellman assumption (DDH
for short) that states that the tuples (g, ga, gb, gab) and (g, ga, gb, gc), where a, b, c are randomly
sampled, are indistinguishable. It does not seem to be obvious to come up with an equational
theory for group exponentiation such that the induced static equivalence includes this pair of
tuples without including others whose computational indistinguishability is not proved to be a
consequence of the DDH assumption. The static equivalence induced by the equational theory
for group exponentiation proposed in [9] includes the pair (g, ga, gb, ga2b) and (g, ga, gb, gc). It
is unknown whether the computational indistinguishability of these two distributions can be
proved under the DDH assumption. Therefore, Bana et al. propose an alternative approach to
build symbolic indistinguishability relations and introduce formal indistinguishability relations
(FIR). A FIR is defined as a closure of an initial set of equivalent frames with respect to
simple operations which correspond to steps in proofs by reduction. This leads to a flexible
symbolic equivalence relation. FIR has nice properties. In order to prove soundness of a FIR
it is enough to prove soundness of the initial set of equivalences. Moreover, static equivalence
is one instance of a FIR. Bana et al. show that it is possible to come up with a FIR whose
soundness is equivalent to the DDH assumption.

Contributions. In this paper, we extend Bana et al.’s approach by introducing a notion of
symbolic equivalence that allows us to prove security of encryption schemes symbolically. More
specifically, we would like to be able to treat generic encryption schemes that transform one-
way functions to IND-CPA secure encryption schemes. Therefore, three problems need to be
solved. First, we need to cope with one-way functions. This is another example where static
equivalence does not seem to be appropriate. Indeed, let f be a one-way function, that is, a
function that is easy to compute but difficult to invert. It does not seem easy to come with a set
of equations that capture the one-wayness of such a function. Consider the term f(a|b), where
| is bit-string concatenation. If f is a one-way function then we know that we cannot easily
compute a|b given f(a|b) for uniformly sampled a and b. However, nothing prevents us from
being able to compute a for instance. Introducing equations that allow us to compute a from
f(a|b), e.g., g(f(a|b)) = a, may exclude some one-way functions and does not solve the problem.
For instance, nothing prevents us from computing a prefix of b (its first half for instance), a
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prefix of the prefix, etc..... . The second problem that needs to be solved is related to the
fact that almost all practical provably secure encryption schemes are analyzed in the random
oracle model. The random oracle model is an idealized model in which hash functions are
randomly sampled functions. In this model, adversaries have oracle access to these functions.
An important property is that if an adversary is unable to compute the value of an expression a
and if H(a) has not been leaked then H(a) looks like a uniformly sampled value. Thus, we need
to be able to symbolically prove that a value of a given expression a cannot be computed by
any adversary. This is sometimes called weak secrecy in contrast to indistinguishability based
secrecy. To cope with this problem, our notion of symbolic indistinguishability comes along
with a non-derivability symbolic relation. Thus in our approach, we start from an initial pair of
a non-derivability relation and a frame equivalence relation. Then, we provide rules that define
a closure of this pair of relations in the spirit of Bana et al.’s work. Also in our case, soundness
of the obtained relations can be checked by checking soundness of the initial relations. The third
problem is related to the fact that security notions for encryption schemes such IND-CPA and
real-or-random indistinguishability of cipher-text under chosen plaintext involve a generated
from of active adversaries. Indeed, these security definitions correspond to two-phase games,
where the adversary first computes a value, then a challenge is produced, the the adversary
tries to solve the challenge. Static equivalence and FIR (as defined in [8]) consider only passive
adversaries. To solve this problem we consider frames that include variables that correspond
to adversaries. As frames are finite terms, we only have finitely many such variables. This is
the reason why we only have a degenerate form of active adversaries which is enough to treat
security of encryption schemes and digital signature, for instance.

The closure rules we propose in our framework are designed with the objective of minimizing
the initial relations which depend on the underlying cryptographic primitives and assumptions.

We illustrate the framework by considering security proofs of the construction of Bellare
and Rogaway [11] and Hash El Gamal [7].

Outline of the paper. In Section 2, we introduce the symbolic model used for describing generic
asymmetric encryption schemes. In Section 3, we describe the computational framework and
give definitions that relate the two models. In Section 4, we introduce our definition of formal
indistinguishability relation and formal non-derivability relation. We also present our method
for proving IND-CPA security. In Section 5, we illustrate our framework: we prove the con-
struction of Bellare and Rogaway [11] and Hash El Gamal [7], and we give a sketch of the proof
of encryption scheme proposed by Pointcheval in [23]. Finally, in Section 7 we conclude.

2 Symbolic semantics

2.1 Terms and subsitutions

A signature Σ = (S,F ,H) consists of a countably infinite set of sorts S = {s, s1, ...}, a finite
set of function symbols, F = {f, f1, ...}, and a finite set of oracle symbols, H = {g, h, h1, ...}
together with arities of the form ar(f) or ar(h) = s1 × ... × sk → s, k ≥ 0. Symbols in F
that take k = 0 as arguments are called constants. We suppose that there are three pairwise
disjoint sets N , X and P. N is the set of names, X is the set of first-order variables, and P is
the set of second order variables. We assume that both names and variables are sorted, that
is, to each name or variable u, a sort s is assigned; we use s(s) for the sot of u. Variables p ∈ P
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have arities ar(p) = s1 × ...× sk → s. We suppose that there are a countable number of names,
variables and p-variables for each sort or arity.

A renaming is a bijection τ : N → N such that s(a) = s(τ(a)). As usual, we extend the
notation s(T ) to denote the sort of a term T . Terms of sort s are defined by the grammar:
T ::= term of sort s

|x variable x of sort s
|p(T1, . . . , Tk) variable p of arity s(T1) × ... × s(Tk) → s
|n name n of sort s
|f(T1, . . . , Tk) application of symbol f ∈ F with arity s(T1) × ... × s(Tk) → s
|h(T1, . . . , Tk) call of hash-function h ∈ H with arity s(T1) × ... × s(Tk) → s

We use fn(T ), pvar(T ) and var(T ) for the set of free names, the set of p-variables and the
set of variables that occur in the term T , respectively. We use meta-variables u, v, w to range
over names and variables. We use st(T ) for the set of sub-terms of T , defined in the usual way:

st(u)
def
= {u} if u is a name or a variable, and st(l(T1, . . . , Tk))

def
= {l(T1, . . . , Tk)}

⋃
i∈{1,...k} st(Ti),

if l ∈ F ∪ H ∪ P. A term T is closed if and only if it does not have any free variables (but
it may contain p-variables, names and constant symbols), that means var(T ) = ∅. The set of
terms is denoted by T.

Symbols in F are intended to model cryptographic primitives, symbols in H are intended to
model cryptographic oracles (in particular, hash functions in the ROM model), whereas names
in N are used to model secrets, that is, concretely random numbers. Variables p ∈ P are
intended to model queries and challenges made by adversaries (they can depend on previous
queries).

Definition 1 (Substitution). A substitution σ is a mapping from variables to terms whose
domain is finite and such that σ(x) '= x, for each x in the domain. A substitution σ is written
σ = {x1 = T1, ..., xn = Tn}, where dom(σ) = {x1, ..., xn} is its domain.

We only consider well-sorted substitutions for which xi and Ti have the same sort, var(Ti) ⊆
{x1, . . . , xn} and there is no circular dependence xi1 = Ti1(. . . xi2 . . .), xi2 = Ti2(. . . xi3 . . .), . . . xik =
Tik(. . . xi1 . . .). A substitution is called closed if all terms Ti are closed. We let var(σ) =
∪ivar(Ti), pvar(σ) = ∪ipvar(Ti), n(σ) = ∪ifn(Ti), and extend the notations pvar(.), var(.),
n(.) and st(.) to tuples and set of terms and substitutions in the obvious way. The application
of a substitution σ to a term T is written as σ(T ) = Tσ. Let σ = {x1 = T1, ..., xn = Tn} and
σ′ = {x′

1 = T ′
1, ..., x

′
m = T ′

m} be substitutions such that dom(σ) ∩ dom(σ′) = ∅. Then, σ|σ′

denotes the sunbstitution {x1 = T1, ..., xn = Tn, x′
1 = T ′

1, ..., x
′
m = T ′

m}.
The abstract semantics of symbols is described by an equational theory E, that is an

equivalence (denoted as =E) which is stable with respect to application of contexts and well-
sorted substitutions of variables. We further require that E is stable under renamings.

Definition 2 (Equational Theory.). An equational theory for a given signature is an equiv-
alence relation E ⊆ T × T (written as =E in infix notation) on the set of terms such that

1. T1 =E T2 implies T1σ =E T2σ for every substitution σ;
2. T1 =E T2 implies T{x = T1} =E T{x = T2} for every term T and every variable x;
3. T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .

All definitions from now on are given in the context of an (implicit) equational theory E.
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Exemples. For instance, symmetric and deterministic encryption can be modeled by the the-
ory Eenc generated by the classical equation Eenc = {dec(enc(x, y), y) =Eenc x}. A trap-
door one-way function can be modeled by the theory Eow generated by the equation Eow =
{f−1(f(x, pub(sk)), sk) =E x, }, where sk is the secret key (the trapdoor), f−1 is the inverse
function of the trapdoor one-way function f , and pub(sk) is the public information, respectively.

2.2 Frames

Frames ([4]) represent sequences of messages (or pieces of information) observed by an adver-
sary. Formally:

Definition 3 (Frame). A frame is an expression of the form φ = νñ.σ where σ is a well-
sorted substitution, and ñ is n(σ), the set of all names occuring in σ. By abus of notation we
also use n(φ) for ñ, the set of names bounded in the frame φ.

The novelty of our definition of frames consists in permitting adversaries to interact with frames
using p-variables. This is necessary to be able to cope with adaptive adversaries. We note the
set of frames by F.

Next, we define composition and parallel composition of frames. Let φ = νñ.{x1 = T1, ..., xn =
Tn} and φ′ = νñ′.σ be frames with ñ ∩ ñ′ = ∅. Then, φφ′ denotes the frame ν(ñ ∪ ñ′).{x1 =
T1σ, ..., xn = Tnσ}. Let now φ1 = νñ1.σ1, ..., φk = νñk.σk be frames with pairwisely disjoint
domains and pairwisely disjoint bounded names ñi. Their parallel composition, {φ1|φ2|...|φn}
is the frame ν(

⋃k
i=1 ñi).σ1| · · · |σk. The iteration of a frame φ is the iterative composition of φ

with itself until it remains unchanged : φ∗ = (. . . ((φ)φ) . . .)φ.

Definition 4 (Static equivalence). Let φ and φ′ be two frames such that φ∗ = νñ.σ and
φ′∗ = νñ.σ′ with σ = {x1 = T1, ..., xn = Tn} and σ′ = {x1 = T ′

1, ..., xn = T ′
n}. Given the

equational theory E, we say that φ and φ′ are statically equivalent written φ =E φ′, if and only
if Tiσ =E T ′

iσ
′ for all i.

Some obvious properties: φ =E φ′ implies ψφ =E ψφ′ and τ(φ) =E τ(φ′) for any frames φ,
φ′ and ψ and any renaming τ .

3 Computational Semantics

3.1 Distributions and indistinguishability

Let us note η ∈ the security parameter. We are interested in analyzing generic schemes for
asymmetric encryption assuming ideal hash functions. That is, we are working in the random
oracle model [16, 11]. Using standard notations, we write h

r
← Ω to denote that h is randomly

chosen from the set of functions with appropriate domain (deppendong on η). By abuse of
notation, for a list H = h1, · · · , hm of hash functions, we write H

r
← Ω instead of the sequence

h1
r
← Ω, . . . , hm

r
← Ω. We fix a finite set H = {h1, . . . , hn} of hash functions. We assume an

arbitrary but fixed ordering on H; just to be able to switch between set-based and vector-based
notation. A distribution ensemble is a countable sequence of distributions {Xη}η∈ . We only
consider distribution ensembles that can be constructed in polynomial time by probabilistic
algorithms that have oracle access to O = H. Given two distribution ensembles X = {Xη}η∈
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and X ′ = {X ′
η}η∈ , an algorithm A and η ∈ , we define the advantage of A in distinguishing

Xη and X ′
η as the following quantity:

Adv(A, η, X, X ′) = Pr[x
r
← Xη : AO(η, x) = 1] − Pr[x

r
← X ′

η : AO(η, x) = 1].

Then, two distribution ensembles X and X ′ are called indistinguishable (denoted by X ∼
X ′) if for any probabilistic polynomial-time algorithm A, the advantage Adv(A, η, X, X ′) is
negligible as a function of η, that is, for any n > 0, it become eventually smaller than η−n as η
tends to infinity. We insist that all security notions we are going to use are in the ROM, where
all algorithms, including adversaries, are equipped with oracle access to the hash functions.

3.2 Frames as distributions

We now give terms and frames a computational semantics parameterized by a computable
implementation of the primitives in the random oracle model. Provided a set of sorts S and a
set of symbols F , a computational algebra A = (S,F) consists of

– a sequence of non-empty finite set of bit strings [[s]]A = {[[s]]A,η}η∈ with [[s]]A,η ⊆ {0, 1}∗

for each sort s ∈ S. For simplicity of the presentation, we assume that all sorts are large
domains, whose cardinalities are exponential in the security parameter η;

– a sequence of polynomial time computable functions [[f ]]A = {[[f ]]A,η}η∈ with [[f ]]A,η :
[[s1]]A,η × ... × [[sk]]A,η → [[s]]A,η for each f ∈ F with ar(f) = s1 × ... × sk → s;

– a polynomial time computable congruence =A,η,s for each sort s, in order to check the
equality of elements in [[s]]A,η (the same element may be represented by different bit strings).
By congruence, we mean a reflexive, symmetric, and transitive relation such that e1 =A,s1,η

e′1, ..., ek =A,sk,η e′k ⇒ [[f ]]A,η(e1, ..., ek) =A,s,η [[f ]]A,η(e′1, ..., e
′
k) ( we usually omit s,η and A

and write = for =A,s,η);
– a polynomial time procedure to draw random elements from [[s]]A,η; we denote such a

drawing by x ←R [[s]]A,η; for simplicity, in this paper we suppose that all these drawing
follow a uniform distribution.

From now on we assume a fixed computational algebra (S,F), and a fixed η, and for
simplicity we omit the indices A,s and η.

Given H a fixed set of hash functions, and (Ai)i∈I a fixed set of polynomial-probabilistc
functions (can be seen as a polynomial-probabilistc adversary AO that takes an additional
input i), we associate to each frame φ = νñ.{x1 = T1, . . . , xk = Tk} a sequence of distributions
[[φ]]H,A computed as follows:

– for each name n of sort s appearing in ñ, draw a value n̂
r
← [[s]];

– for each variable xi(1 ≤ i ≤ k) of sort si, compute T̂i ∈ [[si]] recursively on the structure of
terms: x̂i = T̂i ;

– for each call hi(T ′
1, . . . , T

′
m) compute recursively on the structure of terms: ̂hi(T ′

1, . . . , T
′
m) =

hi(T̂ ′
1, . . . , T̂

′
m);

– for each call f(T ′
1, . . . , T

′
m) compute recursively on the structure of terms: ̂f(T ′

1, . . . , T
′
m) =

[[f ]](T̂ ′
1, . . . , T̂

′
m);

– for each call pi(T ′
1, . . . , T

′
m) compute recursively on the structure of terms and draw a value

̂pi(T ′
1, . . . , T

′
m)

r
← AO(i, T̂ ′

1, . . . , T̂
′
m);
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– return the value φ̂ = {x1 = T̂1, . . . , xk = T̂k}.

Such values φ = {x1 = bse1, . . . , xn = bsen} with bsei ∈ [[si]] are called concrete frames. We
extend the notation [[.]] to (sets of) closed terms in the obvious way. We also generalize the
notation to terms or frames with free variables and free names, by specifying the concrete
values for all of them: [[.]]{n1=bsn1,...nk=bsnk,x1=bse1,...,xl=bsel}.

Now the concrete semantics of a frame φ with respect to an adversary A, is given by the
following sequence of distributions (one for each implicit η):

[[φ]]A =
[
H

r
← Ω;O = H; φ̂

r
← [[φ]]H,A : φ̂

]

When pvar(φ) = ∅, the concrete semantics of φ does not depend on the adversary A and we
will use the notation [[φ]] (or [[φ]]H) instead of [[φ]]A (respectively [[φ]]H,A).

3.3 Soundness and Completeness

The computational model of a cryptographic scheme is closer to reality than its formal rep-
resentation by being a more detailed description. Therefore, the accuracy of a formal model
can be characterized based on how close it is to the computational model. For this reason,
we introduce the notions of soundness and completeness that relate relations in the symbolic
model with respect to similar relations in the computational model. Let E be an equivalence
theory and let R1 ⊆ T × T, R2 ⊆ F × T, and R3 ⊆ F × F be relations on closed frames, on
closed terms, and relations on closed frames and terms, respectively.

– Then R1 is =-sound iff for every closed terms T1, T2 of the same sort, (T1, T2) ∈ R1 implies
that Pr[ê1, ê2

r
← [[T1, T2]]A : ê1 '= ê2))] is negligible for any polynomial time adversary A.

– Then R1 is =-complete iff for every closed terms T1, T2 of the same sort, (T1, T2) '∈ R1

implies that Pr[ê1, ê2
r
← [[T1, T2]]A : ê1 '= ê2))] is non-negligible for some polynomial time

adversary A.
– Then R2 is '/-sound iff for every closed frame φ and term T , (φ, T ) ∈ R2 implies that

Pr[φ̂, ê
r
← [[φ, T ]]A : AO(φ̂) = ê] is negligible for any probabilistic polynomial-time adversary

A.
– Then R2 is '/-complete iff for every closed frame φ and term T , (φ, T ) '∈ R2 implies that

Pr[φ̂, ê
r
← [[φ, T ]]A : AO(φ̂) = ê] is non-negligible for some polynomial-time adversary A.

– Then R3 is ≈E-sound iff for every frames φ1, φ2 with the same domain, (φ1, φ2) ∈ R3

implies that ([[φ1]]A) ∼ ([[φ2]]A) for any probabilistic polynomial-time adversary A.
– Then R3 is ≈E-complete iff for every frames φ1, φ2 with the same domain, (φ1, φ2) '∈ R3

implies that ([[φ1]]A) '∼ ([[φ2]]A) for some probabilistic polynomial-time adversary A.

4 Formal relations

One challenge of the paper is to propose appropriate symbolic relations that correctly abstract
computational properties as indistinguishability of two distributions or weak secrecy of some
random value (that is, the adversary has only negligible probability to compute it). In this
section we provide two symbolic relations (called formal indistinguishability relation and for-
mal non-derivability relation) that are sound abstractions for the two above computational
properties.

First we define well-formed relations and we recall a simplified definition of a formal indis-
tinguishability relation as proposed in [8].

7



Definition 5 (Well-formed relations). A relation Sd ⊆ F × T is called well-formed if
fn(M) ⊆ n(φ) for any (φ, M) ∈ Sd, and a relation Si ⊆ F× F is well-formed if dom(φ1) =
dom(φ2) for any (φ1, φ2) ∈ Si.

Definition 6. [FIR [8]] A well-formed equivalence relation ∼=⊆ F × F is called a formal
indistinguishability relation (FIR for short) with respect to the equational theory =E, if
∼= is closed with respect to the following closure rules:
(GE1) If φ1

∼= φ2 then φφ1
∼= φφ2, for any frame φ such that var(φ) ⊆ dom(φi) and n(φ) ∩

n(φi) = ∅.
(GE2) φ ∼= φ′ for any frame φ′ such that φ′ =E φ.
(GE3) τ(φ) ∼= φ for any renaming τ .

This definition is a good starting point to capture indistinguishability in the following
sense: if we have a correct implementation of the abstract algebra (i.e. =E is =-sound) and we
were provided with some initial relation S (reflecting some computational assumption) which
is ≈-sound , then the closure of S using the above rules produces a larger relation which still
remains ≈-sound. But in order to use this definition for real cryptographic constructions , we
need to enrich it in several aspects. First, most of constructions which are proposed in the
literature, ([10], [27], [21], [23], [25], [11]) use bijective functions (XOR-function or trapdoor
permutation) as basic bricks. To deal with these constructions, we add the following closure
rule:
(GE4) If M, N are terms such that N [M/z] =E y, M [N/y] =E z and var(M) = {y} and
var(N) = {z}, then for any substitution σ such that r '∈ (fn(σ) ∪ fn(M) ∪ fn(N)) and
x '∈ dom(σ) it holds νñ.r.{σ, x = M [r/y])} ∼= νñ.r.{σ, x = r}.

Second, cryptographic constructions use often hash functions. In ideal models, hash func-
tions are primitives that if applied to a weakly secret argument, produce a completely random
value (modeled by random functions [11] or by pseudo-random permutations [22]). And they
are quite frequent primitives in cryptography that only ensure weak secrecy. For instance one-
way functions only guarantee that an adversary that possesses the image by a one-way function
of a random value, has only a negligible probability to compute this value. The computational
Diffie-Hellman (CDH) assumption states that if given the tuple g, ga, gb for some randomly-
chosen generator g and some random values a, b, it is computationally intractable to compute
the value ga∗b (equivalently ga∗b is a weakly secret value). This motivates us to introduce the
formal non-derivability relation as an abstraction of weak secrecy. Let us explain the basic
closure rules of this relation. Since we assume that all sorts will be implemented by large finite
sets of bit strings, it is clearly that
(GD1) νr.∅ '|= r.

Next rule captures the fact that renaming does not change the concrete semantics of terms
or frames.
(GD2) If φ '|= M then τ(φ) '|= τ(M) for any renaming τ .

If the equational theory is preserved in the computational world, then equivalent terms or
frames are indistinguishable.
(GD3) If φ '|= M then φ '|= N for any term N =E M .
(GD4) If φ '|= M then φ′ '|= M for any frame φ′ =E φ.

If some bit string (concrete implementation of some symbolic term M) is weakly secret,
then all polynomially computation (abstracted by the symbolic frame φ′) does not change this.
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(GD5) If φ '|= M then φ′φ '|= M for any frame φ′ such that var(φ′) ⊆ dom(φ) and n(φ′) ∩
bn(φ) = ∅.

Next rule establishes a relationship between indistiguishability and secrecy: if two distri-
butions are indistinguishable, then they leak exactly the same information.
(GD6) If T, U are terms such that U [T/y] =E z and z ∈ var(T )\var(U) and (fn(T )∪fn(U))∩
ñ = ∅, then for all substitutions σ1, σ2 such that x '∈ dom(σi) and νñ.{σ1, x = T [M/z]} ∼=
νñ.{σ2, x = T [N/z]} and νñ.σ1 '|= M then νñ.σ2 '|= N .

And now the rule that captures the power of hash functions in the Random Oracle Model:
the image by a random function of a weakly secret value is a completely random value.
(HE1) If νñ.r.σ[r/h(T )] '|= T and r '∈ n(σ), then νñ.σ ∼= νñ.r.σ[r/h(T )].

The following definition formalizes the tight connection between FIR and FNDR.

Definition 7 (FNDR and FIR). A pair of well formed relations ('|=,∼=) is a pair of (formal
non-derivability relation, formal indistinguishability relation) with respect to the equa-
tional theory =E, if ('|=,∼=) is closed with respect to the rules (GD1), ..., (GD6),(GE1),...,(GE4),
(HE1) and ∼= is an equivalence.

The following theorem shows that if a pair of FIR and FNDR relations was generated by
the initial sets Sd ⊆ F × T and Si ⊆ F × F, then it is sufficient to check only soundness
of elements in Sd and Si to ensure that the closures 〈Sd〉%|= and 〈Si〉∼= are sound. We define
(D1, I1) ! (D2, I2) if and only if D1 ⊆ D2 and I1 ⊆ I2. It is easy to see that ! is an order.

Theorem 1. Let (Sd, Si) be a well-formed pair of relations. Then, it exists a unique smallest
(with respect to !) pair denoted (〈Sd〉%|=, 〈Si〉∼=) of (FNDR, FIR) such that 〈Sd〉%|= ⊇ Sd and
〈Si〉∼= ⊇ Si. In addition, if =E is =-sound, Sd is '/-sound and Si is ≈-sound, then also 〈Sd〉%|=
is '/-sound and 〈Si〉∼= is ≈-sound.

5 Applications

We apply the framework of Section 4 in order to prove IND-CPA security of several generic
constructions for asymmetric encryptions. So we will consider pairs of relations ('|=,∼=) =
(〈Sd〉%|=, 〈Si〉∼=) generated by some initial sets (Sd, Si), in different equational theories. We as-
sume that all =E , Sd, Si that are considerd in this section satisfy the conditions of Theorem 1.
We emphasize the following fact: adding other equations than those considered does not break
the computational soundness of results proved in this section, as long as the computational
hypothesis encoded by Sd and Si still hold.
First we introduce a general abstract algebra, and then we will extend it to cover different
constructions. We consider three sorts Data, Data1, Data2, and the symbols || : Data1 ×
Data2 → Data, ⊕S : S × S → S, 0S : S, with S ∈ {Data,Data1, Data2} and πj : Data →
Dataj , with j ∈ {1, 2}. For simplicity, we omit the indice S when using ⊕S or 0S . The
equational theory Eg is generated by:
(XEq1) x ⊕ 0 =Eg x.
(XEq2) x ⊕ x =Eg 0.
(XEq3) x ⊕ y =Eg y ⊕ x.
(XEq4) x ⊕ (y ⊕ z) =Eg (x ⊕ y) ⊕ z.
(PEq1) π1(x||y) =Eg x.
(PEq2) π2(x||y) =Eg y.
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|| is intended to model concatenation, ⊕ is the classical XOR and πj are the projections.
Next rules are consequences of the closure rules from Section 4.
(SyE) If φ1

∼= φ2 then φ2
∼= φ1.

(TrE) If φ1
∼= φ2 and φ2

∼= φ3 then φ1
∼= φ3.

(XE1) If r '∈ (fn(σ) ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} ∼= νñ.r.{σ, x = r}.
(CD1) If (φ '|= T1 ∨ φ '|= T2) then φ '|= T1||T2.
(HD1) If νñ.σ '|= T and h(T ) '∈ st(σ) then νñ.{σ, x = h(T )} '|= T .
(XD1) If νñ.σ '|= T and r '∈ (ñ ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} '|= T .

5.1 Trapdoor one-way functions in the symbolic model

We extend the above algebra in order to model trapdoor one-way functions. We add a sort
iData and new symbols f : Data × Data → iData ,f−1 : iData × Data → Data, pub :
Data → Data. f is a trapdoor permutation, with f−1 being the inverse function. We extend
the equational theory:
(OEq1) f−1(f(x, pub(y)), y) =Eg x.

To simplify the notations, we will use fk(•) instead of f(•, pub(k)). Now we want to capture
the one wayness of function f . Computationally, a one-way function only ensures the weakly
secrecy of a random argument r (as long as the key k is not disclosed to the adversary). Hence
we define Si = ∅ and Sd = {(νk.r.{xk = pub(k), x = fk(r)}, r)}.

The following frame encodes the encryption scheme proposed by Bellare and Rogaway
in [11]:
φbr(m) = νk.r.{xk = pub(k), xa = fk(r), y = g(r) ⊕ m, z = h(m||r)}
where m is the plaintext to be encrypted, f is a trapdoor one-way function, and g and h are
hash functions (hence oracles in the ROM model).

TrE

HE1

CD1

GD5

HD1

GD5

OD1
{σ2} !|= r

{σ2, y = s′} !|= r

{σ2, y = g(r)} !|= r

{σ2, y = g(r) ⊕ p(xk), z = t} !|= r

{σ2, y = g(r) ⊕ p(xk), z = t} !|= p(xk)||r

{σ2, y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼= {σ2, y = g(r) ⊕ p(xk), z = t} (T1)

{xk = pub(k), xa = fk(r), y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼= {xk = pub(k), xa = fk(r), y = s, z = t}

Fig. 1. Proof of IND-CPA security of Bellare-Rogaway scheme.

GE1

TrE

GE1

HE1

GD5

OD1
{σ2} !|= r

{σ2, y = s} !|= r

{σ2, y = g(r)} ∼= {σ2, y = s}

{σ2, y = g(r) ⊕ p(xk)} ∼= {σ2, y = s ⊕ p(xk)}
XE1

{σ2, y = s ⊕ p(xk)} ∼= {σ2, y = s}

{σ2, y = g(r) ⊕ p(xk)} ∼= {σ2, y = s}

{σ2, y = g(r) ⊕ p(xk), z = t} ∼= {σ2, y = s, z = t}

Fig. 2. Tree (T1) from Figure 1.
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Now we can see the necessity of p-variables in order to encode IND-CPA security of an
encryption scheme. Proving that it holds for any two messages m1 and m2

νk.r.{xk = pub(k), xa = fk(r), y = g(r) ⊕ m1, z = h(m1||r)} ∼=

νk.r.{xk = pub(k), xa = fk(r), y = g(r) ⊕ m2, z = h(m2||r)}

is not enough. We did not capture that the adversary is adaptive and she can choose her
challenges depending on the public key. Hence we must prove a more stronger equivalence,
namely that it holds for any terms p(xk) and p′(xk)

νk.r.{xk = pub(k), xa = fk(r), y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼=

νk.r.{xk = pub(k), xa = fk(r), y = g(r) ⊕ p′(xk), z = h(p′(xk)||r)}

The reader noticed that for asymmetric encryption, this suffices to ensure IND-CPA: possessing
the public key and having access to hash-oracles, suffices to encrypt any message, hence it is
not necessary to have an oracle to encrypt messages.

Actually, in our case it suffices to prove νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕p(xk), z =
h(p(xk)||r)} ∼= νk.r.s.t.{xk = pub(k), xa = fk(r), y = s, z = t}. By transitivity, this implies:
for any two challenges that adversary chooses for p(xk), the distributions she gets are indistin-
guishable.

Before proceeding with the proof, we first state some rules that are consequences of the
definition of Sd and of the closure rules from Section 4.
(OD1) If f is a one-way function, then νk.r.{xk = pub(k), x = fk(r)} '|= r.
(ODg1) If f is a one-way function and νñ.νk.{xk = pub(k), x = T} ∼= νr.νk.{xk = pub(k), x =
r}, then νñ.νk.{xk = pub(k), x = fk(T )} '|= T .

The proof of IND-CPA security of Bellare-Rogaway scheme is presented in Figure 1. To
simplify the notations we suppose that all names in frames are restricted and we note σ2 ≡
xk = pub(k), xa = fk(r).

5.2 Partially one-way functions in the symbolic model

In this subsection, we show how we can deal with trapdoor partially one-way functions. This
extension is motivated by Pointcheval’s construction in [23]. In contrast to the previous subsec-
tion, we demand for function f a stronger property than one-wayness. Let Data1 be a new sort,
and let f : Data1 ×Data×Data → iData be a function and let f−1 : iData×Data → Data1,
such that
(OEq1) f(f−1(x, y), z, pub(y)) =Eg x.

The function f is said partially one way, if for any given f(s, r, pub(k)), it is impossible to
compute in polynomial time a corresponding s without the trapdoor k. In order to deal with
the fact that f is now partially one-way, we define Si = ∅ and Sd = {(νk.r.s.{xk = pub(k), x =
fk(r, s)}, r)}.

The following frame encodes the encryption scheme proposed by Pointcheval in [23].
φpo(m) = νk.r.s.{xk = pub(k), xa = fk(r, h(m||s)), y = g(r) ⊕ (m||s)}
where m is the plaintext to be encrypted, f is a trapdoor partially one-way function, and g and h
are hash functions. To prove IND-CPA security of this scheme, we can show in our framework
that νk.r.s.{xk = pub(k), xa = fk(r, h(p(xk)||s)), y = g(r) ⊕ (p(xk)||s)} ∼= νk.r.s1.s2.{xk =
pub(k), xa = fk(r, s1), y = s2}.
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TrE

HE1

GD6

SyE

XE1
{σ2, x = r, y = s2 ⊕ (p(xk)||s)} ∼= {σ2, x = r, y = s2}

{σ2, y = s2, x = r} ∼= {σ2, y = s2 ⊕ (p(xk)||s), x = r}
GD5

ODp1
{σ2} !|= r

{σ2, y = s2} !|= r

{σ2, y = s2 ⊕ (p(xk)||s)} !|= r

{σ2, y = g(r) ⊕ (p(xk)||s)} ∼= {σ2, y = s2 ⊕ (p(xk)||s)} (T2)

{xk = pub(k), xa = fk(r, h(p(xk)||s)), y = g(r) ⊕ (p(xk)||s)} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

Fig. 3. Proof of IND-CPA security of Pointcheval scheme.

TrE

XE1
{σ2, y = s2 ⊕ (p(xk)||s)} ∼= {σ2, y = s2}

GE1

HE1

CD1

GD5

GD1
∅ !|= s

{xk = pub(k), xa = fk(r, s1)} !|= s

{xk = pub(k), xa = fk(r, s1)} !|= p(xk)||s

{σ2} ∼= {xk = pub(k), xa = fk(r, s1)}

{σ2, y = s2} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

{σ2, y = s2 ⊕ (p(xk)||s)} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

Fig. 4. Tree (T2) from Figure 3.

Before proceeding with the proof we first state the next rule that is a consequence of the
definition of Sd.
(ODp1) If f is an one-way function, then νk.r.s.{xk = pub(k), x = fk(r, s)} '|= r.

The proof of IND-CPA security of Pointcheval scheme is presented in Figure 3. To sim-
plify notations we suppose that all names in frames are restricted and we note σ2 ≡ xk =
pub(k), xa = fk(r, h(p(xk)||s)).

5.3 Computational Diffie Hellman Assumption

In this subsection we prove indistinguishability under chosen plaintext attacks of a variant of
Hash-ElGamal encryption scheme ([26]) in the random oracle model under the CDH assump-
tion. The proof of the original scheme([7]) can be easily obtained from our proof and it can be
done entirely in our framework.

We will consider two sorts G and A, symbol functions exp : G × A → G, ∗ : A × A → A,
0A : A, 1A : A, 1G : G. To simplify the notation we write MN instead of exp(M, N). We extend
the equational theory Eg by the following equations:
(XEqe1) (xy)z =Eg xy∗z.
(XEqe2) x1A =Eg x.
(XEqe3) x0A =Eg 1G.

To capture the Computational Diffie Hellman Assumption in the symbolic model we define
Si = ∅ and Sd = {(νg.r.s.{xg = g, x = gs, y = gr}, gs∗r)}.

So we have the next rule that is a consequence of the definition of Sd.
(CDH) νg.r.s.{xg = g, x = gs, y = gr} '|= gs∗r.

The following frame encodes the Hash-ElGamal encryption scheme.
φhel(m) = νg.r.s.{xg = g, x = gs, y = gr, z = h(gs∗r) ⊕ m}
where m is the plaintext to be encrypted, (g, gs) is the public key and h is a hash function.
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The proof of IND-CPA security of Hash-ElGamal’s scheme is provided in Figure 5. To
simplify the notations we suppose that all names are restricted and we note σe ≡ xg = g, x =
gs, y = gr.

TrE

GE1

HE1

GD5

CDH
{σe} !|= gs∗r

{σe, z = t} !|= gs∗r

{σe, z = h(gs∗r)} ∼= {σe, z = t}

{σe, z = h(gs∗r) ⊕ p(x, xg)} ∼= {σe, z = t ⊕ p(x, xg)}
XE1

{σe, z = t ⊕ p(x, xg)} ∼= {σe, z = t}

{xg = g, x = gs, y = gr, z = h(gs∗r) ⊕ p(x, xg)} ∼= {xg = g, x = gs, y = gr, z = t}

Fig. 5. Proof of IND-CPA security of Hash-ElGamal’s scheme

6 Static equivalence and FIR

In this section we adapt the definition of deductibility and static equivalence ([9]) to our
framework. After, we justify why they are too coarse to be appropriate abstractions for indis-
tinguishability and weak secrecy. We also prove that in general they are coarser approximations
of indistinguishability and weak secrecy than FIR and FNDR.

If φ is a frame, and M, N are terms, then we write (M =E N)φ for Mφ =E Nφ.

Definition 8 (Deductibility). A (closed) term T is deductible from a frame φ where
(pi)i∈I = pvar(φ), written φ / T , if and only if there exists a term M and a set of terms
(Mi)i∈I , such that var(M) ⊆ dom(φ),ar(Mi) = ar(pi), fn(M, Mi) ∩ n(φ) = ∅ and (M =E

T )(φ[(Mi(Ti1 , . . . , Tik)/pi(Ti1 , . . . , Tik))i∈I ]). We denote by '/ the logical negation of /.

For instance, we consider the equational theory Eg and the frame φ = νk1.k2.s1.s2.{x1 =
k1, x2 = k2, x3 = h((s1 ⊕ k1) ⊕ p(x1, x2)), x4 = h((s2 ⊕ k2) ⊕ p(x1, x2))}. Then h(s1) ⊕ k2 is
deductible from φ since h(s1)⊕k2 =Eg x3[x1/p(x1, x2)]⊕x2 but h(s1)⊕h(s2) is not deductible.

If we consider the frame φ′ = νk.r.s.{xk = pub(k), x = fk(r||s)} where f is a trapdoor
one-way function, then neither r||s, nor r is deductible from φ′. So, the one-wayness of f is
modelled by the impossibility of inverting f if k is not disclosed. While this is fair for r||s
according to the computational guarantees of f , it seems too strong of assuming that r alone
cannot be computed if f is “just” one-way. This raises some doubts about the fairness of '/ as
a good abstraction of weak secrecy. We can try to correct this and add an equation of the form
g(f(x||z, pub(y)), y) =Eg x.
And now, what about r1, if one gives f((r1||r2)||s)? In the symbolic setting r1 is not deductible;
in the computational one we have no guarantee; hence, when one stops to add equations?
Moreover, in this way we could exclude ”good” one-way functions:

in the computational setting, if f is a one-way function, then f ′(x||y)
def
= x||f(y), is another

one-way function. The advantage of defining non-deductibility as we did it in the Section 4,
is that first, we capture “just” what is supposed to be true in the computational setting,
and second, if we add more equations to our abstract algebra (because we discovered that
the implementation satisfies more equations) in a coherent manner with respect to the initial
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computational assumptions, then our proofs still remain computationally sound. This is not
true for '/.

Definition 9 (Test). A test for a frame φ is a triplet ((Mi)i∈I , M, N) such that var(M, N) ⊆
dom(φ),ar(Mi) = ar(pi), fn(M, N, Mi) ∩ n(φ) = ∅. Then φ passes the test ((Mi)i∈I , M, N)
if and only if (M =E N)(φ[(Mi(Ti1 , . . . , Tik)/pi(Ti1 , . . . , Tik))i∈I ]).

Definition 10 (Statically Equivalent). Two frames φ1 and φ2 are statically equivalent,
written as φ1 ≈E φ2, if and only if
(i) dom(σ1) = dom(σ2);
(ii) for any test ((Mi)i∈I , M, N), φ1 passes the test ((Mi)i∈I , M, N) if and only if φ2 passes
the test ((Mi)i∈I , M, N).

For instance, the two frames φ1 = νk.s.{x1 = k, x2 = h(s) ⊕ (k ⊕ p(x1))} and φ2 =
νk.s.{x1 = k, x2 = s ⊕ (k ⊕ p(x1))} are statically equivalent with respect to Eg. However the
two frames φ′

1 = νk.s.{x1 = k, x2 = h(s)⊕ (k⊕p(x1)), x3 = h(s)} and φ′
2 = νk.s.{x1 = k, x2 =

s⊕ (k⊕p(x1)), x3 = h(s)} are not. The frame φ′
2 passes the test ((x1), x2, x3), but φ′

1 does not.
Let us now consider the equational theory from subsection 5.2. Then the following frames

νg.a.b.{x1 = g, x2 = ga, x3 = gb, x4 = ga∗b) and νg.a.b.c.{x1 = g, x2 = ga, x3 = gb, x4 = gc)
are statically equivalent. This seems right, it is the Decisional Diffie-Hellman assumption. So,
a computational implementation that satisfies indistinguishability for the interpretations of
this two frames will simply satisfy the DDH assumption. But soundness would imply much
more. Even νg.a.b.{x1 = g, x2 = ga, x3 = gb, x4 = ga2∗b2) and νg.a.b.c.{x1 = g, x2 = ga, x3 =
gb, x4 = gc) will be statically equivalent. It is unreasonable to assume that this is true for the
computational setting. And as for non-deductibility, the advantage of considering FIR as the
abstraction of indistinguishability, is that if we are adding equations in a coherent manner with
respect to the initial computational assumptions (that is with Si), then our proofs still remain
computationally sound.

Next proposition says that if the initial sets Sd and Si are reasonable, then the obtained
FIR and FNDR are finer approximations of indistinguishability and weak secrecy than '/ and
≈E .

Proposition 1. Let (Sd, Si) be such that Sd ⊆'/ and Si ⊆≈E. Then 〈Sd〉%|= ⊆'/ and 〈Si〉∼= ⊆≈E.

7 Conclusion

In this paper we developed a general framework for relating formal and computational models
for generic encryption schemes in the random oracle model. We proposed general definitions
of formal indistinguishability relation and formal non-derivability relation, that is symbolic
relations that are computationally sound by construction. We extended previous work with
respect to several aspects. First, our framework can cope with adaptive adversaries. This is
mandatory in order to prove IND-CPA security. Second, many general constructions use one-
way functions, and often they are analyzed in the random oracle model: hence the necessity
to capture the weak secrecy in the computational world. Third, the closure rules we propose
are designed with the objective of minimizing the initial relations which depend of the crypto-
graphic primitives and assumptions. We illustrated our framework on the generic encryption
scheme proposed by Bellare and Rogaway [11] and on Hash El Gamal [7].

As future works, we project to study the (relative) completeness of various equational
symbolic theories. Another ambitious extension will be to capture fully active adversaries.
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A Proofs

A.1 Proof of Theorem 1

Let define (D1, I1) ∧ (D2, I2)
def
= (D1 ∩ D2, I1 ∩ I2).

Let (Sd, Si) be some well-formed pair of relations. The existence of the unique smallest
(with respect to !) pair (〈Sd〉%|=, 〈Si〉∼=) is implied by the fact that

1. (F × T,F × F) is a (FNDR, FIR) such that (Sd, Si) ! (F × T,F × F);
2. if (D1, I1) and (D2, I2) are (FNDR, FIR), then (D1, I1) ∧ (D2, I2) is a (FNDR, FIR).

Hence, (〈Sd〉%|=, 〈Si〉∼=) can be defined as follows

(〈Sd〉%|=, 〈Si〉∼=)
def
=

∧ {
(D, I)|(D, I) is a (FNDR, FIR) such that (Sd, Si) ! (D, I)

}
.

Actually, it is easy to see easy that (〈Sd〉%|=, 〈Si〉∼=) is the least fixed point of some continuous
function F( %|=,∼=) : (F×T)× (F×F) 9→ (F×T)× (F×F) defined following the rules (GD1), ...,
(GD6),(GE1),...,(GE4), (HE1), symmetry and transitivity. It can be constructed by applying
iteratively (〈Sd〉n, 〈Si〉n) = Fn

( %|=,∼=)((Sd, Si)), with n ∈ until reaching a fixpoint.

Now we prove that 〈Sd〉%|= is '/-sound and 〈Si〉∼= is ≈-sound, provided that =E is =-sound,
Sd is '/-sound and Si is ≈-sound.

Most of the closure rules have premises that assume some hypothesis on '|= or ∼=. Let
suppose that for any such closure rule (R), we prove its computational soundness, that is, the
following fact:

Fact A1 For any adversary A against the conclusion of the rule (R), there exists some ad-
versary B (or tuple of adversaries Bi) breaking one of the premises of (R) , and moreover:

1. the advantage of A is a polynomial w.r.t. to η and the advantage of B (advantages of Bi,
respectively) and

2. the adversary A has an execution time which is a polynomial w.r.t. to η and the execution
time of B (execution times of Bi, respectively).

Now let suppose that there is some element (e1, e2) in 〈Sd〉%|= or 〈Si〉∼= which is not '/-sound
or ≈-sound. Let n be the number of steps needed to include (e1, e2) in 〈Sd〉%|= or 〈Si〉∼=, i.e. the
minimal number of iterations (〈Sd〉n, 〈Si〉n) needed to get (e1, e2) ∈ 〈Sd〉n or (e1, e2) ∈ 〈Si〉n.

Then, for any adversary A0 against the soundness of (e1, e2), we can construct an adversary
An against the soundness of an element (e0

1, e
0
2) of Sd or Si, such that

1. the advantage of A0 is bounded by an expression which depends of n and which is a
polynomial w.r.t. η and the advantage of An, and

2. the execution time of An is bounded by an expression which depends of n and which is a
polynomial w.r.t. η and the execution time of A0.

Since our reasoning is asymptotically (and n is independent from η), this would imply that
(e0

1, e
0
2) is not sound, contradiction with the '/-soundness of Sd or the ≈-soundness of Si.

In what follows we prove soundness for all rules of section 4.
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(GD1) νr.∅ '|= r.

Proof. To easy notations, we note S = [[s]]. Then we have

Pr[bs
r
← [[s]] : A() = bs] =

∑

bs∈S

Pr[bs′
r
← [[s]] : bs′ = bs] ∗ Pr[A() = bs]

=
∑

bs∈S

1

|S|
∗ Pr[A() = bs] =

1

|S|
∗

∑

bs∈S

Pr[A() = bs] =
1

|S|

Now we use the assumption that all sorts are suppposed to be of size exponential in η. :;

(GD2) If φ '|= M then τ(φ) '|= τ(M) for any renaming τ .

Proof. Using the fact that renamings do not change distributions, we get [[τ(φ), τ(M)]] =
[[φ, M ]]. :;

(GD3) If φ '|= M then φ '|= N for any term N =E M .
(GD4) If φ '|= M then φ′ '|= M for any frame φ′ =E φ.

Proof. Obviously, using the =-soundness of =E . :;

(GD5) If φ '|= M then φ′φ '|= M for any frame φ′ such that var(φ′) ⊆ dom(φ) and n(φ′) ∩
bn(φ) = ∅.

Proof. Let φ′ such that var(φ′) ⊆ dom(φ) and n(φ′) ∩ bn(φ) = ∅. Let us suppose that φ '|= M
is '/-sound, and let us prove that φ′φ '|= M is also '/-sound. We have to show that for any
probabilistic polynomial-time adversary A against φ′φ '|= M , there exists an adversary B
against φ '|= M that satisfies the conditions of Fact A1.

The adversary B uses A as a black box to first compute φ̂
r
← [[φ]]A; then it interprets all

variables in var(φ′) by bitstrings obtained in the previous stage (as var(φ′) ⊆ dom(φ)); it
continues to use A as a black box in order to interpret all queries from pvar(φ′); finally it gets
a concrete frame from [[φ′φ]]A and passes it to A; it answers as A. Hence, the advantage of B
equals the advantage of A, Adv(B, η, φ ''|= M) = Pr[φ̂, ê

r
← [[φ, M ]]B : BO(φ̂) = ê] = Pr[φ̂′′, ê

r
←

[[φ′φ, M ]]A : AO(φ̂′′) = ê] = Adv(A, η, φ′φ ''|= M).
In addition, the execution time of B is a polynomial w.r.t. to η and the execution time of

A, using that the size of encoding of φ′ is constant in η.
:;

(GD6) If T, U are terms such that U [T/y] =E z and z ∈ var(T )\var(U) and (fn(T )∪fn(U))∩
ñ = ∅, then for all substitutions σ1, σ2 such that x '∈ dom(σi) and νñ.{σ1, x = T [M/z]} ∼=
νñ.{σ2, x = T [N/z]} and νñ.σ1 '|= M then νñ.σ2 '|= N .

Proof. Let us suppose that νñ.σ1 '|= M is '/-sound and νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x =
T [N/z]} is ≈-sound, and let us prove that νñ.σ2 '|= N is also '/-sound.

We have to show that for any probabilistic polynomial-time adversary A against νñ.σ2 '|= N ,
there exists adversaries B1 against νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]}, and B2 against
νñ.σ1 '|= M which satisfy the conditions of Fact A1.
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In our case we will provide an adversary B to play the role of B1 and we will use the
adversary A as player for the role of B2, too.

Since fn(T ) ∩ ñ = ∅, it follows that T (z) is constructible using only dom(σi). Hence, the
adversary B uses A as a black box to first get either (φ̂, x = t̂(ê))

r
← [[νñ.{σ1, x = T [M/z]}]]A

or (φ̂, x = t̂(ê)
r
← [[νñ.{σ2, x = T [N/z]}]]A. Then A stops and answers some string bs. If t̂(ê) =

t̂(bs), B answers 1 and stops. If t̂(ê) '= t̂(bs), B picks randomly a bit c, answers c and stops.
From the definition of B, and using the =E injectivity of T and the =-soundness of =E , we
have the following:

Pr[(φ̂, x = t̂(ê))
r
← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] = 1,

Pr[(φ̂, x = t̂(ê))
r
← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] = 1,

Pr[(φ̂, x = t̂(ê))
r
← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) '= ê] = 1

2 + n2(η)

Pr[(φ̂, x = t̂(ê))
r
← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) '= ê] = 1

2 + n1(η)
where n1(η) and n2(η) are some negligible functions.
Now we have
Adv(B, η, νñ.{σ1, x = T [M/z]}, νñ.{σ2, x = T [N/z]}) =
Pr[(φ̂, x = t̂(ê))

r
← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1]−

Pr[(φ̂, x = t̂(ê))
r
← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 0] =

Pr[(φ̂, x = t̂(ê))
r
← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] ∗ Pr[(φ̂, ê)

r
←

[[νñ.σ2, N ]]A : AO(φ̂) = ê]+
Pr[(φ̂, x = t̂(ê))

r
← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) '= ê] ∗ Pr[(φ̂, ê)

r
←

[[νñ.σ2, N ]]A : AO(φ̂) '= ê]−
Pr[(φ̂, x = t̂(ê))

r
← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] ∗ Pr[(φ̂, ê)

r
←

[[νñ.σ1, M ]]A : AO(φ̂) = ê]−
Pr[(φ̂, x = t̂(ê))

r
← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) '= ê] ∗ Pr[(φ̂, ê)

r
←

[[νñ.σ1, M ]]A : AO(φ̂) '= ê] =
Pr[(φ̂, ê)

r
← [[νñ.σ2, N ]]A : AO(φ̂) = ê]+(1

2 +n2(η))∗Pr[(φ̂, ê)
r
← [[νñ.σ2, N ]]A : AO(φ̂) '= ê]−

Pr[(φ̂, ê)
r
← [[νñ.σ1, M ]]A : AO(φ̂) = ê] − (1

2 + n1(η)) ∗ Pr[(φ̂, ê)
r
← [[νñ.σ1, M ]]A : AO(φ̂) '=

ê] =
Pr[(φ̂, ê)

r
← [[νñ.σ2, N ]]A : AO(φ̂) = ê] + 1

2 ∗ (1 − Pr[(φ̂, ê)
r
← [[νñ.σ2, N ]]A : AO(φ̂) = ê])−

Pr[(φ̂, ê)
r
← [[νñ.σ1, M ]]A : AO(φ̂) = ê] − 1

2 ∗ (1 − Pr[(φ̂, ê)
r
← [[νñ.σ1, M ]]A : AO(φ̂) =

ê] + n3(η) =
1
2 ∗ (Pr[(φ̂, ê)

r
← [[νñ.σ2, N ]]A : AO(φ̂) = ê] − Pr[(φ̂, ê)

r
← [[νñ.σ1, M ]]A : AO(φ̂) = ê])) +

n3(η) =
1
2 ∗ (Adv(A, η, νñ.σ '|= N) − Adv(A, η, νñ.σ '|= M))) + n3(η)
for some well-chosen negligible function n3(η).
Moreover, it is easy to see that the execution time of B is a polynomial w.r.t. to η and the

execution time of A, using that the test t̂(ê)
?
= t̂(bs), and picking uniformly a random bit can

be done in a time polynomial w.r.t. to η. :;

(GE1) If φ1
∼= φ2 then φφ1

∼= φφ2, for any frame φ such that var(φ) ⊆ dom(φi) and n(φ) ∩
bn(φi) = φ.

Proof. Let φ such that var(φ) ⊆ dom(φi) and n(φ)∩ bn(φi) = φ. Let us suppose that φ1
∼= φ2

is ≈-sound, and let us prove that φφ1
∼= φφ2 is also ≈-sound. We have to show that for any

probabilistic polynomial-time adversary B, ([[φφ1]]B) ≈ ([[φφ2]]B).
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Let us suppose that there exists a probabilistic polynomial-time adversary B such that
([[φφ1]]B) '≈ ([[φφ1]]B), that is Pr[φ̂′ r

← [[φφ1]]B : BO(φ̂′) = 1] − Pr[φ̂′ r
← [[φφ2]]B : BO(φ̂′) = 1]

is non-negligible.

Then we construct an adversary A such that Pr[φ̂
r
← [[φ1]]A : AO(φ̂) = 1] − Pr[φ̂

r
← [[φ2]]A :

AO(φ̂) = 1] is non-negligible.

The adversary A uses B as a black box to first get φ̂
r
← [[φi]]B; then it interprets all variables

in var(φ) by bitstrings obtained in the previous stage (as var(φ) ⊆ dom(φi)); then it continues
to use B as a black box in order to interpret all queries from pvar(φ); finally it get a concrete
frame from [[φφi]]B and passes it to B; it answers as B. Hence, the advantage of A equals the
advantage of B, which is non-negligible. In addition, A runs in probabilistic polynomial-time
since B runs in probabilistic polynomial-time and the size of encoding of φ is constant in η.
This is a contradiction with φ1

∼= φ2 being ≈-sound. Hence φφ1
∼= φφ2 is also ≈-sound. :;

(GE2) φ ∼= φ′ for any frame φ′ such that φ′ =E φ.

Proof. Obviously, using the =-soundness of =E . :;

(GE3) τ(φ) ∼= φ for any renaming τ .

Proof. Using the fact that renamings do not change distributions, we get [[τ(φ)]] = [[φ]]. :;

(GE4) If M, N are terms of the same sort such that N [M/z] =E y and y ∈ var(M) \ var(N),
then for any substitution σ such that r '∈ (fn(σ) ∪ fn(M) ∪ fn(N)) and x '∈ dom(σ) it holds
νñ.r.{σ, x = M [r/y])} ∼= νñ.r.{σ, x = r}.

Proof. We prove that the statistical distance d([bs
r
← [[s]] : ĝ(bs)], [bs

r
← [[s]] : bs]) is negligible

for any computational functions ĝ : [[s]] → [[s]] and ĝ−1 : [[s]] → [[s]] such that Pr[bs
r
← [[s]] :

ĝ−1(ĝ(bs)) '= bs] is negligible. Then, the correctness of rule (GE4) is easy to prove using the
=-soundness of =E and noticing that the context N can be used to build the inverse function
of λr.M(r).

Let us suppose that Pr[bs
r
← [[s]] : ĝ−1(ĝ(bs)) '= bs] is negligible. To easy notations, we note

S = [[s]], S1 = {bs ∈ S|ĝ−1(ĝ(bs)) = bs}, S2 = {bs ∈ S|ĝ−1(ĝ(bs)) '= bs}, s = |S|, si = |Si|. Our
hypothesis is equivalent to s2 = s ∗ η for some negligible function η. Also, it easy to see that
ĝ : S1 → ĝ(S1) is an injective function, and hence a bijective function too. So, if bs′ ∈ ĝ(S1) we
know that there is exactly one element in S1 noted i(bs′) such that ĝ(i(bs′)) = bs′. We note in
this case S1,bs′ = S1 \ {i(bs′)}. Moreover, |S \ ĝ(S1)| = |S \ S1| = s2.
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d([bs
r
← [[s]] : ĝ(bs)], [bs

r
← [[s]] : bs])

=
∑

bs′∈S

∣∣Pr[bs
r
← [[s]] : ĝ(bs) = bs′] −

1

s

∣∣

=
∑

bs′∈S1

∣∣Pr[bs
r
← [[s]] : ĝ(bs) = bs′] −

1

s

∣∣ +
∑

bs′∈S2

∣∣Pr[bs
r
← [[s]] : ĝ(bs) = bs′] −

1

s

∣∣

≤
∑

bs′∈S1∩ĝ(S1)

∣∣Pr[bs
r
← [[s]] : ĝ(bs) = bs′] −

1

s

∣∣ +
∑

bs′∈S1∩(S\ĝ(S1))

∣∣Pr[bs
r
← [[s]] : ĝ(bs) = bs′] −

1

s

∣∣ + η

≤
∑

bs′∈S1∩ĝ(S1)

∣∣1
s
∗

∑

bs∈S

χ[ĝ(bs)=bs′] −
1

s

∣∣ + η + η

=
∑

bs′∈S1∩ĝ(S1)

1

s
∗

∣∣χ[ĝ(i(bs′)))=bs′] +
∑

bs∈S
1,bs′

χ[ĝ(bs)=bs′] +
∑

bs∈S2

χ[ĝ(bs)=bs′] − 1
∣∣ + 2 ∗ η

≤
∑

bs′∈S1∩ĝ(S1)

1

s
∗

∣∣1 + 0 + s2 − 1
∣∣ + 2 ∗ η

= 3 ∗ η

:;

(HE1) If νñ.r.σ[r/h(T )] '|= T and r '∈ n(σ), then νñ.σ ∼= νñ.r.σ[r/h(T )].

Proof. In the random oracle model, hash functions are drawn uniformly at random from the
space of functions of suitable type at the beginning of the interpretation of the frame. Thus,
the images that the hash function associates to different inputs are completely independent.
Therefore, one can delay the draw of each hash value until needed. We use σ[•] for σ[•/h(T )],
i.e. σ where all occurrences of h(T ) are replaced by •.

Now, using that νñ.r.σ[r/h(T )] '|= T we get

[[νñ.σ[h(T )/•]}]]A
=

[
H

r
← Ω;O = H; (φ̂[•], bs)

r
← [[(νñ.σ[•], T )]]H,A : φ̂[H(bs)/•]

]

(since νñ.r.σ[r/h(T )] '|= T one can delay the draw of h([[T ]]))

∼
[
H

r
← Ω;O = H; (φ̂[•], bs)

r
← [[(νñ.σ[•], T )]]H,A; v

r
← [[s(T )]];

O = H[H → H[bs → v]] : (φ̂[v/•])
]

(since νñ.r.σ[r/h(T )] '|= T the probability that A query h([[T ]]) is negligible)

∼
[
H

r
← Ω;O = H; (φ̂[•], bs)

r
← [[(νñ.σ[•], T )]]H,A; v

r
← [[s(T )]] : (φ̂[v/•])

]

=
[
H

r
← Ω;O = H; φ̂[•]

r
← [[νñ.σ[•]]]H,A; v

r
← [[s(T )]] : (φ̂[v/•])

]

= [[νñ.νr.{σ[r/•]}]]A

:;

(SyE) If φ1
∼= φ2 then φ2

∼= φ1.
(TrE) If φ1

∼= φ2 and φ2
∼= φ3 then φ1

∼= φ3.

Proof. Obviously, using that indistinguishability is an equivalence relation. :;

21



A.2 Proofs of Derived rules from Section 5

(XE1) If r '∈ (fn(σ) ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} ∼= νñ.r.{σ, x = r}.

Proof. Consequence of rule (GE4) for M = y ⊕ T and N = z ⊕ T and equations (XEqi). :;

(CD1) If (φ '|= T1 ∨ φ '|= T2) then φ '|= T1||T2.

Proof. Consequence of rules (GD5) and (GD3) and equations (PEq1) and (PEq2). :;

(HD1) If νñ.σ '|= T and h(T ) '∈ st(νñ.σ) then νñ.{σ, x = h(T )} '|= T .

Proof. Consequence of rules (HE1), (GD6) and (GD5). :;

(XD1) If νñ.σ '|= T and r '∈ (ñ ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} '|= T .

Proof. Consequence of rules (GD5), (GD6), (HE1) and (SyE). :;

(ODg1) If f is a one-way function and νñ.{xk = pub(k), x = T} ∼= νr.{xk = pub(k), x = r},
then νñ.{xk = pub(k), x = fk(T )} '|= T .

Proof. Consequence of rules (OD1), (GE1) and (GD6). :;
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