
Computational soundness of static equivalence

Véronique Cortier1, Steve Kremer2, and Pascal Lafourcade3

1 LORIA, CNRS & INRIA
2 LSV, CNRS & ENS Cachan & INRIA

3 Verimag, CNRS & Université Grenoble 1

Abstract. Privacy related properties in electronic voting are naturally expressed as indis-
tinguishability properties. This motivates the study of observational equivalence, as well
as static equivalence in the context of the AVOTÉ project. In this report we survey the
existing results on the computational soundness of symbolic indistinguishability relations in
the presence of a passive adversary, for which several results were obtained by the members
of the AVOTÉ project. This report is based on a recent survey [CKW09] on computational
soundness of symbolic methods for analysing security protocols, carried out in the context
of the AVOTÉ project.

1 Introduction

Security protocols are short distributed programs designed to achieve various security goals, such
as data privacy and data authenticity, even when the communication between parties takes place
over channels controlled by an attacker. Their ubiquitous presence in many important applications
makes designing and establishing the security of cryptographic protocols a very important research
goal. Two distinct approaches that have evolved starting with the early 1980’s attempt to ground
security analysis of protocols on firm, rigorous mathematical foundations. These two approaches
are known as the computational (or the cryptographic) approach and the symbolic (or the Dolev-
Yao, or the formal methods) approach. Each approach relies on mathematical models for the
executions of protocols/primitives in adversarial environments, formally define security properties
expected from cryptographic systems, and develop methods for rigorously proving that given
constructions meet these requirements.

The central features of the computational approach are detailed, bit-level models for system
executions and a powerful adversary: security is assessed against arbitrary probabilistic polyno-
mial time machines. It is generally acknowledged that security proofs in this model offer pow-
erful security guarantees. A serious downside of this approach however is that proofs for even
moderately-sized protocols are usually long, difficult, tedious, and highly error prone.

In contrast, symbolic methods employ a highly abstract view of the execution where the mes-
sages exchanged by parties are symbolic terms. Furthermore, primitives are assumed absolutely
secure, which in turn leads to severe restrictions on the power of the adversary. For instance, it is
postulated the plaintext underlying a ciphertext can only be recovered if the adversary has or can
derive the appropriate decryption key. The resulting models are considerably simpler than those
of the computational approach, proofs are therefore also simpler, and can sometimes benefit from
machine support. An important problem with this approach is that the high level of abstraction
renders unclear the security guarantees that this approach offers.

Due perhaps to the widely different set of tools and techniques, the two approaches have co-
existed and developed independently for many years. The lack of interaction between the two
communities also meant that the relation between models, security results and guarantees us-
ing the two approaches was only superficially understood. Abadi and Rogaway were the first to
demonstrate that establishing close relations between the models is not only possible, but also
that it holds significant promise. Through their work it became clear that it is possible to employ
the tools and methods specific to the symbolic approach to directly obtain computational security
guarantees. The crucial implication is that such guarantees can be obtained without making use
of the typical computational proofs. This realization motivated a significant amount of follow-up

work. In this report we first recall the seminal result by Abadi and Rogaway and then discuss
several extensions to this result. In particular we will discuss results on static equivalence which
generalizes the pattern equivalence used by Abadi and Rogaway. The results are also summarized
in Table 1.

Several of these results have been obtained in the context of the AVOTÉ project:

– Extension of the Abadi-Rogaway approach for bilinear pairings [KM09];
– A framework for proving cryptographic indistiguishability through symbolic static equivalence,

with application to lists and cyphers [BCK09];
– A general framework for relating formal and computational models for generic encryption

schemes in the random oracle model [ELN09].

For each of these results, the corresponding publication is appended to this report.

2 The Abadi-Rogaway result

The result of Abadi and Rogaway shows that if a symbolic notion of secrecy of data that occurs
in a message is satisfied, then a computational notion is also satisfied [AR00,AR02]. Their result
holds for a class of messages constructed as in the following section.

Formal expressions and equivalence. On the formal side, one considers a simple grammar for
expressions. The expressions consider two base types for keys and Booleans which are taken from
two disjoint sets Keys and Bool. Keys and Booleans can be paired and encrypted.

M,N ::= expressions
K key (K ∈ Keys)
i bit (i ∈ Bool)
〈M,N〉 pair
{M}K encryption (K ∈ Keys)

For example the formal expression 〈K1, {〈0,K2〉}K1〉 represents a pair: the first component of this
pair is the key K1, the second, the encryption with key K1 of the pair consisting of the boolean
constant 0 and the key K2.

Before defining the equivalence relation between terms we first need to define the deducibility
relation `. Intuitively, M ` N , if the adversary can learn the expression N from the expression
M . Formally, ` is the smallest relation, such that

M `M M ` 0 M ` 1
if M ` N1 and M ` N2 then M ` 〈N1, N2〉
if M ` 〈N1, N2〉 then M ` N1 and M ` N2

if M ` {N}K and M ` K then M ` N
if M ` N and M ` K then M ` {N}K

For example, if M = 〈K1, {〈0,K2〉}K1〉, then we have that M ` K2. Moreover, M ` 1, as the
constants 0 and 1 are always known to the attacker.

The equivalence relation between terms is based on the equality of the patterns associated to
each term. A pattern represents the adversary’s view of a term. Patterns extend the grammar
defining terms by the special symbol �. The pattern of a term replaces encryptions for which
the key cannot be deduced by �. This idea is formally captured by the following function p. The
function takes as arguments a term and a set T of keys and is defined inductively as follows.

p(K, T) = K (K ∈ Keys)
p(i, T) = i (i ∈ Bool)

p(〈M,N〉, T) = 〈p(M,T), p(N,T)〉

p({M}K , T) =
{
{p(M,T)}K if K ∈ T
� else

The pattern of an expression M is defined by

pattern(M) = p(M, {K ∈ Keys |M ` K}).

For instance pattern(〈K1, {〈0, {1}K2〉}K1〉) = 〈K1, {〈0,�〉}K1〉.
Furthermore, expressions M and N are formally indistinguishable, written M ≡ N if and only

if pattern(M) = pattern(N)σ, where σ is a bijective renaming of keys. For example, we have that
0 6≡ 1, K0 ≡ K1, {0}K1 ≡ {1}K0 and 〈K0,K0〉 6≡ 〈K0,K1〉.

Computational setting and hypotheses on the implementation. In the computational setting, one
reasons at the level of bitstrings and algorithms executed on Turing Machines, rather than on
abstract terms. Expressions are interpreted as bitstrings by instantiating each of the symbolic
operations (including the constants) via appropriate algorithms. In particular we assume a com-
putational pairing function that takes as input two bitstrings m1 and m2 and outputs their con-
catenation 〈m1,m2〉. The function is such that m1 and m2 are easily extractable from 〈m1,m2〉.
Furthermore, we use a concrete encryption scheme, which is a triple of polynomial time algorithms
K, E ,D for key generation, encryption and decryption respectively. The key generation algorithm
is parameterized by a security, or complexity parameter η ∈ 1∗. Intuitively, η defines the key
length. As expected we require that Dk(Ek(m, r)) = m for any k ∈ K(η), message m, and random
bitstring r (that represents the coins of the probabilistic encryption algorithm).

The Abadi-Rogaway result relies on a security notion for encryption schemes termed “type-0”
in the original paper [AR00]. Here, we call schemes that satisfy this notion, which we recall bellow,
simply secure. Informally, secure schemes hide all information about encrypted plaintexts (includ-
ing their length) and hide all information about the encryption key. This notion is significantly
stronger than more standard ones which allow for ciphertexts to reveal the length of the underlying
plaintext as well as partial information about the encryption key. The stronger assumption is used
for simplicity as the Abadi-Rogaway framework can be further refined to only rely on the more
standard notions.

An encryption scheme is secure if for any security parameter η and any probabilistic polynomial
time Turing machine A (the adversary) the advantage

Adv(A) = Pr[k, k′ R←− K(η) : AEk(·),Ek′ (·)(η) = 1]−
Pr[k R←− K(η) : AEk(0),Ek(0)(η) = 1]

is a negligible function of η. Here, x
R←− D denotes the random sampling of an element of distri-

bution D and AO is the Turing Machine A that has access to a set of oracles O. Intuitively, one
requires that an adversary cannot distinguish the case where he is given two encryption oracles
encrypting with two different keys from the case where he is given twice the same encryption oracle
always encrypting the constant bitstring representing 0 with the same key. Note that this security
under this notion implies that encryption needs to be randomized, so that an adversary does not
see identical answers when confronted with the second pair of (identical) oracles. In [AR02], the
authors provide constructions for such schemes from standard cryptographic assumption.

A recurrent theme in computational soundness is that of acyclic expressions. The reason is
that an encryption scheme respecting the above security definition may be insecure as soon as the
adversary is given a key cycle. We say that a key K1 encrypts a key K2 in a formal expression M
if M contains a subexpression {N}K1 and K2 occurs in N . In this way any expression M defines
a binary relation encrypts on keys. We say that an expression contains a key cycle if and only if
the corresponding encrypts relation is cyclic. For instance M1 = {K}K contains a key cycle as
K encrypts K. In M2 = {{K1}K2}K3 we have that K3 encrypts K1, K3 encrypts K2 and K2

encrypts K1 and hence M2 does not contain any key cycle. In Abadi and Rogaway’s main result,
key cycles are therefore forbidden. Similar conditions can be found in most soundness results. To
better understand the problem of key cycles suppose that SE = (KG, E ,D) is a secure encryption
scheme and let SE ′ = (KG′, E ′,D′) be defined as follows:

KG′ = KG, E ′k(m, r) =
{
Ek(m, r) if m 6= k
〈const, k〉 if m = k

, D′
k(c) =

{
Dk(c) if c 6= 〈const, k〉
k if c = 〈const, k〉

where const is a constant such that for any key k, the concatenation const · k does not belong
to the set of possible ciphertexts obtained by E . Obviously, if the attacker is given a key cycle
of length 1, e.g., E ′k(k, r), the attacker directly learns the key. It is also easy to see that SE ′ is a
secure encryption scheme as it behaves as SE in nearly all cases (in the security experiment the
adversary can make a query for encrypting k with itself only with negligible probability).

The notion of computational indistinguishability requires that an adversary cannot distinguish
two (families of) distributions, with better than negligible probability. Let D = {Dη} and D′ =
{D′

η} be two families of probability distributions. D and D′ are computationally indistinguishable,
written D ≈ D′ if for any η and any probabilistic polynomial time Turing machineA, the advantage

Adv(A) = Pr[x R←− Dη : A(η, x) = 1]− Pr[x R←− D′
η : A(η, x) = 1]

is a negligible function of η.

Interpretation of formal expressions and soundness result. The Abadi-Rogaway result links the
notion of pattern equivalence on expressions defined in the previous section with an appropriate
notion of computational equivalence defined on distributions. These distributions are associated
to expressions using the following algorithms that convert formal expressions into bitstrings.

Bitstrings are tagged using types “key”, “bool”, “pair” and “ciphertext”. The Initialize pro-
cedure uses K to generate actual keys for each of the key symbols that occurs in M (that is for
each key K ∈ Keys(M)). Then, then Convert procedure implements encryption using algorithm
E .

Initializeη(M)
for K ∈ Keys(M) do τ(K) R←− K(η)

Convert(M)
if M = K (K ∈ Keys) then

return 〈τ(K),“key”〉
if M = b (b ∈ Bool) then

return 〈b,“bool”〉
if M = 〈M1,M2〉 then

return 〈〈Convert(M1),Convert(M2)〉, “pair”〉
if M = {M1}K then

x
R←− Convert(M1)

y
R←− Eτ(K)(x)

return 〈y, “ciphertext”〉

The Initialize and Convert procedures associate to a formal term M a family of probability
distributions [[M]] = {[[M]]η}.

Abadi and Rogaway’s main result is that for any formal expressions M and N that do not
contain key cycles, whenever the computational interpretation of the terms uses a secure encryption
scheme (as defined above), then M ≡ N implies that [[M]] ≈ [[N]]. In other words, they show that
pattern-based equivalence is a sound abstraction of cryptographic indistinguishability.

3 Extensions of the Abadi-Rogaway result

The initial result of Abadi and Rogaway has given rise to many extensions. Some of these ex-
tensions consider the question of completeness of their logic. Other extensions consider different
implementations of encryption (with variants of the initial patterns) as well as other cryptographic
primitives.

Completeness of the Abadi-Rogaway logic. In [MW02,MW04], Micciancio and Warinschi show that
the Abadi-Rogaway logic is not complete as presented in the original paper. Here, by completeness
we mean that M 6≡ N implies that [[M]] 6≈ [[N]], i.e., whenever two formal expressions are not
equivalent, then the computational interpretation of these two messages should be distinguish-
able. Micciancio and Warinschi exhibit a counter-example by constructing a secure encryption
scheme and two symbolic expressions that are not symbolically equivalent, which yet give rise to
indistinguishable probability distribution ensembles.

They show that completeness can be recovered by implementing encryption with a scheme that
is authenticated. Informally, an encryption scheme is authenticated if an adversary cannot produce
a valid ciphertext different from ciphertexts honestly produced by the parties that posses the
encryption key. Gligor and Horvitz [HG03] further refine this completeness result. They introduce
a new security criterion for encryption schemes, weak key-authenticity test for expressions (WKA-
EXP), which is strictly weaker than authenticated encryption. WKA-EXP is both sufficient and
necessary for completeness.

Public-key encryption. In [Her03,Her05], Herzog shows a similar result as Abadi and Rogaway,
but for public-key encryption. Patterns are generalized in the expected way for expressions that
use public-key encryption. The problem of key-cycles also persists in this setting. To define a key-
cycle of an expression M in the public-key setting one constructs a graph GM : the set of vertices
is the set of public/private key pairs {(pubK1, privK1), . . . , (pubKn, privKn)}; there exists an
edge from (pubKi, privKi) to (pubKj , privKj) if pubKi encrypts privKj in M . M has no key-
cycle if GM is acyclic. Herzog presents a soundness theorem, similar to the one of Abadi and
Rogaway, whenever the encryption scheme used for the computational interpretation provides
indistinguishability under chosen-ciphertext attacks (IND-CCA2 security).

Composed keys. In [LC04], Laud and Corin extend the original soundness theorem to allow ar-
bitrary expressions as keys. The tricky part is again to handle key-cycles correctly. As arbitrary
expressions are used in the position of keys, the definition of what is a key cycle is not obvi-
ous. Rather than giving an explicit definition of what is a key-cycle, the symbolic adversary is
strengthened and the formal equivalence relation directly captures key-cycles. More precisely, an
expression is not formally equivalent to its pattern whenever a “key-cycle” is present. For instance,
{〈K1,K2〉}〈K1,K2〉 6≡ � and 〈{K1}〈K1,K2〉, {K2}〈K1,K2〉〉 6≡ 〈�,�〉 while {K1}〈K1,K2〉 ≡ �, because
the second part of the key K2 does not occur anywhere else.

Handling key cycles. Key cycles have gained a lot of attention in the context of computational
soundness. The reason is that there is an inherent difference between their treatment in sym-
bolic models (where such cycles do not cause any troubles) and the computational model (where
standard security definitions do not guarantee security in presence of key-cycles.) There are two
natural approaches to reconcile this apparent difference.

One possibility is to strengthen the symbolic attacker. This is the direction explored by Laud
in [Lau02]. The idea is to modify the symbolic deduction relation so that whenever a key occurs
in a key cycle then it becomes known to the attacker. Laud shows an unconditional soundness
theorem in the style of Abadi and Rogaway (unconditional in the sense that formal expressions
may contain key cycles).

The second possibility is to strengthen the computational notion as to guarantee security even
in the presence of key-cycles. This is the approach adopted in [ABHS05], Adão et al. They consider
a stronger security notion, called key-dependent message (KDM) security which demands security
even in the presence of such cycles. They show that soundness holds in a public-key setting in
the presence of key cycles when a KDM secure encryption scheme is used for the computational
interpretation of encryption. They also prove a separation between standard security notions
(IND-CCA2) and KDM security and demonstrate that IND-CCA2 security is not sufficient to provide
soundness in the presence of key-cycles. Schemes secure under the KDM notion can be easily
constructed in the random oracle model, but schemes secure in the standard model seem much
harder to construct. Recently, Boneh et al. [BHHO08] demonstrated the existence of an asymmetric

encryption scheme secure under key dependent message attacks in a restricted sense: their scheme
does not permit the encryption of messages that depend in arbitrary ways on the set of secret
keys.

In most of the other approaches, one has to assume that key cycles cannot be generated, even
when the adversary interacts arbitrarily with the protocol. Whether a key cycle can be generated
is undecidable in the general case but it has been shown to be NP-complete in the symbolic setting,
for an active adversary and a bounded number of sessions [CZ06].

Partial information leakage and information theoretic security. Adão et al. [ABS05] consider differ-
ent computational implementations of the encryption function. In particular they show soundness
and completeness when which-key and length-key revealing encryption schemes are used. A which-
key revealing encryption scheme allows the adversary to detect when two ciphertexts have been
encrypted with the same key. At the symbolic level this is reflected by indexing the boxes with the
encryption key, yielding a more precise equivalence relation. For instance, pattern({0}K) = �K

and hence we have that 〈{0}K , {1}K〉 6≡ 〈{0}K , {1}K′〉. A length-key revealing encryption scheme
allows the attacker to learn the length of the plaintext. At the symbolic level the boxes are indexed
with the length of the plaintext to reflect this partial information leakage.

The authors also consider the case where encryption is implemented by a one-time pad. When-
ever encryption keys are only used once they show that one obtains soundness and completeness
with respect to an information-theoretic setting. In such a setting the equivalence is the equal-
ity of the probability distributions rather than indistinguishable by a polynomial-time bounded
adversary.

Hash functions. Garcia and van Rossum [GvR06] extend the Abadi-Rogaway logic to hash func-
tions. Soundness theorems for hash functions are particularly tricky as in the symbolic model, hash
functions do not leak any partial information about the hashed message. Typical computational
security definitions for hash functions provide weaker guarantees, such as one-wayness. Garcia and
van Rossum show a soundness result when hash functions are implemented using oracle hashing.
Oracle hashing has been introduced by Canetti: it is a probabilistic hash function which requires
a verification algorithm to check whether a hash corresponds to a given message. These are hash
functions that do hide all partial information about the message that is being hashed. In the jour-
nal version [GvR08], they extend Micciancio and Warinschi’s completeness result to hash functions
in a similar way.

Modular exponentiation. Bresson et. al [BLMW07] give an extension of the Abadi-Rogaway logic
with modular exponentiation. They show how to extend the notion of patterns in order to capture
the information that is leaked through exponentiation, which are essentially linear dependencies
between the various exponents. For example, the symbolic secrecy notion captures the idea that
an adversary can observe that in the expression (gx, gy, g2x+y) the third term can be obtained by
squaring the first one and multiplying it with the second. Non-linear relations, as in the expression
(gx, gy, gx+xy), cannot be observed by the adversary. The soundness for the resulting language
relies on a generalization of the Diffie-Hellman assumption which in most relevant cases is implied
by the latter.

In the same vein than [BLMW07], Mazaré [Maz07,KM09] presents an extension the Abadi-
Rogaway logic with a bilinear pairing operation. Their soundness result assumes the hardness of
the bilinear decisional Diffie-Hellman problem and an IND-CPA encryption scheme. The soundness
result is illustrated on the Joux tripartite Diffie-Hellman protocol, as well as the TAK-2 and TAK-3
protocols.

Offline guessing attacks. In security protocols passwords or other weak data are often used as
encryption keys. For such protocol an important security property is resistance to offline guessing
attacks. In such attacks an attacker first collects (possibly by interacting with the protocol) some
data. In a second phase, he guesses a password out of a dictionary. If the attacker has a means to
verify that his guess was correct using the data he had gathered, then the protocol is subject to a

guessing, or dictionary attack. In [AW05a], Abadi and Warinschi have shown soundness results for
protocols that use password encryptions. They define the computational security of a password
encryption primitive: for any two passwords, any polynomially bounded adversary, that is given
these two passwords and given access to an oracle, encrypting samples drawn from a plaintext
distribution, is not able to distinguish whether the oracle uses the first or the second password
for encryption. They also define formal and computational security of expressions against offline
guessing attacks in terms of indistinguishability. Then for symmetric, asymmetric and password
encryptions with secure implementation they show two soundness theorems. The first one is an
extension of the Abadi-Rogaway soundness theorem for indistinguishability. The second theorem
states that whenever a formal expression E hides passwords, then its computational interpretation
also hides passwords. These results hold for IND-CPA secure symmetric and asymmetric schemes,
and for password-based encryption schemes that “securely” encrypt keys and ciphertexts of the
symmetric and asymmetric schemes. In addition, it only holds for expressions that do not contain
key cycles.

Cryptographically controlled access control to XML. A compelling application of computational
soundness against passive adversaries was given by Abadi and Warinschi [AW05b,AW08]. The
focus of that work is the security of a scheme that uses encryption to enforce access control
policies to XML documents. The scheme, designed by Miklau and Suciu [MS03] explains how to
obtain from a given XML document and a given access policy a so-called protection: a partially
encrypted XML document which enforces the original access policy. The guarantees for the scheme
were rather informal.

Abadi and Warinschi formalize the scheme using a symbolic language for expressions that
extends the one of Abadi and Rogaway with secret sharing schemes. Then, they show that secrecy
as demanded by the policy used to create a certain protection on an XML document is satisfied
in a symbolic sense: data that should be secret according to the policy is symbolically secret in
the expression that describes the protection. It then follows using the computational soundness
of the language for expressions that the same data is also computationally secret. The soundness
results hold for implementations that use IND-CPA encryption schemes and n-out-of-n secure secret
sharing schemes.

Soundness against an adaptive adversary. Micciancio and Panjwani [MP05] show a soundness
result for encryption and pairing in the presence of a slightly stronger, adaptive adversary. Sound-
ness is defined through the following experiment. An adversary has access to a left-right oracle,
which given on input two terms M1 and M2, returns a sample of the computational interpretation
of Mb, where b is the challenge bit of the oracle. The adversary can interact with the oracle but
is only allowed to submit queries such that the sequence of queries (M1

1 ,M1
2), . . . , (M `

1 ,M `
2) sent

to the oracle is such that 〈M1
1 , . . . ,M `

1〉 is formally equivalent, i.e. has the same pattern up to
renaming, to 〈M1

2 , . . . ,M `
2〉. The adversary wins if he succeeds in outputting b with non-negligible

probability. Note that the oracle is stateful and implements terms in a consistent way, i.e. if a key
has been drawn in a previous query the same value is reused in subsequent queries. An adaptive
adversary is strictly stronger than a purely passive one as he can choose his queries after having
already obtained the implementation of some terms. On the technical level, the fact of having an
adaptive adversary raises the problem of selective decommitment which is overcome by imposing
the following condition: if a key is used to encrypt a message it either must have been sent pre-
viously in plaintext or it never appears in plaintext. The usefulness of an adaptive adversary is
illustrated by deriving computationally sound symbolic model for the analysis of multicast key
distribution protocols. In this model, the adversary cannot directly interact with the protocol
participants, but he can influence the control flow.

4 Soundness of static equivalence

Baudet, Cortier, and Kremer have considered a more general alternative to the approach de-
scribed in the previous sections. They develop a framework in which symbolic secrecy is ex-

pressed in terms of static equivalence, a well-established equivalence relation from cryptographic
pi-calculi[BCK05,BCK09]. This approach is more general in that it does not depend on a particular
set of primitives.

Abstract and computational algebras. Independence from a particular primitives is reflected in their
use of an arbitrary abstract algebra to describe the messages exchanged in a protocol. The algebra is
defined over a many-sorted first-order signature equipped with an equational theory. For instance,
symmetric, deterministic encryption is modeled by the theory Eenc generated by the classical
equation dec(enc(x, y), y) = x. Equality between two terms is generally interpreted modulo the
equational theory (denoted =E for an equational theory E). For example, dec(enc(m, k), k) =Eenc

m. Given an abstract signature a computational algebra A is defined by associating to every sort
s of the abstract algebra a set of bitstrings [[s]]A ⊆ {0, 1}∗ with an efficient procedure for drawing
random elements, and to every function f a computational function [[f]]A. Given a symbolic term
T , a distribution [[T]]A is associated by drawing a random element of the corresponding sort for
each name and replacing each function symbol by its computational counterpart.

Security notions, soundness, and faithfulness. The two security notions which are considered are
deducibility and static equivalence. Deducibility formalizes which are the terms that an attacker
can compute from a given sequence of terms. Static equivalence models whether two sequences
of terms can be distinguished. Both deducibility and static equivalence are parameterized by an
equational theory. In this approach, static equivalence replaces the pattern-based formal equiva-
lence.

To reason about the soundness of implementations Baudet et al. define soundness for the three
relations =E , `E and ≈E . Soundness of =E means that whenever two terms are symbolically
equal (modulo E), any sample drawn from the distribution implementing those terms should be
equal with overwhelming probability. Soundness of =E is generally a hypothesis which reflects
that the equational theory is a reasonable abstraction of the primitives. Similarly, they define
soundness for deducibility and static equivalence. When a term is not deducible from a sequence
of terms, then an attacker given the distribution implementing the given sequence of terms, should
be able to output a sample of the distribution implementing the term with only negligible property.
When two sequences of terms are statically equivalent, then the distributions associated to these
sequences should be indistinguishable.

Faithfulness of those three relations on the other hand represents a strong version of com-
pleteness. Whenever two terms are not equal, a term is deducible or two sequences of terms are
not statically equivalent, a computational adversary can show this with overwhelming probabil-
ity (rather than non-negligible probability which would be completeness). Intuitively, when the
relations are faithful, for any symbolic attack there exists an efficient computational attack.

It is shown that for many theories ≈E-soundness implies all other notions of soundness and
faithfulness. This emphasizes the importance of ≈E-soundness.

Examples: groups, XOR, ciphers and lists In [BCK05,BCK09], Baudet et al. consider several equa-
tional theories to illustrate their framework. First they show the ≈E-soundness of an equational
theory modeling groups implies the hardness of several classical cryptographic problems: the dis-
crete logarithm, computational Diffie-Hellman, decisional Diffie-Hellman and RSA problems. Note
that this is not a soundness result. It shows that any candidate implementation for ≈E-soundness
requires at least the hardness of the usual cryptographic problems. Second, they show the uncondi-
tional ≈E-soundness of a theory of XOR. The soundness proof reflects the unconditional security
(in the information-theoretic sense) of the One-Time Pad. Finally, they show ≈E-soundness of
a theory of ciphers and lists (ciphers are deterministic, length-preserving, symmetric encryption
schemes).

Soundness of offline guessing attacks and static equivalence. In [ABW06], Abadi, Baudet and
Warinschi use the framework of [BCK05,BCK09] to show ≈E-soundness for an equational theory
useful in the context of offline guessing attacks. This theory includes symmetric, and asymmetric

encryption as well as pairing. A consequence of this soundness result is its applicability to defining
and reasoning about off-line guessing attacks in terms of static equivalence. The result is an
intuitively appealing implication to computational security against off-line attacks.

Static equivalence vs formal indistinguishability relations. In [BMS06], Bana, Mohassel and Stegers
argue that the notion of static equivalence is too coarse and not sound for many interesting
equational theories. They introduce a general notion of formal indistinguishability relation. This
highlights that soundness of static equivalence only holds for a restricted set of well-formed frames
(in the same vein Abadi and Rogaway used restrictions to forbid key cycles). They illustrate the
unsoundness of static equivalence for modular exponentiation.

Formal indistinguishability extended to the ROM In [ELN09] the authors extend Bana et al.’s ap-
proach [BMS06], by introducing a notion of symbolic equivalence that allows them to prove security
of encryption schemes symbolically. The aim of this work is to prove the security for generic en-
cryption schemes that transform one-way functions to IND-CPA secure encryption schemes. They
proposed general definitions of formal indistinguishability relation and formal non-derivability re-
lation, that is symbolic relations that are computationally sound by construction. They extended
previous work with respect to several aspects. First, their framework can cope with adaptive
adversaries. This is mandatory in order to prove IND-CPA security. Second, many general con-
structions use one-way functions, and often they are analyzed in the random oracle model: hence
the necessity to capture the weak secrecy in the computational world. Third, their closure rules is
designed with the objective of minimizing the initial relations which depend of the cryptographic
primitives and assumptions. Finally they illustrated their approach on several generic encryption
schemes: Bellare and Rogaway in [BR93], Hash El Gamal [BLK00] and the scheme proposed by
Pointcheval in [Poi00].

Adaptive soundness of static equivalence. The analogue of [MP05], but for the setting where
pattern based equivalence is replaced with static equivalence, has been provided by Kremer and
Mazaré [KM07] who extend the framework of [BCK05]. In this case, adaptive soundness is de-
fined through an experiment. The adversary interacts with a left-right oracle, which given two
symbolic terms, returns either a sample of the concrete implementation of the first or the second
term, according to the oracle’s challenge bit. As in [MP05], the adversary is restricted to only
provide queries such that the left-hand terms and the right-hand terms form two statically equiva-
lent sequences, rather than pattern-equivalent sequences. They show adaptive soundness of static
equivalence for an equational theory modeling modular exponentiation (for a class of well-formed
frames, hence not contradicting [BMS06] and under similar assumptions as in [BLMW07]), as well
as symmetric encryption with composed keys which can be computed using modular exponentia-
tion or exclusive or.

References

[ABHS05] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of formal en-
cryption in the presence of key-cycles. In Proc. 10th European Symposium on Research in
Computer Security (ESORICS’05), volume 3679 of LNCS, pages 374–396, 2005.

[ABS05] Pedro Adão, Gergei Bana, and Andre Scedrov. Computational and information-theoretic
soundness and completeness of formal encryption. In Proc. 18th IEEE Computer Security
Foundations Workshop (CSFW’05), pages 170–184, 2005.

[ABW06] Mart́ın Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks and the computa-
tional soundness of static equivalence. In Proc. 9th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS’06), volume 3921 of LNCS, 2006.

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). In Proc. 1st IFIP International Conference on Theoretical
Computer Science (IFIP–TCS’00), volume 1872 of LNCS, pages 3–22, 2000.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

Soundness of pattern equivalence

– Symmetric encryption [AR00]
– Completeness result [MW02,MW04,HG03]
– Public key encryption [Her03,Her05]
– Symmetric encryption with composed keys [LC04]
– Handling key cycles [Lau02,ABHS05]
– Key dependent message [BHHO08]
– Information-theoretic security [ABS05]
– Hash functions [GvR06] and completeness [GvR08]
– Modular exponentiation [BLMW07] and bilinear pairings [Maz07,KM09]
– Offline guessing attacks [AW05a]
– Cryptographically controlled access to XML [AW05b,AW08]
– Adaptive adversary [MP05]

Soundness of static equivalence

– Framework and application to ciphers, lists and, xor [BCK05,BCK09]
– Offline guessing attacks [ABW06]
– Formal indistinguishability relations [BMS06]
– Formal indistinguishability extended to the ROM [ELN09]
– Adaptive adversary [KM07]

Table 1. Summary of the soundness results.

[AW05a] Mart́ın Abadi and Bogdan Warinschi. Password-based encryption analyzed. In Proc. 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05), volume
3580 of LNCS, pages 664–676. Springer, 2005.

[AW05b] Mart́ın Abadi and Bogdan Warinschi. Security analysis of cryptographically controlled access
to xml documents. In Proc. 24th ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems (PODS’05), pages 108–117. ACM Press, 2005.

[AW08] Mart́ın Abadi and Bogdan Warinschi. Security analysis of cryptographically controlled access
to xml documents. J. ACM, 55(2):1–29, 2008.

[BCK05] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound implementa-
tions of equational theories against passive adversaries. In Proc. 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pages 652–663.
Springer, 2005.

[BCK09] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound implemen-
tations of equational theories against passive adversaries. Information and Computation,
207(4):496–520, April 2009.

[BHHO08] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In Advances in Cryptology - CRYPTO 2008, volume 5157 of
LNCS, pages 108–125. Springer, 2008.

[BLK00] Joonsang Baek, Byoungcheon Lee, and Kwangjo Kim. Secure length-saving elgamal encryption
under the computational diffie-hellman assumption. In Ed Dawson, Andrew Clark, and Colin
Boyd, editors, Information Security and Privacy, 5th Australasian Conference, ACISP 2000,
Brisbane, Australia, July 10-12, 2000, Proceedings, volume 1841 of Lecture Notes in Computer
Science, pages 49–58. Springer, 2000.

[BLMW07] Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan Warinschi. A generaliza-
tion of ddh with applications to protocol analysis and computational soundness. In Advances
in Cryptology - CRYPTO 2007, volume 4622 of LNCS, pages 482–499. Springer, 2007.

[BMS06] Gergei Bana, Payman Mohassel, and Till Stegers. The computational soundness of formal
indistinguishability and static equivalence. In Proc. 11th Asian Computing Science Conference
(ASIAN’06), volume 4435 of LNCS, pages 182–196. Springer, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In CCS ’93: Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73, New York, USA, November 1993. ACM.

[CKW09] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic methods in
computational analysis of cryptographic systems. Research Report RR-6912, INRIA, April
2009.

[CZ06] Véronique Cortier and Eugen Zălinescu. Deciding key cycles for security protocols. In Proc.
of the 13th Int. Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’06), volume 4246 of Lecture Notes in Artificial Intelligence, pages 317–331, Phnom
Penh, Cambodia, November 2006. Springer.

[ELN09] Cristian Ene, Yassine Lakhnech, and Van Chan Ngo. Formal indistinguishability extended to
the random oracle model. In Michael Backes and Peng Ning, editors, Computer Security -
ESORICS 2009, 14th European Symposium on Research in Computer Security, Saint-Malo,
France, September 21-23, 2009. Proceedings, volume 5789 of Lecture Notes in Computer Sci-
ence, pages 555–570. Springer, 2009.

[GvR06] Flavio D. Garcia and Peter van Rossum. Sound computational interpretation of symbolic
hashes in the standard model. In Proc. International Workshop on Security 2006 (IWSEC’06),
LNCS, pages 33–47. Springer, 2006.

[GvR08] Flavio D. Garcia and Peter van Rossum. Sound and complete computational interpretation of
symbolic hashes in the standard model. Theoretical Computer Science, 394:112–133, 2008.

[Her03] Jonathan Herzog. A computational interpretation of dolev-yao adversaries. In Proceedings of
the 3rd IFIP WG1.7 Workshop on Issues in the Theory of Security (WITS’03), 2003.

[Her05] Jonathan Herzog. A computational interpretation of Dolev-Yao adversaries. Theoretical Com-
puter Science, 340:57–81, June 2005.

[HG03] Omer Horvitz and Virgil D. Gligor. Weak key authenticity and the computational completeness
of formal encryption. In Advances in Cryptology - CRYPTO 2003, volume 2729 of LNCS, pages
530–547. Springer, 2003.

[KM07] Steve Kremer and Laurent Mazaré. Adaptive soundness of static equivalence. In Proceedings
of the 12th European Symposium on Research in Computer Security (ESORICS’07), volume
4734 of LNCS, pages 610–625, Dresden, Germany, September 2007. Springer.

[KM09] Steve Kremer and Laurent Mazaré. Computationally sound analysis of protocols using bilinear
pairings. Journal of Computer Security, 2009. To appear.

[Lau02] Peeter Laud. Encryption cycles and two views of cryptography. In Nordic Workshop on Secure
IT Systems (NORDSEC’02), 2002.

[LC04] Peeter Laud and Ricardo Corin. Sound computational interpretation of formal encryption with
composed keys. In Proc. 6th International Conference on Information Security and Cryptology
(ICISC’03), volume 2971 of LNCS, pages 55–66. Springer, 2004.

[Maz07] Laurent Mazaré. Computationally sound analysis of protocols using bilinear pairings. In Proc.
7th International Workshop on Issues in the Theory of Security (WITS’07), pages 6–21, 2007.

[MP05] Daniele Micciancio and Saurabh Panjwani. Adaptive security of symbolic encryption. In Proc.
2nd Theory of Cryptography Conference (TCC’05), volume 3378 of LNCS, pages 169–187.
Springer, 2005.

[MS03] Gerome Miklau and Dan Suciu. Controlling access to published data using cryptography. In
VLDB ’2003: Proceedings of the 29th international conference on Very large data bases, pages
898–909. VLDB Endowment, 2003.

[MW02] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the abadi-rogaway logic
of encrypted expressions. In Proceedings of the 2nd IFIP WG1.7 Workshop on Issues in the
Theory of Security (WITS’02), 2002.

[MW04] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-Rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

[Poi00] David Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In PKC ’00:
Proceedings of the Third International Workshop on Practice and Theory in Public Key Cryp-
tography, pages 129–146, London, UK, 2000. Springer-Verlag.

Computationally Sound Analysis of Protocols

using Bilinear Pairings ∗

Steve Kremer1 Laurent Mazaré2

1LSV, ENS Cachan & CNRS & INRIA kremer@lsv.ens-cachan.fr
2LexiFi SAS, laurent.mazare@polytechnique.org

Abstract

In this paper, we introduce a symbolic model to analyse protocols that
use a bilinear pairing between two cyclic groups. This model consists in
an extension of the Abadi-Rogaway logic and we prove that the logic is
still computationally sound: symbolic indistinguishability implies compu-
tational indistinguishability provided that the Bilinear Decisional Diffie-
Hellman assumption holds and that the encryption scheme is IND-CPA
secure. We illustrate our results on classical protocols using bilinear pair-
ing like Joux tripartite Diffie-Hellman protocol or the TAK-2 and TAK-3
protocols. We also investigate the security of a newly designed variant of
the Burmester-Desmedt protocol using bilinear pairings. More precisely,
we show for each of these protocols that the generated key is indistin-
guishable from a random element.
Keywords: Security, Formal Methods, Dolev-Yao Model, Computa-
tional Soundness, Bilinear Pairing

1 Introduction

Recently bilinear pairings such as Weil pairing or Tate pairing on elliptic and
hyperelliptic curves have been used to build several cryptographic protocols.
One of the first practical pairing-based protocols has been designed by Joux
in [29] where a key exchange protocol based on pairing is proposed. This pro-
tocol allows three participants to build a shared secret key in a single round.
However this protocol was only designed to be secure in the passive setting and
is subject to man-in-the-middle attacks. Several key exchange protocols that
extend this original protocol were developed, either to ensure some form of au-
thentication [6] or to extend it to a group setting [10]. Pairings were also used

∗Work partly supported by the ARA SSIA Formacrypt, the ARA SeSur AVOTÉ and the
ARTIST2 Network of Excellence.

1

as a robust building block for other cryptographic primitives such as identity
based encryption schemes or signature schemes [21].

Our contributions. In this paper, we propose an extension of the symbolic
model from Dolev and Yao [20] for protocols using bilinear pairing and sym-
metric encryption. To the best of our knowledge, this is the first time pairings
are considered in a Dolev-Yao like model. Moreover we prove that our sym-
bolic model is sound in the computational setting: if there are no attacks in the
symbolic setting, then attacks in the computational setting have only a negligi-
ble probability of success. This is done by extending the Abadi-Rogaway logic
from [3] to symbolic terms using pairings. In particular, we need to adapt for-
mal indistinguishability and keep track of linear relations between polynomials
which an adversary might use to distinguish terms. The notion of key cycles
needs also to be extended in a non-trivial way, again keeping track of linear
relations. We use classical cryptographic assumptions from the standard model
to prove soundness: the symmetric encryption scheme has to satisfy indistin-
guishability against chosen-plaintext attacks (IND-CPA) and the bilinear map-
ping has to satisfy the bilinear decisional Diffie-Hellman assumption (BDDH).
The proof also relies on a technical result of independent interest, which states
that BDDH implies an extended version of BDDH similar to recent results on
DDH [13]. Under these assumptions, our soundness result can be used to prove
computational security of protocols such as Joux tripartite Diffie-Hellman pro-
tocol [29] or the TAK-2 and TAK-3 protocols from Al-Riyami and Paterson [6].
By computational security we mean that the generated key is indistinguishable
from a random element. To illustrate the scope of our result we also design a
new pairing based variant of the Burmester-Desmedt [14] protocol and prove its
security in the passive setting.

We stick to the passive setting of [3]. This setting is restrictive compared to
results for active adversaries. However this restriction can be partially removed.
As shown by Katz and Yung [30], it is possible to automatically transform a (key
agreement) protocol that is secure in the passive setting into a protocol that is
secure in the active setting. Hence a protocol that is provably secure against
active adversaries can be designed using the following methodology: (i) design
a protocol and prove that it is secure against a passive, symbolic adversary;
(ii) use the soundness result of this paper to conclude that this protocol is
secure against passive adversaries in the computational setting; (iii) apply the
Katz and Yung compiler to generate a protocol that is secure against active
adversaries in the computational setting.

Related work. This result follows the line of a recent trend in bridging the
gap which separates the symbolic and computational views of cryptography.
This work started with [3, 2] where only passive adversaries are considered.

Further work focused on extending this result by considering the active set-
ting and by adding cryptographic primitives. The active setting has been ex-
plored through a rich and generic framework by Backes et al. in [7] and sub-

2

sequent papers. Micciancio and Warinschi later proposed another soundness
result for the active case in [34]. They consider a less general framework but in
their model automatic verification of protocols in the symbolic model is possible
through existing tools. This model was later extended in [18, 28] in order to
remove some of the original limitations and to consider digital signatures. The
work of Canetti and Herzog [15] shows that symbolic proofs obtained by the
tool ProVerif imply universal composable security for a restricted class of key
exchange protocols.

In the passive setting, numerous cryptographic primitives have been stud-
ied. Baudet et al. [11] consider exclusive or and ciphers. Low entropy pass-
words which are subject to guessing attacks are studied in [1]. Garcia and van
Rossum [22] prove soundness of symbolic hashes by using probabilistic hash
functions. In [4] a stronger variant of semantic security is used to allow sym-
metric encryption schemes in the presence of key cycles. Adão et al. [5] allow
symmetric encryption which leaks partial information about the length and the
key. Laud and Corin [31] did consider composed keys. There have also been
results on completeness of symbolic models [33, 26, 5, 11]. However we are not
aware of any computational soundness result involving pairing-based protocols.

Variants of the classical Diffie-Hellman assumption are used to character-
ize the security of bilinear pairings [29]. Hence the concept and difficulties of
considering pairings are close to those introduced by considering Diffie-Hellman
exponentiation. But computational soundness for this primitive has only been
considered in a few works. In [24, 19, 35, 36], results for protocols based on
Diffie-Hellman exponentiation are given for the computational protocol com-
position logic. Herzog presents in [25] an abstract model for Diffie-Hellman
key exchange protocols; however in this work the abstract model is very dif-
ferent from classical Dolev-Yao models for modular exponentiation [16] as the
adversary is extended with the capability of applying arbitrary polynomial time
functions. Bana et al. discuss some of the difficulties to obtain computational
soundness for Diffie-Hellman exponentiation in [8]. More recently, Bresson et
al. [13] extended the computational soundness result of Abadi and Rogaway [3]
to Diffie-Hellman exponentiation. This result relies on a powerful generalization
of the Decisional Diffie-Hellman (DDH) assumption and its equivalence with the
original DDH assumption. However pairings are not considered in their work,
neither in the computational soundness result, nor in the generalization of DDH.

Outline of this paper. The next section recalls the necessary definition for
bilinear pairings and introduces BDDH security. Section 3 details our symbolic
model: terms, deducibility and equivalence are defined in this setting. In sec-
tion 4 we present our computational setting by giving concrete semantics to
symbolic terms. Our main soundness result is given in section 5: symbolic
indistinguishability implies computational indistinguishability for secure cryp-
tographic primitives. Section 6 illustrates this soundness result on some simple
protocols using bilinear pairings. Finally a short conclusion is drawn in section 7.

3

2 Preliminaries on Bilinear Pairings

In this section, we briefly recall the basics of bilinear pairings. The formal
definition is given in section 4. Let G1 and G2 be two cyclic groups of same
prime order q. Let g1 be a generator of G1. We use multiplicative notations for
both groups. A mapping e from G1×G1 to G2 is called a cryptographic bilinear
map if it satisfies the three following properties.

• Bilinearity: e(gx
1 , gy

1) = e(g1, g1)
xy for any x, y in Zq.

• Non-degeneracy: e(g1, g1) is a generator of G2 which is also denoted by
g2, i.e., g2 6= 1G2 .

• Computable: there exists an efficient algorithm to compute e(u, v) for
any u and v in G1.

Examples of cryptographic bilinear maps include modified Weil pairing [12]
and Tate pairing [9]: G1 is a group of points on an elliptic curve and G2 is a
multiplicative subgroup of a finite field. The traditional notation for group G1

originates from elliptic curve groups and thus is additive. However we prefer a
multiplicative notation in order to simplify our symbolic model of section 3.

The classical decisional security assumption for groups with pairing is the
Bilinear Decisional Diffie-Hellman (BDDH) assumption. This assumption states
that it is difficult for an adversary that has access to three elements of G1, gx

1 ,
gy
1 and gz

1 to distinguish gxyz
2 from a randomly sampled element gr

2 of G2.
A simple key exchange protocol has been proposed by Joux in [29]. This

protocol is an extension of the classical Diffie-Hellman key exchange for three
participants. Let A, B and C be the three participants. Each of them randomly
samples a value in Zq (denoted by x for A, by y for B and by z for C). Then
the three following messages are exchanged:

(1) A → B,C : gx
1 (2) B → A,C : gy

1 (3) C → A,B : gz
1

The shared secret key is gxyz
2 . It is easy to check that A, B and C can compute

this key by using the bilinear map e on the two messages that they have received.
Security of this protocol with respect to key indistinguishability in the passive
setting is identical to the BDDH assumption [29]. No form of authentication is
provided in this protocol, so it is trivially subject to man-in-the-middle attacks.

In the following sections, our objective is to provide a symbolic model for
protocols using bilinear maps and to give a computational justification of this
model. We stick to the passive setting but as noted earlier this is not a real
restriction thanks to the Katz and Yung compiler [30]. As usual the computa-
tional setting is parameterized by a security parameter η which can be thought
of as the key length. Adversaries are probabilistic polynomial-time (in η) Tur-
ing machines. In this paper, we suppose that the adversaries are given implicit
access to as many fresh random coins as needed, as well as to the complexity
parameter η.

4

3 The Symbolic Setting

In this section, we introduce the symbolic view of cryptography: messages are
represented as algebraic terms, the adversary’s capabilities are defined by an
entailment relation ` and an observational equivalence ∼=. This equivalence is
an extension of the well-known Abadi-Rogaway logic to terms using symmetric
encryption and pairing. The main difference with the original logic is that we
introduce generator g1 for the first group (G1), and generator g2 for the second
group (G2) as well as an infinite set of names representing exponents.

3.1 Terms and Deducibility

Let Keys and Exponents be two countable disjoint sets of symbols for keys
and exponents. A power-free 3-monomial is a product of three distinct expo-
nents and a power-free 3-polynomial is a linear combination of monomials using
coefficients in Z (with no constant coefficient). Hence let x1, x2, x3, x4 and
x5 be five distinct elements of Exponents, 2x1x2x3 + x3x4x5 is a power-free
3-polynomial but x2

1x2 and x1x2x3+1 are not. We let Poly be the set of power-
free 3-polynomials with variables in Exponents and coefficients in Z. With a
slight abuse of notation, we often refer to power-free 3-monomials as monomials
and to power-free 3-polynomials as polynomials. Our symbolic setting is re-
stricted to 3-monomials because this is the classical way to use bilinear pairing;
using pairings with monomials of order different than 3 might be unsafe.

Let k, x and p be meta-variables over Keys, Exponents and Poly respec-
tively. Polynomials can be used as exponents and the set T of terms is built
using symbolic encryption and concatenation of keys, exponents and exponen-
tiations:

msg ::= (msg,msg) | {msg}key | x | key | gx
1

key ::= k | gp
2

Term (t1, t2) represents the pair composed of terms t1 and t2, {t}k represents
(symmetric) encryption of term t using key k. In the remainder of the paper
we will sometimes use tuples instead of nested pairs in order to simplify the
notation. {t}gp

2
represents encryption of term t using a key derived from gp

2 (in
the computational semantics we assume the implicit application of a determin-
istic key extraction algorithm Kex which is detailed below). gx

1 and gp
2 represent

modular exponentiation of g1 (generator of the first group) and g2 (generator
of the second group) to the power of an exponent x in the first case and a
polynomial p in the second case.

We use classical notations for manipulating terms. A position is a finite
word over the natural numbers, ε denotes the empty word and w1 · w2 is the
concatenation of w1 and w2. The set of positions pos(t) of a term t is inductively
defined as pos(x) = pos(k) = pos(gi) = {ε} and pos(f(t1, t2)) = {ε}∪

⋃
i∈{1,2} i ·

pos(ti) where f represents either pairing, encryption or exponentiation. If p is
a position of t then the expression t|p denotes the subterm of t at the position
p, i.e., t|ε = t and f(t1, t2)|i·p = ti|p.

5

Example 3.1 Let t = (k, {k′}k). The set of positions pos(t) of t is {ε, 1, 2, 2 ·
1, 2 · 2}. Moreover, t|1 = t|2·2 = k and t|2·1 = k′.

We say that gp
2 occurs at a key position in term t if {t′}gp

2
is a subterm of

t for some t′. Otherwise we say that gp
2 occurs as data. Note that in a same

term gp
2 may occur both at a key position and as data. An exponent x can be

used as an exponent of either g1 (e.g., in term gx
1) or g2 (e.g., in term gxx2x3

2).
Otherwise, if x is not used used as an exponent of either g1 or g2, we say that
x is used as data.

For any term t, pol (t) designates the set of polynomials p such that gp
2 is a

subterm of t and mon (t) designates the set of monomials used by polynomials
in pol (t).

Example 3.2 Let t = ({k}
g
2x1x2x3+x4x5x6
2

, gx1
1 , gx1x2x3

2). Then pol (t) = {2x1x2x3+
x4x5x6, x1x2x3} and mon (t) = {x1x2x3, x4x5x6}.

Equality between polynomials is considered modulo the classical equational
theory: associativity and commutativity for addition and multiplication, dis-
tributivity of multiplication over addition. Equality can easily be decided, for
instance by rewriting polynomials in some normal form

∑n
i=1 λix

pi,1
1 . . . x

pi,k

k

and comparing these normal forms.
First we define a deduction relation E ` t where E is a finite set of terms

and t is a term. The intuitive meaning of E ` t is that t can be deduced from
E. The deducibility relation is an extension of the classical Dolev-Yao inference
system [20]:

t ∈ E

E ` t

E ` (t1, t2)
E ` t1

E ` (t1, t2)
E ` t2

E ` {t}key E ` key

E ` t

Note that we did not consider composition rules such as if t1 and t2 are deducible
then (t1, t2) is also deducible. Indeed these rules are not necessary as deduction
is only used to check whether some key can be deduced from a term. As keys are
atomic, it is sufficient to consider the four previous rules. By atomic we mean
that keys do not include pairs or encryptions but they may obviously be of the
form gp

2 . We add four new deduction rules in order to handle pairing. The three
first rules correspond to the three possible ways to obtain an exponentiation
gxyz
2 using the cryptographic bilinear map:

E ` x E ` gy
1 E ` gz

1

E ` gxyz
2

E ` x E ` y E ` gz
1

E ` gxyz
2

E ` x E ` y E ` z

E ` gxyz
2

Note that these three rules correspond to “real” capacities of the adversary in
the computational setting. In the first case, an adversary knowing gy

1 and gz
1 can

use the bilinear map to produce gyz
2 . As he also knows x he can exponentiate

gyz
2 to obtain gxyz

2 . In the second case, the adversary knows y so he can produce
gy
1 and act as in the first case. Finally, the third case is also similar, as the

adversary can compute gz
1 and act as in the second case.

6

The fourth rule handles linear relations between polynomials.

E ` gp
2 E ` gq

2

E ` gλp+q
2

λ ∈ Z

In the computational world an adversary can multiply two group elements gp
2

and gq
2 in order to get gp+q

2 . He can also exponentiate a group element gp
2 and

obtain gλp
2 . Thus it is feasible for the adversary to produce gλp+q

2 from gp
2 and

gq
2.

Given this deduction relation we can define the set of deducible keys of term
t as

K(t) = {k | t ` k} ∪ {gp
2 | t ` gp

2 ∧ gp
2 is a subterm of t}

After adding the new deductions, the deducibility relation is still decidable.

Proposition 3.3 Let t be a term and E be a finite set of terms. Then de-
ducibility of t from E is decidable.

Proof. In this proof, we use the notion of reachability. First remember that a
key term is either an element k of Keys or an exponentiation gq

2 where q is an
element of Poly.

A subterm t′ of t is reachable from t using a set K of key terms, iff there
exists a position p in t such that t|p = t′ and for any prefix p′ of p, i.e., p = p′ ·p′′,
if t|p′ is an encryption {u}key then key ∈ K.

We first show that the set K(t) of deducible keys is computable. Note that
K(t) is bounded (for inclusion) by the set of keys and exponentiations of t. The
set K(t) can be iteratively computed as follows.

1. Initially, K is empty.

Iterate the following steps until reaching a fix-point:

2. At each step, any key k and exponentiations gp
2 that is reachable in t using

keys and exponentiations from K is added to K.

3. We build the set of reachable monomials rm which contains all the mono-
mials x1x2x3 from t such that either

• x1, x2 and x3,

• or x1, x2 and gx3
1 ,

• or x1, gx2
1 and gx3

1

are reachable in t using K.

4. At the end of each step, if p is a polynomial from pol (t) which is a linear
combination of polynomials from K and monomials from rm, then gp

2 is
also added to K.

Now let t be a term and E a finite set of terms t1 to tn.

7

1. If t is an atomic key k, then t is deducible if and only if k appears in
K((t1, . . . , tn)). Thus deducibility is decidable.

2. Else if t is a key gp
2 , then t is deducible if and only if E, {k}gp

2
` k where

k is a fresh atomic key (i.e., k does not appear in E). Thus deducibility
can be decided as in the previous case.

3. Otherwise t is either an exponent, or a pair, or an encryption, or an
exponentiation of g1. As we do not have any composition rule in the
definition of `, t is deducible if and only if t appears as a subterm in one
of the tj and is reachable using K((t1, . . . , tn)). Hence a decision algorithm
can first build K = K((t1, . . . , tn)) then check for reachability of t in any
of the tj using K.

�
Alternative definitions are possible for the deduction system. For example,

we could consider adding the deduction rule E`x
E`gx

1
. Then rules E`x E`y E`gz

1
E`gxyz

2
and

E`x E`y E`z
E`gxyz

2
would not be necessary anymore and the computational soundness

results presented later in this document would still be true. However we stick to
our deduction system as it reflects in a simple way how a key gp

2 can be deduced
from other terms.

Note that we have only shown decidability of the deduction relation. As,
in contrast to a computational adversary, a symbolic adversary is not resource-
bounded (in particular it is not polynomial-time bounded) we do not need to
detail the complexity for our soundness result. From a verification perspective,
efficient algorithms are of course needed which would require a more fine-grained
complexity analysis of the above procedure.

3.2 Equivalence

Patterns. Patterns are used to characterize the information that can be ex-
tracted from a term. These patterns are close to those introduced in [3, 32] but
are extended in order to handle modular exponentiation. We introduce a new
symbol � representing a ciphertext that the adversary cannot decrypt. More-
over we consider that the encryption scheme is not necessarily key-concealing.
Hence it may be possible for an adversary to observe whether two ciphertexts
have been produced using the same key.

Let t be a term and K be a finite set of keys and elements of the second
group gp

2 , then the pattern of t using K, pat (t, K) is inductively defined by:

pat ((t1, t2),K) =
(
pat (t1,K), pat (t2,K)

)
pat ({t′}key,K) = {pat (t′,K)}key if key ∈ K
pat ({t′}key,K) = {�}key if key /∈ K
pat (a,K) = a for a in x, k, gx

1 and gp
2

The set K is used to store keys that are known by the adversary.

8

We say that two terms t1 and t2 are equivalent, t1 ≡ t2, if they have the
same pattern: t1 ≡ t2 if and only if pat (t1,K(t1)) = pat (t2,K(t2)). Intuitively
patterns hide information that are encrypted with undeducible keys. Hence two
terms have the same pattern if the information that can be extracted is the
same, so it is impossible to distinguish these two terms.

Equivalence up to renaming. We allow (bijective) renaming of keys in a
similar way as [3] but renaming of polynomials is slightly more complex and
relies on a linear relation preserving bijection between polynomials. Let us
illustrate this on the two following examples.

• Let t1 be the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx1x2x3+x4x5x6
2) and t2 be the term

(x1, x2, g
x3
1 , gx4x5x6

2 , gx7x8x9
2). A bijection from polynomials of t2 to poly-

nomials of t1 could be

{x7x8x9 7→ x1x2x3 + x4x5x6 ; x4x5x6 7→ x4x5x6}

However this bijection does not correctly preserve linear relations. In term
t1, gx1x2x3+x4x5x6

2 can be obtained by multiplying gx4x5x6
2 with gx1x2x3

2

(which is obtained by applying the bilinear map to gx2
1 and gx3

1 and raising
the result to the power x1). In term t2, gx7x8x9

2 cannot be obtained in a
similar way.

• Let t1 be the term (gx4x5x6
2 , gx1x2x3+x4x5x6

2) and t2 be the term (gx4x5x6
2 , gx7x8x9

2).
The associated bijection is

{x7x8x9 7→ x1x2x3 + x4x5x6 ; x4x5x6 7→ x4x5x6}

This bijection correctly preserves linear relations as gx1x2x3+x4x5x6
2 cannot

be obtained from other parts of t1 (x1x2x3 +x4x5x6 is not involved in any
linear relations) and gx7x8x9

2 cannot be obtained from other parts of t2.

In order to properly define what is a linear relation preserving bijection, we first
introduce the set dm(t) of deducible monomials from t, i.e., monomials that can
be obtained using the bilinear map operation (this is a slight abuse of notation
as a monomial m may not be deducible itself while its exponentiation gm

2 is
deducible). A monomial x1x2x3 from mon (t) is in dm(t) if one or more of the
following conditions hold:

• x1, x2 and x3 are deducible from t,

• x1, x2 and gx3
1 are deducible from t,

• x1, gx2
1 and gx3

1 are deducible from t.

We can now formalize the definition. Let t2 and t1 be two terms. A bijection
σ from pol (t2) to pol (t1) is linear relation preserving for t2 and t1 if the same
linear relations are verified between polynomials from t2 and their image using
σ. However monomials from dm(t2) cannot be renamed as they are linked to

9

other parts of term t2 due to the bilinear pairing. Formally, σ has to verify the
following condition:

∀p1, ..., pn ∈ pol (t2), ∀a1, ..., an ∈ Z, ∀m1, ...,mn′ ∈ dm(t2), ∀b1, ..., bn′ ∈ Z,
n∑

i=1

aipi =
n′∑

j=1

bjmj ⇔
n∑

i=1

ai(piσ) =
n′∑

j=1

bjmj

Reconsider our first example: t1 is the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx1x2x3+x4x5x6
2)

and t2 is the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx7x8x9
2). We define the bijection σ =

{x7x8x9 7→ x1x2x3+x4x5x6}. We have that σ is not a linear relation preserving
bijection for t2 and t1 because x1x2x3 is in dm(t2) and

(x7x8x9) + (−1)(x4x5x6) 6= x1x2x3

but (x7x8x9)σ + (−1)(x4x5x6)σ = (x1x2x3 + x4x5x6)− (x4x5x6) = x1x2x3

Definition 3.4 Two terms t1 and t2 are equivalent up to renaming, t1 ∼= t2 if
they are equivalent up to some renaming of keys of polynomials.

t1 ∼= t2 iff ∃σ1 a renaming of Keys

∃σ2 a bijection preserving linear relations from pol (t2) to pol (t1)
such that t1 ≡ t2σ1σ2

In this definition of equivalence, we have not considered renaming of Exponents
to preserve simplicity but this can easily be added. Using this new definition,
an interesting result is the decidability of equivalence up to renaming.

Proposition 3.5 Let t1 and t2 be two terms. Equivalence up to renaming of
t1 and t2 is decidable.

Proof. As detailed in the proof of proposition 3.3, there exists an algorithm that
takes as input a term t and outputs the finite set K(t). This allows us to build
an algorithm that takes as input a term t and outputs pat (t, K(t)).

Let t1 and t2 be two terms. Then it is possible to compute pat (t1,K(t1))
and pat (t2,K(t2)) (and so equivalence without renaming, ≡, is decidable).

In order to decide equivalence up to renaming of terms t1 and t2, we apply a
unification algorithm recursively on pat (t1,K(t1)) and pat (t2,K(t2)) resulting
in a renaming σ1 and a bijection σ2 from pol (t2) to pol (t1). This unification
algorithm takes two terms u1 and u2 as an input and works as follows:

1. If u1 is a pair (v1, w1) and u2 is a pair (v2, w2) the algorithm is applied
recursively on v1 and v2 resulting in σ1 and σ2. This algorithm is also
applied recursively on w1 and w2 resulting in σ′1 and σ′2. If σ1 and σ′1 are
compatible (i.e., for any atomic key k that is in the domain of both σ1 and
σ′1, kσ1 = kσ′1) and σ2 and σ′2 are also compatible, then u1 and u2 can be
unified resulting in σ1 ∪ σ′1 and σ2 ∪ σ′2. Otherwise u1 and u2 cannot be
unified and t1 and t2 are not equivalent up to renaming.

10

2. If u1 is an encryption {v1}key1 and u2 is an encryption {v2}key2 we proceed
as for pairs in the previous point: v1 and v2 are unified, key1 and key2

are unified and the compatibility is checked.

3. If u1 is an atomic key k1 and u2 is an atomic key k2. Then σ1 = {k2 7→ k1}
and σ2 = ∅.

4. If u1 is a key gp1
2 and u2 is a key gp2

2 then σ1 = ∅ and σ2 = {p2 7→ p1}.

5. If u1 is an exponentiation gx1
1 and u2 is an exponentiation gx2

1 or if u1 is
an exponent x1 and u2 is an exponent x2 and x1 is equal to x2, then u1

and u2 can be unified resulting in σ1 = σ2 = ∅. Otherwise t1 and t2 are
not equivalent up to renaming.

6. Otherwise, u1 and u2 cannot be unified and terms t1 and t2 are not equiv-
alent up to renaming.

Now, it only remains to check that σ2 is a linear relation preserving bijection
for t2 and t1. First the set dm(t2) is computed. Notice that elements of dm(t2)
are monomials using exponents from t2. For each possible monomial m, m is in
dm(t2) if and only if m = x1x2x3 and one of the three following holds:

• x1, x2 and x3 are reachable in t2 using K(t2).

• x1, x2 and gx3
1 are reachable in t2 using K(t2).

• x1, gx2
1 and gx3

1 are reachable in t2 using K(t2).

In order to check that σ2 preserves linear relations of t2 we need to check
that σ2 does neither remove nor add any linear relation. To check whether σ2

removes a linear relation in t2 we use the following algorithm. Let P be an
initially empty set of polynomials. The algorithm iterates on polynomials from
pol (t2). For each such polynomial p, the algorithm tests whether p is involved
in a linear relation with polynomials from P and monomials from dm(t2). This
can be tested by checking whether the system of linear equations

∑
1≤i≤n λipi +∑

1≤i≤j λ′jmj − p = 0 with P = {p1, . . . , pn} and dm(t2) = {m1, . . . ,mj} has a
solution, e.g. using Gauss elimination. If this is the case, then if pσ2 verifies the
same relation with Pσ2 and dm(t2), the algorithm continues, else if the relation
is not satisfied by pσ2, Pσ2 and dm(t2), then σ2 is not linear relation preserving.
If p is not involved in a linear combination with polynomials from P , then p is
added to P . After that, the loop continues. As pol (t2) is finite, this algorithm
always terminates. To check whether σ2 adds a linear relation to t2, we use
the previous algorithm and (equivalently) check whether σ−1

2 removes a linear
relation in t1. �

3.3 Examples

Here we give some examples that illustrate the choices we made when defining
the equivalence. These choices are motivated by the possibilities of adversaries

11

in the computational setting. Unlike [3], our symbolic model does not include
symbolic constants like 0 or 1 as data. However these constants can be easily
encoded using for instance two key names k0 and k1 which are explicitly revealed.
Then 1 denotes k1 and 0 denotes k0. Instead of verifying the equivalence between
t and t′, we check whether (k0, k1, t) and (k0, k1, t

′) are equivalent.

1. {0}k ∼= {1}k. This example shows that symmetric encryption perfectly
hides its plaintext.

2. ({0}k, {0}k) ∼= ({0}k, {1}k). Symmetric encryption also hides equalities
among the underlying plaintexts. To achieve this, encryption has to be
probabilistic. As modular exponentiation is deterministic, we cannot ask
modular exponentiation to hide such relations.

3. (gx1
1 , gx2

1 , gx3
1 , gx1x2x3

2) ∼= (gx1
1 , gx2

1 , gx3
1 , g

x′1x′2x′3
2). This example illustrates

security of Joux’s protocol [29] against passive adversaries. The adversary
observes the unfolding of the protocol where three exponentiations are
exchanged. These exponentiations allows the three participants to build
a shared secret key gx1x2x3

2 . Then the adversary cannot distinguish the
shared key from a randomly sampled element of the second group g

x′1x′2x′3
2

(as the order of the group is prime, g
x′1x′2x′3
2 has a uniform distribution over

elements of the second group).

Moreover the symbolic setting can be used to verify that each participant
is able to compute the shared key. For example the first participant gen-
erates exponent x1 and receives gx2

1 and gx3
1 from the second and third

participants. Using this knowledge, he is able to compute the shared secret
key as x1, g

x2
1 , gx3

1 ` gx1x2x3
2 .

4. (gx1
1 , gx2

1 , gx3
1 , {0}gx1x2x3

2
) ∼= (gx1

1 , gx2
1 , gx3

1 , {1}gx1x2x3
2

). This example com-
bines the Joux protocol with an exchange of secret information using the
shared key. Thus in this example symmetric encryption and bilinear pair-
ing are used simultaneously.

5. (gx1
1 , gx2

1 , gx3
1 , x4, x5, x6, g

x1x2x3+x4x5x6
2) ∼= (gx1

1 , gx2
1 , gx3

1 , x4, x5, x6, g
x′1x′2x′3
2).

Let t2 be the second term in the equivalence relation. This example il-
lustrates a more complex renaming. The adversary has access to some
exponents from the key gx1x2x3+x4x5x6

2 but is still unable to distinguish it
from a randomly sampled key. x4x5x6 can be seen as a vulnerable part
of the key but x1x2x3 makes the whole key secure. The two terms are
equivalent up to renaming because bijection {x′1x′2x′3 7→ x1x2x3 +x4x5x6}
is linear relation preserving; indeed x′1x

′
2x

′
3 and x1x2x3 +x4x5x6 are both

not involved in any linear relation with monomials from dm(t2).

6. In the following example, there are two shared keys.

(gx1
1 , gx2

1 , gx3
1 , x4, x5, x6, g

x1x2x3+x4x5x6
2 , gx1x2x3

2)

6∼= (gx1
1 , gx2

1 , gx3
1 , x4, x5, x6, g

x′1x′2x′3
2 , g

x′4x′5x′6
2)

12

Let t1 and t2 be the first and second term in this (non-)equivalence rela-
tion. The bijection σ = {x′1x′2x′3 7→ x1x2x3 +x4x5x6 ; x′4x

′
5x

′
6 7→ x1x2x3}

is not linear relation preserving. Indeed, the monomial x4x5x6 is in dm(t2)
and there is a relation among polynomials used in the two keys of t1 and
x4x5x6 which is not true in t2:

(x′1x
′
2x

′
3)σ + (−1)(x′4x

′
5x

′
6)σ = x4x5x6

(x′1x
′
2x

′
3) + (−1)(x′4x

′
5x

′
6) 6= x4x5x6

4 The Computational Setting

In this section, we formalize the mapping between symbolic terms and distribu-
tions of bit-strings. This mapping depends on the algorithms used to implement
the two cryptographic primitives used in the symbolic setting: symmetric en-
cryption and pairing.

4.1 Encryption Scheme

We recall the standard definition for symmetric encryption schemes. A symmet-
ric encryption scheme SE is defined by three algorithms KG, E and D. The key
generation algorithm KG takes as input the security parameter η and outputs a
key k. The encryption algorithm E is randomized. It takes as input a bit-string
s and a key k and returns the encryption of s using k. The decryption algorithm
D takes as input a bit-string c representing a ciphertext and a key k and outputs
the corresponding plaintext. Given k ← KG(η), we have that for any bit-string
s, if c← E(s, k) then it is required that D(c) = s.

In order to characterize security of a symmetric encryption scheme, we use
the classical IND-CPA (indistinguishability against chosen plaintext attacks) no-
tion [23].

IND-CPA security. In this paper we use schemes that satisfy length-concealing
semantic security1. The definition that we recall below uses a left-right encryp-
tion oracle LRb

SE . This oracle first generates a key k using KG. Then it answers
queries of the form (bs0, bs1), where bs0 and bs1 are bit-strings, an important
point is that bs0 and bs1 may have different lengths. The oracle returns cipher-
text E(bsb, k). The goal of the adversary A is to guess the value of bit b and
for that purpose A has access to oracle LRb

SE . His advantage is defined as the
probability that he outputs 1 when using oracle LR1

SE minus the probability
that he outputs 1 when using oracle LR0

SE .

AdvCPA
SE,A(η) =

∣∣∣P [
ALR1

SE (η) = 1
]
− P

[
ALR0

SE (η) = 1
]∣∣∣

An encryption scheme SE is said to be IND-CPA secure if the advantage of any
polynomial-time adversary A is negligible in η.

1Such schemes can only exist if the maximum length of plaintexts is bounded, however we
do not take this into account in this paper.

13

The difference with the standard notion of semantic security is that an ad-
versary can call oracle LRb

SE on two bit-strings bs0 and bs1 of different lengths.
Therefore in order to be secure for our notion, an encryption scheme has to hide
the length of the plaintext. By abuse of notation we call the resulting scheme
also IND-CPA secure.

4.2 Pairing

A bilinear pairing instance generator is defined as a probabilistic polynomial-
time algorithm IG which given a security parameter η outputs a tuple (q, G1, G2, g1, e)
composed of two groups G1 and G2 of prime order q, a generator g1 of G1 and
a cryptographic bilinear map e between G1 and G2. A generator g2 of group
G2 is obtained by applying e to (g1, g1).

BDDH security. An instance generator IG satisfies the Bilinear Decisional
Diffie-Hellman assumption, BDDH, iff for any probabilistic polynomial-time
adversary A, the advantage of A against BDDH, AdvBDDH

A,IG , defined below is
negligible in η.

AdvBDDH
A,IG (η) = P

[
(q, G1, G2, g1, e)← IG(η)

x, y, z ← Zq
, A(g1, g

x
1 , gy

1 , gz
1 , gxyz

2) = 1
]

−P
[

(q, G1, G2, g1, e)← IG(η)
x, y, z, r ← Zq

, A(g1, g
x
1 , gy

1 , gz
1 , gr

2) = 1
]

This means that an adversary that is given gx
1 , gy

1 and gz
1 can only make the

difference between gxyz
2 and a random group element with negligible probability.

4.3 Computational Semantics of Terms

Computational semantics depend on a symmetric encryption scheme SE =
(KG, E ,D) and of an instance generator IG. In order to transform elements
of the second group into keys usable for SE , we assume the existence of a key
extractor [17] algorithm Kex (this can be done for example by extracting ran-
domness using an entropy smoothing hash function [27]). We suppose that the
distribution of keys generated by KG is equal to the distribution obtained by ap-
plying Kex to a random element of G2 (which is the second group generated by
IG). We associate to each symbolic term t a distribution of bit-strings [[t]]SE,IG

that depends on the security parameter η. This distribution is defined by the
following random algorithm:

1. Algorithm IG is used to generate two paired groups G1 and G2 of order q
and of generators ĝ1 and ĝ2. For each key k from t, a value k̂ is randomly
drawn using KG. For each exponent x, a value x̂ is randomly sampled in
Zq equipped with the uniform distribution.

2. Then the bit-string evaluation of term t is computed recursively on the
structure of t:

14

• If t is a key k or an exponent x, then the value t̂ is returned.

• If t is an exponentiation gx
1 , then the exponentiation of ĝ1 to the

power of x̂ is returned.

• If t is an exponentiation gp
2 , then the algorithm computes the value n

of p in Zq, and the exponentiation of ĝ2 to the power of n is returned.

• If t is a pair (t1, t2), the algorithm is applied recursively on t1 hold-
ing bs1 and on t2 holding bs2. The output of the algorithm is the
concatenation of bs1 and bs2.

• If t is an encryption {t′}k, the algorithm is applied recursively on t′

holding bs′ and on k holding bsk. The output of the algorithm is
E(bs′, bsk).

• If t is an encryption {t′}gp
2
, the algorithm is applied recursively on

t′ holding bs′ and on gp
2 holding bsk. The output of the algorithm is

E (bs′,Kex(bsk)).

5 Soundness of the Symbolic Model

In this section we prove that the extension of the Abadi-Rogaway logic given
in section 3 is computationally sound when implemented using an IND-CPA en-
cryption scheme and using an instance generator satisfying BDDH: if two terms
are equivalent up to renaming in the symbolic setting, their evaluations (given
by the computational semantics of section 4) are computationally indistinguish-
able.

Well-formed Terms. Our soundness result is only true for terms that make
a correct use of the bilinear pairing. Such terms are called well-formed terms.
Formally a term t is well-formed if for any monomial m in mon (t):

• either for any monomial m′ in mon (t) different from m, m and m′ do not
have any common exponent;

• or none of the three exponents used by m occurs as data in t.

This technical restriction is necessary to obtain soundness. Indeed let us con-
sider t1 = (x, y, gxz1z2

2 , gyz1z2
2) and t2 = (x, y, gr1r2r3

2 , gr4r5r6
2). Note that t1 is

not well-formed as xz1z2 and yz1z2 have common exponents (z1 and z2) and
exponents x and y occur as data. Terms t1 and t2 are equivalent up to renaming.
However it is possible to build an adversary A that can distinguish the corre-
sponding distributions efficiently (the precise definition of indistinguishability
will be given below). Adversary A takes as input (x, y, U, V) and has to decide
whether U = gxz1z2

2 and V = gyz1z2
2 or U = gr1r2r3

2 and V = gr4r5r6
2 . A proceeds

as follows:

• compute x−1 and y−1;

15

• output 1 if Ux−1
= V y−1

;

• output 0 otherwise.

If A outputs 1 it was indeed given the distribution corresponding to t1 with
probability close to 1 (the probability that r1r2r3x

−1 = r4r5r6y
−1 is negligible).

Otherwise, if A outputs 0 it must have been given the distribution corresponding
to t2. Hence, A efficiently distinguishes two equivalent terms. We forbid such
use of bilinear pairing by considering only well-formed terms.

Acyclicity Restrictions. The importance of key cycles was already described
in [3]. In the setting of [3] a key cycle is a sequence of keys K1, . . . ,Kn such that
Ki+1 encrypts (possibly indirectly) Ki and Kn encrypts K1. An encryption of
key K with itself, i.e., EK(K) is a key cycle of length 1. An example of a key
cycle of size 2 would be EK1(K2), EK2(K1). In general IND-CPA is not sufficient
to prove any soundness result in presence of key cycles. To better understand
the problem of key cycles suppose that SE = (KG, E ,D) is a semantically secure
encryption scheme and let SE ′ = (KG′, E ′,D′) be defined as follows:

KG′ = KG

E ′k(m, r) =
{
Ek(m, r) if m 6= k
const · k if m = k

D′k(c) =
{
Dk(c) if c 6= const · k
k if c = const · k

where const is a constant such that for any key k, the concatenation const · k
does not belong to the set of possible ciphertexts obtained by E . Obviously, if
the attacker is given a key cycle of length 1, e.g., E ′k(k, r), the attacker directly
learns the key. It is also easy to see that SE ′ is a semantic secure encryption
scheme as it behaves as SE in nearly all cases (in the security experiment the
adversary could make a query for encrypting k with itself only with negligible
probability). Hence, as in numerous previous work we forbid the symbolic terms
to contain such cycles. (Another possibility to handle key cycles is to consider
stronger computational requirements like Key Dependent Message – KDM –
security as done in [4].)

We now define a similar notion of key cycles in our setting. For any term t,
let kp(t) be the set of polynomials p such that gp

2 occurs at a key position in t
and gp

2 is not deducible from t. Let pm(t) be the set of monomials x1x2x3 such
that either:

• x1, x2 and x3 occur as data in t;

• x1 and x2 occur as data in t and gx3
1 also appears in t;

• x1 occurs as data in t and gx2
1 and gx3

1 also appear in t.

A term t is acyclic if the two following restrictions are verified.

16

• For any p in kp(t), p is linearly independent from any other polynomials
from pol (t) and from monomials from pm(t), i.e., if pol (t) = {p, p1, ..., pn}
and pm(t) = {m1, ...,mn′} then there does not exist any integers a, a1 to
an and b1 to bn′ such that a 6= 0 and:

a.p =
n∑

i=1

aipi +
n′∑

j=1

bjmj

• There exists an order ≺ among keys used in t such that for any subterm
{u}key of t, either key is deducible from t or for each key key′ that occurs
in u, key′ ≺ key.

We illustrate the notion of key cycles on several examples.

• The terms {k}k and ({k1}k2 , {k2}k1) contain key cycles, as those consid-
ered already in [3].

• The term t = ({k}gx1x2x3
2

, {gx1x2x3
2 }k) obviously contains a key cycle while

({k}gx1x2x3
2

, {gx1x2x3
2 }k′) does not.

• The term t = (gx1
1 , gx2

1 , x3, {k}gx1x2x3
2

, {gx1x2x3
2 }k) is acyclic as gx1x2x3

2 is
deducible (and hence kp(t) = ∅).

• The term t = {(x1, g
x2
1 , gx3

1)}
g
2x1x2x3
2

contains a key cycle because pm(t) =
{x1x2x3} and 2x1x2x3 ∈ kp(t) is linearly dependent.

Our acyclicity restriction is stronger than what is strictly required for compu-
tational soundness: for example {{k}k′}k is considered as a cycle whereas it is
not problematic as the underlying k is hidden by k′. We consider this stronger
definition of acyclicity as it is easier to define and it also makes our main proof
simpler.

5.1 Soundness Result

Indistinguishable Distributions. Before giving our soundness result, we
recall the usual notion of indistinguishable distributions. Intuitively, two distri-
butions D1 and D2 are computationally indistinguishable if for any adversary
A, the probability for A to detect the difference between a randomly sampled
element of D1 and a randomly sampled element of D2 is negligible in η.

Definition 5.1 Let D1 and D2 be two distributions (that depend on η). The
advantage of an adversary A in distinguishing D1 and D2 is defined by:

AdvD1,D2
A = P [x← D1(η) ; A(x) = 1]− P [x← D2(η) ; A(x) = 1]

Distributions D1 and D2 are computationally indistinguishable, written D1 ≈
D2, if the advantage for any adversary A in distinguishing D1 and D2 is negli-
gible.

17

Then our main soundness result states that distributions related to equivalent
terms are computationally indistinguishable.

Proposition 5.2 Let t0 and t1 be two acyclic well-formed terms, such that
t0 ∼= t1. Let SE be a symmetric encryption scheme that is secure for IND-CPA
and IG be an instance generator satisfying BDDH, then [[t0]]SE,IG ≈ [[t1]]SE,IG.

Proof for proposition 5.2

In order to prove our main soundness result, we introduce some intermediate
lemmas. First we prove that BDDH implies an extended version of BDDH.
Intuitively this first lemma states that if BDDH holds and A is an adversary
that is given some exponents x1 to xα and some exponentiations gy1

1 to g
yβ

1 , A
cannot distinguish exponentiations of linearly independent polynomials gp1

2 to
g

pγ

2 from exponentiations of fresh exponents g
r1,1r1,2r1,3
2 to g

rγ,1rγ,2rγ,3
2 .

Lemma 5.3 Let X = (xi)1≤i≤α and Y = (yi)1≤i≤β be α + β exponents. Let
P = (pi)1≤i≤γ be γ polynomials such that there are no linear relations between
the pi and the set of monomials {xyz, x, y, z ∈ X} ∪ {xyz, x, y ∈ X, z ∈
Y } ∪ {xyz, x ∈ X, y, z ∈ Y }.

If IG is an instance generator satisfying BDDH and the two following terms
are well-formed then:

[[x1, ..., xα, gy1
1 , ..., g

yβ

1 , gp1
2 , ..., g

pγ

2]]IG ≈ [[x1, ..., xα, gy1
1 , ..., g

yβ

1 , gq1
2 , ..., g

qγ

2]]IG

where each qi is a product of three fresh exponents ri,1ri,2ri,3, i.e., the part of
the distribution related to gqi

2 corresponds to a random group element.

Proof. First, note that as the order q of the group G2 is prime, in the compu-
tational setting gZ1Z2

2 and gZ3
2 have the same distribution (Z1, Z2, and Z3 are

three independent random variables uniformly sampled over Zq).
The proof of this lemma is done in two steps.

• The first step consists in replacing monomials in the pi that are not in
dm(x1, ..., xα, gy1

1 , ..., g
yβ

1) with fresh monomials. This results in a new
term whose computational distribution is indistinguishable from the orig-
inal term distribution.

• Then, in the second step we prove that the computational distribution of
this new term using fresh monomials is exactly equal to the distribution
related to x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gq1
2 , . . . , g

qγ

2 .

Step 1. Let M be the set of monomials from P that are not in {xyz, x, y, z ∈
X} ∪ {xyz, x, y ∈ X, z ∈ Y } ∪ {xyz, x ∈ X, y, z ∈ Y }. The first step consists
in using BDDH to replace these monomials with fresh monomials r1r2r3. Let
p′1 to p′γ be polynomials p1 to pγ where each monomial of M has been replaced
with a fresh monomial. We prove that:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG ≈ [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2]]IG

18

This proof is done by induction on the number j of monomials in M that use
at least one exponent which is also present in X, Y or in any other monomial
used in a polynomial from P .

If j = 0 then for each monomial m used in p1 to pγ , m uses exponents that
are not in X or Y nor in any other monomial from polynomials of P . Thus p1

to pγ are equal to p′1 to p′γ up to renaming of the exponents and so:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG = [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2]]IG

If j > 0 then let m = xyz be a monomial in M that uses an exponent from X
or Y or from another monomial of P and let m′ be a fresh monomial. Let p′′1
to p′′γ be polynomials p1 to pγ where m has been replaced with m′. There are
two cases to consider:

• First if x, y and z do not appear in X. Let A be an adversary trying to
distinguish distribution

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG

from distribution

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2]]IG.

We build an adversary B against BDDH that executes A as a subroutine.
As B tries to break BDDH, B receives four arguments (A,B, C, D). Intu-
itively, B uses the inputs A, B, C and D for gx

1 , gy
1 , gz

1 and gxyz
2 . B queries

A with the input

a1, . . . , aα, b1, . . . , bβ , c1, . . . , cγ

where

– ai are values in Zq randomly generated by B;

– bi is computed as follows. If yi equals x, y or z then bi is set to A, B
or C respectively. Otherwise bi is set to gu

1 where u = aj if yi = xj

for some j or u is randomly sampled from Zq;

– for each monomial m0 appearing in pi B computes the implementa-
tion for gm0

2 as follows. If m0 = m then gm0
2 is implemented by D.

If m0 shares two exponents with m, for example m0 = xyz′, then
the corresponding value is generated using the bilinear map: B com-
putes e(A,B)c where c is either freshly generated by B or has been
previously generated for z′. If m0 only shares one exponent with m,
for example m0 = xy′z′, then B computes Abc where where b and c
are either freshly generated by B or have been previously genrated
for y′ and z′. Given the implementations of gm0

2 for each m0 in pi

B computes implementations for each gpi

2 and use these values for
c1, . . . , cγ .

19

Finally, B returns the same output as A. The advantage of B against
BDDH is given by

AdvBDDH
B,IG (η) = P [B(gx

1 , gy
1 , gz

1 , gxyz
2) = 1]− P [B(gx

1 , gy
1 , gz

1 , gr
2) = 1]

When B receives as input (gx
1 , gy

1 , gz
1 , gxyz

2), A is given a sample from dis-
tribution [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gp1
2 , . . . , g

pγ

2]]IG.

When B receives as input (gx
1 , gy

1 , gz
1 , gr

2), A is given a sample from distri-

bution [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2]]IG.

Therefore the advantage of A in distinguishing the two distributions is
equal to the advantage of B against BDDH. As BDDH holds, the advantage
of B is negligible and so the advantage of A is also negligible. Hence,

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG

≈
[[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2]]IG

• If x appears in X, then by definition of M either y or z does not appear in
X and Y . Let us suppose that it is y. Exponent y only appears in m and,
as the order of the group is prime, we have the following equality between
distributions:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gm
2]]IG = [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gm′

2]]IG

Moreover as the original terms are well-formed and x occurs as data, m
does not share any exponent with other monomials used in P . Hence, we
also obtain that:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG

≈
[[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2]]IG

We have proved that:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG ≈ [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2]]IG

where p′′1 to p′′n use j − 1 monomials that use an exponent from X ∪ Y . Hence
using our induction hypothesis, we get that

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2]]IG ≈ [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
p′1
2 , . . . , g

p′γ
2]]IG

And so we proved that

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2]]IG ≈ [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2]]IG

20

Step 2. Let n be the number of elements in M .
For the second step, we recall that (as q is prime), the number of solutions

over Zq for a linear system of γ independent equations involving n variables is
qn−γ .

Let (x̂i)1≤i≤α, (ŷi)1≤i≤β and (p̂i)1≤i≤γ be elements of Zq. We now compute
the probability for the distribution to output value v defined by:

v =
(
x̂1, . . . , x̂α, gŷ1

1 , . . . , g
ŷβ

1 , gp̂1
2 , . . . , g

p̂γ

2

)
It is important to see that this is a computational value and not a symbolic
term.

Then we associate to each monomial from M a variable over Zq and we
obtain a system involving γ linear equations using n variables.(

x̂1, . . . , x̂α, gŷ1
1 , . . . , g

ŷβ

1 , g
p′1
2 , . . . , g

p′γ
2

)
= v

(The system is given by the equations between g·2 as the other equalities are
trivially satisfied.) The number of solutions of this system is qn−γ . Hence when
randomly sampling values for monomials in M , the probability to obtain v is
qn−γ/qn which is equal to q−γ .

On the other side, the probability to obtain v by randomly sampling γ group
elements for the gqi

2 is also equal to q−γ so the distributions are identical:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2]]IG = [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gq1
2 , . . . , g

qγ

2]]IG

And so we obtain the expected result. �
In order to introduce the following lemmas, we define the computational

semantics of patterns (i.e., terms using �) by extending the semantics for terms
with [[�]]SE,IG = 0. Our second lemma states that evaluations of a term and of
its pattern are indistinguishable in the computational setting.

Lemma 5.4 Let t be an acyclic well-formed term. Let SE be an IND-CPA secure
symmetric encryption scheme and let IG be an instance generator satisfying
BDDH. Then we have that

[[t]]SE,IG ≈ [[pat (t, K(t))]]SE,IG

Proof. Let t be an acyclic well-formed term. Then any p in kp(t) is linearly
independent of any other polynomials from pol (t). Let K(t) be the set of keys
and exponentiations gp

2 used at a key position in t that are not in K(t), i.e.,
that are not deducible. Let key be a metavariable over K(t). As t is acyclic
there exists a total order ≺ between elements of K(t) such that for any subterm
{t′}key of t, key′ can only appear in t′ if key′ ≺ key.

This proof follows the lines of the main proof in [3]. The main difference
with the original proof is that keys can be an exponentiation gp

2 . However as
p is not involved in any linear relation, using this key is indistinguishable from
using an atomic key.

21

Let us now detail the proof. Let n be the number of keys in K(t) and let
keyi be the ith key from K(t) with respect to ≺, i.e.:

K(t) = {key1, . . . , keyn} and key1 ≺ key2 ≺ . . . ≺ keyn

For i in [0, n], term ti is defined as pati(t) where pati is recursively defined by:

pati((t1, t2)) =
(
pati(t1), pati(t2)

)
pati({t′}key) = {�}key if key = keyj for j ≤ i
pati({t′}key) = {pati(t′)}key else
pati(a) = a for a in x, k, gx

1 and gp
2

In ti, encryptions using keys keyj for j ≤ i have been replaced by encryptions
of �. Hence pat0(t) = t and patn(t) = pat (t, K(t)). The advantage of an
adversary A which tries to distinguish [[t]]SE,IG and [[pat (t, K(t))]]SE,IG can be
written as:

Adv[[t]]SE,IG,[[pat(t,K(t))]]SE,IG

A = Adv[[t0]]SE,IG,[[tn]]SE,IG

A

= P [x← [[t0]]SE,IG ; A(x) = 1]− P [x← [[tn]]SE,IG ; A(x) = 1]

=
n∑

i=1

(P [x← [[ti−1]]SE,IG ; A(x) = 1]− P [x← [[ti]]SE,IG ; A(x) = 1])

=
n∑

i=1

Adv[[ti−1]]SE,IG,[[ti]]SE,IG

A

We build n adversaries (Bi)1≤i≤n against IND-CPA that use A as a subrou-
tine and such that the advantage of Bi against IND-CPA can be linked to the
advantage Adv[[ti−1]]SE,IG,[[ti]]SE,IG

A .
Each adversary Bi uses his challenge key for key keyi and has access to a

left-right encryption oracle LRb
SE . If key keyi is an exponentiation gp

2 then as
p is not involved in any linear relation and because of lemma 5.3, the evalua-
tion gp

2 is indistinguishable from a random group element. The key extraction
algorithm Kex applied to a random group element returns a random key (whose
distribution corresponds to the one of KG). Hence, using gp

2 is indistinguishable
from using a fresh atomic key.

Adversary Bi generates values for each atom used in t. For any subterm
a of t which is of the form x, k, gx

1 or gp
2 , Bi computes a bit-string value bsa

according to the values generated previously. Using his left-right encryption
oracle, Bi computes a bit-string bs which is either an evaluation of ti or an
evaluation of ti−1 depending on the challenge bit b. Formally bit-string bs is
obtained by applying the recursive evali function on ti−1:

evali((t1, t2)) = evali(t1) · evali(t2)
evali({t′}keyi) = LRb

SE(0, evali(t′))
evali({t′}key) = E(evali(t′), evali(key)) for key 6= keyi

evali(�) = 0
evali(a) = bsa for a in x, k, gx

1 and gp
2

22

This algorithm works well as due to acyclicity keyi does not occur as data
in ti−1. Note that oracle LRb

SE can be given as arguments two bit-strings of
different lengths. This is why we had to assume that encryption scheme SE is
length-concealing.

After computing bs, Bi executes A with input bs and returns the same result
as A. Let us sum up how Bi works:

Adversary BLRb
SE

i (η)
for each a, compute bsa

bs← evali(ti−1)
d← A(bs)
return d

If bit b equals 0, then A is confronted to an evaluation of ti whereas if b equals
1, then A is given an evaluation of ti−1. The advantages of A and Bi can be
linked in the following way:

Adv[[ti−1]]SE,IG,[[ti]]SE,IG

A = AdvCPA
SE,Bi

Therefore we have that:

Adv[[t]]SE,IG,[[pat(t,K(t))]]SE,IG

A =
n∑

i=1

AdvCPA
SE,Bi

As SE is assumed to be IND-CPA secure, the advantage of Bi is negligible for
any i. Hence the advantage of A is also negligible. �

Our third lemma states that two patterns equal up to renaming are also
indistinguishable in the computational setting.

Lemma 5.5 Let t0 and t1 be two well-formed terms such that pat (t0,K(t0)) ∼=
pat (t1,K(t1)). Let SE be a symmetric encryption scheme (not necessarily se-
cure) and let IG be an instance generator satisfying BDDH, then

[[pat (t0,K(t0))]]SE,IG ≈ [[pat (t1,K(t1))]]SE,IG

Proof. Let t′0 be the term pat (t0,K(t0)) and t′1 be the term pat (t1,K(t1)).
There exists a renaming of Keys σ1 and a bijection σ2 preserving linear relations
between polynomials from t1 to t0 such that t′0 = t′1σ1σ2. Permutation of keys is
easy to handle: [[t′1σ1]]SE,IG and [[t′1]]SE,IG output exactly the same distribution.

There only remains to prove that [[t′0]]SE,IG ≈ [[t′1σ1]]SE,IG. For this purpose,
let u0 = t′0 and u1 = t′1σ1. Let A be an adversary trying to distinguish the
distribution related to u0 from the distribution related to u1. In the remaining,
we prove that the advantage of A is negligible if the BDDH assumption holds.
For this purpose, we introduce a term u such that:

Adv[[u1]]SE,IG,[[u0]]SE,IG

A = Adv[[u1]]SE,IG,[[u]]SE,IG

A + Adv[[u]]SE,IG,[[u0]]SE,IG

A

Intuitively u is equal to u0 where polynomials have been replaced by fresh
monomials whenever possible while conserving linear equalities. u is also equal

23

to u1 where the same modification has been applied. From there, due to the
nature of u it is easy to prove that the two advantages on the right part are
negligible using lemma 5.3.

First let us define the following sets:

1. Let X = (xi)1≤i≤α be the exponents that are deducible from u0 (using u1

instead of u0 would give exactly the same X as u0 = u1σ2).

2. Let Y = (yi)1≤i≤β be the exponents such that gyi

1 is deducible from u0

(as previously, using u1 instead of u0 would give exactly the same Y).

3. Let M = (mi)1≤i≤δ be the set of monomials dm(u0) which can easily be
obtained from X and Y .

4. The two sets of polynomials P0 = (p0,i)1≤i≤γ and P1 = (p1,i)1≤i≤γ are
built as follows:

• Initially P0 and P1 are empty.

• For each polynomial p such that gp
2 is a sub-term of u0 at position q,

we have that the sub-term of u1 at position q is also an exponentiation
gp′

2 .

• If p is not involved in any linear relation with polynomials from the
current P0 and monomials from M , then p is appended to P0 and p′

is appended to P1. Note that in this case, p′ is not involved in any
linear relation with polynomials from the current P1 and monomials
from M neither.

Let σ and σ′ be the polynomial bijections defined respectively on polynomials p
such that gp

2 occurs in term u0 for σ and on polynomials p such that gp
2 occurs

in term u1 for σ′. These two bijections are defined by:

• For p0,i in P0 , p0,iσ is defined as a fresh monomial r1,ir2,ir3,i.

• For p1,i in P1 , p1,iσ
′ is defined as a fresh monomial r1,ir2,ir3,i.

• Let p be a polynomial such that gp
2 occurs in u0 and such that p is not in

P0. Then by definition of P0, p is linked via a linear relation to polynomials
in P0 and monomials in M :

p =
γ∑

j=1

λjp0,j +
δ∑

j=1

µjmj

And we define pσ as

pσ =
γ∑

j=1

λj (p0,jσ) +
δ∑

j=1

µjmj

24

• In a similar way, let p be a polynomial such that gp
2 occurs in u1 and such

that p is not in P1. Then p is linked via a linear relation to polynomials
in P1 and monomials in M :

p =
γ∑

j=1

λjp1,j +
δ∑

j=1

µjmj

And we define pσ′ as

pσ′ =
γ∑

j=1

λj (p1,jσ
′) +

δ∑
j=1

µjmj

Let u be the term u0σ. As σ2 is linear relation preserving, u is equal to u1σ
′.

Then the advantage of A can be written as:

Adv[[u1]]SE,IG,[[u0]]SE,IG

A = Adv[[u1]]SE,IG,[[u]]SE,IG

A + Adv[[u]]SE,IG,[[u0]]SE,IG

A

We now prove that the advantage Adv[[u]]SE,IG,[[u0]]SE,IG

A is negligible. The proof
that Adv[[u1]]SE,IG,[[u]]SE,IG

A is also negligible is similar. Let w and w′ be the two
terms

w = (x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2)
w′ = (x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
r1,1r2,1r3,1
2 , . . . , g

r1,γr2,γr3,γ

2)

We build an adversary B that tries to distinguish [[w]]IG from [[w′]]IG and that
uses A as a subroutine. B works as follows:

1. B receives as argument a bit-string tuple (X1, . . . , Xα, Y1, . . . , Yβ , P1, . . . , Pγ)
which is either generated by [[w]]IG or by [[w′]]IG.

2. B generates bit-string value bsk for any atomic key k used in u using KG
(these keys are also the ones used in u0).

3. B recursively computes a bit-string bs′ which is either an evaluation of u
(in case B received as input an evaluation of w′) or an evaluation of u0

(in case B received as input an evaluation of w). The computation of bs′

is done recursively on the structure of u by using the eval algorithm:

• If u is a pair (v, w), then eval(u) = eval(v) · eval(w).

• If u is an encryption {v}key, then eval(u) = E(eval(v), eval(key)).

• If u is an atomic key k, then eval(u) = bsk.

• If u is an exponent xi, then eval(u) = Xi.

• If u is an exponentiation gyi

1 , then eval(u) = Yi.

• If u is an exponentiation gpi

2 , then eval(u) = Pi.

25

4. Then B executes A with bs′ as input and returns the same output as A.

We have the following relation among the advantages of A and B:

Adv[[u]]SE,IG,[[u0]]SE,IG

A = Adv[[w′]]IG,[[w]]IG

B

As BDDH holds, we apply lemma 5.3 and obtain that the advantage of B is
negligible and hence Adv[[u]]SE,IG,[[u0]]SE,IG

A is negligible.
Thus Adv[[u1]]SE,IG,[[u0]]SE,IG

A is also negligible and we finally obtain that:

[[pat (t0,K(t0))]]SE,IG ≈ [[pat (t1,K(t1))]]SE,IG

�
It is now easy to obtain our main result by using transitivity of the≈ relation.

Let t0 and t1 be two acyclic well-formed terms. Let SE be an IND-CPA secure
symmetric encryption scheme and let IG be an instance generator satisfying
BDDH. Then we have:

[[t0]]SE,IG ≈ [[pat (t0,K(t0))]]SE,IG ≈ [[pat (t1,K(t1))]]SE,IG ≈ [[t1]]SE,IG

The previous result states soundness of symbolic equivalence in the compu-
tational world. However, the reciprocal (i.e., completeness) is false in general.
There are two main problems that prevent completeness. First, the symmetric
encryption scheme may allow decryption with the wrong key and output a ran-
dom bit-string in that case. Then the distributions related to terms ({x}k, k)
and ({x}k, k′) can be computationally indistinguishable, even though these two
terms do not have the same pattern. This can be solved by requiring symmet-
ric encryption to be confusion free [33, 2] or to admit weak key-authenticity
tests for expressions [33, 2, 26]. The second problem is that the symmetric en-
cryption scheme can satisfy key concealing (this is ensured by type 0 security
in [3]). Then the distributions related to terms ({0}k, {0}k′) and ({0}k, {0}k)
are computationally indistinguishable but these terms are not equivalent even
with renaming. To solve this, one can either ask the encryption scheme to be
key revealing or modify the pattern definition in order to hide the key name
(but the encryption scheme has to be key concealing in order to prove sound-
ness). Soundness and completeness results when symmetric encryption is key
and length revealing are given in [5].

The previous proposition considers the case of equivalence and is typically
used to verify security of key-exchange protocols. In the next proposition, we
are interested in completeness for deducibility. We prove even more than com-
pleteness: if t is deducible from E then there exists an efficient algorithm which
is able to build an evaluation of t from an evaluation of E with probability 1.
This result can be used to verify that a key-agreement protocol can really be
implemented in the computational setting: we first check that the shared key is
deducible from the knowledge of any participants in the symbolic setting, then
applying the following proposition tells us that there exists an efficient algorithm
to obtain the shared key from the participant knowledge in the computational
setting.

26

Proposition 5.6 Let E be a finite set of terms t1 to tn and t be a term that does
not use any encryption (e.g., a modular exponentiation). If E ` t then there
exists a polynomial-time (with respect to the security parameter η) algorithm
A such that A ([[(t1, . . . , tn)]]SE,IG) outputs the evaluation of t using values for
exponents and keys that have been generated to compute [[(t1, . . . , tn)]]SE,IG, i.e.:

(bs, bs′)← [[((t1, . . . , tn), t)]]SE,IG : A(bs) = bs′

Proof. Let t be a term and E be a finite set of terms such that E ` t. First
note that the structure of the proof of E ` t does not depend on the security
parameter η.

Each deduction rule from the symbolic setting corresponds to an operation
which is tractable in the computational setting in polynomial-time in η using
a deterministic algorithm (note that the deducibility relation does not give the
adversary the ability to encrypt data). Hence it is easy to build the algorithm A
by following the structure of a proof of E ` t. We nevertheless need to restrict
ourselves to the case where t does not contain any encryption, as the concrete
algorithm for encryption is not deterministic: we indeed have that {{0}k} ` {0}k
while in the computational setting (bs, bs′) ← [[({0}k, {0}k)]]SE,IG yields two
different biststrings bs and bs′ as the encryption algorithm is run twice. �

Note that it is not necessary for terms to be well-formed or acyclic in this
proposition.

6 Examples of Application

Now we illustrate how proposition 5.2 can be used to prove a key-exchange
protocol secure in the computational world.

Our notion of security is strong secrecy of the shared key in the passive
setting: the adversary gets to observe messages exchanged between the partici-
pants and has to distinguish the shared key from a random group element. In
the symbolic world, let us suppose that the exchanged terms were t1 to tn and
that the shared key is gp

2 . Then security in the symbolic setting holds if:

(t1, ..., tn, gp
2) ≈ (t1, ..., tn, gr1r2r3

2)

where r1, r2 and r3 are three fresh exponent names. It is then possible to apply
proposition 5.2 in order to prove security in the computational setting.

We are also interested in executability of key exchange protocols. A protocol
is executable if it is feasible for any participant to compute the shared key from
his knowledge. Let us again suppose that the exchanged terms are t1 to tn and
that the shared key is gp

2 . Moreover let x1
i , ..., x

ki
i be the exponents which are

generated by the ith participant. The protocol is executable in the symbolic
setting if for any i,

t1, ..., tn, x1
i , ..., x

ki
i ` gp

2

Executability in the computational world can easily be obtained from here by
applying proposition 5.6.

27

6.1 Joux Protocol

The Joux protocol has been described in section 2. In an execution of this
protocol, three messages are sent, corresponding to terms gx1

1 , gx2
1 and gx3

1 . The
shared key is gx1x2x3

2 . Strong secrecy for this key-exchange protocol has been
given as an example for our symbolic equivalence notion:

(gx1
1 , gx2

1 , gx3
1 , gx1x2x3

2) ∼= (gx1
1 , gx2

1 , gx3
1 , g

x′1x′2x′3
2)

Proposition 5.2 can be applied to show that this protocol is secure in the com-
putational setting if the BDDH assumption holds.

We also verify that this protocol is executable. In the symbolic setting this
is the case as we have the following deducibility relation:

x1, g
x2
1 , gx3

1 ` gx1x2x3
2

Similar relations hold when permuting the roles of x1 and x2 and of x1 and x3.
Thus proposition 5.6 proves that there exists an efficient algorithm in the com-
putational setting which allows each participant to compute his shared secret
key.

6.2 TAK-2 and TAK-3 Protocols

The TAK-2 and TAK-3 protocols are two variants of the Joux protocol which
were proposed by Al-Riyami and Paterson in [6]. TAK-1 and TAK-2 are tripar-
tite key-exchange protocols which work in the same way, the only difference lies
in the shared key. These protocols uses certificates to provide authentication.
However as we are only interested in indistinguishability of the shared key, we
use a simplified version of the protocol. Let A, B and C be three participants:

(1) A → B,C : (gx1
1 , gy1

1)
(2) B → A,C : (gx2

1 , gy2
1)

(3) C → A,B : (gx3
1 , gy3

1)

In TAK-2, the shared key is gx1x2y3+x1y2x3+y1x2x3
2 . In TAK-3, gx1y2y3+y1x2y3+y1y2x3

2

is used as shared key. Our simplified version of the two protocols are quite close
as we do not make any difference between short-term secrets (y1, y2 and y3) and
long-term secrets (x1, x2 and x3). Thus in our setting it is sufficient to analyze
one of the protocol, TAK-2 for example.

Security. In the symbolic setting, strong secrecy of the key generated by the
TAK-2 protocol comes from the following equivalence (up to renaming). Note
that the two equivalent terms are trivially well-formed and acyclic:(

gx1
1 , gy1

1 , gx2
1 , gy2

1 , gx3
1 , gy3

1 , gx1x2y3+x1y2x3+y1x2x3
2

)
∼=(

gx1
1 , gy1

1 , gx2
1 , gy2

1 , gx3
1 , gy3

1 , g
x′1x′2x′3
2

)
28

This equivalence is true because the set of deducible monomials dm is empty for
both terms and neither x1x2y3 +x1y2x3 +y1x2x3 in the first term nor x′1x

′
2x

′
3 in

the second term is involved in a linear relation. Hence by using proposition 5.2,
we obtain that in the computational setting an adversary that has access to
values for gx1

1 , gy1
1 , gx2

1 , gy2
1 , gx3

1 and gy3
1 cannot distinguish the shared key

gx1x2y3+x1y2x3+y1x2x3
2 from a random group element, so the adversary is not

able to obtain a single bit of information on the shared key.

Executability. We also verify executability of the protocol. By symmetry we
consider the case of A. A generates two exponents x1 and y1 and receives two
messages corresponding to terms (gx2

1 , gy2
1) and (gx3

1 , gy3
1). Hence executability

in the symbolic setting is a consequence of the following deduction:

x1, y1, g
x2
1 , gy2

1 , gx3
1 , gy3

1 ` gx1x2y3+x1y2x3+y1x2x3
2

Thus proposition 5.6 proves that there exists an efficient algorithm in the com-
putational setting which allows participant A to compute his shared secret key.
The same thing holds for B and C.

Active attacks. The TAK protocol family was designed to be secure even in
the presence of an active adversary. However, as shown by Shim [37], TAK-2 is
vulnerable to active attacks (the other variants are subject to similar attacks).
Completely defining a formal model for active adversaries is outside the scope of
this paper. Nevertheless the role of participant A could be described as follows:

send(ga
1 , gα

1)
recv(gxB

1 , gβ
1)

recv(gxC
1 , gγ

1)

where a is a fresh exponent generated by A, xB and xC are variables and
gα
1 , gβ

1 , gγ
1 are the public keys which aim at guaranteeing authenticity. The key

computed by A corresponds to KA = gaxBγ+aβxC+αxBxC

2 . An active adversary
can substitute xB and xC by two fresh names b′ and c′ yielding an attack: the
key computed by A, gab′γ+aβc′+αb′c′

2 , is indeed deducible from the attacker’s
knowledge {ga

1 , gα
1 , b′, gb′

1 , gβ
1 , c′, gc′

1 , gγ
1 }. It follows directly from proposition 5.6

that this symbolic attack can be efficiently implemented by a computational
adversary. More generally, active symbolic attacks aiming at deducing the key
(weak secrecy) correspond to computational attacks. This is not surprising
and the converse is obviously not true: it does not follow from our results
that a symbolic security proof (in the presence of an active attacker) gives a
computational security guarantee.

6.3 A Variant of the Burmester-Desmedt Protocol using
Pairings

As an additional example which illustrates the scope of our results, we show how
to apply our results to a variant of the group key exchange protocol introduced

29

by Burmester and Desmedt in [14]. The aim of this protocol is to establish a
secret key shared among the members of the group. It is scalable as it requires
only two rounds and a constant number of modular exponentiation per user.
This protocol is only designed for security against passive adversaries.

The Original Burmester-Desmedt Protocol. Consider a network in which
members of a group can broadcast messages to each other. Let η be a security
parameter and let A1,A2,· · · ,An, for n ∈ Z, be members of a group. We fix the
security parameter η, a finite cyclic group G of generator g and of prime order
q. These parameters G, g and q are published.

• Round 1: Each participant Ai samples a random xi ∈ Zq, and broadcasts
Zi = gxi .

• Round 2: Each participant Ai broadcasts Xi = (Zi+1/Zi−1)xi = gxixi+1−xi−1xi ,
where the indexes are taken modulo n.

• Key computation: Each party Ai computes the shared key K = g
Pn

i=1 xixi+1 .

The Bilinear Burmester-Desmedt Protocol. Now we define a family of
variants of the Burmester-Desmedt protocol. Protocols in this family are pa-
rameterized by three integers α, β and γ such that α + β + γ = 0 and either α,
β or γ is different from 0. The instance of the protocol corresponding to α, β
and γ is denoted by α, β, γ-BBD (Bilinear Burmester-Desmedt).

We still consider a group of n members A1 to An. This time the protocol
does not use a single cyclic group but uses a bilinear pairing between two cyclic
groups. Hence we fix the security parameter η and two cyclic groups G1 and
G2 of prime order q with respective generators g1 and g2, as well as a pairing
operation e from G1 ×G1 to G2 such that e(g1, g1) = g2.

• Round 1: Each participant Ai samples a random xi ∈ Zq, and broadcasts
Zi = gxi

1 .

• Round 2: Each participant Ai broadcasts Xi defined by

Xi = e(Zi−2, Zi−1)αxie(Zi−1, Zi+1)βxie(Zi+1, Zi+2)γxi

= g
αxi−2xi−1xi+βxi−1xixi+1+γxixi+1xi+2
2

where the indexes are still taken modulo n.

• Key computation: Each party Ai computes the shared key

K = g
Pn

i=1 xixi+1xi+2
2

30

Security Analysis. We first prove strong secrecy for the shared key in the
symbolic setting. This secrecy property is defined as the equivalence between
the protocol execution transcript concatenated to the shared key and the tran-
script concatenated with a random group element from G2. Hence α, β, γ-BBD
verifies strong secrecy of the shared key in the symbolic setting iff the following
equivalence holds:

(Z1, ..., Zn, X1, ..., Xn,K) ∼= (Z1, ..., Zn, X1, ..., Xn, gr1r2r3
2)

In order to obtain this equivalence, we use the following lemma which proves
that the exponent used in the key is linearly independent from other exponents
if α + β + γ = 0.

Lemma 6.1 Let α, β, γ and n be four integers. Let V be a real vector space
and u1 to un be n linearly independent elements of V . If α + β + γ = 0, then∑n

i=1 ui is linearly independent from the family of vectors (αui+βui+1+γui+2)i

(indexes are taken modulo n).

Proof. Let U be the set of vectors (αui +βui+1 +γui+2)i for i between 1 and n.
For any vector v in span(U), there exists a unique decomposition v =

∑n
i=1 λiui

and
∑n

i=1 λi is equal to 0. Hence
∑n

i=1 ui is not in span(U) and is linearly
independent from vectors in U . �

A direct consequence of this is strong secrecy of α, β, γ-BBD in the symbolic
setting. By applying proposition 5.2, we obtain strong secrecy of the key in the
computational setting for a passive adversary.

7 Conclusions and Future Work

We have proposed a first symbolic model to analyze cryptographic protocols
which use a bilinear pairing. This model can be used to verify security of well-
known key-exchange protocols using pairing like Joux protocol or the TAK-2
and TAK-3 protocol. Moreover our symbolic model consists in an extension
of Abadi-Rogaway logic which is computationally sound provided that the en-
cryption scheme and the pairing satisfy classical requirements from provable
security. A direct consequence of this soundness result is that the Joux, TAK-2
and TAK-3 protocol are also secure in the computational setting. We also de-
sign a variant based on pairings of the Burmester-Desmedt protocol and prove
its security against passive adversaries.

This paper only consider passive adversaries. An obvious line for future
work is to extend the results to deal with active adversaries. Another interesting
follow-up would be to investigate completeness of the extended version of Abadi-
Rogaway logic as in [33]. However this would require either to tighten the
symbolic model or to use stronger versions of the computational requirements
IND-CPA and BDDH.

31

References

[1] M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the com-
putational soundness of static equivalence. In Proc. 9th International Con-
ference on Foundations of Software Science and Computation Structures
(FoSSaCS’06), volume 3921 of Lecture Notes in Computer Science, pages
398–412. Springer, 2006.

[2] M. Abadi and J. Jürjens. Formal eavesdropping and its computational
interpretation. In Proc. 4th International Symposium on Theoretical As-
pects of Computer Software (TACS’01), volume 2215 of Lecture Notes in
Computer Science. Springer, 2001.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). In Proc. IFIP International
Conference on Theoretical Computer Science (IFIP TCS’00). Springer,
2000.

[4] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal en-
cryption in the presence of key-cycles. In Proc. 10th European Symposium
on Research in Computer Security (ESORICS’05), volume 3679 of Lecture
Notes in Computer Science, pages 374–396. Springer, 2005.

[5] P. Adão, G. Bana, and A. Scedrov. Computational and information-
theoretic soundness and completeness of formal encryption. In Proc. 18th
IEEE Computer Security Foundations Workshop (CSFW’05), pages 170–
184. IEEE, 2005.

[6] S. S. Al-Riyami and K. G. Paterson. Tripartite authenticated key agree-
ment protocols from pairings. In Proc. 9th IMA International Conference
on Cryptography and Coding, volume 2898 of Lecture Notes in Computer
Science, pages 332–359. Springer, 2003.

[7] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In Proc. 10th conference on Computer and
Communication Security (CCS’03), pages 220–230. ACM, 2003.

[8] G. Bana, P. Mohassel, and T. Stegers. The computational soundness of for-
mal indistinguishability and static equivalence. In Proc. 11th Asian Com-
puting Science Conference (ASIAN’06), volume 4435 of Lecture Notes in
Computer Science, pages 182–196. Springer, 2008.

[9] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystems. In Advances in Cryptology – CRYPTO’02, volume
2442 of Lecture Notes in Computer Science, pages 354–368. Springer, 2002.

[10] R. Barua, R. Dutta, and P. Sarkar. Extending Joux’s protocol to multi
party key agreement (extended abstract). In Proc. 4th International Con-
ference on Cryptology in India (INDOCRYPT’03), volume 2904 of Lecture
Notes in Computer Science, pages 205–217. Springer, 2003.

32

[11] M. Baudet, V. Cortier, and S. Kremer. Computationally sound imple-
mentations of equational theories against passive adversaries. In Proc.
32nd International Colloquium on Automata, Languages and Programming
(ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages
652–663. Springer, 2005.

[12] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil
pairing. In Advances in Cryptology – CRYPTO’01, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer, 2001.

[13] E. Bresson, Y. Lakhnech, L. Mazaré, and B. Warinschi. A generalization of
DDH with applications to protocol analysis and computational soundness.
In Advances in Cryptology – CRYPTO’07, volume 4622 of Lecture Notes
in Computer Science, pages 482–499. Springer, 2007.

[14] M. Burmester and Y. Desmedt. A secure and efficient conference key dis-
tribution system (extended abstract). In Advances in Cryptology – EU-
ROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages
275–286. Springer, 1994.

[15] R. Canetti and J. Herzog. Universally composable symbolic analysis of mu-
tual authentication and key-exchange protocols. In Proc. Theory of Cryp-
tography Conference (TCC’06), volume 3876 of Lecture Notes in Computer
Science, pages 380–403. Springer, 2006.

[16] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the
security of protocols with Diffie-Hellman exponentiation and products in
exponents. In FSTTCS 2003: Foundations of Software Technology and
Theoretical Computer Science, 23rd Conference, volume 2914 of Lecture
Notes in Computer Science, pages 124–135. Springer, 2003.

[17] O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. Key derivation
and randomness extraction. Technical Report 2005/061, Cryptology ePrint
Archive, 2005. http://eprint.iacr.org/.

[18] V. Cortier and B. Warinschi. Computationally sound, automated proofs
for security protocols. In Proc. 14th European Symposium on Programming
(ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 157–
171. Springer, 2005.

[19] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computation-
ally sound compositional logic for key exchange protocols. In Proc. 19th
IEEE Computer Security Foundations Workshop (CSFW’06), pages 321–
334. IEEE, 2006.

[20] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 1983.

33

[21] R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptographic protocols:
A survey. Cryptology ePrint Archive, Report 2004/064, 2004. http://
eprint.iacr.org/.

[22] F. D. Garcia and P. van Rossum. Sound computational interpretation
of symbolic hashes in the standard model. In Advances in Information
and Computer Security. Proc. 1st International Workshop on Security
(IWSEC’06), volume 4266 of Lecture Notes in Computer Science, pages
33–47. Springer, 2006.

[23] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proc. 14th Symposium on
Theory of Computing (STOC’82). ACM, 1982.

[24] P. Gupta and V. Shmatikov. Towards computationally sound symbolic
analysis of key exchange protocols. In Proc. 3rd Workshop on Formal
Methods in Security Engineering: From Specifications to Code (FMSE’05),
pages 23–32. ACM, 2005.

[25] J. Herzog. Computational soundness for standard assumptions of formal
cryptography. PhD thesis, MIT, 2004.

[26] O. Horvitz and V. D. Gligor. Weak key authenticity and the computa-
tional completeness of formal encryption. In Advances in Cryptology –
CRYPTO’03, volume 2729 of Lecture Notes in Computer Science, pages
530–547. Springer, 2003.

[27] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc.
30th IEEE Symposium on Foundations of Computer Science (FOCS’89),
pages 248–253, 1989.

[28] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Sound-
ness of formal encryption in the presence of active adversaries. In Proc.
14th European Symposium on Programming (ESOP’05), volume 3444 of
Lecture Notes in Computer Science, pages 172–185. Springer, 2005.

[29] A. Joux. A one round protocol for tripartite Diffie-Hellman. In Proc. 4th
International Symposium on Algorithmic Number Theory (ANTS-IV), vol-
ume 1838 of Lecture Notes in Computer Science, pages 385–394. Springer,
2000.

[30] J. Katz and M. Yung. Scalable protocols for authenticated group key ex-
change. In Advances in Cryptology – CRYPTO’03, volume 2729 of Lecture
Notes in Computer Science, pages 110–125. Springer, 2003.

[31] P. Laud and R. Corin. Sound computational interpretation of formal en-
cryption with composed keys. In Proc. 6th International Conference on
Information Security and Cryptology (ICISC’03), volume 2971 of Lecture
Notes in Computer Science, pages 55–66. Springer, 2004.

34

[32] D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption.
In Proc. Theory of Cryptography Conference (TCC’05), volume 3378 of
Lecture Notes in Computer Science, pages 169–187. Springer, 2005.

[33] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-
Rogaway logic of encrypted expressions. Journal of Computer Security,
2004.

[34] D. Micciancio and B. Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Proc. Theory of Cryptography Conference
(TCC’04), volume 2951 of Lecture Notes in Computer Science, pages 133–
151. Springer, 2004.

[35] A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive trace properties
for computational security. In Proc. 7th Workshop on Issues in the Theory
of Security (WITS’07), 2007.

[36] A. Roy, A. Datta, and J. C. Mitchell. Formal proofs of cryptographic secu-
rity of Diffie-Hellman based protocols. In Proceedings of the 3rd Symposium
on Trustworthy Global Computing (TGC’07), volume 4912 of Lecture Notes
in Computer Science, pages 312–329. Springer, 2008.

[37] K. Shim. Cryptanalysis of Al-Riyami-Paterson’s authenticated three party
key agreement protocols. Technical Report 2003/122, Cryptology ePrint
Archive, 2003. http://eprint.iacr.org/.

35

Computationally sound implementations of equational
theories against passive adversariesI

Mathieu Baudeta, Véronique Cortierb, Steve Kremerc

aDCSSI, France
bLoria/CNRS & INRIA Lorraine projet Cassis, France

cLSV/ CNRS & INRIA Saclay projet SECSI & ENS Cachan, France

Abstract

In this paper we study the link between formal and cryptographic models for
security protocols in the presence of passive adversaries. In contrast to other
works, we do not consider a fixed set of primitives but aim at results for arbi-
trary equational theories. We define a framework for comparing a cryptographic
implementation and its idealization with respect to various security notions. In
particular, we concentrate on the computational soundness of static equivalence,
a standard tool in cryptographic pi calculi. We present a soundness criterion,
which for many theories is not only sufficient but also necessary. Finally, to
illustrate our framework, we establish the soundness of static equivalence for
the exclusive OR and a theory of ciphers and lists.

1. Introduction

Today’s ubiquity of computer networks increases the need for theoretic foun-
dations for cryptographic protocols. For more than twenty years now, two com-
munities separately developed two families of models. Both views have been
very useful in increasing the understanding and quality of security protocol de-
sign. On the one hand formal or logical models have been developed, based on
the seminal work of Dolev and Yao [2]. These models view cryptographic oper-
ations in a rather abstract and idealized way. On the other hand cryptographic
or computational models [3] are closer to implementations: cryptographic op-
erations are modeled as algorithms manipulating bit-strings. Those models
cover a large class of attacks, namely all those implementable by a probabilistic
polynomial-time Turing machine.

The advantage of formal models is that security proofs are generally simpler
and suitable for automatic procedures, even for complex protocols. Unfortu-
nately, the high degree of abstraction and the limited adversary power raise

IAn extended abstract of this work was published in the proceedings of the ICALP’05
conference [1].

Email addresses: mathieu.baudet@sgdn.gouv.fr (Mathieu Baudet), cortier@loria.fr
(Véronique Cortier), kremer@lsv.ens-cachan.fr (Steve Kremer)

Preprint submitted to Elsevier December 30, 2008

questions regarding the security offered by such proofs. Potentially, justifying
symbolic proofs with respect to standard computational models has tremendous
benefits: protocols can be analyzed using automated tools and still benefit from
the security guarantees of the computational model.

For the past few years, a significant research effort has been directed at link-
ing these two approaches. In their seminal work [4], Abadi and Rogaway prove
the computational soundness of formal (symmetric) encryption in the case a
passive attacker. Since then, many results have been obtained. Each of these
results considers a fixed set of primitives, for instance symmetric or public-
key encryption. In this paper, we aim at presenting general results for arbitrary
equational theories, such as encryption, but also less studied ones, such as groups
or exclusive OR. The interest of our approach is not only to develop a general
and unified framework for the treatment of cryptographic primitives. Conceptu-
ally, it also offers a better understanding of the use of equational theories when
modeling the algebraic properties of the primitives. Indeed, for several years,
formal models have considered equational theories like the theory of exclusive
OR, abelian groups or homomorphic encryption (for a survey on algebraic prop-
erties see for instance [5, 6]) in order to model some cryptographic aspects. But
it is a priori unclear whether “enough” equations have been considered to pro-
vide realistic security guarantees. A real attacker might still exploit additional
properties of a cryptographic primitive that have not been modeled. Here, we
propose a setting and some proof techniques that allow us to formally define
and prove that “enough” equations have been considered.

We concentrate on static equivalence, a now standard notion originating
from the applied pi calculus [7]. Intuitively, static equivalence asks whether an
attacker can distinguish between two tuples of messages—later called frames—
by exhibiting a relation which holds on one tuple but not on the other. Static
equivalence provides an elegant means to express security properties on pieces
of data, for instance those observed by a passive attacker during the run of a
protocol. In the context of active attackers, static equivalence has also been
used to characterize process equivalences [7] and off-line guessing attacks [8, 9].
There now exist exact [10] and approximate [11] algorithms to decide static
equivalence for a large family of equational theories.

Our first contribution is a general framework for comparing formal and com-
putational models in the presence of a passive attacker. We define the notions
of soundness and faithfulness of a cryptographic implementation with respect
to equality, static equivalence and (non-)deducibility. Soundness holds when
a formal notion of security has a computational interpretation. For instance,
statically equivalent tuples of messages (frames) should be computationally in-
distinguishable. Conversely, faithfulness holds when every formal attack on a
given notion of security can be mapped to an efficient computational attacker.
As an illustration, we consider an equational theory modeling Abelian groups
with exponents taken over a commutative ring. We show that the soundness of
static equivalence implies the hardness of several classical problems in cryptog-
raphy, notably the decisional Diffie-Hellmann and the RSA problem. Although
not completely surprising, this results illustrate well the expressive power of

2

static equivalence defined over tailored equational theories.
Our second contribution is a sufficient criterion for soundness with respect to

static equivalence: intuitively the usual computational semantics of terms has to
be indistinguishable to an idealized one. We also define and study a useful class
of frames, called transparent frames, for arbitrary equational theories. Infor-
mally, a frame is transparent if every secret in use is deducible from the frame
itself. Transparent frames enjoy notable properties such as a simple charac-
terization of static equivalence and—in the case of uniform distributions—the
fact that two statically equivalent transparent frames always yield the same
concrete distribution, that is, are indistinguishable in the sense of information
theory. This study of transparent frames allows us to exhibit a class of equa-
tional theories for which our soundness criterion is necessary.

Our third contribution consists in applying our framework to obtain two
first soundness results for static equivalence. The first equational theory that
we consider deals with the exclusive OR. This simple but important primitive
has been largely used in cryptographic constructions such as the One-Time
Pad and in protocols (see [6] for examples). Interestingly, our proof of sound-
ness reflects the unconditional security (in the information-theoretic sense) of
the One-Time Pad [12]. Second we consider a theory of symmetric encryption
and lists. The result is similar in spirit to the one of Abadi and Rogaway [4].
However, we consider deterministic, length-preserving, symmetric encryption
schemes—also known as pseudo-random permutations or ciphers, while Abadi
and Rogaway consider probabilistic, symmetric encryption. This choice is mo-
tivated by famous examples of ciphers such as DES or AES. In both examples,
the specificity of our work is to prove the soundness of a standard formal notion,
static equivalence, rather than that of a specialized relation.

Related work.. The study of the link between the formal and the computational
approaches for cryptographic protocols started with the seminal work of Abadi
and Rogaway [4], in a passive setting. There have been many extensions to the
work of Abadi and Rogaway in the passive case, such as studying complete-
ness [13], considering deterministic encryption [14] (a more detailed comparison
is provided below), One-Time pad, length-revealing and same-key revealing en-
cryption [12] or allowing composed keys [15] and key-cycles [16].

The first results in an active setting were achieved by Backes, Pfitzmann,
and Waidner [17, 18, 19]. These works prove the soundness of a rich language
including digital signatures, public-key and symmetric key encryption in the
presence of an active attacker for several kind of security properties. Quite sim-
ilar results were established in more abstract and classical Dolev-Yao models for
asymmetric encryption and signatures [20, 21]. While more easily amendable
to full automation, these results do not offer universal composability guarantees
like the previous ones. However, Canetti and Herzog [22] have recently ob-
tained a similar soundness theorem for a restricted class of protocols—mutual
authentication and key exchange protocols using only public-key encryption—
which does offer strong composability properties in the universal composability
framework. Laud [23] presents an automated procedure for computationally

3

sound proofs of confidentiality in the case of an active attacker and symmetric
encryption when the number of sessions is bounded. Datta et al. [24] introduce
a symbolic logic that allows cryptographically sound security proof. Recently,
Blanchet [25] proposed a computationally sound mechanized prover that relies
directly on games transformations, a proof technique commonly used in the
cryptographic setting.

Except [25], the previously mentioned results are all dedicated to some fixed
set of cryptographic primitives. Here, our goal is not restricted to obtaining
some particular soundness result for a given set of primitives and security prop-
erties. Rather, we aim at developing a general setting to reason about the
adequacy of abstract functional symbols equipped with an equational theory
and their corresponding cryptographic implementations. To the best of our
knowledge, this approach is new and distinct from existing work. We now dis-
cuss some related work concerning the two theories (exclusive OR as well as
ciphers and lists) that we have considered to illustrate our framework.

Regarding the soundness of exclusive OR, Backes and Pfitzmann [26] have
independently shown an impossibility result in the framework of reactive simu-
latability, in the presence of an active adversary. They also present a soundness
result in the presence of a passive adversary. While we consider the application
of exclusive OR only to pure random values, Backes and Pfitzmann deal with
arbitrary payloads. It is however not clear how the framework of reactive sim-
ulatability in the presence of a passive adversary compares to our framework
based on static equivalence.

Concerning the theory of ciphers and list, Laud [14] presents soundness re-
sults in the style of Abadi and Rogaway for ciphers. While these results are close
to ours, Laud’s notion of formal equivalence is apparently more pessimistic than
ours regarding the secrecy of encryption keys. For instance, as opposed to [14],
we consider that the encryption of a fresh random value by a known key is
indistinguishable from a random value—that is, formally, the pair (enc(n, k), k)
is indistinguishable from (n′, k). The reason is that, in the absence of tags,
each encryption key of a cipher yields a permutation on the space of values.
Therefore, if n follows the uniform distribution, such as in our implementation
(Section 5.2), so does the term enc(n, k). Provided a suitable set of equations,
static equivalence naturally accounts for this property, whereas there seems to
be no natural and immediate way to express the same equivalences using pat-
terns in the style of Abadi and Rogaway. In some sense, the work of Abadi and
Warinschi [27] can be seen as an attempt to do so on a fragment of equivalences
modeling guessing attacks. Recently, the techniques developed in the present
paper have been applied successfully by Abadi, Baudet, and Warinschi [28] to
generalize the ideas of [27] and justify a modeling of guessing attacks purely
based on static equivalence.

In [14], Laud provides a computationally sound proof system handling both
ciphers and exclusive OR in the presence of a passive attacker. This proof system
is used to prove the security of several encryption modes including CBC. This
approach differs from the one developed here as it aims at direct cryptographic
proofs of security (much as in [23, 25]). In comparison, our approach (as in [4,

4

12, 15, 16, 17, 18, 19, 13, 20, 21]) aims to exhibit a class of protocols for which
the absence of formal attacks entails the existence of a computational proof of
security.

Further related work.. Since the publication of a preliminary version [1] of this
article, several papers have addressed the computational soundness of static
equivalence. As already mentioned, Abadi, Baudet, and Warinschi [28] study
resistance against offline guessing attacks modelled in terms of static equivalence
and use the framework developed in this paper to show the soundness of an equa-
tional theory including ciphers, symmetric and asymmetric encryption. In [29],
Bana, Mohassel and Stegers argue that the notion of static equivalence is too
coarse and not sound for many interesting equational theories. They introduce
a general notion of formal indistinguishability relation. This highlights that
soundness of static equivalence only holds for a restricted set of well-formed
frames (in the same vein Abadi and Rogaway used restrictions to forbid key
cycles). They illustrate the unsoundness of static equivalence for modular ex-
ponentiation. More recently, Kremer and Mazaré [30] use our framework to
define soundness of static equivalence in the presence of an adaptive, rather
than purely passive, adversary. They show soundness results of static equiva-
lence for an equational theory modelling modular exponentiation (for a class of
well-formed frames, hence not contradicting [29]), as well as symmetric encryp-
tion with composed keys which can be computed using modular exponentiation
or exclusive or.

The active version of static equivalence is the observational equivalence rela-
tion introduced by Milner and Hoare in the early 80s. Intuitively, two processes
are equivalent if an observer cannot tell the difference between the two pro-
cesses. The observer can in particular intercept and send messages to the pro-
cesses. Comon-Lundh and Cortier [31] have recently shown that observational
equivalence between processes in a fragment of the applied pi-calculus [32] im-
plies cryptographic indistinguishability against active attackers, in the context
of symmetric encryption. They use an extended version of soundness of static
equivalence (called tree soundness) as a key step in their proof.

Outline of the paper.. In the next section, we introduce our abstract and con-
crete models together with the notions of indistinguishability. We then define
the notions of soundness and faithfulness and illustrate some consequences of
soundness with respect to static equivalence on groups. In Section 4, we de-
fine the ideal semantics of abstract terms, present our soundness criterion, and
prove it necessary for a large family of equational theories. As an illustration
(Section 5), we prove the soundness for the theories modeling exclusive OR, as
well as ciphers and lists. We then conclude in Section 6. An appendix contains
detailed proofs of formal lemmas related to static equivalence.

2. Modeling cryptographic primitives with abstract algebras

In this section we introduce some notations and set our abstract and concrete
models.

5

2.1. Abstract algebras
Our abstract models—called abstract algebras—consist of term algebras de-

fined over a many-sorted first-order signature and equipped with equational
theories.

Specifically, a signature (S,F) is made of a set of sorts S, with elements
denoted by s, s1 . . ., and a set F of symbols, written f , f1 . . ., together with
arities of the form ar(f) = s1 × . . .× sk → s (k ≥ 0). Symbols that take k = 0
arguments are called constants; their arity is simply written s. We fix a set
N of names, written a, b . . ., and a set X of variables x, y . . . We assume that
names and variables are given with sorts, and that an infinite number of names
and variables are available for each sort. The set of terms of sort s is defined
inductively by

T ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(T1, . . . , Tk) application of symbol f ∈ F

where for the last case, we further require that Ti is a term of some sort si

and ar(f) = s1 × . . . × sk → s. We write var(T) and names(T) for the set of
variables and names occurring in T , respectively. A term T is ground or closed
iff var(T) = ∅. We may write var(T1, . . . , Tk) instead of var({T1, . . . , Tk}) and
similarly for names.

A context C is a term with holes, or (more formally) a term with distin-
guished variables. When C is a context with n distinguished variables x1, . . . ,
xn, we may write C[x1, . . . , xn] instead of C in order to show the variables, and
when T1, . . . , Tn are terms we may also write C[T1, . . . , Tn] for the result of
replacing each variable xi with the corresponding term Ti.

Substitutions are written σ = {x1 7→ T1, . . . , xn 7→ Tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-sorted substitutions, that is, substitu-
tions σ = {x1 7→ T1, . . . , xn 7→ Tn} for which xi and Ti have the same sort.
Such a σ is closed iff all of the Ti are closed. We let var(σ) =

⋃
i var(Ti),

names(σ) =
⋃

i names(Ti), and extend the notations var(.) and names(.) to tu-
ples and sets of terms and substitutions in the obvious way. The application
of a substitution σ to a term T is written σ(T) = Tσ. If p is a position of T ,
the expression T |p denotes the subterm of T at the position p. The expression
T [T ′]p denotes the term obtained after replacing the subterm in position p of T
with T ′.

Symbols in F are intended to model cryptographic primitives, whereas names
in N are used to model secrets, that is, concretely random numbers. The
intended behavior of the primitives is described by an equational theory E,
that is, an equivalence relation on terms (also written =E) compatible with
applications of symbols and well-sorted substitutions:

• for every k-ary symbol f and terms t1, . . . , tk, t′1, . . . , t′k of the appropriate
sorts, ∀i, ti =E t′i implies that f(t1, . . . , fk) =E f(t′1, . . . , f

′
k);

6

• for every well-sorted substitution σ and terms t, t′, if t =E t′ then tσ =E

t′σ.

In the sequel we further require that E is stable under (well-sorted) sub-
stitution of names. All the equational theories that we consider in this pa-
per satisfy these properties. For instance, symmetric and deterministic en-
cryption is modeled by the theory Eenc generated by the classical equation
Eenc = {dec(enc(x, y), y) = x}.

A symbol f is free with respect to an equational theory E iff there exists a
set of equations F generating E such that f does not occur in F . A sort s is
degenerated in E iff all terms of sort s are equal modulo E.

It is often useful to orient equations and work with rewriting rules instead of
the equational theory. Formally, a rewriting rule is an expression l→ r where l
and r are two terms of the same sort. Given a set of rewriting rules R (called
rewriting system), we write T →R T ′ if there exists a rule l→ r ∈ R, a position
p and a (well-sorted) substitution σ such that T |p = lσ and T ′ = T [rσ]p. We
write→∗

R for the reflexive and transitive closure of→R, and =R for its reflexive,
symmetric and transitive closure.

Given an equational theory E and a rewriting system R, we write →R/E

for the relation =E→R=E . We define →∗
R/E and =R/E similarly as above. R

is E-terminating iff →R/E admits no infinite sequence of reductions T0 →R/E

T1 →R/E . . . Tn →R/E It is E-confluent iff for every T →∗
R/E T1 and

T →∗
R/E T2, there exist T ′1 and T ′2 such that T1 →∗

R/E T ′1, T2 →∗
R/E T ′2,

and T ′1 =E T ′2. Finally, R is E-convergent iff it is both E-terminating and
E-confluent. When E is the syntactic equality, this yields the usual notions of
termination, confluence and convergence.

2.2. Frames, deducibility and static equivalence
We use frames [7, 10] to represent sequences of messages observed by an

attacker, for instance during the execution of a protocol. Formally, a (closed)
frame is an expression ϕ = νã.{x1 = T1, . . . , xn = Tn} where ã is a set of bound
(or restricted) names, and for each i, Ti is a closed term of the same sort as xi.

For simplicity, we only consider (closed) frames ϕ = νã.{x1 = T1, . . . , xn =
Tn} which restrict every name in use, that is, for which ã = names(T1, . . . , Tn).
A name a may still be disclosed explicitly by adding a mapping xa = a to the
frame. Thus we tend to assimilate such frames ϕ to their underlying substitutions
σ = {x1 7→ T1, . . . , xn 7→ Tn}.

Definition 1 (Deducibility). A (closed) term T is deducible from a frame ϕ
in an equational theory E, written ϕ `E T , iff there exists a term M such that
var(M) ⊆ dom(ϕ), names(M) ∩ names(ϕ) = ∅, and Mϕ =E T .

In what follows, again for simplicity, we only consider deducibility problems
ϕ `E T such that names(T) ⊆ names(ϕ).

Consider for instance the theory Eenc and the frame ϕ1 = νk1, k2, k3, k4. {x1 =
enc(k1, k2), x2 = enc(k4, k3), x3 = k3}: the name k4 is deducible from ϕ1 since
dec(x2, x3)ϕ1 =Eenc k4 but neither k1 nor k2 are deducible.

7

Deducibility is not always sufficient to account for the knowledge of an at-
tacker. For instance, it lacks partial information on secrets. Indeed, if we
consider a naive vote protocol where agents simply send their vote (0 or 1) en-
crypted under some key, the security problem is not whether an attacker can
learn the values of 0 or 1, but rather whether an attacker can tell the difference
between a message that contains the vote 0 and a message that contains the vote
1. That is why another classical notion in formal methods is static equivalence.

Definition 2 (Static equivalence). Two frames ϕ1 and ϕ2 are statically equiv-
alent in a theory E, written ϕ1 ≈E ϕ2, iff dom(ϕ1) = dom(ϕ2), and for all terms
M and N such that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩names(ϕ1, ϕ2) =
∅, Mϕ1 =E Nϕ1 if and only if Mϕ2 =E Nϕ2.

For instance, the two frames νk. {x = enc(0, k)} and νk. {x = enc(1, k)} are
statically equivalent with respect to Eenc. However the two frames

νk.{x = enc(0, k), y = k} and νk.{x = enc(1, k), y = k}

are not (consider the test dec(x, y) ?
=0), although the set of terms that can be

deduced from both frames is the same (0 and 1 are two constants known by the
attacker).

2.3. Concrete semantics
We now give terms and frames a concrete semantics, parameterized by an

implementation of the primitives. Provided a set of sorts S and a set of symbols
F as above, a (S,F)-computational algebra A consists of

• a non-empty set of bit-strings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S;

• an effective procedure implementing a function [[f]]A : [[s1]]A×. . .×[[sk]]A →
[[s]]A for each symbol f ∈ F with ar(f) = s1 × . . .× sk → s;

• an effective procedure for deciding a congruence =A,s for each sort s, in
order to check the equality of elements in [[s]]A (the same element may be
represented by different bit-strings); by congruence, we mean a reflexive,
symmetric, transitive relation such that e1 =A,s1 e

′
1, . . . , ek =A,sk

e′k ⇒
[[f]]A(e1, . . . , ek) =A,s [[f]]A(e′1, . . . , e

′
k) (in the remaining we often omit s

and write =A for =A,s);

• an effective procedure to draw random elements from [[s]]A; we denote
such a drawing by x

R←− [[s]]A; the drawing may not follow a uniform
distribution, but no =A,s-equivalence class should have probability 0.

Assume a fixed (S,F)-computational algebraA. We associate to each (closed)
frame ϕ = {x1 = T1, . . . , xn = Tn} a distribution ψ = [[ϕ]]A, of which the draw-
ings ψ̂ R←− ψ are computed as follows:

1. for each name a of sort s appearing in T1, . . . , Tn, draw a value â R←− [[s]]A;

8

2. for each xi (1 ≤ i ≤ n) of sort si, compute T̂i ∈ [[si]]A recursively on the
structure of terms: ̂f(T ′1, . . . , T ′m) = [[f]]A(T̂ ′1, . . . , T̂ ′m); using the values â
defined at step 1 for names.

3. return the value ψ̂ = {x1 = T̂1, . . . , xn = T̂n}.

Such values φ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [[.]]A to tuples of closed terms in the natural
way: e1, . . . , en

R←− [[T1, . . . , Tn]]A denotes the drawing

{x1 = e1, . . . , xn = en}
R←− [[{x1 = T1, . . . , xn = Tn}]]A

for appropriate variables x1, . . . , xn. We also generalize the notation to (tu-
ples of) terms with variables, by specifying a concrete value for each of them:
[[.]]A,{x1=e1,...,xn=en}. Notice that when a term or a frame contains no names,
the translation is deterministic; in this case, we use the same notation to denote
the distribution and its unique value.

In the rest of the paper we focus on asymptotic notions of cryptographic
security and consider families of computational algebra (Aη) indexed by a com-
plexity parameter η ≥ 0. (This parameter η might be thought as the size of
keys and other secret values.) The concrete semantics of a frame ϕ is a family
of distributions over concrete frames ([[ϕ]]Aη). We only consider families of com-
putational algebras (Aη) such that the algebraic operations (i.e. the functions
associated to symbols, the congruence relation =A,s, and the drawing func-
tions) are computable by uniform, probabilistic polynomial-time algorithms in
the complexity parameter η. This ensures that the concrete semantics of every
(fixed) term or frame is efficiently computable (in the same sense).

Families of distributions (ensembles) over concrete frames benefit from the
usual notion of cryptographic indistinguishability. Intuitively, two families of
distributions (ψη) and (ψ′η) are indistinguishable, written (ψη) ≈ (ψ′η), iff no
probabilistic polynomial-time adversary A can guess whether he is given a sam-
ple from ψη or ψ′η with a probability significantly greater than 1

2 . Formally, we
ask the advantage of A,

AdvIND(A, η, ψη, ψ
′
η) = P[ψ̂ R←− ψη : A(η, ψ̂) = 1]− P[ψ̂ R←− ψ′η : A(η, ψ̂) = 1]

to be a negligible function of η. We recall that a function f is said negligible
if for any integer n > 0, there exists η0 such that f(η) ≤ η−n for any η ≥ η0.
(Note that we regard negative functions as negligible here.)

A function f(η) is overwhelming iff 1 − f(η) is negligible. A family of dis-
tributions (ψη) is collision-free (with respect to the family of congruences =Aη)
iff the probability of collision between two random elements from ψη, that is,

P[e1, e2
R←− ψη : e1 =Aη

e2], is a negligible function of η. Note that, by classical
properties of probability, this is equivalent to requiring that the probability of
sampling any given e0 from ψη (modulo =Aη

) is negligible, that is, the function

supe0
P

[
e

R←− ψη : e =Aη e0

]
is bounded by a negligible function of η.

9

By convention, the adversaries considered in this paper are given access
implicitly to the complexity parameter η and to as many fresh random coins as
needed.

3. Comparing abstract and computational algebras

In the previous section we have defined abstract and computational algebras.
We now relate formal notions such as equality, (non-)deducibility and static
equivalence to their computational counterparts, that is, equality, one-wayness
and indistinguishability.

3.1. Soundness and faithfulness
We introduce the notions of sound and faithful computational algebras with

respect to the formal relations studied here: equality, static equivalence and
deducibility.

Let E be an equational theory. A family of computational algebras (Aη) is

• =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2

implies that P[e1, e2
R←− [[T1, T2]]Aη

: e1 =Aη
e2] is overwhelming;

• =E-faithful iff for every closed terms T1, T2 of the same sort, T1 6=E T2

implies that P[e1, e2
R←− [[T1, T2]]Aη

: e1 =Aη
e2] is negligible;

• ≈E-sound iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 ≈E ϕ2

implies that ([[ϕ1]]Aη) ≈ ([[ϕ2]]Aη);

• ≈E-faithful iff for every frames ϕ1, ϕ2 of the same domain, ϕ1 6≈E ϕ2

implies that there exists a polynomial-time adversary A for distinguishing
concrete frames, such that AdvIND(A, η, [[ϕ1]]Aη

, [[ϕ2]]Aη
) is overwhelming;

• 6`E-sound iff for every frame ϕ and closed term T such that names(T) ⊆
names(ϕ), ϕ 6`E T implies that for each polynomial-time adversary A,
P[φ, e R←− [[ϕ, T]]Aη : A(φ) =Aη e] is negligible;

• 6`E-faithful iff for every frame ϕ and closed term T such that names(T) ⊆
names(ϕ), ϕ `E T implies that there exists a polynomial-time adversary
A such that P[φ, e R←− [[ϕ, T]]Aη : A(φ) =Aη e] is overwhelming.

Sometimes, it is possible to prove stronger notions of soundness that hold
without restriction on the computational power of adversaries. In particular,
(Aη) is

• unconditionally =E-sound iff for every closed terms T1, T2 of the same
sort, T1 =E T2 implies that P[e1, e2

R←− [[T1, T2]]Aη
: e1 =Aη

e2] = 1;

• unconditionally ≈E-sound iff for every frames ϕ1, ϕ2 with the same do-
main, ϕ1 ≈E ϕ2 implies ([[ϕ1]]Aη) = ([[ϕ2]]Aη);

10

• unconditionally 6`E-sound iff for every frame ϕ and closed term T such
that names(T) ⊆ names(ϕ) and ϕ 6`E T , the drawings for ϕ and T

are independent: for all φ0, e0, P[φ0, e0
R←− [[ϕ, T]]Aη] = P[φ0

R←− [[ϕ]]Aη] ×
P[e0

R←− [[T]]Aη], and the drawing (R←− [[T]]Aη) is collision-free.

The fact that the first two unconditional notions are stronger than their com-
putational counterparts is clear from the definitions. As for the unconditional
6`E-soundness, observe that if the drawings for ϕ and T are independent, and
the drawing (R←− [[T]]Aη

) is collision-free, then any adversary A has negligible
probability of retrieving the value of T :

P[φ, e R←− [[ϕ, T]]Aη : A(φ) =Aη e]

= P[φ R←− [[ϕ]]Aη
, e

R←− [[T]]Aη
: A(φ) =Aη

e]

≤ sup
e0

P[e R←− [[T]]Aη
: e =Aη

e0]

Generally, (unconditional) =E-soundness is given by construction. Indeed
true formal equations correspond to the expected behavior of primitives and
should hold in the concrete world with overwhelming probability. The other
criteria are however more difficult to fulfill. Therefore it is often interesting to
restrict frames to well-formed ones in order to achieve soundness or faithfulness:
for instance Abadi and Rogaway [4] do forbid encryption cycles (see Section 5.2).

It is worth noting that the notions of soundness and faithfulness introduced
above are not independent.

Proposition 1. Let (Aη) be a =E-sound family of computational algebras. Then

1. (Aη) is 6`E-faithful;

2. if (Aη) is also =E-faithful, (Aη) is ≈E-faithful.

Proof.

1. Suppose names(T) ⊆ names(ϕ) and ϕ `E T , that is, there exists M such
that var(M) ⊆ dom(ϕ), names(M) ∩ names(ϕ) = ∅, and Mϕ =E T . We
define an adversary A which can deduce [[T]] from [[ϕ]] as follows: given
the concrete frame φ = {xi = ei}, A returns a sample e R←− [[M]]Aη,φ.
As (Aη)η≥0 is =E-sound and names(T) ⊆ names(ϕ), A’s probability of
success is greater than 1 minus a negligible function.

2. Suppose ϕ1 6≈E ϕ2: there exist two termsM andN such that var(M,N) ⊆
dom(ϕ1), names(M,N) ∩ names(ϕ1, ϕ2) = ∅, and for instance Mϕ1 =E

Nϕ1 whereas Mϕ2 6=E Nϕ2. Let A be the adversary that tests, given η
and φ, whether [[M]]Aη,φ =Aη [[N]]Aη,φ, and returns the result of the test.
A runs in polynomial-time and by =E-soundness and =E-faithfulness, its
advantage is 1 minus a negligible function. �

11

For many theories, we have that ≈E-soundness implies all the other notions
of soundness and faithfulness. This emphasizes the importance of ≈E-soundness
and provides an additional motivation for its study. As an illustration, let us
consider an arbitrary theory which includes keyed hash functions.

Proposition 2. Let (Aη) be a family of ≈E-sound computational algebras. As-
sume that free binary symbols hs : s × Key → Hash are available for every
sort s, where the sort Key is not degenerated in E, and the drawing of random
elements for the sort Hash, (R←− [[Hash]]Aη), is collision-free. Then

1. (Aη) is =E-faithful;

2. (Aη) is 6`E-sound;

3. Assume the implementations for the symbols hs are collision-resistant, that
is, assume that for all T1, T2 of sort s, given a fresh name k of sort Key,
the quantity

P
[
e1, e2, e

′
1, e

′
2

R←− [[T1, T2, hs(T1, k), hs(T2, k)]]Aη : e1 6=Aη e2, e
′
1 =Aη e

′
2

]
is negligible. Then (Aη) is =E-sound, 6`E-faithful and ≈E-faithful.

Proof.

1. Let T1, T2 be two terms of sort s such that T1 6=E T2. Consider the frame
ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)} where k is a fresh name of sort
Key . As T1 6=E T2 and hs is free, we have ϕ ≈E {x1 = n, x2 = n′}
where n, n′ are two distinct fresh names of sort Hash (Proposition 17 of
Appendix A). By assumption, this entails [[ϕ]] ≈ [[{x1 = n, x2 = n′}]]. In
particular, since (R←− [[Hash]]Aη

) is collision-free, the quantity

P
[
e1, e2

R←− [[T1, T2]]Aη : e1 =Aη e2

]
≤ P

[
e′1, e

′
2

R←− [[hs(T1, k), hs(T2, k)]]Aη : e′1 =Aη e
′
2

]
is negligible.

2. Let ϕ be a frame and T a closed term of sort s such that names(T) ⊆
names(ϕ) and ϕ 6`E T . We let ϕ0 = ϕ ∪ {x = hs(T, k), y = k} and
ϕ1 = ϕ∪{x = n, y = k} where x, y are fresh variables, k is a fresh name of
sort Key , n is a fresh name of sort Hash. As ϕ 6`E T , we have ϕ0 ≈E ϕ1

(Proposition 18 of Appendix A). Thus by assumption, [[ϕ0]] ≈ [[ϕ1]].

By contradiction, suppose that there exists a polynomial-time adversary
A able to deduce [[T]] from [[ϕ]] concretely with non-negligible probability
of success. We build an adversary B that distinguishes between [[ϕ0]] and
[[ϕ1]] as follows: let φ be the sample from [[ϕb]]η to be analyzed, where
b ∈ {0, 1}. Let T̂ be the answer of A when given the restriction of φ

12

to dom(ϕ). B returns 0 if xφ =Aη [[hs]]Aη (T̂ , yφ), and 1 otherwise. By
definition, the advantage of B is

P[φ R←− [[ϕ0]]η : B(η, φ) = 0]− P[φ R←− [[ϕ1]]η : B(η, φ) = 0]

= P[φ R←− [[ϕ0]]η; T̂ R←− A(φ|dom(ϕ)) : xφ =Aη [[hs]]Aη (T̂ , yφ)]

− P[φ R←− [[ϕ1]]η; T̂ R←− A(φ|dom(ϕ)) : xφ =Aη [[hs]]Aη (T̂ , yφ)]

≥ P[φ, e R←− [[ϕ0, T]]η; T̂ R←− A(φ|dom(ϕ)) : T̂ = e)]

− P[φ R←− [[ϕ1]]η; T̂ R←− A(φ|dom(ϕ)) : xφ =Aη [[hs]]Aη (T̂ , yφ)]

In the last probability expression, observe that xφ is drawn from the dis-
tribution (R←− [[Hash]]Aη

) independently from T̂ and yφ. Hence, as the

distribution (R←− [[Hash]]Aη) is collision-free, the advantage of B is non-
negligible; contradiction.

3. Let T1 and T2 be two terms of sort s such that T1 =E T2. Consider the
same frame as before: ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)}. As T1 =E T2

and hs is free, we have ϕ ≈E {x1 = n, x2 = n} where n is a fresh name
of sort Hash (Proposition 19 of Appendix A). By assumption this entails
that [[ϕ]] ≈ [[{x1 = n, x2 = n}]] thus

P
[
e′1, e

′
2

R←− [[hs(T1, k), hs(T2, k)]]Aη : e′1 =Aη e
′
2

]
≥ 1− εη

where εη is a negligible function. As the implementation of hs is collision-
resistant, we deduce that

P
[
e1, e2

R←− [[T1, T2]]Aη : e1 6=Aη e2

]
is negligible. Other properties follow from Proposition 1. �

3.2. ≈E-soundness implies classical assumptions on groups
In this section we present some interesting consequences of ≈E-soundness.

Inspired by the work of Hohenberger and Rivest on pseudo-freeness [33, 34], we
prove that several standard cryptographic assumptions on groups are implied
by the soundness of static equivalence. We concentrate on abelian groups as
these are more relevant for cryptographic applications. We believe that similar
techniques would apply for non-commutative groups as well.

We model an abelian group G with exponents taken over a commutative
ring A by an abstract algebra over the following signature:

∗ : G×G→ G
1G : G
+ : A×A→ A
0 : A

− : A→ A
· : A×A→ A

1A : A
exp : G×A→ G

13

We use the infix notation for the operators ∗, ·, +, and write ga to denote
exp(g, a). Note that the inverse operation on G is represented here by g 7→
exp(g,−(1A)) = g−(1A). We consider the equational theory EG generated by the
following equations (where x, y, z are variables of sort G, and u, v, w variables
of sort A):

u+ v = v + u
u+ (v + w) = (u+ v) + w

u+ 0A = u
u+ (−u) = 0A

u · v = v · u
u · (v · w) = (u · v) · w

u · 1A = u
(u+ v) · w = u · w + v · w

x ∗ y = y ∗ x
x ∗ (y ∗ z) = (x ∗ y) ∗ z

x ∗ 1G = x

(xu)v = x(u·v)

xu ∗ xv = xu+v

x1A = x
x0A = 1G

(x ∗ y)u = xu ∗ yu

We now recall several classical problems on groups. For cryptographic ap-
plications, it is desirable that these problems be hard, that is, not feasible by
any probabilistic polynomial-time adversary:

• discrete logarithm (DL) problem: given g and g′, find a, such that ga = g′;

• computational Diffie-Hellman (CDH) problem: given g, ga and gb, find
gab;

• decisional Diffie-Hellman (DDH) problem: given g, ga and gb, distinguish
gab from a random element gc;

• RSA problem: given elements a and ga, find g.

A more detailed presentation of these hard problems can be found in [35].
Assume a family of computational algebras (Aη) over the signature above

such that (Aη) is ≈EG
-sound, at least for some subset of well-formed frames

WF . Consider the two frames

ϕ1 = νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = ga·b} and
ϕ2 = νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}.

and assume that ϕ1, ϕ2 ∈ WF . Then no probabilistic polynomial-time adver-
sary A can solve the DDH problem in (Aη) with non-negligible probability.

Indeed, as suggested in [7], the question of (computationally) distinguishing
these two frames exactly encodes the DDH problem. Given the equational the-
ory EG, we prove the formal equivalence ϕ1 ≈EG

ϕ2 (Lemma 21 of Appendix B).
Thus, by ≈EG

-soundness, the DDH problem is hard in (Aη).
Clearly, if one can solve the DL problem, one can also solve the CDH prob-

lem, which itself allows us to solve the DDH problem. Therefore, the hardness
of DDH implies the hardness of the two other problems.

In a similar way, we see that ≈EG
-soundness on an augmented signature

implies the hardness of RSA. Instead of directly encoding the RSA problem,
we introduce a slightly weaker decision problem, whose hardness implies the

14

hardness of RSA. The encoding of this problem requires the extension of the
signature by a unary function symbol h : G→ Hash, adding no equation to the
theory. Consider the two frames

ϕ3 = νg, a.{x1 = ga, x2 = a, x3 = h(g)} and
ϕ4 = νg, a, h.{x1 = ga, x2 = a, x3 = h}.

We prove that ϕ3 ≈EG
ϕ4 in Lemma 22 of Appendix B. As above, if an im-

plementation (Aη) is ≈EG
-sound of for some subset of well-formed frames WF

including ϕ3 and ϕ4, then the RSA problem cannot be efficiently solved in (Aη).
Indeed, any adversary A to the RSA-problem can be turned to an (equally effi-
cient) adversary against ([[ϕ3]]Aη

) ≈ ([[ϕ4]]Aη
) simply as follows: given a sample

{x1 = e1, x2 = e2, x3 = e3} from either side, let e be the result of A applied on
η, e1 and e2; return 1 (“left-hand side”) if [[h]]Aη (e) equals to e3, 0 otherwise.

An interesting open question is whether ≈EG
-soundness implies or is implied

by Rivest’s notion of pseudo-free groups [34], or equivalently [36], the strong
RSA property. We conjecture that the two notions are in fact incomparable.
Indeed, on the one hand, our notion implies the hardness of DDH, which remains
an open question for strong RSA. On the other hand, pseudo-freeness and strong
RSA deal with a form of adaptive attackers while our model is purely non-
adaptive.

4. A sufficient (and often necessary) criterion for ≈E-soundness

We now present useful results for proving ≈E-soundness properties in gen-
eral. Notably, we provide a sufficient criterion for ≈E-soundness in Section 4.1
and prove it necessary under additional assumptions in Section 4.2.

4.1. Ideal semantics and ≈E-soundness criterion
Given an implementation of the primitives, we have defined in Section 2.3

the concrete semantics [[ϕ]]Aη associated to every frame ϕ . We now define the
ideal semantics of a frame ϕ, intuitively as the conditional distribution over
all the concrete values (in the appropriate space) that pass every formal test
satisfied by ϕ.

Specifically, for every frame ϕ, we define the tests of ϕ to be

test(ϕ) = {(M,N) | var(M,N) ⊆ dom(ϕ), names(M,N) ∩ names(ϕ) = ∅}.

We let eqE(ϕ) be the set of tests that are true in ϕ:

eqE(ϕ) = {(M,N) ∈ test(ϕ) |Mϕ =E Nϕ}

Note that, by definition, ϕ ≈E ϕ′ iff eqE(ϕ) ∩ test(ϕ′) = eqE(ϕ′) ∩ test(ϕ).
Let (Aη) be a family of computational algebras, ϕ = {x1 = T1, . . . , xn = Tn}

be a frame, and si be the sort of xi. We define the set of eligible, well-formed
values for ϕ by

ValAη (ϕ) =
{
{x1 = e1, . . . , xn = en} | (e1, . . . , en) ∈ [[s1]]Aη × · · · × [[sn]]Aη

}
15

and write φ R←− [[ϕ]]valAη
for the process of drawing a random value φ = {x1 =

e1, . . . , xn = en} from ValAη
(ϕ) using the drawings ei

R←− [[si]]Aη
in the natural

way.
Consider the following subset of concrete frames, intuitively, that pass all

the valid tests of ϕ:

Val′Aη
(ϕ) =

{
φ ∈ ValAη (ϕ) | ∀(M,N) ∈ eqE(ϕ),

P
[
u, v

R←− [[M,N]]Aη,{x1=e1,...,xn=en} : u = v
]

= 1
}

Note that, provided that (Aη) is unconditionally =E-sound, Val′Aη
(ϕ) is non-

empty as it contains at least the values given by the usual semantics of ϕ.

Definition 3 (Ideal semantics). Let (Aη) be an unconditionally =E-sound
family of computational algebras and ϕ be a frame. The ideal semantics of ϕ
is the family of the distributions [[ϕ]]ideal

Aη
obtained by conditionning each distri-

bution [[ϕ]]valAη
to the set of values Val′Aη

(ϕ). In other words, the probability to
draw φ ∈ ValAη

(ϕ) is

P[φ← [[ϕ]]ideal
Aη

] =

{
0 if φ 6∈ Val′Aη

(ϕ)
1
V P[φ R←− [[ϕ]]valAη

] otherwise

where V = P[φ0
R←− [[ϕ]]valAη

: φ0 ∈ Val′(ϕ)].

We say that (Aη) has uniform distributions if and only if for every η and
every sort s, [[s]]Aη is a finite set, =Aη,s is the usual equality, and the distribution
associated to s by Aη is the uniform one over [[s]]Aη .

By classical property of conditional probabilities, we note that in the case of
uniform distributions, the ideal semantics of a frame ϕ coincides with the family
of uniform distributions over the (finite, non-empty) sets Val′Aη

(ϕ).
For instance, let ϕ = νn1, n2.{x1 = n1, x2 = n2} with n1 and n2 of sort s.

Then, given that E is stable by substitution of names, we have that eqE(ϕ) =
{(M,N) ∈ test(ϕ) | M =E N}. By unconditional =E-soundness, we deduce
that [[ϕ]]ideal

Aη
is simply the uniform distribution over [[s]]Aη × [[s]]Aη .

We now state our ≈E-soundness criterion: intuitively, the two semantics,
concrete and ideal, should be indistinguishable.

Proposition 3 (≈E-soundness criterion). Let (Aη) be an unconditionally
=E-sound family of computational algebras. Assume that for every frame ϕ
it holds that ([[ϕ]]Aη) ≈ ([[ϕ]]ideal

Aη
). Then (Aη) is ≈E-sound.

Proof. Let ϕ1 ≈E ϕ2. The equality eqE(ϕ1) ∩ test(ϕ2) = eqE(ϕ2) ∩ test(ϕ1)
entails Val′Aη

(ϕ1) = Val′Aη
(ϕ2), thus the distributions [[ϕ1]]ideal

Aη
and [[ϕ2]]ideal

Aη
are

equal. We use the transitivity of the indistinguishability relation ≈ to conclude:
([[ϕ1]]Aη

) ≈ ([[ϕ1]]ideal
Aη

) = ([[ϕ2]]ideal
Aη

) ≈ ([[ϕ2]]Aη
). �

16

4.2. Transparent frames
In this section we show that our soundness criterion is necessary for a general

class of equational theories, called transparent theories. In those theories, each
frame can be associated to an equivalent transparent frame (defined below),
which is easier to analyze.

Definition 4 (Transparent frames). A frame ϕ is transparent for an equa-
tional theory E if each of its subterms is deducible from ϕ in E.

Example 1. In the theory Eenc, the frame ϕ1 = {x1 = enc(enc(k4, k3), k1), x2 =
enc(k1, k2), x3 = k2} is not transparent, as neither k3 nor k4 are deducible, but
the frame ϕ1 = {x1 = enc(n1, k1), x2 = enc(k1, k2), x3 = k2} is.

The following proposition finitely characterizes the equations verified by a
transparent frame.

Proposition 4. Let ϕ be a transparent frame for E. Then, ϕ is of the form

ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]}

where C1, . . . , Cn are (not necessarily linear) contexts such that names(C1, . . . , Cn) =
∅, C1[a1, . . . , am], . . . , Cn[a1, . . . , am] are closed and, a1, . . . , am are distinct de-
ducible names: ϕ `E ai.

For each ai, let Mai be a term such that var(Mai) ⊆ {x1, . . . , xn}, names(Mai)∩
names(ϕ) = ∅ and Maiϕ =E ai. Then every equation which holds in ϕ is a log-
ical consequence of E and the equations xj = Cj [Ma1 , . . . ,Mam], written

E ∪ {xj = Cj [Ma1 , . . . ,Mam
] | 1 ≤ j ≤ n} |= eqE(ϕ).

By logical consequence, we refer to the usual first-order theory of equality, where
the variables x1, . . . , xn are considered here as constants.

Proof. Let (M,N) ∈ eqE(ϕ). By definition, we have Mϕ =E Nϕ, that is,
M{xj 7→ Cj [a1, . . . , am]}1≤j≤n =E N{xj 7→ Cj [a1, . . . , am]}1≤j≤n. Since E is
stable by substitution of names, we obtain

M{xj 7→ Cj [Ma1 , . . . ,Mam
]}1≤j≤n =E N{xj 7→ Cj [Ma1 , . . . ,Mam

]}1≤j≤n.

Using the equalities xj = Cj [Ma1 , . . . ,Mam] and by transitivity, we obtain {xj =
Cj [Ma1 , . . . ,Mam] | 1 ≤ j ≤ n} ∪ E |= M = N . �

Another nice and useful property of transparent frames is that their concrete
and ideal semantics coincide.

Proposition 5. Let (Aη) be an unconditionally =E-sound family of computa-
tional algebras, having uniform distributions. Let ϕ be a transparent frame. The
concrete and the ideal semantics of ϕ yield the same family of distributions: for
all η, [[ϕ]]Aη = [[ϕ]]ideal

Aη
.

17

Proof. Let ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]}, withMiϕ =E

ai (1 ≤ i ≤ m) as above. Let si be the sort of ai, s′j be the sort of xj and η a
given complexity parameter.

The usual concrete semantics of ϕ consists in mapping every drawing of
names from the set E = [[s1]]Aη × · · · × [[sm]]Aη to a value in F = ValAη (ϕ). Let
us note α : E → F this function, defined by:

α(e1, . . . , em) =
{
x1 = [[C1[y1, . . . , ym]]]{y1=e1,...,ym=em}, . . . ,

xn = [[Cn[y1, . . . , ym]]]{y1=e1,...,ym=em}

}
where the yi are fresh variables respectively of sort si, and we omit the subscript
Aη for sake of clarity.

Using the Mi, we can also define a function β : F → E :

β(φ) =
(
[[M1]]φ, . . . , [[Mm]]φ

)
We note that the distribution of [[Miϕ]] equals to that of [[Mi]]φ where φ R←−

[[ϕ]], or equivalently, of [[Mi]]α(e1,...,en) where (e1, . . . , en) R←− E . As Miϕ =E ai,
(Aη) is unconditionally =E-sound, and no element of E has probability 0, we
obtain that β ◦α = I dE . Thus α is injective and yields a bijection from E to its
image G = α(E). By assumption, E is equipped with the uniform distribution,
therefore the concrete semantics of ϕ is the uniform distribution on G.

Moreover G satisfies:

G = {φ ∈ F | α(β(φ)) = φ}

=
{
φ ∈ F | ∀j, [[Cj [y1, . . . , ym]]]{y1=[[M1]]φ,...,ym=[[Mi]]φ}

= [[xj]]φ
}

=
{
φ ∈ F | ∀j, [[Cj [M1, . . . ,Mm]]]φ = [[xj]]φ

}
As ϕ is transparent, by Proposition 4, eqE(ϕ) is implied by the equations
Cj [M1, . . . ,Mm] = xj and E. By unconditional =E-soundness, we deduce that
the values in G pass all the tests in eqE(ϕ); in other words, G ⊆ Val′Aη

(ϕ).
Conversely, every element of Val′Aη

(ϕ) is trivially in G; therefore G = Val′Aη
(ϕ).

Since F is equipped with uniform distribution, we obtain that the ideal seman-
tics of ϕ coincides with the uniform distribution on G, and therefore with its
concrete semantics. �

A noticeable consequence of Proposition 5 is that, in the case of uniform
distributions, two statically-equivalent transparent frames are always indistin-
guishable. (The argument is similar to that of Proposition 3.) This motivates
the following definition, for the purpose of studying ≈E-soundness or a converse
to Proposition 3.

Definition 5. An equational theory E is transparent if and only if for every
frame ϕ, there exists a (not necessarily unique) transparent frame ϕ such that
ϕ ≈E ϕ.

18

Transparent frames and theories are related to the notion of patterns intro-
duced by Abadi and Rogaway [4] and used in subsequent work [13, 12] so as
to define computationally sound formal equivalences. There, messages are first
mapped to patterns by replacing non-deducible subterms with boxes �. By
definition, two messages are then equivalent if and only if they yield the same
pattern (up to renaming of names). For example, if {M}K denotes the proba-
bilistic encryption of M by a key K, the message ({{K4}K3}K1 , {K1}K2 , K2) is
mapped to the pattern ({�}K1 , {K1}K2 , K2). (Compare with example 1 where
we have ϕ1 ≈Eenc ϕ1.)

However, the notion of transparent frames is defined for any equational the-
ory. Also, it might be the case that a frame corresponds to several transparent
frames. For example, consider the theory of the exclusive OR (given in Sec-
tion 5.1) and the frame:

ϕ = {x1 = n1 ⊕ n2, x2 = n2 ⊕ n3, x3 = n1 ⊕ n3}.

There are several transparent frames equivalent to ϕ, for instance {x1 = n1 ⊕
n2, x2 = n1, x3 = n2}, {x1 = n1, x2 = n1 ⊕ n2, x3 = n2} and {x1 = n1, x2 =
n2, x3 = n1 ⊕ n2}.

We believe that the notion of transparent frames is relevant in many theories
useful in cryptography. As a matter of fact, the two theories of exclusive OR
and ciphers considered in Section 5 are transparent. However, the notion of
transparent frames does not subsume that of patterns, defined by Abadi and
Rogaway. In particular, for the theory of probabilistic symmetric encryption,
that is,

Esenc = {sdec(senc(x, y, z), y) = x, sdec success(senc(x, y, z), y) = ok},

it is unclear how to associate an equivalent transparent frame to the frame
νn, k, r.{x = senc(n, k, r), y = k}, although it is arguably a pattern in the sense
of Abadi and Rogaway (once cast into our syntax). The reason is that the
random coin r is not deducible, but the term senc(n, k, r) cannot be replaced
with a fresh name because of the visible equation sdec success(x, y) = ok. We
might exclude r from being a subterm by modifying the notion of subterms (for
example, in Abadi and Rogaway’s work, the random factor does not appear
explicitely in terms). However, this would undermine the properties of trans-
parent frames mentioned above. Thus, we regard the notions of patterns and
transparent frames as complementary.

Note that we have proved en passant that ≈E is decidable for transparent
theories E for which =E is decidable, provided that the reduction to equiva-
lent transparent frames is effective. Indeed, given two frames ϕ1 and ϕ2, we
associate to each of them one of its statically equivalent transparent frame ϕ1

and ϕ2, respectively. It is then straightforward to check whether ϕ1 and ϕ2 are
equivalent using the finite characterization of eqE(ϕi) by Proposition 4.

Finally, we establish a completeness result for our soundness criterion in the
cases of transparent theories.

19

Theorem 6. Assume a transparent theory E. Let (Aη) be a family of com-
putational algebras such that (Aη) has uniform distributions, is ≈E-sound and
unconditionally =E-sound. Then the soundness criterion of Proposition 3 is
satisfied: for every frame ϕ, ([[ϕ]]Aη) ≈ ([[ϕ]]ideal

Aη
).

Proof. Since E is transparent, there exists a transparent frame ϕ such that
ϕ ≈E ϕ. By ≈E-soundness, we deduce ([[ϕ]]Aη) ≈ ([[ϕ]]Aη). By Proposition 5,
we have that ([[ϕ]]Aη) = ([[ϕ]]ideal

Aη
). Altogether, we conclude that ([[ϕ]]Aη) ≈

([[ϕ]]ideal
Aη

) since ϕ ≈E ϕ implies ([[ϕ]]ideal
Aη

) = ([[ϕ]]ideal
Aη

) as before. �

5. Examples

We now apply the framework of Sections 3 and 4 to establish two ≈E-
soundness results, concerning the theory of exclusive OR and that of ciphers
and lists.

5.1. Exclusive OR
We study the soundness and faithfulness problems for the natural theory

and implementation of the exclusive OR (XOR), together with constants and
(pure) random numbers.

The formal model consists of a single sort Data, an infinite number of names,
the infix symbol ⊕ : Data ×Data → Data and two constants 0, 1 : Data. Terms
are equipped with the equational theory E⊕ generated by:

(x⊕ y)⊕ z = x⊕ (y ⊕ z)
x⊕ y = y ⊕ x

x⊕ x = 0
x⊕ 0 = x

As an implementation, we define the computational algebras Aη, η ≥ 0:

• the concrete domain [[Data]]Aη is the set of bit-strings of length η, {0, 1}η,
equipped with the uniform distribution;

• ⊕ is interpreted by the usual XOR function over {0, 1}η;

• [[0]]Aη
= 0η and [[1]]Aη

= 1η.

In this setting, statically equivalent frames enjoy an algebraic characteri-
zation. Let AC be the equational theory corresponding to the two left-hand
equations for associativity and commutativity. We use the other two equations
as a rewriting system R⊕

x⊕ x → 0
x⊕ 0 → x

where we allow arbitrary AC-manipulations before and after each rewriting
step. It is easy to show that R⊕ is AC-convergent. Specifically, a term T is
in R⊕/AC-normal form (or simply normal form in the following) if and only if
each name, variable and constant 1 occur at most once in T , and 0 does not
occur in T unless T = 0.

20

Let a1, . . . , an be distinct names. Using the rewriting system R⊕/AC,
every closed term T with names(T) ⊆ {a1, . . . , an} can be written T =E⊕

β0 ⊕
⊕n

j=1 βj aj where βj ∈ {0, 1}, the aj are mutually distinct, and we use
the convention 0aj = 0 and 1aj = aj . In the following, we see {0, 1} as the
two-element field F2; thus terms modulo =E⊕ form a F2-vector space.

Similarly a frame ϕ with names(ϕ) ⊆ {a1, . . . , an} is written

ϕ =E⊕

x1 = α1,0 ⊕
n⊕

j=1

α1,j aj , . . . , xm = αm,0 ⊕
n⊕

j=1

αm,j aj

where αi,j ∈ F2. Let us group the coefficients into a (m + 1) × (n + 1)-matrix
α = (αi,j) over F2. Then, ϕ is described by the formal relation

1
x1

...
xm

 =

1 0 . . . 0
α1,0 α1,1 . . . α1,n

...
...

αm,0 αm,1 . . . αm,n

︸ ︷︷ ︸

α

·

1
a1

...
an

We now characterize the set eqE⊕
(ϕ) of equations valid in ϕ. Let M and

N be two terms such that var(M,N) ⊆ dom(φ),names(M,N) ∩ names(ϕ) = ∅.
First note that Mϕ =E⊕ Nϕ if and only if (M ⊕ N)ϕ =E⊕ 0. Therefore we
only study the case where N = 0.

Assume M in normal form. Mϕ =E⊕ 0 and names(M) ∩ names(ϕ) = ∅
implies names(M) = ∅. Let M =AC β0⊕

⊕m
i=1 βi xi. The condition Mϕ =E⊕ 0

is equivalent to the vectorial equation

(β0, . . . , βm) · α = 0

that is, (β0, . . . , βm) belongs to the co-kernel of α, noted coker(α).
Finally let ϕ and ϕ′ be two frames with names(ϕ,ϕ′) ⊆ {a1, . . . , an} and

dom(ϕ) = dom(ϕ′) = {x1, . . . , xm}. Let α and α′ be the two corresponding
(m+ 1)× (n+ 1)-matrices defined as above. From the previous discussion, we
deduce that

ϕ ≈E⊕ ϕ′ ⇔ coker(α) = coker(α′)

that is, if we write im(α) = {α · γ} the image of α, we have by duality

ϕ ≈E⊕ ϕ′ ⇔ im(α) = im(α′). (1)

This characterization is the key point of our main result for the theory of
XOR.

Theorem 7. The implementation of XOR for the considered signature, (Aη),
is unconditionally =E⊕-, ≈E⊕- and 6`E⊕-sound. It is also =E⊕-, ≈E⊕- and
6`E⊕-faithful.

21

Proof. The unconditional =E⊕ -soundness is clear, hence the 6`E⊕ -faithfulness
(Proposition 1).

Let us show that (Aη) is =E⊕ -faithful. Assume that T1 and T2 are two terms
such that T1 6=E⊕ T2. This is equivalent to T1 ⊕ T2 6=E⊕ 0. Thus it is sufficient
to consider the case where T 6= 0 is a closed term in normal form. The semantics
of T is either the constant 1η (if T = 1) or the uniform distribution (if T 6= 1)
on {0, 1}η. Thus P

[
[[T]]Aη = 0

]
is negligible. Hence the =E⊕ -faithfulness holds

and by proposition 1, so does the ≈E⊕ -faithfulness.
We now address the unconditional ≈E⊕ -soundness. Let ϕ be a frame, and

α = (αi,j) its (m + 1) × (n + 1)-matrix associated as before. Let us see α as a
F2-linear function from (F2)n+1 to (F2)m+1.

For simplicity, let us fix the order of variables in dom(ϕ) and assimilate the
possible concrete values of ϕ, ValAη

(ϕ), to the set F = {1η}× (F2)mη where the
first η 1-bits are added for technical reasons.

The usual concrete semantics of ϕ consists in drawing a random vector uni-
formly from E = {1η} × (F2)nη for the value of names, and then applying a
F2-linear function α̂ : (F2)(n+1)η → (F2)(m+1)η to it. Specifically, if we see
(F2)(n+1)η as F2

η × . . .× F2
η︸ ︷︷ ︸

n+1

and similarly for (F2)(m+1)η, the function α̂ is

defined by

α̂ (f0, . . . , fn) =

 n⊕
j=0

α0,j fj , . . . ,

n⊕
j=0

αm,j fj

Since α̂ is linear, all the inverse images α̂−1({x}), x ∈ im(α̂), have the same

cardinal. Hence, the concrete semantics of ϕ is also the uniform distribution
over α̂(E) = im(α̂) ∩ F .

Assume a second frame ϕ′ such that ϕ ≈E⊕ ϕ′. Define α′ and α̂′ similarly
as above. By equation 1, we have im(α) = im(α′).

Now, if we see (F2)(m+1)η as F2
m+1 × . . .× F2

m+1︸ ︷︷ ︸
η

, we may write α̂ =

α× . . .× α︸ ︷︷ ︸
η

and similarly for α′. Thus,

im(α̂) = im(α)× . . .× im(α)︸ ︷︷ ︸
η

= im(α′)× . . .× im(α′)︸ ︷︷ ︸
η

= im(α̂′)

which implies that ϕ and ϕ′ have the same concrete semantics. Thus E⊕ is
unconditionally ≈E⊕ -sound.

Last, we prove the unconditional 6`E⊕ -soundness. Let ϕ be a frame and T
a term, both in normal form, such that ϕ 6`E⊕ T and names(T) ⊆ names(ϕ) =
{a1, . . . , an}. Let α be associated to ϕ as before and T =AC β0 ⊕

⊕n
j=1 βj aj .

Let γ be the (m+ 2)× (n+ 1)-matrix obtained by augmenting α with a last

22

row equal to β = (β0, . . . , βn):

γ =

1 0 . . . 0
α1,0 α1,1 . . . α1,n

...
...

αm,0 αm,1 . . . αm,n

β0 β1 . . . βn0

Since ϕ 6`E⊕ T , in particular there exists no M in normal form such that
names(M) = ∅ and Mϕ =E⊕ T . In other words, β is linearly independent from
the other rows in the matrix γ above.

In particular, it is independent from the first row (1, 0, . . . , 0), that is, there
exists j ≥ 1 such that βj 6= 0. We deduce that the distribution (R←− [[T]]Aη

) is
the uniform one over {0, 1}η, thus it is collision-free.

As for the first condition of unconditional 6`E-soundness, by a similar rea-
soning as before, we have that the concrete semantics of (ϕ, T) is the uniform
distribution over the image of E = {1η} × (F2)nη by γ̂ (defined similarly as α̂
above). Let us see β a linear function from (F2)n+1 to F2 and define β̂ as pre-
viously. Next we prove that the image γ̂(E) is the cartesian product of the two
sets α̂(E) and β̂(E). It follows that the drawings for ϕ and T are independent.

The inclusion γ̂(E) ⊆ α̂(E) × β̂(E) is trivial. As β is independent from the
rows of α, there exists a vector u ∈ (F2)n+1 such that β(u) = 1 and α(u) = 0
(otherwise ker(β) ⊇ ker(α) implies β ∈ coim(β) ⊆ coim(α)). Let x, y ∈ E .
We prove that there exists z ∈ E such that α̂(z) = α̂(x) ∈ (F2)(m+1)η and
β̂(z) = β̂(y) ∈ (F2)η.

Indeed, let us see E as ({1} × (F2)n)η. Using the corresponding bases, let
x = (x1, . . . , xη) and y = (y1, . . . , yη) with xi, yi ∈ {1} × (F2)n. We let zi =
xi + (β(yi)− β(xi)) · u and z = (z1, . . . , zη). Thus, α̂(z) = (α(z1), . . . , α(zη)) =
(α(x1), . . . , α(xη)) = α̂(x) and β̂(z) = (β(z1), . . . , β(zη)) = (β(y1), . . . , β(yη)) =
β̂(y). Besides, α(u) = 0 implies that the first coordinate of u is 0, thus the first
coordinate of each zi is 1, that is, z ∈ E . �

We conclude this section by a proof that the E⊕ is transparent as announced
in Section 4.

Proposition 8. The equational theory E⊕ is transparent.

Proof. Indeed, let ϕ be frame and α be its associated (m+1)× (n+1)-matrix
as before. Let d be the dimension of im(α). There exists a (m + 1) × d sub-
matrix α′ of α such that α′ is injective and im(α′) = im(α) (consider a maximal
independent set of columns of α). As the first column of α is independent from
the others (it starts with a 1 whereas the others start with a 0), we may assume
without loss of generality that the first column of α′ is that of α. (In particular
d ≥ 1.)

23

Let a′1 . . . a
′
d−1 be distinct names. We let ϕ′ be the frame associated to α′,

described by the relation
1
x1

...
xm

 = α′ ·

1
a′1
...

a′d−1

 .

As im(α′) = im(α), we have ϕ′ ≈E⊕ ϕ. Besides, since α′ is injective, there
exists α′′ such that α′′ · α′ is the identity d× d-matrix. This entails that every
a′i is deducible from ϕ′, that is, ϕ′ is transparent. �

5.2. Symmetric, deterministic, length-preserving encryption and lists
We now detail the example of symmetric, deterministic and length-preserving

encryption schemes. Such schemes, also known as pseudo-random permutations
or ciphers [37], are widely used in practice, the most famous examples (for
fixed-length inputs) being DES and AES.

Our formal model consists of a set of sorts S = {Data,List0,List1 . . .Listn . . .},
an infinite number of names for every sort Data and Listn, and the following
symbols (for every n ≥ 0):

encn, decn : Listn ×Data → Listn encryption, decryption
consn : Data × Listn → Listn+1 list constructor
headn : Listn+1 → Data head of a list
tailn : Listn+1 → Listn tail of a list

nil : List0 empty list
0, 1 : Data constants

We consider the equational theory Esym generated by the following equations
(for every n ≥ 0 and for every name a0 of sort List0):

decn(encn(x, y), y) = x
encn(decn(x, y), y) = x
headn(consn(x, y)) = x
tailn(consn(x, y)) = y

consn(headn(x), tailn(x)) = x

enc0(nil, x) = nil
dec0(nil, x) = nil

tail0(x) = nil
a0 = nil

where x, y are variables of the appropriate sorts in each case. The effect of the
last four equations is that the sort List0 is degenerated in Esym, that is, all terms
of sort List0 are equal. When oriented from left to right, the equations above
form a convergent rewriting system written R.

Notice that each term has a unique sort. As the subscripts n of function
symbols are redundant with sorts, we tend to omit them in terms. For instance,
if k, k′ : Data, we may write enc(cons(k, nil), k′) instead of enc1(cons0(k, nil), k′).

The concrete meaning of sorts and symbols is given by the computational
algebras Aη, η > 0, defined as follows:

24

• the carrier sets are [[Data]]Aη
= {0, 1}η and [[Listn]]Aη

= {0, 1}nη equipped
with the uniform distribution and the usual equality relation;

• encn, decn are implemented by a cipher for data of size nη and keys of size
η; (we discuss the required cryptographic assumptions later);

• [[nil]]Aη
is the empty bit-string, [[consn]]Aη

is the usual concatenation, [[0]]Aη
=

0η, [[1]]Aη = 1η, [[headn]]Aη returns the η first digits of bit-strings (of size
(n+ 1)η) whereas [[tailn]]Aη returns the last nη digits.

We emphasize that no tags are added to messages. Tags—and in particular tags
under encryption—would be harmful to the ≈Esym-soundness. Indeed we expect
that the formal equivalence νa, b.{x = enc(a, b), y = b} ≈Esym νa, b, c.{x =
enc(a, b), y = c} also holds in the computational world; but this would not be
the case if a is tagged before encryption. In case a was tagged before encryption,
an adversary could use the tag to check the success of decrypting enc(a, b) with
b.

For simplicity we assume without loss of generality that encryption keys
have the same size η as blocks of data. We also assume that keys are generated
according to the uniform distribution.

It is not difficult to prove that the above implementation is unconditionally
=Esym-sound (by induction on the structure of terms and equational proofs), that
is, every true formal equality holds with probability 1 in the concrete world. We
note that the equation encn(decn(x, y), y) = x is satisfied because encryption by
a given key is length-preserving and injective, hence also surjective.

Before studying the≈Esym-soundness, we need to characterize statically equiv-
alent frames. Specifically, we show that this theory is transparent.

Proposition 9. Let ϕ be a closed frame. There exists a transparent frame ϕ
such that ϕ ≈Esym ϕ.

The proof of Proposition 9 relies on the following Lemma 10, that is used
stepwise to rewrite a frame into a transparent frame.

Lemma 10. Let ϕ be a closed frame in R-normal form. Let T be a subterm of
ϕ of the form T = enc(U, V), T = dec(U, V), T = head(V) or, T = tail(V) and
n a fresh name of the same sort than T . Assume that V is not deducible from
ϕ, that is, ϕ 6`Esym V . Then we have that

ϕ ≈Esym ϕ
′

where ϕ′ = ϕ{T 7→ n} is obtained by replacing every occurrence of T in ϕ
with n.

The proof of Lemma 10 is given in Appendix C. We prove Proposition 9 by
applying this lemma repeatedly on an initial frame ϕ. The procedure terminates
as each rewriting step decreases the total size of non-deducible subterms in the
frame. Besides, the resulting frame ϕ is transparent. Indeed, by contradiction,

25

suppose that ϕ is not transparent; define T as the father of the largest non-
deducible subterm of ϕ; it is easy to see that T is necessarily of the form T =
enc(U, V), T = dec(U, V), T = head(V) or T = tail(V) with ϕ 6`Esym V ; thus
Lemma 10 applies.

Note that for any subterm W , ϕ 6`Esym W implies ϕ{T 7→ n} 6`Esym W{T 7→
n}. As a consequence, the procedure above yields a unique transparent frame ϕ
(modulo renaming), no matter in which order the subterms T are substituted.

Provided that `Esym is decidable1, the above procedure for associating trans-
parent frames to frames is effective. Thus, as noticed in Section 4.2, we obtain
another proof of the decidability of ≈Esym using Proposition 4. Notice that
statically equivalent transparent frames may not be equal modulo renaming:
consider for instance {x = enc(a, b), y = b} ≈Esym {x = c, y = b}.

We now study the ≈Esym-soundness problem under classical cryptographic
assumptions. Standard assumptions on ciphers include the notions of super
pseudo-random permutation (SPRP) and several notions of indistinguishability
(IND-Pi-Cj, i, j = 0, 1, 2). In particular, IND-P1-C1 denotes the indistinguisha-
bility against lunchtime chosen-plaintext and chosen-ciphertext attacks. These
notions and the relations between them have been studied notably in [37].

Initially, the SPRP and IND-P1-C1 assumptions apply to (block) ciphers
specialized to plaintexts of a given size. Interestingly, this is not sufficient
to imply ≈Esym-soundness for frames which contain plaintexts of heterogeneous
sizes, encrypted under the same key. Thus we introduce a strengthened version
of IND-P1-C1, applying to a collection of ciphers (Eη,n,Dη,n), where η is the
complexity parameter and n ≥ 0 is the number of blocks of size η contained
in plaintexts and ciphertexts. One may note that there exist operation modes
which turn a fixed size block cipher realizing SPRP into a cipher which handles
variable length inputs while preserving SPRP. We refer the reader to [38] for an
example of such a mode and further references.

We define the ω-IND-P1-C1 assumption by considering the following exper-
iment Gη with a 2-stage adversary A = (A1,A2):

• first a key k is randomly chosen from {0, 1}η;

• (Stage 1) A1 is given access to the encryption oracles Eη,n(·, k) and the
decryption oracles Dη,n(·, k); it outputs two plaintexts m0,m1 ∈ {0, 1}n0η

for some n0, and possibly some data d;

• (Stage 2) a random bit b ∈ {0, 1} is drawn; A2 receives the data d, the
challenge ciphertext c = Eη,n0(mb, k) and outputs a bit b′;

• A is successful in Gη iff b = b′ and it has never submitted m0 or m1 to an
encryption oracle, nor c to a decryption oracle.

1A classical characterization of deducibility, entailing its decidability, is detailed in
Lemma 23 of Appendix C.

26

Define the advantage of A as

Advω-IND-P1-C1
A (η) = 2× P [A is successful in Gη]− 1 (2)

The ω-IND-P1-C1 assumption holds for (Eη,n,Dη,n) iff the advantage of any
probabilistic polynomial-time adversary is negligible. It holds for the inverse of
the encryption scheme iff it holds for the collection of ciphers (Dη,n, Eη,n).

As in previous work [4, 13, 18, 23], we restrict frames to those with only
atomic keys and no encryption cycles. Specifically, a closed frame ϕ has only
atomic keys if for all subterms encn(u, v) and decn(u, v) of ϕ, v is a name. Given
two (atomic) keys k1 and k2, we say that k1 encrypts k2 in ϕ, written k1 >ϕ k2,
iff there exists a subterm U of ϕ of the form U = encn(T, k1) or U = decn(T, k1)
such that k2 appears in T not used as a key, that is, k2 appears in T at a position
which is not the right-hand argument of a encn′ or a decn′ . An encryption cycle
is a tuple k1 . . . km such that k1 >ϕ . . . >ϕ km >ϕ k1.

The effect of the condition “not used as a key” is to allow considering more
terms as free of encryption cycles, for instance encn(encn(a, k), k). This im-
provement is already suggested in [4].

We now state our ≈Esym-soundness theorem. A closed frame is well-formed
iff its R-normal form has only atomic keys, contains no encryption cycles and
uses no head and tail symbols.

Theorem 11 (≈Esym-soundness). Let ϕ1 and ϕ2 be two well-formed frames of
the same domain. Assume that the concrete implementations for the encryption
and its inverse satisfy both the ω-IND-P1-C1 assumption. If ϕ1 ≈Esym ϕ2 then
([[ϕ1]]Aη) ≈ ([[ϕ2]]Aη).

Before proving Theorem 11, we establish a computational counterpart to
Lemma 10.

Lemma 12. Let ϕ be a closed frame in R-normal form, with only atomic keys
and no encryption cycles. Let T be a subterm of ϕ of the form T = enc(U, k)
(respectively T = dec(U, k)), with k name of sort Data, and n a fresh name of
the same sort as T . Assume that

• the only occurrences of k in ϕ are in the positions of an encryption or
decryption key: enc(., k) or dec(., k);

• T itself does not appear under an encryption or a decryption with k;

• the concrete implementations for the encryption and its inverse satisfy
both the ω-IND-P1-C1 assumption.

Then we have that
([[ϕ]]Aη) ≈ ([[ϕ′]]Aη)

where ϕ′ = ϕ{T 7→ n} is obtained by replacing every occurrence of T in ϕ
with n.

27

Notice that the hypothesis of Lemma 12 are stronger than its formal version,
Lemma 10. For instance the encryption key k is required to be atomic; the
first condition on k implies that k is not deducible from ϕ. Also nothing is said
about head and tail symbols.

Proof (of Lemma 12). Before proving the lemma, let us consider the exam-
ple of a well-formed frame ϕ1 = {x1 = enc(T1, k), x2 = enc(T2, k)}, where k
does not appear in T1, T2, and T1 6=Esym T2. This frame is statically equivalent
to ϕ2 = {x1 = n1;x2 = n2}. Our problem here is to prove that [[ϕ1]] and [[ϕ2]]
are actually indistinguishable. It is not hard to see that this will be the case if
and only if the probability that T1 and T2 have the same concrete value is neg-
ligible. A consequence of this phenomenon is intuitively that we need to prove
Lemma 12 and—at least—a limited form of =Esym-faithfulness at the same time.

Formally, let us write |ϕ|e and |T |e for the number of distinct subterms with
head symbols enc or dec, occurring respectively in a frame ϕ and a term T . Let
Pn and Qn be the two properties:

(Pn) Lemma 12 holds provided that |ϕ|e ≤ n :
For every R-normal, closed frame ϕ containing only atomic keys,
no encryption cycles, and such that |ϕ|e ≤ n, for every maximal
subterm T of ϕ of the form T = enc(U, k) or T = dec(U, k), for every
fresh name n of the appriopriate sort, if the only occurrences of k
in ϕ are in key positions (i.e. enc(., k) or dec(., k)), then ([[ϕ]]Aη

) ≈
([[ϕ{T 7→ n}]]Aη).

(Qn) For all R-normal terms T1, T2 of the same sort such that:
T1, T2 have only atomic keys, the frame ϕ = {x = T1, y = T2}
has no encryption cycles, T1 6= T2 and |ϕ|e ≤ n, the probability
P

[
e1, e2 ← [[T1, T2]]Aη ; e1 = e2

]
is negligible.

We prove Pn and Qn by mutual induction on n, that is, more precisely we
prove the four statements: (S1) P0, (S2) Pn+1 ⇐ Qn, (S3) Q0, (S4) Qn+1 ⇐
(Pn+1 and Qn).

(S1) P0 is vacuously true.
(S2) Pn+1 ⇐ Qn. Let T 0 = encn0(U, k) be a subterm of ϕ, k and n two

names all satisfying the conditions of Lemma 12. (Naturally, the case of T 0 =
decn0(U, k) is similar.) Let ϕ = {x1 = T 0

1 , . . . , xn = T 0
n}.

Provided an adversary A able to distinguish ([[ϕ]]Aη) and ([[ϕ′]]Aη), we build
an adversary B against the ω-IND-P1-C1 assumption on encryption, described
as follows:

1. for each name a of sort s appearing in ϕ, draw a value â R←− [[s]]Aη ;

2. draw a value â0
R←− [[s]]Aη

for some fresh name a0 of sort Listn0 ;

3. for each xi (1 ≤ i ≤ n) of sort si, compute T̂ 0
i ∈ [[si]]A recursively as

28

follows:

̂encn(T, k) = En(T̂) if T 6= U

̂encn0(U, k) = E∗(Û , â0)
̂decn(T, k) = Dn(T̂)

̂f(T1, . . . , Tn) = [[f]]Aη (T̂1, . . . , T̂n) in the remaining cases

where we have written En(.) and Dn(.) for the encryption and decryp-
tion oracles of the ω-IND-P1-C1 game, and E∗(Û , â0) for the challenge
ciphertext, obtained after submitting the two plaintexts Û and â0. Since
T 0 = encn0(U, k) is not a subterm of an encryption or a decryption with
k, we may assume that E∗(Û , â0) is computed only once, after every call
to En(.) and Dn(.);

4. submit the concrete frame {x1 = T̂1, . . . , xn = T̂n} to A and return the
same answer.

The distribution computed by B and submitted to A equals either ([[ϕ]]Aη) or
([[ϕ′]]Aη

) depending on whichever E∗(Û , â0) is the encryption of Û , or respec-
tively, that of â0 (in the latter case E∗(Û , â0) = En0(â0) is simply a random
number). Thus the probability that B guesses the right answer is the same
as A. Now it may happen that B does not meet the second requirement for
winning the ω-IND-P1-C1 game, that is: (i) there exists a subterm encn0(T, k)
such that T 6= U and T̂ ∈ {Û , â0} or (ii) there exists a subterm decn0(T, k) such
that T̂ = E∗(Û , â0).

For (i), the probability that T̂ = â0 is negligible by construction. Moreover,
as T and T 0 = encn0(U, k) are two subterms of ϕ and T 0 is not a subterm of T ,
the frame ϕ′ = {x = T, y = U} has no encryption cycles and |ϕ′|e < |ϕ|e = n+1.
The induction hypothesisQn implies that the probability for T̂ = Û is negligible.

As for (ii), if the challenge ciphertext E∗(Û , â0) is the encryption of its second
argument, that is En0(â0), then the probability for T̂ = E∗(Û , â0) is negligible;
otherwise E∗(Û , â0) = En0(Û). Recall that T 0 = encn0(U, k) is in R-normal
form, thus U 6= decn0(T, k). As T 0 and decn0(T, k) are two subterms of ϕ and
T 0 is not a subterm of decn0(T, k), the frame ϕ′ = {x = U, y = decn0(T, k)} has
no encryption cycles and |ϕ′|e < |ϕ|e = n + 1, hence the induction hypothesis
Qn implies that the probability for T̂ = En0(Û) is negligible.

To simplify the case analysis of (S3) and (S4), it is convenient to introduce
the following lemma:

Lemma 13. Let T1, T2 be two terms of sort Listj. Define for each 1 ≤ i ≤ j,
the i-th projection of a term T of sort Listj, by:

πi(T) = head(tail(. . . tail︸ ︷︷ ︸
i−1 times

(T)))

29

Then (i) T1 =Esym T2 iff for all 1 ≤ i ≤ j, πi(T1) =Esym πi(T2) and moreover
(ii) P

[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
is negligible iff for all 1 ≤ i ≤ j,

P
[
ei
1, e

i
2 ← [[πi(T1) ↓R, πi(T2) ↓R]]Aη ; ei

1 = ei
2

]
is negligible.

(The notation T ↓R stands for the R-normal form of T .)

Thanks to this lemma, it is sufficient to prove (S3) and (S4) for T1 and T2 of
sort Data and in R-normal form. (Indeed notice that if ϕ = {x = T1, y = T2}
has no encryption cycles, then ϕ′ = {x′ = πi(T1) ↓R, y′ = πi(T2) ↓R} has no
encryption cycles and |ϕ′|e ≤ |ϕ|e.)

Given the sorting system and the rewriting rules, a R-reduced term T of
sort Data may only be of the following forms:

1. a constant: 0 or 1,

2. a name of sort Data: T = a,

3. a projection of name of sort Listj : T = πi(a) (1 ≤ i ≤ j),

4. a projection of a encryption/decryption of sort Listj : T = πi(enc(U, V))
with U 6∈ {dec(T ′, V)} or T = πi(dec(U, V)) with U 6∈ {enc(T ′, V)}.

(S3) Q0. As T1 and T2 contain no encryption/decryption symbol, only the
cases 1–3 of the case analysis above can occur; the property follows directly.

(S4) Qn+1 ⇐ (Pn+1 and Qn). Let T1 and T2 be two distinct closed normal
terms and ϕ = {x = T1, y = T2}. Assume that ϕ has no encryption cycles nor
composed keys, and |ϕ|e = n+ 1.

1. If one of the two terms—say T1— is of the form 1 (constant), 2 (name)
or 3 (projection of a name). Then T2 is of the form 4, for instance T2 =
πi(enc(U, k)) with U 6∈ {dec(T ′, k)}.

(a) If T1 6= k, by Pn+1, we have ([[ϕ]]Aη) ≈ ([[{x = T1, y = πi(a)}]]Aη)
for some fresh name a. In particular, the probability for the two
components x and y to be equal is negligible.

(b) If T1 = k, assume that T1 and T2 yields the same concrete value with
significant probability. Let Listn0 be the sort of U . We build an
adversary A to the ω-IND-P1-C1 game as follows:

i. for each name a of sort s appearing in T2, draw a value â R←−
[[s]]Aη ;

ii. draw a value â0
R←− [[s]]Aη for some fresh name a0 of sort Listn0 ;

iii. compute T̂2 recursively as follows:

̂encn(T, k) = En(T̂) if T 6= U

̂encn0(U, k) = E∗(Û , â0)
̂decn(T, k) = Dn(T̂)

̂f(V1, . . . , Vn) = [[f]]Aη (V̂1, . . . , V̂n) in the remaining cases

30

using the same conventions as before;
iv. if En0(Û , T̂2) = E∗(Û , â0)), return 0, otherwise return 1.

A guesses the correct answer with non-negligible probability. As
before, we use the property Qn to conclude that its advantage is
non-negligible.

2. Suppose T1 = πi1(enc(u1, k1)) and T2 = πi2(enc(u2, k2)) (the 3 other cases
with decryption symbols are similar). As ϕ has no encryption cycle, we
may assume for instance that k1 is maximal for <ϕ. Let T be a maximal
subterm of the form enc(U, k1) or dec(U, k1) in ϕ. By Pn+1, we have
([[ϕ]]Aη) ≈ ([[ϕ′]]Aη) where ϕ′ = ϕ{T 7→ a} = {x = T ′1, y = T ′2} for some
fresh name a. We then apply Qn to T ′1 and T ′2. �

Proof (of Lemma 13). Point (i) is easily shown by induction on i, using the
equations of Esym. For (ii), notice that:

P
[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
≤

j∑
i=1

P
[
ei
1, e

i
2 ← [[πi(T1), πi(T2)]]Aη ; ei

1 = ei
2

]
and

∀i, P
[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
≥ P

[
ei
1, e

i
2 ← [[πi(T1), πi(T2)]]Aη ; ei

1 = ei
2

]
Besides it is clear from the unconditional =Esym-soundness, that for any T1, T2:

P
[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
= P

[
e1, e2← [[T1 ↓R, T2 ↓R]]Aη ; e1 = e2

]
�

Proof (of Theorem 11). Thanks to the (unconditional) =Esym-soundness, it
is enough to prove the property on frames in R-normal form.

We begin by proving the following lemma:

Lemma 14. Assume that the concrete implementations for the encryption and
its inverse satisfy both the ω-IND-P1-C1 assumption. For every well-formed R-
normal frame ϕ, ([[ϕ]]Aη) ≈ ([[ϕ]]Aη) where ϕ is the transparent frame associated
to ϕ following the algorithmic proof of Proposition 9 (this transparent frame is
uniquely defined modulo renaming of names.).

Now recall that by Proposition 5 and since ϕ ≈ ϕ, we have:

[[ϕ]]Aη = [[ϕ]]ideal
Aη

= [[ϕ]]ideal
Aη

Therefore the soundness criterion holds for well-formed R-normal frames
and we conclude by Proposition 3. �

Notice that the use of the ideal semantics could not be easily avoided as two
statically equivalent transparent frames may not be equal modulo renaming of
bound names.

31

Proof (of Lemma 14). We prove the property by induction on the number
m of encryptions and decryptions by non-deducible keys in ϕ.

If m = 0, by the well-formedness condition, ϕ is already a transparent frame.
Suppose that m > 0. As ϕ has no encryption cycle, we choose a non-

deducible (atomic) key k appearing in ϕ, such that k is maximal for the encryp-
tion relation >ϕ.

As k is not deducible, is maximal for >ϕ and ϕ contains no head and tail
symbols, the only occurrences of k in ϕ are as encryption or decryption keys.
Let T be a maximal subterm of ϕ of the form T = enc(U, k) or T = dec(U, k).
We apply Lemma 12 on ϕ and T and conclude by induction hypothesis on the
obtained frame ϕ′. �

Note on the cryptographic assumptions.. Cryptographic assumptions of Theo-
rem 11 may appear strong compared to existing work on passive adversaries [4,
13]. This seems unavoidable when we allow frames to contain both encryption
and decryption symbols.

In the case where the two frames to be compared contain no decryption
symbols, our proofs are easily adapted to work when the encryption scheme
is ω-IND-P1-C0 only, where ω-IND-P1-C0 is defined similarly to ω-IND-P1-
C1 except that the adversary has no access to the decryption oracle. Such an
assumption is realizable in practice using a variable-input-length cipher [39, 38].

Finally, it should be possible to recover the classical assumption IND-P1-
C1 by modeling the ECB mode (Electronic Code Book). Consider two new
symbols enc : Data × Data → Data and dec : Data × Data → Data, and define
the symbols encn and decn (formally and concretely) recursively by

encn+1(x, y) = consn(enc(headn(x), y), encn(tailn(x), y)) and
decn+1(x, y) = consn(dec(headn(x), y), decn(tailn(x), y))

together with the equations

dec(enc(x, y), y) = x

enc(dec(x, y), y) = y

Define well-formed frames as those of which the normal forms contain no en-
cryption cycles. Then, similar techniques can be applied to show that ≈Esym-
soundness holds for well-formed frames as soon as the implementations for enc
and dec are both IND-P1-C1, or equivalently [37], enc is SPRP.

Note on the well-formedness assumptions.. We may also note that it is possible
to slightly relax the assumptions of well-formedness of frames. In particular we
could allow encryption cycles on deducible keys and for instance allow the frame
{x = enc(k1, k2), y = enc(k2, k1), z = k1} which is currently discarded. As
these extensions are not essential for our results we prefer to avoid unnecessary
clutter and keep the definitions simple.

32

6. Conclusion and future work

In this paper we developed a general framework for relating formal and com-
putational models of security protocols in the presence of a passive attacker.
These are the first results on abstract models allowing arbitrary equational
theories. We define the soundness and faithfulness of cryptographic implemen-
tations with respect to abstract models. We also provide a soundness criterion
which is not only sufficient but also necessary for many theories. Finally, we
provide new soundness results for the exclusive OR and a theory of ciphers and
lists.

A direction for further work is to study the soundness of other theories.
An interesting case is the combination of the two theories considered in this
paper, that is modeling the exclusive OR, ciphers and lists. Another interesting
open problem is to generalize the notion of transparent frames so as to include
probabilistic encryption, while retaining the essential properties of transparent
frames. Finally, an ambitious extension is to consider the case of an active
attacker in presence of general equational theories.

Acknowledgments.. We would like to thank the anonymous reviewers for their
helpful suggestions. This work was partially supported by the ACI JC 9005,
the ARA SSIA FormaCrypt and the ANR SESUR AVOTÉ.

References

[1] M. Baudet, V. Cortier, S. Kremer, Computationally sound implementa-
tions of equational theories against passive adversaries, in: Proc. 32nd
International Colloquium on Automata, Languages and Programming
(ICALP’05), Vol. 3580 of LNCS, Springer, 2005, pp. 652–663.

[2] D. Dolev, A. C. Yao, On the security of public key protocols, IEEE Trans-
actions on Information Theory IT-29 (12) (1983) 198–208.

[3] S. Goldwasser, S. Micali, Probabilistic encryption, Journal of Computer
and System Sciences 28 (1984) 270–299.

[4] M. Abadi, P. Rogaway, Reconciling two views of cryptography (the compu-
tational soundness of formal encryption), in: Proc. 1st IFIP International
Conference on Theoretical Computer Science (IFIP–TCS’00), Vol. 1872 of
LNCS, 2000, pp. 3–22.

[5] H. Comon, V. Shmatikov, Is it possible to decide whether a cryptographic
protocol is secure or not?, Journal of Telecommunications and Information
Technology (4/2002) 5–15.

[6] V. Cortier, S. Delaune, P. Lafourcade, A survey of algebraic properties used
in cryptographic protocols, Journal of Computer Security 14 (1) (2006) 1–
43.

33

[7] M. Abadi, C. Fournet, Mobile values, new names, and secure communica-
tions, in: Proc. 28th Annual ACM Symposium on Principles of Program-
ming Languages (POPL’01), 2001, pp. 104–115.

[8] R. Corin, J. Doumen, S. Etalle, Analysing password protocol security
against off-line dictionary attacks, in: Proc. 2nd International Work-
shop on Security Issues with Petri Nets and other Computational Models
(WISP’04), Vol. 121 of ENTCS, 2005, pp. 47–63.

[9] M. Baudet, Deciding security of protocols against off-line guessing attacks,
in: Proc. 12th ACM Conference on Computer and Communications Secu-
rity (CCS’05), ACM Press, 2005, pp. 16–25.

[10] M. Abadi, V. Cortier, Deciding knowledge in security protocols under equa-
tional theories, in: Proc. 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP’04), Vol. 3142 of LNCS, 2004, pp. 46–58.

[11] B. Blanchet, Automatic proof of strong secrecy for security protocols, in:
Proc. 25th IEEE Symposium on Security and Privacy (SSP’04), 2004, pp.
86–100.

[12] P. Adão, G. Bana, A. Scedrov, Computational and information-theoretic
soundness and completeness of formal encryption, in: Proc. 18th IEEE
Computer Security Foundations Workshop (CSFW’05), 2005, pp. 170–184.

[13] D. Micciancio, B. Warinschi, Completeness theorems for the Abadi-
Rogaway logic of encrypted expressions, Journal of Computer Security
12 (1) (2004) 99–129.

[14] P. Laud, Computationally secure information flow, Ph.D. thesis, Univer-
sität des Saarlandes (2002).

[15] P. Laud, R. Corin, Sound computational interpretation of formal encryp-
tion with composed keys, in: Proc. 6th International Conference on Infor-
mation Security and Cryptology (ICISC’03), Vol. 2971 of LNCS, 2004, pp.
55–66.

[16] P. Adão, J. Herzog, G. Bana, A. Scedrov, Soundness of formal encryption
in the presence of key-cycles, in: Proc. 10th European Symposium on Re-
search in Computer Security (ESORICS’05), Vol. 3679 of LNCS, 2005, pp.
374–396.

[17] M. Backes, B. Pfitzmann, M. Waidner, A composable cryptographic library
with nested operations, in: Proc. 10th ACM Conference on Computer and
Communications Security (CCS’03), ACM Press, 2003, pp. 220–230.

[18] M. Backes, B. Pfitzmann, Symmetric encryption in a simulatable Dolev-
Yao style cryptographic library, in: Proc. 17th IEEE Computer Science
Foundations Workshop (CSFW’04), 2004, pp. 204–218.

34

[19] M. Backes, B. Pfitzmann, M. Waidner, Symmetric authentication within
simulatable cryptographic library, in: Proc. 8th European Symposium on
Research in Computer Security (ESORICS’03), LNCS, 2003, pp. 271–290.

[20] V. Cortier, B. Warinschi, Computationally sound, automated proofs for
security protocols, in: Proc. 14th European Symposium on Programming
(ESOP’05), Vol. 3444 of LNCS, 2005, pp. 157–171.

[21] R. Janvier, Y. Lakhnech, L. Mazaré, Completing the picture: Soundness
of formal encryption in the presence of active adversaries, in: Proc. 14th
European Symposium on Programming (ESOP’05), Vol. 3444 of LNCS,
2005, pp. 172–185.

[22] R. Canetti, J. Herzog, Universally composable symbolic analysis of mutual
authentication and key-exchange protocols (extended abstract), in: Proc.
3rd Theory of Cryptography Conference (TCC’06), Vol. 3876 of LNCS,
2006, pp. 380–403.

[23] P. Laud, Symmetric encryption in automatic analyses for confidentiality
against active adversaries, in: Proc. IEEE Symposium on Security and
Privacy (SSP’04), 2004, pp. 71–85.

[24] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, M. Turuani, Proba-
bilistic Polynomial-time Semantics for a Protocol Security Logic, in: Proc.
32nd International Colloquium on Automata, Languages and Program-
ming, ICALP, Vol. 3580 of LNCS, Springer, 2005, pp. 16–29, lisboa, Por-
tugal.

[25] B. Blanchet, A computationally sound mechanized prover for security pro-
tocols, in: IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, 2006, pp. 140–154.

[26] M. Backes, B. Pfitzmann, Limits of the cryptographic realization of dolev-
yao-style xor, in: Proc. 10th European Symposium on Research in Com-
puter Security (ESORICS’05), Vol. 3679 of LNCS, 2005, pp. 336–354.

[27] M. Abadi, B. Warinschi, Password-based encryption analyzed, in: Proc.
32nd International Colloquium on Automata, Languages and Programming
(ICALP’05), Vol. 3580 of LNCS, 2005, pp. 664–676.

[28] M. Abadi, M. Baudet, B. Warinschi, Guessing attacks and the computa-
tional soundness of static equivalence, in: Proc. 9th International Con-
ference on Foundations of Software Science and Computation Structures
(FoSSaCS’06), Vol. 3921 of LNCS, 2006, pp. 398–412.

[29] G. Bana, P. Mohassel, T. Stegers, The computational soundness of formal
indistinguishability and static equivalence, in: Proc. 11th Asian Computing
Science Conference (ASIAN’06), Vol. 4435 of LNCS, Springer, 2006, pp.
182–196.

35

[30] S. Kremer, L. Mazaré, Adaptive soundness of static equivalence, in:
Proc. 12th European Symposium on Research in Computer Security (ES-
ORICS’07), Vol. 4734 of LNCS, Springer, 2007, pp. 610–625.

[31] H. Comon-Lundh, V. Cortier, Computational soundness of observational
equivalence, in: Proc. 15th ACM Conference on Computer and Communi-
cations Security (CCS’08), ACM Press, 2008, pp. 109–118.

[32] M. Abadi, C. Fournet, Mobile values, new names, and secure communica-
tion, in: Proc. of the 28th ACM Symposium on Principles of Programming
Languages (POPL’01), 2001, pp. 104–115.

[33] S. Hohenberger, The cryptographic impact of groups with infeasible inver-
sion, Master’s thesis, MIT (2003).

[34] R. L. Rivest, On the notion of pseudo-free groups, in: Proc. 1st Theory of
Cryptography Conference (TCC’04), Vol. 2951 of LNCS, 2004, pp. 505–521.

[35] S. Goldwasser, M. Bellare, Lecture notes on cryptography (2008).

[36] D. Micciancio, The RSA group is pseudo-free, in: Advances in Cryptology
– Proc. EUROCRYPT ’05, Vol. 3494 of LNCS, 2005, pp. 387–403.

[37] D. H. Phan, D. Pointcheval, About the security of ciphers (semantic secu-
rity and pseudo-random permutations), in: Proc. Selected Areas in Cryp-
tography (SAC’04), Vol. 3357 of LNCS, 2004, pp. 185–200.

[38] S. Halevi, Invertible universal hashing and the TET encryption mode, in:
Advances in Cryptology – Proc. CRYPTO ’2007, Vol. 4622 of LNCS, 2007,
pp. 412–429.

[39] M. Bellare, P. Rogaway, On the construction of variable-input-length ci-
phers, in: Proc. 6th Workshop on Fast Software Encryption (FSE’99), Vol.
1636 of LNCS, 1999, pp. 231–244.

[40] E. Contejean, C. Marché, B. Monate, X. Urbain, The CiME Rewrite Tool,
http://cime.lri.fr (2000).

A. General results on static equivalence

We prove here some general properties of static equivalence concerning free
symbols. We first establish a useful interpolation lemma.

Given a term U = f(U1, . . . , Un) where f is a free symbol (see Section 2.1)
and a name a of the same sort as U , the cutting function cutU,a is defined
recursively as follows: cutU,a(u) = u if u is a variable or a name, and

cutU,a(g(T1, . . . , Tk)) =
{
a if g = f , k = n and ∀1 ≤ i ≤ n, Ui =E Ti

g(cutU,a(T1), . . . , cutU,a(Tk)) otherwise

Thus, the effect of function cutU,a(T) is to substitute some (but not all) subterms
of T equal to U modulo E with a.

36

Lemma 15. Let U = f(U1, . . . , Un) be a term such that f is a free symbol. Let
a be a name of the same sort as U . For any two terms M and N ,

M =E N implies cutU,a(M) =E cutU,a(N).

Proof. By Birkhoff’s theorem, M =E N means that there exist n ≥ 0 and
M0, . . . , Mn such that M = M0 ↔E M1 ↔E Mn = N where ↔E denotes one
step of rewriting along one equation in (the generating set of) E, oriented in
either direction.

To prove the property by induction on n, it suffices to consider the case
n = 1. More precisely, assume that there exists an equation l = r in E, a
position p and a substitution θ such that M |p = lθ and N = M [rθ]p. By
definition of free symbols, we may assume that f does not occur in l and r.
We consider two cases depending on whether the cutting function cutU,a cuts a
subterm above p or not.

• Either there exists a proper prefix p′ of p such that M |p′ = f(T1, . . . , Tk)
and for all i, Ui =E Ti. We consider the smallest p′ that satisfies this
property. Thus p = p′ · i · p′′ and N = M [f(T1, . . . , Ti[rθ]p′′ , . . . , Tn)p′].
Both terms f(T1, . . . , Tk) and f(T1, . . . , Ti[rθ]p′′ , . . . , Tn) are substituted
with a, thus cutU,a(M) = cutU,a(N).

• Or no such cutting position p′ is a proper prefix of p. This means that
cutU,a(M [x]p) = cutU,a(N [x]p) and cutU,a(M) = cutU,a(M [x]p)[cutU,a(lθ)]p,
where x is a fresh variable. Moreover, cutU,a(lθ) = lcutU,a(θ) and cutU,a(rθ) =
rcutU,a(θ) since f is free. We deduce

cutU,a(M) = cutU,a(M [x]p)[cutU,a(lθ)]p
= cutU,a(N [x]p)[lcutU,a(θ)]p

=E cutU,a(N [x]p)[rcutU,a(θ)]p
= cutU,a(N)

Using this lemma, we establish two simple properties of free symbols.

Corollary 16. Let f be a free symbol and f(T1, . . . , Tn) a term of a non-
degenerated type τ .

1. For every U1, . . . , Un of the appropriate sort,

f(T1, . . . Tn) =E f(U1, . . . , Un) iff ∀i, Ti =E Ui.

2. Let U be a term of sort τ such that f does not appear in U . Then

f(T1, . . . , Tn) 6=E U.

Proof.

37

1. The right-to-left implication is trivial. Let T = f(T1, . . . Tn) and U =
f(U1, . . . , Un). By contradiction, assume that there exists an i such that
Ti 6=E Ui. Let a1, a2 be two fresh names of sort τ . We apply Lemma 15
on the equation T =E U successively with cutT,a1 and cutU ′,a2 where
U ′ = cutT,a1(U) = f(cutT,a1(U1), . . . cutT,a1(Un)). We obtain a1 =E a2,
hence τ is degenerated; contradiction.

2. Assume f(T1, . . . , Tn) =E U . Then by Lemma 15, since f does not occur
in U , we obtain a =E U for some fresh name a, hence τ is degenerated;
contradiction.

We are now ready to prove our propositions.

Proposition 17. Let T1, T2 be two terms of sort s such that T1 6=E T2. Assume
a free symbol hs : s × Key → Hash such that the sort Key is not degenerated.
Consider the frame ϕ1 = {x1 = hs(T1, k), x2 = hs(T2, k)} where k is a fresh
name. Let ϕ2 = {x1 = n, x2 = n′} where n, n′ are two distinct fresh names of
sort Hash. Then we have ϕ1 ≈E ϕ2.

Proof. Let M and N be two terms such that var(M,N) ⊆ dom(ϕ) and
names(M,N) ∩ names(ϕ) = ∅.

Assume Mϕ2 =E Nϕ2. Let θ be the substitution {n 7→ hs(T1, k), n′ 7→
hs(T2, k)}. Since the equational theory E is stable by substitution of names, we
have Mϕ2θ =E Nϕ2θ, hence, Mϕ1 =E Nϕ1 as n, n′ are fresh names.

Conversely, assume Mϕ1 =E Nϕ1. Let U1 = hs(T1, k). By Lemma 15, we
have cutU1,n(Mϕ1) =E cutU1,n(Nϕ1). Since k does not appear in M nor N , by
Corollary 16, it holds that cutU1,n(Mϕ1) = McutU1,n(ϕ1) and cutU1,n(Nϕ1) =
NcutU1,n(ϕ1). Now, using T1 6=E T2, we prove cutU1,n(ϕ1) = {x1 = n, x2 =
hs(T2, k)}. Indeed, we have cutU1,n(hs(T2, k)) = hs(cutU1,n(T2), k) since T1 6=E

T2. Besides, as k does not appear in T2, by Corollary 16, we have cutU1,n(T2) =
T2. Similarly, by applying cutU2,n′ with U2 = hs(T2, k), we obtain

McutU2,n′(cutU1,n(ϕ1)) =E NcutU2,n′(cutU1,n(ϕ1)),

that is, Mϕ2 =E Nϕ2. �

Proposition 18. Let ϕ be a frame and T a term of sort s. Assume a free
symbol hs : s × Key → Hash such that the sort Key is not degenerated. Let
ϕ1 = ϕ ∪ {x = hs(T, k), y = k} and ϕ2 = ϕ ∪ {x = n, y = k} where x, y are
fresh variables, k is a fresh name of sort Key, n is a fresh name of sort Hash.
If ϕ 6`E T , then ϕ1 ≈E ϕ2.

Proof. Let M and N be two terms such that var(M,N) ⊆ dom(ϕ) and
names(M,N) ∩ names(ϕ) = ∅. We prove that Mϕ2 =E Nϕ2 implies Mϕ1 =E

Nϕ1 similarly as for Proposition 17.
Conversely, assume Mϕ1 =E Nϕ1. Let U = hs(T, k). By Lemma 15,

we have cutU,n(Mϕ1) =E cutU,n(Nϕ1). Let us prove that cutU,n(Mϕ1) =
McutU,n(ϕ1).

38

Indeed, otherwise, there exists a subterm M1 of M such that M1 is not a
variable and M1ϕ1 = hs(T ′, T ′′) with T ′ =E T and T ′′ =E k. Since M1 is not
a variable, M1 is of the form M1 = hs(M ′

1,M
′′
1) with M ′

1ϕ1 = T ′ =E T , which
implies that T is deducible; contradiction.

We deduce that cutU,n(Mϕ1) = McutU,n(ϕ1), and similarly cutU,n(Nϕ1) =
NcutU,n(ϕ1). Thus McutU,n(ϕ1) =E NcutU,n(ϕ1). By Corollary 16, as k does
not appear in ϕ, we have that cutU,n(ϕ) = ϕ, hence cutU,n(ϕ1) = ϕ2 and
Mϕ2 =E Nϕ2. �

Proposition 19. Let T1, T2 be two terms of sort s such that T1 =E T2. Assume
a free symbol hs : s × Key → Hash such that Key is not degenerated. Let
ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)}. Then, ϕ ≈E {x1 = n, x2 = n} where n
is a fresh name of sort Hash.

Proof. Let M and N be two terms such that var(M,N) ⊆ dom(ϕ) and
names(M,N) ∩ names(ϕ) = ∅. We prove that Mϕ2 =E Nϕ2 implies Mϕ1 =E

Nϕ1 similarly as for Proposition 17.
Conversely, assume Mϕ1 =E Nϕ1. Let U = hs(T1, k). By Lemma 15,

we have cutU,n(Mϕ1) =E cutU,n(Nϕ1). Since k does not appear in M nor
N , by Corollary 16, we have cutU,n(Mϕ1) = McutU,n(ϕ1) and cutU,n(Nϕ1) =
NcutU,n(ϕ1). Now, since T1 =E T2, we obtain cutU,n(ϕ1) = {x1 = n, x2 =
n} = ϕ2. Thus we have Mϕ2 =E Nϕ2. �

B. Static equivalence in groups

We establish some properties of static equivalence in the equational theory
of Abelian groups EG defined in Section 3.2. For this purpose we characterize
equivalence classes in EG by a representation lemma.

Let XA (XG and XHash respectively) be the set of variables of sort A (G
and Hash respectively). Let NA (NG and NHash respectively) be the set of
names of sort A (G and Hash respectively). Let AC be the equational theory
corresponding to the subset of equations from EG, modeling the associativity
and commutativity of the three operators ·, + and ∗.

We call unitary monomial of sort A a function β : XA ∪ NA → N almost
everywhere zero, i.e., except for a finite number of entries. Such a function β
can be considered as a term of sort A (modulo AC):

β =AC

∏
a∈NA, β(a) 6=0

aβ(a) ·
∏

u∈XA, β(u) 6=0

uβ(u)

where empty products are considered to be the term 1A, and aβ(a) (β(a) 6= 0)
denotes the term a · . . . · a︸ ︷︷ ︸

β(a) times

. We denote MA the set of all unitary monomials of

sort A.

39

A canonical form of sort A is a function α : MA → Z almost everywhere
zero. We consider such a function α as a term of sort A (modulo AC):

α =AC

∑
β∈MA, α(β) 6=0

α(β) · β

where empty sums are considered to be the term 0A, and integers are naturally
represented as 0A, 1A + . . .+ 1A or −(1A + . . .+ 1A) of sort A.

A canonical form of sort G is a function γ, mapping terms in XN ∪ NN to
canonical forms of sort A, almost everywhere zero, i.e., the function evaluates
to the constant 0 except for a finite number of entries. We consider a canonical
form γ to be a term of sort G (modulo AC):

γ =AC

∏
g∈NG, γ(g) 6=0

gγ(g) ∗
∏

x∈XG, γ(x) 6=0

xγ(x)

where empty products are considered to be equal to 1G.
A canonical form of sort Hash, denoted ι, is either a variable of sort Hash :

ι = z ∈ XHash , a name of sort Hash : ι = h ∈ NHash or a canonical form γ of
sort G considered to be a term ι = h(γ).

Lemma 20. For any term T of sort A (G, Hash, respectively), there exists a
unique canonical form αT (γT , ιT , respectively) such that

T =EG
αT

(T =EG
γT , T =EG

ιT , respectively).

Proof (Sketch). We show the existence of a canonical form of a term T by
induction on the structure of T . For instance, given T = T1 ∗ T2, and two
canonical forms αT1 and αT2 , we obtain the canonical form of T by rearranging
the product αT1 ∗ αT2 modulo EG (and if necessary the induction hypthesis
is also used on the exponents). To show the uniqueness of the normal form,
it is sufficient to show that whenever two canonical terms are equal as terms
modulo EG, they are also equal “mathematically”. Formally this is established
by studying the AC normal form of each canonical form with respect to the
following AC-convergent rewriting system.

u+ 0A → u
u+ (−u) → 0A

u · 1A → u
(u+ v) · w → u · w + v · w

u · 0A → 0A

−(u+ v) → (−u) + (−v)
(−u) · v → −(u · v)
−(−u) → u
−0A → 0A

x ∗ 1G → x
(xu)v → x(u·v)

xu ∗ xv → xu+v

x1A → x
x0A → 1G

(x ∗ y)u → xu ∗ yu

x ∗ x → x(1A+1A)

x ∗ xu → xu+1A

(1G)u → 1G

40

This rewriting system has been obtained by orienting and completing the
equations generating EG, except AC, using the tool Cime [40]. �

Proposition 21. Let ϕ1 = νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = ga·b} and
ϕ2 = νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}. We have that ϕ1 ≈EG

ϕ2.

Proof. Let M,N be two terms of the same sort such that var(M,N) ⊆
dom(ϕ1) and names(M,N) ∩ names(ϕ1, ϕ2) = ∅.

Assume Mϕ2 =EG
Nϕ2. Let θ be the substitution {c 7→ a · b}. Since the

equational theory E is stable by substitution of names, we have Mϕ2θ =E

Nϕ2θ, that is, Mϕ1 =EG
Nϕ1 since c 6∈ names(M,N).

Conversely, assume Mϕ1 =EG
Nϕ1. If M and N are of sort A, then

var(M,N) = ∅ and hence Mϕ2 = Mϕ1 =E Nϕ1 = Nϕ2.
Otherwise, M and N are of sort G. As Mϕ1 =EG

Nϕ1 is equivalent to
Mϕ1 ∗ (Nϕ1)−1A = 1G, we suppose that N = 1G.

As var(M) ⊆ dom(ϕ1) and names(M) ∩ names(ϕ1, ϕ2) = ∅, the canonical
form γ of M is of the form

M =EG

∏
g′ 6=g

g′
γ(g′) ∗ xγ(x1)

1 ∗ . . . ∗ xγ(x4)
4

where γ(g′) and γ(xi) represent closed terms with disjoint names {a, b, c}.
Hence, we have that

Mϕ1 =EG

∏
g′ 6=g

g′
γ(g′) ∗ gγ(x1) + γ(x2)·a + γ(x3)·b + γ(x4)a·b =EG

1G

and we conclude that for any i, γ(xi) = 0A and for any g′, γ(g′) = 0A, i.e.,
M = 1G. �

Proposition 22. Let the frame ϕ1 = νg, a.{x1 = ga, x2 = a, x3 = h(g)} and
the frame ϕ2 = νg, a, h.{x1 = ga, x2 = a, x3 = h}. We have that ϕ1 ≈EG

ϕ2.

Proof. LetM,N be two terms such that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩
names(ϕ1, ϕ2) = ∅.

Assume Mϕ2 =E Nϕ2. Let θ be the substitution {h 7→ h(g)}. Since the
equational theory E is stable by substitution of names, we have Mϕ2θ =E

Nϕ2θ, hence, as h 6∈ names(M,N), Mϕ1 =E Nϕ1.
Conversely, assume that Mϕ1 =EG

Nϕ1. If M and N are of sort A or G,
then var(M,N) ⊆ {x1, x2} and hence Mϕ2 = Mϕ1 =E Nϕ1 = Nϕ2.

Otherwise, M and N are of sort Hash. We suppose that M = x3 and
N = h(N ′) where var(N ′) ⊆ {x1, x2} (other cases are trivial). As h is a free
symbol, by Corollary 16, Mϕ1 =EG

Nϕ1 is equivalent to N ′ϕ1 =EG
g.

Given that var(N ′) ⊆ {x1, x2} and names(N ′) ∩ names(ϕ1, ϕ2) = ∅, the
canonical form γ of N ′ is of the form

N ′ =EG

∏
g′ 6=g

g′
γ(g′) ∗ xγ(x1)

1

41

where γ(g′) and γ(x1) are terms that have no variable other than x2 and do not
contain a. Hence we have

N ′ϕ1 =EG

∏
g′ 6=g

g′
γ(g′){x2 7→a} ∗ gγ(x1)·a

which contradicts N ′ϕ1 =EG
g. �

C. Static equivalence in ciphers and lists

Before proving Lemma 10, we first introduce a handy lemma to characterize
deducible terms.

Lemma 23. Let ϕ = νñ.σ be a closed frame in R-normal form and T a term in
R-normal form. If ϕ `Esym T then T = C[T1, . . . , Tk] where the Ti are deducible
subterms of ϕ and C is a context that does not contain private names that is
names(C) ∩ ñ = ∅.

Proof. By definition, ϕ `Esym T if and only if there exists a term M such that
names(M) ∩ names(ϕ) = ∅ and Mϕ =Esym T , that is, Mϕ →∗

R T . We prove
Lemma 23 by induction on the size of M . The base case M = xi is trivial.

If M = f(M1, . . . ,Mk). We only consider the case where M = dec(M1,M2)
since the other cases are similar. We haveM1 →∗

R T1 andM2 →∗
R T2. By apply-

ing the induction hypothesis to M1 and M2, we obtain that T1 = C1[T ′1, . . . , T
′
k]

and T2 = C2[T ′1, . . . , T
′
k] where the T ′i are deducible subterms of ϕ and C1, C2

are contexts that do not contain names. We have Mϕ →∗
R dec(T1, T2). Either

dec(T1, T2) is in R-normal form. In that case and by convergence of R, we have
T = dec(T1, T2), hence the result. Or dec(T1, T2) is not in R-normal form. By
convergence, we have dec(T1, T2)→R T . Since T1 and T2 are already in normal
form, we must have T1 = enc(T ′1, T2) and T = T ′1. Either C1 = enc(C ′1, C

′′
1) and

we have T = C ′1[T
′
1, . . . , T

′
k]. Or C1 = , which means that T1 is a deducible

subterm of ϕ. We deduce that T is a deducible subterm of ϕ, hence the result.
�

We can now start the proof of Lemma 10.

Proof. In what follows, we say that a term or a context is public if it does
not contain the names occurring in ϕ. Since ϕ = ϕ′{n 7→ T} and Esym is
stable by substitutions of names, we have eqEsym

(ϕ′) ⊆ eqEsym
(ϕ). To prove

eqEsym
(ϕ) ⊆ eqEsym

(ϕ′), we introduce the following lemma. We set θ to be
{n 7→ T}. Let n1, . . . , np be the names occurring in ϕ′.

Lemma 24. Let C1 be a context such that we have ϕ′ `Esym C1[n1, . . . , np]
and C1[n1, . . . , np]θ →R T . Then there exists a public context C2 such that
C1 →R C2 and T = C2[n1, . . . , np]θ.

42

The lemma is proved by inspection of the rules of R. The reduction occurs
at some position p: the reduction C1[n1, . . . , np]|pθ →R T occurs in head.
Let C ′1[n1, . . . , np] = C1[n1, . . . , np]|p If C ′1 is itself an instance of the left-
hand-side of a rule of R, than we clearly have that C ′1 →R C ′2 such that
T = C2[n1, . . . , np]θ, where C2 is obtained from C1 by replacing C ′1 with C ′2
at position p. If C ′1 is not an instance of the left-hand-side of a rule of R
and since T is already in R-normal form, there are only four possibilities for
C ′1[n1, . . . , np].

• C ′1[n1, . . . , np] = enc(ni, C
′′
1 [n1, . . . , np]). It must be the case that ni = n,

T is of the form dec(U, V) and V = C ′′1 [n1, . . . , np]. From Lemma 23 and
since ϕ′ `Esym C1[n1, . . . , np], either C ′1[n1, . . . , np] is subterm of ϕ′ or ni

and C ′′1 [n1, . . . , np] are deducible. In both cases, we obtain a contradic-
tion. Indeed, if C ′1[n1, . . . , np] is subterm of ϕ′ then C ′1[n1, . . . , np]θ =
enc(dec(U, V), nj) is a subterm of ϕ, which contradicts that ϕ is in nor-
mal form. If ni and C ′′1 [n1, . . . , np] are deducible then this contradicts
ϕ 6`Esym V .

• C ′1[n1, . . . , np] = dec(ni, nj). This case is very similar to the previous one.

• C ′1[n1, . . . , np] = cons(ni, C
′′
1 [n1, . . . , np]). It must be the case that ni = n,

T is of the form head(V) and C ′′1 [n1, . . . , np] = tail(V). From Lemma 23
and since ϕ′ `Esym C1[n1, . . . , np], either C ′1[n1, . . . , np] is subterm of ϕ′ or
ni and C ′′1 [n1, . . . , np] are deducible. As previously, in both cases, we ob-
tain a contradiction. if C ′1[n1, . . . , np] is subterm of ϕ′ then C ′1[n1, . . . , np]θ =
cons(head(V), tail(V)) is a subterm of ϕ, which contradicts that ϕ is in nor-
mal form. If ni and C ′′1 [n1, . . . , np] are deducible then both n and tail(V)
are deducible in ϕ′, which means that both head(V) and tail(v) are de-
ducible in ϕ, thus V is deducible in ϕ, contradiction.

• C ′1[n1, . . . , np] = cons(C ′′1 [n1, . . . , np], ni). This case is very similar to the
previous one.

Now, let (M = N) ∈ eqEsym
(ϕ) and let us show that (M = N) ∈ eqEsym

(ϕ′).
We have Mϕ =Esym Nϕ, that is, Mϕ′θ =Esym Nϕ′θ. By convergence of R,
there exists a term T such that Mϕ′θ →∗

R T and Nϕ′θ →∗
R T . By applying

repeatedly Lemma 24, we obtain that Mϕ′ →∗
R T1 such that T = T1θ and

Nϕ′ →∗
R T2 such that T = T2θ. Assume that we have proved that T1 = T2.

Then we have Mϕ′ =Esym Nϕ
′, that is, (M = N) ∈ eqEsym

(ϕ′), which concludes
the proof. It remains for us to prove the following lemma.

Lemma 25. Let T1 and T2 be two terms such that each Ti is either deducible
from ϕ′, that is, ϕ′ `Esym Ti, or Ti is a subterm of ϕ′. Then T1θ = T2θ implies
T1 = T2.

The lemma is proved by induction on the sum of the size of T1 and T2. First
notice that, by Lemma 23, any subterm T ′ of one of the Ti verifies that T ′ is
deducible from ϕ′ or T ′ is a subterm of ϕ′.

43

• The base case is trivial.

• If none of T1 or T2 is n: T1 = f(T ′1, . . . , T
′
k) and T2 = f(T ′′1 , . . . , T

′′
k). We

must have T ′iθ = T ′′i θ for every 1 ≤ i ≤ k. By applying the induction
hypothesis, we obtain T ′i = T ′′i thus T1 = T2.

• The most difficult case is when T1 = n and T2 = f(T ′1, . . . , T
′
k). We first

notice that since nθ = f(T ′1, . . . , T
′
k)θ, n cannot occur in T2, thus T2 = T2θ.

Either T2 is a subterm of ϕ′, which is impossible by construction of ϕ′ or T2

deducible. Since T2 is not a subterm of ϕ′ and applying again Lemma 23,
we get that the immediate subterms of T2 are deducible in ϕ′ (thus in ϕ),
which contradicts the choice of T . �

44

Formal Indistinguishability extended to the

Random Oracle Model

Cristian Ene, Yassine Lakhnech and Van Chan Ngo ⋆

Université Grenoble 1, CNRS,Verimag

Abstract. Several generic constructions for transforming one-way func-
tions to asymmetric encryption schemes have been proposed. One-way
functions only guarantee the weak secrecy of their arguments. That is,
given the image by a one-way function of a random value, an adversary
has only negligible probability to compute this random value. Encryp-
tion schemes must guarantee a stronger secrecy notion. They must be at
least resistant against indistinguishability-attacks under chosen plaintext
text (IND-CPA). Most practical constructions have been proved in the
random oracle model (ROM for short). Such computational proofs turn
out to be complex and error prone. Bana et al. have introduced Formal
Indistinguishability Relations (FIR), as an abstraction of computational
indistinguishability. In this paper, we extend the notion of FIR to cope
with the ROM on one hand and adaptive adversaries on the other hand.
Indeed, when dealing with hash functions in the ROM and one-way func-
tions, it is important to correctly abstract the notion of weak secrecy.
Moreover, one needs to extend frames to include adversaries in order to
capture security notions as IND-CPA. To fix these problems, we consider
pairs of formal indistinguishability relations and formal non-derivability
relations. We provide a general framework along with general theorems,
that ensure soundness of our approach and then we use our new frame-
work to verify several examples of encryption schemes among which the
construction of Bellare Rogaway and Hashed ElGamal.

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to
manipulate it securely. That is, in a way that prevents malicious elements to
subvert the available information for their own benefits. This requires solutions
based on provably correct cryptographic systems (e.g., primitives and proto-
cols). There are two main frameworks for analyzing cryptographic systems; the
symbolic framework, originating from the work of Dolev and Yao [16], and the
computational approach, growing out of the work of [18]. A significant amount
of effort has been made in order to link both approaches and profit from the ad-
vantages of each of them. Indeed, while the symbolic approach is more amenable
to automated proof methods, the computation approach can be more realistic.

⋆ Grenoble, email:name@imag.fr This work has been partially supported by the ANR
projects SCALP, AVOTE and SFINCS

In their seminal paper [1] Abadi and Rogaway investigate the link between
the symbolic model on one hand and the computational model on the other
hand. More precisely, they introduce an equivalence relation on terms and prove
that equivalent terms correspond to indistinguishable distributions ensembles,
when interpreted in the computational model. The work of Abadi and Rogaway
has been extended to active adversaries and various cryptographic primitives in
e.g. [21, 20, 14, 19]. An other line of work, also considering active adversaries is
followed by Backes, Pfitzmann and Waidner using reactive simulatability [5, 4]
and Canetti [12, 13] using universal composability.

Related works. A recently emerging branch of relating symbolic and com-
putational models for passive adversaries is based on static equivalence from
π-calculus [3], induced by an equational theory. Equational theories provide a
framework to specify algebraic properties of the underlying signature, and hence,
symbolic computations in a similar way as for abstract data types. That is, for a
fixed equational theory, a term describes a computation in the symbolic model.
Thus, an adversary can distinguish two terms, if he is able to come up with
two computations that yield the same result when applied to one term but dif-
ferent results when applied to the other term. Such a pair of terms is called a
test. This idea can be extended to frames, which roughly speaking are tuples
of terms. Thus, a static equivalence relation is fully determined by the under-
lying equational theory, as two frames are statically equivalent, if there is no
test that separates them. In [8] Baudet, Cortier and Kremer study soundness
and faithfulness of static equivalence for general equational theories and use
their framework to prove soundness of exclusive or as well as certain symmetric
encryptions. Abadi et al. [2] use static equivalence to analyze guessing attacks.

Bana, Mohassel and Stegers [7] argue that even though static equivalence
works well to obtain soundness results for the equational theories mentioned
above, it does not work well in other important cases. Consider for instance the
Decisional Diffie Hellman assumption (DDH for short) that states that the tu-
ples (g, ga, gb, gab) and (g, ga, gb, gc), are indistinguishable for randomly sampled
a, b, c. It does not seem to be obvious to come up with an equational theory
for group exponentiation such that the induced static equivalence includes this
pair of tuples without including others whose computational indistinguishability
is not proved to be a consequence of the DDH assumption. The static equiva-
lence induced by the equational theory for group exponentiation proposed in [8]

includes the pair (g, ga, gb, ga2b) and (g, ga, gb, gc). It is unknown whether the
computational indistinguishability of these two distributions can be proved un-
der the DDH assumption. Therefore, Bana et al. propose an alternative approach
to build symbolic indistinguishability relations and introduce formal indistin-
guishability relations (FIR). A FIR is defined as a closure of an initial set of
equivalent frames with respect to simple operations which correspond to steps
in proofs by reduction. This leads to a flexible symbolic equivalence relation.
FIR has nice properties. In order to prove soundness of a FIR it is enough to
prove soundness of the initial set of equivalences. Moreover, static equivalence

is one instance of a FIR. Bana et al. show that it is possible to come up with a
FIR whose soundness is equivalent to the DDH assumption.

The techniques introduced in this paper, borrow and generalize to arbitrary
equational theories some ideas from [15]. In [15] the authors provide a specialized
Hoare-like logic to reason about encryption schemes in the random oracle model,
and apply their logic to prove IND-CPA of several schemes, including the generic
encryption scheme of Bellare and Rogaway [10].

Contributions. In this paper, we extend Bana et al.’s approach by introduc-
ing a notion of symbolic equivalence that allows us to prove security of encryption
schemes symbolically. More specifically, we would like to be able to treat generic
encryption schemes that transform one-way functions to IND-CPA secure en-
cryption schemes. Therefore, three problems need to be solved. First, we need to
cope with one-way functions. This is a case where the static equivalence does not
seem to be appropriate. Indeed, let f be a one-way function, that is, a function
that is easy to compute but difficult to invert. It does not seem easy to come with
a set of equations that capture the one-wayness of such a function. Consider the
term f(a|b), where | is bit-string concatenation. We know that we cannot easily
compute a|b given f(a|b) for uniformly sampled a and b. However, nothing pre-
vents us from being able to compute a for instance. Introducing equations that
allow us to compute a from f(a|b), e.g., g(f(a|b)) = a, may exclude some one-
way functions and does not solve the problem. For instance, nothing prevents us
from computing a prefix of b, a prefix of the prefix, etc . . . The second problem
that needs to be solved is related to the fact that almost all practical provably
secure encryption schemes are analyzed in the random oracle model (ROM for
short). ROM is an idealized model in which hash functions are randomly sam-
pled functions. In this model, adversaries have oracle access to these functions.
An important property is that if an adversary is unable to compute the value of
an expression a and if H(a) has not been leaked then H(a) looks like a uniformly
sampled value. Thus, we need to be able to symbolically prove that a value of
a given expression a cannot be computed by any adversary. This is sometimes
called weak secrecy in contrast to indistinguishability based secrecy. To cope
with this problem, our notion of symbolic indistinguishability comes along with
a non-derivability symbolic relation. Thus in our approach, we start from an ini-
tial pair of a non-derivability relation and a frame equivalence relation. Then, we
provide rules that define a closure of this pair of relations in the spirit of Bana et
al.’s work. Also in our case, soundness of the obtained relations can be checked
by checking soundness of the initial relations. The third problem is related to
the fact that security notions for encryption schemes such IND-CPA and real-or-
random indistinguishability of cipher-text under chosen plaintext involve active
adversaries. Indeed, these security definitions correspond to two-phase games,
where the adversary first computes a value, then a challenge is produced, then
the adversary tries to solve the challenge. Static equivalence and FIR (as de-
fined in [7]) consider only passive adversaries. To solve this problem we consider
frames that include variables that correspond to adversaries. As frames are finite
terms, we only have finitely many such variables. This is the reason why we only

have a degenerate form of active adversaries which is enough to treat security
of encryption schemes and digital signature, for instance. The closure rules we
propose in our framework are designed with the objective of minimizing the
initial relations which depend on the underlying cryptographic primitives and
assumptions. We illustrate the framework by considering security proofs of the
construction of Bellare and Rogaway [10] and Hash El Gamal [6].

Outline of the paper. In Section 2, we introduce the symbolic model used
for describing generic asymmetric encryption schemes. In Section 3, we describe
the computational framework and give definitions that relate the two models.
In Section 4, we introduce our definition of formal indistinguishability relation
and formal non-derivability relation. We also present our method for proving
IND-CPA security. In Section 5, we illustrate our framework: we prove the con-
structions of Bellare and Rogaway [10], Hash El Gamal [6], and the encryption
scheme proposed by Pointcheval in [24]. Finally, in Section 7 we conclude.

2 Symbolic semantics

A signature Σ = (S,F ,H) consists of a countable infinite set of sorts S =
{s, s1, ...}, a finite set of function symbols, F = {f, f1, ...}, and a finite set of
oracle symbols, H = {g, h, h1, ...} together with arities of the form ar(f) or
ar(h) = s1× ...× sk → s, k ≥ 0. Symbols in F that take k = 0 as arguments are
called constants. We suppose that there are three pairwise disjoint countable
sets N , X and P. N is the set of names, X is the set of first-order variables, and
P is the set of second order variables. We assume that both names and variables
are sorted, that is, to each name or variable u, a sort s is assigned; we use s(u)
for the sot of u. Variables p ∈ P have arities ar(p) = s1 × ...× sk → s.

A renaming is a bijection τ : N → N such that s(a) = s(τ(a)). As usual,
we extend the notation s(T) to denote the sort of a term T . Terms of sort s are
defined by the grammar:
T ::= x variable x of sort s

|n name n of sort s
|p(T1, . . . , Tk) variable p of arity s(T1)× ...× s(Tk)→ s
|f(T1, . . . , Tk) application of f ∈ F with arity s(T1)× ...× s(Tk)→ s
|h(T1, . . . , Tk) call of h ∈ H with arity s(T1)× ...× s(Tk)→ s

We use fn(T), pvar(T) and var(T) for the set of free names, the set of
p-variables and the set of variables that occur in the term T , respectively. Meta-
variables u, v, w range over names and variables. We use st(T) for the set of sub-

terms of T , defined in the usual way: st(u)
def
= {u} if u is a name or a variable,

and st(l(T1, . . . , Tk))
def
= {l(T1, . . . , Tk)}

⋃
i∈{1,...k} st(Ti), if l ∈ F∪H∪P. A term

T is closed if it does not have any free variables (but it may contain p-variables),
that means var(T) = ∅. The set of terms is denoted by T.

Symbols in F are intended to model cryptographic primitives, symbols in H
are intended to model cryptographic oracles (in particular, hash functions in the
ROM model), and names in N are used to model secrets, i.e. concretely random

numbers. Variables p ∈ P are intended to model queries and challenges made by
adversaries (and can depend on previous queries).

Definition 1 (Substitution). A substitution σ = {x1 = T1, ..., xn = Tn} is a
mapping from variables to terms whose domain dom(σ) = {x1, ..., xn} is finite
and such that σ(x) 6= x, for each x in the domain.

A substitution as above is well-sorted if xi and Ti have the same sort for each
i, and there is no circular dependence xi2 ∈ var(Ti1), xi3 ∈ var(Ti2), . . ., xi1 ∈
var(Tik

). The application of a substitution σ to a term T is written as σ(T) = Tσ.
This definition is lifted in a standard way to the application of a substitution to
set of terms or substitutions. The normal form σ∗ of a well-sorted substitution
σ is the iterative composition of σ with itself until it remains unchanged : σ∗ =
(. . . ((σ)σ) . . .)σ. For example, if σ = {x1 = a, x2 = f(b, x1), x3 = g(x1, x2)},
then σ∗ = {x1 = a, x2 = f(b, a), x3 = g(a, f(b, a)}. A substitution is closed if all
terms (of its normal form) Ti are closed. We let var(σ) = ∪ivar(Ti), pvar(σ) =
∪ipvar(Ti), n(σ) = ∪ifn(Ti), and extend the notations pvar(.), var(.), n(.) and
st(.) to tuples and set of terms in the obvious way.

The abstract semantics of symbols is described by an equational theory E,
that is an equivalence (denoted as =E) which is stable with respect to application
of contexts and well-sorted substitutions of variables.

Definition 2 (Equational Theory.). An equational theory for a given signa-
ture is an equivalence relation E ⊆ T × T (written as =E in infix notation) on
the set of terms such that
1) T1 =E T2 implies T1σ =E T2σ for every substitution σ;
2) T1 =E T2 implies T{x = T1} =E T{x = T2} for every term T and every
variable x;
3) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .

Frames ([3]) represent sequences of messages observed by an adversary. Formally:

Definition 3 (Frame). A frame is an expression of the form φ = νñ.σ where
σ is a well-sorted substitution, and ñ is n(σ), the set of all names occurring in
σ. By abuse of notation we also use n(φ) for ñ, the set of names bounded in the

frame φ. We note fv(φ)
def
= var(σ) \ dom(σ) the set of free variables of φ.

The novelty of our definition of frames consists in permitting adversaries to
interact with frames using p-variables. This is necessary to be able to cope with
adaptive adversaries. We note the set of frames by F.

The normal form φ∗ of a frame φ = νñ.σ is the frame φ∗ = νñ.σ∗. From
now on, we tacitly identify substitutions and frames with their normal form.
Next, we define composition of frames. Let φ = νñ.{x1 = T1, ..., xn = Tn} and

φ′ = νñ′.σ be frames with ñ∩ñ′ = ∅. Then, φφ′ denotes the frame ν(ñ∪ñ′).{x1 =
T1σ, ..., xn = Tnσ}.

Definition 4 (Equational equivalence). Let φ and φ′ be two frames such
that φ∗ = νñ.σ and φ′∗ = νñ.σ′ with σ = {x1 = T1, ..., xn = Tn} and σ′ =
{x1 = T ′

1, ..., xn = T ′
n}. Given the equational theory E, we say that φ and φ′ are

equationally equivalent written φ =E φ′, if and only if Tiσ =E T ′
iσ

′ for all i.

3 Computational Semantics

3.1 Distributions and indistinguishability

Let us note η ∈ N the security parameter. We are interested in analyzing generic
schemes for asymmetric encryption in the random oracle model [17, 10]. We

write h
r
← Ω to denote that h is randomly chosen from the set of functions

with appropriate domain (depending on η). By abuse of notation, for a list

H = h1, · · · , hm of hash functions, we write H
r
← Ω instead of the sequence

h1
r
← Ω, . . . , hm

r
← Ω. We fix a finite set H = {h1, . . . , hn} of hash functions. A

distribution ensemble is a countable sequence of distributions {Xη}η∈N. We only
consider distribution ensembles that can be constructed in polynomial time by
probabilistic algorithms that have oracle access toO = H. Given two distribution
ensembles X = {Xη}η∈N and X ′ = {X ′

η}η∈N, an algorithm A and η ∈ N, the
advantage of A in distinguishing Xη and X ′

η is defined by:

Adv(A, η,X,X ′) = Pr[x
r
← Xη : AO(η, x) = 1]− Pr[x

r
← X ′

η : AO(η, x) = 1].
Then, two distribution ensembles X and X ′ are called indistinguishable (de-

noted by X ∼ X ′) if for any probabilistic polynomial-time algorithm A, the
advantage Adv(A, η,X,X ′) is negligible as a function of η, that is, for any n > 0,
it become eventually smaller than η−n as η tends to infinity.

3.2 Frames as distributions

We now give terms and frames a computational semantics parameterized by a
computable implementation of the primitives in ROM. Provided a set of sorts S
and a set of symbols F , a computational algebra A = (S,F) consists of

- a sequence of non-empty finite set of bit strings [[s]]A = {[[s]]A,η}η∈N with
[[s]]A,η ⊆ {0, 1}∗ for each sort s ∈ S. For simplicity of the presentation, we
assume that all sorts are large domains, whose cardinalities are exponential in
the security parameter η;

- a sequence of polynomial time computable functions [[f]]A = {[[f]]A,η}η∈N

with [[f]]A,η : [[s1]]A,η × ... × [[sk]]A,η → [[s]]A,η for each f ∈ F with ar(f) =
s1 × ...× sk → s;

- a polynomial time computable congruence =A,η,s for each sort s, in order to
check the equality of elements in [[s]]A,η (the same element may be represented by
different bit strings). By congruence, we mean a reflexive, symmetric, and transi-
tive relation such that e1 =A,s1,η e′1, ..., ek =A,sk,η e′k ⇒ [[f]]A,η(e1, ..., ek) =A,s,η

[[f]]A,η(e′1, ..., e
′
k) (we usually omit s,η and A and write = for =A,s,η);

- a polynomial time procedure to draw random elements from [[s]]A,η; we
denote such a drawing by x←R [[s]]A,η; for simplicity, in this paper we suppose
that all these drawing follow a uniform distribution.

From now on we assume a fixed computational algebra (S,F), and a fixed η,
and for simplicity we omit the indices A,s and η. For lack of space, we use ppt to
stand for probabilistic polynomial-time. Given H a fixed set of hash functions,
and (Ai)i∈I a fixed set of ppt functions (can be seen as a ppt adversaryAO taking

an additional input i), we associate to each frame φ = νñ.{x1 = T1, . . . , xk = Tk}
a sequence of distributions [[φ]]H,A computed as follows:

- for each name n of sort s appearing in ñ, draw a value n̂
r
← [[s]];

- for each variable xi(1 ≤ i ≤ k) of sort si, compute T̂i ∈ [[si]] recursively on
the structure of terms: x̂i = T̂i ;

- for each call hi(T
′
1, . . . , T

′
m) compute recursively on the structure of terms:

̂hi(T ′
1, . . . , T

′
m) = hi(T̂ ′

1, . . . , T̂
′
m);

- for each call f(T ′
1, . . . , T

′
m) compute recursively on the structure of terms:

̂f(T ′
1, . . . , T

′
m) = [[f]](T̂ ′

1, . . . , T̂
′
m);

- for each call pi(T
′
1, . . . , T

′
m) compute recursively on the structure of terms

and draw a value ̂pi(T ′
1, . . . , T

′
m)

r
← AO(i, T̂ ′

1, . . . , T̂
′
m);

- return the value φ̂ = {x1 = T̂1, . . . , xk = T̂k}.
Such φ = {x1 = bse1, . . . , xn = bsen} with bsei ∈ [[si]] are called concrete

frames. We extend the notation [[.]] to (sets of) closed terms in the obvious way.

Now the concrete semantics of a frame φ with respect to an adversary A, is
given by the following sequence of distributions (one for each implicit η):

[[φ]]A =
[
H

r
← Ω;O = H; φ̂

r
← [[φ]]H,A : φ̂

]

When pvar(φ) = ∅, semantics of φ does not depend on the adversary A and
we will use the notation [[φ]] (or [[φ]]H) instead of [[φ]]A (respectively [[φ]]H,A).

3.3 Soundness and Completeness

The computational model of a cryptographic scheme is closer to reality than
its formal representation by being a more detailed description. Therefore, the
accuracy of a formal model can be characterized based on how close it is to the
computational model. For this reason, we introduce the notions of soundness and
completeness (inspired from [8]) that relate relations in the symbolic model with
respect to similar relations in the computational model. Let E be an equivalence
theory and let R1 ⊆ T×T, R2 ⊆ F×T, and R3 ⊆ F×F be relations on closed
frames, on closed terms, and relations on closed frames and terms, respectively.

- R1 is =-sound iff for all terms T1, T2 of the same sort, (T1, T2) ∈ R1 implies

that Pr[ê1, ê2
r
← [[T1, T2]]A : ê1 6= ê2))] is negligible for any ppt adversary A.

- R1 is =-complete iff for all terms T1, T2 of the same sort, (T1, T2) 6∈ R1

implies that Pr[ê1, ê2
r
← [[T1, T2]]A : ê1 6= ê2))] is non-negligible for some ppt

adversary A.

- R1 is =-faithful iff for all terms T1, T2 of the same sort, (T1, T2) 6∈ R1 implies

that Pr[ê1, ê2
r
← [[T1, T2]]A : ê1 = ê2))] is negligible for any ppt adversary A.

- R2 is 6⊢-sound iff all frame φ and term T , (φ, T) ∈ R2 implies that Pr[φ̂, ê
r
←

[[φ, T]]A : AO(φ̂) = ê] is negligible for any ppt adversary A.

- R2 is 6⊢-complete iff for all frame φ and term T , (φ, T) 6∈ R2 implies that

Pr[φ̂, ê
r
← [[φ, T]]A : AO(φ̂) = ê] is non-negligible for some ppt adversary A.

- R3 is ≈E-sound iff for all frames φ1, φ2 with the same domain, (φ1, φ2) ∈ R3

implies that ([[φ1]]A) ∼ ([[φ2]]A) for any ppt adversary A.

- R3 is ≈E-complete iff for all frames φ1, φ2 with the same domain, (φ1, φ2) 6∈
R3 implies that ([[φ1]]A) 6∼ ([[φ2]]A) for some ppt adversary A.

4 Formal relations

One challenge of the paper is to propose appropriate symbolic relations that
correctly abstract computational properties as indistinguishability of two distri-
butions or weak secrecy of some random value (the adversary has only negligible
probability to compute it). In this section we provide two symbolic relations
(called formal indistinguishability relation and formal non-derivability relation)
that are sound abstractions for the two above computational properties.

First we define well-formed relations and we recall a simplified definition of
a formal indistinguishability relation as proposed in [7].

Definition 5 (Well-formed relations). A relation Sd ⊆ F×T is called well-
formed if fn(M) ⊆ n(φ) for any (φ,M) ∈ Sd, and a relation Si ⊆ F × F is
well-formed if dom(φ1) = dom(φ2) for any (φ1, φ2) ∈ Si.

Definition 6. [FIR [7]] A well-formed relation ∼=⊆ F × F is called a formal
indistinguishability relation (FIR for short) with respect to the equational
theory =E, if ∼= is closed with respect to the following closure rules:
(GE1) If φ1

∼= φ2 then φφ1
∼= φφ2, for any frame φ such that var(φ) ⊆ dom(φi)

and n(φ) ∩ n(φi) = ∅.
(GE2) φ ∼= φ′ for any frame φ′ such that φ′ =E φ.
(GE3) τ(φ) ∼= φ for any renaming τ .

This definition is a good starting point to capture indistinguishability in the
following sense: if we have a correct implementation of the abstract algebra (i.e.
=E is =-sound) and we were provided with some initial relation S (reflecting
some computational assumption) which is ≈-sound , then the closure of S using
the above rules produces a larger relation which still remains ≈-sound. But in
order to use this definition for real cryptographic constructions , we need to
enrich it in several aspects. First, most of constructions which are proposed
in the literature, ([9], [28], [22], [24], [26], [10]) use bijective functions (XOR-
function or permutations) as basic bricks. To deal with these constructions, we
add the following closure rule:
(GE4) If M,N are terms such that N [M/z] =E y, M [N/y] =E z, var(M) = {y}
and var(N) = {z}, then for any substitution σ such that r 6∈ (fn(σ)∪ fn(M)∪
fn(N)) and x 6∈ dom(σ) it holds νñ.r.{σ, x = M [r/y])} ∼= νñ.r.{σ, x = r}.

Second, cryptographic constructions use often hash functions. In ideal mod-
els, if one applies a hash function (modeled by random functions [10] or pseudo-
random permutations [23]) to a argument that is weakly secret, it returns a
random value. And they are quite frequent primitives in cryptography that only
ensure weak secrecy. One-way functions only guarantee that an adversary that
possesses the image by a one-way function of a random value, has only a negligi-
ble probability to compute this value. The computational Diffie-Hellman (CDH)

assumption states that if given the tuple g, ga, gb for some randomly-chosen
generator g and some random values a, b, it is computationally intractable to
compute ga∗b (equivalently ga∗b is a weakly secret value). This motivates us to
introduce the formal non-derivability relation as an abstraction of weak se-
crecy. Let us explain the basic closure rules of this relation. Since we assume
that all sorts are implemented by large finite sets of bit strings, it is clearly that
(GD1) νr.∅ 6≻ r.

Renaming does not change the concrete semantics of terms or frames.
(GD2) If φ 6≻M then τ(φ) 6≻ τ(M) for any renaming τ .

If the equational theory is preserved in the computational world, then equiv-
alent terms or frames are indistinguishable.
(GD3) If φ 6≻M then φ 6≻ N for any term N =E M .
(GD4) If φ 6≻M then φ′ 6≻M for any frame φ′ =E φ.

If some bit string (concrete implementation of term M) is weakly secret, then
any polynomially computation (abstracted by the frame φ′) does not change this.
(GD5) If φ 6≻M then φ′φ 6≻M for any frame φ′ such that n(φ′) ∩ n(φ) = ∅.

Next rule gives a relationship between indistiguishability and secrecy: if two
distributions are indistinguishable, then they leak exactly the same information.
(GD6) For all substitutions σ1, σ2 such that x 6∈ dom(σi), if νñ.{σ1, x = M} ∼=
νñ.{σ2, x = N} and νñ.σ1 6≻M then νñ.σ2 6≻ N .

If the concrete implementation of the symbolic contextual term T (z) is a fea-
sible computation, that is, the adversary has all the needed information to com-
pute T (·) (fn(T) ∩ n(φ) = ∅), then the concrete implementation of (Tφ)[M/z]
is weakly secret only because the implementation of M itself is weakly secret.
(GD7) If φ 6≻ (Tφ)[M/z] then φ 6≻M , where T is such that fn(T) ∩ n(φ) = ∅.

One can remark now that (GD6) may be generalized to the rule below
(GD6g) If T,U are terms such that (fn(T)∪fn(U))∩ñ = ∅, z ∈ var(T)\var(U)
and U [T/y] =E z, then for all substitutions σ1, σ2 such that x 6∈ dom(σi) and
νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]} and νñ.σ1 6≻M then νñ.σ2 6≻ N .

Actually, (GD6g) is consequence of rules (GD3), (GD6) and (GD7).

Now the rules that capture hash functions in the ROM: the image by a
random function of a weakly secret value is a completely random value.
(HD1) If νñ.r.σ[r/h(T)] 6≻ T and r 6∈ n(σ), and if σ[r/h(T)] does not contain
any subterm of the form h(•), then νñ.σ 6≻ T .
(HE1) If νñ.r.σ[r/h(T)] 6≻ T and r 6∈ n(σ), and if σ[r/h(T)] does not contain
any subterm of the form h(•), then νñ.r.σ ∼= νñ.r.σ[r/h(T)].

The definition below formalizes the tight connection between FIR and FNDR.

Definition 7 (FNDR and FIR). A pair of well formed relations (6≻,∼=) is
a pair of (formal non-derivability relation, formal indistinguishability
relation) with respect to the equational theory =E, if (6≻,∼=) is closed with re-
spect to the rules (GD1), ..., (GD7),(GE1),...,(GE4), (HD1),(HE1) and ∼= is an
equivalence.

The theorem 1 shows that if a pair (FIR,FNDR) was generated by relations Sd

and Si, then it is sufficient to check only soundness of elements in Sd and Si to

ensure that the closures 〈Sd〉6≻ and 〈Si〉∼= are sound. We define (D1, I1) ⊏ (D2, I2)
if and only if D1 ⊆ D2 and I1 ⊆ I2. It is easy to see that ⊏ is an order.

Theorem 1. Let (Sd, Si) be a well-formed pair of relations. Then, it exists a
unique smallest (with respect to ⊏) pair denoted (〈Sd〉6≻, 〈Si〉∼=) of (FNDR, FIR)
such that 〈Sd〉6≻ ⊇ Sd and 〈Si〉∼= ⊇ Si. In addition, if =E is =-sound, Sd is
6⊢-sound and Si is ≈-sound, then also 〈Sd〉6≻ is 6⊢-sound and 〈Si〉∼= is ≈-sound.

The reader should notice that rules (HE1) and (HD1) can be strengthened if
=E is =-faithful: “if σ[r/h(T)] does not contain any subterm of the form h(•)”
can be replaced with “T 6=E T ′ for any subterm h(T ′) of σ[r/h(T)]”.

5 Applications

We apply the framework of Section 4 in order to prove IND-CPA security of sev-
eral generic constructions for asymmetric encryptions. So we will consider pairs
of relations (6≻,∼=) = (〈Sd〉6≻, 〈Si〉∼=) generated by some initial sets (Sd, Si), in
different equational theories. We assume that all =E , Sd, Si that are considered
in this section satisfy the conditions of Theorem 1. We emphasize the following
fact: adding other equations than those considered does not break the computa-
tional soundness of results proved in this section, as long as the computational
hypothesis encoded by Sd and Si still hold.
First we introduce a general abstract algebra that we will extend in order to
cover different constructions. We consider three sorts Data, Data1, Data2, and
the symbols || : Data1 × Data2 → Data, ⊕S : S × S → S, 0S : S, with
S ∈ {Data,Data1,Data2} and πj : Data→ Dataj , with j ∈ {1, 2}. For simplic-
ity, we omit S when using ⊕S or 0S . The equational theory Eg is generated by:
(XEq1) x⊕ 0 =Eg

x (XEq2) x⊕ y =Eg
y ⊕ x (PEq1) π1(x||y) =Eg

x
(XEq2) x⊕ x =Eg

0 (XEq4) x⊕ (y ⊕ z) =Eg
(x⊕ y)⊕ z (PEq2) π2(x||y) =Eg

y
|| is intended to model concatenation, ⊕ is the classical XOR and πj are the

projections. Next rules are consequences of the closure rules from Section 4.
(SyE) If φ1

∼= φ2 then φ2
∼= φ1.

(TrE) If φ1
∼= φ2 and φ2

∼= φ3 then φ1
∼= φ3.

(XE1) If r 6∈ (fn(σ) ∪ fn(T)) then νñ.r.{σ, x = r ⊕ T} ∼= νñ.r.{σ, x = r}.
(CD1) If (φ 6≻ T1 ∨ φ 6≻ T2) then φ 6≻ T1||T2.
(XD1) If νñ.σ 6≻ T and r 6∈ (ñ ∪ fn(T)) then νñ.r.{σ, x = r ⊕ T} 6≻ T .

5.1 Trapdoor one-way functions in the symbolic model

We extend the above algebra in order to model trapdoor one-way functions. We
add a sort iData and new symbols f : Data × Data → iData ,f−1 : iData ×
Data→ Data, pub : Data→ Data. f is a trapdoor permutation, with f−1 being
the inverse function. We extend the equational theory:
(OEq1) f−1(f(x, pub(y)), y) =Eg

x.
To simplify the notations, we will use fk(•) instead of f(•, pub(k)). Now

we want to capture the one wayness of function f . Computationally, a one-
way function only ensures the weakly secrecy of a random argument r (as long

as the key k is not disclosed to the adversary). Hence we define Si = ∅ and
Sd = {(νk.r.{xk = pub(k), x = fk(r)}, r)}.

The following frame encodes the Bellare-Rogaway encryption scheme ([10]):
φbr(m) = νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m, z = h(m||r)}
where m is the plaintext to be encrypted, f is a trapdoor one-way function, and
g and h are hash functions (hence oracles in the ROM model).

Now we can see the necessity of p-variables in order to encode IND-CPA
security of an encryption scheme. It is not enough to prove that for any two
messages m1 and m2 the following equivalence holds:

νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m1, z = h(m1||r)} ∼=
νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m2, z = h(m2||r)}

We did not capture that the adversary is adaptive and she can choose her
challenges depending on the public key. We must prove a stronger equivalence:
for any terms p(xk) and p′(xk),

νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕ p(xk), z = h(p(xk)||r)} ∼=
νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕ p′(xk), z = h(p′(xk)||r)}

The reader noticed that for asymmetric encryption, this suffices to ensure IND-
CPA: possessing the public key and having access to hash-oracles allow to en-
crypt any message (having an oracle to encrypt messages becomes superfluous).

Actually, it suffices to prove νk.r.s.t.{xk = pub(k), xa = fk(r), y = g(r) ⊕
p(xk), z = h(p(xk)||r)} ∼= νk.r.s.t.{xk = pub(k), xa = fk(r), y = s, z = t}. By
transitivity, this implies: for any two challenges that adversary chooses for p(xk),
the distributions she gets are indistinguishable.

Next rules are consequences of the definition of Sd and of the closure rules.
(OD1) If f is a one-way function, then νk.r.{xk = pub(k), x = fk(r)} 6≻ r.
(ODg1) If f is a one-way function and νñ.νk.{xk = pub(k), x = T} ∼= νr.νk.{xk =
pub(k), x = r}, then νñ.νk.{xk = pub(k), x = fk(T)} 6≻ T .

The proof of IND-CPA security of Bellare-Rogaway scheme is presented in
Figure 1. To simplify the notations, implicitly, all names in frames are restricted
and we note σ2 ≡ xk = pub(k), xa = fk(r), and σ3 ≡ σ2, y = g(r)⊕ p(xk).

5.2 Partially one-way functions in the symbolic model

In this subsection, we show how we can deal with trapdoor partially one-way
functions ([24]). We demand for function f a stronger property than one-wayness.
Let Data1 be a new sort, and let f : Data1 × Data × Data → iData and
f−1 : iData×Data→ Data1 be functions such that
(OEq1) f(f−1(x, y), z, pub(y)) =Eg

x.
The function f is said partially one way, if for any given f(r, s, pub(k)), it

is impossible to compute in polynomial time a corresponding r without the
trapdoor k. In order to deal with fact that f is partially one-way, we define
Si = ∅ and Sd = {(νk.r.s.{xk = pub(k), x = fk(r, s)}, r)}.
The frame below encodes the encryption scheme proposed by Pointcheval ([24]).
φpo(m) = νk.r.s.{xk = pub(k), xa = fk(r, h(m||s)), y = g(r)⊕ (m||s)}
where m is the plaintext to be encrypted, f is a trapdoor partially one-way
function, and g and h are hash functions. To prove IND-CPA security of this

TrE
HE1

CD1
GD5

HD1
GD5

OD1
{σ2} 6≻ r

{σ2, y = s
′} 6≻ r

{σ2, y = g(r)} 6≻ r

{σ2, y = g(r) ⊕ p(xk), z = t} 6≻ r

{σ2, y = g(r) ⊕ p(xk), z = t} 6≻ p(xk)||r

{σ2, y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼= {σ2, y = g(r) ⊕ p(xk), z = t} (T1)

{σ2, y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼= {xk = pub(k), xa = fk(r), y = s, z = t}

Fig. 1. Proof of IND-CPA security of Bellare-Rogaway scheme.

GE1
TrE

GE1
HE1

GD5
OD1

{σ2} 6≻ r

{σ2, y = s} 6≻ r

{σ2, y = g(r)} ∼= {σ2, y = s}

{σ3} ∼= {σ2, y = s ⊕ p(xk)}
XE1

{σ2, y = s ⊕ p(xk)} ∼= {σ2, y = s}

{σ2, y = g(r) ⊕ p(xk)} ∼= {σ2, y = s}

{σ2, y = g(r) ⊕ p(xk), z = t} ∼= {σ2, y = s, z = t}

Fig. 2. Tree (T1) from Figure 1.

scheme, we show that νk.r.s.s1.s2{xk = pub(k), xa = fk(r, h(p(xk)||s)), y =
g(r)⊕ (p(xk)||s)} ∼= νk.r.s.s1.s2.{xk = pub(k), xa = fk(r, s1), y = s2}.

Next rule is a consequence of the definition of Sd.
(ODp1) If f is a one-way function, then νk.r.s.{xk = pub(k), x = fk(r, s)} 6≻ r.
The proof of IND-CPA security of Pointcheval scheme is presented in Figure 3.
To simplify notations we suppose that all names in frames are restricted and we
note σ2 ≡ xk = pub(k), xa = fk(r, h(p(xk)||s)) and σ3 ≡ σ2, y = s2 ⊕ (p(xk)||s).

5.3 Computational Diffie Hellman (CDH) Assumption

In this subsection we prove IND-CPA security of a variant of Hash-ElGamal
encryption scheme ([27]) in the random oracle model under the CDH assumption.
The proof of the original scheme([6]) can be easily obtained from our proof and
it can be done entirely in our framework. We will consider two sorts G and A,
symbol functions exp : G× A→ G, ∗ : A× A → A, 0A : A, 1A : A, 1G : G. We
write MN instead of exp(M,N). We extend Eg by the following equations:
(XEqe1) (xy)z =Eg

xy∗z. (XEqe2) x1A =Eg
x. (XEqe3) x0A =Eg

1G.
To capture the CDH Assumption in the symbolic model we define Si = ∅ and
Sd = {(νg.r.s.{xg = g, x = gs, y = gr}, gs∗r)}. Then we get the next rule:
(CDH) νg.r.s.{xg = g, x = gs, y = gr} 6≻ gs∗r.

The following frame encodes the Hash-ElGamal encryption scheme.
φhel(m) = νg.r.s.{xg = g, x = gs, y = gr, z = h(gs∗r)⊕m}
where m is the plaintext to be encrypted, (g, gs) is the public key and h is
a hash function. The proof of IND-CPA security of Hash-ElGamal’s scheme is
provided in Figure 6. We supposed that all names are restricted and we noted
σe ≡ xg = g, x = gs, y = gr, and σf ≡ σe, z = t⊕ p(x, xg).

TrE
(T2) (T3)

{σ2, y = g(r) ⊕ (p(xk)||s)} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

Fig. 3. Proof of IND-CPA security of Pointcheval scheme.

HE1
GD6

SyE
XE1

{σ3, x = r} ∼= {σ2, y = s2, x = r}

{σ2, y = s2, x = r} ∼= {σ3, x = r}
GD5

ODp1
{σ2} 6≻ r

{σ2, y = s2} 6≻ r

{σ3} 6≻ r

{σ2, y = g(r) ⊕ (p(xk)||s)} ∼= {σ3}

Fig. 4. Tree (T2) from Figure 3.

TrE
XE1

{σ3} ∼= {σ2, y = s2}
GE1

HE1
CD1

GD5
GD1

∅ 6≻ s

{xk = pub(k), xa = fk(r, s1)} 6≻ s

{xk = pub(k), xa = fk(r, s1)} 6≻ p(xk)||s

{σ2} ∼= {xk = pub(k), xa = fk(r, s1)}

{σ2, y = s2} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

{σ3} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

Fig. 5. Tree (T3) from Figure 3.

TrE
GE1

HE1
GD5

CDH
{σe} 6≻ g

s∗r

{σe, z = t} 6≻ g
s∗r

{σe, z = h(g
s∗r

)} ∼= {σe, z = t}

{σe, z = h(g
s∗r

) ⊕ p(x, xg)} ∼= {σf}
XE1

{σf} ∼= {σe, z = t}

{xg = g, x = g
s
, y = g

r
, z = h(g

s∗r
) ⊕ p(x, xg)} ∼= {xg = g, x = g

s
, y = g

r
, z = t}

Fig. 6. Proof of IND-CPA security of Hash-ElGamal’s scheme

6 Static equivalence and FIR

In this section we adapt the definition of deductibility and static equivalence ([8])
to our framework. After, we justify why they are too coarse to be appropriate
abstractions for indistinguishability and weak secrecy. Actually, Proposition 1
states that they are coarser approximations of indistinguishability and weak
secrecy than FIR and FNDR.

If φ is a frame, and M,N are terms, then we use (M =E N)φ for Mφ =E Nφ.

Definition 8 (Deductibility). A (closed) term T is deductible from a frame
φ where (pi)i∈I = pvar(φ), written φ ⊢ T , if and only if there exists a term M
and a set of terms (Mi)i∈I , such that var(M) ⊆ dom(φ), ar(Mi) = ar(pi),
fn(M,Mi)∩ n(φ) = ∅ and (M =E T)(φ[(Mi(Ti1 , . . . , Tik

)/pi(Ti1 , . . . , Tik
))i∈I]).

We denote by 6⊢ the logical negation of ⊢.

For instance, we consider the frame φ = νk1.k2.s1.s2.{x1 = k1, x2 = k2, x3 =
h((s1⊕k1)⊕p(x1, x2)), x4 = h((s2⊕k2)⊕p(x1, x2))} and the equational theory
Eg. Then h(s1)⊕k2 is deductible from φ since h(s1)⊕k2 =Eg

x3[x1/p(x1, x2)]⊕x2

but h(s1)⊕ h(s2) is not deductible.

If we consider the frame φ′ = νk.r.s.{xk = pub(k), x = fk(r||s)} where f
is a trapdoor one-way function, then neither r||s, nor r is deductible from φ′.
The one-wayness of f is modelled by the impossibility of inverting f if k is not
disclosed. While this is fair for r||s according to the computational guarantees of
f , it seems too strong of assuming that r alone cannot be computed if f is “just”
one-way. This raises some doubts about the fairness of 6⊢ as a good abstraction
of weak secrecy. We can try to correct this and add an equation of the form
g(f(x||z, pub(y)), y) =Eg

x. And now, what about r1, if one gives f((r1||r2)||s)?
In the symbolic setting r1 is not deductible; computationally, we have no guar-
antee; hence, when one stops to add equations? Moreover, in this way we could
exclude ”good” one-way functions: computationally, if f is a one-way function,

then f ′(x||y)
def
= x||f(y), is another one-way function. The advantage of defining

non-deductibility as we did it in the Section 4, is that first, we capture “just”
what is supposed to be true in the computational setting, and second, if we add
more equations to our abstract algebra (because we discovered that the imple-
mentation satisfies more equations) in a coherent manner with respect to the
initial computational assumptions, then our proofs still remain computationally
sound. This is not true for 6⊢.

Definition 9. A test for a frame φ is a tuple Υ = ((Mi)i∈I ,M,N) such that
ar(Mi) = ar(pi), var(M,N) ⊆ dom(φ), fn(M,N,Mi) ∩ n(φ) = ∅. Then φ
passes Υ if and only if (M =E N)(φ[(Mi(Ti1 , . . . , Tik

)/pi(Ti1 , . . . , Tik
))i∈I]).

Definition 10 (Statically Equivalent). Two frames φ1 and φ2 are statically
equivalent, written as φ1 ≈E φ2, if and only if
(i) dom(σ1) = dom(σ2);
(ii) for any test Υ , φ1 passes the test Υ if and only if φ2 passes the test Υ .

For instance, the two frames φ1 = νk.s.{x1 = k, x2 = h(s) ⊕ (k ⊕ p(x1))} and
φ2 = νk.s.{x1 = k, x2 = s ⊕ (k ⊕ p(x1))} are statically equivalent with respect
to Eg. However the two frames φ′

1 = νk.s.{x1 = k, x2 = h(s)⊕ (k⊕ p(x1)), x3 =
h(s)} and φ′

2 = νk.s.{x1 = k, x2 = s⊕(k⊕p(x1)), x3 = h(s)} are not. The frame
φ′

2 passes the test ((x1), x2, x3), but φ′
1 does not.

Let us now consider the equational theory from subsection 5.2. Then the
following frames νg.a.b.{x1 = g, x2 = ga, x3 = gb, x4 = ga∗b) and νg.a.b.c.{x1 =
g, x2 = ga, x3 = gb, x4 = gc) are statically equivalent. This seems right, it is
the DDH assumption: a computational implementation that satisfies indistin-
guishability for the interpretations of this two frames will simply satisfy the
DDH assumption. But soundness would imply much more. Even νg.a.b.{x1 =

g, x2 = ga, x3 = gb, x4 = ga2∗b2} and νg.a.b.c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}
will be statically equivalent. It is unreasonable to assume that this is true for
the computational setting. As for non-deductibility, the advantage of considering
FIR as the abstraction of indistinguishability, is that if we add equations in a
coherent manner with respect to the initial computational assumptions (that is
with Si), then our proofs still remain computationally sound. The proposition
below says that if we consider initial reasonable sets Sd and Si, then we get finer
approximations of indistinguishability and weak secrecy than 6⊢ and ≈E .

Proposition 1. Let (Sd, Si) be such that Sd ⊆6⊢ and Si ⊆≈E. Then 〈Sd〉6≻ ⊆6⊢
and 〈Si〉∼= ⊆≈E.

7 Conclusion

In this paper we developed a general framework for relating formal and com-
putational models for generic encryption schemes in the random oracle model.
We proposed general definitions of formal indistinguishability relation and for-
mal non-derivability relation, that is symbolic relations that are computationally
sound by construction. We extended previous work with respect to several as-
pects. First, our framework can cope with adaptive adversaries. This is manda-
tory in order to prove IND-CPA security. Second, many general constructions
use one-way functions, and often they are analyzed in the random oracle model:
hence the necessity to capture the weak secrecy in the computational world.
Third, the closure rules we propose are designed with the objective of minimizing
the initial relations which depend of the cryptographic primitives and assump-
tions. We illustrated our framework on several generic encryption schemes: we
proved IND-CPA security of the scheme proposed by Bellare and Rogaway in
[10], of Hash El Gamal [6] and of the scheme proposed by Pointcheval in [24].

As future works, we project to study the (relative) completeness of various
equational symbolic theories. Other extensions will be to capture fully active
adversaries or exact security (as in [11], we could define indistinguishabiliy as
up-to some explicit probability p instead of up-to a negligible probability).

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). In IFIP International Conference on
Theoretical Computer Science (IFIP TCS), Sendai, Japan, 2000. Springer-Verlag.

2. Mart́ın Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks and the
computational soundness of static equivalence. In FoSSaCS, volume 3921 of LNCS,
pages 398–412. Springer, 2006.

3. Mart́ın Abadi and Andrew D. Gordon. A bisimulation method for cryptographic
protocols. In ESOP, volume 1381 of LNCS, pages 12–26. Springer, 1998.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable dolev-yao
style cryptographic library. In CSFW, pages 204–218. IEEE , 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a
simulatable cryptographic library. In ESORICS, volume 2808 of LNCS, pages
271–290. Springer, 2003.

6. Joonsang Baek, Byoungcheon Lee, and Kwangjo Kim. Secure length-saving el-
gamal encryption under the computational diffie-hellman assumption. In ACISP,
volume 1841 of LNCS, pages 49–58. Springer, 2000.

7. Gergei Bana, Payman Mohassel, and Till Stegers. Computational soundness of for-
mal indistinguishability and static equivalence. In Mitsu Okada and Ichiro Satoh,
editors, ASIAN, volume 4435 of LNCS, pages 182–196. Springer, 2006.

8. Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound
implementations of equational theories against passive adversaries. In ICALP,
volume 3580 of LNCS, pages 652–663. Springer, 2005.

9. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In EUROCRYPT’04,
volume 950 of LNCS, pages 92–111, 1994.

10. Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In CCS’93, pages 62–73, 1993.

11. Bruno Blanchet and David Pointcheval. Automated security proofs with sequences
of games. In CRYPTO’06, volume 4117 of LNCS, pages 537–554, 2006.

12. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

13. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In Shai Halevi and Tal Rabin,
editors, TCC, volume 3876 of LNCS, pages 380–403. Springer, 2006.

14. V. Cortier and B. Warinschi. Computationally sound, automated proofs for secu-
rity protocols. In Sagiv [25], pages 157–171.

15. Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yas-
sine Lakhnech. Towards automated proofs for asymmetric encryption schemes in
the random oracle model. In CCS’2008, pages 371–380. ACM, 2008.

16. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

17. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptol.,
1(2):77–94, 1988.

18. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, April 1984.

19. R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In Sagiv [25], 172–185.

20. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
adaptive adversaries. In Symposium on Security and Privacy, pages 71–85, 2004.

21. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of
active adversaries. Theory of Cryptography Conference, 133–151. Springer, 2004.

22. T. Okamoto and D. Pointcheval. React: Rapid enhanced-security asymmetric cryp-
tosystem transform. In CT-RSA’01, pages 159–175, 2001.

23. Duong Hieu Phan and David Pointcheval. About the security of ciphers (semantic
security and pseudo-random permutations). In Selected Areas in Cryptography,
volume 3357 of LNCS, pages 182–197. Springer, 2004.

24. D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
PKC’00, pages 129–146, 2000.

25. Shmuel Sagiv, editor. Programming Languages and Systems, 14th European Sym-
posium on Programming,ESOP 2005, April 4-8, volume 3444 of LNCS, 2005.

26. V. Shoup. Oaep reconsidered. J. Cryptology, 15(4):223–249, 2002.
27. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.

cryptology eprint archive, report 2004/332, 2004.
28. Y. Zheng and J. Seberry. Immunizing public key cryptosystems against chosen

ciphertext attacks. J. on Selected Areas in Communications, 11(5):715–724, 1993.

