
D2.3 Implementation of prototypes for equivalence properties

Steve Kremer

January 16, 2012

The results presented in this report have been obtained by Mathieu Baudet, Rohit Chadha,
Ştefan Ciobâcă, Vincent Cheval, Hubert Comon-Lundh, Véronique Cortier and Steve Kremer.

Abstract

Equivalence properties are extremely useful in the analysis of security protocols for

expressing privacy type properties. While reachability properties have been extensively

studies and benefit from rich tool support the situation for equivalence properties is differ-

ent. In this review we give an overview of four prototype tools that have been developed

in the AVOTÉ project.

1 Introduction

Automated analysis of security protocols has proved extremely successful, and there are several
automated tools, e.g., [Bla01, A+05, EMM09], that can automatically check trace-properties
such as (weak forms of) confidentiality and authentication. While trace-based properties
are certainly important, many crucial security properties can only be expressed in terms of
indistinguishability (or equivalence). They include strong flavors of confidentiality [Bla04];
resistance to guessing attacks in password based protocols [Bau05]; and anonymity prop-
erties in private authentication [AF04], electronic voting [DKR09, BHM08], vehicular net-
works [DDS10] and RFID protools [ACRR10, BCdH10]. More generally, indistinguishabil-
ity allows to model security by the means of ideal systems, which are correct by construc-
tion [AG99, DKP09]. Indistinguishability properties of cryptographic protocols are naturally
modeled by the means of observational and testing equivalences in cryptographic extensions
of process calculi, e.g., the spi [AG99] and the applied-pi calculus [AF01]. While we have
good tools for automated verification of trace properties, the situation is different for indis-
tinguishability properties.

Many decidability results have been obtained in the restricted case of a pure eavesdrop-
per, i.e., a passive adversary, for static equivalence [AC06, CD07, ACD07]. However, these
results do not provide tool support nor practical algorithms ready for implementation. In
the case of an active adversary Hüttel [Hüt02] showed undecidability of observational equiv-
alence in the spi calculus, even for the finite control fragment, as well as decidability for
the finite, i.e., replication-free, fragment of the spi calculus. The decidability result how-
ever only holds for a fixed set of cryptographic primitives and does not yield a practical
algorithm. Current results [BAF05] allow to approximate observational equivalence for an
unbounded number of sessions. However, this approximation does not suffice to conclude

1

for many applications, e.g., [DKR09, ACRR10]. Symbolic bisimulations have also been de-
vised for the spi [BBN04, Bor08, TD10] and applied pi calculus [DKR10, LL10] to avoid
unbounded branching due to adversary inputs. However, only [DKR10, TD10] and [BBN04]
yield a decision procedure, again only approximating observational equivalence. The results of
[DKR10] have been further refined to show a decision procedure on a restricted class of simple
processes [CD09]. They rely on a procedure deciding the equivalence of constraint systems,
introduced by Baudet [Bau05], for the special case of verifying the existence of guessing at-
tacks. Baudet’s procedure allows arbitrary cryptographic primitives that can be modeled as a
subterm convergent rewrite systems [AC06]. An alternate procedure achieving the same goal
was proposed by Chevalier and Rusinowitch [CR10]. However, both procedures are highly
non-deterministic and do not yield a reasonable algorithm that could be implemented. This
was one of the motivations for Cheval et al. [CCLD10] to designed a new procedure and a
prototype tool to decide the equivalence of constraint systems described in this report. Their
result only holds for a fixed set of primitives which is insufficient for many examples stem-
ming from electronic voting. Overcoming this was one of the motivations when developing
the AKiSs tool also described below. AKiSs is able to decide trace equivalence for a class
of determinate processes and to approximate trace equivalence for a more general class. The
tool supports a wide range of equational theories, notably all optimally reducing convergent
theories (including subterm convergent theories, as well as theories for blind signatures and
trapdoor commitment).

In this report we overview four prototypes that gave been implemented during the AVOTÉ
project. All tools are freely available for download. We attach the accompanying publica-
tions [BCD09, CDK11, CCLD10, CCK12] for each tool.

• YAPA (Yet Another Protocol Analyzer) is a tool dedicated to the analysis of deducibility
and static equivalence.

http://www.lsv.ens-cachan.fr/~baudet/yapa/

• KiSs (Knowledge in Security protocolS) is a tool for deciding deduction and static
equivalence under certain convergent term rewriting systems.

http://www.lsv.ens-cachan.fr/~ciobaca/kiss/

• ADECS decides symbolic trace equivalence where the inputs are given as deducible
constraint systems.

http://www.lsv.ens-cachan.fr/~cheval/program/adecs/

• AKiSs (Active Knowledge in Security protocolS) is a tool for automatically checking
trace equivalence for a bounded number of sessions in cryptographic protocols.

http://www.lsv.ens-cachan.fr/~ciobaca/akiss/

2

2 YAPA and KiSs

YAPA implements a generic decision procedure for static equivalence. YAPA takes as input
any convergent rewrite system. We show that the algorithm covers all previously existing
decision procedures for convergent theories. We prove the algorithm sound and complete, up to
explicit failure cases. Note that (unfailing) termination cannot be guaranteed in general since
the problem of checking deducibility and static equivalence is undecidable, even for convergent
theories [AC06]. To address this issue and turn our algorithm into a decision procedure for
a given convergent theory, we provide two criteria. First, we define a syntactic criterion on
the rewrite rules that ensures that the algorithm never fails. This criterion is enjoyed in
particular by any convergent subterm theory, as well as the theories of blind signature and
homomorphic encryption. Second, we provide a termination criterion based on deducibility:
provided that failure cannot occur, termination on a given input is equivalent to the existence
of some natural finite representation of deducible terms.

KiSs implements a similar generic procedure. However it uses a more general representa-
tion of deducible terms to overcome some limitation of the procedure implemented in YAPA.
The procedure terminates on a wide range of equational theories. In particular, we obtain a
new decidability result for the theory of trapdoor bit commitment encountered when studying
electronic voting protocols which is out of the scope of YAPA. Given the more complex rep-
resentation of deducible terms termination proofs are significantly more complicated. While
termination has been shown for subterm convergent theories, and theories for blind signatures
and trapdoor bit commitments, it is still an open question whether the tool terminates on all
theories on which YAPA terminates.

3 ADECS

In ADECS an infinite sets of possible traces are symbolically represented using deducibility
constraints. We give a new algorithm that decides the trace equivalence for the traces that
are represented using such constraints, in the case of signatures, symmetric and asymmetric
encryptions. The main idea of our method is to simultaneously solve pairs of constraints,
instead of solving each constraint separately and comparing the solutions, as in [Bau05].
These pairs are successively split into several pairs of systems, while pre- serving the symbolic
equivalence: roughly, the father pair is in the relation if, and only if, all the sons pairs are
in the relation. This is not fully correct, since, for termination purposes, we need to keep
track of some earlier splitting, using ad- ditional predicates. Such predicates, together with
the constraint systems, yield another notion of equivalence, which is preserved upwards, while
the former is preserved downwards. When a pair of constraints cannot be split any more, then
the equivalence can be trivially checked. This is the first implemented algorithm, deciding
symbolic trace equivalence.

4 AKiSs

In AKiSs we introduce a new procedure for verifying equivalence properties for processes
specified in a cryptographic process calculus (without replication). The main contributions
are as follows.

3

• Our procedure automatically checks for two equivalences ≈ct and ≈ft which over- and
under-approximate the standard notion of trace equivalence ≈t for cryptographic pro-
tocols: ≈ft can be used to prove protocols correct while ≈ct can be used to rule out
incorrect protocols.

• Cortier and Delaune [CD09] have shown that observational equivalence coincides with
≈t for the class of determinate processes. They also give a decision procedure for a
strict sub-class of determinate processes, namely, simple processes. We show that for
determinate processes the coarser relation ≈ct coincides with ≈t, and our procedure can
be used to verify observational equivalence for the whole class of determinate processes.

• A novelty of our procedure is that it is based on a fully abstract modeling of sym-
bolic traces in first-order Horn clauses. This is in contrast to the constraint-solving
techniques employed in [TD10, CCLD10, CCLD11, Bau05, CR10] for verifying under-
approximations of observational equivalence. Techniques based on Horn clauses have
been extensively used, e.g., in [Bla01, Wei99, Gou05], for an unbounded number of ses-
sions. Of these tools, only ProVerif [Bla01, BAF05] can verify an equivalence property,
which is an under-approximation of observational equivalence. Horn clause modeling of
an unbounded number of sessions of security protocols may allow false attacks. In con-
trast, we show our modeling of a bounded number of sessions for determinate protocols
to be precise.

• Our modeling is fully abstract for arbitrary cryptographic primitives that can be mod-
eled as a convergent rewrite system which has the finite variant property. Not only
this strictly includes the class of primitives that can be modeled as subterm conver-
gent rewrite systems, but this also allows us to handle a larger class of cryptographic
primitives than [TD10, CCLD10, CCLD11, Bau05, CR10, Bla01]. For example, this
allows us to handle trapdoor commitment as used by Okamoto for electronic voting in
[Oka97]. Although we were unable to prove termination of our procedure, we conjecture
it to terminate for the class of cryptographic primitives that can be modeled as subterm
convergent rewrite systems. Our conjecture is supported by experimental evidence.

• The AKiSs tool was used among others to give the first automated proof of anonymity
for the electronic voting protocols presented in [FOO92] and [Oka97].

References

[A+05] Alessandro Armando et al. The AVISPA tool for the automated validation of
internet security protocols and applications. In 17th International Conference on
Computer Aided Verification (CAV’05), LNCS, pages 281–285. Springer, 2005.

[AC06] Martín Abadi and Véronique Cortier. Deciding knowledge in security protocols
under equational theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

[ACD07] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Combining algo-
rithms for deciding knowledge in security protocols. In International Symposium
on Frontiers of Combining Systems (FroCoS’07), volume 4720 of LNAI, pages
103–117. Springer, 2007.

4

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark D. Ryan. Analysing unlink-
ability and anonymity using the applied pi calculus. In 23rd Computer Security
Foundations Symposium (CSF’10), pages 107–121. IEEE Comp. Soc. Press, 2010.

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th Symposium on Principles of Programming Languages (POPL’01), pages
104–115. ACM Press, 2001.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theoretical Computer
Science, 322(3):427–476, 2004.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Inf. Comput., 148(1):1–70, 1999.

[BAF05] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In Symposium on Logic in Computer
Science, pages 331–340. IEEE Comp. Soc. Press, 2005.

[Bau05] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks.
In 12th Conference on Computer and Communications Security (CCS’05), pages
16–25. ACM Press, 2005.

[BBN04] Johannes Borgström, Sébastien Briais, and Uwe Nestmann. Symbolic bisimulation
in the spi calculus. In 15th Int. Conference on Concurrency Theory (CONCUR’04),
volume 3170 of LNCS, pages 161–176. Springer, 2004.

[BCD09] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A generic tool
for computing intruder knowledge. In 20th International Conference on Rewriting
Techniques and Applications (RTA’09), volume 5595 of LNCS, pages 148–163.
Springer, 2009.

[BCdH10] Mayla Bruso, Konstantinos Chatzikokolakis, and Jerry den Hartog. Analysing un-
linkability and anonymity using the applied pi calculus. In 23rd Computer Security
Foundations Symposium (CSF’10), pages 107–121. IEEE Comp. Soc. Press, 2010.

[BHM08] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of
remote electronic voting protocols in the applied pi-calculus. In 21st Computer
Security Foundations Symposium (CSF’08). IEEE Comp. Soc. Press, 2008.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In 14th Computer Security Foundations Workshop (CSFW’01), pages 82–
96. IEEE Comp. Soc. Press, 2001.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In
Symposium on Security and Privacy (S&P’04), pages 86–100, 2004.

[Bor08] Johannes Borgström. Equivalences and Calculi for Formal Verifiation of Crypto-
graphic Protocols. Phd thesis, EPFL, Switzerland, 2008.

[CCK12] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of
equivalence properties of cryptographic protocols. In Helmut Seidl, editor, Pro-
gramming Languages and Systems — Proceedings of the 22nd European Symposium

5

on Programming (ESOP’12), Lecture Notes in Computer Science, Tallinn, Estonia,
March 2012. Springer. To appear.

[CCLD10] Vincent Cheval, Hubert Comon-Lundh, and Stephanie Delaune. Automating se-
curity analysis: symbolic equivalence of constraint systems. In International Joint
Conference on Automated Reasoning (IJCAR’10), LNAI, pages 412–426. Springer,
2010.

[CCLD11] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace equivalence
decision: Negative tests and non-determinism. In 18th Conference on Computer
and Communications Security (CCS’11), pages 321–330. ACM Press, 2011.

[CD07] Véronique Cortier and Stéphanie Delaune. Deciding knowledge in security pro-
tocols for monoidal equational theories. In 14th Int. Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’07), volume 4790 of
LNAI, pages 196–210. Springer, 2007.

[CD09] Véronique Cortier and Stéphanie Delaune. A method for proving observational
equivalence. In 22nd Computer Security Foundations Symposium (CSF’09), pages
266–276. IEEE Comp. Soc. Press, 2009.

[CDK11] Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing knowledge
in security protocols under convergent equational theories. Journal of Automated
Reasoning, 2011. To appear.

[CR10] Yannick Chevalier and Michaël Rusinowitch. Decidability of equivalence of sym-
bolic derivations. Journal of Automated Reasoning, 2010. To appear.

[DDS10] Morten Dahl, Stéphanie Delaune, and Graham Steel. Formal analysis of privacy
for vehicular mix-zones. In 15th European Symposium on Research in Computer
Security (ESORICS’10), volume 6345 of LNCS, pages 55–70. Springer, 2010.

[DKP09] Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based security in
the applied pi calculus. In 29th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’09), volume 4 of Leibniz International
Proceedings in Informatics, pages 169–180. Leibniz-Zentrum für Informatik, 2009.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, 17(4):435–
487, 2009.

[DKR10] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for
the applied pi calculus. Journal of Computer Security, 18(2):317–377, March 2010.

[EMM09] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. In Foundations of Security
Analysis and Design V, volume 5705 of LNCS, pages 1–50. Springer, 2009.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting
scheme for large scale elections. In Advances in Cryptology — AUSCRYPT ’92,
volume 718 of LNCS, pages 244–251. Springer, 1992.

6

[Gou05] Jean Goubault-Larrecq. Deciding H1 by resolution. Information Processing Let-
ters, 95(3):401–408, 2005.

[Hüt02] Hans Hüttel. Deciding framed bisimilarity. In 4th International Workshop on
Verification of Infinite-State Systems (INFINITY’02), pages 1–20, 2002.

[LL10] Jia Liu and Huimin Lin. A complete symbolic bisimulation for full applied pi cal-
culus. In 36th Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM’10), volume 5901 of LNCS, pages 552–563. Springer, 2010.

[Oka97] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elec-
tions. In 5th Int. Security Protocols Workshop, volume 1361 of LNCS, pages 25–35.
Springer, 1997.

[TD10] Alwen Tiu and Jeremy Dawson. Automating open bisimulation checking for the
spi-calculus. In 23rd Computer Security Foundations Symposium (CSF’10), pages
307–321. IEEE Comp. Soc. Press, 2010.

[Wei99] Christoph Weidenbach. Towards an automatic analysis of security protocols
in first-order logic. In 16th International Conference on Automated Deduction
(CADE’99), volume 1632 of LNCS, pages 314–328. Springer, 1999.

7

YAPA: A generic tool for computing intruder

knowledge
�

Mathieu Baudet1, Véronique Cortier2, and Stéphanie Delaune3

1 DCSSI, France
2 LORIA, CNRS & INRIA project Cassis, France
3 LSV, ENS Cachan & CNRS & INRIA, France

Abstract. Reasoning about the knowledge of an attacker is a necessary
step in many formal analyses of security protocols. In the framework of
the applied pi calculus, as in similar languages based on equational logics,
knowledge is typically expressed by two relations: deducibility and static
equivalence. Several decision procedures have been proposed for these
relations under a variety of equational theories. However, each theory
has its particular algorithm, and none has been implemented so far.

We provide a generic procedure for deducibility and static equivalence
that takes as input any convergent rewrite system. We show that our
algorithm covers all the existing decision procedures for convergent the-
ories. We also provide an efficient implementation, and compare it briefly
with the more general tool ProVerif.

1 Introduction

Understanding security protocols often requires reasoning about the information
accessible to an online attacker. Accordingly, many formal approaches to secu-
rity rely on a notion of deducibility [18, 19] that models whether a piece of data,
typically a secret, is retrievable from a finite set of messages. Deducibility, how-
ever, does not always suffice to reflect the knowledge of an attacker. Consider
for instance a protocol sending an encrypted Boolean value, say, a vote in an
electronic voting protocol. Rather than deducibility, the key idea to express con-
fidentiality of the plaintext is that an attacker should not be able to distinguish
between the sequences of messages corresponding to each possible value.

In the framework of the applied pi-calculus [3], as in similar languages based
on equational logics [10], indistinguishability corresponds to a relation called
static equivalence: roughly, two sequences of messages are statically equivalent
when they satisfy the same algebraic relations from the attacker’s point of view.
Static equivalence plays an important role in the study of guessing attacks
(e.g. [13, 5, 1]), as well as for anonymity properties and electronic voting pro-
tocols (e.g. [17]). In several cases, this notion has also been shown to imply
the more complex and precise notion of cryptographic indistinguishability [8, 1],
related to probabilistic polynomial-time Turing machines.

� Kindly supported by ANR-07-SESU-002 AVOTÉ and ARA SSIA FormaCrypt.

We emphasize that both deducibility and static equivalence apply to ob-
servations on finite sets of messages, and do not take into account the dynamic
behavior of protocols. Nevertheless, deducibility is used as a subroutine by many
general decision procedures [12, 11]. Besides, it has been shown that observational
equivalence in the applied pi-calculus coincides with labeled bisimulation [3], that
is, corresponds to checking a number of static equivalences and some standard
bisimulation conditions.

Deducibility and static equivalence rely on an underlying equational theory
for axiomatizing the properties of cryptographic functions. Many decision pro-
cedures [2, 14] have been proposed to compute these relations under a variety
of equational theories, including symmetric and asymmetric encryptions, signa-
tures, exclusive OR, and homomorphic operators. However, except for the class
of subterm convergent theories [2], which covers the standard flavors of encryp-
tion and signature, each of these decision results introduces a new procedure,
devoted to a particular theory. Even in the case of the general decidability cri-
terion given in [2], we note that the algorithm underlying the proof has to be
adapted for each theory, depending on how the criterion is fulfilled.

Perhaps as a consequence of this fact, none of these decision procedures has
been implemented so far. Up to our knowledge the only tool able to verify static
equivalence is ProVerif [9, 10]. This general tool can handle various equational
theories and analyze security protocols under active adversaries. However termi-
nation of the verifier is not guaranteed in general, and protocols are subject to
(safe) approximations.

The present work aims to fill this gap between theory and implementation
and propose an efficient tool for deciding deducibility and static equivalence in
a uniform way. It is initially inspired from a procedure for solving more gen-
eral constraint systems related to active adversaries and equivalence of finite
processes, presented in [5], with corrected extended version in [6] (in French).
However, due to the complexity of the constraint systems, this decision proce-
dure was only studied for subterm convergent theories, and remains too complex
to enable an efficient implementation.

Our first contribution is to provide and study a generic procedure for check-
ing deducibility and static equivalence, taking as input any convergent theory
(that is, any equational theory described by a finite convergent rewrite system).
We prove the algorithm sound and complete, up to explicit failure cases. Note
that (unfailing) termination cannot be guaranteed in general since the problem
of checking deducibility and static equivalence is undecidable, even for conver-
gent theories [2]. To address this issue and turn our algorithm into a decision
procedure for a given convergent theory, we provide two criteria. First, we de-
fine a syntactic criterion on the rewrite rules that ensures that the algorithm
never fails. This criterion is enjoyed in particular by any convergent subterm
theory, as well as the theories of blind signature and homomorphic encryption.
Termination often follows from a simple analysis of the rules of the algorithm:
as a proof of concept, we obtain a new decidability result for deducibility and
static equivalence for the prefix theory, representing encryption in CBC mode.

2

Second, we provide a termination criterion based on deducibility: provided that
failure cannot occur, termination on a given input is equivalent to the existence
of some natural finite representation of deducible terms. As a consequence, we
obtain that our algorithm can decide deducibility and static equivalence for all
the convergent theories previously known to be decidable [2].

Our second contribution is an efficient implementation of this generic proce-
dure, called YAPA. After describing the main features of the implementation, we
report several experiments suggesting that our tool computes static equivalence
faster and for more convergent theories than the general tool ProVerif [9, 10].
Because of space constraints, proofs are in an extended version of this paper [7].

2 Preliminaries

2.1 Term algebra

We start by introducing the necessary notions to describe cryptographic mes-
sages in a symbolical way. For modeling cryptographic primitives, we assume
a given set of function symbols F together with an arity function ar : F → N.
Symbols in F of arity 0 are called constants. We consider a set of variables X

and a set of additional constants W called parameters. The (usual, first-order)
term algebra generated by F over W and X is written F [W ∪X] with elements
denoted by T, U, T1 . . . More generally, we write F �[A] for the least set of terms
containing a set A and stable by application of symbols in F � ⊆ F .

We write var(T) (resp. par(T)) for the set of variables (resp. parameters) that
occur in a term T . These notations are extended to tuples and sets of terms in the
usual way. The set of positions (resp. subterms) of a term T is written pos(T) ⊆
N∗ (resp. st(T)). The subterm of T at position p ∈ pos(T) is written T |p. The
term obtained by replacing T |p with a term U in T is denoted T [U]p.

A (finite, partial) substitution σ is a mapping from a finite subset of variables,
called its domain and written dom(σ), to terms. The image of a substitution is its
image as a mapping im(σ) = {σ(x) | x ∈ dom(σ)}. Substitutions are extended
to endomorphisms of F [X ∪ W] as usual. We use a postfix notation for their
application. A term T (resp. a substitution σ) is ground iff var(T) = ∅ (resp.
var(im(σ)) = ∅).

For our cryptographic purposes, it is useful to distinguish a subset Fpub of F ,
made of public function symbols, that is, intuitively, the symbols made avail-
able to the attacker. A recipe (or second-order term) M , N , M1. . . is a term in
Fpub[W∪X], that is, a term containing no private (non-public) function symbols.
A plain term (or first-order term) t, r, s, t1. . . is a term in F [X], that is, contain-
ing no parameters. A (public, ground, non-necessarily linear) n-ary context C

is a recipe in Fpub[w1, . . . ,wn], where we assume a fixed countable subset of pa-
rameters {w1, . . . ,wn, . . .} ⊆ W. If C is a n-ary context, C[T1, . . . , Tn] denotes
the term obtained by replacing each occurrence of wi with Ti in C.

2.2 Rewriting

A rewrite system R is a finite set of rewrite rules l → r where l, r ∈ F [X]
and var(r) ⊆ var(l). A term S rewrites to T byR, denoted S →R T , if there exist

3

l → r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ and T = S[rσ]p.
We write →+

R for the transitive closure of →R, →∗
R for its reflexive and transitive

closure, and =R for its reflexive, symmetric and transitive closure.
A rewrite system R is convergent if is terminating, i.e. there is no infinite

chains T1 →R T2 →R . . ., and confluent, i.e. for every terms S, T such that
S =R T , there exists U such that S →∗

R U and T →∗
R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗
R S

and S is R-reduced then S is a R-reduced form of T . When this reduced form
is unique (in particular if R is convergent), we write S = T↓R.

2.3 Equational theories

We equip the signature F with an equational theory represented by a set of equa-
tions E of the form s = t with s, t ∈ F [X]. The equational theory E generated
by E is the least set of equations containing E that is stable under the axioms of
congruence (reflexivity, symmetry, transitivity, application of function symbols)
and under application of substitutions. We write =E for the corresponding rela-
tion on terms. Equational theories have proved very useful for modeling algebraic
properties of cryptographic primitives [15, 2].

We are particularly interested in theories E that can be represented by a
convergent rewrite system R, i.e. theories for which there exists a convergent
rewrite system R such that the two relations =R and =E coincide. The rewrite
system R —and by extension the equational theory E— is subterm convergent if,
in addition, we have that for every rule l → r ∈ R, r is either a subterm of l or a
ground R-reduced term. This class encompasses the one of the same name used
in [2], the class of dwindling theories used in [4], and the class of public-collapsing
theories introduced in [16].

Example 1. Consider the signature Fenc = {dec, enc, � , �, π1, π2}. The sym-
bols dec, enc and � , � are functional symbols of arity 2 that represent respectively
the decryption, encryption and pairing functions, whereas π1 and π2 are func-
tional symbols of arity 1 that represent the projection function on the first and
the second component of a pair, respectively. The equational theory of pairing
and symmetric (deterministic) encryption, denoted by Eenc, is generated by the
equations Eenc = {dec(enc(x, y), y) = x, π1(�x, y�) = x, π2(�x, y�) = y}.

Motivated by the modeling of the ECB mode of encryption, we may also
consider an encryption symbol that is homomorphic with respect to pairing:

Ehom = Eenc ∪

�
enc(�x, y�, z) = �enc(x, z), enc(y, z)�
dec(�x, y�, z) = �dec(x, z), dec(y, z)�

�
.

If we orient the equations from left to right, we obtain two rewrite systems Renc

andRhom. Both rewrite systems are convergent, onlyRenc is subterm convergent.

From now on, we assume a given equational theory E represented by a con-
vergent rewrite system R. A symbol f is free if f does not occur in R. In order
to model (an unbounded number of) random values possibly generated by the

4

attacker, we assume that Fpub contains infinitely many free public constants. We
will use free private constants to model secrets, for instance the secret keys used
to encrypt a message. Private (resp. public) free constants are closely related to
bound (resp. free) names in the framework of the applied pi calculus [3]. Our
formalism also allows one to consider non-constant private symbols.

3 Deducibility and static equivalence

In order to describe the cryptographic messages observed or inferred by an at-
tacker, we introduce the following notions of deduction facts and frames.

A deduction fact is a pair, written M � t, made of a recipe M ∈ Fpub[W∪X]
and a plain term t ∈ F [X]. Such a deduction fact is ground if var(M, t) = ∅. A
frame, denoted by letters ϕ, Φ, Φ0. . . , is a finite set of ground deduction facts.
The image of a frame is defined by im(Φ) = {t | M � t ∈ Φ}. A frame Φ is
one-to-one if M1 � t, M2 � t ∈ Φ implies M1 = M2.

A frame ϕ is initial if it is of the form ϕ = {w1 � t1, . . . , w� � t�} for some
distinct parameters w1, . . . , w� ∈ W. Initial frames are closely related to the
notion of frames in the applied pi-calculus [3]. The parameters wi can be seen
as labels that refer to the messages observed by an attacker. Given such an
initial frame ϕ, we denote by dom(ϕ) its domain dom(ϕ) = {w1, . . . , w�}. If
par(M) ⊆ dom(ϕ), we write Mϕ for the term obtained by replacing each wi

by ti in M . If in addition M is ground then t = Mϕ is a ground plain term.

3.1 Deducibility, recipes

Classically (see e.g. [2]), a ground term t is deducible modulo E from an initial
frame ϕ if there exists M ∈ Fpub[dom(ϕ)] such that Mϕ =E t. This corresponds
to the intuition that the attacker may compute (infer) t from ϕ. For the purpose
of our study, we generalize this notion to arbitrary frames, and even sets of
(non-necessarily ground) deduction facts φ, using the notations �φ and �E

φ.

Definition 1 (deducibility). Let φ be finite set of deductions facts, for in-
stance a frame. We say that M is a recipe of t in φ, written M �φ t, iff there
exist a (public, ground, non-necessarily linear) n-ary context C and some de-
duction facts M1 � t1, . . . , Mn � tn in φ such that M = C[M1, . . . ,Mn] and
t = C[t1, . . . , tn]. In that case, we say that t is syntactically deducible from φ,
also written φ � t.

We say that M is a recipe of t in φ modulo E, written M �E
φ t, iff there exists

a term t
� such that M �φ t

� and t
� =E t. In that case, we say that t is deducible

from φ modulo E, written φ �E t.

We note that M �ϕ t is equivalent to Mϕ = t when ϕ is an initial frame and
when t (or equivalently M) is ground.

Example 2. Consider the equational theory Eenc given in Example 1. Let ϕ =
{w1 � �enc(s1, k), enc(s2, k)�,w2 � k} where s1, s2 and k are private constant
symbols. We have that �w2,w2��ϕ �k, k�, and dec(proj1(w1),w2)�Eenc

ϕ s1.

5

3.2 Static equivalence, visible equations

Deducibility does not always suffice for expressing the knowledge of an attacker.
In particular, it does not account for the partial information that an attacker
may obtain about secrets. This issue motivates the study of visible equations
and static equivalence [3], defined as follows.

Definition 2 (static equivalence). Let ϕ be an initial frame. The set of vis-
ible equations of ϕ modulo E is defined as

eqE(ϕ) = {M �� N | M,N ∈ Fpub[dom(ϕ)], Mϕ =E Nϕ}

where �� is a dedicated commutative symbol. Two initial frames ϕ1 and ϕ2 with
the same domain are statically equivalent modulo E, written ϕ1 ≈E ϕ2, if their
sets of visible equations are equal, i.e. eqE(ϕ1) = eqE(ϕ2).

This definition is in line with static equivalence in the applied pi calculus [3].
For the purpose of finitely describing the set of visible equations eqE(ϕ) of an
initial frame, we introduce quantified equations of the form ∀z1, . . . , zq.M �� N

where z1, . . . , zq ∈ X , q ≥ 0 and var(M,N) ⊆ {z1, . . . , zq}. In the following,
finite sets of quantified equations are denoted Ψ , Ψ0,. . . We write Ψ |= M �� N

when the ground equation M �� N is a consequence of Ψ in the usual, first-order
logics with equality axioms for the relation �� (that is, reflexivity, symmetry,
transitivity and compatibility with symbols in Fpub). When no confusion arises,
we may refer to quantified equations simply as equations. As usual, quantified
equations are considered up to renaming of bound variables.

Example 3. Consider again the equational theory Eenc given in Example 1. Let
ϕ1 = {w1 � enc(c0, k), w2 � k} and ϕ2 = {w1 � enc(c1, k), w2 � k} where c0,
c1 are public constants and k is a private constant. Let Ψ1 = {enc(c0,w2) ��

w1} and Ψ2 = {enc(c1,w2) �� w1}. We have that Ψi |= eqEenc
(ϕi) for i = 1, 2.

Hence, eqEenc
(ϕ1) �= eqEenc

(ϕ2) and the two frames ϕ1 and ϕ2 are not statically
equivalent. However, it can be shown that {w1�enc(c0, k)} ≈Eenc {w1�enc(c1, k)}.

4 Main procedure

In this section, we describe our algorithms for checking deducibility and static
equivalence on convergent rewrite systems. After some additional notations, we
present the core of the procedure, which consists of a set of transformation rules
used to saturate a frame and a finite set of quantified equations. We then show
how to use this procedure to decide deducibility and static equivalence, provided
that saturation succeeds.

Soundness and completeness of the saturation procedure are detailed in Sec-
tion 5. We provide sufficient conditions on the rewrite systems to ensure success
of saturation in Section 6.

6

4.1 Decompositions of rewrite rules

Before stating the procedure, we introduce the following notion of decomposition
to account for the possible superpositions of an attacker’s context with a left-
hand side of rewrite rule.

Definition 3 (decomposition). Let n, p, q be non-negative integers. A (n, p, q)-
decomposition of a term l (and by an extension of any rewrite rule l → r)
is a (public, ground, non-necessarily linear) context D ∈ Fpub[W] such that
par(D) = {w1, . . . ,wn+p+q} and l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] where

– l1, . . . , ln are mutually-distinct non-variable terms,
– y1, . . . , yp and z1, . . . , zq are mutually-distinct variables, and
– y1, . . . , yp ∈ var(l1, . . . , ln) whereas z1, . . . , zq �∈ var(l1, . . . , ln).

A decomposition D is proper if it is not a parameter (i.e. D �= w1).

Example 4. Consider the rewrite rule dec(enc(x, y), y) → x. This rule admits
two proper decompositions up to permutation of parameters:

– D1 = dec(enc(w1,w2),w2) where n = 0, p = 0, q = 2, z1 = x, z2 = y;
– D2 = dec(w1,w2) where n = 1, p = 1, q = 0, l1 = enc(x, y) and y1 = y.

4.2 Transformation rules

To check deducibility and static equivalence, we proceed by saturating an initial
frame, adding some deduction facts and equations satisfied by the frame. We
consider states that are either the failure state ⊥ or a couple (Φ, Ψ) formed by a
one-to-one frame Φ in R-reduced form and a finite set of quantified equations Ψ .

Given an initial frame ϕ, our procedure starts from an initial state associated
to ϕ, denoted by Init(ϕ), obtained by reducing ϕ and replacing duplicated terms
by equations. Formally, Init(ϕ) is the result of a procedure recursively defined
as follows: Init(∅) = (∅, ∅), and assuming Init(ϕ) = (Φ, Ψ), we have

Init(ϕ � {w � t}) =

�
(Φ, Ψ ∪ {w �� w

�}) if there exists some w
� � t↓R ∈ Φ

(Φ ∪ {w � t↓R}, Ψ) otherwise.

The main part of our procedure consists in saturating a state (Φ, Ψ) by means
of the transformation rules described in Figure 1. The A rules are designed
for applying a rewrite step on top of existing deduction facts. If the resulting
term is already syntactically deducible then a corresponding equation is added
(ruleA.1); or else if it is ground, the corresponding deduction fact is added to the
state (rule A.2); otherwise, the procedure may fail (rule A.3). The B rules are
meant to add syntactically deducible subterms (rule B.2) or related equations
(rule B.1). For technical reasons, rule A.1 is parametrized by a function Ctx
with values of the form M or ⊥, and satisfying the following properties:

(a) if φ � t↓R, then for any Ψ and α, Ctx(φ �?
R t, Ψ, α) �= ⊥;

7

A. Inferring deduction facts and equations by context reduction

Assume that

l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] is a proper decomposition of (l → r) ∈ R

M1 � t1, . . . ,Mn+p � tn+p ∈ Φ

(l1, . . . , ln, y1, . . . , yp)σ = (t1, . . . , tn+p)

1. If there exists M = Ctx(Φ ∪ {z1 � z1, . . . , zq � zq} �
?
R rσ, Ψ, (l, r,D, σ)), then

(Φ, Ψ) =⇒ (Φ, Ψ ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1 . . . , zq] �� M}) (A.1)

2. Else, if (rσ)↓R is ground, then

(Φ, Ψ) =⇒ (Φ ∪ {M0 � (rσ)↓R},

Ψ ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1 . . . , zq] �� M0})
(A.2)

where M0 = D[M1, . . . ,Mn+p, a, . . . , a] for some fixed public constant a.

3. Otherwise, (Φ, Ψ) =⇒ ⊥ (A.3)

B. Inferring deduction facts and equations syntactically

Assume that M0 � t0, . . . ,Mn � tn ∈ Φ t = f(t1, . . . , tn) ∈ st(t0) f ∈ Fpub

1. If there exists M such that (M � t) ∈ Φ,

(Φ, Ψ) =⇒ (Φ, Ψ ∪ {f(M1, . . . ,Mn) �� M}) (B.1)

2. Otherwise, (Φ, Ψ) =⇒ (Φ ∪ {f(M1, . . . ,Mn)� t}, Ψ) (B.2)

Fig. 1. Transformation rules

(b) if M = Ctx(φ �?
R t, Ψ, α) then there exist M � and s such that Ψ |= M �� M

�,
M

� �φ s and t →∗
R s. (This justifies the notation φ �?

R t used to denote a
specific deducibility problem.)

Note that a simple choice for Ctx(φ �?
R t, Ψ, α) is to solve the deducibility

problem φ �?
t↓R in the empty equational theory, and then return a corre-

sponding recipe M , if any. (This problem is easily solved by induction on t↓R.)
Yet, optimizing the function Ctx is a nontrivial task: on the one hand, letting
Ctx(φ �?

R t, Ψ, α) �= ⊥ for more values φ, t, Ψ , α makes the procedure more
likely to succeed; on the other hand, it is computationally more demanding. We
explain in Section 6.1 the choice of Ctx made in our implementation.

We write =⇒∗ for the transitive and reflexive closure of =⇒. The definitions
of Ctx and of the transformation rules ensure that whenever S =⇒∗

S
� and S is

a state, then S
� is also a state, with the same parameters unless S� = ⊥.

Example 5. Consider the frame ϕ1 previously described in Example 3. We can
apply rule A.1 as follows. Consider the rewrite rule dec(enc(x, y), y) → x, the
decomposition D2 given in Example 4 and t1 = enc(c0, k). We have Init(ϕ1) =
(ϕ1, ∅) =⇒ (ϕ1, {dec(w1,w2) �� c0}). In other words, since we know the key k
through w2, we can check that the decryption of w1 by w2 leads to the public
constant c0. Next we apply rule B.1 as follows: (ϕ1, {dec(w1,w2) �� c0}) =⇒

8

(ϕ1, {dec(w1,w2) �� c0, enc(c0,w2) �� w1}). No more rules can then modify the
state.

Main theorem. We now state the soundness and the completeness of the trans-
formation rules provided that a saturated state is reached, that is, a state S �= ⊥

such that S =⇒ S
� implies S� = S. The technical lemmas involved in the proof

are detailed in Section 5.

Theorem 1 (soundness and completeness). Let E be an equational theory
generated by a convergent rewrite system R. Let ϕ be an initial frame and (Φ, Ψ)
be a saturated state such that Init(ϕ) =⇒∗ (Φ, Ψ).

1. For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have

Mϕ =E t ⇔ ∃N, Ψ |= M �� N and N �Φ t↓R

2. For all M , N ∈ Fpub[par(ϕ)∪X], we have that Mϕ =E Nϕ ⇔ Ψ |= M �� N .

While the saturation procedure is sound and complete, it may not terminate,
or fail if rule A.3 becomes the only applicable rule. In Section 6, we explore
several sufficient conditions to prevent failure and ensure termination.

4.3 Application to deduction and static equivalence

Decision procedures for deduction and static equivalence follow from Theorem 1.

Algorithm for deduction. Let ϕ be an initial frame and t be a ground term. The
procedure for checking ϕ �E t runs as follows:

1. Apply the transformation rules to obtain (if any) a saturated state (Φ, Ψ)
such that Init(ϕ) =⇒∗ (Φ, Ψ);

2. Return yes if there exists N such that N �Φ t↓R (that is, the R-reduced
form of t is syntactically deducible from Φ); otherwise return no.

Algorithm for static equivalence. Let ϕ1 and ϕ2 be two initial frames. The pro-
cedure for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated states
(Φ1, Ψ1) and (Φ2, Ψ2) such that Init(ϕi) =⇒∗ (Φi, Ψi), i = 1, 2;

2. For {i, j} = {1, 2}, for every equation (∀z1, . . . , z�.M �� N) in Ψi, check that
Mϕj =E Nϕj — that is, in other words, (Mϕj)↓R = (Nϕj)↓R;

3. If so return yes; otherwise return no.

5 Soundness and completeness of the saturation

The proof of Theorem 1 is based on three main lemmas. First, the transformation
rules are sound in the sense that, along the saturation process, we add only
deducible terms and valid equations with respect to the initial frame.

9

Lemma 1 (soundness). Let ϕ be an initial frame and (Φ, Ψ) be a state such
that Init(ϕ) =⇒∗ (Φ, Ψ). Then, we have that

1. M �Φ t ⇒ Mϕ =E t for all M ∈ Fpub[dom(ϕ)] and t ∈ F [∅];
2. Ψ |= M �� N ⇒ Mϕ =E Nϕ for all M,N ∈ Fpub[dom(ϕ) ∪ X].

The next two lemmas are dedicated to the completeness of B and A rules,
respectively. Lemma 2 ensures that saturated states account for all the syntactic
equations possibly visible. Lemma 3 deals with the reduction of a deducible term
along the rewrite system R. Using that R is convergent, this allows us to prove
that every deducible term from a saturated frame is syntactically deducible.

Lemma 2 (completeness, syntactic equations). Let (Φ, Ψ) be a state, and
M , N be two terms such that M �Φ t and N �Φ t for some term t. Then there
exists (Φ�

, Ψ
�) such that (Φ, Ψ) =⇒∗ (Φ�

, Ψ
�) using B rules and Ψ

� |= M �� N .

Lemma 3 (completeness, context reduction). Let (Φ, Ψ) be a state and M ,
t, t� be three terms such that M �Φ t and t →R t

�. Then, either (Φ, Ψ) =⇒∗ ⊥

or there exist (Φ�
, Ψ

�), M � and t
�� such that (Φ, Ψ) =⇒∗ (Φ�

, Ψ
�), M � �Φ� t

�� with
t
� →∗

R t
��, and Ψ

� |= M �� M
�.

Besides, in both cases, the corresponding derivation from (Φ, Ψ) can be chosen
to consist of a number of B rules, possibly followed by one instance of A rule
involving the same rewrite rule l → r as the rewrite step t →R t

�.

6 Termination and non-failure

In the previous section, we proved that saturated frames yield sound and com-
plete characterizations of deducible terms and visible equations of their initial
frames. Yet, the saturation procedure may still not terminate, or fail due to
rule A.3. In this section, we study different conditions on the rewrite system R

so that failure never happens and/or termination is ensured.

6.1 A syntactic criterion to prevent failure

Our first criterion is syntactic and ensures that the algorithm never fails. It is
enjoyed by a large class of equational theories, called layered convergent.

Definition 4 (layered rewrite system). A rewrite system R, and by exten-
sion its equational theory E, are layered if there exists an ascending chain of
subsets ∅ = R0 ⊆ R1 ⊆ . . . ⊆ RN+1 = R (N ≥ 0), such that for every
0 ≤ i ≤ N , for every rule l → r in Ri+1 −Ri, for every (n, p, q)-decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], one of the following two conditions holds:

(i) var(r) ⊆ var(l1, . . . , ln);
(ii) there exist C0, C1, . . . , Ck and s1, . . . , sk such that

– r = C0[s1, . . . , sk];

10

– for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in
zero or one step of rewrite rule in head position along Ri.

In the latter case, we say that the context C = C0[C1, . . . , Ck] is associated to the
decomposition D of l → r. Note that C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] →∗

Ri
r.

Proposition 1. Assume that the function Ctx in use is maximal: for every
φ and t, if there exists s such that φ � s and t →∗

R s, then for any Ψ , α,
Ctx(φ �?

R t, Ψ, α) �= ⊥. Then, provided that R is layered convergent, there exists
no state (Φ, Ψ) from which (Φ, Ψ) =⇒ ⊥ is the only applicable derivation.

Practical considerations. Unfortunately, such a maximal Ctx is too inefficient
in practice as one has to consider the syntactic deducibility problem φ �?

s for
every t →∗

R s. This is why we rather use the following lighter implementation:

– for every index 0 ≤ i ≤ N , and every rule l → r in Ri+1 − Ri, if l =
D[l1, . . . , ln, y1, . . . , yp+q] is a (n, p, q)-decomposition satisfying condition (ii)
above for some (arbitrarily chosen) associated context C, then, for every φ

and σ such that φ � lσ, we let

Ctx(φ �
?
R rσ, Ψ, (l, r,D, σ)) = C[M1, . . . ,Mn+p+q]

where the Mk are fixed recipes such that (Mi � liσ) ∈ φ for 1 ≤ i ≤ n and
(Mn+j � yjσ) ∈ φ for 1 ≤ j ≤ p+ q;

– otherwise, if φ � t↓R, we let Ctx(φ �?
R t, Ψ, α) be some fixed M such that

M �φ t↓R;
– in any other case, we let Ctx(φ �?

R t, Ψ, α) = ⊥.

Using similar ideas as for the proof of Proposition 1, we can show that, for any
convergent rewrite system R, this choice of Ctx is compatible with property (b)
of Subsection 4.2, and more generally with completeness, as long as, during sat-
uration, the transformation rules A involve the rewrite rules of Ri with greater
priority than those of Rj , i < j. Moreover, when R is additionally layered, this
definition ensures that the procedure never fails. Indeed, using the notations of
Figure 1, Ctx(Φ∪ {z1 � z1, . . . , zq � zq} �?

R rσ, Ψ, (l, r,D, σ)) = ⊥ implies that
(ii) is false on D, thus (i) var(r) ⊆ var(l1, . . . , ln) holds and (rσ)↓R is ground.

Example 6. Any convergent subterm rewrite system R is layered convergent.
Indeed, let N = 0 and R1 = R. For any l → r in R and for every decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], the term r is a subterm of l, thus either
r = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] for some context C, or r is a subterm of
some li thus var(r) ⊆ var(l1, . . . , ln).

Example 7. Other examples are provided by the theory of homomorphism Ehom

defined in Section 2.3 as well as the convergent theories of blind signatures Eblind

and prefix encryption Epref defined by the following sets of equations.

Eblind = Eenc ∪

�
unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

�

11

Epref = Eenc ∪
�
pref(enc(�x, y�, z)) = enc(x, z)

�

The theory Eblind models primitives used in e-voting protocols [17]. The prefix
theory represents the property of many chained modes of encryption (e.g. CBC)
where an attacker can retrieve any encrypted prefix out of a ciphertext.

Let us check for instance that the prefix theory Epref is layered. Let N = 1,R1

be the rewrite system obtained from Eenc by orienting the equations from left to
right, and R2 = R1 ∪ {pref(enc(�x, y�, z)) → enc(x, z)}. The rewrite rules of R1

satisfy the assumptions since R1 forms a convergent subterm rewrite system.
The additional rule pref(enc(�x, y�, z)) → enc(x, z) admits three decompositions
up to permutation of parameters:

– l = pref(l1), in which case var(r) ⊆ var(l1);
– l = pref(enc(l1, z)), in which case enc(π1(l1), z) →R1 r;
– l = pref(enc(�x, y�, z)), in which case r = enc(x, z).

Verifying that the convergent theories Ehom and Eblind are layered is similar.

6.2 Termination

In the previous subsection, we described a sufficient criterion for non-failure. To
obtain decidability for a given layered convergent theory, there remains only to
provide a termination argument. Such an argument is generally easy to develop
by hand as we illustrate on the example of the prefix theory. For the case of
existing decidability results from [2], such as the theories of blind signature and
homomorphic encryption, we also provide a semantic criterion that allows us to
directly conclude termination of the procedure.

Proving termination by hand. To begin with, we note that B rules always ter-
minate after a polynomial number of steps. Let us write

�
=⇒n for the relation

made of exactly n strict applications of rules (S
�

=⇒ S
� iff S =⇒ S

� and S �= S
�).

Proposition 2. For every states S = (Φ, Ψ) and S
� such that S

�
=⇒n

S
� using

only B rules, n is polynomially bounded in the size of im(Φ).

This is due to the fact that frames are one-to-one and that the rule B.2

only adds deduction facts M � t such that t is a subterm of an existing term
in Φ. Hence, for proving termination, we observe that it is sufficient to provide
a function s mapping each frame Φ to a finite set of terms s(Φ) including the
subterms of im(Φ) and such that rule A.2 only adds deduction facts M � t

satisfying t ∈ s(Φ).
For subterm theories, we obtain polynomial termination by choosing s(Φ) to

be the subterms of im(Φ) together with the ground right-hand sides of R.

Proposition 3. Let E be a convergent subterm theory. For every S = (Φ, Ψ) and
S
� such that S

�
=⇒n

S
�, n is polynomially bounded in the size of im(Φ).

12

To conclude that deduction and static equivalence are decidable in polyno-
mial time [2], we need to show that the deduction facts and the equations are of
polynomial size. This requires a DAG representation for terms and visible equa-
tions. For our implementation, we have chosen not to use DAGs for the sake
of simplicity (and perhaps efficiency) since DAGs require much heavier data
structures. However, similar techniques as those described in [2] would apply to
implement our procedure using DAGs.

For proving termination of the prefix theory, we let s(Φ) be the minimal
set containing Φ, closed by subterm and such that enc(t1, k) ∈ s(Φ) whenever
enc(�t1, t2�, k) ∈ s(Φ). We then deduce that deduction and static equivalence are
decidable for the equational theory Epref , which is a new decidability result.

A criterion to ensure termination. We now provide a semantic criterion that
more generally explains why our procedure succeeds on theories previously known
to be decidable [2]. This criterion intuitively states that the set of deducible terms
from any initial frame ϕ should be equivalent to a set of syntactically deducible
terms. Provided that failures are prevented and assuming a fair strategy for rule
application, we prove that this criterion is a necessary and sufficient condition
for our procedure to terminate.

Definition 5 (fair derivation). An infinite derivation (Φ0, Ψ0) =⇒ . . . =⇒
(Φn, Ψn) =⇒ . . . is fair iff along this derivation,

(a) B rules are applied with greatest priority, and
(b) whenever a A rule is applicable for some instance (l → r,D, t1, . . . , tn, . . .),

eventually the same instance of rule is applied during the derivation.

Fairness implies that any deducible term is eventually syntactically deducible.

Lemma 4. Let S0 = (Φ0, Ψ0) =⇒ . . . =⇒ (Φn, Ψn) =⇒ . . . be an infinite fair
derivation from a state S0. For every ground term t such that Φ0 �E t, either
(Φ0, Ψ0) =⇒∗ ⊥ or there exists i such that Φi � t↓R.

Proposition 4 (criterion for saturation). Let ϕ be an initial frame such that
Init(ϕ) �=⇒∗ ⊥. The following conditions are equivalent:

(i) There exists a saturated couple (Φ, Ψ) such that Init(ϕ) =⇒∗ (Φ, Ψ).
(ii) There exists a (finite) initial frame ϕs such that for every term t, t is

deducible from ϕ modulo E iff t↓R is syntactically deducible from ϕs.
(iii) There exists no fair infinite derivation starting from Init(ϕ).

Together with the syntactic criterion described in Section 6.1, this criterion
(Property (ii)) allows us to prove decidability of deduction and static equivalence
for layered convergent theories that belong to the class of locally stable theories
defined in [2]. As a consequence, our procedure always saturates for the theories
of blind signatures and homomorphic encryption since those theories are layered
and have been proved locally stable [2]. Other examples of layered convergent
theories enjoying this criterion can be found in [2] (e.g. a theory of addition).

13

7 Implementation: the YAPA tool

YAPA is an Ocaml implementation4 of the saturation procedure presented in
Section 4, using by default the optimized function Ctx defined in Section 6, and
a fair strategy of rule application (see Definition 5).

The tool takes as input an equational theory described by a finite convergent
rewrite system, as well as frame definitions and queries. A few optimizations may
be activated for subterm theories, e.g. to accelerate normalization. The procedure
starts by computing the decompositions of the rewrite system. Provided that the
rewrite rules are given in an order compatible with the sets R0 ⊆ . . . ⊆ RN+1

of Definition 4, it is able to recognize (fully or partially) layered theories and to
pre-compute the associated contexts C related to condition (ii) of this definition,
and exploited by the function Ctx in use for eliminating failure cases.

We have conducted several experiments on a PC Intel Core 2 Duo at 2.4 GHz
with 2 Go RAM for various equational theories (see below) and found that YAPA
provides an efficient way to check static equivalence and deducibility.

Equational
theory

Eenc

n = 10
Eenc

n = 14
Eenc

n = 16
Eenc

n = 18
Eenc

n = 20
Eblind Epref Ehom Eadd

Execution time < 1s 1,7s 8s 30s < 3min < 1s < 1s < 1s < 1s

For the case of Eenc, we have run YAPA on the frames ϕn = {w1 � t
0
n,w2 �

c0,w3 � c1} and ϕ
�
n = {w1 � t

1
n,w2 � c0,w3 � c1}, where t

i
0 = ci and t

i
n+1 =

�enc(tin, k
i
n), k

i
n�, i ∈ {0, 1}. These examples allow us to increase the (tree, non-

DAG) size of the distinguishing tests exponentially, while the sizes of the frames
grow linearly. Despite the size of the output, we have observed satisfactory per-
formances for the tool. We have also experimented YAPA on several convergent
theories, e.g. Eblind, Ehom, Epref and the theory of addition Eadd defined in [2].

In comparison with the tool ProVerif [9, 10], here instrumented to check static
equivalences, our test samples suggest a running time between one and two or-
ders of magnitude faster for YAPA. Also we did not succeed in making ProVerif
terminate on the two theories Ehom and Eadd. Of course, these results are not
entirely surprising given that ProVerif is tailored for the more general (and dif-
ficult) problem of protocol (in)security under active adversaries. In particular
ProVerif’s initial preprocessing of the rewrite system appears more substantial
than ours and does not terminate on the theories Ehom and Eadd (although ter-
mination is guaranteed for linear or subterm-convergent theories [10]).

Altogether, these results suggest that YAPA significantly improves the state
of the art for checking deducibility and static equivalence under convergent the-
ories, both from practical and theoretical perspectives.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational
soundness of static equivalence. In Foundations of Software Science and Compu-
tation Structures (FOSSACS’06), pages 398–412, 2006.

4 Freely available at http://www.lsv.ens-cachan.fr/∼baudet/yapa/

14

2. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM, 2001.

4. S. Anantharaman, P. Narendran, and M. Rusinowitch. Intruders with caps. In 18th
International Conference on Term Rewriting and Applications (RTA’07), volume
4533 of LNCS. Springer, 2007.

5. M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th
ACM Conference on Computer and Communications Security (CCS’05), pages 16–
25. ACM Press, 2005.

6. M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques et calcula-
toires. Thèse de doctorat, LSV, ENS Cachan, France, 2007.

7. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing
intruder knowledge. Research Report LSV-09-03, Laboratoire Spécification et
Vérification, ENS Cachan, France, Feb. 2009. 28 pages.

8. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of
equational theories against passive adversaries. In 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS,
pages 652–663. Springer, 2005.

9. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE
Comp. Soc. Press, 2001.

10. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

11. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision pro-
cedure for protocol insecurity with XOR. In 18th IEEE Symposium on Logic in
Computer Science (LICS’03). IEEE Comp. Soc. Press, 2003.

12. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In 18th IEEE Symposium on Logic
in Computer Science (LICS’03). IEEE Comp. Soc. Press, 2003.

13. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against
off-line dictionary attacks. In 2nd International Workshop on Security Issues with
Petri Nets and other Computational Models (WISP’04), ENTCS, 2004.

14. V. Cortier and S. Delaune. Deciding knowledge in security protocols for monoidal
equational theories. In 14th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’07), LNAI. Springer, 2007.

15. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

16. S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In 11th ACM Conference on Computer and
Communications Security (CCS’04), pages 278–287, 2004.

17. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 2008. To appear.

18. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), volume 1055 of LNCS, pages 147–166. Springer-Verlag, 1996.

19. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In 8th ACM Conference on Computer and Communications
Security (CCS’01), 2001.

15

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Computing knowledge in security protocols under

convergent equational theories

Ştefan Ciobâcă · Stéphanie Delaune · Steve
Kremer

the date of receipt and acceptance should be inserted later

Abstract The analysis of security protocols requires reasoning about the knowledge
an attacker acquires by eavesdropping on network traffic. In formal approaches, the
messages exchanged over the network are modeled by a term algebra equipped with
an equational theory axiomatizing the properties of the cryptographic primitives (e.g.
encryption, signature). In this context, two classical notions of knowledge, deducibility
and indistinguishability, yield corresponding decision problems.

We propose a procedure for both problems under arbitrary convergent equational
theories. Since the underlying problems are undecidable we cannot guarantee termi-
nation. Nevertheless, our procedure terminates on a wide range of equational theories.
In particular, we obtain a new decidability result for a theory we encountered when
studying electronic voting protocols. We also provide a prototype implementation.

Keywords Formal methods, security protocols, equational theories, static equiva-
lence.

1 Introduction

Cryptographic protocols are small distributed programs that use cryptographic primi-
tives such as encryption and digital signatures to communicate securely over a network.
It is essential to gain as much confidence as possible in their correctness. Therefore,
symbolic methods have been developed to analyse such protocols [4,24,26]. In these ap-
proaches, one of the most important aspects is to be able to reason about the knowledge
of the attacker.

Traditionally, the knowledge of the attacker is expressed in terms of deducibility
(e.g. [26,14]). A message s (intuitively the secret) is said to be deducible from a set of
messages ϕ, if an attacker is able to compute s from ϕ. To perform this computation,
the attacker is allowed, for example, to decrypt deducible messages by deducible keys.

This work has been partly supported by the ANR SeSur project AVOTÉ. A preliminary version
of this work was presented in [17].

LSV, ENS Cachan & CNRS & INRIA, France E-mail: { ciobaca | delaune | kremer } @ lsv.ens-
cachan.fr

2

However, deducibility is not always sufficient. Consider for example the case where a
protocol participant sends over the network the encryption of one of the constants “yes”
or “no” (e.g. the value of a vote). Deducibility is not the right notion of knowledge in this
case, since both possible values (“yes” and “no”) are indeed “known” to the attacker.
In this case, a more adequate form of knowledge is indistinguishability (e.g. [1]): is the
attacker able to distinguish between two transcripts of the protocol, one running with
the value “yes” and the other one running with the value “no”?

In symbolic approaches to cryptographic protocol analysis, the protocol messages
and cryptographic primitives (e.g. encryption) are generally modeled using a term al-
gebra. This term algebra is interpreted modulo an equational theory. Using equational
theories provides a convenient and flexible framework for modeling cryptographic prim-
itives [20]. For instance, a simple equational theory for symmetric encryption can be
specified by the equation dec(enc(x, y), y) = x. This equation models the fact that
decryption cancels out encryption when the same key is used. Different equational
theories can also be used to model randomized encryption or even more complex prim-
itives arising when studying electronic voting protocols [21,6] or direct anonymous
attestation [7]: blind signatures, trapdoor commitments, zero-knowledge proofs, . . .

The two notions of knowledge that we consider do not take into account the dy-
namic behaviour of the protocol. Nevertheless, in order to establish that two dynamic
behaviors of a protocol are indistinguishable, an important subproblem is to establish
indistinguishability between the sequences of messages generated by the protocol [26,
2]. Indistinguishability, also called static equivalence in the applied-pi calculus frame-
work [2], plays an important role in the study of guessing attacks (e.g. [18,8]), as well
as for anonymity properties in e-voting protocols (e.g. [21,6]). This was actually the
starting point of this work. During the study of e-voting protocols, we came across
several equational theories for which we needed to show static equivalence while no
decision procedure for deduction or static equivalence existed.

Our contributions.We provide a procedure which is correct, in the sense that if it
terminates it gives the right answer, for any convergent equational theory. As deduction
and static equivalence are undecidable for this class of equational theories [1], the
procedure does not always terminate. However, we show that it does terminate for the
class of subterm convergent equational theories (already shown decidable in [1]) and
several other theories among which the theory of trapdoor commitment encountered in
our electronic voting case studies [21].

Our second contribution is an efficient prototype implementation of this generic
procedure. Our procedure relies on a simple fixed point computation based on a few
saturation rules, making it convenient to implement.

Related work.Many decision procedures have been proposed for deducibility (e.g. [14,3,
23,15]) under a variety of equational theories modeling encryption, digital signatures,
exclusive OR, and homomorphic operators. Several papers are also devoted to the
study of static equivalence. Most of these results introduce a new procedure for each
particular theory and even in the case of the general decidability criterion given in [1,
19], the algorithm underlying the proof has to be adapted for each particular theory,
depending on how the criterion is fulfilled. A combination result was obtained in [5]: if
deduction (and resp. static equivalence) is decidable for two disjoint equational theories,
then deduction (and resp. static equivalence) is decidable for the union of the two
theories.

3

The first generic algorithm that has been proposed handles subterm convergent
equational theories [1] and covers the classical theories for encryption and signatures.
This result is encompassed by the recent work of Baudet et al. [10] in which the
authors propose a generic procedure that works for any convergent equational theory,
but which may fail or not terminate. This procedure has been implemented in the YAPA
tool [9] and has been shown to terminate without failure in several cases (e.g. subterm
convergent theories and blind signatures). However, due to its simple representation
of deducible terms (represented by a finite set of ground terms), the procedure fails
on several interesting equational theories like the theory of trapdoor commitments.
Our representation of deducible terms overcomes this limitation by including terms
with variables which can be substituted by any deducible terms. Independently of our
work, specific decision procedures for the theory of trapdoor commitment and that of
reencryption have been presented in [11].

Another tool that can be used to check static equivalence is ProVerif [12,13]. This
tool can handle various equational theories and analyse security protocols under active
adversaries. However, termination is not guaranteed in general and the tool perform
some safe approximations.

2 Formal model

2.1 Term algebras

As usual, messages will be modeled using a term algebra. Let F be a finite set of
function symbols coming with an arity function ar : F → N. Function symbols of
arity 0 are called constants. We consider several kind of atoms among which an infinite
set of names N , an infinite set of variables X and a set of parameters P. The set of
terms T (F ,A) built over F and the atoms in A is defined as

t, t1, . . . ::= term
| a atom a ∈ A

| f(t1, . . . , tk) application of symbol f ∈ F , ar(f) = k

A term t is said to be ground when t ∈ T (F ,N). We assume the usual definitions to
manipulate terms. We write fn(t) (resp. var(t)) the set of (free) names (resp. variables)
that occur in a term t and st(t) the set of its (syntactic) subterms. These notations
are extended to tuples and sets of terms in the usual way. We denote by |t| the size
of t defined as the number of symbols that occur in t (variables do not count), and #T

denotes the cardinality of the set T .
The set of positions of a term t is written pos(t) ⊆ N∗. If p is a position of t

then t|p denotes the subterm of t at the position p. The term t[u]p is obtained from t

by replacing the occurrence of t|p at position p with u. A context C is a term with (1
or more) holes and we write C[t1, . . . tn] for the term obtained by replacing these holes
with the terms t1, . . . , tn. A context is public if it only consists of function symbols and
holes.

Substitutions are written σ = {x1 �→ t1, . . . , xn �→ tn} with dom(σ) = {x1, . . . , xn}.
The application of a substitution σ to a term t is written tσ. The substitution σ is
grounding for t1, . . . , tk if the resulting terms t1σ, . . . , tkσ are ground. We use the
same notations for replacements of names and parameters by terms.

4

2.2 Equational theories and rewriting systems

Equality between terms will generally be interpreted modulo an equational theory. An
equational theory E is defined by a set of equations M ∼ N with M,N ∈ T (F ,X).
Equality modulo E , written =E , is defined to be the smallest equivalence relation on
terms such that M =E N for all M ∼ N ∈ E and which is closed under substitution of
terms for variables and application of contexts.

It is often more convenient to manipulate rewriting systems than equational the-
ories. A rewriting system R is a set of rewriting rules l → r where l, r ∈ T (F ,X)
and var(r) ⊆ var(l). A term t rewrites to t

� by R, denoted by t →R t
�, if there exist

l → r ∈ R, a position p ∈ pos(t) and a substitution σ such that t|p = lσ and t
� = t[rσ]p.

We denote by →
+
R the transitive closure of →R, →∗

R its reflexive and transitive closure,
and =R its reflexive, symmetric and transitive closure.

A rewrite system R is convergent if is terminating, i.e. there is no infinite chain
u1 →R u2 →R . . ., and confluent, i.e. for every terms u1, u2 such that u1 =R u2,
there exists u such that u1 →

∗
R u and u2 →

∗
R u. A term u is in R-normal form if

there is no term u
� such that u →R u

�. If u →
∗
R u

� and u
� is in R-normal form then u

�

is an R-normal form of u. When this reduced form is unique (in particular if R is
convergent), we write u

� = u↓RE .
We are particularly interested in theories E that can be represented by a convergent

rewrite system R, i.e. theories for which there exists a convergent rewrite system R

such that the two relations =R and =E coincide. Given an equational theory E we
define the corresponding rewriting system RE by orienting all equations in E from left
to right, i.e., RE = {l → r | l ∼ r ∈ E}. We say that E is convergent if RE is convergent.

Example 1 A classical equational theory modelling symmetric encryption is Eenc =
{dec(enc(x, y), y) ∼ x}. As a running example we consider a slight extension of this
theory modelling malleable encryption

Emal = Eenc ∪ {mal(enc(x, y), z) ∼ enc(z, y)}.

This malleable encryption scheme allows one to arbitrarily change the plaintext
of an encryption. This theory certainly does not model a realistic encryption scheme
but it yields a simple example of a theory which illustrates well our procedures. In
particular all existing decision procedure we are aware of fail on this example. The
rewriting system REmal

is convergent.

From now on, assume we are given a convergent equational theory E built over a
signature F and represented by the convergent rewriting system RE .

2.3 Deducibility and static equivalence

In order to describe the messages observed by an attacker, we consider the following
notion of frame that comes from the applied-pi calculus [2].

A frame ϕ is a sequence of messages u1, . . . , un meaning that the attacker observed
each of these messages in the given order. Furthermore, we distinguish the names that
the attacker knows from those that were freshly generated by others and that are a
priori unknown by the attacker. Formally, a frame ϕ is defined as νñ.σ where ñ is its set
of bound names, denoted by bn(ϕ), and a replacement σ = {w1 �→ u1, . . . , wn �→ un}.

5

The parameters w1, . . . , wn enable us to refer to u1, . . . , un ∈ T (F ,N). The domain
dom(ϕ) of ϕ is {w1, . . . , wn}.

Let ϕ = νñ.σ. Given terms M and N such that fn(M,N) ∩ ñ = ∅, we sometimes
write (M =E N)ϕ (resp. Mϕ) instead of Mσ =E Nσ (resp. Mσ).

Definition 1 (deducibility) Let ϕ be a frame. A ground term t is deducible in E

from ϕ, written ϕ �E t, if there exists M ∈ T (F ,N ∪ dom(ϕ)), called the recipe, such
that fn(M) ∩ bn(ϕ) = ∅ and Mϕ =E t.

Deducibility does not always suffice for expressing the knowledge of an attacker.
This notion does not allow one to express indistinguishability between two sequences of
messages. Sometimes, the attacker can deduce the same set of terms from two different
frames but he could still be able to distinguish these two frames. This motivates the
following notion of static equivalence introduced in [2].

Definition 2 (static equivalence) Let ϕ1 and ϕ2 be two frames such that bn(ϕ1) =
bn(ϕ2). They are statically equivalent in E , written ϕ1 ≈E ϕ2, if

– dom(ϕ1) = dom(ϕ2)
– for all terms M,N ∈ T (F ,N ∪ dom(ϕ1)) such that fn(M,N) ∩ bn(ϕ1) = ∅

(M =E N)ϕ1 ⇔ (M =E N)ϕ2.

Example 2 Consider the two frames described below:

ϕ1 = νa, k.{w1 �→ enc(a, k)} and ϕ2 = νa, k.{w1 �→ enc(b, k)}.

We have that b and enc(c, k) are deducible from ϕ2 in Emal with recipes b and
mal(w1, c) respectively. We have that ϕ1 �≈Emal

ϕ2 since (w1 �=Emal
mal(w1, b))ϕ1

while (w1 =Emal
mal(w1, b))ϕ2. Note that ϕ1 ≈Eenc

ϕ2 (in the theory Eenc).

3 Procedures for deduction and static equivalence

In this section we describe our procedures for checking deducibility and static equiva-
lence on convergent equational theories. After some preliminary definitions, we present
the main part of our procedure, i.e. a set of saturation rules used to reach a fixed
point. Then, we show how to use this saturation procedure to decide deducibility and
static equivalence. Soundness and completeness of the saturation procedure are stated
in Theorem 1 and detailed in Section 4.

Since both problems are undecidable for arbitrary convergent equational theo-
ries [1], our saturation procedure does not always terminate. In Section 5, we exhibit
(classes of) equational theories for which the saturation terminates.

3.1 Preliminary definitions

We consider two binary predicates � and ∼ on terms, which we write using infix
notation. These predicates are interpreted over frames ϕ as follows:

1. R � t is true whenever R is a recipe for t in ϕ

2. U ∼ V whenever (U =E V)ϕ

6

The main data structures of our algorithm are two types of Horn clauses, written
in this paper as [H | {L1, . . . , Ln}] (read as L1 ∧ . . . ∧ Ln implies H), which we call
deduction facts and respectively equational facts.

Definition 3 (facts) A deduction fact (resp. an equational fact) is an expression
denoted [U � u | ∆] (resp. [U ∼ V |∆]) where ∆ is a finite set of the form {X1 �
t1, . . . , Xn � tn} that contains the side conditions of the fact. Moreover, we assume
that:

– u, t1, . . . , tn ∈ T (F ,N ∪ X) with var(u) ⊆ var(t1, . . . , tn);
– U, V ∈ T (F ,N ∪ X ∪ P) and X1, . . . , Xn are distinct variables;
– var(U, V,X1, . . . , Xn) ∩ var(u, t1, . . . , tn) = ∅.

A fact is solved if ti ∈ X (1 ≤ i ≤ k). Otherwise, it is unsolved. A deduction fact is
well-formed if it is unsolved or if u �∈ X .

For notational convenience we sometimes omit curly braces for the set of side
conditions and write [U � u | X1 � t1, . . . , Xn � tn]. When n = 0 we simply write
[U � u] or [U ∼ V].

We say that two facts are equivalent if they are equal up to bijective renaming
of variables. In the following we implicitly suppose that all operations are carried out
modulo the equivalence classes. In particular set union will not add equivalent facts and
inclusion will test for equivalent facts. Also, we allow on-the-fly renaming of variables
in facts to avoid variable clashes.

We now introduce the notion of generation of a term t from a set of facts F. A
term t is generated with recipe R from a set of facts F if R� t is a consequence of the
solved facts in F. Formally, we have:

Definition 4 (generation) Let F be a finite set of well-formed deduction facts. A
term t is generated by F with recipe R, written F �

R
t, if

1. either t = x ∈ X and R = x;
2. or there exist a solved fact [R0 � t0 | X1 � x1, . . . , Xn � xn] ∈ F, some terms Ri

for 1 ≤ i ≤ n and a substitution σ with dom(σ) ⊆ var(t0) such that t = t0σ,
R = R0[X1 �→ R1, . . . , Xn �→ Rn], and F �

Ri xiσ for every 1 ≤ i ≤ n.

A term t is generated by F, written F � t, if there exists R such that F �
R

t.

From this definition follows a simple recursive algorithm for effectively deciding whether
F � t, providing also the recipe. Termination is ensured by the fact that |xiσ| < |t|

for every 1 ≤ i ≤ n. Note that using memoization we can obtain an algorithm in
polynomial time.

Example 3 Consider the following set of facts:

[w1 � enc(b, k) | ∅] (f1)
[b � b | ∅] (f2)
[enc(Y1, Y2) � enc(y1, y2) | Y1 � y1, Y2 � y2] (f3)

where w1 is a parameter, a, b, k are names, and Y1, Y2, y1, y2 are variables. We have that
enc(enc(b, k), b) is generated with recipe enc(w1, b). This follows easily by instantiating
the two side conditions of f3 with f1 and respectively f2.

7

Given a finite set of equational facts E and terms M,N , we write E |= M ∼ N if
M ∼ N is a consequence, in the usual first order theory of equality, of

{Uσ ∼ V σ | [U ∼ V | X1 � x1, . . . , Xk � xk] ∈ E} where σ = {Xi �→ xi}1≤i≤k.

Note that it may be the case that xi = xj for i �= j (whereas Xi �= Xj).

3.2 Saturation procedure

We define for each fact f its canonical form f� which is obtained by first applying Rule
(1) as much as possible and then Rule (2) as much as possible. The idea is to ensure
that each variable xi occurs at most once in the side conditions and to get rid of those
variables that do not occur in t. This will be particularly useful to caracterize the form
of solved facts when we prove termination in Section 5. Unsolved deduction facts are
kept unchanged.

(1)
[R � t | X1 � x1, . . . , Xk � xk] {i, j} ⊆ {1, . . . , n} j �= i and xj = xi

[R{Xi �→ Xj}� t | X1 � x1, . . . , Xi−1 � xi−1, Xi+1 � xi+1, . . . , Xk � xk]

(2)
[R � t | X1 � x1, . . . , Xk � xk] xi �∈ var(t)

[R � t | X1 � x1, . . . , Xi−1 � xi−1, Xi+1 � xi+1, . . . , Xk � xk]

Example 4 Consider the fact

f = [dec(enc(X1, X2), X3)� x1 | X1 � x1, X2 � y,X3 � y].

We start by applying Rule (1), after which we obtain

[dec(enc(X1, X2), X2)� x1 | X1 � x1, X2 � y].

We continue with the application of Rule (2), after which we obtain the canonical form

f� = [dec(enc(X1, X2), X2)� x1 | X1 � x1].

A knowledge base is a tuple (F,E) where F is a finite set of well-formed deduction
facts that are in canonical form and E a finite set of equational facts.

Definition 5 (update) Given a fact f = [R�t | X1�t1, . . . , Xn�tn] and a knowledge
base (F,E), the update of (F,E) by f, written (F,E)⊕ f, is defined as

8
>>>>>>><

>>>>>>>:

(F ∪ {f�},E) if f is solved and F �� t useful fact
where f� is the canonical form of f

(F,E ∪
˘
[R�

∼ Rσ | ∅]
¯
) if f is solved and F � t redundant fact

where F �
R�

t and σ = {X1 �→ t1, . . . , Xn �→ tn}

(F ∪ {f},E) if f is not solved unsolved fact

8

The choice of the recipe R
� in the redundant fact case is defined by the imple-

mentation. While this choice does not influence the correctness of the procedure, it
might influence its termination as we will see later. Note that, the result of updating
a knowledge base by a (possibly not well-formed and/or not canonical) fact is again a
knowledge base. Facts that are not well-formed will be captured by the redundant fact
case, which adds an equational fact.

The role of the update function is to add facts to the knowledge base, while per-
forming some redundancy elimination. If F �� t, then the new fact clearly provides
interesting information and it is added to the knowledge base. If the new fact is un-
solved, it is added anyway (because it might prove useful later on). If the new fact is
solved and F� t, then this deduction fact does not provide new information about de-
ducible terms, but it might provide a new recipe for terms we already know deducible.
Therefore, an equational fact is added instead, stating that the two recipes are equal
provided the required side conditions are satisfied.

Example 5 We consider the knowledge base formed of the following set F of deduction
facts:

[w1 � enc(b, k) | ∅] (f1)
[b � b | ∅] (f2)
[enc(Y1, Y2) � enc(y1, y2) | Y1 � y1, Y2 � y2] (f3)

and the empty set E of equational facts.
We have already seen that enc(enc(b, k), b) is generated by F with recipe enc(w1, b).

Updating the knowledge base by [w2 � enc(enc(b, k), b) | ∅] would result in no mod-
ification of the set of deduction facts, since we already know that enc(enc(b, k), b) is
generated. However, a new equational fact [w2 ∼ enc(w1, b) | ∅] would be added to the
set of equational facts.

Initialisation.Given a frame ϕ = νñ.{w1 �→ t1, . . . , wn �→ tn}, our procedure starts
from an initial knowledge base associated to ϕ and defined as follows:

Init(ϕ) = (∅, ∅)L
1≤i≤n [wi � ti]L
n∈fn(ϕ) [n� n]L
f∈F [f(X1, . . . , Xk)� f(x1, . . . , xk) | X1 � x1, . . .� Xk � xk]

Example 6 Consider the rewriting system REmal
and ϕ2 = νa, k.{w1 �→ enc(b, k)}. The

knowledge base Init(ϕ2) is made up of the following deduction facts:

[w1 � enc(b, k) | ∅] (f1)
[b � b | ∅] (f2)
[enc(Y1, Y2) � enc(y1, y2) | Y1 � y1, Y2 � y2] (f3)
[dec(Y1, Y2) � dec(y1, y2) | Y1 � y1, Y2 � y2] (f4)
[mal(Y1, Y2) � mal(y1, y2) | Y1 � y1, Y2 � y2] (f5)

Saturation.The aim of our saturation procedure is to produce

1. a set of solved deduction facts which have the same set of syntactic consequences
as the initial set of deduction facts modulo the equational theory;

9

2. a set of solved equational facts whose consequences are exactly the equations hold-
ing in the frame.

The main part of this procedure consists in saturating the knowledge base Init(ϕ) by
means of the transformation rules described in Figure 1. The rule Narrowing is designed
to apply a rewriting step on an existing deduction fact. Intuitively, this rule allows us
to get rid of the equational theory and nevertheless ensures that the generation of
deducible terms is complete. This rule might introduce unsolved side conditions. The
rule F-Solving is then used to instantiate the unsolved side conditions of an existing
deduction fact. Unifying and E-Solving add equational facts which remember when
different recipes for the same term exist.

Note that this procedure may not terminate and that the fixed point may not be
unique (the ⊕ operation that adds a new fact to a knowledge base is not commutative).

We write =⇒∗ for the reflexive and transitive closure of =⇒.

Narrowing

f = [M �C[t] | X1 �x1, . . . , Xk �xk] ∈ F, l → r ∈ RE
with t �∈ X , σ = mgu(l, t) and var(f) ∩ var(l) = ∅.

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M � (C[r])σ | X1 �x1σ, . . . , Xk �xkσ].

F-Solving

f1 = [M � t | X �u,X1 � t1, . . . , Xk � tk], f2 = [N � s | Y1 � y1, . . . , Y� � y�] ∈ F
with u �∈ X , σ = mgu(s, u) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M{X �→ N}� tσ | {Xi � tiσ}1≤i≤k ∪ {Yi � yiσ}1≤i≤�].

Unifying

f1 = [M � t | X1 �x1, . . . , Xk �xk], f2 = [N � s | Y1 � y1, . . . , Y� � y�] ∈ F
with σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [M ∼ N | {Xi �xiσ}1≤i≤k ∪ {Yi � yiσ}1≤i≤�].

E-Solving

f1 = [U ∼ V | Y � s,X1 � t1, . . . , Xk � tk] ∈ E, f2 = [M � t | Y1 � y1, . . . , Y� � y�} ∈ F
with s �∈ X , σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [U{Y �→ M} ∼ V {Y �→ M} | {Xi � tiσ}1≤i≤k ∪ {Yi � yiσ}1≤i≤�].

Fig. 1 Saturation rules

Example 7 Continuing Example 6, we illustrate the saturation procedure. We can ap-
ply the rule Narrowing on fact f4 and rewrite rule dec(enc(x, y), y) → x, as well as on
fact f5 and rewrite rule mal(enc(x, y), z) → enc(z, y) adding facts

[dec(Y1, Y2) � x | Y1 � enc(x, y), Y2 � y] (f6)
[mal(Y1, Y2) � enc(z, y) | Y1 � enc(x, y), Y2 � z] (f7)

10

The facts f6 and f7 are not solved and we can apply the rule F-Solving with f1 adding
the facts:

[dec(w1, Y2) � b | Y2 � k] (f8)
[mal(w1, Y2) � enc(z, k) | Y2 � z] (f9)

Rule Unifying can be used on facts f1/f3, f3/f9 as well as f1/f9 to add equational
facts. This third case allows one to obtain f10 = [w1 ∼ mal(w1, Y2) | Y2 � b] which
can be solved (using E-Solving with f2) to obtain f11 = [w1 ∼ mal(w1, b)], etc. When
reaching a fixed point, f9, f11 and the facts in Init(ϕ2) are some of the solved facts
contained in the knowledge base.

We now state the soundness and completeness of our transformation rules. The
technical lemmas used to prove this result are detailed in Section 4 (see also Ap-
pendix A).

Theorem 1 (soundness and completeness) Let ϕ be a frame and (F,E) be a
saturated knowledge base such that Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N) and F+ =
F ∪ {[n� n] | n ∈ fn(t)� bn(ϕ)}. We have that:

1. For all M ∈ T (F ,N ∪ dom(ϕ)) such that fn(M) ∩ bn(ϕ) = ∅, we have that

Mϕ =E t ⇔ ∃N, E |= M ∼ N and F+ �
N

t↓RE

2. For all M,N ∈ T (F ,N ∪ dom(ϕ)) such that fn(M,N) ∩ bn(ϕ) = ∅, we have

(M =E N)ϕ ⇔ E |= M ∼ N.

3.3 Application to deduction and static equivalence

Procedure for deduction. Let ϕ be a frame and t be a ground term. The procedure
for checking ϕ �E t runs as follows:

1. Apply the saturation rules to obtain (if any) a saturated knowledge base (F,E) such
that Init(ϕ) =⇒∗ (F,E). Let F+ = F ∪ {[n� n] | n ∈ fn(t)� bn(ϕ)}.

2. Return yes if there exists N such that F+ �
N

t↓RE (that is, the RE -normal form
of t is generated by F with recipe N); otherwise return no.

Proof If the algorithm returns yes, there exists N such that F+ �
N

t↓RE . As E |= N ∼

N , by Theorem 1 we have that Nϕ =E t↓RE , i.e., ϕ �E t. Conversely, if t is deducible
from ϕ, then there exists M such that Mϕ =E t. By Theorem 1, there exists N such
that F+ �

N
t↓RE . Hence, the algorithm returns yes. ��

Example 8 We continue our running example. Let (F,E) be the knowledge base ob-
tained from Init(ϕ2) described in Example 7. We show that ϕ2 � enc(c, k) and ϕ2 � b.
Indeed we have that F ∪ {[c � c]} �

mal(w1,c) enc(c, k) using facts f9 and [c � c], and
F �

b
b using fact f2.

Procedure for static equivalence. Let ϕ1 and ϕ2 be two frames. The procedure
for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated knowledge
bases (Fi,Ei), i = 1, 2 such that Init(ϕi) =⇒

∗ (Fi,Ei), i = 1, 2.

11

2. For {i, j} = {1, 2}, for every solved fact [M ∼ N | X1 � x1, . . . , Xk � xk] in Ei,
check if (Mσ =E Nσ)ϕj where σ = {X1 �→ x1, . . . , Xk �→ xk}.

3. If so return yes; otherwise return no.

Proof If the algorithm returns yes, this means that (�): for every solved equational fact
[M ∼ N | X1 � x1, . . . , Xk � xk] in E1, we have that:

(Mσ =E Nσ)ϕ2

where σ = {X1 �→ x1, . . . , Xk �→ xk}. Let M,N ∈ T (F ,N ∪ dom(ϕ)) such that
fn(M,N)∩ñ = ∅ and (M =E N)ϕ1. Thanks to Theorem 1, we have that E1 |= M ∼ N .
Thanks to (�), we deduce that (M =E N)ϕ2. The other direction is proved in the same
way.

Conversely, assume now that ϕ1 ≈E ϕ2. Let [M ∼ N | X1 � x1, . . . , Xk � xk] be a
solved equational fact in E1 and let us show that (M̃ =E Ñ)ϕ2 where

– M̃ = M{X1 �→ x1, . . . , Xk �→ xk}, and
– Ñ = N{X1 �→ x1, . . . , Xk �→ xk}.

(The other case is done in a similar way, and we will conclude that the algorithm returns
yes.) Let {y1, . . . , y�} = var(M,N) and n1, . . . , n� be � fresh names that occur neither
in ñ∪fn(M,N), nor in ϕ. Let δ = {y1 �→ n1, . . . , y� �→ n�}. Since E1 |= M̃ ∼ Ñ , we have
also that E1 |= M̃δ ∼ Ñδ. Clearly, we have that fn(M̃δ, Ñδ)∩ñ = ∅, thus by Theorem 1,
we have that (M̃δ =E Ñδ)ϕ1. As ϕ1 ≈E ϕ2, we have also that (M̃δ =E Ñδ)ϕ2, and
thus (M̃ =E Ñ)ϕ2. This allows us to conclude. ��

Example 9 Consider again the frames ϕ1 and ϕ2 which are not statically equivalent
(see Example 2). Our procedure answers no since [mal(w1, b) ∼ w1] ∈ E2 whereas
(mal(w1, b) �=Emal

w1)ϕ1.

4 Soundness and completeness

In this section we give the key results which are used to prove the two directions of
Theorem 1.

We now define when a fact makes a valid statement about a given frame ϕ. We say
that the fact holds in ϕ.

Definition 6 (f holds in ϕ) Let ϕ be a frame and f = [R � t | ∆] (respectively
[U ∼ V | ∆]) be a fact with ∆ = {X1 � t1, . . . , Xk � tk}. We say that f holds in ϕ

if for any substitution τ grounding for t1, . . . , tk such that ϕ �E tiτ with recipe Ri

for 1 ≤ i ≤ n, we have that ϕ �E tτ with recipe R{Xi �→ Ri}1≤i≤k (respectively
(U{Xi �→ Ri}1≤i≤k =E V {Xi �→ Ri}1≤i≤k)ϕ).

Example 10 Consider the fact f9 = [mal(w1, Y2) � enc(z, k) | Y2 � z] and the frame
ϕ2 = νa, k.{w1 �→ enc(b, k)} given in Example 7. We have that f9 holds in ϕ2. Indeed,
supposing t1 is a term such that ϕ2 �E t1 with recipe R1, we have that ϕ2 �E enc(t1, k)
with recipe mal(w1, R1): mal(w1, R1)ϕ2 = mal(enc(b, k), t1) = enc(t1, k).

12

4.1 Soundness

Lemma 1 ensures that any knowledge base obtained from Init(ϕ) will only contain facts
that hold in ϕ.

Lemma 1 Let ϕ be a frame and (F,E) be a knowledge base such that Init(ϕ) =⇒∗

(F,E). Then every f ∈ F ∪ E holds in ϕ.

Intuitively Lemma 2 states that any ground term which can be generated is indeed
deducible. Similarly all equations which are consequences of the knowledge base are
true equations in the initial frame. The soundness of our saturation procedure can be
easily derived from this lemma.

Lemma 2 (soundness) Let ϕ be a frame and (F,E) be a knowledge base such that
Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N), M,N ∈ T (F ,N ∪ dom(ϕ)) be a term such that
fn(M,N) ∩ bn(ϕ) = ∅, and F+ = F ∪ {[n� n] | n ∈ fn(t)� bn(ϕ)}. We have that:

1. F+ �
M

t ⇒ Mϕ =E t; and
2. E |= M ∼ N ⇒ (M =E N)ϕ.

Proof By Lemma 1 and because every f ∈ {[n� n] | n ∈ fn(t)� bn(ϕ)} holds in ϕ, we
have that all facts in F+ hold in ϕ. To conclude, we show Points 1 and 2 stated in the
Lemma.

1. Let M and t be such that F+ �
M

t. By definition of �, as t is ground, there exists
a solved deduction fact f0 = [M0 � t0 | X1 � x1, . . . , Xk � xk] ∈ F+ such that
t = t0σ for some substitution σ and F+ �

Mi xiσ for some Mi (1 ≤ i ≤ k) and
M = M0{X1 �→ M1, . . . , Xk �→ Mk}. We show the result by induction on |t|.
Base case: |t| = 1. In such a case t is either a name or a constant. We have that
k = 0, t0 = t and M = M0. Since f0 holds in ϕ, we deduce that ϕ �E t with recipe
M0, i.e. M0ϕ =E t. This allows us to conclude.

Induction step. Note that |xiσ| < |t| and F+ �
Mi xiσ, thus we can apply our

induction hypothesis on xiσ. We deduce thatMiϕ =E xiσ and thusMϕ =E t0σ = t

since f0 holds in ϕ.
2. Let M and N be such that fn(M,N) ∩ bn(ϕ) = ∅ and E |= M ∼ N . To show that

(M =E N)ϕ, it is sufficient to establish that

(M �
σ =E N

�
σ)ϕ where σ = {X1 �→ x1, . . . , Xk �→ xk}

for every solved equational fact [M �
∼ N

�
| X1�x1, . . . , Xk�xk] ∈ E. This follows

easily from Lemma 1. ��

4.2 Completeness

We now give two propositions that are used to show the completeness of the saturation
rules. The first one states that whenever there exist two recipes to generate a ground
term from F then the equation on the two recipes is a consequence of E.

13

Lemma 3 Let (F,E) be a saturated knowledge base and f = [U ∼ V | X1�t1, . . . , Xk�
tk] be an equational fact in E. For any substitution σ grounding for {t1, . . . , tk} such
that F � tiσ (1 ≤ i ≤ k), we have that F �

Ri tiσ for some Ri (1 ≤ i ≤ k) and
E |= Uτ ∼ V τ where τ = {X1 �→ R1, . . . , Xk �→ Rk}.

Proposition 1 (completeness, equation) Let (F,E) be a saturated knowledge base,
and M,N be two terms such that F �

M
t and F �

N
t for some ground term t. Then,

we have that E |= M ∼ N .

Proof By definition of F �
M

t we know that there exist a substitution σ1 and a deduc-
tion fact f1 = [M0 � u0 | X1 � x1, . . . , Xk � xk] in F such that u0σ1 = t, F �

Mi xiσ1

(1 ≤ i ≤ k) and M0{Xi �→ Mi}1≤i≤k = M . Similarly, by definition of F �
N

t we know
that there exist a substitution σ2 and a deduction fact f2 = [N0�v0 | Y1�y1, . . . , Y��y�]
in F such that v0σ2 = t, F �

Nj yjσ2 (1 ≤ j ≤ �) and N0{Yj �→ Nj}1≤i≤� = N .

We prove the result by induction on |t|. As our knowledge base (F,E) is saturated, rule
Unifying must have been applied to the facts f1 and f2. Therefore, we have that there
exists an equational fact f3 ∈ E such that:

f3 = [M0 ∼ N0 | X1 � x1σ, . . . ,Xk � xkσ, Y1 � y1σ, . . . , Y� � y�σ].

where σ = mgu(u0, v0).
Let σ

� be a substitution such that σ1 ∪ σ2 = σ ◦ σ
�. We can now apply Lemma 3

on f3 with substitution σ
�. We obtain that there exist R1, . . . , Rk and W1, . . . ,W� such

that F �
Ri xiσσ

� (1 ≤ i ≤ k) and F �
Wj yjσσ

� (1 ≤ j ≤ �) and such that

E |= M0δ ∼ N0δ (1)

where δ = {X1 �→ R1, . . . , Xk �→ Rk, Y1 �→ W1, . . . , Y� �→ W�}.
As Mi and Ri (1 ≤ i ≤ k) are such that F �

Mi xiσ1 and F �
Ri xiσσ

�, and as
x1σσ

� = x1σ1 is a strict subterm of u0σ1 = t, we can apply the induction hypothesis
to obtain that E |= Mi ∼ Ri. In a similar way, we also deduce that E |= Nj ∼ Wj

(1 ≤ j ≤ �). By replacing Wj by Mj and Ri by Ni in equation (1), we obtain our
conclusion. ��

Next we show that whenever a ground term (not necessarily in normal form) can
be generated then its normal form can also be generated and there exists an equation
on the two recipes. This is the purpose of Proposition 2.

Lemma 4 Let (F,E) be a saturated knowledge base. Let f = [R�t | X1�t1, . . . , Xk�tk]
be a deduction fact such that (F,E) ⊕ f = (F,E). For any substitution σ grounding for
{t1, . . . , tk} such that F � tiσ (1 ≤ i ≤ k), we have that there exist R1, . . . , Rk and W

such that

– F �
W

tσ, and F �
Ri tiσ for 1 ≤ i ≤ k;

– E |= W ∼ R{X1 �→ R1, . . . , Xk �→ Rk}.

Proposition 2 (completeness, reduction) Let (F,E) be a saturated knowledge base,
M a term and t a ground term such that F �

M
t and t↓RE �= t. Then there exist M �

and t
� such that F �

M �
t
� with t →

+
RE

t
� and E |= M ∼ M

�.

14

Proof We show this result by induction on |t|. By definition of F �
M

t we know that
there exist f0 = {M0 � u0 | X1 � x1, . . . , Xk � xk} in F and a substitution σ such
that u0σ = t and F �

Mi xiσ (1 ≤ i ≤ k) and M0{Xi �→ Mi}1≤i≤k = M for some Mi

(1 ≤ i ≤ k). We distinguish two cases:

Case 1: there exists 1 ≤ j ≤ k such that xjσ↓RE �= xjσ. Let us assume w.l.o.g.
that j = 1. Since x1σ is a strict subterm of t, we can apply our induction hypothesis
on x1σ. We obtain that there exist M

�
1 and u

�
1 such that F �

M �
1 u

�
1 with x1σ →

+
R u

�
1

and E |= M1 ∼ M
�
1. Now, let σ� be the substitution defined as follows:

xσ
� =


xσ for x �= x1

u
�
1 otherwise

Let t� = u0σ
� and M

� = M0{X1 �→ M
�
1, X2 �→ M2, . . . , Xk �→ Mk}. Since x1 ∈ var(u0),

it is easy to see that t = u0σ →
+
R u0σ

� = t
�. Furthermore, it is also easy to see that

F �
M �

t
�. Lastly, since E |= M1 ∼ M

�
1, we have that E |= M ∼ M

�.

Case 2: xjσ↓RE = xjσ for every 1 ≤ j ≤ k. In such a case, we have that u0 = C[u�0]
for some context C and some term u

�
0 �∈ X such that u�0σ = lτ where l → r ∈ R and τ

is a substitution. As the knowledge base (F,E) is saturated, the rule Narrowing must
have been applied. Therefore there exists f1 such that:

– (F,E)⊕ f1 = (F,E), and
– f1 = [M0 � (C[r])ρ | X1 � x1ρ, . . . ,Xk � xkρ]

where ρ = mgu(u�0, l). Let ρ
� be the substitution with dom(ρ�) = var({x1ρ, . . . , xkρ})

and σ ∪ τ = ρ ◦ ρ
�. Now, we apply Lemma 4 on the fact f1 and the substitution ρ

�. We
deduce that there exist R1, . . . , Rk and W such that

– F �
W (C[r])ρρ�, and F �

Ri xiρρ
� for 1 ≤ i ≤ k; and

– E |= W ∼ M0{X1 �→ R1, . . . , Xk �→ Rk}.

Let t
� = (C[r])ρρ� and M

� = W . We have that F �
M �

t
�. Moreover, since F �

Ri xiρρ
�,

F �
Mi xiσ and xiρρ

� = xiσ, we can apply Lemma 1 in order to deduce that E |= R1 ∼

Mi for 1 ≤ i ≤ k. Thus, we have that E |= M ∼ M
�. In order to conclude, it remains to

show that t →+
RE

t
�. Indeed, we have that t = u0σ = (C[u�0])σ →

+
RE

(C[r])ρρ� = t
�. ��

Relying on these propositions, we can show completeness of our saturation proce-
dure (i.e. ⇒ of Theorem 1).

1. To prove Item 1, we first observe that if t is deducible from ϕ modulo E then
F+ �

M �
t0 for some M

� and t0 such that E |= M ∼ M
� and t0 →

∗
t↓RE . Actually

M
� differs from M by the fact that some public names that do not occur in the

knowledge base are replaced by fresh variables. Then, we rely on Proposition 2 and
we show the result by induction on t0 equipped with the order < induced by the
rewriting relation (t < t

� iff t →
+

t
�).

2. Now, to prove Item 2, we apply the result shown in Item 1 onMϕ =E t andNϕ =E t

where t = Mϕ↓RE = Nϕ↓RE . We deduce that there exist M
� and N

� such that

E |= M ∼ M
�, F+ �

M �
t, E |= N ∼ N

�, and F+ �
N �

t. Then, Proposition 1 allows
one to deduce that E |= M

�
∼ N

�, thus E |= M ∼ N .

15

5 Termination

As already announced the saturation process will not always terminate.

Example 11 Consider the convergent rewriting system consisting of the single rule
f(g(x)) → g(h(x)) and the frame φ = νa.{w1 �→ g(a)}. We have that

Init(ϕ) ⊇ {[w1 � g(a)], [f(X)� f(x) | X � x]}.

By Narrowing we can add the fact f1 = [f(X) � g(h(x)) | X � g(x)]. Then we
can apply F-Solving to solve its side condition X � g(x) with the fact [w1 � g(a)]
yielding the solved fact [f(w1) � g(h(a))]. Now, applying iteratively F-Solving on f1
and the newly generated fact, we generate an infinity of solved facts of the form
[f(. . . f(w1) . . .) � g(h(. . . h(a) . . .))]. Intuitively, this happens because our symbolic
representation is unable to express that the function h can be nested an unbounded
number of times when it occurs under an application of g.

The same kind of limitation already exists in the procedure implemented in the
tool YAPA [10]. However, our symbolic representation which manipulates terms that
are not necessarily ground and facts with side conditions allows us to go beyond YAPA.
We are able for instance to treat equational theories such as malleable encryption and
trapdoor commitment.

5.1 Generic method for proving termination

We provide a generic method for proving termination, which we instantiate in the
following section on several examples.

In order to prove that the saturation algorithm terminates, we require that the
update function ⊕ be uniform: i.e., the same recipe R

� be used for all redundant
solved deduction facts that have the same canonical form. Note that the soundness
and completeness of the algorithm does not depend on the choice of the recipe R

�

when updating the knowledge base with a redundant fact (cf. Definition 5).

Definition 7 (projection) We define the projection of a deduction fact f = [R �
t | X1 � t1, . . . , Xn � tn] as f̂ = [t | {t1, . . . , tn}]. We extend the projection to sets of
facts F and define F̂ = {f̂ | f ∈ F}.

We identify projections which are equal up to bijective renaming of variables and
we sometimes omit braces for the side conditions.

Proposition 3 (generic termination) The saturation algorithm terminates if ⊕ is
uniform and there exist some functions Q, mf , me and some well-founded orders <f

and <e such that for all frames ϕ, and for all (F,E) such that Init(ϕ) =⇒∗ (F,E), we
have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;
2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving.

16

Proof A solved deduction fact f is only added to F if there is no f� ∈ F such that f̂ = f̂�.
Indeed, if f̂ = f̂� then f̂ is redundant and an equational fact will be added instead.
As {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite we conclude
that only a finite number of solved deduction facts can be added.

An unsolved deduction fact f can be added in two ways.

– f can be added by the rule Narrowing. Since the number of solved deduction facts
and the number of rewriting rules are finite the number of facts added by the rule
Narrowing is bounded.

– f can be added by the rule F-Solving. The number of facts added by the rule F-
Solving is bounded by the measure mf which is strictly decreasing for a well-founded
order.

An equational fact f can be added in three ways.

– f can be added when the knowledge base is updated with a redundant deduction
fact. However, since ⊕ is uniform only a finite number of such facts is added.

– f can be added by the rule Unifying. Since the number of solved deduction facts is
finite, the number of facts added by Unifying is bounded.

– f can be added by the rule E-Solving. The number of facts added by rule E-Solving
is bounded by the measure me which is strictly decreasing for a well-founded order.

Altogether, this allows us to conclude. ��

5.2 Applications

We now give several examples for which the saturation procedure indeed terminates.
For each of these theories the definition of the function Q relies on the following notion
of extended subterm.

Definition 8 (extended subterm) Let t be a term, its set of extended subterms
stRE (t) (w.r.t. E), is the smallest set such that:

1. t ∈ stRE (t),
2. f (t1, . . . , tk) ∈ stRE (t) implies t1, . . . , tk ∈ stRE (t),
3. t

�
∈ stRE (t) and t

�
→RE t

�� implies t�� ∈ stRE (t).

This notation is extended to frames in the usual way.

All examples in this section rely on the samemf andme. Let {X1 � t1, . . . , Xn � tn}

be the set of side conditions of a fact f. We define

mf(f) = (#var(t1, . . . , tn),
X

1≤i≤n

|ti|)

and <f is the lexicographical order on ordered pairs of integers. The measure me and
the order <e are defined in the same way.

We now present the class of subterm convergent equational theories as well as the
theories for malleable encryption and trap-door commitment. The detailed proofs are
given in Appendix B.

17

5.2.1 Subterm convergent equational theories.

Abadi and Cortier [1] have shown that deduction and static equivalence are decidable
for subterm convergent equational theories in polynomial time. We retrieve the same
results with our algorithm. An equational theory E is subterm convergent if RE is
convergent and for every rule l → r ∈ RE , we have that either r is a strict subterm
of l, or r is a ground term in RE -normal form.

The termination proof for this class relies on the function Q where Q(ϕ) is defined
as the smallest set that contains

1. [t | ∅], where t ∈ stRE (ϕ);
2. [f(x1, . . . , xk) | x1, . . . , xk], where ar(f) = k.

5.2.2 Malleable encryption.

We also obtain termination for the equational theory Emal described in Example 1.
This is a toy example that does not fall in the class studied in [1]. Indeed, this theory
is not locally stable: the set of terms in normal form deducible from a frame ϕ cannot
always be obtained by applying public contexts over a finite set (called sat(ϕ) in [1])
of ground terms.

As a witness consider the frame ϕ2 = νa, k.{w1 �→ enc(b, k)} introduced in Exam-
ple 2. Among the terms that are deducible from ϕ2, we have those of the form enc(t, k)
where t represents any term deducible from ϕ2. From this observation, it is easy to see
that Emal is not locally stable.

Our procedure does not have this limitation. A prerequisite for termination is that
the set of terms in normal form deducible from a frame is exactly the set of terms
obtained by nesting in all possible ways a finite set of contexts. The theory Emal

falls in this class. In particular, for the frame ϕ2, our procedure produces the fact
f9 = [mal(w1, Y2)� enc(z, k) | Y2 � z] allowing us to capture all the terms of the form
enc(t, k) by the means of a single deduction fact.

The termination proof relies on the functionQ whereQ(ϕ) is defined as the smallest
set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ);
2. [f (x1, x2) | x1, x2], where f ∈ {enc, dec,mal};
3. [enc(x, t) | x], if there exists t� such that enc(t�, t) ∈ stRE (ϕ).

5.2.3 Trap-door commitment.

The following convergent equational theory Etd is a model for trap-door commitment:

open(td(x, y, z), y) = x td(x2, f (x1, y, z, x2), z) = td(x1, y, z)
open(td(x1, y, z), f (x1, y, z, x2)) = x2 f (x2, f (x1, y, z, x2), z, x3) = f (x1, y, z, x3)

As said in the introduction, we encountered this equational theory when studying
electronic voting protocols. The term td(m, r, td) models the commitment of the mes-
sage m under the key r using an additional trap-door td. Such a commitment scheme
allows a voter who has performed a commitment to open it in different ways using its
trap-door. Hence, trap-door bit commitment td(v, r, td) does not bind the voter to the
vote v. This is useful to ensure privacy-type properties in e-voting and in particular
receipt-freeness [25]. With such a scheme, even if a coercer requires the voter to reveal

18

his commitment, this does not give any useful information to the coercer as the com-
mitment can be viewed as the commitment of any vote (depending on the key that will
be used to open it).

For the same reason as Emal , the theory of trap-door commitment described below
cannot be handled by the algorithms described in [1,10]. Our termination proof relies
on the function Q where Q(ϕ) is the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ);
2. [td(t1, r, tp) | ∅] such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2;
3. [g(x1, . . . , xk) | x1, . . . , xk], where g ∈ {open, td , f } and ar(g) = k;
4. [f (t1, r, tp, x) | x], such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2.

5.2.4 Blind signatures

The following convergent equational theory Eblind has been introduced in [22] for mod-
eling blind signatures in e-voting protocols. Abadi and Cortier have shown that deduc-
tion and static equivalence are decidable for this theory [1].

1. unblind(blind(x, y), y) = x

2. unblind(sign(blind(x, y), z), y) = sign(x, z)
3. checksign(sign(x, y), pk(y)) = x

Our algorithm also terminates on this equational theory, as shown in Appendix B.

5.2.5 Addition

The following convergent equational theory Eadd is a simple model of addition intro-
duced and was proved decidable in [1]:

1. plus(x, s(y)) = plus(s(x), y)
2. plus(x, 0) = x

3. pred(s(x)) = x

In Appendix B we show that our algorithm terminates on this equational theory
as well.

5.3 Going beyond with fair strategies

In [1] decidability is also shown for an equational theory modeling homomorphic en-
cryption. For our procedure to terminate on this theory we use a particular saturation
strategy.

Homomorphic encryption.

The theory Ehom of homomorphic encryption that has been studied in [1,10] is as
follows:

fst(pair(x, y)) = x snd(pair(x, y)) = y dec(enc(x, y), y) = x

enc(pair(x, y), z) = pair(enc(x, z), enc(y, z))
dec(pair(x, y), z) = pair(dec(x, z), dec(y, z))

19

In general, our algorithm does not terminate under this equational theory. Consider
for instance the frame φ = νa, b.{w1 �→ pair(a, b)}. We have that:

Init(ϕ) ⊇ {[w1 � pair(a, b)], [enc(X,Y)� enc(x, y) | X � x, Y � y]}.

As in Example 11 we can obtain an unbounded number of solved facts whose
projections are of the form:

[pair(enc(. . . enc(a, z1) . . . , zn), enc(. . . enc(b, z1) . . . , zn)) | z1, . . . , zn].

However, we can guarantee termination by using a fair saturation strategy. We say
that a saturation strategy is fair if whenever a rule instance is enabled it will eventually
be taken. Indeed in the above example using a fair strategy we will eventually add the
facts [fst(w1) � a] and [snd(w1) � b]. Now the “problematic” facts described above
become redundant and are not added to the knowledge base anymore. One may note
that a fair strategy does not guarantee termination in Example 11 (intuitively, because
the function g is one-way and a is not deducible in that example).

The proof of termination will as for the previous theories define functions Q, mf

and me. The main argument of the proof is the observation that due to fairness only
a finite number of solved facts not in Q(ϕ) can be added. More details are given in
Appendix B.

6 Implementation

With certain optimizations described below, our saturation algorithm runs in polyno-
mial time for subterm convergent equational theories, Emal , Eblind , and Etd .

6.1 Optimizations

Deciding generation in polynomial time (F � t).The recursive algorithm obtained im-
mediately from the generation rules is not polynomial. However, by using memoization,
its complexity becomes polynomial. Using the same trick, we can compute a recipe R

such that F �
R

t in polynomial time, if we store R in DAG form.

Recipes in DAG form.Indeed, as shown by the following example, any recipe might
grow to an exponential size if it is not stored in DAG form.

Example 12 (from [10]) Consider the theory EDY described below:

EDY = {dec(enc(x, y), y) = x, proj 1(�x, y�) = x, proj 2(�x, y�) = y}

and the two families of frames:

– ϕn = {w1 �→ t
0
n, w2 �→ c0, w3 �→ c1}, and

– ϕ
�
n = {w1 �→ t

1
n, w2 �→ c0, w3 �→ c1},

where t
i
0 = ci and t

i
n+1 = �enc(tin, k

i
n), k

i
n�, i ∈ {0, 1}. This example shows that the

non-DAG size of the recipes needed to distinguish the frames increases exponentially,
while the DAG size grows only linearly. Indeed, the test required to distinguish between

ϕn and ϕ
�
n is Rn

?
∼ w2, where R0 = w1 and Rn+1 = dec(proj 1(Rn), proj 2(Rn)).

Therefore, we require that the term R in [R � u | ∆] and the terms U and V in
[U ∼ V | ∆] are stored in DAG form.

20

Optimization to solve ground side conditions.Using different combinations of solved
facts to solve ground side conditions is unnecessary work. Therefore we consider that
the standard F-Solving and E-Solving rules are applied only when the side condition
being solved contains at least one variable. To solve a side condition of the form X � t

when t is ground, we use the two rules described in Figure 2. Again, as for ⊕, we
suppose that the choice of recipes N and M is uniform.

F-Solving’

f1 = [M � t | X �u, . . . , Xk � tk], var(t0) = ∅
F �N u, var(N) ∩ var(f1) = ∅

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M{X �→ N}� t | X1 � t1, . . . , Xk � tk].

E-Solving’

f1 = [U ∼ V | Y � s,X1 � t1, . . . , Xk � tk] ∈ E, var(s) = ∅
F �M s, var(M) ∩ var(f1) = ∅

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [U{Y �→ M} ∼ V {Y �→ M} | {Xi � ti}1≤i≤k].

Fig. 2 Optimized saturation rules for solving ground side conditions

The soundness of this optimization is assured by Lemma 5 (whose proof is immedi-
ate) whereas completeness is shown by proving Lemma 3 and Lemma 4 in the context
of the new saturation rules.

Lemma 5 (soundness of the two additional rules) Let ϕ be a frame and (F,E)
be a knowledge base such that every fact in (F,E) holds in ϕ. Let f1 and f0 be two facts
as in rules F-Solving’ (resp. E-Solving’). If f1 holds in ϕ then f0 holds in ϕ.

Lemma 3 Let (F,E) be a saturated knowledge base and f = [U ∼ V | X1�t1, . . . , Xk�
tk] be an equational fact in E. For any substitution σ grounding for {t1, . . . , tk} such
that F � tiσ (1 ≤ i ≤ k), we have that F �

Ri tiσ for some Ri (1 ≤ i ≤ k) and
E |= Uτ ∼ V τ where τ = {X1 �→ R1, . . . , Xk �→ Rk}.

Proof By induction on
Pk

i=1 |tiσ|. We distinguish two cases:

1. f is a solved equational fact. The proof is as before.
2. f is an unsolved equational fact. In such a case, there exists tj such that tj �∈ X .

Let us assume w.l.o.g. that j = 1. If t1 is not ground, then the proof is as before.
If t1 is ground and because (F,E) is saturated,

f2 = [U{X1 �→ M} ∼ V {X1 �→ M} | X2 � t2, . . . , Xk � tk]

must be in E by rule E-Solving’, where M is such that F �
M

t1.
We can apply the induction hypothesis on the fact f2 and the same substitution σ

to obtain that there exist Ri (i ≥ 2) such that F �
Ri tiσ and:

E |= (U ∼ V){X1 �→ M}{X2 �→ R2, . . . , Xk �→ Rk}

We chose R1 and M and we immediately obtain the conclusion. ��

21

Lemma 4 Let (F,E) be a saturated knowledge base. Let f = [R�t | X1�t1, . . . , Xk�tk]
be a deduction fact such that (F,E) ⊕ f = (F,E). For any substitution σ grounding for
{t1, . . . , tk} such that F � tiσ (1 ≤ i ≤ k), we have that there exist R1, . . . , Rk and W

such that

– F �
W

tσ, and F �
Ri tiσ for 1 ≤ i ≤ k;

– E |= W ∼ R{X1 �→ R1, . . . , Xk �→ Rk}.

Proof By induction on
Pk

i=1 |tiσ|. We distinguish two cases. If f is solved, the proof
is as before. If f is not solved, there exists j such that tj �∈ X . We assume w.l.o.g.
that j = 1. If t1 contains at least one variable, the proof is as before. Otherwise, if t1
is ground and because (F,E) is saturated, rule F-Solving’ must have been applied and
therefore we can apply the induction hypothesis on

f2 = [R{X1 �→ N}� t | X2 � t2, . . . , Xk � tk}]

(where N is such that F �
N

t1) and on the same substitution σ to obtain that there
exist Ri (i ≥ 2) and W such that

– F �
W

tσ and F �
Ri tiσ, for 2 ≤ i ≤ k

– E |= R{X1 �→ N}{X2 �→ R2, . . . , Xk �→ Rk} ∼ W

We choose R1 = N and we immediately obtain our conclusion. ��

6.2 Complexity

Theorem 2 Using the optimizations described in Section 6.1, and if ϕ is in normal
form, the saturation algorithm terminates in polynomial time for any subterm conver-
gent equational theory, for Etd , for Emal and for Eblind .

In the remaining, we consider an equational theory E that is either subterm con-
vergent, or E ∈ {Emal , Eblind , Etd}. We define the following set:

Q(ϕ) = {[rσ | t1, . . . , tk]}

for every rewrite rule l → r, for every partial substitution σ : var(l) → stRE (ϕ) and for
every set of incomparable positions p1, . . . , pk ∈ pos(l) such that for every i (1 ≤ i ≤ k)
we have that ti = (l|pi)σ.

In order to prove Theorem 2, we need an additional lemma.

Lemma 6 Let ϕ be a frame and (F,E) be such that Init(ϕ) =⇒∗ (F,E). For any un-
solved deduction fact f ∈ F we have that f̂ ∈ Q(ϕ).

Proof First, note that an unsolved deduction fact obtained by applying Narrowing on
a solved fact satisfies this property. Now assume we have an unsolved deduction fact
f̂ = [rσ | (l|p1)σ, . . . , (l|pk)σ] ∈ Q(ϕ) and assume one of its side conditions (l|pi)σ is
being solved. Assume w.l.o.g. that i = 1.

– If (l|p1)σ is ground, rule F-Solving’ must be applied. We therefore obtain a fact
f̂� = [rσ | (l|p2)σ, . . . , (l|pk)σ].

22

– If (l|p1)σ is not ground, rule F-Solving is applied and l|p1 is necessarily not a variable
(by the definition of σ, it maps variables only to ground terms). Therefore l|p1 is of
the form g(s1, . . . , sl) for some function symbol g ∈ F . We distinguish three cases:

– If the side condition is solved using a deduction fact whose projection is of
the form [t | ∅] for some t ∈ stRE (ϕ), let σ

� = mgu((l|p1)σ, t) and consider
τ = σ ◦ σ

�. By rule F-Solving, the side condition (l|p1)σ will be replaced by side
conditions ((l|p1)|qj)τ , for all (l|p1)|qj ∈ X and therefore the fact resulting from
the application of the rule satisfies the property.

– If the side condition is solved using a fact whose projection is of the form
[g(x1, . . . , xl) | x1, . . . , xl], then the side condition (l|p1)σ will be replaced by
side conditions (l|p1·j)σ, for 1 ≤ j ≤ l.

– If the side conditions is solved using a “special” fact [sign(t, x) | x] (with t ∈

stRE (ϕ)), [enc(x, t) | x] (with t ∈ stRE (ϕ)), [td(t1, t2, t3)] (with t1, t2, t3 ∈

stRE (ϕ)) or [f (t1, t2, t3, x) | x] (with t1, t2, t3 ∈ stRE (ϕ)), we obtain by a case-
by-case analysis that the property is satisfied by the resulting fact. ��

Now, we are able to prove Theorem 2

Proof (of Theorem 2)
We first show that any knowledge base contains a polynomial number of deduction

facts. Indeed, there are a polynomial number of solved deduction facts. Applying rule
Narrowing yields a polynomial number of unsolved deduction facts. We also know,
thanks to Lemma 6, that for any frame ϕ (in normal form), for any (F,E) reachable
from Init(ϕ), and for any unsolved fact f ∈ F, we have that f̂ ∈ Q(ϕ).

We consider the two following orders:

– the order <p defined on sets of positions as follows:

{p0, . . . , p�} <p {q1, . . . , qk, p1, . . . , p�} iff q1, . . . , qk are incomparable positions
and p0 is a prefix of qi (1 ≤ i ≤ k).

– the order <f defined on deduction facts whose projection are in Q(ϕ):

f0 <f f1 iff either � < k or � = k and {p1, . . . , pk} <p {p
�
1, . . . , p

�
�}.

where f0 = [R � rσ | X1 � l|p1σ, . . . ,Xk � l|pk], and
f1 = [R� � rσ

�
| X1 � l|p�

1
σ
�
, . . . , Xl � l|p�

�
σ
�].

As <f does not depend on the frame, all strictly decreasing sequences of deduction
facts have at most a constant size. Also note that if f1 and f0 are as in rule F-Solving or F-
Solving’, we have that f0 <f f1. There are at most a polynomial number of choices to be
made when solving each deduction fact (which side condition, which solved deduction
fact). As the resulting facts will be smaller (according to <f) than the initial fact, and
as any such sequence has at most a constant length, an unsolved fact will generated at
most a polynomial number of facts.

We now show that each deduction fact has at most a polynomial size if the recipes
are stored in DAG form. This is obviously true of the initial facts. The other recipes
are obtained from the initial recipes by applying a polynomial number of substitutions
whose size is polynomially bounded. Therefore all recipes have polynomial size.

It remains to show that there are a polynomial number of equational facts. This is
true of the (necessarily solved) equational facts added during application of Narrowing
and F-Solving (via the ⊕ operation). The other possibility to generate equational facts

23

is Unifying, which generates a polynomial number of (possible unsolved) equational
facts. All such unsolved equational facts have side conditions which are either ground
or variables. Therefore, each such unsolved equational fact will lead to at most a poly-
nomial number of other equational facts by applying rule E-Solving’. ��

6.3 The KiSs tool

A C++ implementation of the procedures described in this paper is provided in the
KiSs (Knowledge in Security protocols) tool [16].

The tool implements a partially fair saturation strategy and a uniform ⊕. The
fairness employed by the tool is sufficient to decide the theory Ehom. Moreover the
tool implements the optimizations described in subsection 6.1. This makes the proce-
dure terminate in polynomial time for subterm convergent equational theories, and the
theories Eblind , Emal and Etd .

The performances of the tool are comparable to the YAPA tool [9,10] and on
most examples the tool terminates in less than a second. In [10] a family of contrived
examples is presented to diminish the performance of YAPA, exploiting the fact that
YAPA does not implement DAG representations of terms and recipes, as opposed to
KiSs. As expected, KiSs indeed performs better on these examples.

In [10] a class of equational theories for which YAPA terminates is identified and it
is not known whether our procedure terminates on this specific class. However, we have
shown that our procedure terminates on all examples of equational theories presented
in [10]. This requires to prove termination of our saturation procedure for each equa-
tional theory presented in [10]. In addition, our tool terminates on the theories Emal

and Etd whereas YAPA does not. Of course, YAPA may also terminate on examples
outside the class exhibited in [10]. Hence the question whether termination of our
procedures encompasses termination of YAPA is still open.

7 Conclusion and future work

We have proposed and implemented a procedure for deduction and for static equiva-
lence for convergent equational theories. Our procedure terminates for a wide range of
equational theories. In particular, we obtain a new decidability result for the theory of
trapdoor commitment.

All of our examples feature convergent term rewriting systems which are right-
linear. Even though it is unlikely that a non-right-linear term rewriting system is useful
for modeling cryptographic primitives, we note that this is not an inherent limitation
of our procedure, as illustrated by the following (contrived) rewrite rule

g(x) → f(x, x)

for which our procedure terminates.
Our procedure however does not terminate in general on the following equational

theories modelling re-encryption:

renc(enc(x, y, z), t) → enc(x, y, f (z, t))

24

as illustrated below. Starting from the frame

ϕ = νa, b, c.{w1 �→ enc(a, b, c)}

our knowledge base will contain the following infinite set of deduction facts:

[w1 � enc(a, b, c) | ∅]
[renc(w1, X1) � enc(a, b, f(c, x1)) | X1 � x1]
[renc(renc(w1, X1), X2) � enc(a, b, f(f(c, x1), x2) | X1 � x1, X2 � x2]

. . .

As future work, we indent to extend our approach in order to handle the case of re-
encryption and the case of associative commutative operators (like xor), which cannot
be handled by a convergent term rewriting system.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc.

28th ACM Symposium on Principles of Programming Languages (POPL’01). ACM, 2001.
3. S. Anantharaman, P. Narendran, and M. Rusinowitch. Intruders with caps. In Proc. 18th

International Conference on Term Rewriting and Applications (RTA’07), volume 4533 of
LNCS. Springer, 2007.

4. A. Armando et al. The AVISPA Tool for the automated validation of internet security
protocols and applications. In Proc. 17th Int. Conference on Computer Aided Verification

(CAV’05), volume 3576 of LNCS, pages 281–285. Springer, 2005.
5. M. Arnaud, V. Cortier, and S. Delaune. Combining algorithms for deciding knowledge in

security protocols. In F. Wolter, editor, Proceedings of the 6th International Symposium on

Frontiers of Combining Systems (FroCoS’07), volume 4720 of Lecture Notes in Artificial

Intelligence, pages 103–117, Liverpool, UK, Sept. 2007. Springer.
6. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting

protocols in the applied pi-calculus. In Proc. 21st IEEE Computer Security Foundations

Symposium (CSF’08), 2008.
7. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and auto-

mated verification of the direct anonymous attestation protocol. In Proc. IEEE Symposium

on Security and Privacy (S&P’08). IEEE Comp. Soc. Press, 2008.
8. M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th ACM

Conference on Computer and Communications Security (CCS’05), 2005.
9. M. Baudet. YAPA (Yet Another Protocol Analyzer), 2008. http://www.lsv.ens-cachan.

fr/~baudet/yapa/index.html.
10. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing intruder

knowledge. In R. Treinen, editor, Proceedings of the 20th International Conference on

Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture Notes in Com-

puter Science, pages 148–163, Braśılia, Brazil, June-July 2009. Springer.
11. M. Berrima, N. Ben Rajeb, and V. Cortier. Deciding knowledge in security protocols under

some e-voting theories. Research Report RR-6903, INRIA, April 2009.
12. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In 14th

Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Comp. Soc.
Press, 2001.

13. B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equivalences
for Security Protocols. In Symposium on Logic in Computer Science, pages 331–340. IEEE
Comp. Soc. Press, 2005.

14. Y. Chevalier. Résolution de problèmes d’ accessibilité pour la compilation et la validation

de protocoles cryptographiques. PhD thesis, Université Henri Poincaré, Nancy (France),
2003.

25

15. Y. Chevalier and M. Kourjieh. Key substitution in the symbolic analysis of cryptographic
protocols. In Proc. 27th International Conference on Foundations of Software Technology

and Theoretical Computer Science (FST&TCS’07), pages 121–132, 2007.
16. Ş. Ciobâcă. KiSs, 2009. http://www.lsv.ens-cachan.fr/~ciobaca/kiss.
17. Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocols under

convergent equational theories. In R. Schmidt, editor, Proceedings of the 22nd Inter-

national Conference on Automated Deduction (CADE’09), Lecture Notes in Artificial
Intelligence, pages 355–370, Montreal, Canada, Aug. 2009. Springer.

18. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. In Proc. 2nd International Workshop on Security Issues with Petri

Nets and other Computational Models (WISP’04), ENTCS, 2004.
19. V. Cortier and S. Delaune. Deciding knowledge in security protocols for monoidal equa-

tional theories. In Proc. 14th Int. Conference on Logic for Programming, Artificial Intel-

ligence, and Reasoning (LPAR’07), LNAI. Springer, 2007.
20. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in

cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.
21. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic

voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.
22. S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied

pi-calculus. In 14th European Symposium on Programming (ESOP’05), volume 3444 of
LNCS, pages 186–200. Springer, 2005.

23. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for the equational theory of
Abelian groups with distributive encryption. Information and Computation, 205(4):581–
623, 2007.

24. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic proto-
col analysis. In Proc. 8th ACM Conference on Computer and Communications Security

(CCS’01), 2001.
25. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In Proc. 5th

Int. Security Protocols Workshop, volume 1361 of LNCS. Springer, 1997.
26. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions and

composed keys is NP-complete. Theoretical Computer Science, 299:451–475, 2003.

26

A Proofs of Section 4

A.1 Soundness

Lemma 7 Let ϕ be a frame and (F,E) be a knowledge base such that every fact in (F,E)
(deduction or equational) holds in ϕ. Let f0 be a fact that holds in ϕ, then every fact in

(F,E)⊕ f0 holds in ϕ.

Lemma 1 Let ϕ be a frame and (F,E) be a knowledge base such that Init(ϕ) =⇒∗

(F,E). Then every f ∈ F ∪ E holds in ϕ.

Proof By induction on the derivation Init(ϕ) =⇒∗ (F,E).

Base case: We have that (F,E) = Init(ϕ). To conclude, we have to show that the facts and the
equations we put in the initial knowledge base hold in ϕ.

There are three kind of deduction facts that can be added in the knowledge base: the facts
that come from ϕ, those of the form [n�n] for n ∈ fn(ϕ), and those of the form:

[f(X1, . . . , Xk)� f(x1, . . . , xk) | X1 �x1, . . . , Xk �xk].

It is easy to see that all these facts hold in ϕ and we can conclude by Lemma 7.

Induction step: In such a case, we have Init(ϕ) =⇒∗ (F�,E�) =⇒ (F,E). We perform a case
analysis on the inference rule used in (F�,E�) =⇒ (F,E). For each rule, we show that the
resulting fact f0 holds in ϕ and we conclude by relying on Lemma 7.

Rule Narrowing: Let f = [M �C[t] | X1 �x1, . . . , Xk �xk] be the deduction fact, l → r ∈ RE
be the rewrite rule and σ = mgu(l, t) be the substitution involved in this step. Let f0 =
[M � (C[r])σ | X1 �x1σ, . . . , Xk �xkσ] be the resulting deduction fact.

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ �E xiστ with recipe Mi

(1 ≤ i ≤ k). Since f holds in ϕ, we have that ϕ �E (C[t])στ with recipe M � = M{X1 �→
M1, . . . , Xk �→ Mk}. It is easy to see that the following equalities are satisfied:

(C[t])στ = (C[l])στ =E (C[r])στ

Therefore ϕ �E (C[r])στ by recipe M �, and thus f0 holds in ϕ.

Rule F-Solving: Let f1 = [M � t | X0 � t0, . . . , Xk � tk] with t0 �∈ X and f2 = [N � s | Y1 �
y1, . . . , Y� �y�] be the two deduction facts and σ = mgu(s, t0) be the substitution involved in
this step. Let f0 be the resulting deduction fact:

f0 = [M{X0 �→ N}� tσ | X1 � t1σ, . . . , Xk � tkσ, Y1 � y1σ, . . . , Y� � y�σ].

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ �E tiστ with recipe Mi

(1 ≤ i ≤ k) and ϕ �E yjστ with recipes Nj (1 ≤ j ≤ �). Since f2 holds in ϕ, we have that
ϕ �E sστ with recipe N � = N{Y1 �→ N1, . . . , Y� �→ N�}. Since f1 holds in ϕ and sστ = t0στ ,
we deduce that ϕ �E tστ with recipe

M{X0 �→ N �, X1 �→ M1, . . . , Xk �→ Mk}
= (M{X0 �→ N}){X1 �→ M1, . . . , Xk �→ Mk, Y1 �→ N1, . . . , Y� �→ N�}.

This allows us to conclude that f0 holds in ϕ.

Rule Unifying: Let f1 = [M � t | X1 �x1, . . . , Xk �xk] and f2 = [N �s | Y1 �y1, . . . , Y� �y�]
be the two solved deduction facts and σ = mgu(s, t) be the substitution involved in this step.
Let f0 be the resulting equational fact:

f0 = [M ∼ N | X1 �x1σ, . . . , Xk �xkσ, Y1 � y1σ, . . . , Y� � y�σ].

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ �E xiστ with recipe Mi

(1 ≤ i ≤ k) and ϕ �E yjστ with recipes Nj (1 ≤ j ≤ �). Since f1 and f2 holds in ϕ and

27

sστ = tστ , we deduce that ϕ �E tστ with recipe M{X1 �→ M1, . . . , Xk �→ Mk} and N{Y1 �→
N1, . . . , Yk �→ N�}. This allows us to conclude that f0 holds in ϕ.

Rule E-Solving: Let f1 = [U ∼ V | Y � s,X1 � t1, . . . , Xk � tk] be the equational fact and
f2 = [N � t | Y1 � y1, . . . , Y� � y�] be the solved deduction fact, and σ = mgu(s, t) be the
substitution involved in this step. Let f0 be the resulting equational fact:

f0 = [U{Y �→ N} ∼ V {Y �→ N} | X1 � t1σ, . . . , Xk � tkσ, Y1 � y1σ, . . . , Y� � y�σ].

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ �E tiστ with recipe Mi

(1 ≤ i ≤ k) and ϕ �E yjστ with recipe Nj (1 ≤ j ≤ �). Since f2 holds in ϕ, we deduce that
ϕ �E tστ with recipe N � = N [Y1 �→ N1, . . . , Y� �→ N�]. Since sστ = tστ , we deduce that
ϕ �E sστ with recipe N �, and by using the fact that f1 holds in ϕ we deduce that

(U{Y �→ N �, X1 �→ M1, . . . , Xk �→ Mk} =E V {Y �→ N �, X1 �→ M1, . . . , Xk �→ Mk})ϕ.

Thus, f0 holds in ϕ. ��

A.2 Completeness

Lemma 3 Let (F,E) be a saturated knowledge base and f = [U ∼ V | X1�t1, . . . , Xk�
tk] be an equational fact in E. For any substitution σ grounding for {t1, . . . , tk} such
that F � tiσ (1 ≤ i ≤ k), we have that F �

Ri tiσ for some Ri (1 ≤ i ≤ k) and
E |= Uτ ∼ V τ where τ = {X1 �→ R1, . . . , Xk �→ Rk}.

Proof We show this result by induction on
Pk

i=1 |tiσ|. We distinguish two cases:

1. f is a solved equational fact, i.e. t1, . . . , tk are variables (not necessarily distinct), say
x1, . . . , xk. In such a case, we have that

E |= U{X1 �→ x1, . . . , Xk �→ xk} ∼ V {X1 �→ x1, . . . , Xk �→ xk}.

We choose each Ri arbitrarily such that xi = xj implies Ri = Rj . Then, it is easy to
conclude.

2. f is an unsolved equational fact. In such a case, there exists tj such that tj �∈ X . Let us
assume w.l.o.g. that j = 1. As F � t1σ, we know that there exist a solved deduction fact
f1 = [R1 � t1 | X1

1 � x1
1, . . . , X

1
� � x1

�] in F and a substitution τ such that t1τ = t1σ and

F �R�
i x1

i τ (1 ≤ i ≤ �).
Let ρ = mgu(t1, t1). We have that the following fact f2 is in E since (F,E) is saturated:

[U{X1 �→ R1} ∼ V {X1 �→ R1} | X1
1 �x1

1ρ, . . . , X
1
� �x1

�ρ,X2 � t2ρ, . . . , Xk � tkρ].

Let σ� be the substitution such that σ∪τ = ρ◦σ�. As the fact f1 is solved, x1
1ρσ

�, . . . , x1
�ρσ

�

are strict subterms of t1ρσ� = t1τ and
P�

i=1 |x1
i ρσ

�| < |t1τ | = |t1σ|. Thus we can apply our
induction hypothesis on the equational fact f2 with the substitution σ�. This allows us to
obtain that there exist M1

1 , . . . ,M
1
� ,M2, . . . ,Mk such that F �Mi tiρσ� = tiσ (2 ≤ i ≤ k)

and F �M1
i x1

i ρσ
� = x1σ (1 ≤ i ≤ �) and the following equation (�)

E |= (U{X1 �→ R1}){X1
1 �→ M1

1 , . . . , X
1
� �→ M1

� , X2 �→ M2, . . . , Xk �→ Mk}
∼

(V {X1 �→ R1}){X1
1 �→ M1

1 , . . . , X
1
� �→ M1

� , X2 �→ M2, . . . , Xk �→ Mk}

We choose R1 = R1{X1
1 �→ M1

1 , . . . , X
1
� �→ M1

� } and R2 = M2, . . . , Rk = Mk. Thus, the
equation (�) can be rewritten as follows:

E |= U{X1 �→ R1, . . . , Xk �→ Rk} ∼ V {X1 �→ R1, . . . , Xk �→ Rk}.

This allows us to conclude. ��

28

Lemma 8 Let (F,E) be a knowledge base and t be a term in T (F ,N∪X). Let σ be a grounding

substitution for t. If F �W t and F �Rx xσ for every x ∈ var(t), then F �W �
tσ where

W � = W{x �→ Rx}x∈var(t).

Proof We show this result by induction on |t|.
Base case: |t| = 0, i.e. t is a variable, say x. As F �W t, it follows that W = t = x. By
hypothesis, there exists R such that F �R xσ = tσ. This allows us to conclude.

Induction case: |t| > 0. As F �W t, it follows that there exist a fact f ∈ F and a substitution
τ such that:

– f = [R�u | X1 �x1, . . . , Xk �xk];
– t = uτ ;
– F �Ri xiτ for every 1 ≤ i ≤ k and W = R{X1 �→ R1, . . . , Xk �→ Rk}.

We have that var(u) = {x1, . . . , xk} and thus, xiτ is a strict subterm of uτ (1 ≤ i ≤ k).
Therefore, we can apply our induction hypothesis on each term xiτ with the substitution σ.
For each i such that 1 ≤ i ≤ k, we obtain that:

F �Wi xiτσ where Wi = Ri{x �→ Rx}x∈var(xiτ).

Note that since t = uτ and var(u) = {x1, . . . , xk}, we have that var(t) = var({x1τ, . . . , xkτ}).
By using the fact f, we get that F �W ��

uτσ where

W �� = R{X1 �→ R1{x �→ Rx}x∈var(t), . . . , Xk �→ Rk{x �→ Rx}x∈var(t)}
= (R{X1 �→ R1, . . . , Xk �→ Rk}){x �→ Rx}x∈var(t)
= W{x �→ Rx}x∈var(t)

Let W � = W{x �→ Rx}x∈var(t), we have that F �W �
uτσ and since uτσ = tσ we easily

conclude. ��

Lemma 9 Let f = [R� t | X1 �x1, . . . , Xk �xk] be a solved fact and (F,E) be a knowledge

base such that (F,E)⊕ f = (F,E). Let σ be a substitution grounding for {x1, . . . , xk} such that

F � xiσ (1 ≤ i ≤ k). Then there exist W and Ri (1 ≤ i ≤ k) such that:

– F �W tσ, and F �Ri xiσ for every 1 ≤ i ≤ k;
– E |= W ∼ R{X1 �→ R1, . . . , Xk �→ Rk}.

Proof Let f� be the canonical form of f. We first show that F ∪ {f�} = F implies F � t. This is
easily shown by induction on the number of steps to compute the canonical form.

Base case: If f is already in canonical form we have that f = f� and hence F � t.
Inductive case: The two rules are of the form

[R� t | X1 �x1, . . . , Xk �xk]

f0 = [R� � t | X1 �x1, . . . , Xi−1 �xi−1, Xi+1 �xi+1, . . . , Xk �xk]

Let f�0 be the canonical form of f0. By induction hypothesis we have F∪{f�0} = F implies F � t.
As f� = f�0 we conclude.

To prove the lemma we consider both cases where f is either useful or redundant.

Useful fact: If f is useful we have that F � t. By what we have just shown, F ∪ {f�} �= F which
contradicts that (F,E)⊕ f = (F,E). Hence, this case is impossible.

Redundant fact: Since (F,E) ⊕ f = (F,E), it follows that there exists W � such that F �W �
t

and E |= W � ∼ R{X1 �→ x1, . . . , Xk �→ xk}. We choose Ri arbitrarily such that F �Ri xiσ. Let

W �� = W �{x1 �→ R1, . . . , xk �→ Rk}. Thanks to Lemma 8, we deduce that F �W ��
tσ and we

also have that

E |= (W � ∼ R{X1 �→ x1, . . . , Xk �→ xk}){x1 �→ R1, . . . , xk �→ Rk},

i.e. E |= W �� ∼ R{X1 �→ R1, . . . , Xk �→ Rk}.
Let W = W ��. We have that F �W tσ, and F �Ri xiσ for every 1 ≤ i ≤ k. Lastly, we have

that E |= W ∼ R{X1 �→ R1, . . . , Xk �→ Rk}. ��

29

Lemma 4 Let (F,E) be a saturated knowledge base. Let f = [R�t | X1�t1, . . . , Xk�tk]
be a deduction fact such that (F,E) ⊕ f = (F,E). For any substitution σ grounding for
{t1, . . . , tk} such that F � tiσ (1 ≤ i ≤ k), we have that there exist R1, . . . , Rk and W

such that

– F �
W

tσ, and F �
Ri tiσ for 1 ≤ i ≤ k;

– E |= W ∼ R{X1 �→ R1, . . . , Xk �→ Rk}.

Proof We show the result by induction on
Pk

i=1 |tiσ|. We distinguish two cases. If f is solved
then we easily conclude by applying Lemma 9.

If f is not solved, there exists j such that tj �∈ X . We assume w.l.o.g. that j = 1. Since F �
t1σ, there exist a solved deduction fact f� ∈ F, some terms R�

i(1 ≤ i ≤ �) and a substitution τ
such that:

– f� = [R� � t� | Y1 � y1, . . . , Y� � y�];
– t�τ = t1σ;

– F �R�
i yiτ for every 1 ≤ i ≤ �.

By application of the F-Solving rule to the deduction facts f and f�, we obtain the following
fact f0:

f0 = [R{X1 �→ R�}� tρ | X2 �→ t2ρ, . . . , Xk �→ tkρ, Y1 �→ y1ρ, . . . , Y� �→ y�ρ]

where ρ = mgu(t�, t1).

As (F,E) is saturated, (F,E) ⊕ f0 = (F,E). Let σ� be the substitution such that σ ∪ τ =
ρ ◦ σ�. As yiρσ� = yi(σ ∪ τ) = yiτ are strict disjoint subterms of t�τ = t1σ, it follows that
we can apply our induction hypothesis on f0 and the substitution σ�. Therefore, there exist
R�

2, . . . , R
�
k, R

y
1 , . . . , R

y
� and W � such that:

– F �W �
tρσ�,

– F �R�
i tiρσ� for every 2 ≤ i ≤ k;

– F �Ry
j yjρσ� for every 1 ≤ j ≤ �;

– E |= W � ∼ (R{X1 �→ R�}){X2 �→ R�
2, . . . , Xk �→ R�

k, Y1 �→ Ry
1 , . . . , Y� �→ Ry

� }.

Let W = W �, R1 = R�{Y1 �→ Ry
1 , . . . , Y� �→ Ry

� }, Rj = R�
j for every 2 ≤ j ≤ k. It immediately

follows that E |= W ∼ R{X1 �→ R1, . . . , Xk �→ Rk}, F �W tσ, and F �Ri tiσ for 1 ≤ i ≤ k.
This allows us to conclude. ��

A.3 Proof of Theorem 1

Theorem 1 (soundness and completeness) Let ϕ be a frame and (F,E) be a
saturated knowledge base such that Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N) and F+ =
F ∪ {[n� n] | n ∈ fn(t)� bn(ϕ)}. We have that:

1. For all M ∈ T (F ,N ∪ dom(ϕ)) such that fn(M) ∩ bn(ϕ) = ∅, we have that

Mϕ =E t ⇔ ∃N, E |= M ∼ N and F+ �
N

t↓RE

2. For all M,N ∈ T (F ,N ∪ dom(ϕ)) such that fn(M,N) ∩ bn(ϕ) = ∅, we have

(M =E N)ϕ ⇔ E |= M ∼ N.

30

Proof Let ϕ be a frame and (F,E) be a saturated knowledge base such that Init(ϕ) =⇒∗ (F,E).

1.(⇐) Let M , N and t be such that E |= M ∼ N and F+ �N t↓RE . Thanks to Lemma 2, we
have that Mϕ =E Nϕ =E t.

(⇒) Let M and t be such that Mϕ =E t.
Let F++ = F ∪ {[n � n] | n ∈ fn(M)}. We have that F++ �M t0 and t0 →∗ t↓RE with

t0 = Mϕ.
Let {n1, . . . , n�} = fn(M) � fn(ϕ ∪ {t}). Let y1, . . . , y� be fresh variables and δ = {n1 �→

y1, . . . , n� �→ y�}. Let M � = Mδ. We have that F++ �M�
t�0 and t�0 →∗ t↓RE with t�0 = M �ϕ.

Now, let E++ = E ∪ {[n ∼ n] | n ∈ fn(M)}. As (F,E) is a saturated knowledge base, we
have that (F++,E++) is a saturated knowledge base as well. Now thanks to Proposition 1, we
deduce that E++ |= M ∼ M �, thus E |= M ∼ M � as well.

We show the result by induction on t0 equipped with the order < induced by the rewriting
relation (t < t� if and only if t� →+ t).

Base case: F+ �M�
t0 = t↓RE . Let N = M �, we have E |= M ∼ N and F �N t↓RE .

Induction case: F+ �M�
t0 with t0 �= t↓RE . Let E+ = E ∪ {[n ∼ n] | n ∈ fn(t) � bn(ϕ)}. We

easily see that as (F,E) is a saturated knowledge base we have that (F+,E+) is a saturated
knowledge base as well. Hence we can apply Proposition 2 and deduce that there exist N �

and t� such that F+ �N�
t�, t →+

RE
t�, and E+ |= M � ∼ N �. It is easy to see that E |= M � ∼ N �

as well. We have that F+ �N�
t� →∗ t↓RE and t� < t0. Thus, we can apply our induction

hypothesis and we obtain that there exists N such that E |= N � ∼ N and F+ �N t↓RE .

2.(⇐) By Lemma 2, E |= M ∼ N implies Mϕ =E Nϕ.

(⇒) Let M and N such that Mϕ =E Nϕ. This means that there exists t such that Mϕ =E t
and Nϕ =E t. Let F+ = F ∪ {[n � n] | n ∈ fn(t) � bn(ϕ)} and E+ = E ∪ {[n ∼ n] | n ∈
fn(t) � bn(ϕ)}. By applying 1, we deduce that there exist M �, N � such that E |= M ∼ M �,

F+ �M�
t↓RE , E |= N ∼ N � and F+ �N�

t↓RE . It is easy to see that E+ |= M ∼ M � and

E+ |= N ∼ N � as well. Because (F+,E+) is a saturated knowledge base we apply Proposition 1
and deduce that E+ |= M � ∼ N �, and thus E+ |= M ∼ N , which easily implies E |= M ∼ N .

��

B Proofs of Section 5

B.1 Subterm convergent equational theories

Lemma 10 Let E be a subterm convergent equational theory and RE be its associated rewrite

system. For any frame ϕ, and any (F,E) such that Init(ϕ) =⇒ (F,E), we have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q, mf , me, <f , and <e are defined w.r.t. the rewrite system RE as described in Sec-

tion 5.2.

Proof The proof of item 1 is done by induction on the number of saturation steps needed to
reach (F,E). To ease the induction we strengthen the induction hypothesis and prove a slightly
stronger statement. We define Q�(ϕ,F) as the smallest set such that

1. [t | ∅] ∈ Q�(ϕ,F), where t ∈ stRE (ϕ)
2. [f(x1, . . . , xk) | x1, . . . , xk] ∈ Q�(ϕ,F), where ar(f) = k
3. [rσ | t1, . . . , tk] ∈ Q�(ϕ, f), where:

– l → r ∈ RE
– σ : var(l) → stRE (ϕ) is a partial function
– lσ = C[t1, . . . , tk] for some context C
– rσ ∈ st(D[t1, . . . , tk, u1, . . . , un]) for some public context D and some terms ui such

that [ui | ∅] ∈ F̂

31

– ∃i : ti �∈ X
In the following when a projection f̂ corresponds to one of the above 3 cases, we say that

f is of type i (1 ≤ i ≤ 3). Note that a solved deduction fact is either of type 1 or 2. We prove

that for any (F,E) such that Init(ϕ) =⇒∗ (F,E) we have that F̂ ⊆ Q�(ϕ,F). We have that

{f̂ | f̂ ∈ Q�(ϕ,F) and f̂ is solved} ⊆ Q(ϕ) and this allows us to conclude. We prove the result
by induction on the number of saturation steps of Init(ϕ) =⇒∗ (F,E).

Base case. It is clear that for all deduction facts f ∈ Init(ϕ) we have that f̂ is either of type 1
or type 2.

Inductive case. We assume that the result holds for (F,E), i.e. F̂ ⊆ Q�(ϕ,F), and show that
any possible application of a saturation rule preserves the result.

1. Consider a fact f ∈ F of type 1, i.e. f̂ = [t | ∅]. By applying rule Narrowing to it, we obtain

a fact f� such that f̂� = [t� | ∅] with t →RE t�. As t ∈ stRE (ϕ), we have that t� ∈ stRE (ϕ)
and therefore f� is of type 1.

2. Consider a fact f ∈ F of type 2, i.e. f̂ = [f(x1, . . . , xk) | x1, . . . , xk]. As all positions of the
term f(x1, . . . , xk), except the head are variables, rule Narrowing can only be applied at
this position. Let l → r ∈ RE be the rewrite rule involved in this step. We obtain a fact
f� such that f̂� = [rτ | x1τ, . . . , xkτ] where τ = mgu(f(x1, . . . , xk), l). We distinguish two
cases:
– Case 1: l is a variable, say x. In such a case, f̂� = [rτ | x1, . . . , xk] and r ∈ T (F , ∅).

Therefore, the resulting fact f� is redundant.
– Case 2: l is not a variable. In such a case, we have that l = f(l1, . . . , lk) and f̂� =

[r | l1, . . . , lk]. Let σ be such that dom(σ) = ∅, C = f(, . . . ,). It is clear that f̂�

satisfies the three first conditions of a fact of type 3. Now, either r ∈ T (F , ∅), i.e. r is a
public ground term and in such a case it is clear that the fact is redundant. Otherwise,
we have that r is a strict subterm of l, i.e r ∈ st(lj) for some 1 ≤ j ≤ k. Therefore the
fourth condition also holds. Now, assume that all the li are variables (i.e. f� is solved),
we show it is redundant and it is not added to the knowledge base. Indeed, in such
a situation, we necessarily have that r is a variable (remember that r ∈ st(lj)) and
therefore the fact f� is redundant.

3. Consider a fact f ∈ F of type 3. Let f̂ = [rσ | t1, . . . , tk]. In such a case, there exist a rewrite
rule l → r, a partial function σ : var(l) → stRE (ϕ), a context C such that lσ = C[t1, . . . , tk]
and we have that rσ ∈ st(D[t1, . . . , tk, u1, . . . , un]) for some public context D and some

terms ui such that [ui | ∅] ∈ F̂. Assume that one of the side conditions of f is being solved
by rule F-Solving with a solved fact f� ∈ F. We assume w.l.o.g. that t1 is being solved. We
distinguish two cases depending on the type of f�.
– Case 1: f̂� = [u0 | ∅]. Let τ = mgu(u0, t1). The fact resulting from the F-Solving rule

is f�� = [rστ | t2τ, . . . , tkτ]. We consider σ� = τ ∪ σ, C� = C[u0, . . . ,] and D� = D.
We can show that the first four conditions hold. If the last condition does not hold,
and because the fourth holds, the resulting fact must be either of type 1 or redundant
and therefore not added to the knowledge base.

– Case 2: f̂� = [f(x1, . . . , xk) | x1, . . . , xk]. Let τ = mgu(f(x1, . . . , xk), t1). As t1 is not
a variable, we have that t1 = f(s1, . . . , s�). The fact resulting from the application of
the rule F-Solving is f�� = [rσ | s1, . . . , s�, t2, . . . , tk]. We can show that the first four
conditions hold. If the last condition does not hold, and because the fourth holds, the
resulting fact must be either of type 1 or redundant and therefore not added to the
knowledge base.

To show items 2 and 3 it remains to be proven that mf and me strictly decrease after a
side condition of an unsolved fact is solved. As a side condition can only be solved by facts of
type 1 or 2 this is easily shown by a case analysis. We detail the proof for mf . The case of me

can be done in a similar way.
Let f1 = [R� t | X1 � t1, . . . Xn � tn].

– Suppose f1 is solved by a solved fact f2 of type 1. Let f̂2 = [u | ∅] where u ∈ stRE (ϕ)
and σ = mgu(u, t1). There are two possible cases. Either u = t1. As u ∈ stRE (ϕ) we have
that u is ground and dom(σ) = ∅. In this case #var(t2, . . . , tn) = #var(t1, . . . , tn) but
as t1 �∈ X we have that

P
2≤i≤n |ti| <

P
1≤i≤n |ti|. Or u �= t1 and #var(t2, . . . tn) <

#var(t1, . . . tn).

32

– Suppose f1 is solved by a solved fact f2 of type 2. Let f̂2 = [f(x1, . . . , xk) | x1, . . . , xk] and
σ = mgu(u, t1). As t1 �∈ X we have that t1 = f(s1, . . . , sk). We have that σ = {x1 �→
s1, . . . , xk �→ sk} and the resulting fact f0 is such that

f̂0 = [tσ | ∆] = [tσ | s1, . . . , sk, t2, . . . , tn].

Thus, we have that #var(∆) = #var(t1, . . . , tn) and
P

u∈∆ |u| <
P

1≤i≤n |ti|.

This allows us to conclude the proof. ��

B.2 Malleable encryption

Lemma 11 For any frame ϕ, and any (F,E) such that Init(ϕ) =⇒∗ (F,E) w.r.t. REmal
, we

have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q, mf , me, <f , and <e are defined w.r.t. to the rewrite system REmal
as described in

Section 5.2.

Proof Let E = Emal . The proof of item 1 is done by induction on the number of saturation
steps of Init(ϕ) =⇒∗ (F,E). To ease the induction we strengthen the induction hypothesis and
prove a slightly stronger statement. We define Q�(ϕ) as the smallest set such that:

1. [t | ∅] ∈ Q�(ϕ), for every t ∈ stRE (ϕ)
2. [f (x1, x2) | x1, x2] ∈ Q�(ϕ), where f ∈ {enc, dec,mal}
3. [enc(x, t) | x] ∈ Q�(ϕ), if there exists t� such that enc(t�, t) ∈ stRE (ϕ)
4. [x | enc(x, y), y] ∈ Q�(ϕ)
5. [enc(z, y) | enc(x, y), z] ∈ Q�(ϕ)
6. [t | t1, . . . , tk] ∈ Q�(ϕ), if t ∈ stRE (ϕ) and C[t1, . . . , tk] ∈ stRE (ϕ) for some context C
7. [x | x, t1, . . . , tk], where C[t1, . . . , tk] ∈ stRE (ϕ) for some context C

In the following when a projection f̂ corresponds to one of the above 7 cases, we say that
f is of type i (1 ≤ i ≤ 7). We prove that for any (F,E) such that Init(ϕ) =⇒∗ (F,E) we have

that F̂ ⊆ Q�(ϕ). It is easy to see that {f̂ | f̂ ∈ Q�(ϕ) and f̂ is solved} ⊆ Q(ϕ), this will indeed
allows us to conclude. We prove the result by induction on the number of saturation steps of
Init(ϕ) =⇒∗ (F,E).

Base case. It is clear that for all deduction facts f ∈ Init(ϕ) we have that f̂ is either of type 1
or type 2.

Inductive case. We assume that the result holds for (F,E) and show that any possible appli-
cation of a saturation rule preserves the result.

– Consider a fact f ∈ F of type 1, i.e. f̂ = [t | ∅] with t ∈ stRE (ϕ). By applying rule Narrowing,

we obtain a fact f� such that f̂� = [t� | ∅], and t →RE t�. As t ∈ stRE (ϕ), it follows that
t� ∈ stRE (ϕ) and therefore f� is a fact of type 1.

– Consider a fact f ∈ F of type 2 such that f̂ = [f(x1, x2) | x1, x2]. By applying the rule
Narrowing we obtain a fact of type 4, or 5.

– Consider a fact f ∈ F of type 3, then f̂ = [enc(x, t) | x] and the rule Narrowing can only be

applied on a position in t. Therefore, Narrowing will produce another fact f̂� = [enc(x, u) |
x], where t → u. As there exists t� such that enc(t�, t) ∈ stRE (ϕ) by definition of stRE ,
enc(t�, u) ∈ stRE (ϕ) yielding again a fact of type 3.

– Consider a fact f ∈ F of type 4, then its unsolved side condition can be solved using a fact
of type 1, 2 or 3. In the first case, we obtain a fact of type 6. In the second case, we obtain
a redundant fact. In the third case, we obtain a fact of type 7.

– Consider a fact f ∈ F of type 5, its unsolved side condition can be solved using a fact of
type 1, 2 or 3. In the first case, we obtain a fact of type 3. In the second and third case,
we obtain a redundant fact.

33

– Consider a fact f ∈ F of type 6 or 7, its unsolved side conditions can be solved using a fact
of type 1, 2 or 3. Let f� be the new fact obtained by applying the F-Solving rule. If f� is
unsolved, it has the same type as f. If f� is solved, it is either of type 1 if f is of type 6 or
it is redundant if f is of type 7.

To show items 2 and 3 it remains to be proven that mf and me strictly decrease after a
side condition of an unsolved fact is solved. As side conditions can only be solved by facts of
type 1-3 this is easily shown by a case analysis. We detail the proof for mf . The case of me can
be done in a similar way.
Let f1 = [R� t | X1 � t1, . . . Xn � tn]. The case where f1 is solved by a fact f2 of type 1 (resp.
type 2) is similar to the proof done in Lemma 10. It remains the case where f2 is of type 3.

Let f̂2 = [enc(x, u) | x] and σ = mgu(enc(x, u), t1). As there exists u� such that enc(u�, u) ∈
stRE (ϕ) we have that u is ground. As t1 �∈ X we have that t1 = enc(t�1, t

��
1). The projection

of the resulting fact f0 is f̂0 = [tσ | xσ, t2σ, . . . , tnσ]. We distinguish two cases. Either σ =

{x �→ t�1} and f̂0 = [t | t�1, t2, . . . , tn]. In such a case #var(t2, . . . , tn) ≤ #var(t1, . . . , tn) andP
2≤i≤n |ti| <

P
1≤i≤n |ti|. Otherwise, we have that #var(t2, . . . , tn) < #var(t1, . . . , tn). ��

B.3 Trap-door commitment

The following convergent equational theory Etd is a model for trap-door commitment:

1. open(td(x, y, z), y) = x
2. td(x2, f (x1, y, z, x2), z) = td(x1, y, z)
3. open(td(x1, y, z), f (x1, y, z, x2)) = x2
4. f (x2, f (x1, y, z, x2), z, x3) = f (x1, y, z, x3)

We will refer below to the four corresponding rewrite rules as R1, R2, R3 and R4.

Lemma 12 For any frame ϕ, and any (F,E) such that Init(ϕ) =⇒∗ (F,E), we have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q(ϕ) is defined as the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ)
2. [td(t1, r, tp) | ∅] such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2
3. [g(x1, . . . , xk) | x1, . . . , xk], where g ∈ {open, td , f } and ar(g) = k
4. [f (t1, r, tp, x) | x], such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2

and mf , me, <f , and <e are defined with E = Etd as described in Section 5.2.

Proof Let E = Etd . The proof of item 1 is done by induction on the number of saturation steps
of Init(ϕ) =⇒∗ (F,E). To ease the induction we strengthen the induction hypothesis and prove
a slightly stronger statement. We define Q�(ϕ) as the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ)
2. [td(t1, r, tp) | ∅] such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2
3. [g(x1, . . . , xk) | x1, . . . , xk], where g ∈ {open, td , f } and ar(g) = k
4. [f (t1, r, tp, x) | x], such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2
5. [x | td(x, y, z), y]
6. [td(x1, y, z) | x2, f(x1, y, z, x2), z]
7. [x2 | td(x1, y, z), f(x1, y, z, x2)]
8. [f(x1, y, z, x3) | x2, f(x1, y, z, x2), z, x3]
9. [x2 | x1, y, z, f(x1, y, z, x2)]

10. [x2 | td(x, y, z), x, y, z, x2]
11. [x | f(t1, r, tp, x)] for every t1, r, tp ∈ stRE (ϕ)
12. [x | td(t, r, tp), x] for every t, r, tp ∈ stRE (ϕ)
13. [x | x, t1, . . . , tk] for every t1, . . . , tk ∈ stRE (ϕ)
14. [t | td(t1, r, tp)] for every t, t1, r, tp ∈ stRE (ϕ)
15. [t | t1, . . . , tk] for every t, t1, . . . , tk ∈ stRE (ϕ), k ≥ 1
16. [td(t, r, tp) | t1, . . . , tk], ∃t� f(t, r, tp, t�) ∈ stRE (ϕ), t1, . . . , tk ∈ stRE (ϕ), k ≥ 1
17. [td(t, r, tp) | x, t1, . . . , tk], ∃t� f(t, r, tp, t�) ∈ stRE (ϕ), t1, . . . , tk ∈ stRE (ϕ), k ≥ 1

34

18. [f(t, r, tp, x) | x, t1, . . . , tk], ∃t� f(t, r, tp, t�) ∈ stRE (ϕ), t1, . . . , tk ∈ stRE (ϕ)
19. [f(t, r, tp, x) | x, x�, t1, . . . , tk], ∃t� f(t, r, tp, t�) ∈ stRE (ϕ), t1, . . . , tk ∈ stRE (ϕ)

In the following when a projection f̂ corresponds to one of the above 19 cases, we say that
f is of type i (1 ≤ i ≤ 19). We prove that for any (F,E) such that Init(ϕ) =⇒∗ (F,E) we have

that F̂ ⊆ Q�(ϕ). It is easy to see that {f̂ | f̂ ∈ Q�(ϕ) and f̂ is solved} ⊆ Q(ϕ), this will indeed
allows us to conclude. We prove the result by induction on the number of saturation steps of
Init(ϕ) =⇒∗ (F,E).

Base case. It is clear that all deduction facts f ∈ Init(ϕ) are either of type 1 or type 3.

Inductive case. We assume that the result holds for (F,E) and show that any possible applica-
tion of a saturation rule preserves the result. We summarize case analysis in the following two
matrices.

Narrowing R1 R2 R3 R4
type 1 1 1 1 1
type 2 2 2 2 2
type 3 5 6 7 8
type 4 4 4 4 4

F-Solving type 1 type 2 type 3 type 4
type 5 15 15 redundant impossible
type 6 16 impossible redundant 17
type 7 11 or 14 11 9 or 10 12
type 8 18 impossible redundant 19
type 9 15 impossible redundant 13
type 10 13 13 redundant impossible
type 11 1 impossible 13 redundant
type 12 redundant redundant 13 impossible
type 13 13 or redundant 13 or redundant 13 13
type 14 1 1 15 impossible
type 15 15 or 1 15 or 1 15 15
type 16 16 or 2 16 or 2 16 16
type 17 17 or 2 17 or 2 17 17
type 18 18 or 4 18 or 4 18 18
type 19 19 or 4 19 or 4 19 19

Items 2 and 3 are shown as in Lemma 11. ��

B.4 Blind signature

The following convergent equational theory Eblind is a model for blind signatures:

1. unblind(blind(x, y), y) = x
2. unblind(sign(blind(x, y), z), y) = sign(x, z)
3. checksign(sign(x, y), pk(y)) = x

We will refer below to the three corresponding rewrite rules as R1, R2 and R3.

Lemma 13 For any frame ϕ, and any (F,E) such that Init(ϕ) =⇒∗ (F,E), we have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q(ϕ) is defined as the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ)
2. [f (x1, . . . , xk) | x1, . . . , xk], where f ∈ F and ar(f) = k
3. [sign(t, x) | x], for every t ∈ stRE (ϕ)
4. [sign(t, t�) | ∅], for every t, t� ∈ stRE (ϕ)

and mf , me, <f , and <e are defined with E = Eblind as described in Section 5.2.

35

Proof Let E = Eblind . The proof of item 1 is done by induction on the number of saturation
steps of Init(ϕ) =⇒∗ (F,E). To ease the induction we strengthen the induction hypothesis and
prove a slightly stronger statement. We define Q�(ϕ) as the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ)
2. [f (x1, . . . , xk) | x1, . . . , xk], where f ∈ F and ar(f) = k
3. [sign(t, x) | x], for every t ∈ stRE (ϕ)
4. [sign(t, t�) | ∅], for every t, t� ∈ stRE (ϕ)
5. [x | blind(x, y), y]
6. [sign(x, z) | sign(blind(x, y), z), y]
7. [x | sign(x, y), pk(y)]
8. [sign(x, z) | blind(x, y), z, y]
9. [x | sign(x, y), y]

10. [x | x, y, pk(y)]
11. [t | t1, . . . , tk] if C[t1, . . . , tk] ∈ stRE (ϕ) for some context C and t ∈ stRE (ϕ)
12. [sign(t, t�) | t1, . . . , tk] if C[t1, . . . , tk] ∈ stRE (ϕ) for some context C, k ≥ 1, and t, t� ∈

stRE (ϕ)
13. [t | pk(t�)], for every t, t� ∈ stRE (ϕ)
14. [x | sign(x, t)], for every t ∈ stRE (ϕ)
15. [t | y, pk(y)], for every t ∈ stRE (ϕ)
16. [sign(t, z) | z, t1, . . . , tk] if C[t1, . . . , tk] ∈ stRE (ϕ) for some context C, k ≥ 1, and t ∈

stRE (ϕ)
17. [x | x, t1, . . . , tk] if C[t1, . . . , tk] ∈ stRE (ϕ) for some context C

In the following when a projection f̂ corresponds to one of the above 17 cases, we say that
f is of type i (1 ≤ i ≤ 17). We prove that for any (F,E) such that Init(ϕ) =⇒∗ (F,E) we have

that F̂ ⊆ Q�(ϕ). It is easy to see that {f̂ | f̂ ∈ Q�(ϕ) and f̂ is solved} ⊆ Q(ϕ), this will indeed
allows us to conclude. We prove the result by induction on the number of saturation steps of
Init(ϕ) =⇒∗ (F,E).

Base case. It is clear that all deduction facts f ∈ Init(ϕ) are either of type 1 or type 2.

Inductive case. We assume that the result holds for (F,E) and show that any possible applica-
tion of a saturation rule preserves the result. We summarize the case analysis in the following
two matrices.

Narrowing R1 R2 R3
type 1 1 1 1
type 2 5 6 7
type 3 3 3 3
type 4 4 4 4

F-Solving type 1 type 2 type 3 type 4
type 5 11 redundant impossible impossible
type 6 12 8 16 12
type 7 13 or 14 9 or 10 15 13
type 8 16 redundant impossible impossible
type 9 11 redundant 1 11
type 10 17 redundant impossible impossible
type 11 11 or 1 11 11 11 or 1
type 12 12 or 4 12 12 12 or 4
type 13 1 11 impossible impossible
type 14 1 17 11 1
type 15 11 1 impossible impossible
type 16 16 or 3 16 16 16 or 3
type 17 17 or redundant 17 17 17 or redundant

Items 2 and 3 are shown as in Lemma 11. ��

B.5 Addition

The following convergent equational theory Eadd is a simple model of addition introduced in [1]:

36

1. plus(x, s(y)) = plus(s(x), y)
2. plus(x, 0) = x
3. pred(s(x)) = x

We will refer below to the three corresponding rewrite rules as R1, R2 and R3.

Lemma 14 For any frame ϕ, and any (F,E) such that Init(ϕ) =⇒∗ (F,E), we have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q(ϕ) is defined as the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ)
2. [f (x1, . . . , xk) | x1, . . . , xk], where f ∈ {s, plus, pred , 0} and ar(f) = k
3. [plus(sn(x), t) | x], if sn(t) ∈ stRE (ϕ) for n ≥ 0

and mf , me, <f , and <e are defined with E = Eadd as described in Section 5.2.

Proof Let E = Eadd . The proof of item 1 is done by induction on the number of saturation
steps of Init(ϕ) =⇒∗ (F,E). To ease the induction we strengthen the induction hypothesis and
prove a slightly stronger statement. We define Q�(ϕ) as the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ)
2. [f (x1, . . . , xk) | x1, . . . , xk], where f ∈ F and ar(f) = k
3. [plus(sn(x), t) | x], if sn(t) ∈ stRE (ϕ) for n ≥ 0
4. [x | x, 0]
5. [plus(s(x), y) | x, s(y)]
6. [x | s(x)]

In the following when a projection f̂ corresponds to one of the above 6 cases, we say that f
is of type i (1 ≤ i ≤ 6). We prove that for any (F,E) such that Init(ϕ) =⇒∗ (F,E) we have

that F̂ ⊆ Q�(ϕ). It is easy to see that {f̂ | f̂ ∈ Q�(ϕ) and f̂ is solved} ⊆ Q(ϕ), this will indeed
allows us to conclude. We prove the result by induction on the number of saturation steps of
Init(ϕ) =⇒∗ (F,E).

Base case. It is clear that all deduction facts f ∈ Init(ϕ) are either of type 1 or type 2.

Inductive case. We assume that the result holds for (F,E) and show that any possible applica-
tion of a saturation rule preserves the result. We summarize the case analysis in the following
two matrices.

Narrowing R1 R2 R3
type 1 1 1 1
type 2 5 4 6
type 3 3 redundant or 3 3

F-Solving type 1 type 2 type 3
type 4 redundant redundant impossible
type 5 3 redundant impossible
type 6 1 redundant impossible

To show item 2 and 3, it remains to be proven that mf and me strictly decrease after a
side condition of an unsolved fact is solved. A side condition can only be solved by facts of
type 1, 2 or 3. We show the result by a case analysis.
Let f1 = [R� t | X1 � t1, . . . , Xn � tn].

– If the solved fact is of type 1 or 2, the proof is similar to the reasoning done in Lemma 10.
– It is easy to see that a solved fact of type 3 cannot be used to solved a side condition of

an unsolved fact (types 4-6). Indeed, the side conditions which are are not variables, are
either 0 or a term of the form s(x) and hence unification is impossible.

Let f = [U ∼ V | X1 � t1, . . . , Xn � tn]

– If the solved fact is of type 1 or 2, the proof is similar to the reasoning done in Lemma 10.
– A solved fact of type 3 can be used to solve a side condition of the form X � t when

t is headed with the symbol plus. It is easy to see (since we already know the form of
the deduction facts) that the only terms t occurring in a side condition of an equational
fact and headed with plus are ground. This allows us to conclude that the measure me

decreases also in this case. ��

37

B.6 Homomorphic encryption

Lemma 15 If the saturation strategy is fair the saturation process terminates for the equa-

tional theory Ehom.

Proof In the following let E = Ehom. Orienting the five equations in Ehom we obtain the following
rewriting rules:

R1 fst(pair(x, y)) → x
R2 snd(pair(x, y)) → y
R3 dec(enc(x, y), y) → x
R4 enc(pair(x, y), z) → pair(enc(x, z), enc(y, z))
R5 dec(pair(x, y), z) → pair(dec(x, z), dec(y, z))

For the purpose of this proof we extend the notion of extended subterm and define st+RE
(t) to

be the smallest set such that:

1. t ∈ st+RE
(t),

2. f (t1, . . . , tk) ∈ st+RE
(t) implies t1, . . . , tk ∈ st+RE

(t),

3. t� ∈ st+RE
(t) and t� →RE t�� implies t�� ∈ st+RE

(t).

4. st+RE
(f (t1, . . . , tk)) ∈ st+RE

(t) implies st+RE
(f (s1, . . . , sk)) ∈ st+RE

(t) for every si ∈ st+RE
(ti)

and for every f ∈ F of arity k.

Let ϕ be the frame being saturated. We first show that for all knowledge bases (F,E) such
that Init(ϕ) =⇒∗ (F,E) we have that each f̂ ∈ F̂ has one of the following forms:

1. [t | ∅], for some t ∈ st+RE
(ϕ)

2. [fst(x) | x]
3. [snd(x) | x]
4. [enc(x, y) | x, y]
5. [dec(x, y) | x, y]
6. [pair(x, y) | x, y]
7. [C[t1, . . . , tk] | var(C)] where:

– C is obtained by arbitrarily nesting the following (classes of) contexts: C1 = enc(, zi),
C2 = dec(, zi) and C3 = pair(,), where zi are variables.

– C contains at least one variable.
– C�[t1, . . . , tk] ∈ st+RE

(φ), where C� is obtain from C by replacing enc(, zi) and dec(, zi)

with .

8. [x | pair(x, y)]
9. [y | pair(x, y)]

10. [x | enc(x, y), y]
11. [pair(enc(x, z), enc(y, z)) | pair(x, y), z]
12. [pair(dec(x, z), dec(y, z)) | pair(x, y), z]
13. [t | t1, . . . , tk], for some t, t1, . . . , tk ∈ st+RE

(ϕ)

14. [C[t1, . . . , tk] | s1, . . . , sl, var(C)] where:

– C is obtained by arbitrarily nesting the following (classes of) contexts: C1 = enc(, zi),
C2 = dec(, zi), and C3 = pair(,), where zi are variables.

– C�[t1, . . . , tk] ∈ st+RE
(φ), where C� is obtain from C by replacing enc(, zi) and dec(, zi)

with .
– si are ground terms

We show this by induction on the number of saturation steps of Init(ϕ) =⇒∗ (F,E). In
the following when a projection f̂ corresponds to one of the above 14 cases, we say that f is of
type i (1 ≤ i ≤ 14).
Base case. It is easy to see that all f ∈ Init(ϕ) are indeed of type 1− 6.
Inductive case. We assume that the result holds for (F,E) and show that any possible applica-
tion of a saturation rule preserves the result. We summarize case analysis in the following two
matrices.

38

Narrowing R1 R2 R3 R4 R5
type 1 1 1 1 1 1
type 2 8 impossible impossible impossible impossible
type 3 impossible 9 impossible impossible impossible
type 4 impossible impossible impossible 11 impossible
type 5 impossible impossible 10 impossible 12
type 6 impossible impossible impossible impossible impossible
type 7 7 7 1, 7, 13, 14 7 7

F-Solving type 1 type 2 type 3 type 4 type 5 type 6 type 7
type 8 1 imp. imp. imp. imp. redundant 7, 1
type 9 1 imp. imp. imp. imp. redundant 7, 1
type 10 13 imp. imp. imp. redundant imp. 7, 1
type 11 7 imp. imp. imp. imp. redundant 7
type 12 7 imp. imp. imp. imp. redundant 7
type 13 1, 13 13 13 13 13 13 13
type 14 7, 14 14 14 14 14 14 14

We next show that because the strategy is fair at a given saturation step, no more facts
of type 7 are added.

Lemma 16 Suppose that the saturation strategy is fair and let

Init(ϕ) =⇒∗ (F0,E0) =⇒ . . . =⇒ (Fi,Ei) =⇒ . . .

be a sequence of saturation steps. If f̂ = [C[t1, . . . , tk] | s1, . . . , sl, var(C)] ∈ F̂0 is of type 7 or

type 14 and F0 � sj for all j, then there exists n such that Fn � ti for all i.

Proof The proof is done by induction on the number of saturation steps of Init(ϕ) ⇒∗ (F0,E0).
Base case. As Init(ϕ) does not contain any facts of type 7 or 14 we conclude.
Inductive case. We suppose that the result holds for (F0,E0) and verify that it is maintained
by any possible rules that add a fact of type 7 or 14.

– Suppose we add a fact of type 7 by using rule Narrowing on a fact of type 7 in F0 and R1
or R2. The rewriting must occur at a position in one of the ti which is rewritten to t�i. By
induction hypothesis we have that there exists n, such that Fn � ti. We can adapt the
proof of Proposition 2 to show that because of fairness (rather than saturation) narrowing
must be applied such that there exists n� such that Fn� � t�i.

– Suppose we add a fact of type 7 by using rule Narrowing on a fact of type 7 in F0 and R3.
If narrowing is applied on one of the ti the case is similar to the previous one. If narrowing
is applied inside the context such that the ti do not change we conclude by induction
hypothesis.

– Suppose we add a fact of type 14 by using rule Narrowing on a fact of type 7 in F0 and
R3. Narrowing must have changed both the context and one of the ti. Suppose w.l.o.g.
i = 1. It must be that be that t1 = enc(t�1, t

��
1). We have to show that there exists n such

that if Fn � t��1 then Fn � t�1 and Fn � ti for 2 ≤ i ≤ k. Fn � ti is obtained by induction
hypothesis. If Fn � t��1 and because Fn � enc(t�1, t

��
1) we can apply Narrowing such that

Fn� � t�1 for some n�.
– Suppose we add a fact of type 7 by using rule Narrowing on a fact of type 7 in F0 and R4.

If narrowing is applied on one of the ti the case is similar to previous cases. If narrowing
is applied inside the context such that the ti do not change we conclude by induction
hypothesis. Suppose both the context and one of the ti change. We suppose w.l.o.g. that
i = 1. It must be that t1 = pair(t�1, t

��
1). By induction hypothesis we have that there exists n

such that Fn � ti for 2 ≤ i ≤ k. We need to show that there exists Fn. As Fn � pair(t�1, t
��
1)

we also have that Fn � fst(pair(t�1, t
��
1)) and Fn � snd(pair(t�1, t

��
1)). Because of fairness

Narrowing can be applied such that Fn� � t�1 and Fn� � t��1 for some n��.
– Suppose we add a fact of type 7 by using rule F-Solving on facts of type 11 and 1 in F0. Let

pair(t1, t2) be the fact of type 1. As the strategy is fair we will add facts [x|pair(x, y)] and
[y|pair(x, y)] by applying rule Narrowing on type 2/R1 and type 3/R2. Again by fairness
we will apply solving on pair(t1, t2) and [x|pair(x, y)] as well as [y|pair(x, y)]. Therefore
t1 and t2 will be generated.

39

– Suppose we add a fact of type 7 by using rule F-Solving on facts of type 12 and 1 in F0.
This case is similar to the previous one.

– Suppose we add a fact of type 7 by applying rule F-Solving on facts of type 8-12 with a
fact of type 7 in F0. The resulting fact is a context on the same (or a subset of the) terms
ti (1 ≤ i ≤ k) as the initial type 7 fact. We conclude by induction hypothesis.

– Suppose we add a fact of type 7 by applying rule F-Solving on a fact of type 14 with a fact
of type 1 in F0. The type 14 fact has only one ground side condition s1 which is solved by
the type 1 fact. Hence [s1] ∈ F̂0 and F0 � s1. We can apply the induction hypothesis and
conclude.

– Suppose we add a fact of type 14 by applying rule F-Solving on a fact of type 14 with a
fact of type i (1 ≤ i ≤ 14) in F0. We directly conclude by induction hypothesis. ��

There are a finite number of solved facts other than of type 7. There exist only a finite
number of ti which can occur in facts of type 7 as they are in st+RE

(ϕ).

Hence it follows from Lemma 16 that for any fair saturation sequence, at some moment
all new facts of type 7 become redundant and therefore are not added to the knowledge base.
Therefore any fair saturation sequence only contains a finite number of solved facts.

We know that after some number n of saturation steps, no more solved deduction facts are
added to the knowledge base. We now show that a finite number of unsolved facts are added
after this stage. Indeed, after n iterations, as no more solved facts are added to the knowledge
base, the only types of facts potentially added are 13 and 14. The side conditions of these
facts contain only ground terms or variables. By solving one of the ground side conditions the
cardinality of the side condition decreases ensuring termination.

We now show that all equational facts are of the form [M ∼ N | X1 � t1, . . . , Xk � tk], for
some M,N where either ti ∈ X or ti = C[s1, . . . , sl] for some ground terms sj (1 ≤ j ≤ l) and
for some context C obtained by arbitrary nesting of contexts C1 = enc(, zn), C2 = dec(, zn),
C3 = pair(,) and C4 = , where zn are variables.

This is true for the equational facts obtained by rule Unifying. When applying rule E-Solving
on a side condition of the above type we consider the following cases:

– if we solve Xi � ti with a type 1 fact, we easily conclude;
– if we solve Xi � ti with a fact of type 2, 3, 4, 5, 6, the result is immediate;
– if we solve Xi � ti (where ti = C[s1, . . . , sl]) with a type 7 fact [C�[u1, . . . , um] | var(C�)],

we note that mgu(ti, C�[u1, . . . , um]) is such that variables are mapped to either variables
or ground terms. Therefore the property holds.

Using again the measure

me([M ∼ N | X1 � t1, . . . , Xk � tk]) = (#var(t1, . . . , tk), |t1|+ . . .+ |tk|)

and the lexicographic order <e on pairs, we obtain that f0 <e f1 for all f0 and f1 as in rule
F-Solving.

Automating security analysis: symbolic

equivalence of constraint systems
�

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. We consider security properties of cryptographic protocols,
that are either trace properties (such as confidentiality or authenticity)
or equivalence properties (such as anonymity or strong secrecy).
Infinite sets of possible traces are symbolically represented using de-
ducibility constraints. We give a new algorithm that decides the trace
equivalence for the traces that are represented using such constraints, in
the case of signatures, symmetric and asymmetric encryptions. Our al-
gorithm is implemented and performs well on typical benchmarks. This
is the first implemented algorithm, deciding symbolic trace equivalence.

1 Introduction

Security protocols are small distributed programs aiming at some security goal,
though relying on untrusted communication media. Formally proving that such
a protocol satisfies a security property (or finding an attack) is an important
issue, in view of the economical and social impact of a failure.

Starting in the 90s, several models and automated verification tools have
been designed. For instance both protocols, intruder capabilities and security
properties can be formalized within first-order logic and dedicated resolution
strategies yield relevant verification methods [18, 21, 6]. Another approach, ini-
tiated in [19], consists in symbolically representing the traces using deducibility
constraints. Both approaches were quite successful in finding attacks/proving
security protocols. There are however open issues, that concern the extensions
of the methods to larger classes of protocols/properties [11]. For instance, most
efforts and successes only concerned, until recently, trace properties, i.e., security
properties that can be checked on each individual sequence of messages corre-
sponding to an execution of the protocol. A typical example of a trace property
is the confidentiality, also called weak secrecy : a given message m should not be
deducible from any sequence of messages, that corresponds to an execution of
the protocol. Agreement properties, also called authenticity properties, are other
examples of trace properties.

There are however security properties that cannot be stated as properties of
a single trace. Consider for instance a voter casting her vote, encrypted with a
public key of a server. Since there are only a fixed, known, number of possible

� This work has been partially supported by the ANR project SeSur AVOTÉ.

2 Automating security analysis: symbolic equivalence of constraint systems

plaintexts, the confidentiality is not an issue. A more relevant property is the
ability to relate the voter’s identity with the plaintext of the message. This
is a property in the family of privacy (or anonymity) properties [15]. Another
example is the strong secrecy : m is strongly secret if replacing m with any m

� in
the protocol, would yield another protocol that is indistinguishable from the first
one: not only m itself cannot be deduced, but the protocol also does not leak
any piece of m. These two examples are not trace properties, but equivalence
properties: they can be stated as the indistinguishability of two processes. In
the present paper, we are interested in automating the proofs of equivalence
properties. As far as we know, there are only three series of works that consider
the automation of equivalence properties for security protocols1.

The first one [7] is an extension of the first-order logic encoding of the pro-
tocols and security properties. The idea is to overlap the two processes that are
supposedly equivalent, forming a bi-process, then formalize in first-order logic
the simultaneous moves (the single move of the bi-process) upon reception of a
message. This method checks a stronger equivalence than observational equiv-
alence, hence it fails on some simple (cook up) examples of processes that are
equivalent, but their overlapping cannot be simulated by the moves of a single
bi-process. The procedure might also not terminate or produce false attacks, but
considers an unbounded number of protocol instances.

The second one [3] (and [14]) assumes a fixed (bounded) number of sessions.
Because of the infinite number of possible messages forged by an attacker, the
number of possible traces is still infinite. The possible traces of the two processes
are symbolically represented by two deducibility constraints. Then [3] provides
with a decision procedure, roughly checking that the solutions, and the recipes
that yield the solutions are identical for both constraints. This forces to compute
the solutions and the associated recipes and yields an unpractical algorithm.

The third one [17, 9] is based on an extension of the small attack property
of [20]. They show that, if two processes are not equivalent, then there must exist
a small witness of non-equivalence. A decision of equivalence can be derived by
checking every possible small witness. As in the previous method, the main
problem is the practicality. The number of small witnesses is very large as all
terms of size smaller than a given bound have to be considered. Consequently,
neither this method nor the previous one have been implemented.

We propose in this paper another algorithm for deciding equivalence prop-
erties. As in [3, 9], we consider trace equivalence, which coincides with observa-
tional equivalence for determinate processes [14]. In that case, the equivalence
problem can be reduced to the symbolic equivalence of finitely many pairs of
deducibility constraints, each of which represents a set of traces (see [14]). We
consider signatures, pairing, symmetric and asymmetric encryptions, which is
slightly less general than [3, 9], who consider arbitrary subterm-convergent theo-
ries. The main idea of our method is to simultaneously solve pairs of constraints,
instead of solving each constraint separately and comparing the solutions, as

1 [16] gives a logical characterization of the equivalence properties. It is not clear if
this can be of any help in deriving automated decision procedures.

Automating security analysis: symbolic equivalence of constraint systems 3

in [3]. These pairs are successively split into several pairs of systems, while pre-
serving the symbolic equivalence: roughly, the father pair is in the relation if, and
only if, all the sons pairs are in the relation. This is not fully correct, since, for
termination purposes, we need to keep track of some earlier splitting, using ad-
ditional predicates. Such predicates, together with the constraint systems, yield
another notion of equivalence, which is preserved upwards, while the former is
preserved downwards. When a pair of constraints cannot be split any more, then
the equivalence can be trivially checked.

A preliminary version of the algorithm has been implemented and works
well (within a few seconds) on all benchmarks. The same implementation can
also be used for checking the static equivalence and for checking the constraints
satisfiability. We also believe that it is easier (w.r.t. [3, 9]) to extend the algorithm
to a more general class of processes (including disequality tests for instance) and
to avoid the detour through trace equivalence. This is needed to go beyond the
class of determinate processes.

We first state precisely the problem in Section 2, then we give the algorithm,
actually the transformation rules, in Section 3. We sketch the correctness and
termination proofs in Section 4 and provide with a short summary of the exper-
iments in Section 5. Detailed proofs of the results can be found in [8].

2 Equivalence properties and deducibility constraints

We use the following straightfoward example for illustrating some definitions:

Example 1. Consider the following very simple handshake protocol:

A → B : enc(NA,KAB)
B → A : enc(f(NA),KAB)

The agent A sends a random message NA to B, encrypted with a key KAB ,
that is shared by A and B only. The agent B replies by sending f(NA) encrypted
with the same key. The function f is any function, for instance a hash function.

Consider only one session of this protocol: a sends enc(na, kab) and waits
for enc(f(na), kab). The agent b is expecting a message of the form enc(x, kab).
The variable x represents the fact that b does not know in advance what is this
randomly generated message. Then he replies by sending out enc(f(xσ), kab). All
possible executions are obtained by replacing x with any message xσ such that
the attacker can supply with enc(xσ, kab) and then with enc(f(na), kab). This is
represented by the following constraint:

C :=





a, b, enc(na, kab)

?
� enc(x, kab)

a, b, enc(na, kab), enc(f(x), kab)
?
� enc(f(na), kab)

Actually, C has only one solution: x has to be replaced by na. There is no
other way for the attacker to forge a message of the form enc(x, kab).

4 Automating security analysis: symbolic equivalence of constraint systems

2.1 Function symbols and terms

We will use the set of function symbols F = N ∪ C ∪ D where:

– C = {enc, aenc, pub, sign, vk, � �} is the set of constructors;
– D = {dec, adec, check, proj1, proj2} is the set of destructors;
– N is a set of constants, called names.

In addition, X is a set of variables x, y, z,... The constructor terms (resp. ground
constructor terms) are built on C, N and X (resp. C,N). The term rewriting
system below is convergent: we let t↓ be the normal form of t.

adec(aenc(x, pub(y)), y) → x proj1(�x, y�) → x dec(enc(x, y), y) → x

check(sign(x, y), vk(y)) → x proj2(�x, y�) → y

A (ground) recipe records the attacker’s computation. It is used as a witness
of how some deduction has been performed. Formally, it is a term built on
C,D and a set of special variables AX = {ax 1, . . . , axn, . . .}, that can be seen as
pointers to the hypotheses, or known messages. Names are excluded from recipes:
names that are known to the attacker must be given explicitly as hypotheses.

Example 2. Given enc(a, b) and b, the recipe ζ = dec(ax 1, ax 2) is a witness of
how to deduce a: ζ{ax 1 �→ enc(a, b); ax 2 �→ b}↓ = a.

The recipes are generalized, including possibly variables that range over
recipes: (general) recipes are terms built on C,D,AX and Xr, a set of recipe
variables, that are written using capital letters X,X1, X2,

We denote by var(u) is the set of variables of any kind that occur in u.

2.2 Frames

The frame records the messages that have been sent by the participants of
the protocol; it is a symbolic representation of a set of sequences of messages.
The frame is also extended to record some additional informations on attacker’s
deductions. Typically dec(X, ζ), i � u records that, using a decryption with the
recipe ζ, on top of a recipe X, allows to get u (at stage i). After recording this
information in the frame, we may forbid the attacker to use a decryption on top
of X, forcing him to use this “direct access” from the frame.

Definition 1. A frame φ is a sequence ζ1, i1�u1, . . . , ζn, in�un where u1, . . . , un

are constructor terms, i1, . . . , in ∈ N, and ζ1, . . . , ζn are general recipes. The
domain of the frame φ, denoted dom(φ), is the set {ζ1, . . . , ζn} ∩ AX . It must
be equal to {ax 1, . . . , axm} for some m that is called the size of φ. A frame is
closed when u1, . . . , un are ground terms and ζ1, . . . , ζn are ground recipes.

Example 3. The messages of Example 1 are recorded in a frame of size 4.

{ax 1, 1 � a, ax 2, 2 � b, ax 3, 3 � enc(na, kab), ax 4, 4 � enc(f(x), kab)}.

A frame φ defines a substitution {ax �→ u | ax ∈ dom(φ), ax � u ∈ φ}. A
closed frame is consistent if, for every ζ � u ∈ φ, we have that ζφ↓ = u.

Automating security analysis: symbolic equivalence of constraint systems 5

2.3 Deducibility constraints

The following definitions are consistent with [12]. We generalize however the
usual definition, including equations between recipes, for example, in order to
keep track of some choices in our algorithm.

Definition 2. A deducibility constraint (sometimes called simply constraint in
what follows) is either ⊥ or consists of:

1. a subset S of X (the free variables of the constraint);
2. a frame φ, whose size is some m;

3. a sequence X1, i1

?
� u1; . . . ; Xn, in

?
� un where

– X1, . . . , Xn are distinct variables in Xr, u1, . . . , un are constructor terms,
and 0 ≤ i1 ≤ . . . ≤ in ≤ m.

– for every 0 ≤ k ≤ m, var(axkφ) ⊆
�

ij<k var(uj);
4. a conjunction E of equations and disequations between terms;
5. a conjunction E

� of equations and disequations between recipes.

The variables Xi represent the recipes that might be used to deduce the
right hand side of the deducibility constraint. The indices indicate which initial
segment of the frame can be used. We use this indirect representation, instead of
the seemingly simpler notation of Example 1, because the transformation rules
that will change the frame don’t need then to be reproduced on all relevant left
sides of deducibility constraints.

Example 4. Back to Example 1, the deducibility constraint is formally given by
S = {x, y}, E = E

� = ∅, the frame φ as in Example 3 and the sequence:

D = X1, 3
?
� enc(x, kab); X2, 4

?
� enc(f(na), kab).

For sake of simplicity, in what follows, we will forget about the first compo-
nent (the free variables). This is justified by an invariant of our transformation
rules: initially all variables are free and each time new variables are introduced,
their assignment is determined by an assignment of the free variables.

Definition 3. A solution of a deducibility constraint C = (φ,D,E,E
�) consists

of a mapping σ from variables to ground constructor terms and a substitution θ

mapping Xr to ground recipes, such that:

– for every ζ, i � u ∈ φ, var(ζθ) ⊆ {ax 1, . . . , ax i} and ζθ(φσ)↓ = uσ↓ (i.e. the
frame is consistent after instanciating the variables);

– for every Xi, j
?
� ui in D, var(Xiθ) ⊆ {ax 1, . . . , ax j} and Xiθ(φσ)↓ = uiσ↓;

– for every equation u
?
= v (resp. u

?
�= v) in E, uσ↓ = vσ↓ (resp. uσ↓ �= vσ↓);

– for every equation ζ
?
= ζ

� (resp. ζ
?
�= ζ

�) in E
�, ζθ = ζ

�
θ (resp. ζθ �= ζ

�
θ).

Sol(C) is the set of solutions of C. By convention, Sol(⊥) = ∅.

6 Automating security analysis: symbolic equivalence of constraint systems

Example 5. Coming back to Example 4, a solution is (σ, θ) with:

– σ = {x �→ na, y �→ �a, enc(na, kab)�}, and
– θ = {X1 �→ ax 3, X2 �→ ax 4, X3 �→ �ax 1, ax 3�}.

Each solution of a constraint corresponds to a possible execution of the pro-
tocol, together with the attacker’s actions that yield this execution. For instance

an attack on the confidentiality of a term s can be modeled by adding X,m

?
� s

to the constraint system (X is a fresh variable and m is the size of the frame).
This represents the derivability of s from the messages sent so far. Note that
there might be several attacker’s recipes yielding the same trace.

Example 6. Consider another very simple example: the Encrypted Password
Transmission protocol [13], which is informally described by the rules:

A → B : �NA, pub(KA)�
B → A : aenc(�NA, P �, pub(KA))

Assume that a first sends a message whereas b is waiting for a message of
the form �x, pub(ka)�. Then b responds by sending aenc(�x, p�, pub(ka)). The
corresponding deducibility constraint is (S, φ,D,E,E

�) where S = {x, y}, E =
E

� = ∅, and the sequences φ and D are as follows:

φ =






ax 1, 1 � pub(ka); ax 2, 2 � pub(kb);
ax 3, 3 � �na, pub(ka)�;
ax 4, 4 � aenc(�x, p�, pub(ka))

D =





X1, 3

?
� �x, pub(ka)�

X2, 4
?
� aenc(�na, y�, pub(ka))

There are several solutions. For instance, the “honest solution” (σh, θh) is
given by σh = {x �→ na, y �→ p} and θh = {X1 �→ ax 3, X2 �→ ax 4}. Another solu-
tion is (σ, θ) where σ = {x �→ pub(ka), y �→ na} and θ = {X1 �→ �ax 1, ax 1�, X2 �→

aenc(�proj1(ax 3), proj1(ax 3)�, ax 1)}.

2.4 Static equivalence

Two sequences of terms are statically equivalent if, whatever an attacker observes
on the first sequence, the same observation holds on the second sequence [2]:

Definition 4. Two closed frames φ and φ
� having the same size m are statically

equivalent, which we write φ ∼s φ
�, if

1. for any ground recipe ζ such that var(ζ) ⊆ {ax 1, . . . , axm}, we have that

ζφ↓ is a constructor term if, and only if, ζφ�↓ is a constructor term
2. for any ground recipes ζ, ζ � such that var({ζ, ζ �}) ⊆ {ax 1, . . . , axm}, and the

terms ζφ↓, ζ �φ↓ are constructor terms, we have that

ζφ↓ = ζ
�
φ↓ if, and only, if ζφ�↓ = ζ

�
φ
�↓.

Example 7. Consider the frames φ1 = {ax 1 � a, ax 2 � enc(a, b), ax 3 � b} and φ2 =
{ax 1 � a, ax 2 � enc(c, b), ax 3 � b}. φ1 �∼s φ2 since choosing ζ = dec(ax 2, ax 3) and
ζ
� = ax 1 yields ζφ1↓ = ζ

�
φ1↓ = a while ζφ2↓ �= ζ

�
φ2↓.

On the other hand, {ax 1 �a, ax 2 �enc(a, b)} ∼s {ax 1 �a, ax 2 �enc(c, b)} since,
intuitively, there is no way to open the ciphertexts or to construct them, hence
no information on the content may leak.

Automating security analysis: symbolic equivalence of constraint systems 7

2.5 Symbolic equivalence

Now we wish to check static equivalence on any possible trace. This is captured
by the following definition:

Definition 5. Let C and C
� be two constraints whose corresponding frames

are φ and φ
�. C is symbolically equivalent to C

�, C ≈s C
�, if:

- for all (θ, σ) ∈ Sol(C), there exists σ� such that (θ, σ�) ∈ Sol(C �), and φσ ∼s φ
�
σ
�,

- for all (θ, σ�) ∈ Sol(C �), there exists σ such that (θ, σ) ∈ Sol(C), and φσ ∼s φ
�
σ
�.

Example 8. As explained for instance in [3], the security of the handshake pro-
tocol against offline guessing attacks can be modeled as an equivalence property
between two samples of the protocol instance, one in which, at the end of the
protocol, the key is revealed and the other in which a random number is revealed
instead. This amounts to check the symbolic equivalence of the two constraints:

– C1 = (φ ∪ {ax 5, 5 � kab}, D ∪ {X3, 5
?
� y}, ∅, ∅), and

– C2 = (φ ∪ {ax 5, 5 � k}, D ∪ {X3, 5
?
� y}, ∅, ∅)

where D is as in Example 4 and φ is as in Example 3.
The constraints C1 and C2 are not symbolically equivalent: considering the

assignment σ = {x �→ na, y �→ na}, there is a recipe X3θ = dec(ax 3, ax 5)
yielding this solution, while any solution σ

� of C2 maps x to na and, if X3θ =
dec(ax 3, ax 5), we must have yσ

�↓ = dec(enc(na, kab), k), which is not possible
since this is not a constructor term.

Any trace equivalence problem can be expressed as an instance of the equiv-
alence of an initial pair of constraints, that is a pair of the form (φ1, D1, E1, E

�
1),

(φ2, D2, E2, E
�
2) in which:

– E
�
1 = E

�
2 = ∅, and E1, E2 only contain equations;

– φ1 = {ax 1, 1 � u1, . . . , axm,m � um}, and D1 = X1, i1

?
� s1; . . . ; Xn, in

?
� sn;

– φ2 = {ax 1, 1 � v1, . . . , axm.m � vm}, and D2 = X1, i1

?
� t1; . . . ; Xn, in

?
� tn.

Or else it is a pair as above, in which one of the components is replaced with ⊥.
In particular, the number of components in the frame and in the deducibility

part are respectively identical in the two constraints, when none of them is ⊥.
This will be an invariant in all our transformation rules. Hence we will always
assume this without further mention. This is unchanged by the transformations,
unless the constraint becomes ⊥. We keep the notation m for the size of the
frames. Finally, the consistency of the frame after instanciation (the first condi-
tion of Definition 3) is satisfied for all solutions of initial constraints and is again
an invariant, hence we will not care of this condition.

As explained in [14], such initial constraints are sufficient for our applications.
The case where one of the component is ⊥ solves the satisfiability problem for the
constraint: the constraint solving procedure of [12] solves this specific instance.

8 Automating security analysis: symbolic equivalence of constraint systems

3 Transformation rules

The main result of this paper is a decision procedure for symbolic equivalence
of an initial pair of constraints:

Theorem 1. Given an initial pair (C,C �), it is decidable whether C ≈s C
�.

This result in itself is already known (e.g. [3, 9]), but, as claimed in the intro-
duction, the known algorithms cannot yield any reasonable implementation. We
propose here a new algorithm/proof, which is implemented. As pointed in [14],
this yields a decision algorithm for the observational equivalence of simple pro-
cesses without replication nor else branch. The class of simple processes captures
most existing protocols.

The decision algorithm works by rewriting pairs of constraints, until a trivial
failure or a trivial success is found. These rules are branching: they rewrite
a pair of constraints into two pairs of constraints. Transforming the pairs of
constraints therefore builds a binary tree. Termination requires to keep track
of some information, that is recorded using flags, which we describe first. In
Section 4, we show that the tree is then finite: the rules are terminating. The
transformation rules are also correct: if all leaves are success leaves, then the
original pair of constraints is equivalent. They are finally complete: if the two
original constraints are equivalent then any of two pairs of constraints resulting
from a rewriting steps are also equivalent.

3.1 Flags

The flags are additional constraints that restrict the recipes. We list them here,
together with (a sketch of) their semantics.

Constraints X, i

?
�F u may be indexed with a set F consisting of propositions

NoConsf where f is a constructor. Any solution (θ, σ) such that Xθ is headed
with f is then excluded. Expressions ζ, j �F u in a frame are indexed with a set F
consisting of:

– NoConsf (as above) discards the solutions (θ, σ) such that a subterm of a
recipe allows to deduce uσ using f as a last step.

– NoDestf (i) where f is a destructor and i ≤ m discards the solutions (θ, σ)

such that there existsX, j

?
� v with j ≤ i and ζ

�
2, . . . , ζ

�
n where f(ζθ, ζ �2, . . . , ζ

�
n)

occurs as a subterm in Xθ, unless we use a shortcut explicitly given in the
frame.

– NoUse. The corresponding elements of the frame cannot be used in any recipe,
and avoids shifting the indices.

3.2 The rules

The rules are displayed in Figure 1 for single constraints. We explain in Sec-
tion 3.3 how they are applied to pairs of constraints (an essential feature of our

Automating security analysis: symbolic equivalence of constraint systems 9

algorithm). A simple idea would be to guess the top function symbol of a recipe
and replace the recipe variable with the corresponding instance. When the head
symbol of a recipe is a constructor and the corresponding term is not a variable,
this is nice, since the constraint becomes simpler. This is the purpose of the rule
Cons. When the top symbol of a recipe is a destructor, the constraint becomes
more complex, introducing new terms, which yields non-termination.

Our strategy is different for destructors: we switch roughly from the top
position of the recipe to the redex position. Typically, in case of symmetric en-
cryption, if a ciphertext is in the frame, we will guess whether the decryption
key is deducible, and at which stage.

The Cons rule simply guesses whether the top symbol of the recipe is a
constructor f . Either it is, and then we can split the constraint, or it is not and
we add a flag forbidding this. The rule Axiom also guesses whether a trivial
recipe can be applied. If so, the constraint can simply be removed. Otherwise,
it means that the right-hand-side of the deducibility constraint is different from
the members of the frame. The Dest rule is more tricky. If v is a non-variable
member of the frame, that can be unified with a non variable subterm of a left
side of a rewrite rule (for instance v is a ciphertext), we guess whether the rule

can be applied to v. This corresponds to the equation u1
?
= v, that yields an

instance of w, the right member of the rewrite rule, provided that the rest of

the left member is also deducible: we get constraints X2, i
?
� u2; . . . ;Xn, i

?
� un.

The flag NoDest is added in any case to the frame, since we either already
applied the destructor, and this application result is now recorded in the frame
by f(ζ,X2, . . . , Xn), i �w, or else it is assumed that f applied to v will not yield
a redex.

The remaining rules cover the comparisons that an attacker could perform
at various stages. The equality rules guess equalities between right sides of de-
ducibility constraints and/or members of the frame. If a member of the frame is
deducible at an early stage, then this message does not bring any new informa-
tion to the attacker: it becomes useless, hence the NoUse flag.

Finally, the last rule is the only rule that is needed to get in addition a static
equivalence decision algorithm, as in [1]. Thanks to this rule, if a subterm of the
frame is deducible, then there will be a branch in which it is deduced.

3.3 How to use the transformation rules

In the previous section we gave rules that apply on a single constraint. We explain
here how they are extended to pairs of constraints. If one of the constraint is ⊥,
then we proceed as if there was a single constraint. Otherwise, the indices i

(resp. i1, i2) and the recipes X, ζ (resp. X1, X2, ζ1, ζ2) matching the left side of
the rules must be identical in both constraints : we apply the rules at the same
positions in both constraints.

We have to explain now what happens when, on a given pair (C,C �) a rule
can be applied on C and not on C

� (or the converse).

10 Automating security analysis: symbolic equivalence of constraint systems

Cons : X, i

?

�F f(t1, . . . , tn)✘✘✘✘✿
③

X1, i

?

�F t1; · · · ;Xn, i

?

�F tn;X
?
= f(X1, . . . , Xn)

X, i

?

�F+NoConsf f(t1, . . . , tn)
If NoConsf /∈ F and X1, . . . Xn are fresh variables.

Axiom : X, i

?

�F v✘✘✘✘✿
③

u
?
= v; X

?
= ζ

X, i

?

�F v; X
?

�= ζ

If v �∈ X , φ contains ζ, j �G u with NoUse /∈ G, and i ≥ j.

Dest : ζ, y �G v✘✘✘✘✿
③

X2, i

?

� u2; · · · ; Xn, i

?

� un; u1
?
= v; ζ, j �G+NoDestf (m) v;

f(ζ,X2, . . . , Xn), i � w

ζ, j �G+NoDestf (i) v

If v /∈ X , NoUse /∈ G, there is a rewrite rule f(u1, . . . , un) → w, k < i whenever

NoDestf (k) ∈ G and i is minimal such that j ≤ i and there is some constraint X, i

?

� w

(i = m if there is no such constraint).

Eq-left-left : ζ1, i1 �F1 u1; ζ2, i2 �F2 u2 ✘✘✘✘✿
③

ζ1, i1 �F1 u1; ζ2, i2 �F2 u1; u1
?
= u2

ζ1, i1 �F1 u1; ζ2, i2 �F2 u2; u1

?

�= u2If NoUse /∈ F1 ∪ F2 and i1 ≤ i2.

Eq-right-right : X2, i2

?

� u2 ✘✘✘✘✿
③

X1 = X2; u1
?
= u2

X2, i2

?

� u2; u1

?

�= u2

If X1, i1

?

� u1; and i1 ≤ i2.

Eq-left-right : ζ, j �G v✘✘✘✘✿
③

ζ, j �G+NoUse u; u
?
= v

ζ, j �G v; u
?

�= v

If X, i

?

�F u;, NoUse /∈ G and j > i.

Ded-subterms : ζ, i �F f(u1, . . . , un)✘✘✘✘✿
③

X1,m

?

� u1; · · · ; Xn,m

?

� un;
ζ, i �F+NoConsf u

ζ, i �F+NoConsf f(u1, . . . , un)
If NoConsf , NoUse /∈ F and X1, . . . , Xn are fresh variables.

All rules assume that the equations have a mgu and that this mgu is eagerly applied to
the resulting constraint without yielding any trivial disequation.

Fig. 1. Transformation rules

Automating security analysis: symbolic equivalence of constraint systems 11

Example 9. Let C = (φ,D,E,E
�) and C

� = (φ,D�
, E,E

�) where E = E
� = ∅,

φ = ax 1, 1 � a, D = X, 1
?
� enc(x1, x2), and D

� = X, 1
?
� x. The rule Cons can

be applied on C and not on C
�. However, we have to consider solutions where

enc(x1, x2)σ and xσ
� are both obtained by a construction. Hence, it is important

to enable this rule on both sides. For this, we first apply the substitution x �→

enc(y1, y2) where y1, y2 are fresh variables. This yields the two pairs of constraints
(C1, C

�
1) and (C2, C

�
2) (forgetting about equations):

– C1 = (φ,X1, 1
?
� x1;X2, 1

?
� x2) and C

�
1 = (φ,X1, 1

?
� y1; X2, 1

?
� y2);

– C2 = (φ,X, 1
?
�NoConsenc enc(x1, x2)) and C

�
2 = (φ,X, 1

?
�NoConsenc x).

Therefore, the rule Cons, (this is similar for Ded-subterms), when applied
to pairs of constraints comes in three versions: either the rule is applied on both

sides or, if X, i

?
� f(t1, . . . , tn) (resp. ζ � f(t1, . . . , tn)) is in C, and X, i

?
� x (resp.

ζ � x) is in C
�, we may apply the rule on the pair of constraints, adding to C

�

the equation x
?
= f(x1, . . . , xn) where x1, . . . , xn are fresh variables. The third

version is obtained by switching C and C
�. This may introduce new variables,

that yield a termination issue, which we discuss in Section 4.1. Similarly, the
rules Axiom and Dest assume that v /∈ X . This has to be satisfied by C or C �.
In case of the rule Dest, this means that the variables of the rewrite rule might
not be immediately eliminated: this may also introduce new variables. For the
rules Eq-left-left, Eq-right-right and Eq-left-right, we require that at
least one new non-trivial equality (or disequality) is added to one of the two
constraints (otherwise there is a trivial loop).

For all rules, if a rule is applicable on one constraint and not the other, we do
perform the transformation, however replacing a constraint with ⊥ when a con-
dition becomes false or meaningless. Furthermore, we also replace a constraint C
with ⊥ when:

– the rule Dest cannot be applied on C; and

– C contains a constraint X, i

?
� v such that v is not a variable and the rules

Cons and Axiom cannot be applied to it.

Altogether this yields a transformation relation (C,C �) → (C1, C
�
1), (C2, C

�
2)

on pairs of constraints: a node labeled (C,C �) has two sons, respectively la-
beled (C1, C

�
1) and (C2, C

�
2).

Our algorithm can be stated as follows:

– Construct, from an initial pair of constraints (C0, C
�
0) a tree, by applying as

long as possible a transformation rule to a leaf of the tree.
– If, at some point, there is a leaf to which no rule is applicable and that is

labeled (C,⊥) or (⊥, C) where C �=⊥, then we stop with C0 �≈s C
�
0.

– Otherwise, if the construction of the tree stops without reaching such a
failure, return C0 ≈s C

�
0.

12 Automating security analysis: symbolic equivalence of constraint systems

Our algorithm can also be used to decide static equivalence of frames, as well
as the (un)satisfiability of a constraint. Furthermore, in case of failure, a witness
of the failure can be returned, using the equations of the non-⊥ constraint.

4 Correctness, completeness and termination

4.1 Termination

In general, the rules might not terminate, as shown by the following example:

Example 10. Consider the initial pair of contraints (C,C �) given below:

C =





a

?
� enc(x1, x2)

a, b

?
� x1

C
� =





a

?
� y1

a, b

?
� enc(y1, y2)

We may indeed apply Cons yielding (on one branch):

C1 =






a

?
� x1

a

?
� x2

a, b

?
� x1

C
�
1 =






a

?
� z1

a

?
� z2 and y1

?
= enc(z1, z2)

a, b

?
� enc(enc(z1, z2), y2)

Then, again using Cons, we get back as a subproblem the original constraints.

Fortunately, there is a simple complete strategy that avoids this behavior, by
breaking the symmetry between the two constraints components. We assume in
the following that, applying

– Cons to (C,C �) where X, i

?
� x ∈ C and X, i

?
� f(t1, . . . , tn) ∈ C

�,
– Ded-subterms to (C,C �) where ζ, j � x ∈ C and ζ, j � f(t1, . . . , tn) ∈ C

�,

– Dest to (C,C �) where X, i

?
� u; ζ, j � x ∈ C and X, i

?
� u

�; ζ, j � v� ∈ C
�

are only allowed when no other rule can be applied.
There is however no such restriction, when we switch the elements of the pair.

If we come back to Example 10, we still apply the same transformation rule to
the pair (C,C �), but we cannot apply Cons to (C1, C

�
1) since Eq-right-right

can be applied to the constraint C1, yielding a failure: C �≈s C
�.

Lemma 1. With the above strategy, the transformation rules are terminating
on any initial pair of constraint systems.

Idea of the proof: as long as no new first-order variable is introduced, the set of
first-order terms appearing in the constraint is roughly bounded by the subterms
of the constraint. (This relies on the properties of the rewrite system). Loops
are then prevented by the flags. Now, because of the eager application of sub-
stitutions, the only cases in which new first-order variables are introduced are
the above cases of applications of Cons, Ded-subterms and Dest. Until new
variables are introduced in the right constraints, the above argument applies:

Automating security analysis: symbolic equivalence of constraint systems 13

the sequence of transformations is finite. Then, according to the strategy, when
new variables are introduced on the right constraint, no other rule may apply.
This implies that the left constraint (considered in isolation) is irreducible: it

is of the form X1, i1

?
� x1, . . . , Xn, in

?
� xn, ... where x1, . . . xn are distinct vari-

ables (which we call a solved constraint). From this point onwards, the rules
Dest,Ded-subterms will never be applicable and therefore, no element will
be added to the frames. Then, either usable elements of the frames are strictly
decreasing (using a Eq-left-right) or else we preserve the property of be-
ing solved on the left. In the latter case, the first termination argument can be
applied to the right constraint.

4.2 Correctness

The transformation rules yield a finite tree labeled with pairs of constraints.

Lemma 2. If all leaves of a tree, whose root is labeled with (C0, C
�
0) (a pair

of initial constraints), are labeled either with (⊥,⊥) or with some (C,C �) with
C �=⊥, C

� �=⊥, then C0 ≈s C
�
0.

The idea of the proof is to first analyse the structure of the leaves. We intro-
duce a restricted symbolic equivalence ≈r

s such that C ≈r
s C

� for any leaf whose
two label components are distinct from ⊥. Roughly, this restricted equivalence
will only consider the recipes that satisfied the additional constraints induced
by the flags. Then we show that ≈r

s is preserved upwards in the tree: for any
transformation rule, if the two pairs of constraints labeling the sons of a node
are respectively in ≈r

s, then the same property holds for the father. Finally, ≈r
s

coincides with ≈s on the initial constraints (that contain no flag).

4.3 Completeness

We prove that the symbolic equivalence is preserved by the transformation rules,
which yields:

Lemma 3. If (C0, C
�
0) is a pair of initial constraints such that C0 ≈s C

�
0, then

all leaves of a tree, whose root is labeled with (C0, C
�
0), are labeled either with

(⊥,⊥) or with some (C,C �) with C �=⊥ and C
� �=⊥.

5 Implementation and experiments

An Ocaml implementation of an early version of the procedure described in this
paper, as well as several examples, are available at http://www.lsv.ens-cachan.
fr/∼cheval/programs/index.php (around 5000 lines of Ocaml). Our imple-
mentation closely follows the transformation rules that we described. For effi-
ciency reasons, a strategy on checking the rules applicability has been designed
in addition.

14 Automating security analysis: symbolic equivalence of constraint systems

We checked the implementation on examples of static equivalence problems,
on examples of satisfiability problems, and on symbolic equivalence problems
that come from actual protocols. On all examples the tool terminates in less
than a second (on a standard laptop). Note that the input of the algorithm
is a pair of constraints: checking the equivalence of protocols would require in
addition an interleaving step, that could be expensive.

We have run our tool on the following family of examples presented in [5]:

φn = {ax 1 � t
0
n, ax 2 � c0, ax 3 � c1} and φ

�
n = {ax 1 � t

1
n, ax 2 � c0, ax 3 � c1}

where ti0 = ci and t
i
n+1 = �enc(tin, k

i
n), k

i
n�, i ∈ {0, 1}. In these examples, the size

of the distinguishing tests increase exponentially while the sizes of the frames
grow linearly. As KiSs [10], our tool outperforms YAPA [4] on such examples.

For symbolic equivalences, we cannot compare with other tools (there is no
such tools); we simply tested the program on some home made benchmarks as
well as on the handshake protocol, several versions of the encrypted password
transmission protocol, the encrypted key exchange protocol [13], each for the
offline guessing attack property. We checked also the strong secrecy for the cor-
rected Dennin-Sacco key distribution protocol. Unfortunately we cannot (yet)
check anonymity properties for e-voting protocols, as we would need to consider
more cryptographic primitives.

6 Conclusion

We presented a new algorithm for deciding symbolic equivalence, which performs
well in practice. There is still some work to do for extending the results and the
tool. First, we use trace equivalence, which requires to consider all interleavings
of actions; for each such interleaving, a pair of constraints is generated, which is
given to our algorithm. This requires an expensive overhead (which is not imple-
mented), that might be unnecessary. Instead, we wish to extend our algorithm,
considering pairs of sets of constraints and use a symbolic bisimulation. This
looks feasible and would avoid the detour through trace equivalence. This would
also allow drop the determinacy assumption on the protocols and to compare
our method with ProVerif [7].

We considered only positive protocols; we wish to extend the algorithm to
non-positive protocols, allowing disequality constraints from the start. Finally,
we need to extend the method to other cryptographic primitives, typically blind
signatures and zero-knowledge proofs.

Acknowledgments. We wish to thank Sergiu Bursuc for fruitful discussions.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 367(1–2):2–32, 2006.

Automating security analysis: symbolic equivalence of constraint systems 15

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communica-
tion. In Proc. of 28th ACM Symposium on Principles of Programming Languages
(POPL’01), 2001.

3. M. Baudet. Deciding security of protocols against off-line guessing attacks. In
Proc. of 12th ACM Conference on Computer and Communications Security, 2005.

4. M. Baudet. YAPA (Yet Another Protocol Analyzer), 2008. http://www.lsv.
ens-cachan.fr/∼baudet/yapa/index.html.

5. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing
intruder knowledge. In Proc. of 20th International Conference on Rewriting Tech-
niques and Application (RTA’09), LNCS, 2009.

6. B. Blanchet. An automatic security protocol verifier based on resolution theorem
proving (invited tutorial). In Proc. of 20th International Conference on Automated
Deduction (CADE’05), 2005.

7. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

8. V. Cheval, H. Comon-Lundh, and S. Delaune. Automating security analysis:
symbolic equivalence of constraint systems. Technical report, http://www.lsv.
ens-cachan.fr/∼cheval/programs/technical-report.pdf, 2010.

9. Y. Chevalier and M. Rusinowitch. Decidability of symbolic equivalence of deriva-
tions. Unpublished draft, 2009.

10. Ş. Ciobâcă. KiSs, 2009. http://www.lsv.ens-cachan.fr/∼ciobaca/kiss.
11. H. Comon-Lundh. Challenges in the automated verification of security protocols. In

Proc. of 4th International Joint Conference on Automated Reasoning (IJCAR’08),
volume 5195 of LNAI, pages 396–409, Sydney, Australia, 2008. Springer-Verlag.

12. H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties of
cryptographic protocols. application to key cycles. Transaction on Computational
Logic, 11(2), 2010.

13. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against
off-line dictionary attacks. Electr. Notes Theor. Comput. Sci., 121:47–63, 2005.

14. V. Cortier and S. Delaune. A method for proving observational equivalence. In
Proc. of 22nd Computer Security Foundations Symposium (CSF’09), pages 266–
276. IEEE Comp. Soc. Press, 2009.

15. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

16. U. Fendrup, H. Hüttel, and J. N. Jensen. Modal logics for cryptographic processes.
Theoretical Computer Science, 68, 2002.

17. H. Huttel. Deciding framed bisimulation. In 4th International Workshop on Veri-
fication of Infinite State Systems INFINITY’02, pages 1–20, 2002.

18. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-
ming, 26(2):113–131, 1996.

19. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. of 8th ACM Conference on Computer and Communi-
cations Security, 2001.

20. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is np-complete. In Proc. of 14th Computer Security Foundations Workshop, 2001.

21. C. Weidenbach. Towards an automatic analysis of security protocols in first-order
logic. In Proc. of 16th Conference on Automated Deduction, volume 1632, pages
314–328. LNCS, 1999.

Automated verification of equivalence properties

of cryptographic protocols
�

Rohit Chadha1, Ştefan Ciobâcă1, and Steve Kremer1,2

1 LSV, ENS Cachan & CNRS & INRIA
2 INRIA Nancy - Grand-Est

Abstract. Indistinguishability properties are essential in formal verifi-
cation of cryptographic protocols. They are needed to model anonymity
properties, strong versions of confidentiality and resistance to offline
guessing attacks, and can be conveniently modeled using process equiva-
lences. We present a novel procedure to verify equivalence properties for
bounded number of sessions. Our procedure is able to verify trace equiv-
alence for determinate cryptographic protocols. On determinate proto-
cols, trace equivalence coincides with observational equivalence which
can therefore be automatically verified for such processes. When proto-
cols are not determinate our procedure can be used for both under- and
over-approximations of trace equivalence, which proved successful on ex-
amples. The procedure can handle a large set of cryptographic primitives,
namely those which can be modeled by an optimally reducing convergent
rewrite system. Although, we were unable to prove its termination, it has
been implemented in a prototype tool and has been effectively tested on
examples, some of which were outside the scope of existing tools.

1 Introduction

Cryptographic protocols are distributed programs which rely on the use of cryp-
tography to secure electronic transactions such as those that arise in electronic
commerce and wireless communication. They are also being applied in new do-
mains such as in Internet voting—legally binding political elections in Estonia,
Norway and Switzerland offer the possibility for Internet voting in 2011. This has
led to increasing demands on the complexity of desired security properties, lead-
ing to more complex cryptographic protocols. Given the socio-economic-political
consequences and the history of incorrect design of cryptographic protocols, the
need for formal proofs of correctness of protocols has been widely recognized.
Formal reasoning about cryptographic protocols is challenging as one has to
reason against all potentially malicious behavior—all communication between
protocol participants is assumed to be under the control of an adversary.

In order to make the task of formal analysis amenable to automation, usually
the assumption of black-box cryptography and unbounded computational power

� This work was partially supported by ANR projects ARA SESUR AVOTÉ and JCJC
VIP no 11 JS02 006 01 and the ERC grant agreement no 258865, project ProSecure.

of the adversary is made. This adversarial model is often called the Dolev-Yao
model and is derived from Dolev and Yao’s seminal paper [29]. It has proved
extremely successful, and there are several automated tools [10, 6, 31] that can
automatically check trace-properties such as (weak forms of) confidentiality and
authentication. While trace-based properties are certainly important, many cru-
cial security properties can only be expressed in terms of indistinguishability
(or equivalence). They include strong flavors of confidentiality [11]; resistance to
guessing attacks in password based protocols [8]; and anonymity properties in
private authentication [3], electronic voting [26, 7], vehicular networks [24] and
RFID protools [5, 15]. More generally, indistinguishability allows to model se-
curity by the means of ideal systems, which are correct by construction [4, 25].
Indistinguishability properties of cryptographic protocols are naturally modeled
by the means of observational and testing equivalences in cryptographic exten-
sions of process calculi, e.g., the spi [4] and the applied-pi calculus [2]. While we
have good tools for automated verification of trace properties, the situation is
different for indistinguishability properties.

State-of-the-art. Hüttel [34] showed undecidability of observational equivalence
in the spi calculus, even for the finite control fragment, as well as decidability
for the finite, i.e., replication-free, fragment of the spi calculus. The decidabil-
ity result however only holds for a fixed set of cryptographic primitives and
does not yield a practical algorithm. Current results [12] allow to approximate
observational equivalence for an unbounded number of sessions. However, this
approximation does not suffice to conclude for many applications, e.g., [26, 5].
Our approach overcomes these limitations for some applications in [26]. We still
cannot conclude for the e-passport example in [5], albeit for a different reason:
our procedure does not currently handle else branches in protocols.

Symbolic bisimulations have also been devised for the spi [14, 13, 39] and ap-
plied pi calculus [27, 35] to avoid unbounded branching due to adversary inputs.
However, only [27, 39] and [14] yield a decision procedure, again only approxi-
mating observational equivalence. The results of [27] have been further refined
to show a decision procedure on a restricted class of simple processes [23]. They
rely on a procedure deciding the equivalence of constraint systems, introduced
by Baudet [8], for the special case of verifying the existence of guessing at-
tacks. Baudet’s procedure allows arbitrary cryptographic primitives that can be
modeled as a subterm convergent rewrite systems [1]. An alternate procedure
achieving the same goal was proposed by Chevalier and Rusinowitch [19]. How-
ever, both procedures are highly non-deterministic and do not yield a reasonable
algorithm that could be implemented. Therefore, Cheval et al. [17] have designed
a new procedure and a prototype tool to decide the equivalence of constraint
systems, but only for a fixed set of primitives. Tools have also been implemented
for checking testing equivalence [30], open bisimulation [39] and trace equiva-
lence [18] for a bounded number of sessions but again only for a limited set of
primitives. One may note that [18] is the only decision procedure to consider
negative tests (else branches), crucial in several case studies [5, 3].

2

Our contribution. We introduce a new procedure for verifying equivalence prop-
erties for processes specified in a cryptographic process calculus (without repli-
cation). Our main contributions are as follows.

– Our procedure checks for two equivalences which over- and under-approximate
the standard notion of trace equivalence ≈t for cryptographic protocols: the
under-approximation can be used to prove protocols correct while the over-
approximation can be used to rule out incorrect protocols.

– Cortier and Delaune [23] have shown that observational equivalence coin-
cides with ≈t for the class of determinate processes. They also give a decision
procedure for a strict sub-class of determinate processes, namely, simple pro-
cesses. We show that for determinate processes the coarser relation coincides
with ≈t, and our procedure can be used to verify observational equivalence
for the whole class of determinate processes.

– A novelty of our procedure is that it is based on a fully abstract model-
ing of symbolic traces in first-order Horn clauses. This is in contrast to
the constraint-solving techniques employed in [39, 17, 18, 8, 19] for verify-
ing under-approximations of observational equivalence. Techniques based
on Horn clauses have been extensively used, e.g., in [10, 40, 33], for an un-
bounded number of sessions. Of these tools, only ProVerif [10, 12] can verify
an equivalence property, which is an under-approximation of observational
equivalence. Horn clause modeling of an unbounded number of sessions of
security protocols may allow false attacks. In contrast, we show our modeling
of a bounded number of sessions for determinate protocols to be precise.

– Our modeling is fully abstract for arbitrary cryptographic primitives that
can be modeled as a convergent rewrite system which has the finite variant
property. Not only this strictly includes the class of primitives that can be
modeled as subterm convergent rewrite systems, but this also allows us to
handle a larger class of cryptographic primitives than [39, 17, 18, 8, 19, 10].
For example, this allows us to handle trapdoor commitment as used by
Okamoto for electronic voting in [38]. Although we were unable to prove
termination of our procedure, we conjecture it to terminate for the class of
cryptographic primitives that can be modeled as subterm convergent rewrite
systems. Our conjecture is supported by experimental evidence.

– Our procedure is implemented in the AKiSs (Active Knowledge in Security
protocols) prototype tool and used among others to give the first automated
proof of anonymity for the electronic voting protocol presented in [32].

Technical proofs are given in an accompanying technical report [16].

2 Preliminaries

Terms. Let F be a signature, i.e., a finite set of function symbols and ar a
function that assigns to each function symbol a natural number, its arity. A
function symbol of arity 0 is called a constant. Given a set of atoms A and a
signature F , we denote by TF,A the set of terms built inductively from A by

3

applying functions symbols in F . Given sets of atoms A1,A2, . . . ,An, we denote
the set TF,∪1≤i≤nAi by TF,A1,A2,...An . We assume that we have the following
countably infinite pairwise disjoint sets: a set N of private names, M of public
names, a set C of public channel names, a set W of parameters, and a set X of
message variables. Intuitively, elements of the set N represent nonces generated
by honest principals of a protocol, elements of M represent nonces available
both to the adversary and to the honest participants and elements of C represent
names of public channels (e.g. the name of a public network). Elements of W
are pointers used by the adversary to refer to messages output by the honest
participants in a protocol. We fix an enumeration w1, w2, . . . of the elements of
W. We let x, y, z range over X . We also define the following set of terms:

– Terms denotes the set of all terms TF,N ,M,W,X .

– Messages denotes the set of messages TF,N ,M.

– SMessages denotes the set of symbolic messages TF,N ,M,X .

If t is a term, we denote by vars(t) the set of variables appearing in t, by
names(t) the set of names (public or private) appearing in t. The functions vars,
names are extended to sequences and sets of terms as expected.

Example 1. Consider the signature F = {enc, dec, pair, fst, snd} . The term t =
pair(enc(a, k1, r1), enc(b, k2, r2)) models the pair of the asymmetric encryptions
of public names a and b with keys k1, resp. k2 and randomness r1, resp. r2.

A substitution is a partial function σ : W ∪ X → Terms. We restrict sub-
stitutions to map elements of W to elements of Messages and elements of X to
elements of SMessages. The domain of σ shall be denoted by dom(σ). We denote
by σ[X] the substitution whose domain is restricted to X. We only consider sub-
stitutions with finite domains. As usual, a substitution extends homomorphically
to terms and we write tσ for the term obtained by applying σ to t.

Rewriting and unification. Two terms s and t are (syntactically) unifiable if
there exists a substitution σ such that sσ = tσ. We denote by mgu(s, t) their
most general unifier. We assume that the reader is familiar with basic notions
of rewriting and only briefly introduce our notations. A rewrite system R is a
set of rewrite rules of the form � → r where �, r ∈ Terms, names(l, r) = ∅ and
vars(r) ⊆ (�). We write t →R u when a term t can be rewritten in one step
to u. →∗

R denotes the transitive and reflexive closure of →R. We only consider
convergent rewrite systems and denote by t↓R the normal form of a term t. Two
terms s and t are said to be equal modulo R, written s =R t, if s↓R = t↓R. Given
a substitution σ, σ↓R is the substitution such that dom(σ↓R) = dom(σ) and for
all u ∈ dom(σ), σ↓R(u) = σ(u)↓R. We shall omit R when clear from the context.

Example 2. Let F be the signature in Example 1. Consider the rewrite sys-
tem R = {dec(enc(x, y, z), y) → x, fst(pair(x, y)) → x, snd(pair(x, y)) → y}.
The first rule models that a message can be decrypted, provided decryption
uses the same key (represented by variable y) as encryption. The last two rules
model projection of the first and second component of a pair. We have that
t = fst(pair(dec(enc(a, k, r), k), b)) →R fst(pair(a, b)) →R a = t↓R.

4

We recall the notion of complete set of variants for a convergent rewrite
system [22]:

Definition 1. A set of substitutions variants(t1, . . . , tk) is called a complete
set of variants of terms t1, . . . , tk if for any substitution ω there exist σ ∈

variants(t1, . . . , tk) and a substitution τ such that for all 1 ≤ j ≤ k we have
that ω[vars(tj)]↓ = (σ↓τ)[vars(tj)] and (tjω)↓ = (tjσ)↓τ .

Intuitively, the set of variants of t represents a pre-computation such that
any instance of t in normal form is syntactically equal to an instance of tσi↓ for
some i, without the need to apply further rewrite steps. A rewrite system has the
finite variant property if for any finite sequence of terms a finite, complete set
of variants exists. An algorithm for computing complete sets of variants which
is correct whenever the rewrite system is optimally reducing [37] is presented in
[21]. Optimally reducing rewrite systems include subterm convergent systems [1]
(and hence the classical Dolev Yao theories for encryption, signatures and hash
functions), as well as a theory for modeling blind signatures. Complete sets of
variants can be used to compute finite complete sets of unifiers modulo R [21],
which are formally defined in [16] and denoted by mguR. We assume, henceforth,
that rewrite systems in this paper have the finite variant property.

Frames, deducibility and static equivalence. We will use the notion of a frame [2]
to represent messages which have been recorded by an attacker.

Definition 2. A frame ϕ is a substitution {w1 �→ t1, . . . , wn �→ tn} where ti ∈

Messages (1 ≤ i ≤ n).

Please note, in our definition, every frame ϕ with |dom(ϕ)| = n has dom(ϕ) =
{w1, . . . , wn}. The set of all frames is denoted as Frames. The adversary can use
the messages learnt from the run of a protocol to construct new messages. This
is modeled as the deducibility relation.

Definition 3. Any term in TF,M,W is said to be a recipe. We say that a message
t is deducible from ϕ with a recipe r (written as ϕ �r

t) if t ∈ Messages and
rϕ =R t. We write Recipes for the set TF,M,W .

Example 3. Consider the signature F and the rewrite system R in Example 2.
Let ϕ = {w1 �→ enc(s, k, r), w2 �→ k} where s, k, r ∈ N are private names. We
have that ϕ �dec(w1,w2) s. Note that dec(w1, k) �∈ Recipes as k ∈ N . If s were
public instead of being private (ie, s ∈ M instead of s ∈ N) then we also have
that ϕ �s

s; as public names are always deducible.

Static equivalence captures indistinguishability of sequences of messages:

Definition 4. Let r1, r2 ∈ Recipes. A test r1
?
= r2 holds in a frame ϕ (written

(r1 = r2)ϕ) if ϕ �r1 t and ϕ �r2 t for some t, i.e., r1 and r2 are recipes for the
same term in ϕ.

A frame ϕ1 is statically included in ϕ2 (written ϕ1 �s ϕ2) iff for all r1, r2 ∈

Recipes we have that (r1 = r2)ϕ1 implies (r1 = r2)ϕ2. Two frames ϕ1 and ϕ2

are statically equivalent (written ϕ1 ≈s ϕ2) iff ϕ1 �s ϕ2 and ϕ2 �s ϕ1.

5

Example 4. Let a, b ∈ M and r, k, k
� ∈ N . We have that {w1 �→ enc(a, k, r), w2 �→

k} �≈s {w1 �→ enc(b, k, r), w2 �→ k} because the test (dec(w1, w2) = a) dis-
tinguishes the two frames. However, {w1 �→ enc(a, k, r), w2 �→ k

�} ≈s {w1 �→

enc(b, k, r), w2 �→ k
�}. Moreover, we have that {w1 �→ a,w2 �→ b} �s {w1 �→

a,w2 �→ a} while {w1 �→ a,w2 �→ a} ��s {w1 �→ a,w2 �→ b}.

3 A cryptographic process calculus

We model cryptographic protocols using a simple process calculus which has
similarities with the applied pi-calculus [2].

Syntax. We model a bounded number of instances of a cryptographic protocol
as a finite set of traces. Traces are defined using sequences of actions generated
by the following grammar:

a ::= in(c, x) | out(c, t) | [s
?
= t]

where x ∈ X , s, t ∈ SMessages, c ∈ C. A trace T is a sequence of actions T =
a1.a2.an. As usual, a receive action in(c, x) acts as a binding construct for x.
We assume the usual definitions of free and bound variables for traces. We also
assume that each variable is bound at most once. A trace is ground if it does
not contain any free variables. The set of ground traces shall be represented as
GndTraces. A set of traces P = {T1, . . . , Tn} is said to be a process. A process is
ground if all of its traces are ground. We identify traces with singleton processes.

Remark 1. We do not have an ν operator: the binding happens implicitly by
the use of private names in N . We have also not explicitly included the parallel
operator | and the choice operator +. One could include these and generate the
corresponding set of traces. Thus, there is no loss in expressivity. However, an
explicit enumeration of the traces can result in an exponential number of traces.

Semantics. The semantics of a process is defined using the semantics of its traces.
The semantics of a trace is given in terms of a labeled transition system T. We
assume that all interactions between protocol participants are mediated by the
adversary. The labeled transition system records the interaction of the protocol
participants with the adversary. The set of labels of T is defined using the set
Recipes. Recall that the set Recipes is the set TF,M,W (see Section 2). The set
of labels, Labels, is { in(c, r),out(c), test | r ∈ Recipes, c ∈ C }.

The labeled transition system T is a subset of (GndTraces×Frames)×Labels×

(GndTraces×Frames). We write (T, ϕ)
�
−→ (T �

, ϕ
�) whenever ((T, ϕ), �, (T �

, ϕ
�)) ∈

T. The frame in the transition system is used to record the messages that the

protocol participants have sent in the past. The relation
�
−→ is defined as follows:

Receive
ϕ �

r
t

(in(c, x).T, ϕ)
in(c,r)
−−−−→ (T{x �→ t}, ϕ)

Test
s =R t

([s
?
= t].T, ϕ)

test
−−−→ (T, ϕ)

Send
(out(c, t).T, ϕ)

out(c)
−−−−→ (T, ϕ ∪ {w|dom(ϕ)|+1 �→ t})

6

The label in(c, r) indicates a message sent by the adversary over the channel c
and r is the recipe that adversary uses to create this message. The label out(c)
indicates a message sent over the public channel c and transition rule Send
records the message sent in the frame. Finally, the rule Test is an internal action.

We write (T, ϕ)
�
=⇒ (T �

, ϕ
�) when either (T, ϕ)

test∗,�,test∗
−−−−−−−−→ (T �

, ϕ
�) and

� �= test or (T, ϕ)
test∗
−−−→ (T �

, ϕ
�) and � = test, where test

∗ denotes an ar-

bitrary number of test actions. We also write (T0, ϕ0)
�1,...,�n
−−−−−→ (Tn, ϕn) when

(T0, ϕ0)
�1
−→ (T1, ϕ1) . . .

�n
−→ (Tn, ϕn) (and similarly for the ⇒ relation) and say

that �1 . . . �n is a run of (T0, ϕ0). If P is a process, we write (P,ϕ)
�1,...,�n
−−−−−→ (T �

, ϕ
�)

(resp.
�1,...,�n=====⇒ (T �

, ϕ
�)) if there exists a trace T ∈ P such that (T, ϕ)

�1,...,�n
−−−−−→

(T �
, ϕ

�) (resp. (T, ϕ)
�1,...,�n=====⇒ (T �

, ϕ
�)).

Process equivalences. We will now define different flavors of trace equivalence
which will be useful in this paper. We first recall the standard definition of trace
equivalence in cryptographic process algebras.

Definition 5. (Trace equivalence) A ground process P is said to be trace-

included in a ground process Q (written P �t Q) if whenever (P, ∅)
�1,...,�n=====⇒

(T, ϕ) then there exist T �
, ϕ

� such that (Q, ∅)
�1,...,�n=====⇒ (T �

, ϕ
�) and ϕ ≈s ϕ

�. Two
processes P and Q are trace-equivalent (written P ≈t Q) if P �t Q and Q �t P .

We will also define two other notions of trace equivalence, one coarser and one
more fine-grained.

Definition 6. Given ground processes P and Q, we say that P �ct Q if when-

ever (P, ∅)
�1,...,�n=====⇒ (T, ϕ) then there exist T �

, ϕ
� such that (Q, ∅)

�1,...,�n=====⇒ (T �
, ϕ

�)
and φ �s φ

�
. We say that P ≈ct Q if P �ct Q and Q �ct P .

The following example illustrates the difference between ≈t and ≈ct.

Example 5. Let P and Q be the ground processes defined as follows: P =
{out(c, a).out(c, a) } andQ = {out(c, a).out(c, a),out(c, a).out(c, b) }. Clearly
P �ct Q. Observe also that Q �ct P . This is because {w1 �→ a,w2 �→ b} �s

{w1 �→ a,w2 �→ a}. Thus, P ≈ct Q. But P �≈t Q.

We show, however, that these two notions coincide for the class of determinate
processes. In the context of the applied pi calculus determinate processes were
previously studied by Cortier and Delaune in [23].

Definition 7. (Determinate process) A ground process P is determinate if

whenever (P, ∅)
�1,...,�n=====⇒ (T, ϕ) and (P, ∅)

�1,...,�n=====⇒ (T �
, ϕ

�) then ϕ ≈s ϕ
�.

Intuitively, determinate processes are processes in which the adversary’s static
knowledge at any instance is completely determined by its past interaction with
the protocol participants. Note that any ground trace is determinate.

7

As already mentioned above, it was demonstrated in [23] that trace equiv-
alence coincides with observational equivalence for determinate processes. We
show that ≈t and ≈ct also coincide for this class of processes.

Theorem 1. If P and Q are ground processes then P ≈t Q implies P ≈ct Q.
Furthermore, if P and Q are determinate, then P ≈ct Q implies P ≈t Q.

We introduce a more fine-grained notion of trace equivalence, denoted ≈ft .

Definition 8. Given ground processes P and Q, we say that P �ft Q whenever
for all trace T ∈ P there exists a trace T

� ∈ Q such that T ≈t T
�. We say that

P ≈ft Q if P �ft Q and Q �ft P .

It follows directly form the definition that ≈ft⊂≈t. The difference between these
two relations is illustrated by the following example.

Example 6. Let P and Q be ground processes defined as follows:

P = { out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(a, k)].out(c, k),
out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(b, k)].out(c, k)}

Q = { out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(dec(x, k), k)].out(c, k)}

where k ∈ N is a private name and a, b are constants. The test x = enc(dec(x, k), k)
simply checks whether x is an encryption with key k. It is not difficult to see
that P ≈t Q but P �≈ft Q.

Our procedure is able to check ≈ct (and hence ≈t) for determinate processes.
For non-determinate processes, we can check ≈ft and an over-approximation of
≈ct (see [16] for details) in order to under- and over-approximate ≈t: as traces
are determinate a procedure for checking ≈ct can be used to verify ≈ft .

4 Modeling traces as Horn clauses

Our procedure is based on a fully abstract modeling of a trace into first-order
Horn clauses. We give the details of this modeling; we start by giving some
definitions that we need for defining the predicates used in the logic.

Symbolic labels and symbolic runs. We define the set of symbolic labels as

SLabels = {in(c, t),out(c), test | t ∈ SMessages, c ∈ C}

and the set of symbolic runs as the set of finite sequences of symbolic labels (see
Figure 1). The empty sequence is denoted by �. We will often be lazy and write
(empty space) for �. Intuitively, a symbolic label stands for a set of possible
labels, and a symbolic run stands for a set of possible runs of the protocol.

8

Symbolic Recipes. We assume a set Y of recipe variables disjoint from X . The set
of terms TF,M,W,Y shall be called symbolic recipes and denoted by SRecipes. We
use capital letters X,Y, Z to range over Y. Intuitively, a symbolic recipe stands
for a set of recipes. We can extend the definition of substitutions to include
variables from Y in its domain: we only consider substitutions that map variables
in Y to SRecipes. A ground substitution must map variables in Y to Recipes. The
notions of mgu and mguR is extended to symbolic recipes as expected.

Predicates. The predicates used in our modeling and the semantics of the predi-
cates are given in Figure 1. The predicates are interpreted over a triple– a trace
T , a frame ϕ and a substitution σ. We have four kinds of predicates, all of which
have a symbolic run as an argument. Intuitively, the reachability predicate rw
says that each run represented by w is possible. The intruder knowledge predi-
cate kw(R, t) says that whenever a run represented by w happens, the (symbolic)
message t can be constructed by the intruder using the (symbolic) recipe R. The
identity predicate iw(R,R

�) says that whenever the (symbolic) run SR happens,
the (symbolic) recipes R and R

� are recipes for the same (symbolic) term. The
reachable identity predicate riw(R,R

�) is a short form for the conjunction of the
predicates rw and iw(R,R

�).

Formulas and statements. We consider first-order formulas built using the above
predicates and the usual connectives (conjunction, disjunction, negation, impli-
cation, existential and universal quantification). As in the case of predicates, a
formula is interpreted over a triple consisting of a trace T , a frame ϕ and a sub-
stitution σ; and the semantics is defined as expected. For ground formulas we
do not need the substitution σ and when a formula f is ground we simply write
(T, ϕ) |= f to denote that this formula holds for (T, ϕ). If moreover, dom(ϕ) = ∅,
we simply write T |= f for (T, ∅) |= f .

We now identify a subset of the formulas, which we shall call statements.
Statements shall take the form of Horn clauses.

Definition 9. A statement is a Horn clause of the form H ⇐ B1, . . . , Bn where:

1. H ∈ {r�1,...,�k , k�1,...,�k(R, t), i�1,...,�k(R,R
�), ri�1,...,�k(R,R

�)}
2. For each 1 ≤ i ≤ n,Bi = k�1,...,�ji (Xi, ti)

for some �1, . . . , �k ∈ SLabels, t ∈ SMessages, R,R
� ∈ SRecipes, ji ≤ k, t1, . . . , tn ∈

SMessages and X1, . . . , Xn ∈ Y. Furthermore X1, . . . , Xn are distinct variables
and if H = k�1,...,�k(R, t) then vars(t) ⊆ vars(t1, . . . , tn).

As usual, we implicitly assume that in a Horn clause all variables are universally
quantified. Hence, all statements are closed formulas.

The set of seed statements. Our procedure is based on a fully abstract modeling
of a trace in first-order Horn clauses. In this section, given a trace T we define
a set of statements seed(T) that serve as a starting point for the modeling. We
also establish that seed(T) is a sound and (partially) complete abstraction of the
trace T. In order to formally define seed(T), we start by fixing some conventions.

9

Symbolic Runs (� ∈ SLabels):
u, v, w := � | �, w

Predicates (w ∈ SRuns, R ∈ SRecipes, t ∈ SMessages):
rw (Reachability predicate)
kw(R, t) (Intruder knowledge predicate)
iw(R,R

�) (Identity predicate)
riw(R,R

�) (Reachable identity predicate)

Semantics (�i ∈ SLabels, R ∈ SRecipes, t ∈ SMessages, T ∈ GndTraces, ϕ ∈ Frames,
σ a ground substitution):

(T, ϕ0, σ) |= r�1,...,�i if (T, ϕ0)
L1
−−→ (T1, ϕ1)

L2
−−→ . . .

Ln
−−→ (Tn, ϕn)

such that �iσ =R Liϕi−1 for all 1 ≤ i ≤ n

(T, ϕ0, σ) |= k�1,...,�i(R, t) if when (T, ϕ0)
L1
−−→ (T1, ϕ1)

L2
−−→ . . .

Ln
−−→ (Tn, ϕn)

such that �iσ =R Liϕi−1 for all 1 ≤ i ≤ n

then ϕn �
Rσ

tσ

(T, ϕ0, σ) |= i�1,...,�i(R,R
�) if there exists t s.t.

(T, ϕ0, σ) |= k�1,...,�i(R, t) and
(T, ϕ0, σ) |= k�1,...,�i(R

�
, t)

(T, ϕ0, σ) |= ri�1,...,�i(R,R
�) if (T, ϕ0, σ) |= r�1,...,�i and (T, ϕ0, σ) |= i�1,...,�i(R,R

�)

Fig. 1: Predicates

Let T = a1.a2.an be a ground trace. We assume the following naming
conventions: (i) if ai is a receive action then ai = in(ci, xi); (ii) xi �= xj for any
i �= j; (iii) if ai is a send action then ai = out(ci, ti); (iv) if ai is a test action

then ai = [si
?
= ti]. Moreover, for each 1 ≤ i ≤ n, let �i ∈ SLabels be as follows:

�i =






in(ci, xi) if ai = in(ci, xi)
out(ci) if ai = out(ci, ti)

test if ai = [si
?
= ti]

.

For each 0 ≤ m ≤ n, let the sets R(m), S(m) and T (m) respectively denote the
indices of the receive actions, send actions and test actions amongst a1, . . . , am.
Formally, R(m) = {i | 1 ≤ i ≤ m, ai = in(ci, xi)}, S(m) = {i | 1 ≤ i ≤

m, ai = out(ci, ti)} and T (m) = {i | 1 ≤ i ≤ m, ai = [si
?
= ti]} Given a set

of public names M0 ⊆ M, set of seed statements associated to T and M0,
denoted seed(T,M0), is defined to be the set of statements given in Figure 2. If
M0 = M, then seed(T,M) is said to be the set of seed statements associated
to T and in this case we write seed(T) as a shortcut for seed(T,M). While
constructing seed(T,M), we apply mguR to all tests. In addition, we also apply
finite variants. This allows us to get rid of rewriting in our procedure.

For a set of statements K, we denote by H(K) the least Herbrand model of K
∪{k�1,...,�n+1(X,x) ⇐ k�1,...,�n(X,x)}n∈N∪{i�1,...,�n+1(X1, X2) ⇐ i�1,...,�n(X1, X2)}n∈N.
We show that as far as reachability predicates and intruder knowledge predicates
are concerned, the set seed(T) is a complete abstraction T .

10

r�1στ↓,...,�mστ↓ ⇐ {k�1στ↓,...,�j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all 0 ≤ m ≤ n

for all σ ∈ mguR({sk = tk}k∈T (m))
for all τ ∈ variants(�1σ, . . . , �mσ)

k�1τ↓,...,�mτ↓(w|S(m)|, tmτ↓) ⇐ {k�1τ↓,...,�j−1τ↓(Xj , xjτ↓)}j∈R(m)

for all m ∈ S(n)
for all τ ∈ variants(�1, . . . , �m, tm)

k(c, c) ⇐
for all public names c ∈ M0

k�1,...,�m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓) ⇐ {k�1,...,�m(Yj , yjτ↓)}j∈{1,...,k}
for all 0 ≤ m ≤ n

for all function symbols f of arity k

for all τ ∈ variants(f(y1, . . . , yk)).

Fig. 2: Seed statements

Theorem 2. Let T be a ground trace.

– (Soundness.) For any f ∈ seed(T) ∪H(seed(T)) we have that T |= f .

– (Completeness.) If (T, ∅)
L1,...,Lm
−−−−−−→ (S, ϕ) then (i) rL1ϕ↓,...,Lmϕ↓ ∈ H(seed(T)),

and (ii) if ϕ �R
t then kL1ϕ↓,...,Lmϕ↓(R, t↓) ∈ H(seed(T)).

Remark 2. Note that the set seed(T) is only partially complete as we have not
shown above that if ϕ �R

t and ϕ �R�
t then iL1ϕ↓,...,Lmϕ↓ ∈ H(seed(T)). We

will shortly show how the completeness of seed(T) can be built upon to achieve
a) full abstraction of T and b) procedures for checking equivalences ≈ct and �ft .

5 Procedure for deciding trace equivalence

We now present a procedure for verifying trace equivalence. At a high level, this
consists of the following two steps that we will detail later.

1. A saturation procedure which constructs a set of simple statements from the
set seed(T) which we will call solved statements. The saturation procedure
ensures that the set of solved statements is a complete abstraction of T .

2. Given two ground processes P and Q, we saturate the set of seed statements
for traces of P and Q and then use the solved statements to decide whether
P and Q are trace equivalent.

5.1 Knowledge bases and saturation

The saturation procedure manipulates a set of statements called a knowledge
base.

11

Resolution

f ∈ K, g ∈ Ksolved,

f =
�
H ⇐ kuv(X, t), B1, . . . , Bn

�
g =

�
kw(R, t

�) ⇐ Bn+1, . . . , Bm

�

σ = mgu(ku(X, t), kw(R, t
�)) t �∈ X

K = K ⊕ h where h =
�
(H ⇐ B1, . . . , Bm)σ

�

Equation

f, g ∈ Ksolved, f =
�
ku(R, t) ⇐ B1, . . . , Bn

�

g =
�
ku�v�(R�

, t
�) ⇐ Bn+1, . . . , Bm

�
σ = mgu(ku(, t), ku�(, t

�))

K = K ⊕ h where h =
�
(iu�v�(R,R

�) ⇐ B1, . . . , Bm)σ
�

Test

f, g ∈ Ksolved, f =
�
iu(R,R

�) ⇐ B1, . . . , Bn

�

g =
�
ru�v� ⇐ Bn+1, . . . , Bm

�
σ = mgu(u, u�)

K = K ⊕ h where h =
�
(riu�v�(R,R

�) ⇐ B1, . . . , Bm)σ
�

Fig. 3: Saturation rules

Definition 10. Given a statement f = H ⇐ B1, . . . , Bn,

– f is said to be solved if for all 1 ≤ i ≤ n, Bi = k�1,...,�ji (Xi, xi) for some
variables xi ∈ X , Xi ∈ Y.

– f is said to be well-formed if whenever it is solved and H = k�1,...,�k(R, t),
we have that t �∈ X .

A set of well-formed statements is called a knowledge base. If K is a knowl-
edge base, we define Ksolved = {f ∈ K | f is solved } to be the knowledge base
restricted to the solved statements.

Given an initial knowledge base K, the saturation procedure produces another
knowledge base sat(K) as follows. First, new statements are generated. Then the
knowledge base is updated with the new statements. This two-step process con-
tinues until a fixed-point is achieved. We describe the two steps in the procedure.

Generating new statements. Given a knowledge base K, new statements f are
generated by applying the rules in Figure 3.

Update. The first step while updating the knowledge base by f is to convert f
into a canonical form.

Definition 11. Given a solved deduction statement f , we define its canonical
form to be the statement f⇓ obtained by first applying Rule Rename as many
times as possible and then applying Rule Remove as many times as possible:

Rename
H ⇐ ku(X,x), kuv(Y, x), B1, . . . , Bn

(H ⇐ ku(X,x), B1, . . . , Bn){Y �→ X}

Remove
H ⇐ ku(X,x), B1, . . . , Bn x �∈ vars(H)

H ⇐ B1, . . . , Bn

12

For any other type of statement, the canonical form f⇓ is defined to be f .

It is easy to see that any fact f can be converted into a canonical form. After
a canonical form has been obtained, we perform another check before f⇓ can be
added to the knowledge base. Intuitively, this check ensures that we add enough
identity predicates in the knowledge base. We need the following definition for
the update rule.

Definition 12. The set of consequences of a knowledge base K, denoted cons(K),
is the smallest set such that:

Axiom
kuv(R, t) ⇐ ku(R, t), B1, . . . , Bm ∈ cons(K)

Res

H ⇐ B1, . . . , Bn ∈ K σ a substitution
B1σ ⇐ C1, . . . , Cm ∈ cons(K), . . . , Bnσ ⇐ C1, . . . , Cm ∈ cons(K)

Hσ ⇐ C1, . . . , Cm ∈ cons(K)

Given a knowledge base K and a statement f , the update of K by f , denoted
K⊕f , is defined to be K∪{f⇓} if the head of f is not of the form k�1,...,�k(R, t).
Otherwise, let

f⇓ = k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn)

and K ⊕ f =

– K ∪ {f⇓} if f is solved and for any R
� we have that k�1,...,�k(R

�
, t) ⇐

k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) �∈ cons(Ksolved).
– K ∪ {i�1,...,�k(R,R

�) ⇐ {k�1,...,�ij (Xj , tj)}j∈{1,...,n}} if f is solved and R
� is

such that k�1,...,�k(R
�
, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) ∈ cons(Ksolved).

– K ∪ {f⇓} if f is not solved.

Note that update is not a function, namely that there may be severalR�
, i1, . . . , in

such that k�1,...,�k(R
�
, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) ∈ cons(Ksolved).

However, we need to compute only one such R
�
.

Initial knowledge base. One question that naturally arises is what is the initial
knowledge base for the saturation procedure. Given a ground trace T , the initial
knowledge base for the saturation procedure is defined as follows.

Definition 13. Given a set of statements S, the initial knowledge base associ-
ated to S, denoted Ki(S), is defined to be the empty knowledge base updated by
the set S, i.e., Ki(S) = ∅ ⊕f∈S f . If T is a ground trace, we write Ki(T) for
Ki(seed(T)).

Observe that Ki(T) depends on the order in which statements in seed(T) are
updated. The exact order, however, is not important and our results hold regard-
less of the order chosen. The saturation procedure takes Ki(T) as an input and

13

produces a knowledge base sat(Ki(T)). The reason for choosing Ki(T) instead
of seed(T) as the starting point of the saturation procedure is that seed(T) may
not be a knowledge base, i.e., may contain non well-formed statements. The set
Ki(T) is, however, a knowledge base.

Proposition 1. Given a ground trace T , the set Ki(T) is a knowledge base.

Soundness and completeness of the saturation procedure. We shall now
show that the set of solved statements in sat(Ki(T)) is a sound and complete
abstraction of a ground trace T . Given a set of statements K we denote by
He(K) the smallest set of ground terms such that

– H(K) ⊆ He(K),
– He(K) is closed under congruence rules for each iw(R,R

�) ∈ He(K), and
– iw is monotonic in w, i.e., iu(R,R

�) ∈ He(K) implies iuv(R,R
�) ∈ He(K).

A formal definition is given in [16].

Theorem 3. Let T be a ground trace and let K = sat(Ki(T)).

– (Soundness.) For any f ∈ K ∪He(K) we have T |= f .

– (Completeness.) If (T, ∅)
L1,...,Ln
−−−−−−→ (S, ϕ) then (i) rL1ϕ↓,...,Lnϕ↓ ∈ He(Ksolved),

(ii) if ϕ �R
t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(Ksolved), and (iii) if ϕ �R

t and
ϕ �R�

t, then iL1ϕ↓,...,Lnϕ↓(R,R
�) ∈ He(Ksolved).

Effectiveness of the saturation procedure. We have shown that the set of
solved statements in sat(Ki(T)) form a sound and complete abstraction for the
trace T. However this set is infinite and may not be effectively computable. This
may be because of following reasons.

– The set seed(T) for a ground trace T is infinite. Hence the saturation pro-
cedure may continue forever. We will, however, shortly show that for the
saturation procedure we only need to consider the saturation of the set
Ki(seed(T,M0)) where M0 is the set of public names occurring in T (see
Lemma 1). The set sat(Ki(T)) can then be computed from this set. Since
the set Ki(seed(T,M0)) is finite, this means that all intermediate knowledge
bases in the saturation procedure are finite.

– For the update rule, we have to check that given a knowledge base K, term
t, labels �1, . . . , �k, indices 1 ≤ i1, . . . in ≤ k, variables x1, . . . , xn ∈ X and
recipe variables X1, . . . , Xn ∈ Y, whether

∃R. k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, x1), . . . , k�1,...,�in (Xn, xn) ∈ cons(Ksolved).

Furthermore, if the check succeeds then we have to compute one such R. We
will show that can be achieved if K is finite (see Lemma 2).

– The saturation procedure may itself not terminate even if the initial knowl-
edge base is finite. As pointed out in the Introduction, we conjecture that
the saturation procedure terminates for subterm convergent rewrite systems,
but were unable to show the termination.

14

The following lemma allows us to compute the sat(Ki(T)) from the set
sat(Ki(seed(M0, T))) where M0 is the set of public names occurring in T.

Lemma 1. Let T be a ground trace and MT ⊆ M be the public names occur-
ring in T . Let KM = {{k(m,m) ⇐}m∈M ∪ {i(m,m) ⇐}m∈M ∪ {ri(m,m) ⇐

}m∈M}.Then sat(Ki(T)) = sat(Ki(seed(MT , T))) ∪KM.

The following lemma implies that the update step terminates if we only have
a finite number of solved statements in the knowledge base.

Lemma 2. Given a finite set of statements K, term t, labels �1, . . . , �k, indices
1 ≤ i1, . . . in ≤ k, variables x1, . . . , xn ∈ X and recipe variables X1, . . . , Xn ∈

Y, it is decidable if there is an R such that k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, x1),
. . . , k�1,...,�in (Xn, xn) ∈ cons(Ksolved). If the answer to the decision procedure is
“Yes”, then we can compute one such R.

5.2 Algorithm for checking equivalence

Once we constructed saturated knowledge bases for the seed statements for
ground determinate processes P0 and P1, we can check trace equivalence ≈ct.
The algorithm for checking ≈ct for determinate processes, automatically gives
an algorithm for checking ≈ft for non-determinate processes. It suffices to check
for T �ct P for a ground trace T and ground determinate process P . This basi-
cally involves checking two tests which are summarized in Figure 4. We briefly
describe them below.

– Reach checks whether all sequence of actions executable by T are also exe-
cutable by P . To do this, we carry out the following operations for each state-

ment rl1,...,ln ⇐ {kwi(Xi, xi)}i∈{1,...,m}

�
∈ {sat(seed(T))}solved. (a) First we

pick fresh constants c1, . . . , ck for each of the variables occurring in l1, . . . , ln

and fix a bijection σ between them. (b) Next for each 1 ≤ i ≤ n s.t. li
is in(di, ti), we construct one recipe Ri such that kl1σ,...,li−1σ(Ri, tiσ) ∈

H({sat(seed(T))}solved). Such an Ri exists thanks to the completeness of the
saturation procedure. We let Mi = in(di, Ri). (c) For each 1 ≤ i ≤ n s.t.

li = test or out(di) we let Mi = li. (d) We check if (P, ∅)
M1,...,Mn======⇒ (T �

, ϕ).
If all the Reach tests pass then we go to test Identity. Otherwise we
declare T to be not trace-contained in P .

– The test Identity checks that all the equality tests that hold after an
execution of T hold after a similar execution in P . In order to do this,
we carry out the following operations for each statement ril1,...,ln(R,R

�) ⇐

{kwi(Xi, xi)}i∈{1,...,m}

�
∈ {sat(seed(T))}solved. We construct M1, . . . ,Mn as

in the Reach test and check if there is a T
� such that (P, ∅)

M1,...,Mn======⇒ (T �
, ϕ)

and the recipes R{Xi �→ xiσ } and R
�{Xi �→ xiσ } are equal in frame ϕ.

Note that performing the tests requires deciding if, given t, and w, kw(R, t) ∈

H(K) for some recipe R for a knowledge base K containing only solved state-

ments. This is similar to checking if
�
kw(R, t) ⇐

�
∈ cons(K).

15

Theorem 4. Let T be a ground trace and let P be a ground determinate process.
Let K be the set of solved statements from a saturated knowledge base associated
to T . Then T �ct P iff all the tests in Figure 4 hold.

Reach

�
rl1,...,ln ⇐ {kwi(Xi, xi)}i∈{1,...,m}

�
∈ {sat(seed(T))}solved

c1, . . . , ck fresh constants
σ : vars(l1, . . . , ln) → {c1, . . . , ck} is a bijection

kl1σ,...,li−1σ(Ri, tiσ) ∈ H({sat(seed(T))}solved) for all i s.t. li = in(di, ti)
Mi = li if li ∈ {test,out()} Mi = in(di, Ri) if li = in(di, ti)

(P, ∅)
M1,...,Mn=======⇒ (T �

, ϕ)

Identity

�
ril1,...,ln(R,R

�) ⇐ {kwi(Xi, xi)}i∈{1,...,m}

�
∈ {sat(seed(T))}solved

c1, . . . , ck fresh constants
σ : vars(l1, . . . , ln) → {c1, . . . , ck} is a bijection

kl1σ,...,li−1σ(Ri, tiσ) ∈ H({sat(seed(T))}solved) for all i s.t. li = in(ti)
Mi = li if li ∈ {test,out()} Mi = in(di, Ri) if li = in(di, ti)

(P, ∅)
M1,...,Mn=======⇒ (T �

, ϕ) such that (Rω = R
�
ω)ϕ where ω = {Xi �→ xiσ}

Fig. 4: Tests for checking trace inclusion

6 Prototype and case studies

We implemented the procedure for checking equivalence in a prototype, AKiSs
(Active Knowledge in Security protocols). AKiSs is written in OCaml and has
about 2000 lines of source code, including code for computing complete sets of
finite variants and complete sets of equational unifiers. For protocol specifica-
tion, we allow for an operator interleave which models parallel composition of
processes and an operator sequence for modeling protocols structured in phases.

We used AKiSs to verify the equivalences in Examples 5 and 6. Using
AKiSs we were able to verify strong secrecy for Denning-Sacco-Blanchet [11]
and Needham-Schroeder-Lowe (NSL) [36], resistance to guessing attacks in the
EKE protocol [9], and, more interestingly, anonymity of the FOO [32] and
Okamoto [38] electronic voting protocols.3 To our knowledge, AKiSs is the
only tool that can verify FOO and Okamoto automatically. We briefly discuss
the salient points of these examples below. AKiSs along with all the discussed
examples is available on: http://www.lsv.ens-cachan.fr/~ciobaca/akiss/.
Details of the modeling can also be found in [16].

3 Please note that as defined in [38], modeling of Okamoto’s protocol requires private
channels. As we do not have private channels in our calculus, we transform the
protocol so that every message sent by honest participants on a private channel is
sent encrypted under a key not known to the adversary

16

Strong flavors of confidentiality. The strong secrecy property was introduced by
Blanchet in [11] and we rephrase it here in our setting. Let P be a protocol with
x as the only free variable of P. Then x is said to be strongly secret if

in(c, x1).in(c, x2).(P{x �→ x1}) ≈t in(c, x1).in(c, x2).(P{x �→ x2}).

Intuitively, the attacker cannot distinguish the processes using variables x1 and
x2 even though it can choose arbitrary (public) values for these variables. The
definition generalizes to multiple variables in the expected way. We illustrate this
property on a Denning-Sacco-Blanchet protocol. Informally, the protocol can be
described as follows.

A → B : aenc(sign(pair(pk(ska), pair(pk(skb, k))), ska), pk(skb))
B → A : enc(x, k)

A sends to B a fresh symmetric session key k together with A’s and B’s public
keys. This is signed with A’s secret key and (asymmetrically) encrypted with B’s
public key. Upon receiving this message, B decrypts it, checks the signature and
uses the fresh session key to symmetrically encrypt a secret x. We used AKiSs
to verify this protocol for strong secrecy of x (with one session of A and B).
This protocol is determinate, and hence we used ≈ct to verify the protocol. The
verification succeeds as expected.

A variant of the protocol [11] consists in letting A also send out a secret y

encrypted with k changing the first message to

A → B : pair(aenc(sign(pair(pk(ska), pair(pk(skb, k))), ska), pk(skb)), enc(y, k))

In this case the protocol does not respect strong secrecy of x, y as, by choosing
x1 = y1 and x2 �= y2, the attacker can distinguish the two situations by testing
the equality of the encryptions of x and y. This attack is again found by AKiSs.
AKiSs also verifies strong secrecy of the nonce generated by the responder in
the Needham-Schroeder-Lowe (NSL) [36] protocol. Once again, the modeling of
NSL leads to determinate processes, and we used ≈ct for our verification.

We also used AKiSs to verify the above protocols for real-or-random secrecy.
This property is useful to model resistance to offline guessing attacks in password
protocols [8]. We show that the EKE protocol [9] is resistant to offline guessing
attacks. As EKE also leads to determinate processes, we used the ≈ct relation.

Anonymity for electronic voting protocol. A voting protocol must respect voter
privacy: the adversary should not be able to learn how each voter voted. AKiSs
can automatically verify voter privacy in the FOO electronic voting protocol [32]
and the Okamoto protocol [38]. Voter privacy is naturally modeled as an equiva-
lence property [26, 7]: it is not possible to distinguish the situation where honest
voter A votes ‘yes’ and honest B votes ‘no’ from the situation that A votes ‘no’
and B votes ‘yes’. Note that our modeling of the protocols is exactly the same as
in [26]. We assume that only voters A and B are honest while all other entities
are dishonest. An arbitrary number of dishonest voters are however subsumed

17

by the attacker and need not be modeled directly. Both the protocols do not
lead to determinate processes. Therefore, we proved the relation ≈ft . To our
knowledge, no other tool can handle this automatically. We are aware of two
other attempts for verifying the FOO protocol. Using ProVerif [11], Delaune
et al. [28], verify a transformation of the protocol. However, the soundness of
this transformation has never been proven. Chothia et al. [20] verify a different
notion of anonymity (also based on process equivalence) using the µCRL tool.
However, the attacker they consider is only an observer that cannot interact with
the protocol participants, yielding a finite state system.

Efficiency. On a standard modern laptop, AKiSs takes a few minutes (e.g. 3
mins for FOO) to carry out the above verification. The use of a multi-core server
already reduces these timings by about 40%. We expect that some optimizations
of the saturation procedure and the use of more efficient data structures will di-
minish these times significantly. Most of the computational effort goes into the
saturation of the traces. Interleaving individual roles of a protocol introduces an
exponential blowup on the number of traces and saturations to perform. How-
ever, it would be straightforward to scale to larger protocols and more sessions
by parallelizing the saturation of these traces (e.g. on clusters of machines).

7 Conclusion and future work

We present a novel Horn-clause resolution based procedure for verifying equiv-
alence properties for a bounded number of sessions of cryptographic protocols.
This approach is validated by implementing it in the tool AKiSs, and we are
able to handle examples which are out of the scope of existing tools.

There are several directions for future work. The implementation of the tool
should be optimized and more examples from electronic voting, RFID protocols
and auction protocols which all have requirements stated in terms of equivalences
should be analyzed. We would also like to take disequalities into account. It will
allow to verify processes with else branches, important in a number of practical
examples, e.g., passport protocols discussed in [5]. Another direction would be
to extend the procedure to allow AC (Associative/Commutative) operators in
order to treat protocols based on exclusive-or or Diffie-Hellman exponentiations.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th Symposium on Principles of Programming Languages (POPL’01), pages
104–115. ACM Press, 2001.

3. M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science,
322(3):427–476, 2004.

4. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Inf. Comput., 148(1):1–70, 1999.

18

5. M. Arapinis, T. Chothia, E. Ritter, and M. D. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In 23rd Computer Security Foundations
Symposium (CSF’10), pages 107–121. IEEE Comp. Soc. Press, 2010.

6. A. Armando et al. The AVISPA tool for the automated validation of internet
security protocols and applications. In 17th International Conference on Computer
Aided Verification (CAV’05), LNCS, pages 281–285. Springer, 2005.

7. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In 21st Computer Security Foundations
Symposium (CSF’08). IEEE Comp. Soc. Press, 2008.

8. M. Baudet. Deciding security of protocols against off-line guessing attacks. In
12th Conference on Computer and Communications Security (CCS’05), pages 16–
25. ACM Press, 2005.

9. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based pro-
tocols secure against dictionary attacks. In Symposium on Security and Privacy
(S&P’92), pages 72–84. IEEE Comp. Soc. Press, 1992.

10. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE
Comp. Soc. Press, 2001.

11. B. Blanchet. Automatic proof of strong secrecy for security protocols. In Sympo-
sium on Security and Privacy (S&P’04), pages 86–100, 2004.

12. B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equiv-
alences for Security Protocols. In Symposium on Logic in Computer Science, pages
331–340. IEEE Comp. Soc. Press, 2005.

13. J. Borgström. Equivalences and Calculi for Formal Verifiation of Cryptographic
Protocols. Phd thesis, EPFL, Switzerland, 2008.

14. J. Borgström, S. Briais, and U. Nestmann. Symbolic bisimulation in the spi calcu-
lus. In 15th Int. Conference on Concurrency Theory (CONCUR’04), volume 3170
of LNCS, pages 161–176. Springer, 2004.

15. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Analysing unlinkability and
anonymity using the applied pi calculus. In 23rd Computer Security Foundations
Symposium (CSF’10), pages 107–121. IEEE Comp. Soc. Press, 2010.

16. R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence
properties of cryptographic protocols. Technical report, Oct. 2011. http://hal.
inria.fr/inria-00632564/en/.

17. V. Cheval, H. Comon-Lundh, and S. Delaune. Automating security analysis: sym-
bolic equivalence of constraint systems. In International Joint Conference on Au-
tomated Reasoning (IJCAR’10), LNAI, pages 412–426. Springer, 2010.

18. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative
tests and non-determinism. In 18th Conference on Computer and Communications
Security (CCS’11), pages 321–330. ACM Press, 2011.

19. Y. Chevalier and M. Rusinowitch. Decidability of equivalence of symbolic deriva-
tions. Journal of Automated Reasoning, 2010. To appear.

20. T. Chothia, S. Orzan, J. Pang, and M. Torabi Dashti. A framework for automat-
ically checking anonymity with mu crl. In 2nd Symposium on Trustworthy Global
Computing (TGC’06), volume 4661 of LNCS, pages 301–318. Springer, 2007.

21. Ş. Ciobâcă. Computing finite variants for subterm convergent rewrite systems.
Research Report LSV-11-06, LSV, ENS Cachan, France, 2011.

22. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of
some algebraic properties. In 16th International Conference on Rewriting Tech-
niques and Applications (RTA’05), volume 3467 of LNCS, pages 294–307. Springer,
2005.

19

23. V. Cortier and S. Delaune. A method for proving observational equivalence. In
22nd Computer Security Foundations Symposium (CSF’09), pages 266–276. IEEE
Comp. Soc. Press, 2009.

24. M. Dahl, S. Delaune, and G. Steel. Formal analysis of privacy for vehicular
mix-zones. In 15th European Symposium on Research in Computer Security (ES-
ORICS’10), volume 6345 of LNCS, pages 55–70. Springer, 2010.

25. S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the applied pi
calculus. In 29th Conference on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS’09), volume 4 of Leibniz International Proceedings
in Informatics, pages 169–180. Leibniz-Zentrum für Informatik, 2009.

26. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

27. S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied
pi calculus. Journal of Computer Security, 18(2):317–377, Mar. 2010.

28. S. Delaune, M. D. Ryan, and B. Smyth. Automatic verification of privacy properties
in the applied pi-calculus. In 2nd Joint iTrust and PST Conferences on Privacy,
Trust Management and Security (IFIPTM’08), volume 263 of IFIP Conference
Proceedings, pages 263–278. Springer, 2008.

29. D. Dolev and A. Yao. On the security of public key protocols. In 22nd Symposium
on Foundations of Computer Science (FOCS’81), pages 350–357. IEEE Comp. Soc.
Press, 1981.

30. L. Durante, R. Sisto, and A. Valenzano. Automatic testing equivalence verification
of spi calculus specifications. ACM Transactions on Software Engineering and
Methodology, 12(2):222–284, 2003.

31. S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic protocol
analysis modulo equational properties. In Foundations of Security Analysis and
Design V, volume 5705 of LNCS, pages 1–50. Springer, 2009.

32. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In Advances in Cryptology — AUSCRYPT ’92, volume 718 of
LNCS, pages 244–251. Springer, 1992.

33. J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters,
95(3):401–408, 2005.

34. H. Hüttel. Deciding framed bisimilarity. In 4th International Workshop on Verifi-
cation of Infinite-State Systems (INFINITY’02), pages 1–20, 2002.

35. J. Liu and H. Lin. A complete symbolic bisimulation for full applied pi calculus. In
36th Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM’10), volume 5901 of LNCS, pages 552–563. Springer, 2010.

36. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), volume 1055 of LNCS, pages 147–166. Springer, 1996.

37. P. Narendran, F. Pfenning, and R. Statman. On the unification problem for carte-
sian closed categories. J. Symb. Log., 62(2):636–647, 1997.

38. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In 5th
Int. Security Protocols Workshop, volume 1361 of LNCS, pages 25–35. Springer,
1997.

39. A. Tiu and J. Dawson. Automating open bisimulation checking for the spi-calculus.
In 23rd Computer Security Foundations Symposium (CSF’10), pages 307–321.
IEEE Comp. Soc. Press, 2010.

40. C. Weidenbach. Towards an automatic analysis of security protocols in first-order
logic. In 16th International Conference on Automated Deduction (CADE’99), vol-
ume 1632 of LNCS, pages 314–328. Springer, 1999.

20

