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Automatic verification of privacy
properties in the applied pi calculus!

Stéphanie Delaune, Mark Ryan, and Ben Smyth

Abstract We develop a formal method verification technique for crypto-
graphic protocols. We focus on proving observational equivalences of the
kind P ∼ Q, where the processes P and Q have the same structure and differ
only in the choice of terms. The calculus of ProVerif, a variant of the applied
pi calculus, makes some progress in this direction. We expand the scope of
ProVerif, to provide reasoning about further equivalences. We also provide an
extension which allows modelling of protocols which require global synchro-
nisation. Finally we develop an algorithm to enable automated reasoning. We
demonstrate the practicality of our work with two case studies.

1 Introduction

Security protocols are small distributed programs that aim to provide some
security related objective over a public communications network like the In-
ternet. Considering the increasing size of networks and their dependence on
cryptographic protocols, a high level of assurance is needed in the correctness
of such protocols. It is difficult to ascertain whether or not a cryptographic
protocol satisfies its security requirements. Numerous protocols have ap-
peared in literature and have subsequently been found to be flawed [13, 14, 5].
Typically, cryptographic protocols are expected to achieve their objectives in

Stéphanie Delaune
LSV, ENS Cachan & CNRS & INRIA, France, e-mail: delaune@lsv.ens-cachan.fr

Mark Ryan · Ben Smyth
School of Computer Science, University of Birmingham, UK, e-mail: {B.A.Smyth,
M.D.Ryan}@cs.bham.ac.uk

! This work has been partly supported by the ARA SESUR project AVOTÉ and the
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the presence of an attacker that is assumed to have full control of the network
(sometimes called the Dolev-Yao attacker). He can eavesdrop, replay, inject
and block messages. The attacker can also modify them by performing cryp-
tographic operations when in possession of the required keys. Furthermore
the attacker may be in control of one or more of the protocol’s participants.
With no more than the abilities listed, and irrespective of the underlying
cryptographic algorithms, numerous protocols have been found to be vul-
nerable to attack. Formal verification of cryptographic protocols is therefore
required to ensure that cryptographic protocols can be deployed without the
risk of damage.

Traditionally cryptographic protocols have been required to satisfy secrecy
and authentication properties [6]. These requirements have been successfully
verified by modelling them as reachability problems. Current research into
applications such as electronic voting, fair exchange and trusted computing
has resulted in a plethora of new requirements which protocols must sat-
isfy (e.g. [11, 4]). Some of these properties cannot easily be expressed using
traditional reachability techniques but can be written as equivalences. For
example, the privacy, receipt-freeness and coercion-resistance properties of
electronic voting protocols can be expressed using equivalences (see [12, 7]).

We focus on proving equivalences of the kind P ∼ Q, where the processes P
and Q have the same structure and differ only in the choice of terms. For
example, the secret ballot (privacy) property of an electronic voting protocol
can be expressed as

P (skva, v1) | P (skvb, v2) ∼ P (skva, v2) | P (skvb, v1)

where P is the voter process with two parameters: its secret key (skva, skvb)
and the candidate for whom he wish to cast their vote (here v1, v2). His-
torically many applications of equivalences to prove security requirements of
cryptographic protocols have relied upon hand written proofs [12, 7]. Such
proofs are time consuming and error prone. Accordingly, we direct our at-
tention to automated techniques. The calculus developed by Blanchet et al.
makes some progress in this direction [3]. However, the method developed
for proving observational equivalence is not complete and is unable to prove
certain interesting equivalences.

Contribution. We build upon [3] to provide reasoning about further equiv-
alences (see Section 2). We also extend the syntax to allow the modelling
of a new class of processes which require global synchronisation. Finally we
develop an algorithm to enable automated reasoning about security require-
ments. The focus of our work is to model the privacy properties increasingly
found in cryptographic protocols (Section 3). We demonstrate the practical
application of our contribution with case studies (Sections 4 and 5). Using
our approach we provide the first automated proof that the electronic voting
protocol due to Fujioka, Okamoto & Ohta (FOO) [10] satisfies privacy. As a
second case study we provide a formal methods proof that the Direct Anony-
mous Attestation (DAA) [4] protocol also satisfies privacy (the DAA authors



provided a provable security proof). An extended version of this paper [9] and
our ProVerif source code are available at http://www.cs.bham.ac.uk/˜bas/.

Related work. Kremer & Ryan [12] have previously demonstrated the elec-
tronic voting protocol FOO satisfies fairness, eligibility and privacy. The first
two properties were verified automatically using ProVerif, and the third relied
on a hand proof. Backes et al. [2] model a variant of DAA and provide some
proofs. We observe that their model is not accurate with regards to DAA due
to some subtleties in their formalisation. Nevertheless their idea of modelling
synchronisation by private channel communication influenced the design of
our translator.

2 Calculus of ProVerif

The process calculi of Blanchet et al. [3], used by the tool ProVerif, is a
variant of the applied pi calculus [1], a process calculi for formally modelling
concurrent systems and their interactions. In this paper we use the phrase
calculus of ProVerif to mean the calculus defined in [3], and ProVerif software
tool to refer to the software tool developed in accompaniment of [3].

2.1 Syntax and informal semantics

The calculus assumes an infinite set of names and an infinite set of vari-
ables. It also assumes a signature Σ, i.e. a finite set of function symbols each
with an associated arity. A function symbol with arity 0 is also called a con-
stant. We distinguish two categories of function symbols: constructors f and
destructors g and we use h to range over both. We use standard notation
for function application, i.e. h(M1, . . . , Mn). Destructors are partial, non-
deterministic operations, that processes can apply to terms. They represent
primitives that can visibly succeed or fail, while constructors and the asso-
ciated equational theory apply to primitives that always succeed but may
return “junk”. The grammar for terms/term evaluations is given below.

M, N ::= term D ::= term evaluation
a, b, c name M term
x, y, z variable choice[D, D′] choice term eval.
choice[M, M ′] choice term h(D1, . . . , Dn) function eval.
f(M1, . . . , Mn) constructor

We equip the signature Σ with an equational theory, say E, i.e. a finite
set of equations of the form Mi = Ni, where Mi and Ni are terms without
names. The equational theory is then obtained from this set of equations by



reflexive, symmetric and transitive closure, closure by substitution of terms
for variables and closure by context application. We write M =E N (resp.
M !=E N) for equality (resp. inequality) modulo E.

Processes are built up in a similar way to processes in the pi calculus,
except that messages can contain terms/term evaluations (rather than just
names). In the grammar described below, M and N are terms, D is a term
evaluation, a is a name, x a variable and t an integer.

P, Q, R ::= processes
null null process
P | Q parallel composition
!P replication
new a; P name restriction
let x = D in P else Q term evaluation
in(M, x); P message input
out(M, N); P message output
phase t; P weak phase

We note that the ProVerif software tool allows the definition of a single main
process which in turn may refer to subprocesss of the form “let P = Q.” The
tool also permits the use of comments in the form (* comment *).

The choice operator allows us to model a pair of processes which have
the same structure and differ only in the choice of terms and terms evalua-
tions. We call such a pair of processes a biprocess. Given a biprocess P , we
define two processes fst(P ) and snd(P ) as follows: fst(P ) is obtained by re-
placing all occurrences of choice[M, M ′] with M and choice[D, D′] with D
in P . Similarly, snd(P ) is obtained by replacing choice[M, M ′] with M ′

and choice[D, D′] with D′ in P . We define fst(D), fst(M), snd(D) and snd(M)
similarly.

As usual, names and variables have scopes, which are delimited by restric-
tions and by inputs. We write fv(P ), bv(P ) (resp. fn(P ) and bn(P )) for the
sets of free and bound variables (resp. names) in P . A process is closed if
it has no free variables (but it may contain free names). A context C[ ] is a
process with a hole. We obtain C[P ] as the result of filling C[ ]’s hole with P .
An evaluation context C is a closed context built from [ ], C | P , P | C and
new a; C. We sometimes refer to contexts without choice as plain contexts.

The major difference between the syntax of the applied pi calculus and the
calculus of ProVerif, is the introduction of the choice operator. In addition
there are some minor changes. For instance, communication is permitted on
arbitrary terms, not just names. Function symbols are supplemented with
destructors. Active substitutions are removed in favour of term evaluations.
The syntax does not include the conditional “if M = N then P else Q”,
which can be defined as “let x = equals(M, N) in P else Q” where x !∈ fv(P )
and equals is a destructor with the equation equals(x, x) = x. We omit
“else Q” when the process Q is null. Finally the calculus of ProVerif does
not rely on a sort system. We believe that processes written in the calculus of



ProVerif, can be mapped to semantically equivalent processes in the applied
pi calculus and vice-versa, although proving this remains an open problem.
This can easily be extended to biprocesses.

2.2 Operational semantics

The operational semantics of processes in the calculus of ProVerif, are de-
fined by three relations, namely term evaluation ⇓, structural equivalence ≡
and reduction −→. Structural equivalence and reductions are only defined on
closed processes. We write −→∗ for the reflexive and transitive closure of −→,
and −→∗≡ for its union with ≡. The operational semantics for the calculus of
ProVerif differ in minor ways from the semantics of the applied pi calculus.
Structural equivalence is the smallest equivalence relation on processes that is
closed under application of evaluation contexts and some other standard rules
such as associativity and commutativity of the parallel operator. Reduction is
the smallest relation on biprocesses closed under structural equivalence and
application of evaluation contexts such that

Red I/O out(N, M); Q | in(N ′, x); P −→ Q | P{M/x}
if fst(N) = fst(N ′) and snd(N) = snd(N ′)

Red Fun 1 let x = D in P else Q −→ P{choice[M1,M2]/x}
if fst(D) ⇓ M1 and snd(D) ⇓ M2

Red Fun 2 let x = D in P else Q −→ Q
if there is no M1 such that fst(D) ⇓ M1 and

there is no M2 such that snd(D) ⇓ M2

Red Repl !P −→ P |!P

2.3 Extension to processes with weak phases

Many protocols can be broken into phases, and their security properties can
be formulated in terms of these phases. Typically, for instance, if a protocol
discloses a session key after the conclusion of a session, then the secrecy
of the data exchanged during the session may be compromised but not its
authenticity. To enable modelling of protocols with several phases the calculus
of ProVerif is extended [3]. The syntax of processes is supplemented with a
phase prefix “phase t; P”, where t is a non-negative integer. Intuitively, t
represents a global clock, and the process “phase t; P” is active only during
phase t. However, it is possible that not all instructions of a particular phase
are executed prior to a phase transition. Moreover, parallel processes may
only communicate if they are under the same phase.



Example 1. Let P = phase 1; out(c, a) | phase 2; out(c, b). The process P can
output b without having first output a.

The semantics of processes are extended to deal with weak phases (see [3]).

2.4 Observational equivalence

The notion of observational equivalence was introduced by Abadi & Four-
net [1], subsequently Blanchet, Abadi & Fournet [3] defined strong obser-
vational equivalence. This paper will use strong observational equivalence,
henceforth we shall use observational equivalence to mean strong observa-
tional equivalence. We first recall the standard definition of observational
equivalence. We write P ↓M when P emits a message on the channel M , that
is, when P ≡ C[out(M ′, N); R] for some evaluation context C[ ] that does
not bind fn(M) and M =E M ′.

Definition 1 ([3]). Observational equivalence ∼ is the largest symmetric
relation R on closed processes such that P R Q implies:

1. if P ↓M then Q ↓M ;
2. if P → P ′ then there exists Q′ such that Q → Q′ and P ′ R Q′;
3. C[P ] R C[Q] for all evaluation contexts C.

Intuitively, a context may represent an attacker, and two processes are obser-
vationally equivalent if they cannot be distinguished by any attacker. Given a
biprocess P , we say that P satisfies observational equivalence when we have
that fst(P ) ∼ snd(P ).

A reduction P −→ Q for a biprocess P implies the corresponding processes
have reductions fst(P ) −→ fst(Q) and snd(P ) −→ snd(Q). However, reductions
in fst(P ) and snd(P ) do not necessarily correspond to any biprocess reduc-
tion. When such a corresponding reduction does exist the processes fst(P )
and snd(P ) satisfy uniformity under reduction (UUR):

Definition 2 ([3]). A biprocess P satisfies uniformity under reduction if:

1. fst(P ) −→ Q1 implies that P −→ Q for some biprocess Q with fst(Q) ≡ Q1,
and symmetrically for snd(P ) −→ Q2;

2. for all plain evaluation contexts C, for all biprocess Q, C[P ] → Q implies
that Q satisfies UUR.

Blanchet et al. [3] have shown that if a biprocess P satisfies uniformity under
reductions then P satisfies observational equivalence. The ProVerif software
automatically verifies whether its input satisfies uniformity under reduction
and thus enables us to prove observational equivalence in some cases.



2.5 Limitations of the calculus

There are trivial equivalences (see Example 2 described below) which the
calculus of ProVerif is unable to prove since the definition of observational
equivalence by uniformity under reductions is too strong. We overcome this
problem with data swapping.

Example 2. The equivalence out(c, a) | out(c, b) ∼ out(c, b) | out(c, a) holds
trivially since the processes are in fact structurally equivalent. But the cor-
responding biprocess out(c, choice[a, b]) | out(c, choice[b, a]) does not satisfy
uniformity under reductions and therefore the equivalence cannot be proved
by ProVerif.

Moreover, the phase semantics introduced by the calculus of ProVerif [3]
are insufficient to model protocols which require synchronisation, as the phase
semantics do not enforce that all instances of a phase must be completed prior
to phase progression. We solve this problem with the introduction of strong
phases.

Both of these problems are encountered when modelling cryptographic
protocols from literature. As case studies we demonstrate the suitability of
our approach by modelling the privacy properties of the electronic voting
protocol FOO [10] and Direct Anonymous Attestation (DAA) [4].

3 Extending the calculus

To overcome the limitations stated in the previous section, we extend the
calculus with strong phases and data swapping.

3.1 Extension to processes with strong phases

Similarly to weak phases the syntax of processes is supplemented with a
strong phase prefix “strong phase t; P”, where t is a non-negative integer. A
strong phase represents a global synchronisation and t represents the global
clock. The process strong phase t; P is active only during strong phase t and
a strong phase progression may only occur once all the instructions under
the previous phase have been executed.

Example 3. Consider our earlier example (Example 1) with the use of strong
phase. Now, the process

strong phase 1; out(c, a) | strong phase 2; out(c, b)

cannot output b without having previously output a.



3.2 Extension to processes with data swapping

Let us first consider the background to our approach. Referring back to Ex-
ample 2 we recall the biprocess Q = out(c, choice[a, b]) | out(c, choice[b, a])
which does not satisfy UUR. We note that fst(Q) = out(c, a) | out(c, b) and
snd(Q) = out(c, b) | out(c, a). Since out(c, b) | out(c, a) ≡ out(c, a) | out(c, b)
it seems reasonable to rewrite snd(Q) as out(c, a) | out(c, b), enabling us to
write Q as out(c, choice[a, a]) | out(c, choice[b, b]) which is semantically equiv-
alent to out(c, a) | out(c, b). Our new biprocess satisfies uniformity under
reduction, and thus observational equivalence. It therefore seems possible
(under certain circumstances) to swap values from the left to the right side
of the parallel operator. Sometimes the swap is not done initially but instead
immediately after a strong phase. To specify data swapping we introduce the
special comment (**swap*) in process descriptions, which can be seen as a
proof hint. Returning to our example, we would rewrite Q as

Q′ = (**swap*) out(c, choice[a, b]) | (**swap*) out(c, choice[b, a])
= out(c, choice[a, a]) | out(c, choice[b, b]).

3.3 Automated reasoning with ProVerif

To allow automated reasoning we describe a translator which accepts as input
processes written in our extended language. It will also include a single main
process and subprocesses of the form “let P = Q”, subject to the following
restrictions.

1. The commands strong phase t; and (**swap*) can only appear in a single
subprocess defined using the let keyword (not in the main process);

2. The subprocess defined using the let keyword that contain strong phases
and data swapping must be instantiated precisely twice in the main pro-
cess. Moreover, it must be of the form let P = α, where α is a process that
is sequential until its last strong phase, at which point it is an arbitrary
process. Formally α is given by the grammar below:

α := R
∣

∣new a; α
∣

∣in(M, x); α
∣

∣out(M, N); α
∣

∣let x = D in α
∣

∣strong phase t; α

where R is an arbitrary processes without data swapping and strong
phases;

3. We further require that (**swap*) may only occur at the start of a sub-
process definition or immediately after a strong phase.

The translator outputs processes in the standard language of ProVerif, which
can be automatically reasoned about by the software tool. The pseudocode
of our algorithm is presented in Figure 1.



Step one of our translator makes the necessary modifications to subpro-
cesses. It defines each strong phase as an individual subprocess. Step two
handles the main process which combines the subprocesses defined in step
one in such a way that preserves notion of strong phases. The other parts of
the translator’s input are copied to the output verbatim. We demonstrate its
application with several toy examples (see Section 3.4) and two case studies
(see Sections 4 & 5).

Step 1: We replace any subprocess declaration of the form

let P = α0; strong phase 1; α1; strong phase 2; α2; . . . ; strong phase n; αn.

with the declarations

let P0 = α0; out(pc, M0).
let P1 = α1; out(pc, M1).

...
let Pn−1 = αn−1; out(pc, Mn−1).
let Pn = αn.

where Mi is a term consisting of a tuple containing each bound name in α0, α1, . . . , αi and
the free variables in αi+1, αi+2, . . . , αn.

Step 2: We replace instance declarations in the main process of the form

let ex = eN in P | let ex = eN ′ in P

with

new pc0; new pc′0; new pc1; new pc′1; . . . ; new pcn−1; new pc′
n−1; (

let ex = eN in let pc = pc0 in P0|

let ex = eN ′ in let pc = pc′0 in P0|
in(pc0, z0); in(pc′0, z′0); (* start strong phase 1 *) (

let M0 = z0 in let pc = pc1 in P1|
let M0 = z′0 in let pc = pc′1 in P1)|
...

in(pcn−1, zn−1); in(pc′
n−1, z′

n−1); (* start strong phase n *) (
let Mn−1 = zn−1 in Pn|
let Mn−1 = z′

n−1 in Pn)
)

If α0 starts with (**swap*), we further modify the above description, by replacing

let ex = eN in with let ex = choice[ eN, eN ′] in

let ex = eN ′ in with let ex = choice[ eN ′, eN ] in

Similarly, if αi starts with (**swap*) and 1 ≤ i ≤ n, we further modify the description

let Mi = zi in with let Mi = choice[zi, z
′

i
] in

let Mi = z′
i

in with let Mi = choice[z′
i
, zi] in

Fig. 1 Translator algorithm



3.4 Examples

Example 4. We begin by returning to our trivial observational equivalence:

out(c, a) | out(c, b) ∼ out(c, b) | out(c, a).

As the definition of observational equivalence by UUR is too strong, the
calculus, and therefore the software tool, are unable to reason about such
an equivalence. Using our data swapping syntax, the biprocess encoding the
previous equivalence is given below.

l e t P = (**swap*) out ( c , x ) .
process l e t x = choice [ a , b ] in P | l e t x = choice [ b , a ] in P

Our translator gives us the following biprocess, which ProVerif can success-
fully prove.

l e t P = out ( c , x ) .
process l e t x = choice [ choice [ a , b ] , choice [ b , a ] ] in P |

l e t x = choice [ choice [ b , a ] , choice [ a , b ] ] in P

Example 5. We consider the observational equivalence shown below:

out(c, a); strong phase 1; out(c, d) | out(c, b); strong phase 1; null

∼ out(c, a); strong phase 1; null | out(c, b); strong phase 1; out(c, d)

The pair of processes are both able to output a and b. We then have a
synchronisation and obtain the process out(c, d) | null ∼ null | out(c, d). To
allow ProVerif to prove such an equivalence we provide our translator with
the following input:

l e t P =out ( c , x ) ; strong phase 1 ; (**swap *) i f y=ok then out ( c , d ) .
process l e t x = a in l e t y = choice [ ok , ko ] in P |

l e t x = b in l e t y = choice [ ko , ok ] in P

Our translator produces the biprocess described below.

l e t P1 = out ( c , x ) ; out ( pc , y ) .
l e t P2 = i f y = ok then out ( c , c ) .
process new pc0 ;new pc1 ; (

l e t x = a in l e t y = choice [ ok , ko ] in l e t pc = pc0 in P1 |
l e t x = b in l e t y = choice [ ko , ok ] in l e t pc = pc1 in P1 |
in ( pc0 , y0 ) ; in ( pc1 , y1 ) ; (

l e t y = choice [ y0 , y1 ] in P2 |
l e t y = choice [ y1 , y0 ] in P2) )

Example 6. As our final example we consider the following equivalence:

out(c, a1); strong phase 1; out(c, a2) | out(c, b1); strong phase 1; out(c, b2)
∼ out(c, a1); strong phase 1; out(c, b2) | out(c, b1); strong phase 1; out(c, a2)



This is similar to Example 5 with two outputs after the strong phase. Again,
thanks to our translator, we are able to conclude on such an example.

4 E-voting protocol due to Fujioka et al.

In this section, we study the privacy property of the e-voting protocol due
to Fujioka et al. [10]. In [12], it is shown that this protocol provides fairness,
eligibility and privacy. However, the proof of privacy given in [12] is manual:
ProVerif is unable to prove it directly.

4.1 Description

The protocol involves voters, an administrator and a collector. The admin-
istrator is responsible for verifying that only eligible voters can cast votes
and the collector handles the collecting and publishing of votes. The protocol
requires three strong phases.

In the first phase, the voter gets a signature on a commitment to his vote
from the administrator, i.e. m = sign(blind(commit(v, k), r), ska) where k
is a random key, r is a blinding factor and ska is the private key of the ad-
ministrator. At the end of this first phase, the voter unblinds m and obtains
y = sign(commit(v, k), ska), i.e. the signature of his commitment. The sec-
ond phase of the protocol is the actual voting phase. The voter sends y to
the collector who checks correctness of the signature and, if the test succeeds,
enters (!, x, y) onto a list as an !-th item. The last phase of the voting pro-
tocol starts, once the collector decides that he received all votes, e.g. after a
fixed deadline. In this phase the voters reveal the random key k which allows
the collector to open the votes and publish them. The voter verifies that his
commitment is in the list and sends !, r to the collector. Hence, the collector
opens the ballots.

4.2 Modelling privacy in applied pi

Privacy properties have been successfully studied using equivalences. In the
context of voting protocols, the definition of privacy is rather subtle. We
recall the definition of privacy for electronic voting protocols given in [12]. A
voting protocol guarantees ballot secrecy (privacy) whenever a process where
Alice votes for candidate v1 and Bob votes for candidate v2 is observationally
equivalent to a process where their votes are swapped, i.e. Alice votes v2 and
Bob votes v1. We denote their secret keys skva and skvb respectively. In [12],



l e t V =
new k ;new r ;
l e t x = commit (v , k ) in

out ( c , ( pk ( skv ) , s i gn ( b l ind (x , r ) , skv ) ) ) ;
in ( c ,m2) ;
l e t y = unblind (m2, r ) in

i f checks ign (y , pka ) = x then

strong phase 1 ; (**swap*)

out ( c , y ) ;
strong phase 2 ;
in ( c , ( l , yprime ) ) ;
i f yprime = y then out ( c , ( l , k ) ) .

process

new ska ;new skva ;new skvb ;
l e t pka = pk ( ska ) in

out ( c , ( ska , pka , pk ( skva ) , pk ( skvb ) ) ) ; (
( l e t ( skv , v ) = ( skva , choice [ v1 , v2 ] ) in V) |
( l e t ( skv , v ) = ( skvb , choice [ v2 , v1 ] ) in V))

Process 1 FOO model (extended syntax)

they rely on hand proof techniques to show privacy on FOO. Our modelling
of FOO in the applied pi is similar to the one given in [8]. The underlying
equational theory is the same as in [12].

The main process given in Process 1 models the environment and specifies
how the other processes are combined. To establish privacy, we do not require
that the authorities are honest, so we do not need to model them and we
only consider two voter processes in parallel. First, fresh private keys for the
voters and the administrator are generated. The corresponding public keys
are then made available to the attacker. We also output the secret key of the
administrator. This allows the environment to simulate the administrator
(even a corrupted one) and hence we show that the privacy property holds
even in the presence of a corrupt administrator.

The process V given in Process 1 models the role of a voter. The specifi-
cation follows directly from our informal description. Note that we use the
strong phase command to enforce the synchronisation of the voter processes.
As mentioned initially in [12], the separation of the protocol into strong
phases is crucial for privacy to hold. We also provide a data swapping hint to
allow our translator to produce an output suitable for automatic verification
using ProVerif.

4.3 Analysis

We use our translator to remove all instances of strong phases and handle data
swapping. Our translator produces Process 2, which is suitable for automatic



l e t V1 =
new k ;new r ;
l e t x = commit (v , k ) in

out ( c , ( pk ( skv ) , s i gn ( b l ind (x , r ) , skv ) ) ) ;
in ( c ,m2) ;
l e t y = unblind (m2, r ) in

i f checks ign (y , pka ) = x then out ( pc , ( y , k ) ) .

l e t V2 =
out ( c , y ) ; out ( pc , ( y , k ) ) .

l e t V3 =
in ( c , ( l , yprime ) ) ; i f yprime = y then out ( c , ( l , k ) ) .

process

new ska ;new skva ;new skvb ;
l e t pka = pk ( ska ) in

out ( c , ( ska , pka , pk ( skva ) , pk ( skvb ) ) ) ;
new pc1 ;new pc2 ;new pc3 ;new pc4 ; (

( l e t ( skv , v)=(skva , choice [ v1 , v2 ] ) in l e t pc=pc1 in V1 ) |
( l e t ( skv , v)=(skvb , choice [ v2 , v1 ] ) in l e t pc=pc2 in V1 ) |
( in ( pc1 , ( y1 , k1 ) ) ; in ( pc2 , ( y2 , k2 ) ) ; (* strong phase 1*)(* swap*) (
( l e t (y , k)=choice [ ( y1 , k1 ) , ( y2 , k2 ) ] in l e t pc=pc3 in V2 ) |
( l e t (y , k)=choice [ ( y2 , k2 ) , ( y1 , k1 ) ] in l e t pc=pc4 in V2 ) ) ) |

( in ( pc3 , ( y3 , k3 ) ) ; in ( pc4 , ( y4 , k4 ) ) ; (* strong phase 2*) (
( l e t (y , k)=(y3 , k3 ) in V3) |
( l e t (y , k)=(y4 , k4 ) in V3) ) ) )

Process 2 Translated FOO model (ProVerif syntax)

verification using ProVerif. Hence, using our approach, we provide the first
automatic and complete proof that this protocol satisfies privacy.

5 Direct Anonymous Attestation (DAA)

The Direct Anonymous Attestation (DAA) scheme provides a means for re-
motely authenticating a trusted platform whilst preserving the user’s pri-
vacy [4]. In [15], two of the authors have shown that corrupt administrators
are able to violate the privacy of the host. Using our extended calculus we
are now able to provide a formal and automatic proof that the rectified pro-
tocol proposed in [15] satisfies its privacy requirements. We start with a short
description of the protocol (for a more complete description, see [4, 15]).



5.1 Description

The protocol can be seen as a group signature scheme without the ability to
revoke anonymity and an additional mechanism to detect rogue members. In
broad terms the host contacts an issuer and requests membership to a group.
If the issuer wishes to accept the request, it grants the host/TPM an attes-
tation identity credential. The host is now able to anonymously authenticate
itself as a group member to a verifier with respect its credential.

The protocol is initiated when a host wishes to obtain a credential. This
is known as the join protocol. The TPM creates a secret f value and a
blinding factor v′, where f = hash(hash(DAASeed‖hash(PK ′

I))‖cnt‖0). The
value DAASeed is a secret known only to the TPM, cnt is a counter used by
the TPM to keep track of how many times the Join protocol has been run
and PK ′

I is the long term public key of the issuer. The inclusion of PK ′

I

prevents cross issuer linkability [15]. The TPM then constructs the blind
message U := blind(f, v′) and NI := ζf

I , where ζI := hash(0‖bsnI) and
bsnI is the basename of the issuer (see [15] for further discussion on DAA
basenames). The U and NI values are submitted to the issuer I. The issuer
creates a random nonce value ne, encrypts it with the public key PKEK of
the host’s TPM and returns the encrypted value. The TPM decrypts the
message, revealing ne, and returns hash(U‖ne). The issuer confirms that the
hash is correctly formed. The issuer generates a nonce ni and sends it to
the host. The host/TPM constructs a signature proof of knowledge that the
messages U and NI are correctly formed. The issuer verifies the proof and
generates a blind signature on the message U . It returns the signature along
with a proof that a covert channel has not been used. The host verifies the
signature and proof and the TPM unblinds the signature revealing a secret
credential v (the signed f).

Once the host has obtained an anonymous attestation credential from the
issuer it is able to produce a signature proof of knowledge of attestation on
a message m. This is known as the sign/verify protocol. The verifier sends
nonce nv to the host. The host/TPM produce a signature proof of knowledge
of attestation on the message (nt‖nv‖b‖m), where nt is a nonce defined by the
TPM and b is a parameter. In addition the host computes NV := ζf , where
ζ := hash(1‖bsnV ) and bsnV is the basename of the verifier. Intuitively if a
verifier is presented with such a proof it is convinced that it is communicating
with a trusted platform and the message is genuine.

5.2 Modelling privacy in applied pi

The DAA protocol satisfies privacy whenever a process where Alice interacts
with the verifier is observationally equivalent to when Bob interacts with the



verifier. For privacy we require that both Alice and Bob have completed the
join protocol.

Signature and equational theory. The DAA protocol makes extensive
use of signature proofs of knowledge (SPK) to prove knowledge of and rela-
tions among discrete logarithms. We will discuss our formalism with an ex-
ample. The signature proof of knowledge SPK{(α, β) : x = gα ∧ y = hβ}(m)
denotes a signature proof of knowledge on the message m that x, y were
constructed correctly. This leads us to define function spk/3 to construct
an SPK. The first argument contains a tuple of secret values known to the
prover α, β. The second argument consists of a tuple of the values on which
the prover is claiming to have constructed correctly x, y, such that x = gα

and y = hβ. Finally the third argument is the message m on which the prover
produces a signature on. Verifying the correctness of a SPK is specific to its
construction, thus we must require a function checkspk for each SPK that
the protocol uses. To verify the SPK produced in the aforementioned exam-
ple the verifier must be in possession of the SPK itself and x, y, g, h, m. We
define the equation: checkspk(spk((α, β), (gα, hβ), m), gα, hβ , g, h, m) = ok.
A verifier can now check a SPK using an if statement.

Modelling the DAA protocol. As in FOO, the main process (see [9])
models the environment and specifies how the other processes are combined.
First, fresh secret keys for the TPMs, the issuer and the verifier are generated
using the restriction operator. We also generate two DAASeed values. The
public keys are then sent on a public channel, i.e. they are made available to
the intruder. We also output the secret key of the verifier and issuer since the
privacy property should be preserved even if they are corrupt. Next we input
the basenames bsnI , bsnV of the issuer and verifier. Then we instantiate two
instances of the DAA protocol with the necessary parameters.

Our encoding of the DAA protocol (see [9]) follows directly from our infor-
mal description. Note that we use the strong phase and data swapping com-
mands introduced by our extension to the calculus to ensure synchronisation.
The two instances of the DAA processes must first execute all instructions of
DAAJoin before moving onto DAASign. The separation of the protocol into
strong phases is crucial for privacy to hold.

5.3 Analysis

We use our translator to remove all instances of strong phases from our
encoding and produce code suitable for input to ProVerif. Our translator
produces a process (see [9]) which permits the automatic verification of the
privacy property using ProVerif. We are also able to detect the vulnerability
in the original DAA protocol and prove the optimisation presented in [15].



6 Conclusion

In this paper we have extended the class of equivalences which ProVerif is
able to automatically verify. More specifically we are able to reason about
processes which require data swapping and/or strong phases. Using the ap-
proach developed we are able to automatically verify the privacy properties
of the electronic voting protocol FOO and the Direct Anonymous Attestation
scheme. In future work, we would like to generalise our translation algorithm
and provide a formal proof of the correctness of our translator. Moreover we
plan to automate the swapping procedure.
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Abstract—Formal methods have proved their usefulness for

analyzing the security of protocols. Most existing results focus

on trace properties like secrecy (expressed as a reachability

property) or authentication. There are however several security

properties, which cannot be defined (or cannot be naturally de-

fined) as trace properties and require the notion of observational
equivalence. Typical examples are anonymity, privacy related

properties or statements closer to security properties used in

cryptography.

In this paper, we consider the applied pi calculus and we show

that for determinate processes, observational equivalence actually

coincides with trace equivalence, a notion simpler to reason with.

We exhibit a large class of determinate processes, called simple
processes, that capture most existing protocols and cryptographic

primitives. Then, for simple processes without replication nor

else branch, we reduce the decidability of trace equivalence

to deciding an equivalence relation introduced by M. Baudet.

Altogether, this yields the first decidability result of observational

equivalence for a general class of equational theories.

I. INTRODUCTION

Security protocols are paramount in today’s secure transac-
tions through public channels. It is therefore essential to obtain
as much confidence as possible in their correctness. Formal
methods have proved their usefulness for precisely analyzing
the security of protocols. In the case of a bounded number
of sessions, secrecy preservation is co-NP-complete [5], [24],
[25], and for an unbounded number of sessions, several
decidable classes have been identified (e.g. [23]). Many tools
have also been developed to automatically verify cryptographic
protocols (e.g. [9], [6]).

Most existing results focus on trace properties, that is, state-
ments that something bad never occurs on any execution trace
of a protocol. Secrecy and authentication are typical examples
of trace properties. There are however several security proper-
ties, which cannot be defined (or cannot be naturally defined)
as trace properties and require the notion of observational
equivalence. We focus here on the definition proposed in the
context of applied pi-calculus [2], which is well-suited for
the analysis of security protocols. Two processes P and Q

are observationally equivalent, denoted by P ≈ Q, if for any
process O the processes P | O and Q | O are equally able to
emit on a given channel and are (weakly) bisimilar. This means
that the process O cannot observe any difference between the
processes P and Q.

This work has been partially supported by the ANR-07-SESU-002 AVOTÉ.

Observational equivalence is crucial when specifying prop-
erties like anonymity that states that an observer cannot
distinguish the case where A is talking from the case where B

is talking (see [3]). Privacy related properties involved in
electronic voting protocols (e.g. [17]) also use equivalence
as a key notion and cannot be expressed in linear temporal
logic. Observational equivalence is also used for defining a
stronger notion of secrecy, called “strong secrecy” [10] or even
for defining authentication [4]. More generally, it is a notion
that allows to express flexible notions of security by requiring
observational equivalence between a protocol and an idealized
version of it, that magically realizes the desired properties.

Related work.: In contrast to the case of trace properties,
there are very few results on automating the analysis of
observational equivalence. Decidability results are limited to
fixed cryptographic primitives in spi-calculus (e.g. [21], [18]).
In applied-pi calculus, an alternative approach has been con-
sidered [16], [7], [11] for arbitrary cryptographic primitives.
The approach consists in designing stronger notions of equiv-
alences that imply observational equivalence. One of these
techniques has been implemented in ProVerif [11]. None of
these are however complete, that is, there exist observationally
equivalent processes that do not satisfy these stronger notions
of equivalences.

Our contributions.: One of the difficulties in proving
observational equivalence is the bisimulation property. Al-
though bisimulation-based equivalences may be simpler to
check than trace equivalences [22], in the context of cryp-
tographic protocols, it seems easier to simply check trace
equivalence, that is, equality of the set of execution traces
(modulo some equivalence relation between traces). In partic-
ular, most decision techniques have been developed for trace
properties only. However, it is well-known that this is not
sufficient to ensure observational equivalence. J. Engelfriet has
shown that observational equivalence and trace equivalence
actually coincide in a general model of parallel computation
with atomic actions, when processes are determinate [20].
Intuitively, a process P is determinate if after the same
experiment s, the resulting processes are equivalent, that is,
if P

s⇒ P � and P
s⇒ P �� then P � ≈ P ��. Our first contribution

is to generalize this result to the applied pi-calculus, which
consists in the pi-calculus algebra enriched with terms and
equational theories on terms.



Then we show that a large class of processes enjoys
the determinacy property. More precisely, we design the
class of simple processes and show that simple processes
are determinate. Simple processes allow replication, else
branches and arbitrary term algebra modulo an equational
theory. Consequently, this class captures most existing security
protocols and cryptographic primitives. In addition, our simple
processes are close to the fragment considered in [14] for
which cryptographic guarantees can be deduced from obser-
vational equivalence. The class of processes defined in [14] is
however not determinate but we believe that their result could
be easily extended to our class of simple processes, yielding
to a decision technique for proving indistinguishability in
cryptographic models.

Our third contribution is a decidability result for simple pro-
cesses without replication nor else branch and for convergent
subterm theories. Convergent subterm theories capture a wide
array of functions, e.g. pairing, projections, various flavors of
encryption and decryption, digital signatures, one-way hash
functions, etc. We show that trace equivalence of simple
processes without replication can be reduced to deciding an
equivalence relation introduced by M. Baudet and which has
been shown decidable for convergent subterm theories in [7].

Putting our three contributions together, we obtain decid-
ability of observational equivalence for a large and interesting
class of processes of the applied pi-calculus. This is the first
decidability result for a general class of equational theories.
Some of the proofs are omitted but can be found in [15].

II. THE APPLIED PI CALCULUS

The applied pi calculus [2] is a derivative of the pi calcu-
lus that is specialized for modeling cryptographic protocols.
Participants in a protocol are modeled as processes, and
the communication between them is modeled by means of
message passing.

A. Syntax
To describe processes in the applied-pi calculus, one starts

with a set of names N = {a, b, . . . , sk, k, n, . . .}, which is
split into the set Nb of names of basic types and the set Ch
of names of channel type (which are used to name com-
munication channels). We also consider a set of variables
X = {x, y, . . .}, and a signature F consisting of a finite set
of function symbols. We rely on a sort system for terms. The
details of the sort system are unimportant, as long as base types
differ from channel types. We suppose that function symbols
only operate on and return terms of base type.

Terms are defined as names, variables, and function symbols
applied to other terms. For N ⊆ N and X ⊆ X , the set of terms
built from N and X by applying function symbols in F is
denoted by T (N,X). Of course function symbol application
must respect sorts and arities. We write fv(T ) for the set
of variables occurring in T . The term T is said to be a
ground term if fv(T ) = ∅. We shall use u, v, . . . to denote
metavariables that range over both names and variables.

Example 1: Consider the following signature

F = {enc/2, dec/2, pk/1, � �/2, π1/1, π2/1}

that contains function symbols for asymmetric encryption,
decryption and pairing, each of arity 2, as well as projection
symbols and the function symbol pk, each of arity 1. The
ground term pk(sk) represents the public counterpart of the
private key sk.

In the applied pi calculus, one has plain processes, denoted
P,Q, R and extended processes, denoted by A, B,C. Plain
processes are built up in a similar way to processes in pi
calculus except that messages can contain terms rather than
just names. Extended processes add active substitutions and
restriction on variables (see Figure 1).

The substitution {M/x} is an active substitution that re-
places the variable x with the term M . Active substitutions
generalize the “let” construct: νx.({M/x} | P ) corresponds
exactly to

“let x = M in P ”.

As usual, names and variables have scopes, which are delim-
ited by restrictions and by inputs. We write fv(A), bv(A),
fn(A) and bn(A) for the sets of free and bound variables
and free and bound names of A, respectively. We say that an
extended process is closed if all its variables are either bound
or defined by an active substitution. An evaluation context
C[ ] is an extended process with a hole instead of an extended
process.

Active substitutions are useful because they allow us to map
an extended process A to its frame, denoted φ(A), by replacing
every plain process in A with 0. Hence, a frame is an extended
process built up from 0 and active substitutions by parallel
composition and restriction. The frame φ(A) accounts for the
set of terms statically known by the intruder (but does not
take into account for A’s dynamic behavior). The domain of
a frame ϕ, denoted by dom(ϕ), is the set of variables for
which ϕ defines a substitution (those variables x for which ϕ
contains a substitution {M/x} not under a restriction on x).

Example 2: Consider the following process A made up of
three components in parallel:

νs, sk, x1. (out(c1, x1)
| in(c1, y).out(c2, dec(y, sk))
| {enc(s,pk(sk))/x1}).

Its first component publishes the message enc(s, pk(sk))
stored in x1 by sending it on c1. The second receives a mes-
sage on c1, uses the secret key sk to decrypt it, and forwards
the result on c2. We have φ(A) = νs, sk, x1.{enc(s,pk(sk))/x1}
and dom(φ(A)) = ∅ (since x1 is under a restriction).

B. Semantics
We briefly recall the operational semantics of the applied pi

calculus (see [2] for details). First, we associate an equational
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P,Q, R := 0 plain processes
P | Q
!P
νn.P
if M = N then P else Q
in(u, x).P
out(u,N).P

A, B,C := extended processes
P
A | B
νn.A
νx.A
{M/x}

where M and N are terms, n is a name, x a variable and u is a metavariable.

Fig. 1. Syntax of processes

theory E to the signature F . The equational theory is defined
by a set of equations M = N with M,N ∈ T (∅,X) and
induces an equivalence relation over terms: =E is the smallest
equivalence relation on terms, which contains all equations
M = N in E and that is closed under application of contexts
and substitution of terms for variables. Since the equations
in E do not contain any names, we have that E is also closed
by substitutions of terms for names.

Example 3: Consider the signature F of Example 1. We
define the equational theory Eenc by the following equations:

dec(enc(x, pk(y)), y) = x
πi(�x1, x2�) = xi for i ∈ {1, 2}.

We have that π1(dec(enc(�n1, n2�, pk(sk)), sk)) =Eenc n1.

Structural equivalence, noted ≡, is the smallest equiva-
lence relation on extended processes that is closed under α-
conversion of names and variables, by application of eval-
uation contexts, and satisfying some further basic structural
rules such as A | 0 ≡ A, associativity and commutativity of |,
binding-operator-like behavior of ν, and when M =E N the
equivalences:

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}

{M/x} | A ≡ {M/x} | A{M/x}.

Example 4: Let P be the following process:

νs, sk. (out(c1, enc(s, pk(sk)))
| in(c1, y).out(c2, dec(y, sk))).

The process P is structurally equivalent to the process A given
in Example 2. We have that φ(P ) = 0 ≡ φ(A).

The operational semantics of processes in the applied pi
calculus is defined by structural rules defining two relations:
structural equivalence (described above) and internal reduc-
tion, noted τ−→. Internal reduction is the smallest relation on
extended processes closed under structural equivalence and
application of evaluation contexts such that:

out(a, x).P | in(a, x).Q τ−→ P | Q

if M = M then P else Q
τ−→ P

if M = N then P else Q
τ−→ Q

where M,N are ground terms such that M �=E N

The operational semantics is extended by a labeled oper-
ational semantics enabling us to reason about processes that
interact with their environment. Labeled operational semantics
defines the relation �→ where � is either an input or an
output. We adopt the following rules in addition to the internal
reduction rules. Below, the names a and c are channel names
whereas x is a variable of base type and y is a variable of any
type.

IN in(a, y).P
in(a,M)−−−−−→ P{M/y}

OUT-CH out(a, c).P
out(a,c)−−−−−→ P

OPEN-CH
A

out(a,c)−−−−−→ A� c �= a

νc.A
νc.out(a,c)−−−−−−−→ A�

OUT-T out(a, M).P
νx.out(a,x)−−−−−−−→ P | {M/x}

x �∈ fv(P ) ∪ fv(M)

SCOPE
A

�−→ A� u does not occur in �

νu.A
�−→ νu.A�

bn(�) ∩ fn(B) = ∅

PAR
A

�−→ A� bv(�) ∩ fv(B) = ∅
A | B

�−→ A� | B

STRUCT
A ≡ B B

�−→ B� B� ≡ A�

A
�−→ A�

Note that the labeled transition is not closed under applica-
tion of evaluation contexts. Moreover the output of a term M
needs to be made “by reference” using a restricted variable
and an active substitution. The rules differ slightly from those
described in [2] but it has been shown in [16] that the two
underlying notions of observational equivalence coincide.

III. TRACE AND OBSERVATIONAL EQUIVALENCES

Let A be the alphabet of actions (in our case this alphabet
is infinite) where the special symbol τ ∈ A represents an
unobservable action. For every α ∈ A the relation α−→ has
been defined in Section II. For every w ∈ A∗ the relation
w−→ on extended processes is defined in the usual way. By

convention A
�−→ A where � denotes the empty word.
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For every s ∈ (A � {τ})∗, the relation s⇒ on extended
processes is defined by: A

s⇒ B if, and only if, there exists
w ∈ A∗ such that A

w−→ B and s is obtained from w by
erasing all occurrences of τ . Intuitively, A

s⇒ B means that A
transforms into B by experiment s. We also consider the
relation A

w�→ B and A
s�⇒ B that are the restriction of the

relations w−→ and s⇒ on closed extended processes.

A. Observational equivalence

Intuitively, two processes are observationally equivalent if
they cannot be distinguished by any active attacker represented
by any context.

We write A ⇓ c when A can send a message on c, that is,
when A →∗ C[out(c, M).P ] for some evaluation context C
that does not bind c.

Definition 1: Observational equivalence is the largest sym-
metric relation R between closed extended processes with the
same domain such that A R B implies:

1) if A ⇓ c, then B ⇓ c;
2) if A →∗ A�, then B →∗ B� and A� R B� for some B�;
3) C[A] R C[B] for all closing evaluation contexts C.

Observational equivalence can be used to formalize many
interesting security properties, in particular privacy related
properties, such as those studied in [3], [17]. However, proofs
of observational equivalences are difficult because of the
universal quantification over all contexts. It has been shown
that observational equivalence coincides with labeled bisim-
ilarity [2]. This result was first proved in the context of
the spi-calculus [12]. Before defining the notion of labeled
bisimilarity, we introduce a notion of intruder’s knowledge
that has been extensively studied (e.g. [1]).

Definition 2 (static equivalence ∼): Two terms M and N
are equal in the frame φ, written (M =E N)φ, if there
exists ñ and a substitution σ such that φ ≡ νñ.σ, ñ∩(fn(M)∪
fn(N)) = ∅, and Mσ =E Nσ.

Two closed frames φ1 and φ2 are statically equivalent,
written φ1 ∼ φ2, when:

• dom(φ1) = dom(φ2), and
• for all terms M, N we have that

(M =E N)φ1 if and only if (M =E N)φ2.

Example 5: Consider the theory Eenc described in Exam-
ple 3, and the two frames

• ϕa = {enc(a,pk(sk))/x1}, and
• ϕb = {enc(b,pk(sk))/x1}.

We have that (dec(x1, sk) =Eenc a)ϕa whereas
(dec(x1, sk) �=Eenc a)ϕb, thus we have that ϕa �∼ ϕb.

However, we have that νsk.ϕ ∼ νsk.ϕ�. This is a non
trivial equivalence. Intuitively, there is no test that allows one
to distinguish the two frames since the decryption key and the
encryption key are not available.

Definition 3 (labeled bisimilarity ≈): Labeled bisimilarity

is the largest symmetric relation R on closed extended pro-
cesses such that A R B implies

1) φ(A) ∼ φ(B),
2) if A

τ�→ A�, then B
��⇒ B� and A� R B� for some B�,

3) if A
��→ A� and bn(�) ∩ fn(B) = ∅ then B

��⇒ B� and
A� R B� for some B�.

Example 6: Consider the theory Eenc and the two processes
Pa = out(c, enc(a, pk(sk))) and Pb = out(c, enc(b, pk(sk))).
We have that νsk.Pa ≈ νsk.Pb whereas Pa �≈ Pb. These
results are direct consequences of the static (in)equivalence
relations stated and discussed in Example 5.

B. Trace equivalence

For every closed extended process A we define its set of
traces, each trace consisting in a sequence of actions together
with the sequence of sent messages:

trace(A) = {(s, φ(B)) | A
s�⇒ B for some B}.

Note that, in the applied pi calculus, the sent messages are
exclusively stored in the frame and not in the sequence s (the
outputs are made by “reference”).

Definition 4 (trace inclusion �t): Let A and B be two
closed extended processes, A �t B if for every (s, ϕ) ∈
trace(A) such that bn(s)∩ fn(B) = ∅, there exists (s�, ϕ�) ∈
trace(B) such that s = s� and ϕ ∼ ϕ�.

Definition 5 (trace equivalence ≈t): Let A and B be two
closed extended processes. They are trace equivalent, denoted
by A ≈t B, if A �t B and B �t A.

It is easy to see that observational equivalence (or labeled
bisimilarity) implies trace equivalence while the converse is
false in general (see Example 7).

Lemma 1: Let A and B be two closed extended processes:
A ≈ B implies A ≈t B.

Example 7: Consider the two following processes:

A = νc�.(out(c�, ok) | in(c�, x).out(c, a).out(c, b1)
| in(c�, x).out(c, a).out(c, b2))

B = out(c, a).νc�.(out(c�, ok) | in(c�, x).out(c, b1)
| in(c�, x).out(c, b2)).

We have that A ≈t B whereas A �≈ B. Intuitively, after B’s
first move, B still has the choice of emitting b1 or b2, while A,
trying to follow B’s first move, is forced to choose between
two states from which it can only emit one of the two.
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C. Determinacy

J. Engelfriet has shown that observational and trace equiva-
lence coincide for a process algebra with atomic actions, when
processes are determinate [20]. First, we define this notion in
the context of the applied pi calculus.

Definition 6 (determinacy): Let ∼= be an equivalence re-
lation on closed extended processes. A closed extended
process A is ∼=-determinate if A

s�⇒ B, A
s�⇒ B� and

φ(B) ∼ φ(B�) implies B ∼= B�.

Fixing the equivalence relation yields to potentially different
notions of determinacy. We define two of them: observa-
tion determinacy (for ∼= := ≈) and trace determinacy (for
∼= := ≈t). By using the techniques of J. Engelfriet, we can
show that these two notions of determinacy actually coincide.
So we say that an extended process is determinate if it satisfies
any of these two notions.

Lemma 2: Let A be a closed extended process. The pro-
cess A is observation determinate if, and only if, it is trace
determinate.

Example 8: Consider for instance the closed extended pro-
cess A given in Example 7. We have that A

τ�→ A1 and
A

τ�→ A2 for A1 and A2 given below:

A1 = νc�. (out(c, a).out(c, b1)
| in(c�, x).out(c, a).out(c, b2))

A2 = νc�. (in(c�, x).out(c, a).out(c, b1)
| out(c, a).out(c, b2)).

The process A1 can output the messages a and then b1 whereas
the process A2 can output a and then b2. Thus, the process A
is neither observation determinate, nor trace determinate.

Our first main contribution is to extend the result of J. En-
gelfriet [20] to processes of the applied-pi calculus, showing
that observational equivalence and trace equivalence coincide
when processes are determinate. The proof of this result is
relatively simple once the right definition of determinacy has
been fixed. In particular, the presence of equational theories
and active substitutions do not cause any change in the proof
scheme of [20] since the definition of determinacy already
captures their impact on processes.

Theorem 1: Let A and B be two closed extended pro-
cesses that are determinate.

A ≈t B implies A ≈ B.

Proof (sketch). Let A and B be two closed extended processes
that are determinate, and assume that A ≈t B. We consider the
relation R defined as follows:

A� R B� iff there exists s such that A
s�⇒ A�, B

s�⇒ B�, and
φ(A�) ∼ φ(B�).

We have that A R B. It remains to check that R satisfies
the three points of Definition 3. �

IV. AN EXPRESSIVE CLASS OF DETERMINATE PROCESSES

In what follows, we consider any signature and equational
theory. We do not need the full applied pi-calculus to represent
security protocols. For example, when it is assumed that
all communications are controlled by the attacker, private
channels between processes are not accurate (they should
rather be implemented using cryptography). In addition, the
attacker schedules the communications between processes thus
he knows exactly to whom he is sending messages and from
whom he is listening. Thus we assume that each process
communicates on a personal channel.

Formally, we consider the fragment of simple processes
built on basic processes. A basic process represents a session
of a protocol role where a party waits for a message of a
certain form or checks some equalities and outputs a message
accordingly. Then the party waits for another message or
checks for other equalities and so on.

Intuitively, any protocol whose roles have a deterministic
behavior can be modeled as a simple process. Most of the
roles are indeed deterministic since an agent should usually
exactly know what to do once he has received a message.
In particular, all protocols of the Clark and Jacob library [13]
can be modeled as simple processes. However, protocols using
abstract channels like private or authenticated channels do
not fall in our class. This is also the case of some e-voting
protocols that are divided in several phases [17]. This feature
can not be modeled in the class of simple processes.

Definition 7 (basic process): The set B(c,V) of basic
processes built from c ∈ Ch and V ⊆ X (variables of base
type) is the least set of processes that contains 0 and such that

• if B1, B2 ∈ B(c,V), M,N, s1, s2 ∈ T (Nb,V), then

if M = N then out(c, s1).B1 else out(c, s2).B2

∈ B(c,V).
• if B ∈ B(c,V � {x}), x of base type (x /∈ V), then

in(c, x) ·B ∈ B(c,V).

Intuitively, in a basic process, depending on the outcome
of the test, the process sends on its channel c a message
depending on its inputs. A basic process may also input
messages on its channel c.

Example 9: We consider a slightly simplified version of a
protocol given in [3] designed for transmitting a secret without
revealing its identity to other participants. In this protocol,
A is willing to engage in communication with B and wants
to reveal its identity to B. However, A does not want to
compromise its privacy by revealing its identity or the identity
of B more broadly. The participants A and B proceed as
follows:

A → B : enc(�Na, pub(A)�, pub(B))
B → A : enc(�Na, �Nb, pub(B)��, pub(A))

First A sends to B a nonce Na and its public key encrypted
with the public key of B. If the message is of the expected
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form then B sends to A the nonce Na, a freshly generated

nonce Nb and its public key, all of this being encrypted

with the public key of A. Otherwise, B sends out a “decoy”

message: enc(Nb, pub(B)). This message should basically

look like B’s other message from the point of view of an

outsider. This is important since the protocol is supposed to

protect the identity of the participants.

A session of role A played by agent a with b can be modeled

by the following basic process where true denotes a test that

is always satisfied and M = dec(x, ska). Note that A is not

given the value skb but is directly given the value pk(skb),
that is the public key corresponding to B’s private key.

A(a, b) def=
if true then

out(cA, enc(�na, pk(ska)�, pk(skb))).
in(cA, x).
if �π1(M), π2(π2(M))� = �na, pk(skb)� then 0

else 0
else 0.

Similarly, a session of role B played by agent b with a
can be modeled by the basic process B(b, a) where N =
dec(y, skb).

B(b, a) def= in(cB , y).
if π2(N) = pk(ska)then

out(cB , enc(�π1(N), �nb, pk(skb)��, pk(ska))).0
else out(cB , enc(nb, pk(skb))).0.

Intuitively, this protocol preserves anonymity if an attacker

cannot distinguish whether b is willing to talk to a (represented

by the process B(b, a)) or willing to talk to a�
(represented

by the process B(b, a�)), provided a, a�
and b are honest

participants. For illustration purposes, we also consider the

process B�(b, a) obtained from B(b, a) by replacing the else
branch by else 0. We will see that the “decoy” message

plays a crucial role to ensure privacy.

Definition 8 (simple process): A simple process is ob-

tained by composing and replicating basic processes and

frames, hiding some names:

νñ. ( νñ1.(B1 | σ1) | !(νc�
1, m̃1.out(p1, c�

1).B�
1) |

.

.

.
.
.
.

νñk.(Bk | σk) | !(νc�
n, m̃n.out(pn, c�

n).B�
n) )

where Bj ∈ B(cj , ∅), B�
j ∈ B(c�

j , ∅) and cj are channel names

that are pairwise distinct. The names p1, . . . , pn are distinct

channel names that do not appear elsewhere and σ1, . . . ,σk

are frames without restricted names (i.e. substitutions).

Each basic process B�
j first publishes its channel name c�

j

on the public channel pj so that an attacker can communicate

with it. Intuitively the public channels p1, . . . , pn indicate from

which role the channel name c�
i is emitted. Names of base

types may be shared between processes, this is the purpose

of ñ.

It is interesting to notice that protocols with deterministic

behavior are usually not modeled within our fragment (see

e.g. [2]) since a single channel is used for all communications.

We think however that using a single channel does not provide

enough information to the attacker since he is not able to

schedule exactly the messages to the processes and he does

not know from which process a message comes from while

this information is usually available (via e.g. IP adresses and

session ID). For example, a role emitting the constant a
twice would be modeled by P1 = out(c, a).out(c, a).0 while

two roles emitting each the constant a would be modeled

by P2 = out(c, a).0 | out(c, a).0. Then P1 and P2 are

observationally equivalent while the two protocols could be

distinguished in practice, which is reflected in our modeling

in simple processes.

Example 10: Continuing Example 9, a simple process rep-

resenting unbounded number of sessions in which a plays A
(with b) and b plays B with a is:

νska, skb. ( !(νna, cA.out(pA, cA).A(a, b))
| !(νnb, cB .out(pB , cB).B(b, a)) )

For modelling and verification purposes, we may want to

disclose the public keys in order to make them available to

the attacker. This can be done by means of an additional basic

process

K(a, b) = out(cK , pk(ska)) · out(cK , pk(skb)).0.

Simple processes is a large class of processes that are deter-

minate. Indeed, since each basic process has its own channel to

send and receive messages, all the communications are visible

to the attacker. Moreover, the attacker knows exactly who is

sending a message or from whom he is receiving a message.

Actually, given a simple process A a sequence of actions tr,
there is a unique process B (up to some internal reduction

steps) such that A
tr�⇒ B.

Theorem 2: Any simple process is determinate.

Applying Theorems 1 and 2, we get that, on simple pro-

cesses, it is sufficient to check trace equivalence to prove

observational equivalence.

Corollary 1: Let A and B be two simple processes:

A ≈t B if, and only if, A ≈ B.

V. INTERMEDIATE CALCULUS

It is well-known that replication leads to undecidability (see

e.g. [19]) thus for the remaining of the paper, we consider

processes without replication. We also remove else branches

since we are only able to provide a decision procedure in this

restricted case (see Section VI). Decidability in presence of

else branches is left open. The fragment of simple processes

without replication nor else branch still allows to analyze all

protocols of the Clark and Jacob library [13], for a bounded

number of sessions.
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Reasoning on processes of the applied-pi calculus is quite

involved since it requires one to consider all the rules defining

the labeled transition relation
α→. Thus we use a simpli-

fied fragment of the class of intermediate processes, defined

in [16], that are easier to manipulate and such that trace

equivalence of simple processes without replication nor else

branch is equivalent to trace equivalence of their corresponding

intermediate processes.

A. Syntax
The grammar of the plain intermediate processes is as

follows:

P,Q, R := 0
if M1 = M2 then P else Q
in(c, x).P
out(c, N).P

where c ∈ Ch is channel name, M1, M2 are terms of base

type, x is a variable of base type, and N is a message of base

type. Terms M1, M2 and N can also use variables.

Definition 9 (intermediate process): An intermediate
process is a triple (E ;P; Φ) where:

• E is a set of names that represents the names restricted

in P;

• Φ = {w1 � t1, . . . , wn � tn} where t1, . . . , tn are

ground terms, and w1, . . . , wn are variables;

• P is a multiset of plain intermediate processes (defined

above) where null processes are removed and such that

fv(P) ⊆ {w1, . . . , wm}.

Additionally, we require intermediate processes to be variable
distinct, i.e. any variable is at most bound once.

Given a sequence Φ = {w1 � t1, . . . , wn � tn} where

t1, . . . , tn are terms, we also denote by Φ its associated frame,

i.e. {t1/w1} | . . . | {tn/wn}.

Given a closed extended process A of the original applied

pi without replication, we can easily transform it into an in-

termediate process Ã = (E ;P; Φ) such that A ≈ νE .(P | Φ).
The idea is to rename names and variables to avoid clashes,

to apply the active substitutions (SUBST), to remove the

restrictions on variables (ALIAS), and finally to push the

restrictions on names in front of the process. We can also add

some restricted names not appearing in the process in front

of it. This will be useful to obtain two intermediate processes

with the same set of restricted names.

Example 11: Consider the extended process A described

below (M is a term such that n �∈ fn(M)):

νsk.νx.(out(c, enc(x, pk(sk))).νn.out(c, n) | {M/x}).

An intermediate process A�
associated to A is:

A� = (E ;P; Φ)
= ({sk, n}; out(c, enc(M, pk(sk))).out(c, n); ∅).

We have that A ≈ νE .(P | Φ). However, note that A and

νE .(P | Φ) are not in structural equivalence. Indeed, structural

equivalence does not allow one to push all the restrictions in

front of a process.

B. Semantics
From now on, we consider intermediate processes without

else branch, that is we assume that any sub-process of the

form if M = N then P else Q is such that Q = 0. The

semantics for intermediate processes (without else branch) is

given in Figure 2. Let Ai be the alphabet of actions for the

intermediate semantics. For every w ∈ A∗
i the relation

w−→i

on intermediate processes is defined in the usual way. For

s ∈ (Ai �{τ})∗, the relation
s⇒i on intermediate processes is

defined by: A
s⇒i B if, and only if there exists w ∈ A∗

i such

that A
w−→i B and s is obtained by erasing all occurrences of τ .

Note that by definition, intermediate processes are closed.

C. Equivalence
Let A = (E1;P1; Φ1) be an intermediate process. We define

the following set:

tracei(A) = {(s, νE2.Φ2) | (E1;P1; Φ1)
s⇒i (E2;P2; Φ2)

for some (E2;P2; Φ2)}
Definition 10 (≈t for intermediate processes): Let A

and B be two intermediate processes having the same set of

restricted names, i.e. A = (E ;P1; Φ1) and B = (E ;P2; Φ2).
The processes A and B are intermediate trace equivalent,

denoted by A ≈t B, if for every (s, ϕ) ∈ tracei(A) there

exists (s�, ϕ�) ∈ tracei(B) such that s = s� and ϕ ∼ ϕ�
(and

conversely).

Despite the differences between the two semantics, it can be

shown that the two notions of trace equivalence coincide [16].

For intermediate processes derived from simple processes, we

wish to obtain a similar result for a more detailed notion of

trace, called annotated trace.

Annotated traces are obtained by replacing the label τ of the

rule THENi in Figure 2 with testp where p is the identity of the

process, i.e. the name of its channel. If Ai
a1−→i . . .

an−−→i A�
i,

we denote by a1 · . . . · an the trace obtained from a1 · . . . ·
an by replacing any testp by τ , recovering a trace for the

previous definition of trace. We can easily adapt the definition

of trace and trace equivalence, yielding to annotated trace and

annotated trace equivalence.

We show that on simple processes without else branch nor

replication, trace equivalence coincides with annotated trace

equivalence.

Proposition 1: Let A and B be two simple processes

without else branch nor replication. Let Ã = (E ;PA; ΦA)
and B̃ = (E ;PB ; ΦB) be the two associated intermediate

processes.

The processes A and B are trace equivalent (i.e. A ≈t B
in the original applied pi calculus semantics) if, and only if,

Ã and B̃ are annotated trace equivalent.

The proof relies on the result of [16] that states that two

processes are trace equivalent if and only if the corresponding
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(E ; {if u = v then P else Q} � P; Φ) τ−→i (E ; {P} � P; Φ) if u =E v (Theni)

(E ; {in(p, x).P} � P; Φ)
in(p,M)−−−−−→i (E ; {P{x �→ u}} � P; Φ) (Ini)

MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(p, u).P} � P; Φ)
νwn.out(p,wn)−−−−−−−−−→i (E ; {P} � P; Φ ∪ {wn � u}) (Out-Ti)

wn variable such that n = |Φ|+ 1

u, v and x are terms of base type whereas p is a channel name.

Fig. 2. Intermediate semantics of simple processes

intermediate processes are intermediate trace equivalent. We

then need to show that traces can be grouped following

the annotation, which is due to the determinism of simple

processes.

VI. A DECISION PROCEDURE FOR OBSERVATIONAL

EQUIVALENCE

The aim of the section is to provide a decision procedure for

trace equivalence and for a large class of processes (namely the

class of simple processes), for the class of convergent subterm

equational theories. Starting from intermediate processes that

are obtained from simple processes without else branch nor

replication, we reduce trace equivalence to equivalence of

constraint systems. We can then conclude by using the decision

procedure proposed in [7], [8] for constraint systems for the

class of convergent subterm equational theories.

A. Constraint system
Following the notations of [7], we consider a new set X 2

of

variables called second order variables X,Y, . . ., each variable

with an arity, denoted ar(X). We denote by var1(C) (resp.

var2(C)) the first order (resp. second order) variables of C,

that is var1(C) = fv(C) ∩ X (resp. var2(C) = fv(C) ∩ X 2
).

A constraint system represents the possible executions of a

protocol once an interleaving has been fixed.

Definition 11 (constraint system [7]): A constraint sys-
tem is a triple (E ; Φ; C):

• E is a set of names (names that are initially unknown to

the attacker);

• Φ is a sequence of the form {w1 � t1, . . . , wn � tn}
where ti are terms and wi are variables. The ti represent

the terms sent on the network, their variables represent

messages sent by the attacker.

• C is a set of constraints of the form X �? x with

ar(X) ≤ n, or of the form s =?
E s�

where s, s�
are first-

order terms. Intuitively, the constraint X �? x is meant

to ensure that x will be replaced by a deducible term.

The size of Φ, denoted |Φ| is its length n.

We also assume the following conditions:

1) for every x ∈ var1(C), there exists a unique X such that

(X �? x) ∈ C, and each variable X occurs at most once

in C.

2) for every 1 ≤ k ≤ n, for every x ∈ var1(tk), there exists

(X �? x) ∈ C such that ar(X) < k.

Given a term T with variables w1, . . . , wk and Φ = {w1 �
t1, . . . , wn � tn}, n ≥ k, TΦ denotes the term T where

each wi has been replaced by ti. The structure of (E ; Φ; C) is

given by E , |Φ| and var2(C) with their arity.

Example 12: The triple Σs = (Es; Φ0
s ∪ {w4 � t}; Cs)

where

Es = {ska, ska�, skb, na, nb},
Φ0

s = {w1 � pk(ska), w2 � pk(ska�), w3 � pk(skb)},
t = enc(�π1(dec(y, skb)), �nb, pk(skb)��, pk(ska)),
Cs = {Y �? y, π2(dec(y, skb)) =?

E pk(ska)}, ar(Y ) = 3

is a constraint system. We will see that it corresponds to the

execution of the process B�(b, a) presented in Example 9. We

consider three agents (a, a�
and b) so that the attacker can try

to learn whether b is willing to talk to a or to a�
. Their public

keys are made available to the attacker.

Definition 12 (solution): A solution of a constraint system

Σ = (E ; Φ; C) is a substitution θ such that

• dom(θ) = var2(C), and

• Xθ ∈ T (Nb � {E},dom(Φ)) for any X ∈ dom(θ).
Moreover, we require that there exists a closed substitution λ
with dom(λ) = var1(C) such that:

1) for every (X �? x) ∈ C, (Xθ)(Φλ) = xλ;

2) for every (s =?
E s�) ∈ C, sλ =E s�λ;

The substitution λ is called first order solution of Σ associated

to θ. The set of solutions of a constraint system Σ is denoted

Sol(Σ).

Example 13: Continuing Example 12, a solution to Σs =
(Es; Φs; Cs) is θ where dom(θ) = {Y } and θ(Y ) =
enc(�ni, w1�, w3) with ni a public name (i.e. ni �∈ Es).

The first order-solution λ of Σs associated to θ is a sub-

stitution whose domain is {y} and such that λ(y) =
enc(�ni, pk(ska)�, pk(skb)).

A constraint system Σ is satisfiable if Sol(Σ) �= ∅. Two

constraint systems Σ1 and Σ2 with the same structures are

equivalent if and only if Sol(Σ1) = Sol(Σ2). We further

define S-equivalence [7] that will be useful to capture static

equivalence.
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Definition 13 (S-equivalence): Let Σ1 = (E ; Φ1; C1) and

Σ2 = (E ; Φ2; C2) be two constraint systems with the same

structure and consider x, y �∈ var1(Ci) and X,Y �∈ var2(Ci)
for i = 1, 2. The two systems Σ1 and Σ2 are S-equivalent if

the constraint systems:

• (E ; Φ1; C1 ∪ {X �? x, Y �? y, x =?
E y}), and

• (E ; Φ2; C2 ∪ {X �? x, Y �? y, x =?
E y})

are equivalent.

Example 14: Let Σ�
s be the constraint system below:

(Es; Φ0
s ∪ {w4 � t�};Y �? y, π2(dec(y, skb)) =?

E pk(ska�))

where t� = enc(�π1(dec(y, skb)), �nb, pk(skb)��, pk(ska�)),
and Es, Φ0

s are defined as in Example 12. We will see that this

system corresponds to the system obtained after a symbolic

execution of the process B�(b, a�) presented in Example 9.

The system Σs (given in Example 12) is not equivalent to

Σ�
s. Indeed, the substitution θ given in Example 13 is such

that θ ∈ Sol(Σs) whereas θ �∈ Sol(Σ�
s). We conclude that

the constraint systems Σs and Σ�
s are not equivalent, and thus

not in S-equivalence. Actually, this corresponds to the fact

that an attacker can distinguish between B�(b, a) and B�(b, a�)
by sending a message enc(�n, pk(ska)�, pk(skb)) and see

whether b answers or not.

B. Symbolic calculus

Following the approach of [8], we compute from an in-

termediate process P = (E ;P; Φ) the set of constraints

systems capturing the possible executions of P , starting from

Ps
def= (E ;P; Φ; ∅) and applying the rules defined in Figure 3.

Definition 14 (symbolic process): A symbolic process is

a tuple (E ;P; Φ; C) where:

• E is a set of names;

• P is a multiset of plain intermediate processes where null

processes are removed and such that fv(P) ⊆ {x | X �?

x ∈ C};

• (E ,Φ, C) is a constraint system.

The rules of Figure 3 define the semantics of symbolic

processes. The aim of this symbolic semantics is to avoid the

infinite branching due to the inputs of the environment. This

is achieved by keeping variables rather than the input terms.

The constraint system gives a finite representation of the value

that these variables are allowed to take.

The THENs (resp. INs) rule allows the process to pass a

test (resp. an input). The corresponding constraint is added in

the set of constraints C. When a process is ready to output a

term on a public channel p, the outputted term is added to the

frame Φ, which means that this term is made available to the

attacker.

Example 15: We consider one session of the protocol

presented in Example 9, in which b plays the role B�
(with

a) and a plays the role A with b. We consider the following

process K(a, a�, b) that models keys disclosure, i.e.

out(cK , pk(ska)).out(cK , pk(ska�)).out(cK , pk(skb)).

Let E be the set of names {ska, ska�, skb, na, nb}, and P s
ex

the following symbolic process:

P s
ex = (E ; {A(a, b), B�(b, a), K(a, a�, b)}; ∅; ∅).

We have that P s
ex

tr⇒s (Es;Ps; Φs; Cs) where

• tr = νw1.out(cK , w1) · νw2.out(cK , w2) ·
νw3.out(cK , w3) · in(cB , y) · νw4.out(cB , w4),

• Ps = {A(a, b)}, and

• (Es; Φs; Cs) is the constraint system Σs defined in Exam-

ple 12.

We show that the set of symbolic processes obtained from

an intermediate process (E ;P; Φ) without else branch exactly

captures the set of execution traces of (E ;P; Φ) though θ-

concretization.

Definition 15 (θ-concretization): Consider the

symbolic process (E1;P1; Φ1; C1) and let θ be a

substitution in Sol((E1; Φ1; C1)). The intermediate process

(E1;P1λθ; Φ1λθ) is the θ-concretization of (E1;P1; Φ1; C1)
where λθ is the first order solution of (E1; Φ1; C1) associated

to θ.

We now show soundness of
αs−→s w.r.t.

α−→i: whenever this

relation holds between two symbolic processes, the relation

in the intermediate semantics holds for each θ-concretization.

Actually, we need such a result for the more detailed notion of

annotated traces (see page 7): the label τ of the rules THENs

and THENi is replaced by testp where p is the identity of the

process, i.e. the name of its channel.

Proposition 2 (soundness): Let (E1;P1; Φ1; C1),
(E2;P2; Φ2; C2) be two symbolic processes such that

• (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2), and

• θ2 ∈ Sol((E2; Φ2; C2)).
Let θ1 = θ2|var2(C1). We have that:

1) θ1 ∈ Sol((E1; Φ1; C1)), and

2) (E1;P �
1; Φ�

1)
αsθ2−−−→i (E2;P �

2; Φ�
2) where (E1;P �

1; Φ�
1)

(resp. (E2;P �
2; Φ�

2) is the θ1-concretization (resp. θ2) of

(E1;P1; Φ1; C1) (resp. (E2;P2; Φ2; C2)).

We also show completeness of the symbolic semantics

w.r.t. the intermediate one: each time a θ-concretization of a

symbolic process reduces to another intermediate process, the

symbolic process also reduces to a corresponding symbolic

process.

Proposition 3 (completeness): Let (E1;P1; Φ1; C1) be a

symbolic process, (E1;P �
1; Φ�

1) its θ1-concretization where

θ1 ∈ Sol((E1; Φ1; C1)). Let (E ;P; Φ) be an intermediate

process such that (E1;P �
1; Φ�

1)
α−→i (E ;P; Φ). There exist a

symbolic process (E2;P2; Φ2; C2) and θ2 such that:

9



THENs (E ; {if u = v then P else 0} � P; Φ; C) τ−→s (E ; {P} � P; Φ; C ∪ {u =?
E v})

INs (E ; {in(p, x).P} � P; Φ; C)
in(p,Y )−−−−→s (E ; {P{x �→ y}} � P; Φ; C ∪ {Y �? y})

where Y, y are fresh variables, ar(Y ) = |Φ|

OUT-Ts (E ; {out(p, u).P} � P; Φ; C)
νwn.out(p,wn)−−−−−−−−−→s (E ; {P} � P; Φ ∪ {wn � u}; C)

where wn is a variable such that n = |Φ| + 1

u, v, and x are terms of base type whereas p is a channel name.

Fig. 3. Symbolic execution of simple processes

1) (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2);

2) θ2 ∈ Sol((E2; Φ2; C2));
3) the process (E ;P; Φ) is the θ2-concretization of

(E2;P2; Φ2; C2); and
4) αsθ2 = α.

C. Symbolic equivalence

Definition 16 (symbolic trace equivalence): Let A be a
simple process without else branch nor replication. We define
the set of its symbolic traces as follows:

traces(A) = {(tr,Σ) | As
tr⇒s (E �;P �; Φ�; C�) and

Σ = (E �; Φ�; C�) satisfiable.}
Let A and B be two simple processes. They are in symbolic
trace equivalence if for every (tr,Σ) ∈ traces(A) there exists
(tr�,Σ�) ∈ traces(B) such that tr = tr� and Σ, Σ� are S-
equivalent (and conversely).

We show that symbolic trace equivalence exactly captures
trace equivalence.

Proposition 4: Let A = (E ;PA; ΦA) and B =
(E ;PB ; ΦB) be two intermediate processes derived from sim-
ple processes without else branch nor replication. We have
that A and B are in annotated trace equivalence if, and only
if, they are in annotated symbolic trace equivalence.

The proof relies on the fact that, when A ≈t B, execution
traces can be grouped in the same way for A and B, forming
symbolic traces with S-equivalent constraint systems.

The following proposition is an immediate consequence of
Proposition 1 and Proposition 4.

Proposition 5: Let A and B be two simple processes
without else branch nor replication: A ≈t B if, and only if A
and B are in annotated symbolic trace equivalence.

Example 16: Relying on our technique, we can now prove
that the two following processes Pex and P �

ex are not in
observational equivalence:

• Pex = νñ.[A(a, b) | B�(b, a) | K(a, a�, b) ], and
• P �

ex = νñ.[A(a�, b) | B�(b, a�) | K(a, a�, b) ].
Continuing Example 15, we have that (tr,Σs) ∈

traces(P s
ex) and Σs satisfiable (see Example 13). The only

constraint system reachable from

P �s
ex = (E ; {A(a�, b), B�(b, a�), K(a, a�, b)}; ∅; ∅)

by the sequence tr is Σ�
s as defined in Example 14. We have

seen that Σ�
s is not in S-equivalence with Σs. This allows

us to conclude that the simple processes Pex and P �
ex are not

in symbolic trace equivalence, and thanks to Proposition 5,
Theorem 1 and Theorem 2, we conclude that Pex �≈ P �

ex.

D. Decidability result
It remains to show how to decide symbolic trace equiva-

lence. We mainly rely on the result of [7] that ensures that
checking whether two constraints systems are S-equivalent is
NP-complete, for the class of convergent subterm theories.

An equational theory E is a convergent subterm theory if it
is generated by a convergent rewriting system R such that any
rule l → r ∈ R satisfies that either r is a strict subterm of l
or r is a closed term in normal form w.r.t. R. The equational
theory presented in Example 3 is a convergent subterm theory.
Many other examples can be found e.g. in [1].

Now, we are able to state our main result.

Theorem 3: Let E be a subterm convergent equational
theory. Let A and B be two simple processes without else
branch nor replication. The problem whether A and B are
observationally equivalent is co-NP-complete.

The decidability of observational equivalence follows from
Proposition 5 since there are a finite number of symbolic traces
and non S-equivalence of constraint systems is decidable [7].
Actually, since we consider annotated trace, we have that for
any simple process P and any annotated trace tr, there is at
most one Σ such that (tr,Σ) ∈ traces(P ). We show that two
simple processes A and B without else branch nor replication
are in trace equivalence if, and only if, for any annotated trace
(tr,Σ) ∈ traces(A), there exists a (unique) annotated trace
(tr,Σ�) ∈ traces(B) such that Σ and Σ� are S-equivalent.
We show this result in two steps: we go from applied pi
to the intermediate calculus (see Proposition 1) and then we
go from intermediate calculus to our symbolic calculus (see
Proposition 4).

Then the NP-TIME decision procedure for non observa-
tional equivalence works as follows:

• Guess a symbolic (annotated) trace tr;
• Compute (in polynomial time) Σ and Σ� such that

(tr,Σ) ∈ traces(A) and (tr,Σ�) ∈ traces(B);
• check whether Σ and Σ� are not S-equivalent.
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Due to [7], we know that the last step can be done in NP-
TIME for convergent subterm theories thus we deduce that
the overall procedure is NP-TIME. NP-hardness is obtained
using the usual encoding [25].

VII. CONCLUSION

In this paper, we consider the class of determinate processes
and we show that observational equivalence actually coincides
with trace equivalence, a notion simpler to reason with. We
exhibit a large class of processes that are determinate and we
show how to reduce the decidability of trace equivalence to
deciding an equivalence relation introduced by M. Baudet. Al-
together, this yields the first decidability result of observational
equivalence for a general class of processes.

As future work, it would be interesting to extend this class
of processes in different ways. For example, we would like
to extend our decision result to else branches. This would
require adding disequality tests in set of constraints and adapt
the procedure of [7] accordingly. Moreover, some protocols
such as e-voting protocols are divided in several phases. It
does not seem difficult to add a “phase” operator to the
applied pi-calculus and obtain a corresponding decision result
for observational equivalence. It would be also interesting to
consider larger classes of equational theories such as those
considered for e-voting protocols [17].

Our class of simple processes is close to the fragment
of processes considered in [14] for proving cryptographic
indistinguishability using observational equivalence. However,
the fragment of [14] does not enjoy the determinacy property
(since it was not designed for it). We plan to extend their
result to our class of simple processes, yielding to a decision
technique for proving indistinguishability in cryptographic
models.
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Abstract

We propose a symbolic semantics for the finite applied pi calculus.
The applied pi calculus is a variant of the pi calculus with extensions for
modelling cryptographic protocols. By treating inputs symbolically, our
semantics avoids potentially infinite branching of execution trees due to
inputs from the environment. Correctness is maintained by associating
with each process a set of constraints on terms. We define a symbolic la-
belled bisimulation relation, which is shown to be sound but not complete
with respect to standard bisimulation. We explore the lack of complete-
ness and demonstrate that the symbolic bisimulation relation is sufficient
for many practical examples. This work is an important step towards
automation of observational equivalence for the finite applied pi calculus,
e.g. for verification of anonymity or strong secrecy properties.
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1 Introduction

The applied pi calculus [2] is a derivative of the pi calculus [21] that is specialised
for modelling cryptographic protocols. Participants in a protocol are modelled
as processes, and the communication between them is modelled by means of
channels, names and message passing. The main difference with the pi calculus
is that the applied pi calculus allows one to manipulate complex data, instead of
just names. These data are generated by a term algebra and equality is treated
modulo an equational theory. For instance the equation dec(enc(x, y), y) = x
models the fact that encryption and decryption with the same key cancel out
in the style of the Dolev-Yao model [16]. Such complex data requires the use of
a special kind of processes called active substitutions. As an example consider
the following process and reduction step:

νa, k.out(c, enc(a, k)).P
νx.out(c,x)
−−−−−−−→ νa, k.(P | {enc(a,k)/x}).

The process outputs a secret name a which has been encrypted with the secret
key k on a public channel c. The active substitution {enc(a,k)/x} gives the envi-
ronment the ability to access the term enc(a, k) via the fresh variable x without
revealing a or k. The applied pi calculus also generalizes the spi calculus [3]
which only allows a fixed set of built-in primitives (symmetric and public-key
encryption), while the applied pi calculus allows one to define a variety of prim-
itives by means of an equational theory.

One of the difficulties in automating the proof of properties of systems is
the infinite number of possible behaviours of the attacker, even in the case that
the process itself is finite. When the process requests an input from the envi-
ronment, the attacker can give any term which can be constructed from freely
available data and the terms it has learned so far in the protocol, and therefore
the execution tree of the process is potentially infinite-branching. To address
this problem, researchers have proposed symbolic abstractions of processes, in
which terms input from the environment are represented as symbolic variables,
together with some constraints. These constraints describe the knowledge of the
attacker (and therefore, the range of possible values of the symbolic variable)
at the time the input was performed.

Reachability properties can be verified by deciding satisfiability of constraint
systems resulting from symbolic executions of process algebras (e.g. [20, 4]).
Similarly, off-line guessing attacks coded as static equivalence between process
states [5] can be decided using such symbolic executions, but this requires one to
check the equivalence of constraint systems, rather than satisfiability. Decision
procedures for both satisfiability [11] and equivalence [5] of constraint systems
exist for significant families of equational theories. Observational equivalence
properties, which can be characterized as a bisimulation, express the inability
of the attacker to distinguish between two processes no matter how it interacts
with them. These properties are useful for modelling anonymity and privacy
properties (e.g. [12]), as well as strong secrecy. In the spi calculus [3] properties
were actually expressed as a testing relation and bisimulation was used as a proof
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technique. Symbolic methods have also been used for bisimulation in process
algebras [18, 9]. In particular, Borgström et al. [10] define a sound symbolic
bisimulation for the spi calculus.

In this paper we propose a symbolic semantics for the applied pi calculus
together with a sound symbolic bisimulation. To show that a symbolic bisim-
ulation implies the concrete one, we generally need to prove that the symbolic
semantics is both sound and complete. The semantics of the applied pi calcu-
lus is not well suited for defining such a symbolic semantics. In particular, we
argue at the beginning of Part I that defining a symbolic structural equivalence
which is both sound and complete seems impossible. The absence of sound and
complete symbolic structural equivalence significantly complicates the proof of
our main result. We therefore split it into two parts. We define a more re-
stricted semantics which will provide an intermediate representation of applied
pi calculus processes (Part I). These intermediate processes are a selected (but
sufficient) subset of the original processes. One may think of them as being pro-
cesses in some kind of normal form. We equip these intermediate processes with
a labelled bisimulation that coincides with the original one. Then we present
a symbolic semantics which is both sound and complete with respect to the
intermediate one and give a sound symbolic bisimulation (Part II).

To keep track of the constraints on symbolic variables we associate a con-
straint system to each symbolic process. Keeping these constraint systems sepa-
rate from the process allows us to have a clean division between the bisimulation
and the constraint solving part. In particular we can directly build on existing
work [5] and obtain a decision procedure for our symbolic bisimulation for a
significant family of equational theories whenever the constraint system does
not contain disequalities. This corresponds to the fragment of the applied pi
calculus without else branches in the conditional. For this fragment, one may
also notice that our symbolic semantics can be used to verify reachability prop-
erties using the constraint solving techniques from [11]. Another side-effect of
the separation between the processes and the constraint system is that we for-
bid α-conversion on symbolic processes as we lose the scope of names in the
constraint system, but allow explicit renaming when necessary (using naming
environments). We believe that the simplicity of our intermediate calculus (es-
pecially the structural equivalence) and the absence of α-conversion is appealing
in view of an implementation.

Finally, one may note that as in [10, 8], our technique for deciding bisim-
ulation is incomplete. However, we argue that our technique works for many
interesting cases. This is the purpose of Part III. Most of the proofs are in
Appendix. Those that are omitted can be found in [15].

2 The Applied Pi Calculus

The applied pi calculus [2] is a language for describing concurrent processes and
their interactions. It is based on the pi calculus [21], but is intended to be less
pure and therefore more convenient to use. In this paper we only consider the
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finite applied pi calculus which does not have replication.

2.1 Syntax and Informal Semantics

To describe processes in the applied pi calculus, one starts with a set of names
(which are used to name communication channels or other constants), a set of
variables, and a signature Σ which consists of the function symbols which will be
used to define terms. In the case of security protocols, typical function symbols
will include enc for encryption, which takes a plaintext and a key and returns
the corresponding ciphertext, and dec for decryption, taking a ciphertext and a
key and returning the plaintext (if the decryption key matches the encryption).
Terms are defined as names, variables, and function symbols applied to other
terms. We write vars(T ) for the set of variables occurring in T . When vars(T ) =
∅ we say that the term T is ground.

We rely on a sort system for terms. It includes a universal base type and
a channel type. We denote by N the set of names and among those names
we distinguish the set Nch of channel names. Similarly, we denote by X the
set of variables. Among those variables, we distinghuish two disjoint sets: Xb

the set of variables of base type and Xch the set of variables of channel type.
Of course function symbol application must respect sorts and arities. Function
symbols cannot be applied to variables or names of channel sort, and cannot
return terms of that sort, so in fact the only terms of channel sort are variables
and names of that sort.

We define the equations which hold on terms constructed from the signature
as an equational theory E. We denote =E the equivalence relation induced by E.

Example 2.1 A typical example of an equational theory is defined by the equa-
tion dec(enc(x, k), k) = x. Let T1 = dec(enc(enc(n, k1), k2), k2) and T2 = enc(n, k1).
We have that T1 =E T2 (while obviously the syntactic equality T1 = T2 does not
hold).

In the applied pi calculus, one has plain processes, denoted by P , Q, R
and extended processes, denoted by A, B, C. Plain processes are built up in a
similar way to processes in the pi calculus, except that messages can contain
terms (rather than just names). In the grammar described below, M and N are
terms, n is a name, x a variable and u is a metavariable, standing either for a
name or a variable. Extended processes add active substitutions, and restriction
on names and variables.

P, Q, R := plain processes
0
P | Q
νn.P
if M = N then P else Q
in(u, x).P
out(u, N).P

A, B, C := extended processes
P
A | B
νn.A
νx.A
{M/x}
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The substitution {M/x} replaces the variable x with the term M (x and M
have the same sort which is required to be a base sort). Active substitutions
generalise “let”. The process νx.({M/x} | P ) corresponds exactly to the process
“let x = M in P”. As usual, names and variables have scopes, which are de-
limited by restrictions and by inputs. We write fv(A), bv(A), fn(A) and bn(A)
for the sets of free and bound variables and free and bound names of A, re-
spectively. In an extended process, there is at most one substitution for each
variable, and there is exactly one when the variable is restricted. We say that an
extended process is closed if all its variables are either bound or defined by an
active substitution. We also allow the usual abuse of notations: we omit trail-
ing 0 processes and “else 0” branches in conditionals and write νu1, u2, . . . , un

instead of νu1.νu2. . . . .νun.
Active substitutions are useful because they allow us to map an extended

process A to its frame φ(A) by replacing every plain process in A with 0. A
frame is an extended process built up from 0 and active substitutions by parallel
composition and restriction. The frame φ(A) can be viewed as an approximation
of A that accounts for the static knowledge A exposes to its environment, but
not A’s dynamic behaviour. The domain of a frame ϕ denoted by dom(ϕ),
is the set of variables for which ϕ defines a substitution (those variables x for
which ϕ contains a substitution {M/x} not under a restriction on x). We also
define the domain of an extended process A, written dom(A) to be the domain
of its frame, i.e., dom(A) = dom(φ(A)).

An evaluation context C[ ] is an extended process with a hole instead of an
extended process.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined
by structural rules defining two relations: structural equivalence and internal
reduction.

Structural equivalence, noted ≡, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion on names and variables,
application of evaluation contexts, and such that:

Par-0 A | 0 ≡ A
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A

New-0 νn.0 ≡ 0
New-C νu.νv.A ≡ νv.νu.A
New-Par A | νu.B ≡ νu.(A | B) if u "∈ fn(A) ∪ fv(A)

Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} if M =E N
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We also define =α for equality closed under α-renaming.

Example 2.2 Let P = νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))). The
first component publishes the message enc(s, k) by sending it on c1. The second
one receives a message on c1, uses the secret key k to decrypt it, and forwards
the resulting plaintext on c2. The process P is structurally equivalent to the
following extended process A:

A = νs, k, x1.(out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1
})

We have φ(A) = νs, k, x1.{enc(s,k)/x1
} ≡ 0 (since x1 is under a restriction).

As already noted in [2], any closed frame is structurally equivalent to a
sequence of active substitutions under some restricted names νñ.{M1/x1

} | . . . |
{Mk/xk

}. Therefore, we sometimes refer to such a frame as νñ.σ where σ is the
substitution of terms for variables obtained by taking the union of the active
substitutions.

Internal reduction, noted →, is the smallest relation on extended processes
closed under structural equivalence and application of evaluation contexts such
that

Comm out(a, M).P | in(a, x).Q → P | Q{M/x}
Then if M = N then P else Q → P where M =E N
Else if M = N then P else Q → Q

for any ground terms M and N such that M #=E N

Note that the presentation of the communication rule (Comm) slightly differs
from the one given in [2], but our presentation is easily shown to be equivalent to
theirs. The above presentation is closer to our symbolic semantics and therefore
more convenient for the purpose of this paper. Comparisons (Then and Else)
are kept unchanged and directly depend on the underlying equational theory;
using Else sometimes requires that active substitutions in the context be ap-
plied first, to yield ground terms M and N . Terms M and N are required to be
ground in the rule Else because disequality is not stable under substitution of
terms for variables, unlike equality which explains the absence of this condition
in the Then rule.

The operational semantics is extended by a labelled operational semantics
enabling us to reason about processes that interact with their environment.
Labelled operational semantics defines the relation

α
→ where α is either in(a, M)

(a is a channel name and M is a term that can contain names and variables), or
νx.out(a, x) (x is variable of base type), or out(a, c) or νc.out(a, c) (c is a channel
name). We adopt the following rules in addition to the internal reduction rules:
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In in(a, x).P
in(a,M)
−−−−−→ P{M/x}

Out-Ch out(a, c).P
out(a,c)
−−−−−→ P

Open-Ch
A

out(a,c)
−−−−−→ A′ c #= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

Out-T out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x} x #∈ fv (P ) ∪ fv(M)

Scope
A

α
−→ A′ u does not occur in α

νu.A
α
−→ νu.A′

Par
A

α
−→ A′ bv(α) ∩ fv (B) = bn(α) ∩ fn(B) = ∅

A | B
α
−→ A′ | B

Struct
A ≡ B B

α
−→ B′ A′ ≡ B′

A
α
−→ A′

Example 2.3 Consider the process P defined in Example 2.2. We have

P
νx1.out(c1,x1)
−−−−−−−−−→ νs, k.(in(c1, y).out(c2, dec(y, k)) | {enc(s, k)/x1})

in(c1,x1)
−−−−−−→ νs, k.(out(c2, dec(x1, k)) | {enc(s, k)/x1})

νx2.out(c1,x2)
−−−−−−−−−→ νs, k.({enc(s, k)/x1} | {dec(x1, k)/x2})

Let B be the extended process obtained after this sequence of reduction steps.
We have that φ(B) ≡ νs, k.{enc(s,k)/x1

,s /x2
}.

Our rules differ slightly from those described in [2]. Our rules Out-Ch and
Open-Ch can be used only when c is a channel name, whereas in [2] there
are identical rules Out-Atom and Open-Atom which can be used to output
a channel name or a variable of base type. To handle variables of base types,
we have the rule Out-T instead. Out-T can easily be derived from the rules
in [2], and, conversely, any application of Out-Atom or Open-Atom involving
a variable of base type can be replaced by an application of Out-T, though
the label out(c, x) will be replaced by a label νy.out(c, y) where y is a fresh
variable not appearing in the process. Any transition in our semantics is also
a transition in [2], but they also allow output of free variables directly. For
example, notice that in [2], the process out(c, M).P | {M/x} can transition by
label νy.out(c, y) to P | {M/x} | {M/y}, or by label out(c, x) to P | {M/x}
(since out(c, M).P | {M/x} ≡ out(c, x).P | {M/x}). Our semantics only allows
the former transition. In [15], we prove that labelled bisimulation in our system
coincides with labelled bisimulation in [2].
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2.3 Equivalences

We can now define what it means for two frames to be statically equivalent [2].

Definition 2.4 (static equivalence (∼)) Two closed frames ϕ1 and ϕ2 are
statically equivalent, written ϕ1 ∼ ϕ2, if and only if for some names ñ1, ñ2

and substitutions σ1, σ2, such that ϕ1 ≡ νñ1σ1, ϕ2 ≡ νñ2σ2, and dom(σi) ∩
vars(img(σi)) = ∅ for i = 1, 2, we have

(i) dom(ϕ1) = dom(ϕ2),

(ii) for all terms M, N with variables included in dom(ϕi) and using no names
occurring in ñ1 or ñ2, Mσ1 =E Nσ1 is equivalent to Mσ2 =E Nσ2.

Extended processes A and B are statically equivalent, noted by A ∼ B, if we
have that φ(A) ∼ φ(B).

Example 2.5 Let ϕ0 = νk.σ0 and ϕ1 = νk.σ1 where σ0 = {enc(s0, k)/x1, k/x2},
σ1 = {enc(s1, k)/x1, k/x2} and s0, s1 and k are names. Let E be the theory de-
fined by the axiom dec(enc(x, k), k) = x. We have dec(x1, x2)σ0 =E s0 but not
dec(x1, x2)σ1 =E s0. Therefore we have ϕ0 %∼ ϕ1. However, note that we have
νk.{enc(s0, k)/x1} ∼ νk.{enc(s1, k)/x1}.

Definition 2.6 (labelled bisimilarity (≈)) Labelled bisimilarity is the largest
symmetric relation R on closed extended processes, such that A R B implies

1. A ∼ B,

2. if A → A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A
α
→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α

→→∗

B′ and A′ R B′ for some B′.

The definition of labelled bisimilarity is like the usual definition of bisimi-
larity, except that at each step one additionally requires that the processes are
statically equivalent. In [2], it is shown that labelled bisimilarity coincides with
observational equivalence, which is a relation capturing the fact that two given
processes cannot be distinguished by any context. In general, it is easier to
work with labelled bisimilarity rather than observational equivalence because of
the quantification over all contexts. As mentioned in the introduction, contex-
tually defined equivalences are useful to formalize many security properties, in
particular anonymity properties, such as those studied in [12].
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— PART I: Intermediate Calculus —

The idea of a symbolic semantics is to have a notion of process in which
terms that have been input from the environment are represented as variables.
This allows us to reason in a way that abstracts away from the particular term
that was input. Given such a process Ps, we can create a concrete process (an
“instance”) Psσ by applying a substitution σ that maps the input variables to
terms. We define the symbolic semantics by means of counterparts ≡s, →s,
α
−→s for the concrete relations ≡, →,

α
−→ of applied pi calculus, and aim to

show soundness and completeness results relating the symbolic and concrete
semantics. Structural equivalence occupies a crucial role in our calculi because
the transition relations are closed under structural equivalence; therefore, we
would ideally like a notion of symbolic structural equivalence which is sound
and complete in the following (informal) sense:

Soundness : Ps ≡s Qs implies for any valid instantiation σ, Psσ ≡ Qsσ;
Completeness: Psσ ≡ Q implies there exists Qs s.t. Ps ≡s Qs and Qsσ = Q.

Unfortunately, completeness in this sense appears to be unachievable. To see
this, consider the following example:

Example 2.7 Consider the following process:

P = in(c, x).in(c, y).out(c, f(x)).out(c, g(y)).

The process P can be reduced to P ′ = out(c, f(M1)).out(c, g(M2)) where M1

and M2 are two arbitrary terms provided by the environment. In the case that
f(M1) =E g(M2) we have P ′ ≡ νz.(out(c, z).out(c, z) | {f(M1)/z}), but this
structural equivalence does not hold whenever f(M1) $=E g(M2). The aim of
symbolic semantics is to avoid instantiating the variables x and y; the process P
would reduce symbolically to P ′

s = out(c, f(x)).out(c, g(y)). In this case we need
to keep auxiliary information that allows us to infer that x and y may take
arbitrary values. The process P ′

s represents the two cases in which x and y
are equal or distinct. Hence, the question of whether the symbolic structural
equivalence P ′

s ≡s νz.(out(c, z).out(c, z) | {f(x)/z}) is valid cannot be decided,
as it depends on the concrete values of x and y.

Therefore, the notion of symbolic structural equivalence that we will in-
troduce is sound but not complete in the sense above (we will give a weaker
completeness result). This seems to be an inherent problem and it propagates
to internal and labelled reduction, since they are closed under structural equiva-
lence. In Example 2.7, the control flow is not affected by whether f(x) =E g(y).
When control flow is affected by conditions on input variables, we maintain
those conditions as a set of constraints. This allows us to give a soundness
result for symbolic labelled bisimulation.

Unfortunately, the fact that we are unable to have a notion of symbolic struc-
tural equivalence which is both sound and complete in the sense mentioned above
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significantly complicates the proof of our main result. We therefore split it into
two parts. In this part, we define a more restricted semantics which will pro-
vide an intermediate representation of applied pi calculus processes (Section 3).
These intermediate processes are a selected (but sufficient) subset of the original
processes. One may think of them as being processes in some kind of normal
form. We equip these intermediate processes with a labelled bisimulation that
coincides with the original one (Section 5).

3 Syntax and Semantics

3.1 Syntax

One has intermediate plain processes (denoted by P , Q, R), intermediate framed
processes (F , G, H), and intermediate extended processes (A, B, C).

P, Q, R := inter. plain process
0
P | Q
if M = N then P else Q
in(u, x).P
out(u, N).P

F, G, H := inter. framed process
P
{M/x}
F | G

A, B, C := inter. extended process
F
νn.A

Additionally, we require intermediate extended processes to be

• name and variable distinct (nv-distinct): bn(A) ∩ fn(A) = bv(A) ∩ fv (A) = ∅
and any name and variable is at most bound once; and

• applied, meaning that each variable in dom(A) occurs only once in A (the
occurrence in the substitution is the only one).

Intuitively, an intermediate process is applied if all active substitutions have
been applied. Intermediate extended processes are a kind of normal form for
extended processes. Because they are applied and nv-distinct, we do not need
restriction νx on variables x, and all νn for names n occur at the beginning of
the process (which is possible as our language does not have replication).

Example 3.1 The extended process out(c, x) | {M/x} is not applied, as x occurs
twice. The corresponding intermediate process would be out(c, M) | {M/x}.

As expected, an intermediate context is an intermediate extended process
with a hole and similarly an intermediate framed context is an intermediate
framed process with a hole. An intermediate (framed) evaluation context is a
(framed) context whose hole is not under a conditional, an input or an output.
We say that such a context C[ ] is a context w.r.t. an extended intermediate
process A if and only if C[A] is an extended intermediate process. For instance,
the context νn.(B | ) would not be a context for any A such that n ∈ fn(A) ∪
bn(A) as νn.(B | A) would violate nv-distinctness.

11



As we do not allow α-conversion we explicitly run intermediate extended
processes in a naming environment.

Definition 3.2 (naming environment) A naming environment

N : N ∪ X → {n, f, b}

is a function which maps each name and variable to one of n, f, b (standing
for “new”, “free” and “bound” respectively), such that there are infinitely many
names and infinitely many variables that are mapped to each of n, f and b.
(More precisely, the sets N−1(n) ∩ X , N−1(n) ∩ N , N−1(f) ∩ X , N−1(f) ∩ N ,
N−1(b) ∩X , and N−1(b) ∩N are all infinite.)

Intuitively, N(u) = f if the name or variable u occurs free in A, and N(u) = b
if the name or variable u has been bound and will not be used again. N(u) = n
means that the name or variable is new and has not been used before, either
as free or bound. This discipline helps us avoid name and variable conflicts.
We use standard notation for function updating: if N(u) = t then the naming
environment N′ = N[u $→ t′] is defined to be the same as N except that N′(u) =
t′; and N[U $→ t′] is defined as N[u1 $→ t′, . . . , un $→ t′] if U = {u1, . . . , un}. If
U is a set of names and variables then N(U) = {N(u) | u ∈ U} and we write
N(U) = t if N(U) ⊆ {t}.

Definition 3.3 (compatible) We say that a naming environment N is com-
patible with an nv-distinct process A if N(bn(A) ∪ bv(A)) = b and N(fn(A) ∪ fv (A)) = f.
A naming environment N is compatible with a label α if N(bn(α) ∪ bv(α)) = n
and N(fn(α) ∪ fv(α)) = f.

Requesting that N(bn(α)∪ bv (α)) = n may seem strange with respect to the
original semantics. However, the intermediate semantics, that we present in the
following subsection, should clarify this point.

We define an intermediate process to be a pair (A ; N) where A is an in-
termediate extended process and N a naming environment, compatible with A.
Moreover, (A ; N) is closed if A is closed. We denote by ψ(A) the substitution
obtained by taking the union of the active substitutions {M/x} occurring in A.
Note that φ(A) denotes the frame of the process including the name restrictions,
while ψ(A) only refers to the substitution.

Throughout the paper we always suppose that substitutions are cycle-free
and use the following notational conventions for substitution. Given substitu-
tions σ1 = {M1/x1

, . . . ,Mp /xp} and σ2 = {N1/y1
, . . . ,Nq /yq} we write σ1 ∪ σ2

for {M1/x1
, . . . ,Mp /xp ,

N1 /y1
, . . . ,Nq /yq} and σ1σ2 for {M1σ2/x1

, . . . ,Mpσ2 /xp}.
We define img(σ) to be the image of σ, e.g., img(σ1) = {M1, . . . , Mp}. More-
over, we write σ" to emphasize that we iterate the substitution until obtaining
idempotence. This is needed when dom(σ) ∩ vars(img(σ)) '= ∅.

We now define the ↓ operator which transforms an nv-distinct extended
processes into an intermediate extended process.
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Definition 3.4 (A↓) Given an nv-distinct extended process A, the intermediate
extended process A↓ is defined inductively as follows:

0↓ = 0
{M/x}↓ = {M/x}

in(u, x).P↓ = νñ.in(u, x).P ′

out(u, N).P↓ = νñ.out(u, N).P ′
(νn.A)↓ = νn.(A↓)

(νx.A)↓ = Ã

if M = N then P else Q↓ = νñ.νm̃.if M = N then P ′ else Q′

(A | B)↓ = νñ.νm̃.(A′ | B′)(ψ(A′) ∪ ψ(B′))!

where P↓ = νñ.P ′, Q↓ = νm̃.Q′, A↓ = νñ.A′, B↓ = νm̃.B′, and Ã is A↓ but
with the unique occurrence of {M/x} replaced by 0.

The transformation ↓ consists of:

1. applying active substitutions as much as possible and allows us to get rid of
restrictions on variables. This operation preserves structural equivalence
since the rules SUBST and ALIAS allows us to do this.

2. pushing the restrictions on names in front of the process. This opera-
tion does not preserve structural equivalence (see Example 3.5) but only
labelled bisimilarity (Lemma 3.6).

This operation is extended as expected to context. If C[ ] is an evaluation
context, then C[ ]↓ is the intermediate evaluation context obtained by applying
the above rules, with the additional rule ↓ = .

Example 3.5 Let A = νx.(in(c, y).νb1.out(a, b1).out(a, x) | {f(b2)/x}). We
have that

A↓ = νb1.(in(c, y).out(a, b1).out(a, f(b2)) | 0

Lemma 3.6 Let A be an nv-distinct extended process. We have that A↓ ≈ A.

3.2 Semantics

Structural equivalence ≡i is the smallest equivalence relation on intermediate
processes such that:

Par-0i (A ; N) ≡i (A | 0 ; N)
Par-Ai (A | (B | C) ; N) ≡i ((A | B) | C ; N)
Par-Ci (A | B ; N) ≡i (B | A ; N)
New-Ci (νn.νm.A ; N) ≡i (νm.νn.A ; N)

and that is closed by application of intermediate evaluation context, i.e.

(A ; N) ≡i (B ; N)

(C[A] ; N[bn(C[0]) %→ b]) ≡i (C[B] ; N[bn(C[0]) %→ b])

Note that, in this intermediate semantics, we have removed several structural
equivalence rules such as Subst, Rewrite and we do not allow α-renaming. In
particular, Example 2.7 is not problematic anymore.
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Internal reduction →i is the smallest relation on intermediate processes closed by
structural equivalence (≡i), by application of intermediate evaluation contexts
and such that:

Commi (out(a, M).P | in(a, x).Q ; N) →i (P | Q{M/x} ; N)
Theni (if M = N then P else Q ; N) →i (P ; N) where M =E N
Elsei (if M = N then P else Q ; N) →i (Q ; N)

for any ground terms M and N such that M #=E N

Labelled transition
α
−→i. We also extend our intermediate semantics with the

following labelled transition relation.

Ini (in(a, x).P ; N)
in(a,M)
−−−−−→i (P{M/x} ; N)

where N(fn(M) ∪ fv (M)) = f

Out-Chi (out(a, c).P ; N)
out(a,c)
−−−−−→i (P ; N)

Out-Ti (out(a, M).P ; N)
νx.out(a,x)
−−−−−−−→i (P | {M/x}, N[x &→ f])

where x ∈ Xb and N(x) = n

Open-Chi
(A ; N)

out(a,c)
−−−−−→i (A′ ; N′) c #= a, d ∈ Nch, N(d) = n

(νc.A, N[c &→ b])
νd.out(a,d)
−−−−−−−→i (A′{d/c}, N′[c &→ b, d &→ f])

Scopei
(A ; N)

α
−→i (A′, N′) n does not occur in α

(νn.A ; N[n &→ b])
α
−→i (νn.A′, N′[n &→ b])

Pari
(A ; N)

αψ(B)
−−−−→i (A′, N′)

(A | B ; N)
α
−→i (A′ | B, N′)

Structi
(A ; N) ≡i (B ; N)

α
−→i (B′, N′) ≡i (A′, N′)

(A ; N)
α
−→i (A′, N′)

One may note two particularities in this semantics. The Open-Chi rule
requires an “on-the-fly renaming” at the point that we reveal a bound name.
This will be needed in the bisimulation because we require both the left- and
right-hand processes to use the same label without allowing α-conversion. The
second unusual detail is the αψ(B) label in the Pari rule which is needed to
keep processes applied. Note that ψ(B) can only affect labels that are of the
form in(c, M) since for the other ones, the variables in dom(ψ(B)) do not occur
in the label α.
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Example 3.7 Let A = νa.(in(c, x).P (x) | {a/y}) and B = νa.(P (a) | {a/y}).

We have that A
in(c,y)
−−−−→ B. Let N be a naming environment compatible with

A↓ and in(c, y). We have also that (A↓ ; N)
in(c,y)
−−−−→ (B↓ ; N). The derivation

witnessing this reduction uses the fact that the label in the Pari rule can be
instantiated along the derivation.

(in(c, x).P (x) ; N)
in(c,a)
−−−−→ (P (a) ; N)

(in(c, x).P (x) | {a/y} ; N)
in(c,y)
−−−−→ (P (a) | {a/y} ; N)

(νa.(in(c, x).P (x) | {a/y}) ; N[a $→ b])
in(c,y)
−−−−→ (νa.(P (a) | {a/y}) ; N[a $→ b])

In particular we note that if the first label had been in(c, y) the obtained process
would have been (P (y) ; N) and the Pari rule could not have been used because
P (y) | {a/y} would not have been an intermediate process (as it is not applied).

4 Soundness and Completeness

We now introduce the relation ! on intermediate processes. Intuitively, !

captures the structural equivalences that are “missing” in ≡i with respect to ≡.
We show completeness of the intermediate semantics up to !. Note that the
rule New-Ci is in the relation ! because of some tricky interactions between
the transformation ↓ and the relation ≡ (see Example 4.2 given below).

Definition 4.1 (!) We define ! to be the smallest equivalence relation on in-
termediate processes closed under bijective renaming of bound names and vari-
ables and such that

New-Ni (νñ.νm.A ; N) ! (νñ.A ; N) if m &∈ fn(A)
Rew-Ni (A{M/x} ; N) ! (A{N/x} ; N) if M =E N
New-Ci (νn.νm.A ; N) ! (νm.νn.A ; N)

Example 4.2 Consider the processes: A = out(c, n1).νn2.νn′
2.out(c, 〈n2, n′

2〉)
and C = νn′

2.νn2.out(c, n1).out(c, 〈n2, n′
2〉). We have that

A↓ = νn2.νn′
2.(out(c, n1).out(c, 〈n2, n

′
2〉) and A↓ ≡ C.

Note that there is no B such that A ≡ B and B↓ = C. Nevertheless,
because of the rule New-Ci there exists B′ (e.g. B′ = A) such that A ≡
B′ and (B′↓ ; N) ! (C ; N) for any compatible naming environment N. This
property is needed in the proof of Proposition 5.5.

Lemma 4.3 Let (A ; N) and (A′ ; N) be two intermediate processes such that
(A ; N) ! (A′ ; N). Then we have that A ≡ A′.

We now show that our intermediate semantics is sound with respect to the
original semantics: any structural equivalence and (labelled) reduction that
holds in the intermediate context also holds in the original semantics.
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Proposition 4.4 (soundness) Let (Ai ; N) and (Bi ; N′) be two intermediate
processes such that (Ai ; N) !"i (Bi ; N′) with !" ∈ {≡,→,

α
−→}. Then we have

that Ai !" Bi.

The proofs when !" ∈ {≡,→} are straightforward and are sketched in Ap-
pendix A. The proof for

α
−→i is more involved and detailed in Appendix A.

We also introduce a useful commutation lemma. As we show completeness
for one step of each of these relations up to ! the commutation lemmas will
allow us to lift the result to sequences of steps.

Lemma 4.5 (commutation) Let (A ; N), (A′ ; N) and (B ; N′) be three inter-
mediate processes such that (A′ ; N) ! (A ; N) !" (B ; N′) with !" ∈ {≡i,→i,

α
−→i}.

Then there exists (B′ ; N′) such that (A′ ; N) !" (B′ ; N′) ! (B ; N′).

Proof.(sketch) This result can be proved by considering proofs in “linear form”,
i.e., by applying the rules directly under the evaluation context, resulting into
a sequence of processes rather than a proof tree. Similarly, the proof of (A′ ;
N) ! (A ; N) can be written as a sequence of steps. Now, it is easy to show,
by case analysis on each pair of rules, that each time there is an application
of ! occurring immediately to the left of an application of ≡i, this pair of rule
applications can be commuted. !

Next we show completeness of the intermediate semantics: any structural
equivalence and (labelled) reduction that holds in the original semantics should
also hold for corresponding intermediate processes in the new semantics. As
discussed previously completeness seems difficult to achieve. We therefore show
completeness up to !.

Proposition 4.6 (completeness) Let A and B be two nv-distinct extended
processes such that A !" B with !" ∈ {≡,→,

α
−→}. Let N be a naming environ-

ment compatible with A↓ and also with α when !" =
α
−→. Let N′ be a naming

environment compatible with B↓ and such that:

• N′ = N[x &→ f] when !" =
α
−→ and α is of the form νx.out(a, x);

• N′ = N[d &→ f] when !" =
α
−→ and α is of the form νd.out(a, d);

• N′ = N otherwise.

Then there exists an intermediate process (Di ; N′) such that

• (A↓ ; N) !"i (Di ; N′), and

• (Di ; N′) ! (B↓ ; N′).

Note that, when !" ∈ {≡,→}, we have that N′ = N. The proofs are done in
Appendix A.

From Propositions 4.4 and 4.6 and the commutation lemma stated above,
we derive the following corollaries. (Corollary 4.8 also requires Lemmas A.5 and
A.8 in the appendix.)
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Corollary 4.7 (soundness of →∗
i and →∗

i
α
−→i→∗

i ) Let (Ai ; N) and (Bi ; N′)
be two intermediate processes such that (Ai ; N) →∗

i (Bi ; N′) (resp. (Ai ; N) →∗
i

α
−→i →∗

i (Bi ; N′)). Then we have that Ai →∗ Bi (resp. Ai →∗ α
−→→∗ Bi).

Corollary 4.8 (completeness of →∗
i and →∗

i
α
−→i→∗

i ) Let A and B be two

nv-distinct extended processes such that A →∗ B (resp. A →∗ α
−→→∗ B) and N

be a naming environment compatible with A↓ (resp., and α). Let N′ be a naming
environment compatible with B↓ and such that:

• N′ = N[x $→ f] in the case →∗
i

α
−→i→∗

i when α is of the form νx.out(a, x);

• N′ = N[d $→ f] in the case →∗
i

α
−→i→∗

i when α is of the form νd.out(a, d);

• N′ = N otherwise.

Then there exists an intermediate process (Di ; N′) such that (A↓ ; N) →∗
i (Di ;

N′) (resp. (A↓ ; N) −→∗
i

α
−→i−→∗

i (Di ; N′)) and (Di ; N′) ! (B↓ ; N′).

5 Intermediate Bisimulation

We now define the intermediate labelled bisimulation. The definition is similar
to the original one, but is stated with respect to our intermediate semantics.
Moreover, note that the side condition bn(α) ∩ fn(B) = ∅ has been removed
since the fact that both processes are running in the same naming environment
ensures this condition.

Definition 5.1 (Intermediate labelled bisimilarity (≈i)) Intermediate la-
belled bisimilarity is the largest symmetric relation R on closed intermediate
processes with same naming environment, such that (Ai, N) R (Bi ; N) implies

1. Ai ∼ Bi,

2. if (Ai ; N) →i (A′
i ; N), then (Bi ; N) →∗

i (B′
i ; N) and (A′

i ; N) R (B′
i ; N)

for some B′
i,

3. if (Ai ; N)
α
→i (A′

i ; N′) and fv (α) ⊆ dom(Ai), then (Bi ; N) →∗
i

α
→i→∗

i (B′
i ; N′)

and (A′
i ; N′) R (B′

i ; N′) for some B′
i.

The following theorem states that the intermediate and the original bisimu-
lations coincide.

Theorem 5.2 Let A and B be two nv-distinct extended processes and N be a
naming environment compatible with A↓ and B↓. We have that

A ≈ B if and only if (A↓ ; N) ≈i (B↓ ; N)

Both directions of this result are proved separately by the following propositions.
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Proposition 5.3 Let A and B be two nv-distinct extended processes. We have

A ≈ B implies (A↓ ; N) ≈i (B↓ ; N).

for any naming environment N compatible with A↓ and B↓.

Proof. To prove this result, first we define a new relation R. Next we will show
that R is an intermediate labelled bisimulation witnessing (A↓ ; N) ≈i (B↓ ; N).

(i) Definition of R.
We define R as follows: (Ai ; N) R (Bi ; N) if Ai ≈ Bi and N is a naming
environment compatible with Ai and Bi.

(ii) R is an intermediate bisimulation relation witnessing (A↓ ; N) ≈i (B↓ ; N).
First we have to show that (A↓ ; N) R (B↓ ; N). We have that A ≈ B and hence
A↓ ≈ B↓ (by Lemma 3.6) and N is a naming environment compatible with A↓
and B↓. Hence, by definition of R, we easily conclude.

Now, we have to show that R satisfies the three points of the definition
of intermediate labelled bisimilarity. Let (Ai ; N) and (Bi ; N) be two closed
intermediate processes such that (Ai ; N) R (Bi ; N). By definition of R, we
have that Ai ≈ Bi.
We have to show that:

1. Ai ∼ Bi. By hypothesis, we have that Ai ≈ Bi which implies Ai ∼ Bi.

2. If (Ai ; N) →i (A′
i ; N) then there exists (B′

i ; N) with (Bi ; N) →∗
i (B′

i ; N)
and (A′

i ; N) R (B′
i ; N).

By Proposition 4.4, we have that Ai → A′
i. Since Ai ≈ Bi and Ai → A′

i

there exists an extended process B′ such that Bi →∗ B′ and A′
i ≈ B′. In

the remainder, we assume w.l.o.g. that B′ is nv-distinct and compatible
with N. By Corollary 4.8, there exists an intermediate extended process
(D ; N) such that

• (Bi↓ ; N) →∗
i (D ; N), and

• (D ; N) ! (B′↓ ; N).

As Bi is an intermediate process we have that Bi↓ = Bi. Let B′
i = D.

It remains to show that (A′
i ; N) R (B′

i ; N). As A′
i ≈ B′, B′ ≈ B′↓ (by

Lemma 3.6), and B′
i ≡ B′↓ (by Lemma 4.3 and the fact that (B′

i ; N) =
(D ; N) ! (B′↓ ; N)) we have that A′

i ≈ B′
i. By definition of R we deduce

that (A′
i ; N) R (B′

i ; N).

3. If (Ai ; N)
α
−→i (A′

i ; N′) with fv(α) ⊆ dom(Ai) then there exists (B′
i ; N′)

such that (Bi ; N) →∗
i

α
−→i→∗

i (B′
i ; N′) and (A′ ; N′) R′ (B′

i ; N′).

This case is similar to the previous one.

!

To show the converse direction, we need an additional lemma.
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Lemma 5.4 Let (A ; N) and (B ; N) be two intermediate processes, and N′ a
naming environment compatible with A and B. Then:

1. (A ; N) ≈i (B ; N) implies (A ; N′) ≈i (B ; N′); and

2. (A ; N) ! (B ; N) implies (A ; N′) ! (B ; N′).

To see that the first part of the lemma holds it is sufficient to note that (A ;
N) !"i (A′ ; N′) if and only if (Aρ ; Nρ) !"i (A′ρ ; N′ρ) where ρ is a bijective
renaming of names and variables, !" ∈ {≡,→,

α
−→} and Nρ(u) = N(ρ−1(u))).

The second part is immediate.

Proposition 5.5 Let (Ai ; N) and (Bi ; N) be two intermediate processes. We
have that

(Ai ; N) ≈i (Bi ; N) implies Ai ≈ Bi

Proof. To prove this result, we first define a new relation R and then we will
show that R witnesses ≈.

(i) Definition of R.
A R B if there exist two intermediate processes (Â ; N) and (B̂ ; N), and two
nv-distinct extended processes Aα and Bα such that

• (Â ; N) ≈i (B̂ ; N),

• (Â ; N) ! (Aα↓ ; N) and (B̂ ; N) ! (Bα↓ ; N),

• Aα =α A and Bα =α B.

(ii) R witnesses ≈.
First we show that Ai R Bi. Let Â = Aα = Ai and B̂ = Bα = Bi. By definition
of R we easily conclude as (Ai ; N) ≈i (Bi ; N).

Now, we show that R satisfies the three points of the definition of ≈. Let A
and B be two closed intermediate extended processes such that A R B. By
definition of R, we know that there exist two intermediate processes (Â ; N)
and (B̂ ; N) such that

• (Â ; N) ≈i (B̂ ; N),

• (Â ; N) ! (Aα↓ ; N) and (B̂ ; N) ! (Bα↓ ; N), and

• Aα =α A and Bα =α B.

We have to show that:

1. A ∼ B. Since (Â ; N) ≈i (B̂ ; N), we have that Â ∼ B̂ by definition of ≈i.
As Aα =α A and Bα =α B, we have that Â ∼ A and B̂ ∼ B. We conclude
by transitivity of ∼.
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2. If A → A′ for some extended process A′ then there exists B′ such that
B →∗ B′ and A′ R B′.
If A → A′ we also have that Aα → A′

α for some A′
α such that A′

α =α A′

and A′
α compatible with N. By Proposition 4.6, there exists an extended

process (D ; N) such that

• (Aα↓ ; N) →i (D ; N), and

• (D ; N) ! (A′
α↓ ; N).

We have that (Â ; N) ! (Aα↓ ; N) →i (D ; N) ! (A′
α↓ ; N). By

Lemma 4.5, there exists (D′, N) such that

(Â ; N) →i (D′ ; N) ! (D ; N) ! (A′
α↓ ; N).

Since (Â ; N) ≈i (B̂ ; N) and (Â ; N) →i (D′ ; N), we have that there
exists (B′

i ; N) such that (B̂ ; N) →∗
i (B′

i ; N) and (D′ ; N) ≈i (B′
i ; N). By

Corollary 4.7, we have that B̂ →∗ B′
i. Thus, we deduce that B →∗ B′′

i ,
for some B′′

i such that (B′′
i ↓ ; N) ! (B′

i ; N). Let B′ = B′′
i , B′

α = B′,
B̂′ = B′

i and Â′ = D′. We have that B →∗ B′ and by definition of R, we
have that A′ R B′. Indeed, we have that:

• (Â′ ; N) ≈i (B̂′ ; N), i.e. (D′ ; N) ≈i (B′
i ; N),

• (Â′ ; N) ! (A′
α↓ ; N) and (B̂′ ; N) ! (B′

α↓ ; N), and

• A′
α =α A′ and B′

α =α B′.

3. If A
α
−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅ for some extended

process A′ then B →∗ α
−→→∗ B′ and A′ R B′ for some process B′.

First, we can assume w.l.o.g. that (fn(α)∪bn(α))∩(bn(Aα)∪bn(Bα)) = ∅
and (fn(α) ∪ bn(α)) ∩ (bn(Â) ∪ bn(B̂)) = ∅ (since Aα, Bα Â, B̂ can be
chosen to make this true). For the same reason, we can assume that
bv (α) ∩ (bv (Aα) ∪ bv(Bα)) = ∅ and bv(α) ∩ (bv(Â) ∪ bv(B̂)) = ∅. Let
N̂ = N[fn(α) )→ f][bn(α), bv (α) )→ n]. Note that N̂ is now compatible with
Aα, Bα Â, B̂ and α. Let A′

α be an nv-distinct extended process such that
Aα

α
−→ A′

α and A′
α compatible with N̂′ where N̂′ is defined as follows:

N̂′ =







N̂[x )→ f] when α is of the form νx.out(a, x);
N̂[d )→ f] when α is of the form νd.out(a, d);
N̂ otherwise.

By Proposition 4.6, there exists an extended process (D ; N̂′) such that

• (Aα↓ ; N̂)
α
−→i (D ; N̂′), and

• (D ; N̂′) ! (A′
α↓ ; N̂′).
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We have that (Â ; N) ! (Aα↓ ; N) and thus (Â ; N̂) ! (Aα↓ ; N̂)
(Lemma 5.4). Moreover, we have that (Aα↓ ; N̂)

α
−→i (D ; N̂′) ! (A′

α↓ ;
N̂′). By Lemma 4.5, there exists (D′, N̂′) such that

(Â ; N̂)
α
−→i (D′ ; N̂′) ! (D ; N̂′) ! (A′

α↓ ; N̂′).

Since (Â ; N) ≈i (B̂ ; N), we have also that (Â ; N̂) ≈i (B̂ ; N̂)
(Lemma 5.4). Moreover, we have that (Â ; N̂)

α
−→i (D′ ; N̂′), thus there ex-

ists (B′
i ; N̂′) such that (B̂ ; N̂) →∗

i
α
−→i→∗

i (B′
i ; N̂′) and (D′ ; N̂′) ≈i (B′

i ; N̂′).
By Corollary 4.7, we have that B̂ →∗ α

−→→∗ B′
i. Thus, we deduce that

B →∗ α
−→→∗ B′′

i for some B′′
i such that (B′′

i ↓ ; N̂′) ! (B′
i ; N̂′). Let

B′ = B′′
i , B′

α = B′, B̂′ = B′
i and Â′ = D′. We have that B →∗ α

−→→∗ B′

and by definition of R, we have that A′ R B′. Indeed, we have that:

• (Â′ ; N̂′) ≈i (B̂′ ; N̂′), i.e. (D′ ; N̂′) ≈i (B′
i ; N̂′),

• (Â′ ; N̂′) ! (A′
α↓ ; N̂′) and (B̂′ ; N̂′) ! (B′

α↓ ; N̂′), and

• A′
α =α A′ and B′

α =α B′.

!
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— PART II: Symbolic Calculus —

A symbolic process is an intermediate process together with a constraint
system. The aim of a symbolic semantics is to avoid the infinite branching due
to the inputs of the environment. This is achieved by keeping variables rather
than the input terms. The constraint system gives a finite representation of the
value that these variables are allowed to take.

6 Constraint systems

Definition 6.1 (constraint system) A constraint system C is a set of con-
straints where every constraint is of one of the following forms:

• “ ϕ ! x”, where ϕ = νũ.σ for some tuple of names and variables ũ and
some substitution σ, and x is a variable which does not appear under a
restriction of any frame nor in the domain of any frame;

• “ M = N”, where M and N are terms;

• “ M != N”, where M and N are terms;

• “ gd(M)” where M is a term;

The constraint ϕ ! x is useful for specifying the information ϕ held by the
environment when it supplies an input x. As we will see in the following sec-
tion, these variables will be taken from a special set of variables. The con-
straint gd(M) means that the term M is ground. We denote by Ded(C) the de-
ducibility constraints of C, i.e. {ϕ ! x | “ϕ ! x” ∈ C}. When Ded(C) = {ϕ1 ! x1, . . . , ϕ! ! x!},
we define cv(C) = {x1, . . . , x!} to be the constraint variables of C. Moreover,
we write names(C) (resp. vars(C)) for the names (resp. variables) of C.

The constraint systems that we consider arise while executing symbolic pro-
cesses. We therefore restrict ourselves to well-formed constraint systems, cap-
turing the fact that the knowledge of the environment always increases along
the execution: we allow it to use more names and variables (less restrictions) or
give it access to more terms (larger substitution). The fact that the constraint
system is not arbitrary is useful when solving the constraints such as in [20].

Definition 6.2 (ordering on frames #) Let ϕ1 = νũ1.σ1 and ϕ2 = νũ2.σ2

be two frames. The frame ϕ1 is smaller than or equal to ϕ2, denoted by ϕ1 # ϕ2,
if ũ1 ⊇ ũ2, dom(σ1) ⊆ dom(σ2) and yσ1 = yσ2 for any y ∈ dom(σ1).

Definition 6.3 (well-formed constraint system) A constraint system C is
well-formed if Ded(C) can be ordered ϕ1 ! x1, . . . , ϕ! ! x! in such a way that:

1. (monotonicity) for every i such that 1 ≤ i < $, we have ϕi # ϕi+1, and

2. (origination) for every i such that 1 ≤ i ≤ $, we have
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for all x ∈ vars(img(ϕi)) ∩ cv(C), there exists j < i such that x = xj .

Moreover, if “M #= N” ∈ C then “gd(M)” ∈ C and “gd(N)” ∈ C.

In the remainder, when we consider a well-formed constraint system C and
we write, for Ded(C), the sequence ϕ1 ! x1, . . . , ϕ! ! x!, this implicitly means
that we consider the ordering given by the monotonicity condition.

We say that two well-formed constraint systems C and C′ have same basis
if Ded(C) = {ϕ1 ! x1, . . . , ϕ! ! x!} and Ded(C′) = {ϕ′

1 ! x′
1, . . . , ϕ

′
! ! x′

!} are
such that xi = x′

i and dom(ϕi) = dom(ϕ′
i) for 1 ≤ i ≤ ".

We now define the solutions of a well-formed constraint system. Intuitively,
each solution defines an intermediate process which corresponds to a concrete
instance of the corresponding symbolic process.

Definition 6.4 (E-solution) Let C be a well-formed constraint system such
that Ded(C) = {ϕ1 ! x1, . . . , ϕ! ! x!} where each ϕi = νũi.σi for some ũi

and some substitution σi. An E-solution of C is a substitution θ whose domain
is cv(C) and such that

• vars(xiθ) ∩ cv (C) = ∅ and vars(xiθ) ∩ (dom(ϕ!) ! dom(ϕi)) = ∅;

• names(xiθ) ∩ ũi = ∅ and vars(xiθ) ∩ ũi = ∅;

• for every constraint “ M = N” ∈ C, we have M(θσ!)" =E N(θσ!)";

• for every constraint “ M #= N” ∈ C, we have M(θσ!)" #=E N(θσ!)";

• for every constraint “ gd(M)” ∈ C, the term M(θσ!)" is ground.

We denote by SolE(C) the set of E-solutions of C. An E-solution θ of C is closed
if vars(xiθ) ⊆ dom(ϕi) for any i ∈ {1, . . . , "}. We denote by SolclE (C) the set of
closed E-solutions of C.

The condition that vars(xiθ)∩cv (C) = ∅ states that the image of θ should not
use any variables that are in the domain of θ. The second condition, vars(xiθ)∩
(dom(ϕ!)!dom(ϕi)) = ∅, ensures that the environment does not use information
that will only be revealed “in the future”; it can use only the entries of the
frame that have previously been added. The conditions names(xiθ) ∩ ũi = ∅
and vars(xiθ) ∩ ũi = ∅ dissallow the environment to use restricted names and
variables which are supposed to be secret; thus, they ensure that the value xiθ
can be deduced from public data. (These conditions are related to the definition
of deduction given in [1].) The meaning of the remaining conditions should be
clear.

Example 6.5 Let C = {νk.νs.{enc(s,k)/y1
,k /y2

} ! x′ , gd(c) , x′ = s}. Let E
be the equational theory dec(enc(x, y), y) = x and θ = {dec(y1,y2)/x′}. We have
that θ is a closed E-solution of C. Note that θ′ = {dec(y1,k)/x′} is not an E-
solution of C. Indeed, names(x′θ′) ∩ {k, s} = {k} and thus is not empty.
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We also define what it means to apply an evaluation context on a constraint
system. This is needed because we define the semantics in a compositional way.

Definition 6.6 (C[C]) Let C = νñ.( | D) be an intermediate evaluation con-
text and e be a constraint. We have that

• C[e] = e when e is a constraint of the form M = N , M != N or gd(M);

• C[νṽ.σ ! x] = νñ.νṽ.(σ ∪ ψ(D)) ! x otherwise.

Similarly, for a variable y ∈ X

• νy.e = e when e is a constraint of the form M = N , M != N or gd(M);

• νy.e = νy, ṽ.σ ! x when e = νṽ.σ ! x.

Given a constraint system C, we have that C[C] = {C[e] | e ∈ C} and νy.C =
{νy.e | e ∈ C}.

7 Syntax and Semantics

7.1 Syntax

We first need to extend naming environments used in the intermediate semantics
to the symbolic setting. For this, we introduce an infinite set Y of variables, to
be used as constraint variables, disjoint from the set X . We also distinghuish
two disjoint subsets: Yb for variables of base type and Ych for those of channel
type. The functions vars and fv are updated to also return variables from Y.

Definition 7.1 (Symbolic naming environment) A symbolic naming en-
vironment Ns : N ∪ X ∪ Y → {n, f, b, c} is a function which maps each name
and variable in N ∪ X to one of n, f and b and each variable in Y to one of n
or c. It extends naming environments with an infinite set Y of variables that can
be mapped to c (which stands for “constraint”) or n. As before, we require that
there are infinitely many names and infinitely many variables that are mapped
to each of n, f and b.

We say that a symbolic naming environment Ns is compatible with an in-
termediate extended process A and a constraint system C if

– Ns(fn(A)) = f
– Ns(fv (A)) ⊆ {f, c}

– Ns(bn(A) ∪ bv(A)) = b
– Ns(y) = c iff y ∈ cv (C)

– Ns(names(C)) ⊆ {f, b}
– Ns(vars(C)) ⊆ {f, c, b}

Intuitively, Ns(y) = c means that the variable y is a constraint variable (i.e.,
an input from the environment subject to constraints in C).

We are now ready to precisely define a symbolic process.

Definition 7.2 (Symbolic process) A symbolic process is a triple (A ; C ;
Ns) where A is an intermediate extended process, C is a constraint system and Ns

is a symbolic naming environment. We say that (A ; C ; Ns) is well-formed if
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• Ns is compatible with A and C;

• If Ded(C) = {ϕ1 ! x1, . . . , ϕ! ! x!} != ∅ then φ(A) # ϕ! and bv (ϕ1) ⊆
dom(A);

• for all M, N such that M = N , M != N or gd(M) is in C we have that
vars(M, N) ∩ dom(A) = ∅.

(A ; C ; Ns) is said to be closed if fv(A) ⊆ dom(A) ∪ cv(C).

Given a well-formed symbolic process (A ; C ; Ns) we define by SolE(C ; Ns) the
set of solutions of C which are compatible with Ns, i.e.

SolE(C, Ns) = {θ | θ ∈ SolE(C), Ns(names(img(θ)) ∪ vars(img(θ))) = f}.

We denote by SolclE (C ; Ns) the subset of SolE(C, Ns) containing closed E-
solutions of C.

Each of these solutions θ defines a corresponding (closed) intermediate pro-
cess which we call the θ-concretization.

Definition 7.3 (θ-concretization) Let (As ; C ; Ns) be a well-formed sym-
bolic process. Let θ ∈ SolE(C, Ns). We say that an intermediate process (A ; N)
is the θ-concretization of (As ; C ; Ns) if A = As(θσ)" where σ is the maximal
frame of C and N = Ns|N∪X .

Example 7.4 Let As = νb.(out(c, x) | {b/y}), C = {νa.νb.{b/y} ! x, x !=
c, gd(x)} and Ns be a naming environment compatible with As and C such that
Ns(d) = f. Let θ1 = {d/x}, θ2 = {y/x} and N = Ns|N∪X . We have that θ1, θ2 ∈
SolclE (C, Ns). Hence (νb.(out(c, d) | {b/y}) ; N) (resp. (νb.(out(c, b) | {b/y}) ; N))
is the θ1 (resp. θ2) concretization of (As ; C ; Ns). However, νb.(out(c, a) |
{b/y}) is not a concretization of (As ; C ; Ns) since no θ ∈ SolclE (C, Ns) can have
a in its image.

7.2 Symbolic semantics

Symbolic structural equivalence (≡s) is the smallest equivalence relation on well-
formed symbolic processes such that:

Par-0s (A ; C ; Ns) ≡s (A | 0 ; C ; Ns)
Par-As (A | (B | D) ; C ; Ns) ≡s ((A | B) | D ; C ; Ns)
Par-Cs (A | B ; C ; Ns) ≡s (B | A ; C ; Ns)
New-Cs (νn.νm.A ; C ; Ns) ≡s (νm.νn.A ; C ; Ns)

(A ; CA ; Ns) ≡s (B ; CB ; Ns)

(C[A] ; C[CA] ; Ns[bn(C[0]) )→ b]) ≡s (C[B] ; C[CB] ; Ns[bn(C[0]) )→ b])

Symbolic internal reduction →s is the smallest relation on well-formed symbolic
processes such that:
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Comms (out(u, M).P | in(v, x).Q ; C ; Ns) →s

(P | Q{M/x} ; C ∪ {u = v , gd(u) , gd(v)} ; Ns)
where u, v ∈ Nch ∪ (cv (C) ∩ Ych).

Thens (if M = N then P else Q ; C ; Ns) →s (P ; C ∪ {M = N} ; Ns)

Elses (if M = N then P else Q ; C ; Ns) →s

(Q ; C ∪ {M %= N ; gd(M) ; gd(N)} ; Ns)

(A ; CA ; Ns) →s (B ; CB ; Ns)

(C[A] ; C[CA] ; Ns[bn(C[0]) &→ b]) →s (C[B] ; C[CB] ; Ns[bn(C[0]) &→ b])

(A ; CA ; Ns) ≡s (B ; CB ; Ns) −→s (B′ ; C′
B ; Ns) ≡s (B′ ; C′

B ; Ns)

(A ; CA ; Ns) −→s (A′ ; C′
A ; Ns)

In addition to the rules for symbolic structural equivalence and internal reduc-
tion, we adopt the following rules:

Ins (in(u, x).P ; C ; Ns)
in(u,y)
−−−−→s (P{y/x} ; C ∪ {0 ! y, gd(u)} ; Ns[y &→ c])
where u ∈ Nch ∪ (Ych ∩ cv(C)), y ∈ Y, Ns(y) = n.

Out-Chs (out(u, v).P ; C ; Ns)
out(u,v)
−−−−−→s (P ; C ∪ {gd(u), gd(v)} ; Ns)

where u, v ∈ Nch ∪ (Ych ∩ cv(C)).
Out-Ts

(out(u, M).P ; C ; Ns)
νx.out(u,x)
−−−−−−−→s (P | {M/x} ; νx.C ∪ {gd(u)} ; Ns[x &→ f])

where x ∈ Xb, Ns(x) = n.

Open-Chs

(A ; C ; Ns)
out(u,c)
−−−−−→s (A′ ; C′ ; N′

s) u %= c, d ∈ Nch, Ns(d) = n

(νc.A ; νc.C ; Ns[c &→ b])
νd.out(u,d)
−−−−−−−→s (A′{d/c} ; νd.(C′{d/c}) ; N′

s[c &→ b, d &→ f])

Scopes
(A ; C ; Ns)

α
−→s (A′ ; C′ ; N′

s) n does not occur in α

(νn.A ; νn.C ; Ns[n &→ b])
α
−→s (νn.A′ ; νn.C′ ; Ns[n &→ b])

Pars
(A ; C ; Ns)

α
−→s (A′ ; C′ ; N′

s)

(A | B ; C | ψ(B) ; Ns)
α
−→s (A′ | B ; C′ | ψ(B) ; N′

s)

Structs
(A ; CA ; Ns) ≡s (B ; CB ; Ns)

α
−→s (B′ ; C′

B ; N′
s) ≡s (B′ ; C′

B ; N′
s)

(A ; CA ; Ns)
α
−→s (A′ ; C′

A ; N′
s)

For reasons similar to those cited for Open-Chi, the rules Ins and Open-

Chs require on-the-fly renaming. When a transition is executed under a context
(by the rules Scopes and Pars) the constraint system must also be put in the
context (according to Definition 6.6). In Pars we avoid the substitution ψ(B)
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which appears on a label in Pari since here we always have that the variables
in dom(ψ(B)) do not occur in the label α. In the rule Open-Chs, the restriction
νd.(C′{d/c}) is needed to ensure that the name d is not used to instantiate the
previous inputs: those that are done before the disclosure of this name.

Example 7.5 To illustrate our symbolic semantics, consider the process (A ; ∅ ; Ns)
where A = νk.νs.(in(c, x).if x = s then out(c, ok) | {enc(s,k)/y1

} | {k/y2
}) and Ns

is a symbolic environment compatible with A. Let x′ ∈ Yb be a variable such
that Ns(x′) = n.

(A ; ∅ ; Ns)
in(c,x′)
−−−−−→s (A′ ; {νk.νs.{enc(s,k)/y1

,k /y2
} ! x′ , gd(c)} ; Ns[x′ %→ c])

−−→s (νk.νs.(out(c, ok) | {enc(s,k)/y1
} | {k/y2

}) ; C ; Ns[x′ %→ c])

where A′ = νk.νs.(if x′ = s then out(c, ok) | {enc(s,k)/y1
} | {k/y2

}) and C is the
system

{νk.νs.{enc(s,k)/y1
,k /y2

} ! x′ , gd(c) , x′ = s}

Let θ = {dec(y1,y2)/x′}. We have θ ∈ SolclE (C ; Ns[x′ %→ c]) (see Example 6.5)
and

(A ; N)
in(c,x′θ)
−−−−−→i→i (A′θ′ ; N)

where N = Ns|N∪X .

8 Soundness and Completeness

We now show soundness of ≡s, →s and
α
−→s with respect to their counterparts in

the intermediate semantics: whenever one of these relations holds between two
symbolic processes, the corresponding relation in the intermediate semantics
holds for each θ-concretization. The proofs can be found in Appendix B.1.

Proposition 8.1 (soundness of ≡s and →s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns)
be two well-formed symbolic processes such that (As ; CA ; Ns) %&s (Bs ; CB ; Ns)
with %& ∈ {≡,→}. Let θ ∈ SolE(CB ; Ns). We have that θ ∈ SolE(CA ; Ns)
and (A ; N) %&i (B ; N) where (A ; N) (resp. (B ; N)) is the θ-concretization of
(As ; CA ; Ns) (resp. (Bs ; CB ; Ns)).

Proposition 8.2 (soundness of
α
−→s) Let (As ; CA ; Ns) and (Bs ; CB ; N′

s)

be two well-formed symbolic processes such that (As ; CA ; Ns)
αs−→s (Bs ; CB ;

N′
s). Let θB ∈ SolE(CB ; N′

s) and θA = θB|
cv(CA). We have that θA ∈ SolE(CA ;

Ns) and (A ; N)
αsθB−−−→i (B ; N′), where (A ; N) and (B ; N′) are respectively the

θA-concretization and the θB-concretization of (As ; CA ; Ns) and (Bs ; CB ; N′
s).

We also show completeness of the symbolic semantics with respect to the
intermediate one: each time a θ-concretization of a symbolic process is struc-
turally equivalent, respectively reduces, to another intermediate process, the
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symbolic process too is structurally equivalent, respectively reduces, to a corre-
sponding symbolic process. The proofs of these two following propositions can
be found in Appendix B.2.

Proposition 8.3 (completeness of ≡s and →s) Let (As ; CA ; Ns) be a
well-formed symbolic process and θ ∈ SolE(CA ; Ns). Let (A ; N) be the θ-
concretization of (As ; CA ; Ns) and (A′, N) be an intermediate process such that
(A ; N) "#i (A′ ; N) with "# ∈ {≡,→}. Then there exists a well-formed symbolic
process (A′

s ; C′
A ; Ns) such that:

1. (As ; CA ; Ns) "#s (A′
s ; C′

A ; Ns),

2. θ ∈ SolE(C′
A ; Ns),

3. (A′ ; N) is the θ-concretization of (A′
s ; C′

A ; Ns).

Proposition 8.4 (completeness of
α
−→s) Let (As ; CA ; Ns) be a well-formed

symbolic process and θA ∈ SolE(CA ; Ns). Let (A ; N) be the θA-concretization
of (As ; CA ; Ns) and (A′ ; N′) be an intermediate process such that (A ; N)

α
−→i

(A′ ; N′). Then there exists a well-formed symbolic process (A′
s ; C′

A ; N′
s) and a

substitution θ′A such that:

1. (As ; CA ; Ns)
αs−→s (A′

s ; C′
A ; N′

s),

2. θ′A ∈ SolE(C′
A ; N′

s) and θ′A|cv(CA) = θA,

3. (A′ ; N′) is the θ′A-concretization of (A′
s ; C′

A ; N′
s), and

4. αsθ′A = α.

From the propositions stated above, we easily derive the following corollaries.

Corollary 8.5 (soundness of →∗
s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns) be

two well-formed symbolic processes such that (As ; CA ; Ns) →∗
s (Bs ; CB ; Ns).

Let θ ∈ SolE(CB ; Ns). We have that θ ∈ SolE(CA ; Ns) and (A ; N) →∗
i (B ; N)

where (A ; N) (resp. (B ; N)) is the θ-concretization of (As ; CA ; Ns) (resp.
(Bs ; CB ; Ns)).

Corollary 8.6 (soundness of →∗
s

α
−→s→∗

s) Let (As ; CA ; Ns) and (Bs ; CB ; N′
s)

be two well-formed symbolic processes such that (As ; CA ; Ns) →∗
s

αs−→s→∗
s

(Bs ; CB ; N′
s). Let θB ∈ SolE(CB ; N′

s) and θA = θB|
cv(CA). We have that

θA ∈ SolE(CA ; Ns) and (A ; N) →∗
i

αsθB−−−→i→∗
i (B ; N′), where (A ; N)

and (B ; N′) are respectively the θA-concretization and the θB-concretization
of (As ; CA ; Ns) and (Bs ; CB ; N′

s).

28



9 Symbolic Equivalences

In this section, we define our notion of symbolic static equivalence and our notion
of symbolic bisimulation. We also show the soundness of these equivalences
w.r.t. their intermediate counterparts. We also show in Section 10 that our
symbolic bisimulation is not complete.

We define symbolic static equivalence using an encoding similar to the one
in [5]. The tests used to distinguish two frames in the definition of static equiv-
alence are encoded by means of two additional deduction constraints on fresh
variables x, y and by the equation x = y.

Definition 9.1 (symbolic static equivalence) We say that two closed well-
formed symbolic processes (As ; CA ; Ns) and (Bs ; CB ; Ns) are symbolically
statically equivalent, written (As ; CA ; Ns) ∼s (Bs ; CB ; Ns) if for some
variables x, y ∈ Yb, the constraint systems C′

A, C′
B have the same basis and

SolclE (C′
A ; N′

s) = SolclE (C′
B ; N′

s) where

• Ns({x, y}) = n,

• N′
s = Ns[x, y #→ c],

• C′
A = CA ∪ {φ(As) ! x , φ(As) ! y , x = y}, and

• C′
B = CB ∪ {φ(Bs) ! x , φ(Bs) ! y , x = y}.

The following proposition states the correctness of the symbolic static equiv-
alence with respect to the concrete one.

Proposition 9.2 (soundness of symbolic static equivalence) Let (As ; CA ; Ns)
and (Bs ; CB ; Ns) be two closed and well-formed symbolic processes such that
(As ; CA ; Ns) ∼s (Bs ; CB ; Ns). Then we have that:

1. SolclE (CA ; Ns) = SolclE (CB ; Ns), and

2. for all θ ∈ SolclE (CA ; Ns) we have that φ(As(θσA)!) ∼ φ(Bs(θσB)!), where
σA (resp. σB) is the substitution corresponding to the maximal frame of
CA (resp. CB).

Proof.

1. We show one direction, i.e., SolclE (CA ; Ns) ⊆ SolclE (CB ; Ns). The other
one can be proved in a similar way. Let θ ∈ SolclE (CA ; Ns). Since (As ;
CA ; Ns) ∼s (Bs ; CB ; Ns), we know that C′

A, C′
B have same basis and

SolclE (C′
A ; N′

s) = SolclE (C′
B ; N′

s) where

• x, y ∈ Yb and Ns({x, y}) = n,

• N′
s = Ns[x, y #→ c],

• C′
A = CA ∪ {φ(As) ! x , φ(As) ! y , x = y}, and
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• C′
B = CB ∪ {φ(Bs) ! x , φ(Bs) ! y , x = y}.

Let ρ = {x "→ a, y "→ a} for some name a such that Ns(a) = f and that does
not occur in As, CA, Bs, CB. It is easy to see that θ ∪ ρ ∈ SolclE (C′

A ; N′
s).

Since SolclE (C′
A ; N′

s) = SolclE (C′
B ; N′

s), we deduce that θ ∪ ρ ∈ SolclE (C′
B ;

N′
s). It remains to check that θ ∈ SolclE (CB ; Ns).

Let φ(Bs) = νñ′
B.σ′

B . By hypothesis, we know that the idempotent
substitution σ obtained by iterating (θ ∪ ρ)σ′

B satisfies the constraints
in C′

B. Let νñA.σA be the maximal frame in CA and νñB.σB be the
maximal frame in CB. Since CA and CB have same basis, we have that
dom(σA) = dom(σB). Moreover, since θ ∈ SolclE (CA ; Ns), we know that
vars(img(θ)) ⊆ dom(σA) = dom(σB). Since σ = ((θ ∪ ρ)σ′

B)!, we deduce
that σ = ((θ ∪ ρ)σB)!, and actually σ = (θσB)! ∪ ρ. This means that
θ ∈ SolE(CB ; Ns) since x and y do not appear in CB.

2. Let θ ∈ SolclE (CA ; Ns). Let σA be the substitution corresponding to
the maximal frame of CA. Let A = As(θσA)!. Note that A is a closed
intermediate extended process and φ(A) is a closed frame. Thanks to
the previous point, we also have that θ ∈ SolclE (CB ; Ns). Let σB be
the substitution corresponding to the maximal frame of CB. Let B =
Bs(θσB)!. We have that B is a closed intermediate extended process
and φ(B) is a closed frame. Assume that φ(A) &∼ φ(B). Since we have
dom(φ(A)) = dom(φ(B)), this means that there exist two terms M and
N such that

• fv (M, N) ⊆ dom(φ(A)) = dom(φ(As)),

• fn(M, N) ∩ (bn(A) ∪ bn(B)) = ∅, and

• (Mσ′
A)(θσA)! =E (Nσ′

A)(θσA)! and (Mσ′
B)(θσB)! &=E (Nσ′

B)(θσB)!

(or vice-versa), where φ(As) = νñ′
A.σ′

A and φ(Bs) = νñ′
B.σ′

B .

Hence, we have that N′
s(fv (M, N)) = f and we can also assume w.l.o.g.

that N′
s(fn(M, N)) = f. Now, let ρ = {x "→ M, y "→ N}. First note that

θ∪ρ is closed w.r.t. C′
A and C′

B. It remains to show that θ∪ρ ∈ SolE(C′
A ;

N′
s) whereas θ ∪ ρ &∈ SolE(C′

B ; N′
s) obtaining in this way a contradiction.

• θ ∪ ρ ∈ SolE(C′
A ; N′

s).
We want to show that ((θ∪ρ)σ′

A)! satisfies the constraints in C′
A. We

have that ((θ ∪ ρ)σ′
A)! = (θσA)! ∪ (ρσ′

A)(θσA)!. By hypothesis, we
know that (θσA)! satisfies the constraints in CA. Hence, we conclude
for the constraint in CA. We have also that x((θ ∪ ρ)σ′

A)! =E y((θ ∪
ρ)σ′

A)!, since we know that (Mσ′
A)(θσA)! =E (Nσ′

A)(θσA)!.

• θ ∪ ρ &∈ SolE(C′
B ; N′

s).
We show that ((θ ∪ ρ)σ′

B)! does not satisfy the constraint x = y.
We have that x((θ ∪ ρ)σ′

B)! = (Mσ′
B)(θσB))! and y((θ ∪ ρ)σ′

B)! =
(Nσ′

B)(θσB)!. We know that (Mσ′
B)(θσB)!) &=E (Nσ′

B)(θσB)!. This
allows us to conclude.
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Although we do not need completeness of symbolic static equivalence for our
result, we may note that it follows from Baudet’s result [5]. By completeness we
mean that A ∼ B implies that (A ; ∅ ; Ns) ∼s (B ; ∅ ; Ns) for any compatible
naming environment Ns.
We now define symbolic labelled bisimulation using our symbolic semantics.

Definition 9.3 (Symbolic labelled bisimilarity (≈s)) Symbolic labelled bisim-
ilarity is the largest symmetric relation R on closed well-formed symbolic pro-
cesses with same naming environment, such that (As ; CA ; Ns) R (Bs ; CB ; Ns)
implies

1. (As ; CA ; Ns) ∼s (Bs ; CB ; Ns)

2. if (As ; CA ; Ns) →s (A′
s ; C′

A ; Ns) with SolclE (C′
A ; Ns) %= ∅, then there

exists a symbolic process (B′
s ; C′

B ; Ns) such that

• (Bs ; CB ; Ns) →∗
s (B′

s ; C′
B ; Ns), and

• (A′
s ; C′

A ; Ns) R (B′
s ; C′

B ; Ns);

3. if (As ; CA ; Ns)
αs→s (A′

s ; C′
A ; N′

s) with SolclE (C′
A ; N′

s) %= ∅, then there
exists a symbolic process (B′

s ; C′
B ; N′

s) such that

• (Bs ; CB ; Ns) →∗
s

αs−→s→∗
s (B′

s ; C′
B ; N′

s), and

• (A′
s ; C′

A ; N′
s) R (B′

s ; C′
B ; N′

s).

The side condition SolclE (C′
A ; N′

s) %= ∅ ensures that we only consider symbolic
executions that correspond to at least one concrete execution. The following
theorem states the soundness of the symbolic bisimulation with respect to the
intermediate one.

Theorem 9.4 (soundness of symbolic labelled bisimilarity) Let (A ; N)
and (B ; N) be two intermediate processes. Let Ns be a symbolic naming envi-
ronment such that Ns|N∪X = N and Ns(y) = n for all y ∈ Y. We have that

(A ; ∅ ; Ns) ≈s (B ; ∅ ; Ns) ⇒ (A ; N) ≈i (B ; N)

Proof. To prove this result, first we define a new relation R′ and then we will
show that R′ is an intermediate labelled bisimulation witnessing (A ; N) ≈i (B ; N).
Let R be the relation witnessing (A ; ∅ ; Ns) ≈s (B ; ∅ ; Ns).

(i) Definition of R′.
(A ; N) R′ (B ; N) if there exists two closed well-formed symbolic processes (As ; CA ; Ns)
and (Bs ; CB ; Ns) such that

• (As ; CA ; Ns) R (Bs ; CB ; Ns) with N = Ns|N∪X , and

• there exists θ ∈ SolclE (CA ; Ns) such that As(θσA)" = A and Bs(θσB)" = B
where σA (resp. σB) is the maximal frame of CA (resp. CB).
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(ii) R′ is an intermediate bisimulation relation witnessing (A ; N) ≈i (B ; N).
First we have to show that (A ; N) R′ (B ; N). To do this, it is sufficient to see
that the two well-formed symbolic processes (A ; ∅ ; Ns) and (B ; ∅ ; Ns) satisfy
the required conditions.

Now, we have to show that R′ satisfies the three points of the definition
of intermediate labelled bisimilarity. Let (A ; N) and (B ; N) be two closed
intermediate processes such that (A ; N) R′ (B ; N). By definition of R′, we
know that there exists two closed well-formed symbolic processes (As ; CA ; Ns)
and (Bs ; CB ; Ns) such that

• (As ; CA ; Ns) R (Bs ; CB ; Ns), with N = Ns|N∪X , and

• there exists θ ∈ SolclE (CA ; Ns) such that As(θσA)! = A and Bs(θσB)! = B.

We have to show that:

1. φ(A) ∼ φ(B).
Thanks to Proposition 9.2, we deduce that

• SolclE (CA ; Ns) = SolclE (CB ; Ns), and

• for all θ′ ∈ SolclE (CA ; Ns) we have φ(As(θ′σA)!) ∼ φ(Bs(θ′σB)!).

Since θ ∈ SolclE (CA ; Ns) we deduce that φ(As(θσA)!) ∼ φ(Bs(θσB)!), i.e
φ(A) ∼ φ(B).

2. If (A ; N) →i (A′ ; N), then there exists (B′ ; N) such that (B ; N) →∗
i (B′ ; N)

and (A′ ; N) R′ (B′ ; N).
By definition of R′, we know that (As ; CA ; Ns) is a closed well-formed
symbolic process such that As(θσA)! = A and θ ∈ SolclE (CA ; Ns). Hence,
thanks to Proposition 8.3, we know that there exists a well-formed sym-
bolic process (A′

s ; C′
A ; Ns) such that

• (As ; CA ; Ns) →s (A′
s ; C′

A ; Ns),

• θ ∈ SolE(C′
A ; Ns), and

• A′
s(θσ

′
A)! = A′.

We have that (As ; CA ; Ns) R (Bs ; CB ; Ns) and (As ; CA ; Ns) →s (A′
s ; C′

A ; Ns).
Moreover θ ∈ SolE(C′

A ; Ns), and actually θ ∈ SolclE (C′
A ; Ns), thus we know

that SolclE (C′
A ; Ns) &= ∅. Hence, there exists a closed well-formed symbolic

process (B′
s ; C′

B ; Ns) such that

• (Bs ; CB ; Ns) →∗
s (B′

s ; C′
B ; Ns), and

• (A′
s ; C′

A ; Ns) R (B′
s ; C′

B ; Ns).

Since (A′
s ; C′

A ; Ns) R (B′
s ; C′

B ; Ns), we deduce that SolclE (C′
A ; Ns) = SolclE (C′

B ; Ns)
by using Proposition 9.2. We have that θ ∈ SolclE (C′

A ; Ns) and hence,
we deduce that θ ∈ SolclE (C′

B ; Ns). Now, by Corollary 8.5, we de-
duce that θ ∈ SolE(CB ; Ns) and (Bs(θσB)! ; N) →∗ (B′

s(θσ
′
B)! ; N). Let
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B′ = B′
s(θσ

′
B)!. As (A′

s ; C′
A ; Ns) and (B′

s ; C′
B ; Ns) are two closed well-

formed symbolic processes such that (A′
s ; C′

A ; Ns) R (B′
s ; C′

B ; Ns) and
A′

s(θσ
′
A)! = A′ and B′

s(θσ
′
B)! = B′, we have that (A′ ; N) R′ (B′ ; N).

3. If (A ; N)
α
−→i (A′ ; N′) with fv(α) ⊆ dom(A) then (B ; N) →∗

i
α
−→i→∗

i (B′ ; N′)
and (A′ ; N′) R′ (B′ ; N′) for some B′.

By definition of R′, we know that (As ; CA ; Ns) is a closed well-formed
symbolic process such that As(θσA)! = A and θ ∈ SolclE (CA ; Ns). Hence,
thanks to Proposition 8.4, we know that there exist a well-formed symbolic
process (A′

s ; C′
A ; N′

s), a substitution θ′ and a label αs such that

• (As ; CA ; Ns)
αs−→s (A′

s ; C′
A ; N′

s) and N′ = N′
s|N∪X ,

• θ′ ∈ SolE(C′
A ; N′

s) and θ′|
cv(CA) = θ,

• A′
s(θ

′σ′
A)! = A′ where σ′

A is the substitution corresponding to the
maximal frame in C′

A, and

• αsθ′ = α.

Actually, we have that θ′ ∈ SolclE (C′
A ; N′

s), i.e. θ′ is a closed solution.
This is clear when the label α is not an input. In the case of an input,
αs is of the form in(c, y) and we conclude by relying on the fact that
vars(yθ′) = fv (α) ⊆ dom(A).

We have that (As ; CA ; Ns) R (Bs ; CB ; Ns) and (As ; CA ; Ns)
α
−→s (A′

s ; C′
A ; N′

s).
Since θ′ ∈ SolclE (C′

A ; N′
s), we know that SolclE (C′

A ; N′
s) %= ∅. Hence, there

exists a closed well-formed symbolic process (B′
s ; C′

B ; N′
s) such that

• (Bs ; CB ; Ns) →∗
s

αs−→s→∗
s (B′

s ; C′
B ; N′

s), and

• (A′
s ; C′

A ; N′
s) R (B′

s ; C′
B ; N′

s).

Since (A′
s ; C′

A ; N′
s) R (B′

s ; C′
B ; N′

s), thanks to Proposition 9.2, we have
that SolclE (C′

A ; N′
s) = SolclE (C′

B ; N′
s). We have that θ′ ∈ SolclE (C′

A ; N′
s)

and hence, we deduce that θ′ ∈ SolclE (C′
B ; N′

s). Now, by Corollary 8.6, we
deduce that θ ∈ SolE(CB ; Ns) and (Bs(θσB)! ; N) →∗ (B′

s(θ
′σ′

B)! ; N).

As (A′
s ; C′

A ; N′
s) and (B′

s ; C′
B ; N′

s) are two closed well-formed symbolic
processes such that (A′

s ; C′
A ; N′

s) R (B′
s ; C′

B ; N′
s) and A′

s(θ
′σ′

A)! = A′

and B′
s(θ

′σ′
B)! = B′, we have that (A′ ; N) R′ (B′ ; N). This allows us to

conclude.

!
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PART III

— Soundness of Symbolic Bisimulation —

We now put the results of the previous section together (Theorem 5.2 and
Theorem 9.4) to prove our main result.

Theorem 9.5 (Soundness of symbolic bisimulation) Let A and B be two
closed, nv-distinct extended processes. For any symbolic naming environment
Ns compatible with A↓, B↓ and the empty constraint system we have that

(A↓ ; ∅ ; Ns) ≈s (B↓ ; ∅ ; Ns) implies A ≈ B

Note that limiting the theorem to nv-distinct processes is not an onerous
restriction. If we want to prove that A ≈ B, we can construct by α-conversion
two nv-distinct processes A′, B′ such that A′ ≡ A and B′ ≡ B. Showing A′ ≈ B′

implies that A ≈ B, since ≈ is closed under structural equivalence.

10 Discussion

Our techniques suffer from the same sources of incompleteness as the ones de-
scribed for the spi calculus in [10]. In a symbolic bisimulation the instantiation
of input variables is postponed until the point at which they are actually used,
leading to a finer relation. We illustrate this point on an example, similar to
one given in [10].

Example 10.1 Consider the two following processes:

P1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | if x = a then in(c1, z).out(c2, a))
Q1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | in(c1, z).if x = a then out(c2, a))

We have that P1 ≈ Q1 whereas (P1 ; ∅ ; Ns) %≈s (Q1 ; ∅ ; Ns) for any
compatible naming environment Ns. To see the latter inequivalence, observe that

(Q1 ; ∅ ; Ns) can make the transition
in(c2,x′)
−−−−−→s and then an internal transition

to (νc1.(in(c1, y) | if x′ = a then out(c2, a)) ; C ; N′
s) with C = {0 ! x′ ,

gd(c2)}); this process is still undecided about whether x′ = a or not. (P1 ; ∅ ;

Ns) can make the transition
in(c2,x′)
−−−−−→s but then cannot make the corresponding

internal transition without committing either to the constraint x′ = a or to the
constraint x′ %= a. Whichever one it does, Q1 can do the opposite, showing the
inequivalence.

The second example shows that the requirement that the constraint systems
must have the same solutions gives rise to some incompleteness.
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Example 10.2 Consider the two following processes:

P2 = in(c, x).out(c, a)
Q2 = in(c, x).if x = a then out(c, a) else out(c, a)

We have that P2 ≈ Q2 whereas (P2 ; ∅ ; Ns) #≈s (Q2 ; ∅ ; Ns) for any compatible

naming environment Ns. Indeed, we have that (P2 ; ∅ ; Ns)
in(c,x′)
−−−−→s (out(c, a) ;

C ; N′
s) with C = {0 ! x′ , gd(c)}) whereas (Q2 ; ∅ ; Ns)

in(c,x′)
−−−−→s if x =

a then out(c, a) else out(c, a) and then can move to either (out(c, a) ; C1 ; N′
s) or

(out(c, a) ; C2 ; N′
s) where C1 = {0 ! x′ , gd(c) , x′ = a} and C2 = {0 ! x′ ,

gd(c) , gd(x′) , x′ #= a}. However, neither C1 nor C2 is equivalent to C.

Although our symbolic bisimulation is not complete, as shown above, we
are able to prove labelled bisimulation on interesting examples for which the
method implemented in the state-of-the-art ProVerif tool [7] fails. For instance,
ProVerif is unable to establish labelled bisimilarity between out(c, a) | out(c, b)
and out(c, b) | out(c, a) whereas of course we are able to deal with such exam-
ples. A more interesting example, for which our symbolic semantics plays an
important role is as follows.

Example 10.3 Consider the following two processes.

P = νc1.(in(c2, x).out(c1, x).out(c2, a) | in(c1, y).out(c2, y))
Q = νc1.(in(c2, x).out(c1, x).out(c2, x) | in(c1, y).out(c2, a))

These two processes are labelled bisimilar and our symbolic labelled bisimulation
is complete enough to prove this. In particular, let P ′ = νc1.(out(c1, x′).out(c2, a) |
in(c1, y).out(c2, y)) and Q′ = νc1.(out(c1, x′).out(c2, x′) | in(c1, y).out(c2, a)).
The relation R, that witnesses the symbolic bisimulation, includes

(P ; ∅ ; Ns) R (Q ; ∅ ; Ns)

(P ′ ; {νc1.0 ! x′ , gd(c2)} ; N′
s) R (Q′ ; {νc1.0 ! x′ , gd(c2)} ; N′

s)
(νc1.(out(c2, a) | out(c2, x′)) ;

{νc1.0 ! x′ , gd(c2) , gd(c1)} ; N′
s)

R
(νc1.(out(c2, x′) | out(c2, a)) ;
{νc1.0 ! x′ , gd(c2) , gd(c1)} ; N′

s)

The example above is inspired by the problems we encountered when we
analysed a bisimulation representing the privacy property in an electronic voting
protocol [19]. ProVerif is not able to prove this kind of equivalence; its algorithm
is limited to cases that the two processes P, Q have the same structure, and
differ only in the terms that are output. In this example, the processes differ
in their structure, providing the motivation for our methods. Our symbolic
bisimulation seems to be “sufficiently” complete to deal with examples of privacy
and anonymity properties arising in protocol analysis. We demonstrate that
more fully with the next example, which considers the privacy property of voting
systems in more detail, and illustrates the equational reasoning aspects of the
calculus.
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Example 10.4 We consider a simplified version of the voting protocol due to
Fujioka, Okamoto and Ohta (see [17]) that is analysed in [19, 12]. In the sim-
plification we consider here, the voter casts a vote in the first phase of the voting
process by blinding his selected candidate v with a random value r, and signing
the result with his private key. He sends this signature to the collector. Using
this signature, the collector is able to check that the voter is entitled to vote, and
the collector sends back his signature on the blinded choice of the voter. The
voter now unblinds this value, obtaining the collector’s signature on his vote.
In the second phase, he anonymously sends this signature to the collector for
counting.

Voter Collector
new r signskv(blindr(v))

−−−−−−−−−−−−−−−−−−−−→
signskc(blindr(v))

←−−−−−−−−−−−−−−−−−−−−
sync.

signskc(v)
−−−−−−−−−−−−−−−−−−−−→

The blinding operation allows signatures to be performed blindly. Here, the
collector signs the vote, but is not able to see its value. This helps to achieve
the property of vote-privacy for the voter. To avoid traffic analysis attacks, the
protocol is in two phases; the voter synchronises with other voters between the
two phases (represented by “sync.” in the figure). This synchronisation can
easily be modelled using private channels, but we prefer to omit that detail to
keep the example simple. Although it satisfies vote-privacy, this simple protocol
would allow a voter to vote multiple times by repeatedly sending the last message.
That problem is easily fixed, but we prefer to keep the protocol simple for the
purpose of illustration.

We assume a signature containing the binary functions sign, getmess, blind,
unblind, and the unary function pk with the equations:

getmesspk(x)(signx(y)) = y
unblindx(signy(blindx(z))) = signy(z)

Note that key arguments are written as subscripts, to aid readability. A voter
with signing key skv casting the vote v for the collector with public key pkc runs
the process P described below. (Since all the communications take place over a
public channel, we do not mention it for sake of readability.)

P (skv, v, pkc) = νr. (out(signskv(blindr(v))).in(x).
if getmesspkc(x) = blindr(v) then out(unblindr(x)))

The anonymity property we want to prove says that an observer (which may
include the collector) cannot distinguish a situation in which the voter A votes va
and the voter B votes vb, from another one in which they vote the other way
around. Roughly speaking, it is the following labelled bisimilarity:

νska, skb(out(pk(ska)).out(pk(skb)).(P (ska, va, pk(skc)) | P (skb, vb, pk(skc))))
≈

νska, skb(out(pk(ska)).out(pk(skb)).(P (ska, vb, pk(skc)) | P (skb, va, pk(skc))))
(1)
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with the proviso that the voters A and B have to synchronise at the “sync.”
point. Note that we treat the collector’s private key skc as a public name; we
prove privacy property even in presence of a corrupted collector who disclosed
his private key.

Below, we illustrate some of the calculations to establish this equivalence
(of course we prove ≈s to establish ≈). We will only consider deducibility and
equality constraints and we do not give the naming environment associated to
each symbolic process.

intermediate process some of the constraints

P (ska, va, pk(skc)) ∅

νx1.out(x1)
−−−−−−−→s

νr.(in(x).if getmesspk(skc)(x) = blindr(va)
then out(unblindr(x)) | {M1/x1

}) ∅

in(y)
−−−→s νr.(if getmesspk(skc)(y) = blindr(va)

νr.{M1/x1
} ! y

then out(unblindr(y)) | {M1/x1
})

→s νr.(out(unblindr(y)) | {M1/x1
}) νr.{M1/x1

} ! y
getmesspk(skc)(y) = blindr(va)

νx2.out(x2)
−−−−−−−→s νr.({M1/x1

} | {M2/x2
}) νr.νx2.{M1/x1

} ! y
getmesspk(skc)(y) = blindr(va)

where M1 = signska(blindr(va)) and M2 = unblindr(y). Note that to derive the
first step, we use the rule Out-Ts and Scopes to add the restriction νr. in
front of the process. To derive the other steps, for instance νx2.out(x2) we also
use the rule Pars to put {M1/x1

} in parallel. About the naming environment,
we have assumed among others that x1, x2 and y are marked as new (namely n)
at the beginning. At the end, the variables x1, x2 are marked as f whereas y is
marked as c.

We can now consider some example evolutions for the two processes in the
equivalence (1) we want to establish. One of the expected evolutions of the left
hand side is as follows. The process P (ska, va, pk(skc)) will first do an action
directly followed by the corresponding action of the process P (skb, vb, pk(skc)).
The ↓ operator allows us to put the restrictions in front of the process to have
an intermediate process.
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(νska, skb.(out(pk(ska)).out(pk(skb)).
(P (ska, va, pk(skc)) | P (skb, vb, pk(skc))))↓ ; ∅ ; Ns)

νx0.out(x0)
−−−−−−−→s

νx′

0
.out(x′

0
)

−−−−−−−→s (* outputs of the public keys *)
νx1.out(x1)
−−−−−−−→s

νx′

1
.out(x′

1
)

−−−−−−−→s (* outputs of the first message *)
in(y)
−−−→s

in(y′)
−−−−→s (* inputs of the second message *)

→s →s (* conditional - then branch *)
νx2.out(x2)
−−−−−−−→s

νx′

2
.out(x′

2
)

−−−−−−−→s (ϕ ; C ; N′
s)

where ϕ = νska, skb, ra, rb.({pk(ska)/x0
} | {pk(skb)/x′

0
} | {signska(blindra(va))/x1

} |

{signskb(blindrb(vb))/x′

1
} | {unblindra(y)/x2

} | {unblindrb(y
′)/x′

2
}).

Among the constraints in C, we have the following deducibility and equality
constraints.

νx2, x′
2.ϕ ! y getmesspk(skc)(y) = blindra(va)

νx2.x′
2.ϕ ! y′ getmesspk(skc)(y

′) = blindrb(vb)

The right hand side of equivalence (1) can evolve in a similar way, i.e. with
the same labels, to the symbolic process (ϕ′ ; C′ ; N′

s) where

• ϕ′ = νska, skb, ra, rb.({pk(ska)/x0
} | {pk(skb)/x′

0
} | {signska(blindra(vb))/x1

} |

{signskb(blindrb(va))/x′

1
} | {unblindrb(y

′)/x2
} | {unblindra(y)/x′

2
}).

• the system C′ contains νx2, x′
2.ϕ

′ ! y, getmesspk(skc)(y) = blindra(vb)
νx2, x′

2.ϕ
′ ! y′, getmesspk(skc)(y

′) = blindrb(va).

To fully show that the two processes are in symbolic bisimulation, we would
have to consider other possible evolutions as well. We omit that here. To com-
plete the picture for this path, we illustrate the calculations to show static equiv-
alence for the final processes along the paths. Consider the extended constraint
systems C̃ and C̃′ as defined in Definition 9.1.

• C̃ = C ∪ {ϕ ! z1 ; ϕ ! z2 ; z1 = z2}, and

• C̃′ = C′ ∪ {ϕ′ ! z1 ; ϕ′ ! z2 ; z1 = z2}.

Let Ñs = N′
s[z1, z2 &→ f] where z1, z2 are constraint variables that are marked as

n in N′
s. We have to establish that SolclE (C̃ ; Ñs) = SolclE (C̃′ ; Ñs). We don’t prove

this fully, but just illustrate with an expected solution. A solution is a map θ
from the constraint variables {y, y′, z1, z2} to terms not including the constraint
variables or the restricted names ska, skb, ra, rb, and in the case of y, y′, not
including x2, x′

2. Consider for instance the solution

θ :=

{

y &→ signskc(getmessx0
(x1)) z1 &→ x2

y′ &→ signskc(getmessx′

0
(x′

1)) z2 &→ va
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We have that θ ∈ SolclE (C̃ ; Ñs) and also θ ∈ SolclE (C̃′ ; Ñs).
ProVerif can handle the equational theory of this example, but it is not able to

prove the privacy property. The reason is that ProVerif is not able to construct
the bisimulation that is required. In the first phase, the behaviour of voter A must
be matched with the behaviour of voter A, and B’s behaviour with B’s behaviour,
so that the signatures respect the static equivalence; while in the second phase,
A’s behaviour must be matched with B’s behaviour, and B’s behaviour with A’s
behaviour, so that the votes output respect the static equivalence. (However, our
algorithms are not yet implemented!)

11 Related and Future Work

Pioneering work in symbolic bisimulations has been done by Henessy and Lin [18]
for value-passing CCS. However, the result which is most closely related to ours
is by Borgström et al. [10]: they define a symbolic bisimulation for the spi calcu-
lus with the same sources of incompleteness as we have. However, our treatment
of general equational theories is non trivial as illustrated by the problems im-
plied for structural equivalence.

For many important equational theories, static equivalence has been shown
to be decidable in [1]. More interestingly, some work has also been done to auto-
mate observational equivalence. The ProVerif tool [7] automates observational
equivalence checking for the applied pi calculus (with process replication), but
since the problem is undecidable the technique it uses is necessarily incomplete.
The tool aims at proving a finer equivalence relation and relies on easily match-
ing up the execution paths of the two processes [8]. In his thesis, Baudet [6]
presents a decision procedure for a similar equivalence, called diff-equivalence,
in a simplified process calculus. Examples where this equivalence relation is too
fine occur when proving the observational equivalence required to show vote-
privacy [19, 12]. Although our symbolic bisimulation is not complete, we are
able to conclude on examples where ProVerif fails (see Section 10).

The technique used in ProVerif will generally fail in the case where the two
processes take different branches at some point. This is the case in Example 10.3:
after a synchronisation (modelled by a communication on the private channel c1)
between the two parallel components of process P (resp. Q), the output action
of the left component of P matches the output action of the right component
of Q.

Concerning future work, the obvious next step is to study the equivalence
of solutions for constraint systems under different equational theories. Promis-
ing results have already been shown in [5] for a significant class of equational
theories but for constraint systems that do not have disequalities. These results
readily apply for deciding our symbolic bisimulation on the fragment without
else branches in conditionals. We plan to implement an automated tool for
checking observational equivalence. In particular we aim at automating proofs
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arising in case studies of electronic voting protocols which currently rely on hand
proofs [12].

Another direction for future work is how to include process replication (the
“!” operator), which is omitted entirely from this paper. Since we require to
put the ν operator in outermost position in intermediate extended processes,
one could first try to include replications that do not have ν in their scope.
This corresponds to processes that may not terminate, but can only create
finitely many names. Including replication having ν in its scope is certainly
more challenging.
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A Proofs of Part I – Intermediate Calculus

A.1 Soundness Results

Proposition A.1 (soundness of ≡i) Let (Ai ; N) and (Bi ; N) be two inter-
mediate processes such that (Ai ; N) ≡i (Bi ; N). Then we have that Ai ≡ Bi.

Proof. This proof is straightforward and can be done by induction on the proof
tree witnessing (Ai ; N) ≡i (Bi ; N). The only point where we have to pay
attention is closure by application of intermediate evaluation context. However,
to deal with this case, it is sufficient to note that any intermediate evaluation
context w.r.t. an intermediate extended process A is also an evaluation context
w.r.t. A. !

Proposition A.2 (soundness of −→i) Let (Ai ; N) and (Bi ; N) be two inter-
mediate processes such that (Ai ; N) −→i (Bi ; N). Then we have that Ai → Bi.

Proof. This proof is straightforward and can be done by induction on the proof
tree witnessing (Ai ; N) →i (Bi ; N). The base case, i.e. Commi, Theni and
Elsei are obvious since corresponding rules exist in the initial semantics. To
deal with closure by application of evaluation context, it is sufficient to note that
any intermediate evaluation context w.r.t. an intermediate extended process A
is also an evaluation context w.r.t. A. Lastly, closure by structural equivalence
can be easily done thanks to Proposition A.1. !

Proposition A.3 (soundness of
α
−→i) Let (Ai ; N) and (Bi ; N′) be two inter-

mediate processes such that (Ai ; N)
α
−→i (Bi ; N′). Then we have that Ai

α
−→ Bi.

Proof. To prove this result, we distinguish two cases depending on the fact
whether α is an output or an input. In both cases, we perform the proof by
induction on the prooftree witnessing the fact that (Ai ; N)

α
−→i (Bi ; N′).

However, if α is an input, we need to show an intermediate result in order to
be able to deal with the inductive case Pari. Note that in the case where α is
a label of the form out(a, c), νd.out(a, d) or νx.out(a, x), we do not have such a
problem since the rule Pari is equivalent to the rule described below. This is
due to the fact that fv(α) = ∅.

Par-Outi
(A ; N)

α
−→i (A′, N′)

(A | B ; N)
α
−→i (A′ | B, N′)

First case: α is of the form out(a, c), νd.out(a, d) or νx.out(a, x). The two base
cases, Out-Chi and Out-Ti, are trivial. We only need to pay attention that
the side condition of Out-T is satisfied. This is due to the fact that N(x) = n
whereas N(fv (P ) ∪ fv (M)) = f. Hence, we have that x &∈ fv (P ) ∪ fv (M). Now,
we have to deal with the inductive cases.

42



Case Open-Chi. In such a case, we have that the prooftree witnessing the fact
that (Ai ; N)

α
−→i (Bi ; N′) ends with the following inference rule.

(A′ ; N′′)
out(a,c)
−−−−−→i (B′ ; N′′′) c #= a, N′′(d) = n

(νc.A′, N)
νd.out(a,d)
−−−−−−−→i (B′{d/c}, N′)

By induction hypothesis, we know that A′ out(a,c)
−−−−−→ B′ and we deduce that

A′{d/c}
out(a,d)
−−−−−→ B′{d/c} since A′ and B′ are nv-distinct and d is fresh (it

does not appear in A′ nor in B′). By application of the rule Open-Ch, we

obtain νd.A′{d/c}
νd.out(a,d)
−−−−−−−→ B′{d/c}. Since νd.A′{d/c} ≡ νc.A′, we deduce

that νc.A′ νd.out(a,d)
−−−−−−−→ B′{d/c}, i.e. exactly what we want.

Case Scopei. This case is completely straightforward.

Case Par-Outi. The proof tree ends with the following inference rule

Par-Outi
(A′ ; N)

α
−→i (B′, N′)

(A′ | D ; N)
α
−→i (B′ | D, N′)

In such a case, we need to pay attention that the side condition of the rule Par

is satisfied. Since N(bn(α) ∪ bv(α)) = n and N(fn(D) ∪ fv(D)) = f, we deduce
that bn(α) ∩ fn(D) = bv(α) ∩ fv (D) = ∅.

Case Structi. We easily conclude for this case by using Proposition A.1.

Second case: α is of the form in(a, M). To deal with this case, we rely on the
claim stated below.

Claim: Let (Ai ; N) and (Bi ; N′) be two extended processes
such that Ai and Bi are intermediate framed processes and (Ai ;

N)
in(a,M)
−−−−−→i (Bi ; N′). Let Di be an intermediate framed process

such that (Ai | Di ; N) and (Bi | Di ; N′) are also intermediate pro-
cesses. Then, for any term M ′ such that M = M ′ψ(Di), we have

that Ai | Di
in(a,M ′)
−−−−−−→ Bi | Di.

Note that this result will allow us to conclude. Our claim allows us to deal
with the case where Ai and Bi are intermediate framed processes. For this
it is sufficient to apply the claim above with Di = 0 and M ′ = M . Then it
remains to notice that Ai | 0 ≡ Ai and Bi | 0 ≡ Bi in order to conclude.
Now, let us consider the case where (Ai ; N), (Bi ; N′) are not intermediate
framed processes. We show the result by induction on the prooftree witnessing

(Ai ; N)
in(a,M)
−−−−−→i (Bi ; N′). In such a case, this prooftree ends either with an

instance of Scopei or an instance of Structi. In both cases, we easily conclude
by using the induction hypothesis and applying the corresponding rules, that is
either Scope or Struct and using Proposition A.1.

It remains to establish the claim.
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Proof of the claim. We show this result by induction on the prooftree wit-

nessing (Ai ; N)
in(a,M)
−−−−−→i (Bi ; N′). First, we consider the base case, i.e. the

rule Ini. In such a case, we have that Ai = in(a, x).P , Bi = P{M/x} and
N′ = N. We have that

in(a, x).P
in(a,M ′)
−−−−−−→ P{M ′

/x}

in(a, x).P | Di
in(a,M ′)
−−−−−−→ P{M ′

/x} | Di ≡ P{M/x} | Di

Ai | Di
in(a,M ′)
−−−−−−→ Bi | Di

Now, we have to deal with the inductive cases, that is Structi and Pari

since the other rules do not allow us to derive framed processes. For Structi

the result can be easily obtained by applying the induction hypothesis and
Proposition A.1. Hence, we focus on Pari. In such a case, we have that the

proof tree witnessing (Ai ; N)
in(a,M)
−−−−−→i (Bi ; N′) ends with the following rule:

(A′
i ; N)

in(a,Mψ(D))
−−−−−−−−→i (B′

i ; N′)

(A′
i | D ; N)

in(a,M)
−−−−−→i (B′

i | D ; N′)

Recall that Di is an intermediate framed process such that (A′
i | D | Di ; N) and

(B′
i | D | Di ; N′) are also intermediate framed processes. Let M ′ be a term such

that M = M ′ψ(Di). By induction hypothesis and since Mψ(D) = M ′ψ(D|Di),

we have that A′
i | (Di | D)

in(a,M ′)
−−−−−−→ B′

i | (Di | D) and we easily conclude by

using the fact that
α
−→ is closed by structural equivalence. !

A.2 Completeness Results

Given a nv-distinct extended process A containing an active substitution {M/x}.
The process A\x is A but with the unique occurrence of {M/x} replaced by 0.
This notation is extended as expected to sequences of variables. Now, we intro-
duce a lemma which allows us to describe the process C[A]↓ from C↓ and A↓.

Lemma A.4 Let C be an evaluation context which is nv-distinct. Let x̃ be the
tuple of variables such that the hole is in the scope of an occurrence of “νx”
in C. Then there exists some sequences of names ñ1, ñ2 and an intermediate
framed evaluation context G such that

• C↓ = νñ1.νñ2.G, and

• for all extended process A such that C[A] is nv-distinct, we have that

C[A]↓ = νñ1.νm̃.νñ2.G[F\x̃](ψ(G) ∪ ψ(F ))#

where A↓ = νm̃.F for some sequence of names m̃ and some intermediate
framed process F .

44



Proof. We prove this result by induction on the structure of C. In the base case,
i.e. C = , we can show that ñ1 = ∅, ñ2 = ∅ and G = satisfy the require-
ments. Indeed, let A be an extended process such that A↓ = νm̃.F , we have
νñ1.νm̃.νñ2.G[F\x̃](ψ(G) ∪ ψ(F ))! = νm̃.Fψ(F )! = νm̃.F = A↓ = C[A]↓.

The inductive cases are C = C′ | B, C = B | C′, C = νn.C′ and C = νx.C′.
Let x̃′ be the tuple of variables x′ such that the hole of C′ is in the scope of
an occurrence of νx′ in C′. By induction hypothesis, we know that there exists
some sequences of names ñ′

1 and ñ′
2 and an intermediate framed evaluation

context G′ such that

• C′↓ = νñ′
1.νñ′

2.G
′, and

• for all extended process A such that C′[A] is nv-distinct, we have that

C′[A]↓ = νñ′
1.νm̃.νñ′

2.G
′[F\x̃′ ](ψ(G′) ∪ ψ(F ))! where A↓ = νm̃.F .

Inductive case 1 : C = C′ | B. Let B↓ = νb̃.B′. In such a case, we have that

C[A]↓ = (C′[A] | B)↓
= νñ′

1.νm̃.νñ′
2.νb̃.(G′[F\x̃′ ](ψ(G′) ∪ ψ(F ))! | B′)(ψ(C′[A]) ∪ ψ(B′))!

Let ñ1 = ñ′
1, ñ2 = ñ′

2, b̃ and G = G′ | B′. As x̃ = x̃′ and ψ(G′)∪ψ(F ) = ψ(C′[A])
we obtain the expected result.

Inductive case 2 : C = B | C′. This case is similar to the previous one.

Inductive case 3 : C = νn.C′. In such a case, we have that

C[A]↓ = νn.(C′[A]↓)
= νn.νñ′

1.νm̃.νñ′
2.G

′[F\x̃′ ](ψ(G′) ∪ ψ(F ))!

Let ñ1 = n, ñ′
1, ñ2 = ñ′

2 and G′ = G. We obtain the expected result.

Inductive case 4 : C = νx.C′. In such a case, we have that

C[A]↓ = (C′[A]↓)\x

= (νñ′
1.νm̃.νñ′

2.G
′[F\x̃′ ](ψ(G′) ∪ ψ(F ))!)\x

Let ñ1 = ñ′
1, ñ2 = ñ′

2 and G′ = G. We obtain the expected result since we have
that x̃ = x̃′, x. !

The following lemma relies on the notion of linear proof defined below. A
proof in linear form of A ≡ B is a sequence A = A1, . . . , An = B such that for
every 1 ≤ j ≤ n, there exist an evaluation context Cj , two extended processes A′

j

and A′
j+1 such that:

• Aj = Cj [A′
j ], Aj+1 = Cj [A′

j+1], and

• either A′
j ≡ A′

j+1 (or A′
j+1 ≡ A′

j) is an instance of PAR-0, PAR-A,
PAR-C, New-0, New-C, New-Par, Alias, Subst, or Rewrite,
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• or A′
j =α A′

j+1.

Similarly, a proof in linear form of A →∗ B is a sequence A = A1, . . . , An = B
such that for every 1 ≤ j ≤ n, there exist an evaluation context Cj , two extended
processes A′

j and A′
j+1 such that:

• Aj = Cj [A′
j ], Aj+1 = Cj [A′

j+1], and

• either A′
j ≡ A′

j+1 (or A′
j+1 ≡ A′

j) is an instance of PAR-0, PAR-A,
PAR-C, New-0, New-C, New-Par, Alias, Subst, or Rewrite,

• or A′
j =α A′

j+1,

• or A′
j → A′

j+1 is an instance of Comm, Then or Else.

Moreover, there must exist at least one j such that A′
j → A′

j+1 is an instance
of Comm, Then or Else.

Lemma A.5 Let A and B be two nv-distinct extended processes such that A !"
B with !" ∈{≡,→∗} and N be a naming environment compatible with A and B.
Then there exists a proof in linear form such that every process in the proof is
nv-distinct and compatible with N.

Proposition A.6 (completeness of ≡i) Let A and B be two nv-distinct ex-
tended processes such that A ≡ B and N be a naming environment compatible
with A↓ and B↓. Then there exists an intermediate process (Di ; N) such that
(A↓ ; N) ≡i (Di ; N) ! (B↓ ; N).

Proof. Let A and B be two nv-distinct extended processes such that A ≡
B. We consider the proof of structural equivalence in linear form. Thanks to
Lemma A.5, we can assume that extended processes involved in this derivation
are nv-distinct and compatible with N. We show the result by induction on the
length # of the derivation. We first show the result when # = 1 by considering
each rule of structural equivalence in turn. Then, we show the inductive case,
i.e. # > 1. We denote by C the evaluation context under which the structural
equivalence rule is applied. We denote by ñ1, ñ2, (resp. x̃) and G the sequences
of names (resp. variables) and the intermediate framed evaluation context which
satisfy the condition stated in Lemma A.4.

Case Par-0: C[D] ≡ C[D | 0].
Let Di = B↓. Clearly, we have that (Di ; N) ! (B↓ ; N). Now, let m̃ be the
sequence of names and F be the framed process such that D↓ = νm̃.F . We
have that (D | 0)↓ = νm̃.(F | 0) and thanks to Lemma A.4 we have

• (A↓ ; N) = (C[D]↓ ; N) = (νñ1.νm̃.νñ2.G[F\x̃](ψ(G) ∪ ψ(F ))" ; N), and

• (B↓ ; N) = (C[D | 0]↓ ; N) = (νñ1.νm̃.νñ2.G[(F | 0)\x̃](ψ(G) ∪ ψ(F | 0))" ; N).
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Hence, we have that (A↓ ; N) ≡i (B↓ ; N).

A similar reasoning allows us to conclude for Par-A, Par-C. For the rule
New-C, if the commutation involves two names, we conclude as in the previous
case since this rule has a counterpart in the intermediate semantics. Otherwise,
we have that A↓ = B↓ and we easily conclude.

The rule New-0, New-Par, Subst, Alias and Rewrite are also straight-
forward. Note also that if A ≡ B is a renaming step, then Di = A↓ satisfies the
requirement. This concludes the base cases.

Now, it remains to show the inductive case. Let A and A′ be two extended
processes such that A ≡ A′ by a derivation of length ! > 1. Then there exists B
such that A ≡ B by a derivation of length 1 and B ≡ A′ by a derivation of length
!′ < !. Firstly, we know that there exists an intermediate extended process
(Di ; N) such that (A↓ ; N) ≡i (Di ; N) and (Di ; N) ! (B↓ ; N). By using our
induction hypothesis, we also know that there exists an intermediate extended
process (D′

i ; N) such that (B↓ ; N) ≡i (D′
i ; N) and (D′

i ; N) ! (A′↓ ; N). Hence
by using Lemma 4.5, we deduce that there exists an intermediate extended
process (D′′

i ; N) such that (Di ; N) ≡i (D′′
i ; N) and (D′′

i ; N) ! (D′
i ; N).

Hence, the process (D′′
i ; N) satisfies the requirements. !

Proposition A.7 (completeness of →i) Let A and B be two nv-distinct ex-
tended processes such that A →∗ B (resp. A → B) and N be a naming en-
vironment compatible with A↓ and B↓. Then there exists an extended process
(Di ; N) such that:

• (A↓ ; N) →∗
i (Di ; N) (resp. (A↓ ; N) →i (Di ; N)) and,

• (Di ; N) ! (B↓ ; N).

Proof. Let A and B be two nv-distinct extended processes such that A →∗ B.
The case where B = A (reflexivity) is trivial. Otherwise we consider the proof of
A →∗ B in linear form. Each step of this proof will be either a single reduction
step or a sequence of steps of structural equivalence. Thanks to Lemma A.5, we
can assume that extended processes involved in this derivation are nv-distinct
and compatible with N. We show the result by induction on the length ! of
the derivation. We first show the result when ! = 1. In the case of structural
equivalence, Proposition A.6 allows us to conclude. Hence, we only consider
the three rules of internal reduction in turn. Then, we show the inductive case,
i.e. ! > 1. We denote by C the evaluation context under which the rule is
applied. We denote by ñ1, ñ2, (resp. x̃) and G the sequences of names (resp.
variables) and the intermediate framed evaluation context which satisfy the
condition stated in Lemma A.4.

Case Comm: out(a, M).P | in(a, x).Q → P | Q{M/x}. We have that A =
C[out(a, M).P | in(a, x).Q] and B = C[P | Q{M/x}]. Let P↓ = νñp.Fp and
Q↓ = νñq.Fq. By using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñq.νñ2.G[out(a, M).Fp | in(a, x).Fq ]ψ(G)! ; N),
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• (B↓ ; N) = (νñ1.νñp.νñq.νñ2.G[Fp | Fq{M/x}]ψ(G)! ; N).

Note that Fp and Fq are intermediate plain processes (as P , resp. Q, are prefixed
by an input, resp. output) and hence ψ(Fp) and ψ(Fq{M/x}) are empty. Let
Di = B↓. It is easy to see that Di satisfies the requirements.

We deal with the rules Then and Else in a similar way.

Now, it remains to show the inductive case. Let A and A′ be two extended
processes such that A →∗ A′ by a derivation of length # > 1. Then there exists B
such that A ≡ B (or A → B) and B →∗ A′ by a derivation of length #′ < #.
In both case we conclude thanks to Lemma 4.5 and the induction hypothesis
on B →∗ A′. !

Lemma A.8 Let A and B be two nv-distinct extended processes such that A
α
−→

B and N be a naming environment compatible with A and α. Let N′ be a naming
environment compatible with B and such that:

• N′ = N[x %→ f] when α is of the form νx.out(a, x);

• N′ = N[d %→ f] when α if of the form νd.out(a, d);

• N′ = N otherwise.

Then there exist two nv-distinct extended processes A′ and B′ such that:

• A ≡ A′ α
−→ B′ ≡ B (where A′ α

−→ B′ does not rely on some structural
equivalence steps); and

• N is compatible with A′, and N′ is compatible with B′.

Proposition A.9 (completeness of
α
−→i) Let A and B be two nv-distinct ex-

tended processes such that A
α
−→ B and N be a naming environment compatible

with A↓ and α. Let N′ be a naming environment compatible with B↓ such that:

• N′ = N[x %→ f] when α is of the form νx.out(a, x);

• N′ = N[d %→ f] when α if of the form νd.out(a, d);

• N′ = N otherwise.

Then there exists an intermediate process (Di ; N′) such that

(A↓ ; N)
α
−→i (Di ; N′) ! (B↓ ; N′).

Proof. Thanks to Lemma A.8, we can assume that A and B are two nv-distinct
extended processes such that A

α
−→ B without involving any structural equiva-

lence step. Otherwise, we will have that A ≡ A′ α
−→ B′ ≡ B and we can easily

conclude, thanks to Lemma 4.5, by applying the result on A′ α
−→ B′ and by

using Proposition A.6 on A ≡ A′ and B ≡ B′. We consider the different kind
of labels in turn: out(a, c), νx.out(a, x), in(a, M) and νc.out(a, c).
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We denote by C the evaluation context (constructed by successive applica-
tions of the rules Pari and Scopei) under which the rule is applied. We denote
by ñ1, ñ2, (resp. x̃) and G the sequences of names (resp. variables) and the
intermediate framed evaluation context which satisfy the condition stated in
Lemma A.4.

Case Out-Ch: out(a, c).P
out(a,c)
−−−−−→ P .

We have that A = C[out(a, c).P ] and B = C[P ]. Note that a, c /∈ bn(C[out(a, c).P ]).
Let P↓ = νñp.Fp. By using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñ2.G[out(a, c).Fp]ψ(G)! ; N),

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp]ψ(G)! ; N′).

Let Di = B↓. Obviously, (Di ; N′) ! (B↓ ; N′). Moreover, we see that

(out(a, c).Fp)ψ(G)! out(a,c)
−−−−−→i Fpψ(G)!. By successive applications of rules Pari

and Scopei we obtain that (A↓ ; N)
out(a,c)
−−−−−→i (Di ; N′).

Case Out-T: out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x} x %∈ fv (P ) ∪ fv (M).

We have that A = C[out(a, M).P ] and B = C[P | {M/x}]. Let P↓ = νñp.Fp.
By using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñ2.G[out(a, M).Fp]ψ(G)! ; N)

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp | {M/x}]ψ(G)! ; N′).

Note that applying the substitution ψ(G) is sufficient as ψ(Fp) is empty and x
is a fresh variable. Let Di = B↓. Obviously, we have that (Di ; N′) ! (B↓ ; N′).

Similarly to the previous case we show that (A↓ ; N)
νx.out(a,x)
−−−−−−−→i (Di ; N′).

Case In: in(a, x).P
in(a,M)
−−−−−→ P{M/x}.

We have that A = C[in(a, x).P ] and B = C[P{M/x}]. Let P↓ = νñp.Fp. By
using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñ2.G[in(a, x).Fp]ψ(G)! ; N)

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp{M/x}]ψ(G)! ; N′).

Let Di = B↓. Obviously, we have that (Di ; N′) ! (B↓ ; N′). Moreover, we see
that (we omit the naming environment for the moment)

(in(a, x).Fp)ψ(G)! in(a,Mψ(G)!)
−−−−−−−−−→i (Fp{

M/x})ψ(G)!.

By application of the rule Pari we obtain

(in(a, x).Fp)ψ(G)! | Gψ(G)! in(a,M)
−−−−−→i (Fp{

M/x})ψ(G)! | Gψ(G)!, i.e.

G[in(a, x).Fp]ψ(G)! in(a,M)
−−−−−→i G[Fp{

M/x}]ψ(G)!.
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Note that Gψ(G)! is an intermediate framed process and ψ(Gψ(G)!) = ψ(G)!.

By successive applications of Scopei, we obtain that (A↓ ; N)
in(a,M)
−−−−−→ (B↓ ; N).

Note that since N is compatible with A↓ and α = in(a, M), we have that ñ1, ñ2

and ñp are marked as bound, i.e. b, whereas names that occur in M are marked
as f, and thus ñ1, ñ2 and ñ do not occur in α.

Case Open-Ch. Here, we assume that A = νd.C[out(a, d).P ] and B = C[P ].
Otherwise this can be obtained using structural equivalence. These structural
equivalence steps are handled as explained above. Let P↓ = νñp.Fp. By using
Lemma A.4, we obtain

• (A↓ ; N) = (νd.νñ1.νñp.νñ2.G[out(a, d).Fp]ψ(G)! ; N),

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp]ψ(G)! ; N′).

Let Di = B↓. Obviously, we have that (Di ; N′) ! (B↓ ; N′). As above we show

that (A↓ ; N)
νd.out(a,d)
−−−−−−−→i (Di ; N′). This allows us to conclude. !

B Proofs of Part II – Symbolic Calculus

We first show a useful lemma which allows us to transfer solutions of symbolic
processes when we apply evaluation contexts to these processes.

Lemma B.1 Let (A ; C ; Ns) be a symbolic process and C = νũ.( | D) an
intermediate evaluation context such that (C[A] ; C[C] ; Ns[bn(C[0]) $→ b]) is a
symbolic process. We have that

θ ∈ SolE(C[C], Ns[bn(C[0]) $→ b])
iff

(θψ(C[0]))! ∈ SolE(C, Ns) and bn(C[0]) ∩ names(img(θ)) = ∅

Proof. Let N′
s = Ns[bn(C[0]) $→ b]).

(⇒) We need to consider two cases.

Case C[ ] = νñ. .
We have that θ ∈ SolE(νñ.C, N′

s). Let Ded(C) = {φi " xi | 1 ≤ i ≤
&} with φi = νũi.σi. We have that (θψ(νn.0))! = θ! = θ (as vars(xiθ) ∩
cv(C) = ∅ and dom(θ) = cv (C)). It is easy to check that θ is an E-solution
of C. As N′

s(names(img(θ))) = f and N′
s(vars(img(θ))) = f we also have that

Ns(names(img(θ))) = f and Ns(vars(img(θ))) = f. Hence, θ ∈ SolE(C, Ns) and
ñ ∩ names(img(θ)) = ∅ (as N′

s(ñ) = b).

Case C[ ] = | D.
We have that θ ∈ SolE(C | D, N′

s). Let Ded(C) = {φi " xi | 1 ≤ i ≤ &} with
φi = νũi.σi and let θ′ = θψ(D). We have to show that θ′! ∈ SolE(C, Ns). For
this, we need to show that:
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• vars(xiθ′!) ∩ cv(C) = ∅. Actually we have that dom(θ′) = dom(θ) =
cv (C) = cv (C | D) = {x1, . . . , x"}. Hence the result.

• vars(xiθ′!) ∩ (dom(φ") ! dom(φi)) = ∅. By hypothesis we have that
vars(xiθ) ∩ (dom(φ" ∪ ψ(D)) ! dom(φi ∪ ψ(D))) = ∅. We have that
dom(φ"∪ψ(D))!dom(φi∪ψ(D)) = dom(φ")!dom(φi) and vars(xiθ′!) ⊆
vars(xiθ) ∪ vars(img(ψ(D))).

As A | D is applied we have that vars(img(ψ(D))) ∩ dom(φ") = ∅. Hence
vars(xiθ′!) ∩ (dom(φ") ! dom(φi)) = ∅.

• names(xiθ′!) ∩ ũi = ∅. By definition of an intermediate process we have
that bn(0 | D) = ∅. Hence, ũi is a sequence of variables and this condition
trivially holds.

• vars(xiθ′!) ∩ ũi = ∅. As the process A | D is applied we have that
vars(img(ψ(D)))∩dom(A) = ∅. As for all x ∈ ũi we have that x ∈ dom(A)
we conclude that vars(xiθ′!) ∩ ũi = ∅.

• For any constraint gd(M) ∈ C we need to show that M(θ′!σ")! is ground.
By hypothesis we have that M(θσ")! is ground. Hence, as dom(ψ(D)) ∩
dom(σ") = ∅ we have that M(θψ(D))! = Mθ which allows us to conclude.

• For any constraint M = N ∈ C we need to show that M(θ′!σ")! =E

N(θ′!σ")!. By hypothesis M(θσ")! =E N(θσ")!. As E is closed under
substitution of terms for variables we conclude.

• For any constraint M &= N ∈ C we need to show that M(θ′!σ")! &=E

N(θ′!σ")!. By hypothesis M(θσ")! &=E N(θσ")!. Moreover, we have that
gd(M) ∈ C and gd(N) ∈ C. Hence, we have that Mθ′! = Mθ and Nθ′! =
Nθ which allows us to conclude.

• Ns(names(img(θ′)) ∪ vars(img(θ′))) = f. By hypothesis we have that
Ns(names(img(θ)) ∪ vars(img(θ))) = f. Moreover, as bn(D) = ∅ we have
that N′

s(names(img(ψ(D)))) = f which implies that Ns(names(img(ψ(D)))) =
f. Hence we conclude that Ns(names(img(θ′!))) = f. We similarly con-
clude that Ns(vars(img(θ′!))) = f.

In order to conclude, it remains to show that bn(D) ∩ names(img(θ)) = ∅.
This trivially holds since bn(D) = ∅.

(⇐) We again consider two cases

Case C[ ] = νñ. .
By hypothesis, (θψ(C[0]))! = θ ∈ SolE(C, Ns). We need to show that θ ∈

SolE(νñ.C, N′
s). The only tricky case is to show that ñ ∩ names(img(θ)) = ∅.

However this is directly implied by the additional hypothesis, i.e. bn(C[0]) ∩
names(img(θ)) = ∅.

Case C[ ] = | D.
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By hypothesis we have that (θψ(D))! ∈ SolE(C, Ns). As C[A] is an ex-
tended intermediate process, we have that bn(C[0]) = ∅. Hence, Ns = N′

s.
Let Ded(C) = {φi ! xi | 1 ≤ i ≤ $} with φi = νũi.σi. Then Ded(C | D) =
{νũi.σi ∪ψ(D) ! xi | 1 ≤ i ≤ $}. We have to show that θ ∈ SolE(C[C], N′

s). For
this, we need to show that:

• vars(xiθ) ∩ cv(C | D) = ∅. By hypothesis vars(xi(θψ(D))!) ∩ cv(C) = ∅.
As dom(ψ(D)) ∩ cv (C) = ∅ and cv(C | D) = cv (C) we conclude.

• vars(xiθ)∩(dom(φ"∪ψ(D))!dom(φi∪ψ(D))) = ∅. By hypothesis we have
that vars(xi(θψ(D))!) ∩ (dom(φ") ! dom(φi)) = ∅. Moreover, dom(φ") !

dom(φi) = dom(φ" ∪ ψ(D)) ! dom(φi ∪ ψ(D)). Hence it is sufficient to
show that (vars(xiθ)!vars(xi(θψ(D))!))∩ (dom(φ")!dom(φi)) = ∅. We
have that (vars(xiθ)!vars(xi(θψ(D))!)) ⊆ dom(ψ(D)). As dom(ψ(D))∩
dom(φ") = ∅ and dom(φ") ⊇ dom(φ") ! dom(φi) we conclude.

• names(xiθ) ∩ ũi = ∅. By hypothesis we have that names(xi(θψ(D))!) ∩
ũi = ∅. As names(xiθ) ⊆ names(xi(θψ(D))!) we conclude.

• vars(xiθ)∩ũi = ∅. By hypothesis we have that vars(xi(θ ψ(D))!)∩ũi = ∅.
We also have that vars(xiθ) ! vars(xi(θψ(D))!) ⊆ vars(img(ψ(D))). We
have that ũi ⊆ dom(A | D) and, as (A | D) is applied, vars(img(ψ(D))) ∩
dom(A | D) = ∅. Hence vars(img(ψ(D))) ∩ ũi = ∅ and we conclude.

• For any constraint gd(M) ∈ C[C] we need to show that M(θ(σ"∪ψ(D)))! is
ground. Note that gd(M) ∈ C. By hypothesis we have that M((θψ(D))!σ")!

is ground. As C[A] is applied we have that dom(σ")∩ vars(img(ψ(D))) =
dom(ψ(D)) ∩ vars(img(σ")) = ∅. Hence, M((θψ(D))!σ")! = M(θ(σ" ∪
ψ(D)))! and we conclude. The cases for M = N and M (= N are similar.

Finally, as bn(C[0]) = ∅ we obtain that θ ∈ SolE(C | D, N′
s). This allows us

to conclude the proof. "

B.1 Soundness Results

Proposition B.2 (soundness of ≡s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns) be
two well-formed symbolic processes such that (As ; CA ; Ns) ≡s (Bs ; CB ; Ns).
Then CA = CB and for all θ ∈ SolE(CA ; Ns), we have that (A ; N) ≡i (B ; N)
where (A ; N) (resp. (B ; N)) is the θ-concretization of (As ; CA ; Ns) (resp.
(Bs ; CB ; Ns)).

Proof. We show this result by induction on the proof tree witnessing the fact
that (As ; CA ; Ns) ≡s (Bs ; CB ; Ns). First we need to consider the following
base cases:

Case Par-0s: (As ; CA ; Ns) ≡s (As | 0 ; CA ; Ns).
Trivially, CA = CB. Let θ ∈ SolE(CA ; Ns) and (A ; N) (resp. (B ; N))
be the θ-concretization of (As ; CA ; Ns) (resp. (As | 0 ; CA ; Ns)). Let σ
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be the substitution corresponding to the maximal frame in CA. We have that
(A ; N) = (As(θσ)! ; N) ≡i (As(θσ)! | 0 ; N) = ((As | 0)(θσ)! ; N) = (B ; N).

We can deal with the rules Par-A)s, Par-Cs, and New-Cs in a similar way.
We now consider the inductive case, i.e. application of an evaluation context.

The proof tree witnessing the fact that (As ; CA ; Ns) ≡s (Bs ; CB ; Ns) ends
with an application of the following inference rule.

(A′
s ; C′

A ; N′
s) ≡s (B′

s ; C′
B ; N′

s)

(C[A′
s] ; C[C′

A] ; Ns) ≡s (C[B′
s] ; C[C′

B ] ; Ns)

We have that Ns = N′
s[bn(C[0]) "→ b]. As C′

A = C′
B we directly have that

C[C′
A] = C[C′

B ]. Let θ ∈ SolE(C[C′
A] ; Ns) and (A ; N) (resp. (B ; N)) be the θ-

concretization of (C[A′
s] ; C[C′

A] ; Ns) (resp. (C[B′
s] ; C[C′

B] ; Ns)). Let σ be the
substitution corresponding to the maximal frame in CA = C[C′

A]. We have to
show that (A ; N) ≡i (B ; N), i.e. (C(θσ)![A′

s(θσ)!] ; N) ≡i (C(θσ)![B′
s(θσ)!] ;

N). Since ≡i is closed under application of evaluation context, it is sufficient to
show that (A′

s(θσ)! ; N′) ≡i (B′
s(θσ)! ; N′) where N′ = N′

s|N∪X .
Let θ′ = (θψ(C[0]))!. By Lemma B.1 we have that θ′ ∈ SolE(C′

A ; N′
s) and

(A′ ; N′) ≡i (B′ ; N′) where (A′ ; N′) (resp. (B′ ; N′)) is the θ′-concretization
of (A′

s ; C′
A ; N′

s) (resp. (B′
s ; C′

B ; N′
s)). We have that A′ = A′

s(θ
′σ′)! and

B′ = B′
s(θ

′σ′)! where σ′ is the maximal frame of C′
A. This allows us to conclude

since (θ′σ′)! = ((θψ(C[0]))!σ′)! = (θ(ψ(C[0])σ′))! =(θσ)!. !

Proposition B.3 (soundness of −→s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns)
be two well-formed symbolic processes such that (As ; CA ; Ns) →s (Bs ; CB ;
Ns). Let θ ∈ SolE(CB ; Ns). We have that θ ∈ SolE(CA ; Ns) and (A ; N) →i

(B ; N) where (A ; N) (resp. (B ; N)) is the θ-concretization of (As ; CA ; Ns)
(resp. (Bs ; CB ; Ns)).

Proof. The proof is done by induction on the proof witnessing (As ; CA ; Ns) −→s

(Bs ; CB ; Ns). We first consider the three base cases.

Case Comms. We have that As = out(u, M).Ps | in(v, x).Qs, Bs = Ps |
Qs{M/x} and CB = CA ∪ {u = v, gd(u), gd(v)}. Let θ ∈ SolE(CA ∪ {u = v ,
gd(u) , gd(v)} ; Ns). We also have that θ ∈ SolE(CA ; Ns). Let σA (resp.
σB) be the substitution corresponding to the maximal frame of CA (resp. CB).
Trivially, we have that σA = σB . Let ρ = (θσA)!.

(A ; N) = (Asρ ; N)
= (out(uρ, Mρ).Psρ | in(vρ, x).Qsρ ; N) as x '∈ dom(ρ)
= (out(uρ, Mρ).Psρ | in(uρ, x).Qsρ ; N) as θ ∈ SolE(CB ; Ns)

u, v are of channel type
→i (Psρ | Qsρ{Mρ/x} ; N) as uρ is a channel name

as gd(u) ∈ CB

= ((Ps | Qs{M/x})ρ ; N)
= (Bsρ ; N)
= (B ; N) as σA = σB
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Again, the rules Thens and Elses are similar to the previous case.
We now consider the two inductive cases.

The case of the structural equivalence rule is straightforward.
Case Application of an evaluation context

The proof witnessing the fact that (As ; CA ; Ns) →s (Bs ; CB ; Ns) ends
with an application of the following inference rule.

(A′
s ; C′

A ; N′
s) →s (B′

s ; C′
B ; N′

s)

(C[A′
s] ; C[C′

A] ; Ns) →s (C[B′
s] ; C[C′

B] ; Ns)

We have that Ns = N′
s[bn(C[0]) "→ b]. Let θ ∈ SolE(CB ; Ns) and (A ; N)

(resp. (B ; N)) be the θ-concretization of (C[A′
s] ; C[C′

A] ; Ns) (resp. (C[B′
s] ;

C[C′
B] ; Ns)). Let σ′

A (resp. σ′
B) be the substitution corresponding to the

maximal frame in C′
A and σA (resp. σB) be the substitution corresponding to

the maximal frame in CA = C[C′
A] (resp. CB = C[C′

B ]). Note that since →s does
never add deduction constraints we have that σ′

A = σ′
B and hence σA = σB .

We have to show that (A ; N) →i (B ; N), i.e. (C(θσA)![A′
s(θσA)!] ; N) →i

(C(θσB)![B′
s(θσB)!] ; N). Since →i is closed under application of evaluation

context, it is sufficient to show that (A′
s(θσA)! ; N′) →i (B′

s(θσB)! ; N′) where
N′ = N′

s|N∪X .
Let θ′ = (θψ(C[0]))!. By Lemma B.1 we have that θ′ ∈ SolE(C′

B ; N′
s)

and hence by induction hypothesis, we deduce that θ′ ∈ SolE(C′
A ; N′

s) and
(A′ ; N) →i (B′ ; N) where (A′ ; N′) (resp. (B′ ; N′)) is the θ′-concretization
of (A′

s ; C′
A ; N′

s) (resp. (B′
s ; C′

B ; N′
s)). Hence, by Lemma B.1 we deduce

that θ ∈ SolE(CA ; Ns) = SolE(C[C′
A] ; Ns). We have that A′ = A′

s(θ
′σ′

A)!

and B′ = B′
s(θ

′σ′
B)!. This allows us to conclude since (θ′σ′

A)! = (θσA)! and
(θ′σ′

B)! = (θσB)!. !

Proposition 8.2 (soundness of
α
−→s) Let (As ; CA ; Ns) and (Bs ; CB ; N′

s)

be two well-formed symbolic processes such that (As ; CA ; Ns)
αs−→s (Bs ; CB ;

N′
s). Let θB ∈ SolE(CB ; N′

s) and θA = θB|
cv(CA). We have that θA ∈ SolE(CA ;

Ns) and (A ; N)
αsθB−−−→i (B ; N′), where (A ; N) and (B ; N′) are respectively the

θA-concretization and the θB-concretization of (As ; CA ; Ns) and (Bs ; CB ; N′
s).

Proof. The proof is done by induction on the proof tree witnessing the following
reduction step (As ; CA ; Ns)

αs−→s (Bs ; CB ; N′
s). We first consider the three

base cases.

Case Ins. We have that As = in(u, x).Ps, Bs = Ps{y/x}, αs = in(u, y) for
some y ∈ Y such that Ns(y) = n and CB = CA ∪ {0 " y, gd(u)}). Moreover, we
have that N′

s = Ns[y "→ c]. Note that we have that N = N′. Let θB ∈ SolE(CB ;
N′

s) and θA = θB|
cv(CA). As CA ⊂ CB we have that θA ∈ SolE(CA ; Ns).

Let σA (resp. σB) be the substitution corresponding to the maximal frame of
CA (resp. CB). Trivially, we have that dom(σA) = dom(σB) = ∅ since φ(Ps) = 0
and (As ; CA ; Ns) is well-formed.
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(A ; N) = (AsθA ; N)
= (in(uθA, x).PsθA ; N) as x !∈ dom(θA)

in(u,y)θB
−−−−−−→i (PsθA{yθB/x} ; N′) as uθB ∈ Nch,

N(fv (yθB) ∪ fn(yθB)) = f
= (PsθA{y/x}{yθB/y} ; N′)
= (BsθB ; N′) as θB = θA ∪ {y &→ yθB}
= (B ; N′)

Case Out-Chs. This case is similar to the previous one.
Case Out-Ts. We have that As = out(u, M).Ps, Bs = Ps | {M/x}, αs =
νx.out(u, x) where x ∈ Xb and Ns(x) = n. We have also that CB = νx.CA ∪
{gd(u)} and N′

s = Ns[x &→ f]. Let θB ∈ SolE(CB ; N′
s) and θA = θB|

cv(CA), i.e.
θB = θA. As νx.CA ⊂ CB we have that θA ∈ SolE(CA ; Ns). Let σA (resp. σB) be
the substitution corresponding to the maximal frame of CA (resp. CB). Trivially,
we have that dom(σA) = dom(σB) = ∅ since φ(Ps) = 0 and (As ; CA ; Ns) is
well-formed.

(A ; N) = (AsθA ; N)
= (out(uθA, MθA).PsθA ; N)

νx.out(u,x)θB
−−−−−−−−−→i (PsθA | {MθA/x} ; N′) as x !∈ dom(θB)

= (PsθB | {MθB/x} ; N′) as θA = θB

= (BsθB ; N)
= (B ; N)

Moreover, as θB ∈ SolE(νx.CA) we have that x !∈ img(θB) and hence, x occurs
only once in B.

We now consider the inductive cases.

Case Open-Chs.

(A′
s ; C′

A ; N′′
s )

out(u,c)
−−−−−→s (B′

s ; C′
B ; N′′′

s ) u != c, N′′
s (d) = n, d ∈ Nch

(νc.A′
s ; νc.C′

A ; Ns)
νd.out(u,d)
−−−−−−−→s (B′

s{d/c} ; νd.(C′
B{d/c}) ; N′

s)

We have that As = νc.A′
s, Bs = B′

s{
d/c}, αs = νd.out(u, d), CA = νc.C′

A and
CB = νd.C′

B{d/c}. Moreover, we have that

• Ns = N′′
s [c &→ b], and

• N′
s = N′′′

s [c &→ b, d &→ f].

Let θB ∈ SolE(CB ; N′
s). We also have that θB ∈ SolE(C′

B ; N′′′
s ) and c, d !∈

names(img(θB)) and uθB != c. Let θA = θB|
cv(CA), i.e. θB = θA. By induction

hypothesis we deduce that (A′ ; N′′)
out(u,c)θB
−−−−−−−→i (B′ ; N′′′) where (A′ ; N′′)

(resp. (B′ ; N′′′)) are the θB-concretization of (A′
s ; C′

A ; N′′
s ) (resp. (B′

s ; C′
B ;

N′′′
s )) and θB ∈ SolE(C′

A ; N′′
s ). As c !∈ names(img(θB)), we also have that
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c !∈ names(img(θA)) and hence θA ∈ SolE(CA ; Ns). Since (A′ ; N′′)
out(u,c)θB
−−−−−−−→i

(B′ ; N′′′), we deduce that (νc.A′ ; N)
νd.out(uθB ,d)
−−−−−−−−−→i (B′{d/c} ; N′′′). Note that

c != uθB and d ∈ Nch and N′′(d) = n.

Case Scopes.

(A′
s ; C′

A ; N′′
s )

α
−→s (B′

s ; C′
B ; N′′′

s ) n does not occur in α

(νn.A′
s ; νn.C′

A ; Ns)
α
−→s (νn.B′

s ; νn.C′
B ; N′

s)

We have that As = νn.A′
s, Bs = νn.B′

s, CA = νn.C′
A and CB = νn.C′

B. More-
over, we have that Ns = N′′

s [n %→ b] and N′
s = N′′′

s [n %→ b]. Let θB ∈ SolE(CB ;
N′

s). We have that n !∈ names(img(θB)). Let θ′B = θB. By Lemma B.1 we have
that θ′B ∈ SolE(C′

B ; N′′′
s ). Let θ′A = θ′B|

cv(C′

A). By induction hypothesis, we

have that (A′ ; N′′)
αθ′

B−−−→i (B′ ; N′′′) where (A′ ; N′′) and (B′ ; N′′′) are respec-
tively the θ′A and the θ′B-concretization of (A′

s ; C′
A ; N′′

s ) and (B′
s ; C′

B ; N′′′
s ).

As n !∈ names(img(θB)), n does not occur in αθ′B and θA = θ′A ∈ SolE(CA ; Ns)

by Lemma B.1. Since (A′ ; N′′)
αθ′

B−−−→i (B′ ; N′′′), θB = θ′B and n does not occur

in αθB, we deduce that (νn.A′ ; N)
αθB−−−→i (νn.B′ ; N′)

Case Pars.

(A′
s ; C′

A ; Ns)
α
−→s (B′

s ; C′
B ; N′

s)

(A′
s | Ds ; C′

A | ψ(Ds) ; Ns)
α
−→s (B′

s | Ds ; C′
B | ψ(Ds) ; N′

s)

We have that As = A′
s | Ds, Bs = B′

s | Ds, CA = C′
A | ψ(Ds) and CB =

C′
B | ψ(Ds). Let θB ∈ SolE(CB ; N′

s). Then, by Lemma B.1 we also have
that θ′B = (θBψ(Ds))$ ∈ SolE(C′

B ; N′
s). Let θ′A = θ′B|

cv(C′

A). By induction

hypothesis we have that θ′A ∈ SolE(C′
A ; Ns) and (A′ ; N)

αθBψ(Ds)
−−−−−−−→i (B′ ; N′)

where (A′ ; N) and (B′ ; N′) are respectively the θ′A and the θ′B concretization
of (A′

s ; C′
A ; Ns) and (B′

s ; C′
B ; N′

s).
Let θA = θB|cv(CA). We have θ′A = θBψ(Ds)|cv(CA) and θ′A ∈ SolE(C′

A ;
Ns). Hence by Lemma B.1 we have that θB|

cv(CA) ∈ SolE(C′
A | ψ(Ds) ; Ns),

i.e. θA ∈ SolE(CA ; Ns). Let σA (resp. σB , σ′
A and σ′

B) be the substitution
corresponding to the maximal frame of CA (resp. CB, C′

A and C′
B), We also

have that σA = σ′
A ∪ ψ(Ds) and σB = σ′

B ∪ ψ(Ds). As N′
s(dom(ψ(Ds))) = f

and N′
s(fv (α)) = c, we have that αθBψ(Ds) = αθB. Hence, we have that

(A ; N)
αθB−−−→i (B ; N′) where (A ; N) and (B ; N′) are respectively the θA and

the θB concretization of (As ; CA ; Ns) and (Bs ; CB ; N′
s).

Case Structs. This case is straightforward by relying on Proposition B.2.
!
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B.2 Completeness Results

Proposition B.4 (completeness of ≡s) Let (As ; CA ; Ns) be a well-formed
symbolic process and θ ∈ SolE(CA, Ns). Let (A ; N) be the θ-concretization of
(As ; CA ; Ns) and B be a process such that (A ; N) ≡i (B ; N). Then there
exists a well-formed symbolic process (Bs ; CB ; Ns) such that:

1. (As ; CA ; Ns) ≡s (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns), and

3. (B ; N) is the θ-concretization of (Bs ; CB ; Ns).

Proof. We show this result by induction on the proof tree witnessing the fact
that (A, N) ≡i (B, N). First we need to consider the following base cases:

Case Par-0i: (D, N) ≡i (D | 0, N). In such a case, we have that A = D and
B = D | 0. Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we
have that A = As(θσA)!. Hence, we know that As = Ds for some process Ds

such that Ds(θσA)! = D. Let Bs = Ds | 0 and CB = CA. The symbolic process
(Bs ; CB ; Ns) is well-formed. Moreover, we have

1. (As ; CA ; Ns) ≡s (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns),

3. Bs(θσB)! = (Ds | 0)(θσA)! = D | 0 = B, i.e., (B ; N) is the θ-
concretization of (Bs ; CB ; Ns).

Symmetrically, we have to consider the case where A = D | 0 and B = D. We
know that A = As(θσA)! and we deduce that As = Ds|0 for some process Ds

such that Ds(θσA)! = D. Let Bs = Ds and CB = CA. We easily conclude.

We can deal with the rules Par-A, Par-C and New-C in a similar way.
Now, we show the inductive case, i.e. application of an evaluation context.

In such a case, we have that the proof tree witnessing the fact that (A ; N) ≡i

(B ; N) ends with an application of the following inference rule.

(A′ ; N′) ≡i (B′ ; N′)

(C[A′] ; N) ≡i (C[B′] ; N)

Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that
As(θσA)! = C[A′]. Hence, we deduce that As = Cs[A′

s] for some evaluation
context Cs and some process A′

s such that Cs(θσA)! = C and A′
s(θσA)! = A′.

Since (As ; CA ; Ns) is well-formed, we have also that CA = Cs[C′
A] for some

constraint system C′
A. Let

N′
s(u) =

{

N′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y.

Let θ′ = (θψ(Cs))!. By Lemma B.1 we have that θ′ ∈ SolE(C′
A ; N′

s). We can
apply our induction hypothesis on (A′

s ; C′
A ; N′

s) and (A′ ; N′) ≡i (B′ ; N′).
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We deduce that there exists a well-formed symbolic process (B′
s ; C′

B ; N′
s) such

that (A′
s ; C′

A ; N′
s) ≡s (B′

s ; C′
B ; N′

s), θ′ ∈ SolE(C′
B ; N′

s) and B′
s(θ

′σ′
B)! = B′.

Let Bs = Cs[B′
s] and CB = Cs[C′

B]. We have that

1. (As ; CA ; Ns) ≡ (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns) (by Lemma B.1),

3. Bs(θσB)! = Cs(θσB)![B′
s(θσB)!] = C[B′

s(θ
′σ′

B)!] = C[B′] = B, i.e.,
(B ; N) is the θ-concretization of (Bs ; CB ; Ns).

This concludes our proof. !

Proposition B.5 (completeness of →s) Let (As ; CA ; Ns) be a well-formed
symbolic process and θ ∈ SolE(CA ; Ns). Let (A ; N) be the θ-concretization of
(As ; CA ; Ns) and (A′, N) be an intermediate process such that (A ; N) →i (A′ ; N).
Then there exists a well-formed symbolic process (A′

s ; C′
A ; Ns) such that:

1. (As ; CA ; Ns) −→s (A′
s ; C′

A ; Ns),

2. θ ∈ SolE(C′
A ; Ns),

3. (A′ ; N) is the θ-concretization of (A′
s ; C′

A ; Ns).

Proof. We show this result by induction on the proof tree witnessing the fact
that (A ; N) →i (A′ ; N). First, we need to consider the three base cases, i.e.
the rules Then, Else and Comm. We detail the case of the rule Else, the two
other ones are very similar.
Case Else: (if M = N then P else Q ; N) →i (Q ; N) with M, N ground terms
such that M %=E N . In such a case, we have that

• A = if M = N then P else Q for some ground terms M, N such that M %=E N
and some processes P and Q, and

• A′ = Q.

Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that
A = As(θσA)!. Hence, we deduce that

• As = if Ms = Ns then Ps else Qs for some terms Ms, Ns, some processes Ps

and Qs such that

• Ms(θσA)! = M , Ns(θσA)! = N , Ps(θσA)! = P and Qs(θσA)! = Q.

Let A′
s = Qs and C′

A = CA ∪ {Ms %= Ns , gd(Ms) , gd(Ns)}. The symbolic
process (A′

s ; C′
A ; Ns) is well-formed. Moreover, we have

1. (As ; CA ; Ns) −→s (Qs ; CA ∪ {Ms %= Ns , gd(Ms) , gd(Ns)} ; Ns)

2. θ ∈ SolE(C′
A ; Ns). Indeed, by hypothesis, we know that θ ∈ SolE(CA ; Ns).

We know also that Ms(θσA)! and Ns(θσA)! are ground terms which are
not equal modulo E.
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3. A′
s(θσA)! = Qs(θσA)! = Q = A′, i.e., (A′ ; N) is the θ-concretization of

(A′
s ; C′

A ; Ns).

Now, we show the inductive cases. In case of the structural equivalence inductive
rule, we easily conclude by induction and thanks to Proposition B.4.

Case Application of an evaluation context. In such a case, we have that
the tree witnessing the fact that (A ; N) →i (B ; N) ends with an application of
the following inference rule.

(A′ ; N′) →i (B′ ; N′)

(C[A′] ; N) →i (C[B′] ; N)

Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that
As(θσA)! = C[A′]. Hence, we deduce that As = Cs[A′

s] for some evaluation
context Cs and some process A′

s such that Cs(θσA)! = C and A′
s(θσA)! = A′.

Since (As ; CA ; Ns) is well-formed, we have also that CA = Cs[C′
A] for some

constraint system C′
A. Let

N′
s(u) =

{

N′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y

Let θ′ = (θφ(Cs))!. By Lemma B.1 we have that θ′ ∈ SolE(C′
A ; N′

s).
We can apply our induction hypothesis on (A′

s ; C′
A ; N′

s) and (A′ ; N′) →i

(B′ ; N′). We deduce that there exists a well-formed symbolic process (B′
s ; C′

B ;
N′

s) such that (A′
s ; C′

A ; N′
s) →s (B′

s ; C′
B ; N′

s), θ′ ∈ SolE(C′
B ; N′

s) and (B′ ; N′)
is the θ-concretization of (B′

s ; C′
B ; N′

s). Let Bs = Cs[B′
s] and CB = Cs[C′

B].
We have that

1. (As ; CA ; Ns) →s (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns) (by Lemma B.1),

3. Bs(θσB)! = Cs(θσB)![B′
s(θσB)!] = C[B′

s(θ
′σ′

B)!] = C[B′] = B i.e., (B ;
N) is the θ-concretization of (Bs ; CB ; Ns).

This concludes our proof. !

Proposition 8.4 (completeness of
α
−→s) Let (As ; CA ; Ns) be a well-formed

symbolic process and θA ∈ SolE(CA ; Ns). Let (A ; N) be the θA-concretization
of (As ; CA ; Ns) and (A′ ; N′) be an intermediate process such that (A ; N)

α
−→i

(A′ ; N′). Then there exists a well-formed symbolic process (A′
s ; C′

A ; N′
s) and a

substitution θ′A such that:

1. (As ; CA ; Ns)
αs−→s (A′

s ; C′
A ; N′

s),

2. θ′A ∈ SolE(C′
A ; N′

s) and θ′A|cv(CA) = θA,

3. (A′ ; N′) is the θ′A-concretization of (A′
s ; C′

A ; N′
s), and

4. αsθ′A = α.
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Proof. We show this result by induction on the tree witnessing the fact that
(A ; N)

α
−→i (A′ ; N′). First, we need to consider the following base cases:

Case Ini: (in(a, x).P ; N)
in(a,M)
−−−−−→i (P{M/x} ; N). In such a case, we have that

• A = in(a, x).P for some channel name a, some variable x and some P ,

• A′ = P{M/x},

• α = in(a, M) for some term M , and

• N(fn(M) ∪ fv (M)) = f.

Since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that As(θσA)" = A.
Hence, we know that

• As = in(u, x).Ps for some metavariable u and some process Ps such that

• u(θσA)" = a and Ps(θσA)" = P .

We have that u is either a channel name or a constraint variable of channel type
since u(θσA)" = a and a is a channel name.

Let y ∈ Y having the same type than M and such that Ns(y) = n. Let
A′

s = Ps{y/x}, C′
A = CA ∪ {0 ! y , gd(u)}, αs = in(u, y), θ′ = θ ∪ {y %→ M} and

N′
s = Ns[y %→ c]. The symbolic process (A′

s ; C′
A ; N′

s) is well-formed, and we
have:

1. (As ; CA ; Ns) = (in(u, x).Ps ; CA ; Ns)
αs−→s (Ps{y/x} ; CA ∪ {0 ! y , gd(u)} ; N′

s)
= (A′

s ; C′
A ; N′

s)

2. We know that θ ∈ SolE(CA ; Ns). It remains to check that θ′ ∈ SolE(C′
A ; N′

s),
i.e. θ′ satisfies the constraints ! y and gd(u). This is clearly true due
to the fact that Ns(fn(M) ∪ fv (M)) = f and u(θσA)" = a. Lastly, by
definition of θ′, we have that θ′|

cv(CA) = θ.

3. We have A′
s(θ

′σ′
A)" = Ps{y/x}(θσA)"[y %→ M ] = P{M/x} = A′ since

dom(σA) = dom(σ′
A) = ∅, i.e., (A′ ; N′) is the θ′-concretization of (A′

s ;
C′

A ; N′
s), and

4. αsθ′ = in(u, y)θ′ = in(uθ′, yθ′) = in(a, M) = α.

We can deal with the rules Out-Chi and Out-Ti in a rather similar way.

We now consider the inductive cases.

Case Open-Chi: In such a case, we have that the tree witnessing the fact that
(A ; N)

α
−→i (A′ ; N′) ends with an application of the following inference rule

(B ; N′′)
out(a,c)
−−−−−→i (B′ ; N′′′) c '= a, N′′(d) = n and d ∈ Nch

(νc.B ; N)
νd.out(a,d)
−−−−−−−→i (B′{d/c} ; N′)
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Since (νc.B ; N) is the θA-concretization of (As ; CA ; Ns) we have that
As(θAσA)! = νc.B. Hence, we know that As = νc.Bs for some process Bs

such that Bs(θAσA)! = B. Since (νc.Bs ; CA ; Ns) is well-formed, we know that
CA = νc.CB for some well-formed constraint system CB. Let N′′

s be the symbolic
naming environment such that

N′′
s (u) =

{

N′′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y.

Firstly, we have that (Bs ; CB ; N′′
s ) is well-formed. We have also that θA ∈

SolE(CB ; N′′
s ). We can apply our induction hypothesis on (Bs ; CB ; N′′

s ),

θA, (B ; N′′)
out(a,c)
−−−−−→i (B′ ; N′′′). We deduce that there exist a well-formed

symbolic process (B′
s ; C′

B ; N′′′
s ), a substitution θ′B and a label αB

s such that

1. (Bs ; CB ; N′′
s )

αB
s−−→s (B′

s ; C′
B ; N′′′

s ) and N′′′ = N′′′
s [N′′′−1

s (c) %→ b],

2. θ′B ∈ SolE(C′
B ; N′′′

s ) and θ′B|
cv(CB) = θA and θ′B|

cv(CB) = θ′B since con-
straint variables increase only after an input action.

3. B′
s(θAσA)! = B′, i.e., (B′ ; N′′′) is the θ′B-concretization of (B′

s ; C′
B ; N′′′

s )
and

4. αB
s θA = out(a, c). Note also that since c &∈ names(img(θA)), we have that

αB
s = out(u, c) for some metavariable u such that uθA = a.

Let A′
s = B′

s{
d/c}, C′

A = νd.(C′
B{d/c}), N′

s = N′′′
s [c %→ b, d %→ f]. Let

θ′A = θ′B = θA and αs = νd.out(u, d). We have that

1. (As ; CA ; Ns)
αs−→s (A′

s ; C′
A ; N′

s). Indeed, we have that

(Bs ; CB ; N′′
s )

out(u,c)
−−−−−→s (B′

s ; C′
B ; N′′′

s )

(νc.Bs ; νc.CB ; Ns)
νd.out(u,d)
−−−−−−−→s (B′

s{
d/c} ; νd.(C′

B{d/c}) ; N′
s)

2. θ′A ∈ SolE(C′
A ; N′

s) since θ′B ∈ SolE(C′
B ; N′′′

s ) and c, d &∈ names(img(θ′B)).
We have also that θ′A|cv(CA) = θ′B|

cv(CB) = θA,

3. We have that A′
s(θ

′
Aσ′

A)! = (B′
s{

d/c})(θAσ′
A)! = (B′

s{
d/c})(θA(σA{d/c}))! =

B′
s(θAσA)!{d/c} = B′{d/c} = A′, i.e., (A′ ; N′) is the θ′A-concretization of

(A′ ; C′
A ; N′

s),

4. αsθ′A = (νd.out(u, d))θA = νd.out(a, d) = α.

Case Scopei: In such a case, we have that the proof tree witnessing the fact
that (A ; N)

α
−→ (A′ ; N′) ends with an application of the following inference rule

(B ; N′′)
α
−→i (B′ ; N′′′)

with n does not occur in α
(νn.B ; N)

α
−→i (νn.B′ ; N′)
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Hence, we know that there exist a name n, a label α such that n does not occur
in α and two intermediate extended processes (B ; N′′) and (B′ ; N′′′) such that
A = νn.B, A′ = νn.B′ and (B ; N′′)

α
−→ (B′ ; N′′′). Since (νn.B ; N) is the

θA-concretization of (As ; CA ; Ns) we have that As(θAσA)" = νn.B. Hence, we
know that As = νn.Bs for some process Bs such that Bs(θAσA)" = B. Since
(νn.Bs ; CA ; Ns) is well-formed, we know that CA = νn.CB for some well-formed
constraint system CB. Let N′′

s be the symbolic naming environment such that

N′′
s (u) =

{

N′′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y.

Firstly, we have (Bs ; CB ; N′′
s ) is well-formed. By Lemma B.1 we have

θA ∈ SolE(CB ; N′′
s ). We apply our induction hypothesis on (Bs ; CB ; N′′

s ),
θA, (B ; N′′)

α
−→ (B′ ; N′′′). We deduce that there exist a well-formed symbolic

process (B′
s ; C′

B ; N′′′
s ), a substitution θ′B and a label αB

s such that:

1. (Bs ; CB ; N′′
s )

αB
s−−→s (B′

s ; C′
B ; N′′′

s ) and N′′′ = N′′′
s |N∪X .

2. θ′B ∈ SolE(C′
B ; N′′′

s ) and θ′B|
cv(CB) = θA,

3. B′
s(θ

′
Bσ′

B)" = B′, i.e., (B′ ; N′′′) is the θ′B-concretization of (B′
s ; C′

B ; N′′′
s ),

4. αB
s θ′B = α.

Let A′
s = νn.B′

s, C
′
A = νn.C′

B, N′
s = N′′′

s [n %→ b]. Let θ′A = θ′B and αs = αB
s .

Note that the symbolic process (A′
s ; C′

A ; N′
s) is well-formed. Moreover, we have

1. (As ; CA ; Ns)
αs−→ (A′

s ; C′
A ; N′

s). Indeed, we have that

(Bs ; CB ; N′′
s )

αs−→s (B′
s ; C′

B ; N′′′
s )

(νn.Bs ; νn.CB ; Ns)
αs−→s (νn.B′

s ; νn.C′
B ; N′

s)

2. θ′A ∈ SolE(C′
A ; N′

s) by Lemma B.1 since θ′B ∈ SolE(C′
B ; N′′′

s ) and n &∈
names(img(θ′B)). We have also that θ′A|cv(CA) = θ′B|

cv(CB) = θA,

3. We have that A′
s(θ

′
Aσ′

A)" = (νn.B′
s)(θ

′
Bσ′

B)" = νn.B′ = A′, i.e., (A′ ; N′)
is the θ′A-concretization of (A′

s ; CA ; N′
s),

4. αsθ′A = (αB
s )θ′B = α.

Case Pari: In such a case, we have that the proof tree witnessing the fact that
(A ; N)

α
−→i (A′ ; N′) ends with an application of the following inference rule.

(B ; N)
αψ(D)
−−−−→i (B′ ; N′)

(B | D ; N)
α
−→i (B′ | D ; N′)

Since (As ; N) is the θA-concretization of (As ; CA ; Ns) we have that A = B |
D = As(θAσA)". Hence, we know that
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• As = Bs | Ds for some processes Bs and Ds such that

• Bs(θAσA)! = B and Ds(θAσA)! = D.

Since (Bs | Ds ; CA ; Ns) is well-formed, we deduce that CA = CB | ψ(Ds)
for some well-formed constraint system CB. We have that (Bs ; CB ; Ns) is well-
formed. Let θB = (θAψ(Ds))!. By Lemma B.1 we have that θB ∈ SolE(CB ; Ns).
We can apply our induction hypothesis. We deduce that there exists a well-
formed symbolic process (B′

s ; C′
B ; N′

s), a substitution θ′B and a label αB
s such

that:

1. (Bs ; CB ; Ns)
αB

s−−→s (B′
s ; C′

B ; N′
s) and

N′
s(u) =

{

N′(u) if u ∈ N ∪ X
Ns(u) if u ∈ Y.

2. θ′B ∈ SolE(C′
B ; N′

s) and θ′B|
cv(CB) = θB ,

3. B′
s(θ

′
Bσ′

B)! = B′, i.e., (B′ ; N′) is the θ′B-concretization of (B′
s ; C′

B ; N′
s),

4. αB
s θ′B = αψ(D).

Let A′
s = B′

s | Ds, C′
A = C′

B | ψ(Ds). To define θ′A, we distinguish two cases.

1. Either α is of the form in(c, M) and αB
s = in(u, y) for some metavariable

u and some variable y with Ns(y) = n such that uθA = uθB = c. In such a
case, let θ′A = θA∪{y %→ M}. Moreover, as θB = (θAψ(Ds))!, θ′B |

cv(CB) =
θB, αB

s θ′B = αψ(D) and Ds(θAσA)! = D we have that θ′B = (θ′Aψ(Ds))!.

2. Otherwise, θ′A = θA. Moreover in this case we have that θ′B = θB =
(θAψ(Ds))! = (θ′Aψ(Ds))!.

Let αs = αB
s . Note that the symbolic process (A′

s ; C′
A ; N′

s) is well-formed.
Moreover, we have

1. (As ; CA ; Ns)
αs−→ (A′

s ; C′
A ; N′

s). Indeed, we have that

(Bs ; CB ; Ns)
αs−→s (B′

s ; C′
B ; N′

s)

(Bs | Ds ; CB | ψ(Ds) ; Ns)
αs−→s (B′

s | Ds ; C′
B | ψ(Ds) ; N′

s)

2. We have to show that θ′A ∈ SolE(C′
A ; N′

s). As θ′B = (θ′Aψ(Ds))! ∈
Sol(C′

B ; N′
s) we have by Lemma B.1 that θ′A ∈ SolE(C′

B | ψ(Ds) ; N′
s). It

is clear that we have also θ′A|cv(CA) = θA.

3. We have that A′
s(θ

′
Aσ′

A)! = (B′
s | Ds)(θ′Aσ′

A)! = B′
s(θ

′
Aσ′

A)! | Ds(θ′Aσ′
A)! =

B′
s(θ

′
Bσ′

B)! | Ds(θAσA)! = B′ | D = A′, i.e., (B′ | D ; N′) is a θ′A-
concretization of (A′

s ; C′
A ; N′

s),
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4. In the case where α = in(c, M), we have that αsθ′A = in(u, y)θ′A =
in(c, M) = α. Otherwise, the equality holds since ψ(D) and ψ(Ds) do
not affect variables which occurs in a label since those variables are of
type channel.

Lastly, we can deal with the rule Structi by relying on our Proposition B.4.
This allows us to conclude. !
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Abstract. We consider security properties of cryptographic protocols,
that are either trace properties (such as confidentiality or authenticity)
or equivalence properties (such as anonymity or strong secrecy).
Infinite sets of possible traces are symbolically represented using de-

ducibility constraints. We give a new algorithm that decides the trace
equivalence for the traces that are represented using such constraints, in
the case of signatures, symmetric and asymmetric encryptions. Our al-
gorithm is implemented and performs well on typical benchmarks. This
is the first implemented algorithm, deciding symbolic trace equivalence.

1 Introduction

Security protocols are small distributed programs aiming at some security goal,
though relying on untrusted communication media. Formally proving that such
a protocol satisfies a security property (or finding an attack) is an important
issue, in view of the economical and social impact of a failure.

Starting in the 90s, several models and automated verification tools have
been designed. For instance both protocols, intruder capabilities and security
properties can be formalized within first-order logic and dedicated resolution
strategies yield relevant verification methods [18, 21, 6]. Another approach, ini-
tiated in [19], consists in symbolically representing the traces using deducibility
constraints. Both approaches were quite successful in finding attacks/proving
security protocols. There are however open issues, that concern the extensions
of the methods to larger classes of protocols/properties [11]. For instance, most
efforts and successes only concerned, until recently, trace properties, i.e., security
properties that can be checked on each individual sequence of messages corre-
sponding to an execution of the protocol. A typical example of a trace property
is the confidentiality, also called weak secrecy : a given message m should not be
deducible from any sequence of messages, that corresponds to an execution of
the protocol. Agreement properties, also called authenticity properties, are other
examples of trace properties.

There are however security properties that cannot be stated as properties of
a single trace. Consider for instance a voter casting her vote, encrypted with a
public key of a server. Since there are only a fixed, known, number of possible

� This work has been partially supported by the ANR project SeSur AVOTÉ.



2 Automating security analysis: symbolic equivalence of constraint systems

plaintexts, the confidentiality is not an issue. A more relevant property is the
ability to relate the voter’s identity with the plaintext of the message. This
is a property in the family of privacy (or anonymity) properties [15]. Another
example is the strong secrecy : m is strongly secret if replacing m with any m� in
the protocol, would yield another protocol that is indistinguishable from the first
one: not only m itself cannot be deduced, but the protocol also does not leak
any piece of m. These two examples are not trace properties, but equivalence
properties: they can be stated as the indistinguishability of two processes. In
the present paper, we are interested in automating the proofs of equivalence
properties. As far as we know, there are only three series of works that consider
the automation of equivalence properties for security protocols1.

The first one [7] is an extension of the first-order logic encoding of the pro-
tocols and security properties. The idea is to overlap the two processes that are
supposedly equivalent, forming a bi-process, then formalize in first-order logic
the simultaneous moves (the single move of the bi-process) upon reception of a
message. This method checks a stronger equivalence than observational equiv-
alence, hence it fails on some simple (cook up) examples of processes that are
equivalent, but their overlapping cannot be simulated by the moves of a single
bi-process. The procedure might also not terminate or produce false attacks, but
considers an unbounded number of protocol instances.

The second one [3] (and [14]) assumes a fixed (bounded) number of sessions.
Because of the infinite number of possible messages forged by an attacker, the
number of possible traces is still infinite. The possible traces of the two processes
are symbolically represented by two deducibility constraints. Then [3] provides
with a decision procedure, roughly checking that the solutions, and the recipes
that yield the solutions are identical for both constraints. This forces to compute
the solutions and the associated recipes and yields an unpractical algorithm.

The third one [17, 9] is based on an extension of the small attack property
of [20]. They show that, if two processes are not equivalent, then there must exist
a small witness of non-equivalence. A decision of equivalence can be derived by
checking every possible small witness. As in the previous method, the main
problem is the practicality. The number of small witnesses is very large as all
terms of size smaller than a given bound have to be considered. Consequently,
neither this method nor the previous one have been implemented.

We propose in this paper another algorithm for deciding equivalence prop-
erties. As in [3, 9], we consider trace equivalence, which coincides with observa-
tional equivalence for determinate processes [14]. In that case, the equivalence
problem can be reduced to the symbolic equivalence of finitely many pairs of
deducibility constraints, each of which represents a set of traces (see [14]). We
consider signatures, pairing, symmetric and asymmetric encryptions, which is
slightly less general than [3, 9], who consider arbitrary subterm-convergent theo-
ries. The main idea of our method is to simultaneously solve pairs of constraints,
instead of solving each constraint separately and comparing the solutions, as
1 [16] gives a logical characterization of the equivalence properties. It is not clear if

this can be of any help in deriving automated decision procedures.
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in [3]. These pairs are successively split into several pairs of systems, while pre-
serving the symbolic equivalence: roughly, the father pair is in the relation if, and
only if, all the sons pairs are in the relation. This is not fully correct, since, for
termination purposes, we need to keep track of some earlier splitting, using ad-
ditional predicates. Such predicates, together with the constraint systems, yield
another notion of equivalence, which is preserved upwards, while the former is
preserved downwards. When a pair of constraints cannot be split any more, then
the equivalence can be trivially checked.

A preliminary version of the algorithm has been implemented and works
well (within a few seconds) on all benchmarks. The same implementation can
also be used for checking the static equivalence and for checking the constraints
satisfiability. We also believe that it is easier (w.r.t. [3, 9]) to extend the algorithm
to a more general class of processes (including disequality tests for instance) and
to avoid the detour through trace equivalence. This is needed to go beyond the
class of determinate processes.

We first state precisely the problem in Section 2, then we give the algorithm,
actually the transformation rules, in Section 3. We sketch the correctness and
termination proofs in Section 4 and provide with a short summary of the exper-
iments in Section 5. Detailed proofs of the results can be found in [8].

2 Equivalence properties and deducibility constraints

We use the following straightfoward example for illustrating some definitions:

Example 1. Consider the following very simple handshake protocol:

A→ B : enc(NA, KAB)
B → A : enc(f(NA), KAB)

The agent A sends a random message NA to B, encrypted with a key KAB ,
that is shared by A and B only. The agent B replies by sending f(NA) encrypted
with the same key. The function f is any function, for instance a hash function.

Consider only one session of this protocol: a sends enc(na, kab) and waits
for enc(f(na), kab). The agent b is expecting a message of the form enc(x, kab).
The variable x represents the fact that b does not know in advance what is this
randomly generated message. Then he replies by sending out enc(f(xσ), kab). All
possible executions are obtained by replacing x with any message xσ such that
the attacker can supply with enc(xσ, kab) and then with enc(f(na), kab). This is
represented by the following constraint:

C :=





a, b, enc(na, kab)

?
� enc(x, kab)

a, b, enc(na, kab), enc(f(x), kab)
?
� enc(f(na), kab)

Actually, C has only one solution: x has to be replaced by na. There is no
other way for the attacker to forge a message of the form enc(x, kab).
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2.1 Function symbols and terms

We will use the set of function symbols F = N ∪ C ∪ D where:

– C = {enc, aenc, pub, sign, vk, � �} is the set of constructors;
– D = {dec, adec, check, proj1, proj2} is the set of destructors;
– N is a set of constants, called names.

In addition, X is a set of variables x, y, z,... The constructor terms (resp. ground
constructor terms) are built on C, N and X (resp. C,N ). The term rewriting
system below is convergent: we let t↓ be the normal form of t.

adec(aenc(x, pub(y)), y) → x proj1(�x, y�) → x dec(enc(x, y), y) → x
check(sign(x, y), vk(y)) → x proj2(�x, y�) → y

A (ground) recipe records the attacker’s computation. It is used as a witness
of how some deduction has been performed. Formally, it is a term built on
C,D and a set of special variables AX = {ax 1, . . . , axn, . . .}, that can be seen as
pointers to the hypotheses, or known messages. Names are excluded from recipes:
names that are known to the attacker must be given explicitly as hypotheses.

Example 2. Given enc(a, b) and b, the recipe ζ = dec(ax 1, ax 2) is a witness of
how to deduce a: ζ{ax 1 �→ enc(a, b); ax 2 �→ b}↓ = a.

The recipes are generalized, including possibly variables that range over
recipes: (general) recipes are terms built on C,D,AX and Xr, a set of recipe
variables, that are written using capital letters X,X1, X2, . . ..

We denote by var(u) is the set of variables of any kind that occur in u.

2.2 Frames

The frame records the messages that have been sent by the participants of
the protocol; it is a symbolic representation of a set of sequences of messages.
The frame is also extended to record some additional informations on attacker’s
deductions. Typically dec(X, ζ), i � u records that, using a decryption with the
recipe ζ, on top of a recipe X, allows to get u (at stage i). After recording this
information in the frame, we may forbid the attacker to use a decryption on top
of X, forcing him to use this “direct access” from the frame.

Definition 1. A frame φ is a sequence ζ1, i1�u1, . . . , ζn, in�un where u1, . . . , un

are constructor terms, i1, . . . , in ∈ N, and ζ1, . . . , ζn are general recipes. The
domain of the frame φ, denoted dom(φ), is the set {ζ1, . . . , ζn} ∩ AX . It must
be equal to {ax 1, . . . , axm} for some m that is called the size of φ. A frame is
closed when u1, . . . , un are ground terms and ζ1, . . . , ζn are ground recipes.

Example 3. The messages of Example 1 are recorded in a frame of size 4.

{ax 1, 1 � a, ax 2, 2 � b, ax 3, 3 � enc(na, kab), ax 4, 4 � enc(f(x), kab)}.

A frame φ defines a substitution {ax �→ u | ax ∈ dom(φ), ax � u ∈ φ}. A
closed frame is consistent if, for every ζ � u ∈ φ, we have that ζφ↓ = u.
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2.3 Deducibility constraints

The following definitions are consistent with [12]. We generalize however the
usual definition, including equations between recipes, for example, in order to
keep track of some choices in our algorithm.

Definition 2. A deducibility constraint (sometimes called simply constraint in
what follows) is either ⊥ or consists of:

1. a subset S of X (the free variables of the constraint);
2. a frame φ, whose size is some m;

3. a sequence X1, i1
?
� u1; . . . ; Xn, in

?
� un where

– X1, . . . ,Xn are distinct variables in Xr, u1, . . . , un are constructor terms,
and 0 ≤ i1 ≤ . . . ≤ in ≤ m.

– for every 0 ≤ k ≤ m, var(axkφ) ⊆
�

ij<k var(uj);
4. a conjunction E of equations and disequations between terms;
5. a conjunction E� of equations and disequations between recipes.

The variables Xi represent the recipes that might be used to deduce the
right hand side of the deducibility constraint. The indices indicate which initial
segment of the frame can be used. We use this indirect representation, instead of
the seemingly simpler notation of Example 1, because the transformation rules
that will change the frame don’t need then to be reproduced on all relevant left
sides of deducibility constraints.

Example 4. Back to Example 1, the deducibility constraint is formally given by
S = {x, y}, E = E� = ∅, the frame φ as in Example 3 and the sequence:

D = X1, 3
?
� enc(x, kab); X2, 4

?
� enc(f(na), kab).

For sake of simplicity, in what follows, we will forget about the first compo-
nent (the free variables). This is justified by an invariant of our transformation
rules: initially all variables are free and each time new variables are introduced,
their assignment is determined by an assignment of the free variables.

Definition 3. A solution of a deducibility constraint C = (φ, D, E,E�) consists
of a mapping σ from variables to ground constructor terms and a substitution θ
mapping Xr to ground recipes, such that:

– for every ζ, i � u ∈ φ, var(ζθ) ⊆ {ax 1, . . . , ax i} and ζθ(φσ)↓ = uσ↓ (i.e. the
frame is consistent after instanciating the variables);

– for every Xi, j
?
� ui in D, var(Xiθ) ⊆ {ax 1, . . . , ax j} and Xiθ(φσ)↓ = uiσ↓;

– for every equation u
?= v (resp. u

?
�= v) in E, uσ↓ = vσ↓ (resp. uσ↓ �= vσ↓);

– for every equation ζ
?= ζ � (resp. ζ

?
�= ζ �) in E�, ζθ = ζ �θ (resp. ζθ �= ζ �θ).

Sol(C) is the set of solutions of C. By convention, Sol(⊥) = ∅.
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Example 5. Coming back to Example 4, a solution is (σ, θ) with:
– σ = {x �→ na, y �→ �a, enc(na, kab)�}, and
– θ = {X1 �→ ax 3, X2 �→ ax 4, X3 �→ �ax 1, ax 3�}.

Each solution of a constraint corresponds to a possible execution of the pro-
tocol, together with the attacker’s actions that yield this execution. For instance

an attack on the confidentiality of a term s can be modeled by adding X,m
?
� s

to the constraint system (X is a fresh variable and m is the size of the frame).
This represents the derivability of s from the messages sent so far. Note that
there might be several attacker’s recipes yielding the same trace.

Example 6. Consider another very simple example: the Encrypted Password
Transmission protocol [13], which is informally described by the rules:

A → B : �NA, pub(KA)�
B → A : aenc(�NA, P �, pub(KA))

Assume that a first sends a message whereas b is waiting for a message of
the form �x, pub(ka)�. Then b responds by sending aenc(�x, p�, pub(ka)). The
corresponding deducibility constraint is (S, φ,D, E, E�) where S = {x, y}, E =
E� = ∅, and the sequences φ and D are as follows:

φ =






ax 1, 1 � pub(ka); ax 2, 2 � pub(kb);
ax 3, 3 � �na, pub(ka)�;
ax 4, 4 � aenc(�x, p�, pub(ka))

D =





X1, 3

?
� �x, pub(ka)�

X2, 4
?
� aenc(�na, y�, pub(ka))

There are several solutions. For instance, the “honest solution” (σh, θh) is
given by σh = {x �→ na, y �→ p} and θh = {X1 �→ ax 3, X2 �→ ax 4}. Another solu-
tion is (σ, θ) where σ = {x �→ pub(ka), y �→ na} and θ = {X1 �→ �ax 1, ax 1�, X2 �→
aenc(�proj1(ax 3), proj1(ax 3)�, ax 1)}.

2.4 Static equivalence

Two sequences of terms are statically equivalent if, whatever an attacker observes
on the first sequence, the same observation holds on the second sequence [2]:
Definition 4. Two closed frames φ and φ� having the same size m are statically
equivalent, which we write φ ∼s φ�, if
1. for any ground recipe ζ such that var(ζ) ⊆ {ax 1, . . . , axm}, we have that

ζφ↓ is a constructor term if, and only if, ζφ�↓ is a constructor term
2. for any ground recipes ζ, ζ � such that var({ζ, ζ �}) ⊆ {ax 1, . . . , axm}, and the

terms ζφ↓, ζ �φ↓ are constructor terms, we have that
ζφ↓ = ζ �φ↓ if, and only, if ζφ�↓ = ζ �φ�↓.

Example 7. Consider the frames φ1 = {ax 1 � a, ax 2 � enc(a, b), ax 3 � b} and φ2 =
{ax 1 � a, ax 2 � enc(c, b), ax 3 � b}. φ1 �∼s φ2 since choosing ζ = dec(ax 2, ax 3) and
ζ � = ax 1 yields ζφ1↓ = ζ �φ1↓ = a while ζφ2↓ �= ζ �φ2↓.

On the other hand, {ax 1 �a, ax 2 �enc(a, b)} ∼s {ax 1 �a, ax 2 �enc(c, b)} since,
intuitively, there is no way to open the ciphertexts or to construct them, hence
no information on the content may leak.
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2.5 Symbolic equivalence

Now we wish to check static equivalence on any possible trace. This is captured
by the following definition:

Definition 5. Let C and C � be two constraints whose corresponding frames
are φ and φ�. C is symbolically equivalent to C �, C ≈s C �, if:
- for all (θ, σ) ∈ Sol(C), there exists σ� such that (θ, σ�) ∈ Sol(C �), and φσ ∼s φ�σ�,
- for all (θ, σ�) ∈ Sol(C �), there exists σ such that (θ, σ) ∈ Sol(C), and φσ ∼s φ�σ�.

Example 8. As explained for instance in [3], the security of the handshake pro-
tocol against offline guessing attacks can be modeled as an equivalence property
between two samples of the protocol instance, one in which, at the end of the
protocol, the key is revealed and the other in which a random number is revealed
instead. This amounts to check the symbolic equivalence of the two constraints:

– C1 = (φ ∪ {ax 5, 5 � kab}, D ∪ {X3, 5
?
� y}, ∅, ∅), and

– C2 = (φ ∪ {ax 5, 5 � k}, D ∪ {X3, 5
?
� y}, ∅, ∅)

where D is as in Example 4 and φ is as in Example 3.
The constraints C1 and C2 are not symbolically equivalent: considering the

assignment σ = {x �→ na, y �→ na}, there is a recipe X3θ = dec(ax 3, ax 5)
yielding this solution, while any solution σ� of C2 maps x to na and, if X3θ =
dec(ax 3, ax 5), we must have yσ�↓ = dec(enc(na, kab), k), which is not possible
since this is not a constructor term.

Any trace equivalence problem can be expressed as an instance of the equiv-
alence of an initial pair of constraints, that is a pair of the form (φ1, D1, E1, E�

1),
(φ2, D2, E2, E�

2) in which:

– E�
1 = E�

2 = ∅, and E1, E2 only contain equations;

– φ1 = {ax 1, 1 � u1, . . . , axm, m � um}, and D1 = X1, i1
?
� s1; . . . ; Xn, in

?
� sn;

– φ2 = {ax 1, 1 � v1, . . . , axm.m � vm}, and D2 = X1, i1
?
� t1; . . . ; Xn, in

?
� tn.

Or else it is a pair as above, in which one of the components is replaced with ⊥.
In particular, the number of components in the frame and in the deducibility

part are respectively identical in the two constraints, when none of them is ⊥.
This will be an invariant in all our transformation rules. Hence we will always
assume this without further mention. This is unchanged by the transformations,
unless the constraint becomes ⊥. We keep the notation m for the size of the
frames. Finally, the consistency of the frame after instanciation (the first condi-
tion of Definition 3) is satisfied for all solutions of initial constraints and is again
an invariant, hence we will not care of this condition.

As explained in [14], such initial constraints are sufficient for our applications.
The case where one of the component is ⊥ solves the satisfiability problem for the
constraint: the constraint solving procedure of [12] solves this specific instance.
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3 Transformation rules

The main result of this paper is a decision procedure for symbolic equivalence
of an initial pair of constraints:

Theorem 1. Given an initial pair (C, C �), it is decidable whether C ≈s C �.

This result in itself is already known (e.g. [3, 9]), but, as claimed in the intro-
duction, the known algorithms cannot yield any reasonable implementation. We
propose here a new algorithm/proof, which is implemented. As pointed in [14],
this yields a decision algorithm for the observational equivalence of simple pro-
cesses without replication nor else branch. The class of simple processes captures
most existing protocols.

The decision algorithm works by rewriting pairs of constraints, until a trivial
failure or a trivial success is found. These rules are branching: they rewrite
a pair of constraints into two pairs of constraints. Transforming the pairs of
constraints therefore builds a binary tree. Termination requires to keep track
of some information, that is recorded using flags, which we describe first. In
Section 4, we show that the tree is then finite: the rules are terminating. The
transformation rules are also correct: if all leaves are success leaves, then the
original pair of constraints is equivalent. They are finally complete: if the two
original constraints are equivalent then any of two pairs of constraints resulting
from a rewriting steps are also equivalent.

3.1 Flags

The flags are additional constraints that restrict the recipes. We list them here,
together with (a sketch of) their semantics.

Constraints X, i
?
�F u may be indexed with a set F consisting of propositions

NoConsf where f is a constructor. Any solution (θ, σ) such that Xθ is headed
with f is then excluded. Expressions ζ, j �F u in a frame are indexed with a set F
consisting of:

– NoConsf (as above) discards the solutions (θ, σ) such that a subterm of a
recipe allows to deduce uσ using f as a last step.

– NoDestf (i) where f is a destructor and i ≤ m discards the solutions (θ, σ)

such that there exists X, j
?
� v with j ≤ i and ζ �

2, . . . , ζ
�
n where f(ζθ, ζ �

2, . . . , ζ
�
n)

occurs as a subterm in Xθ, unless we use a shortcut explicitly given in the
frame.

– NoUse. The corresponding elements of the frame cannot be used in any recipe,
and avoids shifting the indices.

3.2 The rules

The rules are displayed in Figure 1 for single constraints. We explain in Sec-
tion 3.3 how they are applied to pairs of constraints (an essential feature of our
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algorithm). A simple idea would be to guess the top function symbol of a recipe
and replace the recipe variable with the corresponding instance. When the head
symbol of a recipe is a constructor and the corresponding term is not a variable,
this is nice, since the constraint becomes simpler. This is the purpose of the rule
Cons. When the top symbol of a recipe is a destructor, the constraint becomes
more complex, introducing new terms, which yields non-termination.

Our strategy is different for destructors: we switch roughly from the top
position of the recipe to the redex position. Typically, in case of symmetric en-
cryption, if a ciphertext is in the frame, we will guess whether the decryption
key is deducible, and at which stage.

The Cons rule simply guesses whether the top symbol of the recipe is a
constructor f . Either it is, and then we can split the constraint, or it is not and
we add a flag forbidding this. The rule Axiom also guesses whether a trivial
recipe can be applied. If so, the constraint can simply be removed. Otherwise,
it means that the right-hand-side of the deducibility constraint is different from
the members of the frame. The Dest rule is more tricky. If v is a non-variable
member of the frame, that can be unified with a non variable subterm of a left
side of a rewrite rule (for instance v is a ciphertext), we guess whether the rule
can be applied to v. This corresponds to the equation u1

?= v, that yields an
instance of w, the right member of the rewrite rule, provided that the rest of

the left member is also deducible: we get constraints X2, i
?
� u2; . . . ;Xn, i

?
� un.

The flag NoDest is added in any case to the frame, since we either already
applied the destructor, and this application result is now recorded in the frame
by f(ζ,X2, . . . ,Xn), i �w, or else it is assumed that f applied to v will not yield
a redex.

The remaining rules cover the comparisons that an attacker could perform
at various stages. The equality rules guess equalities between right sides of de-
ducibility constraints and/or members of the frame. If a member of the frame is
deducible at an early stage, then this message does not bring any new informa-
tion to the attacker: it becomes useless, hence the NoUse flag.

Finally, the last rule is the only rule that is needed to get in addition a static
equivalence decision algorithm, as in [1]. Thanks to this rule, if a subterm of the
frame is deducible, then there will be a branch in which it is deduced.

3.3 How to use the transformation rules

In the previous section we gave rules that apply on a single constraint. We explain
here how they are extended to pairs of constraints. If one of the constraint is ⊥,
then we proceed as if there was a single constraint. Otherwise, the indices i
(resp. i1, i2) and the recipes X, ζ (resp. X1, X2, ζ1, ζ2) matching the left side of
the rules must be identical in both constraints: we apply the rules at the same
positions in both constraints.

We have to explain now what happens when, on a given pair (C, C �) a rule
can be applied on C and not on C � (or the converse).
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Cons : X, i
?

�F f(t1, . . . , tn) ✘✘✘✘✿
③

X1, i
?

�F t1; · · · ; Xn, i
?

�F tn; X
?
= f(X1, . . . , Xn)

X, i
?

�F+NoConsf f(t1, . . . , tn)
If NoConsf /∈ F and X1, . . . Xn are fresh variables.

Axiom : X, i
?

�F v ✘✘✘✘✿
③

u
?
= v; X

?
= ζ

X, i
?

�F v; X
?

�= ζ
If v �∈ X , φ contains ζ, j �G u with NoUse /∈ G, and i ≥ j.

Dest : ζ, y �G v ✘✘✘✘✿
③

X2, i
?

� u2; · · · ; Xn, i
?

� un; u1
?
= v; ζ, j �G+NoDestf (m) v;

f(ζ, X2, . . . , Xn), i � w

ζ, j �G+NoDestf (i) v
If v /∈ X , NoUse /∈ G, there is a rewrite rule f(u1, . . . , un) → w, k < i whenever

NoDestf (k) ∈ G and i is minimal such that j ≤ i and there is some constraint X, i
?

� w
(i = m if there is no such constraint).

Eq-left-left : ζ1, i1 �F1 u1; ζ2, i2 �F2 u2 ✘✘✘✘✿
③

ζ1, i1 �F1 u1; ζ2, i2 �F2 u1; u1
?
= u2

ζ1, i1 �F1 u1; ζ2, i2 �F2 u2; u1

?

�= u2If NoUse /∈ F1 ∪ F2 and i1 ≤ i2.

Eq-right-right : X2, i2
?

� u2 ✘✘✘✘✿
③

X1 = X2; u1
?
= u2

X2, i2
?

� u2; u1

?

�= u2

If X1, i1
?

� u1; and i1 ≤ i2.

Eq-left-right : ζ, j �G v ✘✘✘✘✿
③

ζ, j �G+NoUse u; u
?
= v

ζ, j �G v; u
?

�= v

If X, i
?

�F u;, NoUse /∈ G and j > i.

Ded-subterms : ζ, i �F f(u1, . . . , un) ✘✘✘✘✿
③

X1, m
?

� u1; · · · ; Xn, m
?

� un;
ζ, i �F+NoConsf u

ζ, i �F+NoConsf f(u1, . . . , un)
If NoConsf , NoUse /∈ F and X1, . . . , Xn are fresh variables.

All rules assume that the equations have a mgu and that this mgu is eagerly applied to

the resulting constraint without yielding any trivial disequation.

Fig. 1. Transformation rules
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Example 9. Let C = (φ, D, E,E�) and C � = (φ, D�, E, E�) where E = E� = ∅,

φ = ax 1, 1 � a, D = X, 1
?
� enc(x1, x2), and D� = X, 1

?
� x. The rule Cons can

be applied on C and not on C �. However, we have to consider solutions where
enc(x1, x2)σ and xσ� are both obtained by a construction. Hence, it is important
to enable this rule on both sides. For this, we first apply the substitution x �→
enc(y1, y2) where y1, y2 are fresh variables. This yields the two pairs of constraints
(C1, C �

1) and (C2, C �
2) (forgetting about equations):

– C1 = (φ, X1, 1
?
� x1;X2, 1

?
� x2) and C �

1 = (φ, X1, 1
?
� y1; X2, 1

?
� y2);

– C2 = (φ, X, 1
?
�NoConsenc enc(x1, x2)) and C �

2 = (φ, X, 1
?
�NoConsenc x).

Therefore, the rule Cons, (this is similar for Ded-subterms), when applied
to pairs of constraints comes in three versions: either the rule is applied on both

sides or, if X, i
?
� f(t1, . . . , tn) (resp. ζ � f(t1, . . . , tn)) is in C, and X, i

?
� x (resp.

ζ � x) is in C �, we may apply the rule on the pair of constraints, adding to C �

the equation x
?= f(x1, . . . , xn) where x1, . . . , xn are fresh variables. The third

version is obtained by switching C and C �. This may introduce new variables,
that yield a termination issue, which we discuss in Section 4.1. Similarly, the
rules Axiom and Dest assume that v /∈ X . This has to be satisfied by C or C �.
In case of the rule Dest, this means that the variables of the rewrite rule might
not be immediately eliminated: this may also introduce new variables. For the
rules Eq-left-left, Eq-right-right and Eq-left-right, we require that at
least one new non-trivial equality (or disequality) is added to one of the two
constraints (otherwise there is a trivial loop).

For all rules, if a rule is applicable on one constraint and not the other, we do
perform the transformation, however replacing a constraint with ⊥ when a con-
dition becomes false or meaningless. Furthermore, we also replace a constraint C
with ⊥ when:

– the rule Dest cannot be applied on C; and

– C contains a constraint X, i
?
� v such that v is not a variable and the rules

Cons and Axiom cannot be applied to it.

Altogether this yields a transformation relation (C, C �) → (C1, C �
1), (C2, C �

2)
on pairs of constraints: a node labeled (C, C �) has two sons, respectively la-
beled (C1, C �

1) and (C2, C �
2).

Our algorithm can be stated as follows:

– Construct, from an initial pair of constraints (C0, C �
0) a tree, by applying as

long as possible a transformation rule to a leaf of the tree.
– If, at some point, there is a leaf to which no rule is applicable and that is

labeled (C,⊥) or (⊥, C) where C �=⊥, then we stop with C0 �≈s C �
0.

– Otherwise, if the construction of the tree stops without reaching such a
failure, return C0 ≈s C �

0.
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Our algorithm can also be used to decide static equivalence of frames, as well
as the (un)satisfiability of a constraint. Furthermore, in case of failure, a witness
of the failure can be returned, using the equations of the non-⊥ constraint.

4 Correctness, completeness and termination

4.1 Termination

In general, the rules might not terminate, as shown by the following example:

Example 10. Consider the initial pair of contraints (C, C �) given below:

C =





a

?
� enc(x1, x2)

a, b
?
� x1

C � =





a

?
� y1

a, b
?
� enc(y1, y2)

We may indeed apply Cons yielding (on one branch):

C1 =






a
?
� x1

a
?
� x2

a, b
?
� x1

C �
1 =






a
?
� z1

a
?
� z2 and y1

?= enc(z1, z2)

a, b
?
� enc(enc(z1, z2), y2)

Then, again using Cons, we get back as a subproblem the original constraints.

Fortunately, there is a simple complete strategy that avoids this behavior, by
breaking the symmetry between the two constraints components. We assume in
the following that, applying

– Cons to (C, C �) where X, i
?
� x ∈ C and X, i

?
� f(t1, . . . , tn) ∈ C �,

– Ded-subterms to (C, C �) where ζ, j � x ∈ C and ζ, j � f(t1, . . . , tn) ∈ C �,

– Dest to (C, C �) where X, i
?
� u; ζ, j � x ∈ C and X, i

?
� u�; ζ, j � v� ∈ C �

are only allowed when no other rule can be applied.
There is however no such restriction, when we switch the elements of the pair.

If we come back to Example 10, we still apply the same transformation rule to
the pair (C, C �), but we cannot apply Cons to (C1, C �

1) since Eq-right-right
can be applied to the constraint C1, yielding a failure: C �≈s C �.

Lemma 1. With the above strategy, the transformation rules are terminating
on any initial pair of constraint systems.

Idea of the proof: as long as no new first-order variable is introduced, the set of
first-order terms appearing in the constraint is roughly bounded by the subterms
of the constraint. (This relies on the properties of the rewrite system). Loops
are then prevented by the flags. Now, because of the eager application of sub-
stitutions, the only cases in which new first-order variables are introduced are
the above cases of applications of Cons, Ded-subterms and Dest. Until new
variables are introduced in the right constraints, the above argument applies:
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the sequence of transformations is finite. Then, according to the strategy, when
new variables are introduced on the right constraint, no other rule may apply.
This implies that the left constraint (considered in isolation) is irreducible: it

is of the form X1, i1
?
� x1, . . . ,Xn, in

?
� xn, ... where x1, . . . xn are distinct vari-

ables (which we call a solved constraint). From this point onwards, the rules
Dest,Ded-subterms will never be applicable and therefore, no element will
be added to the frames. Then, either usable elements of the frames are strictly
decreasing (using a Eq-left-right) or else we preserve the property of be-
ing solved on the left. In the latter case, the first termination argument can be
applied to the right constraint.

4.2 Correctness

The transformation rules yield a finite tree labeled with pairs of constraints.

Lemma 2. If all leaves of a tree, whose root is labeled with (C0, C �
0) (a pair

of initial constraints), are labeled either with (⊥,⊥) or with some (C, C �) with
C �=⊥, C � �=⊥, then C0 ≈s C �

0.

The idea of the proof is to first analyse the structure of the leaves. We intro-
duce a restricted symbolic equivalence ≈r

s such that C ≈r
s C � for any leaf whose

two label components are distinct from ⊥. Roughly, this restricted equivalence
will only consider the recipes that satisfied the additional constraints induced
by the flags. Then we show that ≈r

s is preserved upwards in the tree: for any
transformation rule, if the two pairs of constraints labeling the sons of a node
are respectively in ≈r

s, then the same property holds for the father. Finally, ≈r
s

coincides with ≈s on the initial constraints (that contain no flag).

4.3 Completeness

We prove that the symbolic equivalence is preserved by the transformation rules,
which yields:

Lemma 3. If (C0, C �
0) is a pair of initial constraints such that C0 ≈s C �

0, then
all leaves of a tree, whose root is labeled with (C0, C �

0), are labeled either with
(⊥,⊥) or with some (C, C �) with C �=⊥ and C � �=⊥.

5 Implementation and experiments

An Ocaml implementation of an early version of the procedure described in this
paper, as well as several examples, are available at http://www.lsv.ens-cachan.
fr/∼cheval/programs/index.php (around 5000 lines of Ocaml). Our imple-
mentation closely follows the transformation rules that we described. For effi-
ciency reasons, a strategy on checking the rules applicability has been designed
in addition.
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We checked the implementation on examples of static equivalence problems,
on examples of satisfiability problems, and on symbolic equivalence problems
that come from actual protocols. On all examples the tool terminates in less
than a second (on a standard laptop). Note that the input of the algorithm
is a pair of constraints: checking the equivalence of protocols would require in
addition an interleaving step, that could be expensive.

We have run our tool on the following family of examples presented in [5]:

φn = {ax 1 � t0n, ax 2 � c0, ax 3 � c1} and φ�
n = {ax 1 � t1n, ax 2 � c0, ax 3 � c1}

where ti0 = ci and tin+1 = �enc(tin, ki
n), ki

n�, i ∈ {0, 1}. In these examples, the size
of the distinguishing tests increase exponentially while the sizes of the frames
grow linearly. As KiSs [10], our tool outperforms YAPA [4] on such examples.

For symbolic equivalences, we cannot compare with other tools (there is no
such tools); we simply tested the program on some home made benchmarks as
well as on the handshake protocol, several versions of the encrypted password
transmission protocol, the encrypted key exchange protocol [13], each for the
offline guessing attack property. We checked also the strong secrecy for the cor-
rected Dennin-Sacco key distribution protocol. Unfortunately we cannot (yet)
check anonymity properties for e-voting protocols, as we would need to consider
more cryptographic primitives.

6 Conclusion

We presented a new algorithm for deciding symbolic equivalence, which performs
well in practice. There is still some work to do for extending the results and the
tool. First, we use trace equivalence, which requires to consider all interleavings
of actions; for each such interleaving, a pair of constraints is generated, which is
given to our algorithm. This requires an expensive overhead (which is not imple-
mented), that might be unnecessary. Instead, we wish to extend our algorithm,
considering pairs of sets of constraints and use a symbolic bisimulation. This
looks feasible and would avoid the detour through trace equivalence. This would
also allow drop the determinacy assumption on the protocols and to compare
our method with ProVerif [7].

We considered only positive protocols; we wish to extend the algorithm to
non-positive protocols, allowing disequality constraints from the start. Finally,
we need to extend the method to other cryptographic primitives, typically blind
signatures and zero-knowledge proofs.

Acknowledgments. We wish to thank Sergiu Bursuc for fruitful discussions.
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