
Formalising security properties in electronic
voting protocols

Stéphanie Delaune and Steve Kremer

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

The results presented in this report are based on joint work with Mark Ryan and Ben
Smyth

Abstract. While electronic elections promise the possibility of conve-
nient, efficient and secure facilities for recording and tallying votes, recent
studies have highlighted inadequacies in implemented systems. These in-
adequacies provide additional motivation for applying formal methods
to the validation of electronic voting protocols.

In this paper we report on some of our recent efforts in using the ap-
plied pi calculus to model security properties of electronic elections. We
particularly focus on privacy and verifiability properties. Our definitions
allow us to specify and easily change which authorities are supposed to
be trustworthy and are compatible with a large class of electronic vot-
ing schemes, including those based on blind signatures, homomorphic
encryptions, and mixnets.

We distinguish three notions of privacy: vote-privacy, receipt-freeness and
coercion-resistance. These properties are expressed using observational
equivalence and we show in accordance with intuition that coercion-
resistance implies receipt-freeness which implies vote-privacy.

Concerning verifiability, we distinguish three aspects of verifiability, which
we call individual verifiability, universal verifiability, and eligibility veri-
fiability.

1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a conve-
nient, efficient and secure facility for recording and tallying votes. It can be used
for a variety of types of elections, from small committees or on-line communities
through to full-scale national elections. Electronic voting protocols are formal
protocols that specify the messages sent between the voters and administrators.
Such protocols have been studied for several decades. They offer the possibil-
ity of abstract analysis of the voting system against formally-stated properties.
Some properties commonly sought for voting protocols are the following:

– Eligibility : only legitimate voters can vote, and only once.
– Fairness: no early results can be obtained which could influence the remain-

ing voters.

– Vote-privacy : the fact that a particular voter voted in a particular way is
not revealed to anyone.

– Receipt-freeness: a voter does not gain any information (a receipt) which can
be used to prove to a coercer that she voted in a certain way.

– Coercion-resistance: a voter cannot cooperate with a coercer to prove to him
that she voted in a certain way.

– Individual verifiability: a voter can check that her own ballot is included in
the election’s bulletin board.

– Universal verifiability: anyone can check that the election outcome corre-
sponds to the ballots published on the bulletin board.

We identify another aspect that is sometimes included in universal verifiability.

– Eligibility verifiability: anyone can check that each vote in the election out-
come was cast by a registered voter and there is at most one vote per voter.

We explicitly distinguish eligibility verifiability as a distinct property.

Privacy properties. Vote-privacy, receipt-freeness, and coercion-resistance are
broadly privacy-type properties since they guarantee that the link between the
voter and her vote is not revealed by the protocol. The weakest of the three, called
vote-privacy, roughly states that the fact that a voter voted in a particular way
is not revealed to anyone. Receipt-freeness says that the voter does not obtain
any artefact (a “receipt”) which can be used later to prove to another party
how she voted. Such a receipt may be intentional or unintentional on the part
of the designer of the system. Unintentional receipts might include nonces or
keys which the voter is given during the protocol. Receipt-freeness is a stronger
property than privacy. Intuitively, privacy says that an attacker cannot discern
how a voter votes from any information that the voter necessarily reveals during
the course of the election. Receipt-freeness says the same thing even if the voter
voluntarily reveals additional information. Coercion-resistance is the third and
strongest of the three privacy properties. Again, it says that the link between a
voter and her vote cannot be established by an attacker, this time even if the
voter cooperates with the attacker during the election process. Such cooperation
can include giving to the attacker any data which she gets during the voting
process, and using data which the attacker provides in return.

Verifiability properties. A major difference with traditional paper based elections
is the lack of transparency. In paper elections it is often possible to observe
the whole process from ballot casting to tallying, and to rely on robustness
characteristics of the physical world (such as the impossibility of altering the
markings on a paper ballot sealed inside a locked ballot box). By comparison, it
is not possible to observe the electronic operations performed on data. Computer
systems may alter voting records in a way that cannot be detected by either
voters or election observers. A voting terminal’s software might be infected by
malware which could change the entered vote, or even execute a completely

2

different protocol than the one expected. The situation can be described as
voting on Satan’s computer, analogously with [6].

The concept of election or end-to-end verifiability that has emerged in the
academic literature, e.g., [11, 12, 8, 5, 14, 4], aims to address this problem. It
should allow voters and election observers to verify, independently of the hard-
ware and software running the election, that votes have been recorded, tallied
and declared correctly.

Verifying electronic voting protocols. As it is often done in protocol analysis,
we assume the Dolev-Yao abstraction: cryptographic primitives are assumed to
work perfectly, and the attacker controls the public channels. The attacker can
see, intercept and insert messages on public channels, but can only encrypt,
decrypt, sign messages or perform other cryptographic operations if he has the
relevant key. In general, we assume that the attacker also controls the election
officials, since the protocols we investigate are supposed to be resistant even if
the officials are corrupt. Some of the protocols explicitly require a trusted device,
such as a smart card; we do not assume that the attacker controls those devices.

Our contributions. In this paper we report on some of our recent efforts in using
the applied pi calculus to model security properties of electronic elections. We
use the applied pi calculus as our basic modelling formalism [2], which has the
advantages of being based on well-understood concepts. The applied pi calculus
has a family of proof techniques which we can use, and it is partly supported
by the ProVerif tool [7]. Moreover, the applied pi calculus allows us to reason
about equational theories in order to model the wide variety of cryptographic
primitives often used in voting protocols. We recall the basic ideas and concepts
of the applied pi calculus in Section 2. We propose definitions for privacy-type
properties and verifiability properties. Our definitions allow us to specify and
easily change which authorities are supposed to be trustworthy and are com-
patible with a large class of electronic voting schemes, including those based on
blind signatures, homomorphic encryptions, and mixnets. Section 3 is devoted to
privacy-type properties. We omit the formalisation of coercion-resistance. Our
goal is to give the flavour of our work without going into great details. We present
our symbolic definition of election verifiability in Section 4.

This paper summarises a paper that has been recently published [9] and
another one currently being submitted [13]. In this report, we intend to give the
flavour of our work without going into great detail.

2 The applied pi calculus

The applied pi calculus [2] is a language for describing concurrent processes and
their interactions. It is based on an earlier language called the pi calculus, which
has enjoyed a lot of attention from computer scientists over the last decades
because of its simplicity and mathematical elegance. The applied pi calculus is
intended to be much richer than the pi calculus, while keeping its mathematical

3

rigour, and is therefore more convenient to use in real applications. The applied
pi calculus is similar to another pi calculus derivative called the spi calculus [3],
but the spi calculus has a fixed set of primitives built-in (symmetric and public-
key encryption), while the applied pi calculus allows one to define a wide class of
primitives by means of an equational theory. This is useful in electronic voting
protocols, where the cryptography is often sophisticated and purpose-built. The
applied pi calculus has been used to study a variety of security protocols, such
as a private authentication protocol [10] or a key establishment protocol [1].

2.1 Syntax and informal semantics

Messages. To describe processes in the applied pi calculus, one starts with a
infinite set of names (which are used to name communication channels or other
atomic data), an infinite set of variables, and a signature Σ which consists of
the function symbols which will be used to define terms. In the case of secu-
rity protocols, typical function symbols will include enc for encryption, which
takes plaintext and a key and returns the corresponding ciphertext, and dec
for decryption, taking ciphertext and a key and returning the plaintext. Terms
are defined as names, variables, and function symbols applied to other terms.
Terms and function symbols are sorted, and of course function symbol appli-
cation must respect sorts and arities. When the set of variables occurring in a
term T is empty, we say that T is ground.

Example 1. Let Σ = {enc, dec}, where enc and dec are each of arity 2. Suppose
a, b, c are names (perhaps representing some bitstring constants or keys), and
x, y, z are variables. Then enc(a, b) is a ground term (which represents the en-
cryption of a using the key b). The term dec(enc(a, b), y) is also a term (but not
a ground term), representing the decryption by y of the result of encrypting a
with b. The symbols enc and dec may be nested arbitrarily.

By the means of an equational theory E we describe the equations which
hold on terms built from the signature. We denote =E the equivalence relation
induced by E. Two terms are related by =E only if that fact can be derived from
the equations in E.

Example 2. A typical example of an equational theory useful for cryptographic
protocols is dec(enc(x, y), y) = x. In this equational theory, we have that the
terms T1 := dec(enc(enc(n, k), k′), k′) and T2 := enc(n, k) are equal, i.e. T1 =E T2,
while obviously the syntactic equality T1 = T2 does not hold.

Equational theories are the means by which we represent cryptographic op-
erations. We do not model the mechanisms (whether bitstring manipulation or
numerical calculation) that constitute the cryptographic operations. Rather, we
model the behaviour they are designed to exhibit. Thus, stipulating the equa-
tion dec(enc(x, y), y) = x models symmetric encryption. In the model terms are
unequal unless they can be proved equal by the equations. This means that the

4

only way of recovering x from enc(x, y) is by the application of dec(·, y) (and in
particular, the agent that makes that application is required to know the key y).

If M and N are terms, then the pair (M,N) is a term, and from it may be
extracted the components M and N . Formally, this requires us to introduce the
binary “pairing” function (·, ·) and the projection functions proj1 and proj2, but
usually we don’t bother with that and keep the equational theory for pairs (and
tuples of any finite length) implicit.

Processes. In order to model the dynamic part of protocols, we require pro-
cesses. In applied pi, there are two kinds of processes, namely plain processes,
denoted by P , Q, R and extended processes, denoted by A, B, C. In the gram-
mar described below, M and N are terms, n is a name, x a variable and u is a
metavariable, standing either for a name or a variable.

P,Q,R := plain processes
0
in(u, x).P
out(u,N).P
if M = N then P else Q
P | Q
!P
νn.P

A,B,C := extended processes
P
A | B
νn.A
νx.A
{M/x}

The process 0 is the plain process that does nothing. The process in(u, x).P
waits to receive a message on the channel u, and then continues as P but with x
replaced by the received message. The process out(u,N).P outputs a term N on
the channel u, and then continues as P . The process if M = N then P else Q
runs as P if the ground terms M and N are equal in the equational theory, and
otherwise as Q. If there is no “else”, it means “else 0”. The process P | Q runs P
and Q in parallel. The process !P executes P some finite number of times. The
restriction νn is used to model the creation in a process of new random numbers
(e.g., nonces or key material), or of new private channels. The process νn.P is
the process that invents a new name n and continues as P .

Extended processes add active substitutions (the process {M/x}), restriction
on names νn, and restriction on variables νx. Active substitutions are the nota-
tion that is used to denote a process that has output a term. Consider the process
out(c,N).P , where c is a channel name, N is some term, and P is some continu-
ation process. If out(c,N).P is allowed to run in an environment, it will become
the process P | {N/x}, which means the process that can now run as P , and has
output the term N . We do not retain the name of the channel name c, but we
do give a handle name, here x, to the value that was output. The environment
may now refer to the term N as x.

The handle x is important when the environment cannot itself describe the
term that was output, except by referring to it as the term that was output
(i.e., by the handle x). Consider the process νk.out(c, enc(a, k)).P which cre-
ates a new key k and then outputs the name a encrypted with k. Here, a

5

is a “free name” (modelling some well-known value) rather than a restricted
name (like k) that was created by the process using the ν operator. The process
νk.out(c, enc(a, k)).P can output the term on the channel c, resulting in the pro-
cess νk.(P | {enc(a,k)/x}). In this process, the environment has the term enc(a, k),
but it doesn’t have k since the process hasn’t output k. The environment can
refer to the term enc(a, k) as x.

The syntax of extended processes also allows restriction νx on variables x.
The combination of νx and active substitutions generalise the familiar “let”
operator from many functional programming languages. We define “let x = M
in P” as an abbreviation of νx.({M/x} | P).

A process can perform an input and then test the value of the input for
equality (modulo E) with some other term; for example, in(u, x). if x = M
then P . Suppose that after checking the input the process makes no further use
it (i.e., x does not occur in P). This idiom is quite common, so we abbreviate it
as in(u, =M).P .

An evaluation context C[] is an extended process with a hole instead of
an extended process; this is useful for describing part (e.g. the beginning) of a
process, while leaving the hole to represent the other part that will be filled in
later. Names and variables have scopes, which are delimited by restrictions νx
and νn, and by inputs in(u, x). We write fv(A), bv(A), fn(A) and bn(A) for the
sets of free and bound variables and free and bound names of A, respectively.
We also stipulate that, in an extended process, there is at most one substitution
for each variable, and there is exactly one when the variable is restricted. We say
that an extended process is closed if all its variables are either bound or defined
by an active substitution.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by
structural rules defining two relations: structural equivalence, noted ≡, and in-
ternal reduction, noted →.

Structural equivalence takes account of the fact that the syntax of processes nec-
essarily makes distinctions that are not important. For example, P | Q looks
different from Q | P but that difference is purely syntactic, and not important,
so we say that P | Q and Q | P are structurally equivalent. Formally, structural
equivalence is the smallest equivalence relation ≡ on extended processes that is
closed under α-conversion on names and variables (that is, renaming a bound
name or variable), application of evaluation contexts, and some other standard
rules such as associativity and commutativity of the parallel operator and com-
mutativity of the bindings. In addition the following three rules are related to
active substitutions and equational theories.

νx.{M/x} ≡ 0
{M/x} | A ≡ {M/x} | (A{M/x})
{M/x} ≡ {N/x} if M =E N

6

where, in the second equivalence, A{M/x} means A but with free occurrences
of x replaced by M . Note the absence of the |. In A{M/x}, the substitution is
not an active substitution, but a normal “metasyntactic” substitution; it tells
the reader to perform the substitution.

Example 3. Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by sending it on c1.
The second receives a message on c1, uses the secret key k to decrypt it, and
forwards the resulting plaintext on c2. The process P is structurally equivalent
to the following extended process A:

A = νs, k, x1.
(
out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1}

)
.

Internal reduction is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts such that

(Comm) out(a, x).P | in(a, x).Q → P | Q
(Then) if M = M then P else Q → P
(Else) if M = N then P else Q → Q

for any ground terms M and N such that M 6=E N .

This definition looks more restrictive than it is, thanks to structural equiva-
lence. It is straightforward to prove that out(a,M).P | in(a, x).Q→ P | Q{M/x}
and if M = N then P else Q → P in the case that M =E N .

The applied pi calculus has another kind of transition operation, called la-
belled reduction, denoted α−→, where α is a label. We don’t define that formally
here, but refer the reader to our full paper [9] or the applied pi calculus pa-
per [2]. We write =⇒ for (→∗ α−→→∗)∗, that is, the reflexive transitive closure of
the labelled reduction.

2.3 Observational equivalence

Now we are able to define observational equivalence. This relation is important
to understand how properties are defined in applied pi calculus. We write A ⇓ a
when A can send a message on a, that is, when A→∗ C[out(a,M).P] for some
evaluation context C[] that does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R
between closed extended processes with the same domain such that A R B im-
plies:

1. if A ⇓ a, then B ⇓ a;
2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C[].

7

Intuitively, two processes are observationally equivalent if they cannot be
distinguished by any active attacker represented by any context.

Example 4. Let E be the theory defined by the axiom dec(enc(x, y), y) = x.
Consider the processes P0 = out(c, enc(s0, k)) and Q0 = out(c, enc(s1, k)). We
have that νk.P0 ≈ νk.Q0; intuitively, the attacker cannot distinguish between
the encryption of two known values s0 and s1 where the encryption is by a
secret key. Technically, there is no context C that, given these processes, can
distinguish them, e.g., by taking some observable action in the case of P0 but
not in the case of Q0. If the key k is available to the attacker, of course the
situation changes. We have P0 6≈ Q0, since the context

C[] = in(c, x). if dec(x, k) = s0 then out(c, “Found s0!”) |

distinguishes P0 and Q0.

Observational equivalence can be used to formalise many interesting security
properties, in particular anonymity properties, such as those studied in this paper
(see Section 3).

3 Formalising privacy-type properties

Before formalising security properties, we need to define what is an electronic
voting protocol in applied pi calculus. Then, we show how the anonymity prop-
erties, informally described in the introduction, can be formalised in our setting.
Actually, it is rather classical to formalise anonymity properties as some kind
of observational equivalence in a process algebra or calculus, going back to the
work of Schneider and Sidiropoulos [15]. However, the definition of anonymity
properties in the context of voting protocols is rather subtle.

3.1 Formalising voting protocols

Different voting protocols often have substantial differences. However, we believe
that a large class of voting protocols can be represented by processes correspond-
ing to the following structure.

Definition 2 (Voting process). A voting process is a closed plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

V is the template voter process, and the V σi are the actual voter processes (the
substitution σi provides the voter’s identity). The Ajs are the election authorities
that are required to be honest and the ñ are channel names. We also suppose that
v ∈ dom(σi) is a variable which refers to the value of the vote. We define an
evaluation context S which is as VP, but has a hole instead of two of the V σi.

8

In order to prove a given property, we may require some of the authorities
to be honest, while other authorities may be assumed to be corrupted by the
attacker. The processes A1, . . . , Am represent the authorities which are required
to be honest. The authorities under control of the attacker need not be modelled,
since we consider any possible behaviour for the attacker (and therefore any
possible behaviour for corrupt authorities). This arrangement implies that we
consider only one attacker; to put in another way, we consider that all dishonest
parties and attackers share information and trust each other, thus forming a
single coalition. This arrangement does not allow us to consider attackers that
do not share information with each other.

3.2 Vote-privacy

The privacy property aims to guarantee that the link between a given voter V
and his vote v remains hidden. While generally most security properties should
hold against an arbitrary number of dishonest participants, arbitrary coalitions
do not make sense here. Consider for instance the case where all but one voter
are dishonest: as the results of the vote are published at the end, the dishonest
voter can collude and determine the vote of the honest voter. A classical device
for modelling anonymity is to ask whether two processes, one in which VA votes
and one in which VB votes, are equivalent. However, such an equivalence does
not hold here as the voters’ identities are revealed (and they need to be revealed
at least to the administrator to verify eligibility). In a similar way, an equivalence
of two processes where only the vote is changed does not hold, because the votes
are published at the end of the protocol. To ensure privacy we need to hide the
link between the voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that
at least two voters are honest. We denote the voters VA and VB and their
votes a and b. We say that a voting protocol respects privacy whenever a pro-
cess where VA votes a and VB votes b is observationally equivalent to a process
where VA votes b and VB votes a. Formally, privacy is defined as follows.

Definition 3. A voting protocol respects vote-privacy (or just privacy) if

S[VA{a/v} | VB{b/v}] ≈ S[VA{b/v} | VB{a/v}]

for all possible votes a and b.

The intuition is that if an intruder cannot detect if arbitrary honest voters VA
and VB swap their votes, then in general he cannot know anything about how VA
(or VB) voted. Note that this definition is robust even in situations where the
result of the election is such that the votes of VA and VB are necessarily revealed.
For example, if the vote is unanimous, or if all other voters reveal how they voted
and thus allow the votes of VA and VB to be deduced.

As already noted, in some protocols the vote-privacy property may hold even
if authorities are corrupt, while other protocols may require the authorities to
be honest. When proving privacy, we choose which authorities we want to model
as honest, by including them in Definition 2 of VP (and hence S).

9

3.3 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formalised as an observational
equivalence. However, we need to model the fact that VA is willing to provide
secret information, i.e., the receipt, to the coercer. We assume that the coercer
is in fact the attacker who, as usual in the Dolev-Yao model, controls the public
channels. To model VA’s communication with the coercer, we consider that VA
executes a voting process which has been modified: inputs and freshly generated
names of base type (i.e. not channel type) are forwarded to the coercer. We do
not forward restricted channel names, as these are used for modelling purposes,
such as physically secure channels, e.g. the voting booth, or the existence of a
PKI which securely distributes keys (the keys are forwarded but not the secret
channel name on which the keys are received).

Definition 4. Let P be a plain process and ch be a channel name. We define
the process P ch as follows:

– 0ch = 0,
– (P | Q)ch = P ch | Qch,
– (νn.P)ch = νn.out(ch, n).P ch when n is name of base type,
– (νn.P)ch = νn.P ch otherwise,
– (in(u, x).P)ch = in(u, x).out(ch, x).P ch when x is a variable of base type,
– (in(u, x).P)ch = in(u, x).P ch otherwise,
– (out(u,M).P)ch = out(u,M).P ch,
– (!P)ch = !P ch,
– (if M = N then P else Q)ch = if M = N then P ch else Qch.

In the remainder, we assume that ch 6∈ fn(P) ∪ bn(P) before applying the
transformation. Given an extended process A and a channel name ch, we need
to define the extended process A\out(ch,·). Intuitively, such a process is as the
process A, but hiding the outputs on the channel ch.

Definition 5. Let A be an extended process.

A\out(ch,·) =̂ νch.(A |!in(ch, x)).

We are now ready to define receipt-freeness. Intuitively, a protocol is receipt-
free if, for all voters VA, the process in which VA votes according to the intruder’s
wishes is indistinguishable from the one in which she votes something else. As in
the case of privacy, we express this as an observational equivalence to a process
in which VA swaps her vote with VB , in order to avoid the case in which the
intruder can distinguish the situations merely by counting the votes at the end.
Suppose the coercer’s desired vote is c. Then we define receipt-freeness as follows.

Definition 6 (Receipt-freeness). A voting protocol is receipt-free if there ex-
ists a closed plain process V ′ such that

– V ′\out(chc,·) ≈ VA{a/v},
– S[VA{c/v}chc | VB{a/v}] ≈ S[V ′ | VB{c/v}],

10

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities
that are assumed to be honest. V ′ is a process in which voter VA votes a but
communicates with the coercer C in order to feign cooperation with him. Thus,
the second equivalence says that the coercer cannot tell the difference between
a situation in which VA genuinely cooperates with him in order to cast the
vote c and one in which she pretends to cooperate but actually casts the vote a,
provided there is some counterbalancing voter that votes the other way around.
The first equivalence of the definition says that if one ignores the outputs V ′

makes on the coercer channel chc, then V ′ looks like a voter process VA voting a.
The first equivalence of the definition may be considered too strong. Infor-

mally, one might consider that the equivalence should be required only in a
particular S context rather than requiring it in any context (with access to all
the private channels of the protocol). This would result in a weaker definition,
although one which is more difficult to work with. In fact, the variant definition
would be only slightly weaker. It is hard to construct a natural example which
distinguishes the two possibilities, and in particular it makes no difference to the
case studies of later sections. Therefore, we prefer to stick to Definition 6.

Note that “receipt-freeness” does not preclude voting systems which give
some kind of receipt to the voter that cannot be used for proving how she voted.

Intuition suggests an implication relation between receipt-freeness and vote-
privacy, which indeed holds and is formally proved in [9]:

If a protocol is receipt free (for a given set of honest authorities), then it
also respects vote-privacy (for the same set).

4 Formalising verifiability properties

We present a definition of election verifiability which captures the three desirable
aspects: individual, universal and eligibility verifiability. We model voting pro-
tocols in the applied pi calculus and formalise verifiability as a triple of boolean
tests ΦIV , ΦUV , ΦEV which are required to satisfy several conditions on all pos-
sible executions of the protocol. ΦIV is intended to be checked by the individual
voter who instantiates the test with her private information (e.g., her vote and
data derived during the execution of the protocol) and the public information
available on the bulletin board. ΦUV and ΦEV can be checked by any external
observer and only rely on public information, i.e., the contents of the bulletin
board.

The consideration of eligibility verifiability is particularly interesting as it
provides an assurance that the election outcome corresponds to votes legitimately
cast and hence provides a mechanism to detect ballot stuffing. We note that this
property has been largely neglected in previous work and our earlier work [16]
only provided limited scope for.

11

A further interesting aspect of our work is the clear identification of which
parts of the voting system need to be trusted to achieve verifiability. As it is
not reasonable to assume voting systems behave correctly we only model the
parts of the protocol that we need to trust for the purpose of verifiability; all the
remaining parts of the system will be controlled by the adversarial environment.
Ideally, such a process would only model the interaction between a voter and the
voting terminal; that is, the messages input by the voter. In particular, the voter
should not need to trust the election hardware or software. However, achieving
absolute verifiability in this context is difficult and protocols often need to trust
some parts of the voting software or some administrators. Such trust assumptions
are motivated by the fact that parts of a protocol can be audited, or can be
executed in a distributed manner amongst several different election officials. For
instance, in Helios 2.0 [5], the ballot construction can be audited using a cast-
or-audit mechanism. Whether trust assumptions are reasonable depends on the
context of the given election, but our work makes them explicit.

Tests ΦIV , ΦUV and ΦEV are assumed to be verified in a trusted environment
(if a test is checked by malicious software that always evaluates the test to hold,
it is useless). However, the verification of these tests, unlike the election, can be
repeated on different machines, using different software, provided by different
stakeholders of the election. Another possibility to avoid this issue would be to
have tests which are human-verifiable as discussed in [4, Chapter 5].

4.1 Formalising voting protocols for verifiability properties

To model verifiability properties we add a record construct to the applied pi
calculus. We assume an infinite set of distinguished record variables r, r1,
The syntax of plain processes is extended by the construct rec(r,M).P . We
write rv(A) and rv(M) for the set of record variables in a process and a term.
Intuitively, the record message construct rec(r,M).P introduces the possibility
to enter special entries in frames. We suppose that the sort system ensures
that r is a variable of record sort, which may only be used as a first argument
of the rec construct or in the domain of the frame. Moreover, we make the
global assumption that a record variable has a unique occurrence in each process.
Intuitively, this construct will be used to allow a voter to privately record some
information which she may later use to verify the election.

As discussed in the introduction we want to explicitly specify the parts of
the election protocol which need to be trusted. Formally the trusted parts of the
voting protocol can be captured using a voting process specification.

Definition 7 (Voting process specification). A voting process specification
is a tuple 〈V,A〉 where V is a plain process without replication and A is a closed
evaluation context such that fv(V) = {v} and rv(V) = ∅.

For the purposes of individual verifiability the voter may rely on some data
derived during the protocol execution. We must therefore keep track of all such
values, which is achieved using the record construct (Definition 8).

12

Definition 8. Let rv be an infinite list of distinct record variables. We define
the function R on a finite process P without replication as R(P) = Rrv(P) and,
for all lists rv:

Rrv(0) =̂ 0
Rrv(P | Q) =̂ Rodd(rv)(P) | Reven(rv)(Q)
Rrv(νn.P) =̂ νn.rec(head(rv), n).Rtail(rv)(P)
Rrv(in(u, x).P) =̂ in(u, x).rec(head(rv), x).Rtail(rv)(P)
Rrv(out(u,M).P) =̂ out(u,M).Rrv(P)
Rrv(if M = N then P else Q) =̂ if M = N then Rrv(P) else Rrv(Q)

where the functions head and tail are the usual ones for lists, and odd (resp.
even) returns the list of elements in odd (resp. even) position.

In the above definition odd and even are used as a convenient way to split an
infinite list into two infinite lists. A voting process can now be constructed such
that the voter V records the values constructed and input during execution.

Definition 9. Given a voting process specification 〈V,A〉, integer n ∈ N, and
names s1, . . . , sn , we build the augmented voting process VP+

n (s1, . . . , sn) =
A[V +

1 | · · · | V +
n] where V +

i = R(V){si/v}{ri/r | r ∈ rv(R(V))}.

Given a sequence of record variables r̃, we denote by r̃i the sequence of vari-
ables obtained by indexing each variable in r̃ with i. The process VP+

n (s1, . . . , sn)
models the voting protocol for n voters casting votes s1, . . . , sn, who privately
record the data that may be needed for verification using record variables r̃i.

4.2 Election verifiability

We formalize election verifiability using three tests ΦIV , ΦUV , ΦEV . Formally,
a test is built from conjunctions and disjunctions of atomic tests of the form
(M =E N) where M,N are terms. Tests may contain variables and will need
to hold on frames arising from arbitrary protocol executions. We now recall the
purpose of each test and assume some naming conventions about variables.
Individual verifiability: The test ΦIV allows a voter to identify her ballot in the
bulletin board. The test has:

– a variable v referring to a voter’s vote.
– a variable w referring to a voter’s public credential.
– some variables x, x̄, x̂, . . . expected to refer to global public values pertaining

to the election, e.g., public keys belonging to election administrators.
– a variable y expected to refer to the voter’s ballot on the bulletin board.
– some record variables r1, . . . , rk referring to the voter’s private data.

Universal verifiability: The test ΦUV allows an observer to check that the election
outcome corresponds to the ballots in the bulletin board. The test has:

– a tuple of variables ṽ = (v1, . . . , vn) referring to the declared outcome.

13

– some variables x, x̄, x̂, . . . as above.
– a tuple ỹ = (y1, . . . , yn) expected to refer to all the voters’ ballots on the

bulletin board.
– some variables z, z̄, ẑ, . . . expected to refer to outputs generated during the

protocol used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ΦEV allows an observer to check that each ballot
in the bulletin board was cast by a unique registered voter. The test has:

– a tuple w̃ = (w1, . . . , wn) referring to public credentials of eligible voters.
– a tuple ỹ, variables x, x̄, x̂, . . . and variables z, z̄, ẑ, . . . as above.

Individual and universal verifiability. The tests suitable for the purposes
of election verifiability have to satisfy certain conditions: if the tests succeed,
then the data output by the election is indeed valid (soundness); and there is a
behaviour of the election authority which produces election data satisfying the
tests (effectiveness). Formally these requirements are captured by the definition
below. We write T̃ ' T̃ ′ to denote that the tuples T̃ and T̃ ′ are a permutation
of each others modulo the equational theory, that is, we have T̃ = T1, . . . Tn,
T̃ ′ = T ′1, . . . T

′
n and there exists a permutation χ on {1, . . . , n} such that for all

1 ≤ i ≤ n we have Ti =E T ′χ(i).

Definition 10 (Individual and universal verifiability). A voting specifi-
cation 〈V,A〉 satisfies individual and universal verifiability if for all n ∈ N
there exist tests ΦIV , ΦUV such that fn(ΦIV) = fn(ΦUV) = rv(ΦUV) = ∅,
rv(ΦIV) ⊆ rv(R(V)), and for all names s̃ = (s1, . . . , sn) the conditions below
hold. Let r̃ = rv(ΦIV) and ΦIVi = ΦIV {si/v,

r̃i /r̃}.

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)]

=⇒ B and φ(B) ≡ νñ.σ, we have:

∀i, j. ΦIVi σ ∧ ΦIVj σ ⇒ i = j (1)

ΦUV σ ∧ ΦUV {ṽ
′
/ṽ}σ ⇒ ṽσ ' ṽ′σ (2)∧

1≤i≤n

ΦIVi {yi/y}σ ∧ ΦUV σ ⇒ s̃ ' ṽσ (3)

Effectiveness. There exists a context C and a process B, such that C[VP+
n (s1, . . . ,

sn)] =⇒ B, φ(B) ≡ νñ.σ and∧
1≤i≤n

ΦIVi {yi/y}σ ∧ ΦUV σ (4)

An individual voter should verify that the test ΦIV holds when instantiated
with her vote si, the information r̃i recorded during the execution of the protocol
and some bulletin board entry. Indeed, Condition (1) ensures that the test will

14

hold for at most one bulletin board entry. (Note that ΦIVi and ΦIVj are evaluated
with the same ballot yσ provided by C[].) The fact that her ballot is counted
will be ensured by ΦUV which should also be tested by the voter. An observer
will instantiate the test ΦUV with the bulletin board entries ỹ and the declared
outcome ṽ. Condition (2) ensures the observer that ΦUV only holds for a single
outcome. Condition (3) ensures that if a bulletin board contains the ballots of
voters who voted s1, . . . , sn then ΦUV only holds if the declared outcome is (a
permutation of) these votes. Finally, Condition (4) ensures that there exists an
execution where the tests hold. In particular this allows us to verify whether the
protocol can satisfy the tests when executed as expected. This also avoids tests
which are always false and would make Conditions (1)-(3) vacuously hold.

Eligibility verifiability. To fully capture election verifiability, the tests ΦIV

and ΦUV must be supplemented by a test ΦEV that checks eligibility of the
voters whose votes have been counted. We suppose that the public credentials
of eligible voters appear on the bulletin board. ΦEV allows an observer to check
that only these individuals (that is, those in possession of credentials) cast votes,
and at most one vote each.

Definition 11 (Election verifiability). A voting specification 〈V,A〉 satisfies
election verifiability if for all n ∈ N there exist tests ΦIV , ΦUV , ΦEV such that
fn(ΦIV) = fn(ΦUV) = fn(ΦEV) = rv(ΦUV) = rv(ΦEV) = ∅, rv(ΦIV) ⊆ rv(R(V)),
and for all names s̃ = (s1, . . . , sn) we have:

1. The tests ΦIV and ΦUV satisfy each of the conditions of Definition 10;
2. The additional conditions 5, 6, 7 and 8 below hold.

Let r̃ = rv(ΦIV), ΦIVi = ΦIV {si/v,
r̃i /r̃,

yi /y}, X = fv(ΦEV)\ dom VP+
n (s1, . . . , sn)

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)]

=⇒ B and φ(B) ≡ νñ.σ, we have:

ΦEV σ ∧ ΦEV {x
′
/x | x ∈ X\ỹ}σ ⇒ w̃σ ' w̃′σ (5)∧

1≤i≤n

ΦIVi σ ∧ ΦEV {w̃
′
/w̃}σ ⇒ w̃σ ' w̃′σ (6)

ΦEV σ ∧ ΦEV {x
′
/x | x ∈ X\w̃}σ ⇒ ỹσ ' ỹ′σ (7)

Effectiveness. There exists a context C and a process B such that C[VP+
n (s1,

. . . , sn)] =⇒ B, φ(B) ≡ νñ.σ and∧
1≤i≤n

ΦIVi σ ∧ ΦUV σ ∧ ΦEV σ (8)

15

The test ΦEV is instantiated by an observer with the bulletin board. Condition
(5) ensures that, given a set of ballots ỹσ, provided by the environment, ΦEV

succeeds only for one list of voter public credentials. Condition (6) ensures that
if a bulletin board contains the ballots of voters with public credentials w̃σ then
ΦEV only holds on a permutation of these credentials. Condition (7) ensures
that, given a set of credentials w̃, only one set of bulletin board entries ỹ are
accepted by ΦEV (observe that for such a strong requirement to hold we expect
the voting specification’s frame to contain a public key, to root trust). Finally,
the effectiveness condition is similar to Condition (4) of Definition 10.

5 Conclusion

We have defined a framework for modelling cryptographic voting protocols in the
applied pi calculus, and shown how to express in it privacy-type properties and
verifiability properties. Within the framework, we can stipulate which parties
are assumed to be trustworthy in order to obtain the desired property. In [9, 13]
we investigated several protocols from the literature.

Regarding privacy-type properties we have stated the intuitive relationships
between the three privacy-type properties: for a fixed set of trusted authorities,
coercion-resistance implies receipt-freeness which implies vote-privacy. This is
proved in our full version [9].

Regarding verifiability, we present a symbolic definition of election verifia-
bility which allows us to precisely identify which parts of a voting system need
to be trusted for verifiability. We also consider eligibility verifiability, an aspect
of verifiability that is often neglected and satisfied by only a few protocols, but
nonetheless an essential mechanism to detect ballot stuffing.

References

1. Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi
calculus. In Proc. 13th European Symposium on Programming (ESOP’04), volume
2986 of LNCS, pages 340–354. Springer, 2004.

2. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In Proc. 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, London, UK, 2001. ACM.

3. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In Proc. 4th ACM Conference on Computer and Communications
Security (CCS’97), pages 36–47. ACM Press, 1997.

4. Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT, 2006.
5. Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the Seventeenth

Usenix Security Symposium, pages 335–348. USENIX Association, 2008.
6. Ross Anderson and Roger Needham. Programming Satan’s Computer. In Jan

van Leeuwen, editor, Computer Science Today: Recent Trends and Developments,
volume 1000 of LNCS, pages 426–440. Springer, 1995.

7. Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
82–96. IEEE Comp. Soc. Press, 2001.

16

8. David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical, voter-verifiable
election scheme. In Proc. 10th European Symposium On Research In Computer
Security (ESORICS’05), volume 3679 of LNCS, pages 118–139. Springer, 2005.

9. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Research report, Laboratoire Spécification
et Vérification, ENS Cachan, France, January 2008.

10. Cédric Fournet and Mart́ın Abadi. Hiding names: Private authentication in
the applied pi calculus. In Proc. International Symposium on Software Security
(ISSS’02), volume 2609 of LNCS, pages 317–338. Springer, 2003.

11. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Electronic
Elections. Cryptology ePrint Archive, Report 2002/165, 2002.

12. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In WPES ’05: Proceedings of the 2005 ACM workshop on Privacy in
the electronic society, pages 61–70, New York, NY, USA, 2005. ACM. See also
http://www.rsa.com/rsalabs/node.asp?id=2860.

13. Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic
voting protocols. Technical Report CSR-10-06, University of Birmingham, 2010.

14. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord.
http://www.dagstuhlaccord.org/, 2007.

15. Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. 4th
European Symposium On Research In Computer Security (ESORICS’96), volume
1146 of LNCS, pages 198–218. Springer, 1996.

16. Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards au-
tomatic analysis of election verifiability properties. In Joint Workshop on Auto-
mated Reasoning for Security Protocol Analysis and Issues in the Theory of Secu-
rity (ARSPA-WITS’10), Lecture Notes in Computer Science. Springer, 2010. To
appear.

17

