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Abstract. We propose an epistemic logic for the applied pi calculusciviis
a variant of the pi calculus with extensions for modelingptographic proto-
cols. In such a calculus, the security guarantees are ysstalled asequiva-
lences While process calculi provide a natural means to desclibeptotocols
themselvesgpistemic logicare often better suited for expressing certain security
properties such as secrecy and anonymity.

We intend to bridge the gap between these two approaches; ting set of traces
generated by a process as models, we define a logic which hagrwcts for
reasoning about both intruder’'s epistemic knowledge aedstt of messages
in possession of the intruder. As an example we consider éwadlizations of
privacy in electronic voting and study the relationshipaesn them.

1 Introduction

The applied pi calculus [2] is an extension of the pi calcudasigned for specifying
and verifying cryptographic protocols. The main differeritom the pi calculus is that
it allows one to manipulate complex data, instead of justemnihe data is gener-
ated by an arbitrary abstract term algebra and interpretetuio an equational theory.
This allows one to abstractly specify cryptographic fuoies. For instance the equa-
tion dec(enc(z, k), k) = 2 models that decryption cancels out encryption if the same
key k is used. As the calculus is parametrized by an arbitrarytesnad theory, several
complex cryptographic primitives have been convenientydeled in literature. For
example, blind signatures were modeled in [13] and norrdcteare zero-knowledge
proofs were modeled in [3]. This calculus has been succissfied to study a variety
of security protocols, e.g. the direct anonymous attestatiotocol [3], some electronic
voting protocols [13]. Moreover, there exists tool supgbttfor assisting the verifica-
tion of protocols in the applied pi calculus.

As argued above the applied pi calculus is a convenient aritlgeformalism for
describing the processes which model the protocol. Howeesurity properties are
more difficult to specify. Some properties may directly bedfied using observational
equivalence, but this is generally not very natural and earant. A more natural ap-
proach to verify protocols for correctness would be to dedisaitable logic interpreted
over the terms of the calculus and express the desired 8egaél in that logic.

Our main contribution is the definition of an epistemic lofiic the applied pi cal-
culus suitable for expressing important security goals Myic itself is an LTL like
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temporal logic with a special predicaktas that models deducibility of messages by
an intruder and an epistemic knowledge oper&tarhich allows us to reason about
the intruder'sepistemic knowledg®ther predicates of the logic are defineddwents
which annotate the protocol. Similar annotations haveadlyédeen used for specifying
authentication properties, initially by Woo and Lam [20damore specifically in the
applied pi calculus by Blanchet [6]. We emphasize here that@in motivation behind
designing this logic is to express important security gealdnotto study observational
equivalence. In particular, a Hennessy-Milner theorent mot hold: observationally
equivalent processes may satisfy different security goals

Epistemic logics, going back to the BAN logic [8], are weliited to express com-
plex security properties. At that time, the logic was usettison about authentication
protocols. However, epistemic knowledge is particuladgful when reasoning about
anonymity propertiesg(g, see [18]). Intuitively, an intruder (epistemically) knswhat
a propertygp is true, if ¢ is true on every run which is indistinguishable for the ideu
from the current one. In general epistemic logics this is ehedi by an arbitrary equiva-
lence relation on runs. In the context of security protooaigiivalence of runs is tightly
related to the cryptographic functions used: an intruddéckvtoes not know, should
regard the runs outputting respectivelyk (0, k) andenc(1, k) as equivalent. We for-
malize equivalence of runs by lifting the notion sthtic equivalencéo protocol runs.
We emphasize here that our logic contains the epistemic litpdaly for the intruder
and not for other participants. This is primarily becausegiocesses only keep track
of messages in possession of the intruder.

We illustrate the expressiveness of our logic by expresairamnge of security prop-
erties: secrecy, authentication as well as fairness irraoingigning protocols. We then
specifyprivacyin voting protocols, which relies on the epistemic knowledd the in-
truder. We show that a definition of vote privacy in terms afqass equivalence as de-
fined in [13] implies vote privacy in terms of epistemic logis defined in [4]. Then we
slightly weaken the equivalence based definition, reptacinservational equivalence
with trace equivalence. In that case, under reasonablengsiguns, we show that the
converse implication, i.e. epistemic privacy implies pdy as equivalence, also holds.
This result is important in that it clarifies the relationstietween two definitions of
privacy employed in the literature. Furthermore, the resuggests that trace equiva-
lence is more appropriate to model voter privacy even thalogervational equivalence
is convenient to use because of the available tool support.

For the rest of the paper we reserve the phrase “intrudedwlatge” for his epis-
temic knowledge. We use the word “intruder’s possessionthHe set of messages that
an intruder possesses (which is sometimes referred to agddaige in security).

2 The applied pi calculus
We present here the syntax and semantics of a slightly exdtiapplied pi calculus [2].
2.1 Syntax

The syntax of the applied pi-calculus assumes an ordeggsgdcabulary consisting of
a denumerable set mlamesof each sort, a denumerable setvafiablesof each sort



and asignature’ consisting of a finite set diunction symbolsvith their arity. The
details of the sort system are unimportant, as long as idiffase typesndchannel
types We always suppose that function symbols only operate orretodn terms of
base type. The grammar of the set of terms is defined as:

M,N,T := terms
a,by...,...k,m,n,... names
ToYy 2y variables
F(My, Ms, ... My) function application

Of course function symbol application must respect sortsaities. We shall use
u,v, ... to range over both names and variables. We writes (1') for the set of vari-
ables occurring if. T is said to be groundterm if vars(T) = 0.

Example 1.Let X = {enc/2,dec/2, pair/2, proj, /1, proj,/1} be a signature contain-
ing function symbols for encryption, decryption and paitieach of arity2, as well as
left and right projection symbols of arity. The termenc(a, k) is ground.

There are two kinds of processes in the applied pi calcutlsin processes built
up in a similar way to processes in the pi calculus exceptriegsages can contain
terms rather than just names, aextendedorocesses which adakctive substitutions
(explained below) and restriction on variables. Furtheemwe enrich plain processes
with non-deterministic choice and a set of evenis e. . . (parametrized by a sequence
of terms of the correct sort). These events are “annotdtiwhich are useful in for-
malizing security properties and (as we shall see later) ptapart in observational
equivalence. Extended processes are also enrichecewatht storeswhich record the
events that happen along an execution. We do not have répfida our calculus.

P,Q,R = plain processes A, B,C:= extended processes
0 null process P plain process
PlQ parallel composition A | B parallel composition
P+Q non-det. choice vn.A  name restriction
vn.P name restriction vx.A  variable restriction
if M = N thenP elseQ conditional {M/.} active substitution
in(u,z).P message input [e(M)] event store
out(u, N).P message output
e(]\7 ).P event

{M/ .} is the active substitution that replaces the variabigith the term/. Active
substitutions generalize the “let” construet:.({* /,} | P) corresponds exactly to “let
@ = M in P". An event storele(})] memorizes that the event) happened. As
usual, names and variables have scopes, which are delilmtedstrictions and by
inputs. Please note that the “event” construct is not a hindonstruct. We writgv (A),
bu(A), fn(A) andbn(A) for the sets ofreeandbound variablesandfree andbound
namesof A, respectively. We say that an extended procesosedif all its variables
are either bound or defined by an active substitutionefaluation context’[_] is an
extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to amegxtended process
to itsframe denotedr(A), by replacing every plain process and event storéith O.



A frame is an extended process built up from O and active gutishs by parallel
composition and restriction. The franfe(A) accounts for the set of terms statically
possessed by the intruder (but does not accourt ®odynamic behavior). Thdomain
of a frameyp, dom(y), is the set of variables for which defines a substitution (i.e.
variablesr for which ¢ contains a substitutiof® /,.} not under a restriction on). In
such a case, i.e. whene dom(yp), = allows the intruder to refer to the terf.

2.2 Semantics

The semantics is defined in terms of a LTS which records tleedontion of an extended
process with the intruder. We associate an equationalyiets the signaturel. £ is
defined by a set of equatiold = N and induces an equivalence relation over terms:
=g is the smallest equivalence relation on terms, which coradiequations irk and

is closed under substitution of terms for variables ancchije renaming of names.

Example 2.Considering the signatur® of Example 1 we define the equational the-
ory E.nc by the equationslec(enc(z,y),y) =  andproj;(z1, x2) = x; fori € {1, 2}.
We have thatlec(enc(a, k), k) =g, a.

enc

We define the relatiog? to be the smallest equivalence relation on extended pro-
cesses that is closed under application of evaluation gtséad such that

PAR-0 Al0=A CHOICEFA P+ (Q+R)=(P+ Q)+ R
PAR-A A | (B|C)=(A]|B)|C CHoICE-C P+rQ=Q+R
PAR-C A|B=B|A ALIAS ve{M/,} =20
NEw-C vu.vv.A = vv.vu.A SUBST M/ A={M/ 3| A(M/)
NEW-PAR A |vu.B = vu.(A| B) REWRITE M/ r={N/}

if ud fn(A)U fu(A) if M =g N

We definestructural equivalence=, to be= closed undet-conversion on names and
variables. In comparison to the original applied pi calsulve dropped the structural
equivalence/n.0 = 0 which will be important for deduction.

Example 3.Consider the following process:
vs, k.(out(cy, enc(s, k)) | in(eq,y).out(ca, dec(y, k))).

The first component publishes the messag€s, k) by sending it ore;;. The second
receives a message of uses the secret k&yto decrypt it, and forwards the resulting
plaintext onc,. P is structurally equivalent to the following extended pregd:

A =wvs, k,zy.(0ut(cy, z1) | in(c1, y).0ut(ca, dec(y, k)) | {="=F) /. 1)
We havefr(A) = vs, k,x;.{"(>F) /. } = vs k.0 (sincex; is under a restriction).

Internal reduction— is the smallest relation on extended processes closed under
structural equivalence and application of evaluation extstsuch that

CoMmMm out(a, M).P |in(a,z).Q — P | Q{™/,} THENIf M = N thenP elseQ — P

_ N whereM =g N
EVENT e(M).P — P | [e(M)] )
ELse if M = N thenP elseQ — @
CHoOICE P+Q—P whereM, N are ground and/ #g N .



As usual—* denotes the reflexive transitive closure-of

The operational semantics is extended bgteeledoperational semantics enabling
us to reason about processes that interact with their envient. Belowa andc are
channel nameg; is a variable of base type ands a variable of any type.

AL A" wdoes not occur ind

IN in(a,y).P 0, pgvy ScoPE 7
out(a,c) VU-A — V'U,.A/
OuT-CH out(a,c).P ———= P bn(6) 1 f(B) = 0
out(a,c) , ¢ , B
OPEN-CH A — O‘jt(a > c#a PAR A— A b)Nfu(B)=10
ve. A ——5 A A|B£>A"B

vz.out(a,r)
e

Pl{M/.} A=B BLB A=p

OuT-T  out(a, M).P
v ¢ fo(P)Ufu(M)  STRUCT L

Example 4.Continuing Example 3, we have that

A L, T, g (outlen, 5) | {0/, 1) % A
The frame associated W is fr(A’) = vs, k.{"<(=F) /1.

2.3 Equivalences

In this section we introduce two notions of process equivedstrace equivalencand
labeled bisimulationThese definitions are based static equivalencean equivalence
on frames, andtatic equivalence of tracewhich lifts static equivalence from frames to
traces. Static equivalence is a notion of intruder’s pageaghat has been extensively
studied (e.g. [1]). Another notion, namely deducibilityliviie discussed in Section 3.
The notion of static equivalence is useful to define labelsuirtilarity.

Definition 1 (static equivalence).We say that two term8/ and N are equal in the
frameg, and write(M =g N)¢, if there exists and a substitutioa such that) = vi.o,
AN (fa(M)Ufn(N)) =0,andMo =g No. We say that two closed frames and ¢
are statically equivalentp; ~ ¢, when:

— dom(¢y) = dom(¢s), and
— for alltermsM, N we have thatM =g N)¢, if and only if (M =g N)¢ps.

Example 5.Let ¢ = vk, s.({"CF) [, } [ {#/0,}), ¢ = vk ({79 [0} | {#/0,})
wheres, s', k are names. We havdec(z1, z2) =g, s’ )¢’ but(dec(z1,x2) #e... 8') b,

enc enc

thus¢ « ¢ (for Ee,c). Howeveryk, s.{enc(s, k)/x1} ~ vk.{enc(s', k)/z1}.

We now define two notions of indistinguishability in the prase of an active in-
truder. The first one itrace equivalencethe second onkabeled bisimulationAs we
are interested in the interactions of a process with thedtr (and not just the internal
actions), we use the labeled transition system to definedbsilple “runs” of a process:

Definition 2 (trace). A tracetr is a finite derivationtr = Ay 4, AL N A,, such
that eachA; is a closed extended process where edh either empty (and represents



an internal action) or is a labeled actiofy with fv(¢;+1) C dom(A;). The tracetr is
said to be maximal ifd,, # for any/.

. £y I
We writetr[i] for the process!; andtr[i, j] for the traced; — A, ... % A;. We

shall say thaftr| = n.

. Liy Liy Li,.
We say that the tracer is of the form4, —*— A4; —*— 4; ... ="—
A, —* A, if £} is a labeled action for alk = i;,1 < j < r and the internal action
otherwise.
Given a process! we definerr(A) to be the set of all traces such thatr[0] = A and

trmax(A) to be the set of all the maximal tracessuch thatr[0] = A.

In order to define trace equivalence we lift static equivedeinom frames to traces.
In order to ensure that bisimilar processes are also trasiwagnt we need to define
a-equivalence of traces. Intuitively, we say that a labeld@ba ¢ in a tracetr bindsn in
the subsequent tracerifoccurs as a bound namefinA tracetr can ben-renamed tar’
if tr’ can be obtained by amrenaming of the bound name The formal definition has
been moved to the Appendix where its motivation is also dised. We writer —, tr’
if tr’ is obtained frontr by ana-renaming of a bound name. The relatiop is defined
to be the reflexive, symmetric and transitive closuref .

Intuitively, we say that two traces are statically equimdleo the intruder if the
intruder performed the same actions in the trace and thedetrcould not “statically”
distinguish the processes resulting from these actionsné#ity,

Definition 3 (static equivalence of traceg~,)). Lettr be a trace of the formi, —* b,

’

V4
Ay I N Ajyr... LN A, —* B. Lettr be a trace of the formd{, —*—

14
A =2 A

4 .
fiy... =" A} —* B'.Thentr —, tr' if r =, and

—foralll <i<r, ¢ =42,
—forall 0 <i<r, fr(4;) ~ fr(A}) (static equivalence).

The relation~; is the transitive closure of,, U < .

We can now define trace equivalence.

Definition 4 (trace equivalence £,)). Let A and B be two closed extended processes.
We say thatd is trace includedn B, written A C, B if for each tracetr4 € tr(A) there
existstrp € tr(B) such thatr, ~; trg. The processed and B are trace equivalent
written A ~; B, if A C, BandB C; A.

Trace equivalence is an appealing notion for modeling timdjsishability in pres-
ence of an active intruder and can be used to formalize manwyrise properties (e.g.
strong secrecy, anonymity properties, ...). Howeverphigation is often considered
as it has better proof techniques and is easier to manipulate

Definition 5 (labeled bisimilarity (~)). Labeled bisimilarityis the largest symmetric
relation R on closed extended processes, such th@& B implies

1. fr(A) ~ fr(B);



2. ifA— A’ thenB —* B’ and A’ R B’ for someB’;
3. if A5 A andfu(¢) C dom(A) andbn(f) N fn(B) = 0 thenB —*-5—* B’ and
A’ R B’ for someB’.

As expected labeled bisimulation implies trace equivadene.~ C ~;. Hence bisim-
ulation can be used as a proof technigue to show trace egoael

3 Epistemic Logic

We shall now present the epistemic logic which allows us ssoa about intruder’s
epistemic knowledge and the set of facts in its possession.

3.1 Syntax

The formulas of our logic consist of two levetatic formulasre used to reason about
a “snapshot” of the process. They include predicates fontswbat may have occurred
in the past and a predicate for a set of terms that the intstdéically possesseBpis-
temic formulasallow us to reason about the dynamic behavior of the procedgtee
epistemic knowledge that the intruder can deduce from its jpgeractions with the
process. The formulas use a term language which denotestled messages. The
syntax of the logic is given in BNF form in Table 1 and discukbelow.

Terms.
Teo=nlz]| f(r,...,7T)

Static formulas.
§:=T | Has(T) [ et(T,...,T) [ 6 | 6V [ 3z.6

Epistemic formulas (with the provisbis a closed formula and has no free names).
p:=06[] ¢ oVe[ Kol Oo [ Bo
Table 1. Syntax of the Epistemic Logic
Term languageFor the term language of our logic we shall assume that fdr eamen
in the vocabulary of the applied pi calculus, there is a uaigamen in the logic. Simi-
larly for each function symbof in the vocabulary of the applied pi calculus, we have a
unique function symbofin the logic. However, there is no particular corresponéenc
between the set of variables in the logic and the appliedlputiss. We use, z4, . .. to
range over the variables of the logic. The set of terms ofdbeInow consist of names,
variables and function application (the usual restricbarsorts and arity apply here).

Static formulas. Static formulas assume a unary predicdts whose argument is of
base sort. This predicate is used to reason about the setraf that the intruder pos-
sesses. It also assumes that for each euerih the set of events for the calculus there
is predicatesvt (of the correct sort and arity). These predicates are useshgon about
events that may have occurred in the past. The static fosautabuilt from these pred-
icates using the connectivés negation-, disjunctionv and existential quantification
Jz. The usual connective’s | and=- and the universal quantificatidhcan be derived
from these connectives. We also assume the standard defindf free and bound vari-
ables and substitution. A static formulaci®sedif it does not contain any free variable.
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Epistemic formulas Epistemic formulas reason about dynamic behavior of a goce
and are constructed froriosedstatic formulas with no free names using the connec-
tives conjunctionA, negation—, disjunctionv, existential quantificatiordz and the
modalities ], 5, K. The reason for using only closed formulas will become dle&ec-

tion 3.2. Disallowing names is not restrictive, as eventstoa used to refer to names.
The formulas are interpreted over the possible “runs” ofpteeess. The formulae is

true at some pointin a run if is true for all possible future points whereas the formula
He is true if ¢ is true for all past points. The formul&s is true if the intruder knows

(in the epistemic sens@)to be true based upon its interaction with the process in the
past. The connectives and=- and the modality) can be derived.

3.2 Semantics

We now define the semantics of the logic. We start by the dénotaf terms.

Denotation of Terms.The terms of the logic are interpreted as ground terms of the
applied pi calculus and use the concept of an assignmenas8ignmenp is a map
which maps each logic variable € Z to a ground term of the applied pi calculus.
Using the assignmemt the denotation of terms is defined inductively as

[Al,=n [E,=p) [FT,....T)], = f(T1),. .-, (IT:1,)
Satisfaction of static formulasThe models of static formulas are pairs- one part of
which is aname distinctclosed extended procest term, i.e. a process such that
bn(A) N fn(A) = 0 and no name is bound twice; and the other part an assignment.
We need another definition for our semantics which formal&eecond notion of
intruder’s possession (e.g. [1]).

Definition 6 (Deducibility). Let¢ = vin.o be a closed name-distinct frame afd be
a term. We say that/ is deducible fromyp, denoted by - M if there exists a terniv
such thatfn(N) Nn = @ and No =g M. Such a termV is arecipeof the termM.

Note that whenn.o - M, any occurrence of names fromnn M is bound byvn. Itis
for this reason that we introduce the relati@r{cf. Example in Remark 1, item 3).

Example 6.Consider the two framegand¢’ given in Example 5. We have that- k,
¢+ sandg F s'. Indeedrs, dec(x1, x2) ands’ are recipes of the ternis s ands’.

The interpretation of the static formulas given a nameiftisiprocess termi and
an assignmeny is defined in Table 2. The interesting cases are the satsfiact the
predicatedHas andevt. Intumvely, the formuIaHas(T) is satisfied if the intruder can
deduce the denotation GST The formulaevt(Tl, T ) is satisfied if the correspond-
ing eventevt([ﬁ}] . ) has occurred. The other definitions are standard. Note
that the as&gnmem(z — M]pIS the same ag except that on it takes the valué/ and
the formulad[A//z] is the formula obtained from by substituting the free occurrences
of z by M.

Remark 1.

1. If the formulas is closed,.e., does not contain any free variables, then the satis-
faction of§ depends only on the process and is independent of the assignfor
such formulas we can drop the assignment in the satisfactlation.



ApkET always

ApEer(Th,...,T.) iff A= vi(A|[evt(My,...,M))AM, = [Ti], 1<i<r

A, p = Has(T) iff fr(A) =111,

A p o iff AsplEod

A,p =01V iff A,plEdiorA,pkEds

A,pE 326 iff 3aground termV/ such thatd, p[z — M| = 6[M/z]

Table 2. Satisfaction of static formulas

2. Note that name-distinctness is crucial for the definibbsatisfaction of the static
formulas. The name distinctness allows us to uniquely ifletitte bound names
and interpret them. Otherwise, the procdss (vn.[evt;(n)]) | (vn.[evtz(n)]) will
satisfyevt, (72) A evty(7) which is clearly wrong as the two bound names refer to
different nonces.

3. For a similar reason, we need to forbiecenaming when evaluating predicates.
Otherwise, (if we replace with = in the above semantics) we have that

vni,na.([evti(n1)] | [evta(ng)]) = 3z. (evti(2) A evia(2)).

4. It can be checked that for any name-distinct closed frami¢ ¢ = vn.c and
¢ =~ vn/.o’ thenf andn’ are the same (upto ordering) and for akysuch that
m(N)nn =10, No =g No’'. Hence, ifA; = A,, we get thatd; and A, satisfy
the same set of static formulas.

5. The previous observation would not have been true if wediladved the equiv-
alencevn.0 = 0. In particular, the intruder can deduce all ground termshim t
process) while it cannot deduce the termin the processn.0.

Please note that even name-distinct processes which asieraqduloa-conversion
may satisfy different static formula. However, if we limitiiselves to closed formulas
with no free namesy-renaming does not affect the satisfaction.

Lemma 1. Let¢ be a closed static formula with no free names ahdand A, be two
name distinct extended processes suchthat A,. ThenA; = §iff Ay 4.

The above Lemma allows us to define the semantics of the epestermulas.

Satisfaction of epistemic formuladie shall now define the satisfaction relation for
epistemic formulas. As in the case of epistemic logic fotritigted systems [14, 15],
the epistemic formulas will be interpreted over the pogsihins” of a process, i.e. the
set of maximal traces (Definition 2). Please note that sine@@vnot have replication
in our process terms, all traces of a process are finite andefinition of maximal
traces does capture all possible “runs”. The traces aregémiouinterpret the temporal
modalities’] andH. In order to interpret the modality, we need to consider an equiv-
alence relation on the set of traces which identifies tratasare indistinguishable to
the intruder: static equivalence on traces (Definition 3).epistemic formulap is in-
terpreted over a triple - a closed extended proegessmaximal tracer € trm.(A) and

a position0 < j < |tr| in tr as described in Table 3.

Remark 2.0ur use of static equivalent traces as indistinguishabtzes is reminiscent
of what is often callegerfect recallin distributed systems- the intruder distinguishes



Ajtryi =0 iff there is a name-distinct extended procets
such thatr[i] = A" andA’ = §

A, tryi = O¢ iff Vi <j<|tr|. Ajtr,j = ¢
Atr,i = B¢ iff Y0 < j <i. Atrj =6
A,tr,i = Ko iff Vtr' € trmax(A),V0 < j < Jtr|

such thatr[0, i] ~; tr'[0, j] = A, tr',j = ¢
Atryi = —¢ iff A tr,ilEo
A,tl’,i':(ﬁl\/(bz iff A,tr,i|:¢1orA,tr,i|:<b2

Table 3. Satisfaction of epistemic formulas

traces based upon the complete history of its interactidh thie process. We could
have, of course, chosen to define coarser equivalenceoredat-or example, we could
have declared two traces to be equivalent if the intrudenagfstatically” distinguish
the last processes in the respective tréddswever, a coarser relation would result in
intruder “knowing” a smaller set of formulas to be true whitlay lead to declaring
a protocol secure which otherwise will be insecure. Besidasall powerful intruder
should be able to record its history of interaction with tihetpcol.

Definition 7. We say thatd = ¢ if for all tr € trpna.(A) we haved, tr,0 = ¢.

Not that Lemma 1 will not be true if we replace structural eglénce with static
equivalence. One reason is the presence of the predisatas static equivalence does
not depend on presence/absence of such formulas. Howeegarif@ve were to consider
the fragment of the logic without these predicates, stiyiemuivalent processes may
satisfy different static formulas (and thus Hennessy-Btiliheorem does not hold).

Lemma 2. There are closed extended procesdesnd A, and an epistemic formula
such thatd; ~ A, and A; |= ¢ but A, |~ ¢.

Proof. Consider the two processels = vn.{"") / 1 and A, = vn.{"/,} where
hash is unary function symbol which models a cryptographic hasitfion and hence
cannot be inverted. We assume that the set of equakoissempty. We have that
A1 =~ As. We have also thatl; = Jz.(Has(hash(z)) A —Has(z)) (the intruder has
the hash of the noneebut cannot invert it) whiled, = 3z.(Has(hash(z)) A —=Has(z))
(the intruder has every free name and can create its hash). a0

3.3 Examples

We now give some simple examples of security protocols thatte modeled in our
logic. These examples do not use the knowledge operatorefe to Section 4 for

such an example. We only consider closed formulas (no freahbtas) and formulas

without names. The idea is to annotate the process and thh@g@tametric events to
refer to bound names. Specifically, we will show how to spesécrecy, authentication
and fairness in exchange protocols in our formalism.

8 This is similar in spirit to what is commonly called “knowlge! in security.
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Example 7.This is a way to express the secret (in the sense of dedugjhif the
names in P = vs.evt(s).out(c, s). Let ¢ = OVz.(evt(z) = —Has(z)). Obviously,

we haveP £ ¢ asP — A, Z2"9%. A, is a trace intrme(P) where A, —
vs.(oute, s) | [evt(s)]), As — vs.({*/o} | evt(s)]) and(P,tr, 2) = evt(s) A Has(s).

Another classical example is authentication modeled ageement property.

Example 8.Consider the following simple handshake protocol wheiga shared key
and f any free symbol: A — B:enc(n, k)

B — A:enc(f(n),k)
The goal of this protocol is to authenticate B from A’s poifitv@w. In the applied
pi calculus this protocol is modeled by:.(A | B) where
A = vn. out(enc(n, k)). in(x). if dec(x, k) = f(n) thenend(n)
B =in(y). begin(dec(y, k)). out(enc(f(dec(y, k)), k))
The eventbegin andend are used to annotate the protocol. The authentication of B
to A is then modeled by = [0Vz.(end(z) = begin(z)).

Yet another, less classical example of property is fairimessntract signing protocols.

Example 9.1n a fair contract signing protocols two agents want to exgegtheir cor-
responding signatures on a given contract in such a way thle &nd of the protocol
either both participants obtain the signed contract or rafrieem does so. Describing
a complete example of such a protocol would be out of the sobpigés paper and we
refer the reader to [9] for more details. These protocolseeiterminate in a final state
where the exchange has been aborted or in a final state wieesgdhange did succeed.
For the purpose of our example, we suppose that the procegalingpthe participan®
(eitherA or B) is annotated as follows: the eveind(c) indicates thaP is in a final
state for some contraef the evenPcontract(c) indicates thaf’ successfully received
the signed contract. Thefgirness forA can be modeled as

¢ = OVc.(Aend(c) = (—Bcontract(c) V Acontract(c))).

The formula says that for any contract whenefeis in a final state Aend(c)),
eitherB did not obtain the contract signed By(—Bcontract(c)) or A did obtain the
contract signed b (Acontract(c)). Fairness for3 can be modeled in a similar way.

4 Privacy in electronic voting protocols

Many electronic voting protocols have been proposed in iteeature and their for-
mal analysis has received considerable attention [13,A§ i@hportant security goal
is privacy of votes an intruder should not be able to learn (by its interactidth the
protocol) how an honest voter Alice voted. This property hasn formulated both
as an observational equivalence, e.g. in [13], and as ateepisproperty, e.g. in [4],
although never within the same formalism. Our formalisnowali us to consider both
the formalizations and compare them within the same framevkor the sake of sim-
plicity, we only consider single protocol instances in whtao voters Alice and Bob
participate and we assume that there are only two votingogtvailable to Alice and
Bob and we represent these optionsdbgnd1.
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Electronic voting protocols in applied pi calculusie refer the reader to [13] for a
detailed formal definition of electronic voting protocotsapplied pi calculus. Herein,
we state the salient points of the definition. We assume lileagtis a sortoteoption in
our signature which contains at least two constafiary function symbols), denoted
by 0 and1, that do not occur irk. Furthermore, we assume that the protocol can be
expressed as a parametpiain processV (z,, x;) with two free variables:, andx;,
of the sortvoteoption.* Forv,, v, € {0, 1}, the voter procesk (v,, v;) represents the
process in which Alice and Bob vote for optionsandv, respectively. Although these
assumptions are sufficient to model privacy as observdtamavalence, the definition
in terms of epistemic logic requires us to introduce eveatarinotate the individual
voter preferences and consider all possible traces witBingle process.

Towards this end we introduce a parametric ewenés(_, ) with two arguments of
the sortvoteoption which is not present in the voting procégéz,,, «;). From now on,
we consider the following voting process which considelrsaing scenarios:

V= Z%MG{OJ} votes(va, vp).V (Va, vp)-
The proces® shall henceforth be calledwting process

Privacy as observational equivalenciéVe are ready to state the formalization of pri-
vacy as proposed in [13], which we shall catfong privacyfor the rest of this sec-
tion. Intuitively, the voting protocol represented Esrespects strong privacy if the
intruder cannot distinguish the two protocol instances lnclv Alice and Bob’s votes
are swapped.

Definition 8. The voting proces¥ respectstrong privacyif V(0,1) ~ V(1,0).

Privacy as epistemic formulaNe need a few definitions to state privacy as an epistemic
formula. An inspection of the construction bfshows that since the eventstes do
not occur inV, any maximal trace op consists of only one everbtes(v,, v,) in the
store and corresponds to Alice and Bob voting for optigrandv, respectively. Also
(from construction of the epistemic logic in Section 3), veswame that there is a binary
predicate in our logic corresponding to the eveotes which we shall (again in the
interest of keeping the syntax simple) denotevbyes. We also assume that there are
two 0-ary function symbols corresponding to the two voting opgievhich shall again
denote byo and1. Now, givenv € {0, 1} consider the formula

Avote(v) = votes(v, 0) V votes(v, 1).

Intuitively the formula is true in a state reachable fronf Alice votes for optionw.
Similarly we can define formulBvote(v).

Now, according to [4], a protocol respegigvacy for Aliceif the intruder cannot
(epistemically) know which voting option Alice exercis&dprotocol respects privacy
if it respects privacy for both Alice and Bob. Please noté thes definition does not
usually hold for voting protocols in which the final tally dfg votes are announced—
a unanimous election always reveals each individual's.\dé&mce, a more appropriate
formulation is that whenever Alice and Bob vote differenthye intruder cannot learn
how each of them voted. This gives us the following definitidrich states that intruder
can learn how a voter voted only if the other voter voted theesaption.

*V being a plain process is a simplification and we could haweestavith a non-empty frame.
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Definition 9 (privacy). The voting proces® respectsprivacy if V = Aprivacy A
Bprivacy where

— Aprivacy e Avefo,130(K(Avote(v)) — Bvote(v)), and

— Bprivacy e Avefo,130(K(Bvote(v)) — Avote(v)).
Strong privacy implies privacyWe now show that privacy in terms of observational
equivalence implies privacy in terms of epistemic formulagact we show a stronger

statement, namely, that If (0, 1) ~; V(1,0) then the protocol will respect privacy.
The proof of the statement is deferred to the Appendix.

Theorem 1. If V(0,1) ~; V (1, 0) then the voting process respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Now, privacy in terms of epistemic formulas does not imphpsg privacy. One can
construct examples which respect privacy but not strongpyi based on the fact that
bisimulation is a finer relation than trace equivalence. ey, a partial converse of
Theorem 1 holds— under reasonable assumptions privaciesip(0, 1) ~; V(1,0).
Privacy implies trace equivalenceén order to state these assumptions, we need a few
definitions. First we need the definition of a publishing &antuitively, we say that a
maximal tracetr is a publishing trace if the intruder learns which votes weast (but
not the link between the voters and individual votes) anddiatinguish it from any
other trace when the set of votes cast are different. For pbara publishing trace in
which Alice and Bob voté® and1 is distinguishable from one in which they cast
ando but not necessarily from one in which they castnd0 respectively. A maximal
trace that is not publishing is said to be an abort trace.itimily, this says that the
protocol could not be completed and hence votes are notghaoft
Definition 10 (publishing and abort traces).Givenv,, v, € {0, 1}, a maximal trace
tr € trmax(V(va, vp)) is said to be gpublishing tracef for any v/, v; € {0,1} such
that {vy, vy} # {v),,v;}, thereis notr’ € tr(V (v, v})) such thatr ~; tr’. Otherwise
tr is anabort trace

We say that a protocol is equivalent for aborts if an abortdrean be mimicked
irrespective of how Alice and Bob decided to vote.

Definition 11 (equivalent for aborts).Givenv,, v, € {0,1} andtr € trmax(V (v, vi))
an abort trace. We say that is equivalent for abort# for any v/, v; € {0,1} there is
atr’ € trmax(V(vl,, v;)) such thattr ~; tr'.

We have the partial converse of Theorem 1. The proof is deddr the Appendix.

Theorem 2. LetV = 3~ 101} votes(va, v3).V(va, vs) be a voting process such
thatV is equivalent for aborts and respects privacy. Th&®, 1) ~, V' (1, 0).

Theorem 1 and Theorem 2 suggest that trace-equivalence mahe appropriate
notion for defining privacy of votes in electronic voting evough the bisimulation-
based definition (which implies privacy) has better prochtgques.

5 We believe that a good electronic voting protocol shouldhaste abort traces. However, this
property has not been studied in literature.
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5 Related and Future Work

Related work. Several authors (e.g. [16, 12, 19]) have recognized the ngntary
nature of the process algebraic and epistemic approaclketharbenefit to combine
them. Different approaches have been proposed to bridgegtp. In [16],function
viewsare used to represent partial information and make thefanebetween protocol
and properties. In order to get epistemic specificationseelto a behavioral specifica-
tion, van Eijck and Orzan [19] propose a dynamic epistenicloHowever, it seems
that no mediation is necessary [15, 12] and it is possibleitiyb this gap by proposing
a combined framework as it is also suggested in this papeveMer, in the works cited
above, the authors study abstract versions of protocolshwdid not take into account
cryptographic primitives (e.g. encryption, signature) and their specific properties.
Some recent works [17, 10] have been devoted to designingia to character-
ize static equivalenceln [17], they build upon the logic for frames and extend ithwi
Hennessy-Milner modalities, yielding a logic for appliedppocesses which charac-
terizes labeled bisimilarity. However, as we already paintut in the Introduction, our
goal is different and we want to define a logic that is expresshough to state a variety
of security properties in a natural way. The advantage sfdpproach is evident in our
example of formalizing privacy in e-voting protocols in whiwe were able to establish
the exact relationship between two formal definitions o¥gey in e-voting protocols.

Another similarity between our work and the work in [10] isatithey also have
epistemic modalities. The work in [10] has another advamtaghat they reason about
multiple agents and hence their logic has epistemic maeslibr multiple agents and
not just the intruder. This is however achieved by inteiipgethe logic over an agent-
indexed family of frames with a frame representing the sehe$sages in an agent’s
possessions. Since they are mostly interested in studtatig squivalence, they do not
mention how these frames are obtained. An applied pi-aaséquiocess only keeps track
of the messages in intruder’s possession and thus we hayemakpistemic modality.

The problem of having a suitable language which allows foexpressive property
logic is a well-known problem in the context of cryptograplprotocols verification.
In [7,11], such a language and logic is proposed and allowsiipation of a large
class of security properties. However, none of the undaglyirotocol languages is as
expressive as the applied pi calculus. We are able to modeba tlass of protocols
which may use less classical cryptographic primitivesceige by an equational the-
ory, in an intuitive way. Therefore, our framework can bedig& protocols such as
electronic voting protocols, contract signing protocols,

Future Work. The formalism presented in this paper is a starting poird,va@ intend
to study stronger anonymity properties such as coercisistence that arise in security
protocols. Another line of investigation is to extend therialism to allow for reasoning
about epistemic knowledge of multiple agents, and this dowlolve extension of both
the calculus and the logic. We also intend to study modetking algorithms to verify
whether a process satisfies a given formula. Finally, we ialemd to investigate an
axiomatization of the logic presented in the paper.
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A Definition of a-renaming of traces

Definition 12 (« equivalence of traceg~,,)). Given a tracetr = Ay -~ A; ... -5
A,, we say that a name is bound at positiotj if n € bn(v;). Pickn' ¢ Ujp_,(bn(vx)U
In(yve) Ubn(Ag) U fn(Ay)) and letj’ > j be the smallest number such thais bound
at position;’ (if no such number occurs lgt = ¢ + 1).

Lettr’ be the trace obtained front by replacing all occurrences of by n’ in v,
for j < k < j/ and by replacingdy, by Ap{n’/n} for j < k < j'. We say thatr’ is
obtained fromtr by ana-conversion of: by n’. We writetr —, tr’ if there exist some
n andn’ such thattr’ is obtained frontr by ana-conversion of, by n'.

The relation~,, is defined to be the reflexive, symmetric and transitive obosu
of —, .

The reason for defining-equivalence is illustrated in the following example.

Example 10.Consider the processes
A = vc.out(a,c).in(c, x).0

and
B = vd.vn.out(a, d).in(d, z).if (x = n) then outa, ¢).

The two processed and B are observationally equivalent. Assume further that the
vocabulary consists of a unary function symbath and a constarti of the base type.

. . . , . in(c,hash
The processA exhibits the tracer in A veomla), in(c,z).0 n(ehash®), ) Note
that althoughB is observationally equivalent td, B cannot exhibit the same trace
tr asc occurs free inB. However, note that the traae is a-equivalent to the trace

tr = A LMD e, 2).0 2O and B can exhibittr’.

B Proof of Theorem 1

Theorem 1. If V(0,1) ~; V (1, 0) then the voting process respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Proof. The epistemic formula that expresses privacy is made ofdonjuncts. We shall
show that ifV’(0,1) ~; V(1,0) thenV satisfies one conjunct, s&y(K(Avote(0)) —
Bvote(0)). The proof thad satisfies other conjuncts is similar.

Now consider any maximal trage € trp.«()) such that there is A< |tr| such that
V,tr,j = K(Avote(0)). It suffices to show thaV, tr, j = Bvote(0). SinceV, tr, j |=
K(Avote(0)), it must be the cas®, tr, j = Avote(0), that is,V, tr, j = votes(0,0) V
votes(0, 1). We need to show that, tr, j = Bvote(0). Hence it suffices to show that
V, tr, j I~ votes(0,1).

We proceed by contradiction. Assume thattr, j = votes(0,1). From the fact
that the eventotes does not occur i and the construction o, we can show that
j > 2 and the tracer consists ofi initial internal steps o (2 < i < 4,i.e,i—1
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choices and 1 event) leading ¢otes(0,1)] | V(0, 1)) followed by a maximal trace
of ([votes(0,1)] | V(0,1)).

Now one can show easily th&t(0,1) ~; V(1,0) iff ([votes(0,1)] | V(0,1)) =
([votes(1,0)] | V(1,0)). Thus there is a trace; € tr([votes(1,0)] | V(1,0)) such
thattr[s, |tr|] ~; tr;. Consider the trace’ of V which starts with two internal actions
(choice and event) leading {fvotes(1,0)] | V(1,0)) followed bytr;. Now tr ~; tr'.
By definition of equivalence of traces, we get that there nbesak < |tr’| such that
tr[0, j] ~¢ tr'[0, K.

Now, note that sincg > 2 and first two actions ofr andtr’ are internal actions,
we can show that > 2. Using the fact thatr’ consists of two internal steps followed
by a trace of([votes(1,0)] | V(1,0)) and the fact that the evenbtes(0, 1) does not
occur inV, we get thattr'[k] ~ Avote(0). Hence, for any maximatry that extends
tr’ we getV, trg, k [~ Avote(0). On the other hand, since[0, j] ~; tro[0, k] and
V,tr,j = K(Avote(0)), we have), try, k |= Avote(0). A contradiction. O

C Proof of Theorem 2

Theorem 2. LetV = - 01} votes(va, vp).V(vq, V1) be a voting process such
thatV is equivalent for aborts and respects privacy. Th&0, 1) ~, V' (1, 0).

Proof. Given atracer € trma(V (vq, vp)) we defingvotes(v,, vp)] | tr to be the trace
obtained by replacingr[j] by [votes(vq,Vvp)] | tr[j] for each0 < j < |tr.| We say
that [votes(v,, vp)] | tr is publishing (abort) trace ifr is a publishing (abort) trace.
First we observe that it can be shown using the fact that evémtnot affect trace
equivalence, thaV (0,1) ~; V(1,0) iff [votes(0,1)] | V(0,1) = [votes(1,0)] |
V(1,0). We now proceed by contradiction. Assume thattes(0,1)] | V(0,1) %
[votes(1,0)] | V(1,0). Thus eithefvotes(0,1)] | V(0,1) <, [votes(1,0)] | V(1,0)
or [votes(1,0)] | V(1,0) Z; [votes(0,1)] | V(0,1).

Assume thafvotes(0,1)] | V(0,1) ¢, [votes(1,0)] | V(1,0) (the other case is
similar). Thus there is a trade € tr([votes(0,1)] | V(0,1)) such that for altr’ €
tr([votes(1,0)] | V(1,0)), we have thatr £, tr'. Furthermore, we can assumeo be
maximal (otherwise we can extendio a maximal trace). Now since théis equivalent
for aborts tr cannot be an abort trace.

Now consider the maximal traae, of } which consists of two internal actions
followed by the tracer. We have thatrq(|trg|) = votes(0,1). Now, pick any other
maximal tracetr; of V such that there is @ < |try| such thattr; [0, j] ~; trg. Any
maximal trace of) consists of two internal steps followed by a maximal trace of
[votes(va, vp)] | V(va,vy) fOr somev,, vy,. Since the first two steps af, andtr;
are internal ang > 2, we can show thatr; [2, j] ~; tro[2, |tro]].

Now trg[2, |tro|] is tr. Furthermoretr [2, j] € tr([votes(va,vp)] | V(va,vy)) for
somev,, v,. Sincetr is a publishing trace anigt is not contained (upto equivalence) in
tr([votes(1,0)] | V(1,0)), we can conclude that, [2, j] is a trace offvotes(0,1)] |
V(0,1). Hencetr,[j] |= votes(0, 1). Hence, we have that, trg, |try| = K(Avote(0))
butV, tr, |tro| = Bvote(0). A contradiction. O
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