
Epistemic Logic for the Applied Pi Calculus⋆

Rohit Chadha1, St́ephanie Delaune2, and Steve Kremer2

1 University of Illinois at Urbana-Champaign, USA
2 LSV, ENS Cachan & CNRS & INRIA Saclay, France

Abstract. We propose an epistemic logic for the applied pi calculus, which is
a variant of the pi calculus with extensions for modeling cryptographic proto-
cols. In such a calculus, the security guarantees are usually stated asequiva-
lences. While process calculi provide a natural means to describe the protocols
themselves,epistemic logicsare often better suited for expressing certain security
properties such as secrecy and anonymity.
We intend to bridge the gap between these two approaches: using the set of traces
generated by a process as models, we define a logic which has constructs for
reasoning about both intruder’s epistemic knowledge and the set of messages
in possession of the intruder. As an example we consider two formalizations of
privacy in electronic voting and study the relationship between them.

1 Introduction

The applied pi calculus [2] is an extension of the pi calculusdesigned for specifying
and verifying cryptographic protocols. The main difference from the pi calculus is that
it allows one to manipulate complex data, instead of just names. The data is gener-
ated by an arbitrary abstract term algebra and interpreted modulo an equational theory.
This allows one to abstractly specify cryptographic functions. For instance the equa-
tion dec(enc(x, k), k) = x models that decryption cancels out encryption if the same
keyk is used. As the calculus is parametrized by an arbitrary equational theory, several
complex cryptographic primitives have been conveniently modeled in literature. For
example, blind signatures were modeled in [13] and non-interactive zero-knowledge
proofs were modeled in [3]. This calculus has been successfully used to study a variety
of security protocols, e.g. the direct anonymous attestation protocol [3], some electronic
voting protocols [13]. Moreover, there exists tool support[5] for assisting the verifica-
tion of protocols in the applied pi calculus.

As argued above the applied pi calculus is a convenient and flexible formalism for
describing the processes which model the protocol. However, security properties are
more difficult to specify. Some properties may directly be specified using observational
equivalence, but this is generally not very natural and convenient. A more natural ap-
proach to verify protocols for correctness would be to definea suitable logic interpreted
over the terms of the calculus and express the desired security goal in that logic.

Our main contribution is the definition of an epistemic logicfor the applied pi cal-
culus suitable for expressing important security goals. The logic itself is an LTL like

⋆ This work has been partially supported by the ANR project SeSur AVOTÉ

temporal logic with a special predicateHas that models deducibility of messages by
an intruder and an epistemic knowledge operatorK which allows us to reason about
the intruder’sepistemic knowledge. Other predicates of the logic are defined byevents
which annotate the protocol. Similar annotations have already been used for specifying
authentication properties, initially by Woo and Lam [20] and more specifically in the
applied pi calculus by Blanchet [6]. We emphasize here that our main motivation behind
designing this logic is to express important security goalsandnot to study observational
equivalence. In particular, a Hennessy-Milner theorem will not hold: observationally
equivalent processes may satisfy different security goals.

Epistemic logics, going back to the BAN logic [8], are well-suited to express com-
plex security properties. At that time, the logic was used toreason about authentication
protocols. However, epistemic knowledge is particularly useful when reasoning about
anonymity properties (e.g., see [18]). Intuitively, an intruder (epistemically) knows that
a propertyφ is true, ifφ is true on every run which is indistinguishable for the intruder
from the current one. In general epistemic logics this is modeled by an arbitrary equiva-
lence relation on runs. In the context of security protocols, equivalence of runs is tightly
related to the cryptographic functions used: an intruder which does not knowk, should
regard the runs outputting respectivelyenc(0, k) andenc(1, k) as equivalent. We for-
malize equivalence of runs by lifting the notion ofstatic equivalenceto protocol runs.
We emphasize here that our logic contains the epistemic modality only for the intruder
and not for other participants. This is primarily because the processes only keep track
of messages in possession of the intruder.

We illustrate the expressiveness of our logic by expressinga range of security prop-
erties: secrecy, authentication as well as fairness in contract signing protocols. We then
specifyprivacy in voting protocols, which relies on the epistemic knowledge of the in-
truder. We show that a definition of vote privacy in terms of process equivalence as de-
fined in [13] implies vote privacy in terms of epistemic logic, as defined in [4]. Then we
slightly weaken the equivalence based definition, replacing observational equivalence
with trace equivalence. In that case, under reasonable assumptions, we show that the
converse implication, i.e. epistemic privacy implies privacy as equivalence, also holds.
This result is important in that it clarifies the relationship between two definitions of
privacy employed in the literature. Furthermore, the result suggests that trace equiva-
lence is more appropriate to model voter privacy even thoughobservational equivalence
is convenient to use because of the available tool support.

For the rest of the paper we reserve the phrase “intruder’s knowledge” for his epis-
temic knowledge. We use the word “intruder’s possession” for the set of messages that
an intruder possesses (which is sometimes referred to as knowledge in security).

2 The applied pi calculus

We present here the syntax and semantics of a slightly enriched applied pi calculus [2].

2.1 Syntax

The syntax of the applied pi-calculus assumes an order-sorted vocabulary consisting of
a denumerable set ofnamesof each sort, a denumerable set ofvariablesof each sort

2

and asignatureΣ consisting of a finite set offunction symbolswith their arity. The
details of the sort system are unimportant, as long as it differsbase typesandchannel
types. We always suppose that function symbols only operate on andreturn terms of
base type. The grammar of the set of terms is defined as:

M, N, T := terms
a, b, . . . , . . . k, m, n, . . . names
x, y, z, . . . variables
f(M1, M2, . . .Mk) function application

Of course function symbol application must respect sorts and arities. We shall use
u, v, . . . to range over both names and variables. We writevars(T) for the set of vari-
ables occurring inT . T is said to be agroundterm if vars(T) = ∅.

Example 1.Let Σ = {enc/2, dec/2, pair/2, proj1/1, proj2/1} be a signature contain-
ing function symbols for encryption, decryption and pairing, each of arity2, as well as
left and right projection symbols of arity1. The termenc(a, k) is ground.

There are two kinds of processes in the applied pi calculus–plain processes built
up in a similar way to processes in the pi calculus except thatmessages can contain
terms rather than just names, andextendedprocesses which addactive substitutions
(explained below) and restriction on variables. Furthermore, we enrich plain processes
with non-deterministic choice and a set of events e, e1, . . . (parametrized by a sequence
of terms of the correct sort). These events are “annotations” which are useful in for-
malizing security properties and (as we shall see later) play no part in observational
equivalence. Extended processes are also enriched withevent stores, which record the
events that happen along an execution. We do not have replication in our calculus.

P, Q, R := plain processes
0 null process
P | Q parallel composition
P + Q non-det. choice
νn.P name restriction
if M = N thenP elseQ conditional
in(u, x).P message input
out(u, N).P message output
e(M̃).P event

A, B, C := extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution
[e(M̃)] event store

{M/x} is the active substitution that replaces the variablex with the termM . Active
substitutions generalize the “let” construct:νx.({M/x} | P) corresponds exactly to “let
x = M in P ”. An event store[e(M̃)] memorizes that the event e(M̃) happened. As
usual, names and variables have scopes, which are delimitedby restrictions and by
inputs. Please note that the “event” construct is not a binding construct. We writefv(A),
bv(A), fn(A) andbn(A) for the sets offreeandbound variablesandfreeandbound
namesof A, respectively. We say that an extended process isclosedif all its variables
are either bound or defined by an active substitution. Anevaluation contextC[] is an
extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to mapan extended processA
to its frame, denotedfr(A), by replacing every plain process and event store inA with 0.

3

A frame is an extended process built up from 0 and active substitutions by parallel
composition and restriction. The framefr(A) accounts for the set of terms statically
possessed by the intruder (but does not account forA’s dynamic behavior). Thedomain
of a frameϕ, dom(ϕ), is the set of variables for whichϕ defines a substitution (i.e.
variablesx for whichϕ contains a substitution{M/x} not under a restriction onx). In
such a case, i.e. whenx ∈ dom(ϕ), x allows the intruder to refer to the termM .

2.2 Semantics

The semantics is defined in terms of a LTS which records the interaction of an extended
process with the intruder. We associate an equational theory E to the signatureΣ. E is
defined by a set of equationsM = N and induces an equivalence relation over terms:
=E is the smallest equivalence relation on terms, which contain all equations inE and
is closed under substitution of terms for variables and bijective renaming of names.

Example 2.Considering the signatureΣ of Example 1 we define the equational the-
ory Eenc by the equationsdec(enc(x, y), y) = x andproji(x1, x2) = xi for i ∈ {1, 2}.
We have thatdec(enc(a, k), k) =Eenc

a.

We define the relation∼= to be the smallest equivalence relation on extended pro-
cesses that is closed under application of evaluation contexts and such that

PAR-0 A | 0 ∼= A
PAR-A A | (B | C) ∼= (A | B) | C
PAR-C A | B ∼= B | A
NEW-C νu.νv.A ∼= νv.νu.A
NEW-PAR A | νu.B ∼= νu.(A | B)

if u 6∈ fn(A) ∪ fv(A)

CHOICE-A P + (Q + R) ∼= (P + Q) + R
CHOICE-C P + Q ∼= Q + R
ALIAS νx.{M/x} ∼= 0
SUBST {M/x} | A ∼= {M/x} | A{M/x}
REWRITE {M/x} ∼= {N/x}

if M =E N

We definestructural equivalence, ≡, to be∼= closed underα-conversion on names and
variables. In comparison to the original applied pi calculus we dropped the structural
equivalenceνn.0 ≡ 0 which will be important for deduction.

Example 3.Consider the following processP :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the messageenc(s, k) by sending it onc1. The second
receives a message onc1, uses the secret keyk to decrypt it, and forwards the resulting
plaintext onc2. P is structurally equivalent to the following extended processA:

A = νs, k, x1.(out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1
})

We havefr(A) = νs, k, x1.{
enc(s,k)/x1

} ∼= νs, k.0 (sincex1 is under a restriction).

Internal reduction→ is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts such that

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}

EVENT e(M̃).P → P | [e(M̃)]

CHOICE P + Q → P

THEN if M = N thenP elseQ → P
whereM =E N

ELSE if M = N thenP elseQ → Q
whereM, N are ground andM 6=E N .

4

As usual→∗ denotes the reflexive transitive closure of→.

The operational semantics is extended by alabeledoperational semantics enabling
us to reason about processes that interact with their environment. Below,a andc are
channel names,x is a variable of base type andy is a variable of any type.

IN in(a, y).P
in(a,M)
−−−−−→ P{M/y}

OUT-CH out(a, c).P
out(a,c)
−−−−−→ P

OPEN-CH
A

out(a,c)
−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

OUT-T out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}

x 6∈ fv(P) ∪ fv(M)

SCOPE
A

ℓ
−→ A′ u does not occur inℓ

νu.A
ℓ
−→ νu.A′

bn(ℓ) ∩ fn(B) = ∅

PAR
A

ℓ
−→ A′ bv(ℓ) ∩ fv(B) = ∅

A | B
ℓ
−→ A′ | B

STRUCT
A ≡ B B

ℓ
−→ B′ A′ ≡ B′

A
ℓ
−→ A′

Example 4.Continuing Example 3, we have that

A
νx1.out(c1,x1)
−−−−−−−−−→

in(c1,x1)
−−−−−−→ νs, k.(out(c2, s) | {

enc(s,k)/x1
})

def
= A′.

The frame associated toA′ is fr(A′) = νs, k.{enc(s,k)/x1
}.

2.3 Equivalences

In this section we introduce two notions of process equivalences:trace equivalenceand
labeled bisimulation. These definitions are based onstatic equivalence, an equivalence
on frames, andstatic equivalence of traces, which lifts static equivalence from frames to
traces. Static equivalence is a notion of intruder’s possession that has been extensively
studied (e.g. [1]). Another notion, namely deducibility will be discussed in Section 3.
The notion of static equivalence is useful to define labeled bisimilarity.

Definition 1 (static equivalence).We say that two termsM and N are equal in the
frameφ, and write(M =E N)φ, if there exists̃n and a substitutionσ such thatφ ≡ νñ.σ,
ñ∩ (fn(M)∪ fn(N)) = ∅, andMσ =E Nσ. We say that two closed framesφ1 andφ2

arestatically equivalent, φ1 ∼ φ2, when:

– dom(φ1) = dom(φ2), and
– for all termsM, N we have that(M =E N)φ1 if and only if(M =E N)φ2.

Example 5.Let φ = νk, s.({enc(s,k)/x1
} | {k/x2

}), φ′ = νk.({enc(s′,k)/x1
} | {k/x2

})
wheres, s′, k are names. We have(dec(x1, x2) =Eenc

s′)φ′ but(dec(x1, x2) 6=Eenc
s′)φ,

thusφ 6∼ φ′ (for Eenc). However,νk, s.{enc(s, k)/x1} ∼ νk.{enc(s′, k)/x1}.

We now define two notions of indistinguishability in the presence of an active in-
truder. The first one istrace equivalence, the second onelabeled bisimulation. As we
are interested in the interactions of a process with the intruder (and not just the internal
actions), we use the labeled transition system to define the possible “runs” of a process:

Definition 2 (trace). A tracetr is a finite derivationtr = A0
ℓ1−→ A1 . . .

ℓn−→ An such
that eachAi is a closed extended process where eachℓi is either empty (and represents

5

an internal action) or is a labeled actionℓi with fv(ℓi+1) ⊆ dom(Ai). The tracetr is

said to be maximal ifAn 6
ℓ
−→ for anyℓ.

We writetr[i] for the processAi andtr[i, j] for the traceAi

ℓi+1

−−−→ Ai+1 . . .
ℓj

−→ Aj . We
shall say that|tr| = n.

We say that the tracetr is of the formA0 −→∗
ℓi1−−→ Ai1 −→∗

ℓi2−−→ Aij+1
. . . −→∗ ℓir−−→

Ar −→∗ An if ℓk is a labeled action for allk = ij , 1 ≤ j ≤ r and the internal action
otherwise.
Given a processA we definetr(A) to be the set of all tracestr such thattr[0] = A and
trmax(A) to be the set of all the maximal tracestr such thattr[0] = A.

In order to define trace equivalence we lift static equivalence from frames to traces.
In order to ensure that bisimilar processes are also trace equivalent we need to define
α-equivalence of traces. Intuitively, we say that a labeled actionℓ in a tracetr bindsn in
the subsequent trace ifn occurs as a bound name inℓ. A tracetr can beα-renamed totr′

if tr′ can be obtained by anα-renaming of the bound namen. The formal definition has
been moved to the Appendix where its motivation is also discussed. We writetr −→α tr′

if tr′ is obtained fromtr by anα-renaming of a bound name. The relation∼α is defined
to be the reflexive, symmetric and transitive closure of−→α .

Intuitively, we say that two traces are statically equivalent to the intruder if the
intruder performed the same actions in the trace and the intruder could not “statically”
distinguish the processes resulting from these actions. Formally,

Definition 3 (static equivalence of traces(∼t)). Lettr be a trace of the formA0 −→∗ ℓ1−→

A1 −→∗ ℓ2−→ Aj+1 . . . −→∗ ℓr−→ Ar −→∗ B. Let tr′ be a trace of the formA′
0 −→∗ ℓ′1−→

A′
1 −→∗ ℓ′2−→ A′

j+1 . . . −→∗ ℓ′l−→ A′
l −→

∗ B′. Thentr ↔t tr′ if r = l, and

– for all 1 ≤ i ≤ r, ℓi = ℓ′i.
– for all 0 ≤ i ≤ r, fr(Ai) ∼ fr(A′

i) (static equivalence).

The relation∼t is the transitive closure of∼α ∪ ↔t .

We can now define trace equivalence.

Definition 4 (trace equivalence (≈t)). LetA andB be two closed extended processes.
We say thatA is trace includedin B, writtenA ⊆t B if for each tracetrA ∈ tr(A) there
existstrB ∈ tr(B) such thattrA ∼t trB. The processesA andB are trace equivalent,
writtenA ≈t B, if A ⊆t B andB ⊆t A.

Trace equivalence is an appealing notion for modeling indistinguishability in pres-
ence of an active intruder and can be used to formalize many security properties (e.g.
strong secrecy, anonymity properties, . . .). However, bisimulation is often considered
as it has better proof techniques and is easier to manipulate.

Definition 5 (labeled bisimilarity (≈)). Labeled bisimilarityis the largest symmetric
relationR on closed extended processes, such thatA R B implies

1. fr(A) ∼ fr(B);

6

2. if A → A′, thenB →∗ B′ andA′ R B′ for someB′;

3. if A
ℓ
→ A′ andfv(ℓ) ⊆ dom(A) andbn(ℓ) ∩ fn(B) = ∅ thenB →∗ ℓ

→→∗ B′ and
A′ R B′ for someB′.

As expected labeled bisimulation implies trace equivalence, i.e.≈⊂≈t. Hence bisim-
ulation can be used as a proof technique to show trace equivalence.

3 Epistemic Logic

We shall now present the epistemic logic which allows us to reason about intruder’s
epistemic knowledge and the set of facts in its possession.

3.1 Syntax

The formulas of our logic consist of two levels.Static formulasare used to reason about
a “snapshot” of the process. They include predicates for events that may have occurred
in the past and a predicate for a set of terms that the intruderstatically possesses.Epis-
temic formulasallow us to reason about the dynamic behavior of the process and the
epistemic knowledge that the intruder can deduce from its past interactions with the
process. The formulas use a term language which denotes the set of messages. The
syntax of the logic is given in BNF form in Table 1 and discussed below.

Terms.
bT ::= bn 8 z 8 bf(bT , . . . , bT)

Static formulas.
δ ::= ⊤ 8 Has(bT) 8 cevt(bT , . . . , bT) 8 ¬δ 8 δ ∨ δ 8 ∃z.δ

Epistemic formulas (with the provisoδ is a closed formula and has no free names).
φ ::= δ 8 ¬φ 8 φ ∨ φ 8 Kφ 8 �φ 8 ⊟φ

Table 1.Syntax of the Epistemic Logic

Term language.For the term language of our logic we shall assume that for each namen
in the vocabulary of the applied pi calculus, there is a unique namên in the logic. Simi-
larly for each function symbolf in the vocabulary of the applied pi calculus, we have a
unique function symbol̂f in the logic. However, there is no particular correspondence
between the set of variables in the logic and the applied pi calculus. We usez, z1, . . . to
range over the variables of the logic. The set of terms of the logic now consist of names,
variables and function application (the usual restrictionon sorts and arity apply here).

Static formulas.Static formulas assume a unary predicateHas whose argument is of
base sort. This predicate is used to reason about the set of terms that the intruder pos-
sesses. It also assumes that for each eventevt in the set of events for the calculus there
is predicatêevt (of the correct sort and arity). These predicates are used toreason about
events that may have occurred in the past. The static formulas are built from these pred-
icates using the connectives⊤, negation¬, disjunction∨ and existential quantification
∃z. The usual connectives∧ ⊥ and⇒ and the universal quantification∀ can be derived
from these connectives. We also assume the standard definitions of free and bound vari-
ables and substitution. A static formula isclosedif it does not contain any free variable.

7

Epistemic formulas.Epistemic formulas reason about dynamic behavior of a process
and are constructed fromclosedstatic formulas with no free names using the connec-
tives conjunction∧, negation¬, disjunction∨, existential quantification∃z and the
modalities�, ⊟, K. The reason for using only closed formulas will become clearin Sec-
tion 3.2. Disallowing names is not restrictive, as events can be used to refer to names.
The formulas are interpreted over the possible “runs” of theprocess. The formula�φ is
true at some point in a run ifφ is true for all possible future points whereas the formula
⊟φ is true if φ is true for all past points. The formulaKφ is true if the intruder knows
(in the epistemic sense)φ to be true based upon its interaction with the process in the
past. The connectives⊥ and⇒ and the modality♦ can be derived.

3.2 Semantics

We now define the semantics of the logic. We start by the denotation of terms.

Denotation of Terms.The terms of the logic are interpreted as ground terms of the
applied pi calculus and use the concept of an assignment. Anassignmentρ is a map
which maps each logic variablez ∈ Z to a ground term of the applied pi calculus.
Using the assignmentρ, the denotation of terms is defined inductively as

[[n̂]]ρ = n [[ẑ]]ρ = ρ(z) [[f̂(T̂1, . . . , T̂r)]]ρ = f([[T̂1]]ρ, . . . , ([[T̂r]]ρ)

Satisfaction of static formulas.The models of static formulas are pairs- one part of
which is a name distinctclosed extended processA term, i.e. a process such that
bn(A) ∩ fn(A) = ∅ and no name is bound twice; and the other part an assignment.

We need another definition for our semantics which formalizes a second notion of
intruder’s possession (e.g. [1]).

Definition 6 (Deducibility). Letφ ∼= νñ.σ be a closed name-distinct frame andM be
a term. We say thatM is deducible fromφ, denoted byφ ⊢ M if there exists a termN
such thatfn(N) ∩ ñ = ∅ andNσ =E M . Such a termN is a recipeof the termM .

Note that whenνñ.σ ⊢ M , any occurrence of names from̃n in M is bound byνñ. It is
for this reason that we introduce the relation∼= (cf. Example in Remark 1, item 3).

Example 6.Consider the two framesφ andφ′ given in Example 5. We have thatφ ⊢ k,
φ ⊢ s andφ ⊢ s′. Indeedx2, dec(x1, x2) ands′ are recipes of the termsk, s ands′.

The interpretation of the static formulas given a name-distinct process termA and
an assignmentρ is defined in Table 2. The interesting cases are the satisfaction of the
predicatesHas and êvt. Intuitively, the formulaHas(T̂) is satisfied if the intruder can
deduce the denotation of̂T . The formulaêvt(T̂1, . . . , T̂r) is satisfied if the correspond-
ing eventevt([[T̂1]]ρ, . . . , [[T̂r]]ρ) has occurred. The other definitions are standard. Note
that the assignmentρ[z 7→ M] is the same asρ except that onz it takes the valueM and
the formulaδ[M/z] is the formula obtained fromδ by substituting the free occurrences
of z by M .

Remark 1.

1. If the formulaδ is closed,i.e., does not contain any free variables, then the satis-
faction ofδ depends only on the process and is independent of the assignment. For
such formulas we can drop the assignment in the satisfactionrelation.

8

A, ρ |= ⊤ always
A, ρ |= cevt(bT1, . . . , bTr) iff A ∼= νñ.(A | [evt(M1, . . . , Mr)]) ∧ Mi =E [[bTi]]ρ 1 ≤ i ≤ r

A, ρ |= Has(bT) iff fr(A) ⊢ [[bT]]
ρ

A, ρ |= ¬δ iff A, ρ 6|= δ
A, ρ |= δ1 ∨ δ2 iff A, ρ |= δ1 or A, ρ |= δ2

A, ρ |= ∃z.δ iff ∃ a ground termM such thatA, ρ[z 7→ M] |= δ[M/z]

Table 2.Satisfaction of static formulas

2. Note that name-distinctness is crucial for the definitionof satisfaction of the static
formulas. The name distinctness allows us to uniquely identify the bound names
and interpret them. Otherwise, the processA = (νn.[evt1(n)]) | (νn.[evt2(n)]) will
satisfyêvt1(n̂) ∧ êvt2(n̂) which is clearly wrong as the two bound names refer to
different nonces.

3. For a similar reason, we need to forbidα-renaming when evaluating predicatesevt.
Otherwise, (if we replace∼= with ≡ in the above semantics) we have that

νn1, n2.([evt1(n1)] | [evt2(n2)]) |= ∃z. (êvt1(z) ∧ êvt2(z)).

4. It can be checked that for any name-distinct closed frameφ, if φ ∼= νñ.σ and
φ ∼= νñ′.σ′ then ñ and ñ′ are the same (upto ordering) and for anyN such that
fn(N) ∩ ñ = ∅, Nσ =E Nσ′. Hence, ifA1

∼= A2, we get thatA1 andA2 satisfy
the same set of static formulas.

5. The previous observation would not have been true if we hadallowed the equiv-
alenceνn.0 ≡ 0. In particular, the intruder can deduce all ground terms in the
process0 while it cannot deduce the termn in the processνn.0.

Please note that even name-distinct processes which are equal moduloα-conversion
may satisfy different static formula. However, if we limit ourselves to closed formulas
with no free names,α-renaming does not affect the satisfaction.

Lemma 1. Let δ be a closed static formula with no free names andA1 andA2 be two
name distinct extended processes such thatA1 ≡ A2. ThenA1 |= δ iff A2 |= δ.

The above Lemma allows us to define the semantics of the epistemic formulas.

Satisfaction of epistemic formulas.We shall now define the satisfaction relation for
epistemic formulas. As in the case of epistemic logic for distributed systems [14, 15],
the epistemic formulas will be interpreted over the possible “runs” of a process, i.e. the
set of maximal traces (Definition 2). Please note that since we do not have replication
in our process terms, all traces of a process are finite and ourdefinition of maximal
traces does capture all possible “runs”. The traces are enough to interpret the temporal
modalities� and⊟. In order to interpret the modalityK, we need to consider an equiv-
alence relation on the set of traces which identifies traces that are indistinguishable to
the intruder: static equivalence on traces (Definition 3). An epistemic formulaφ is in-
terpreted over a triple - a closed extended processA, a maximal tracetr ∈ trmax(A) and
a position0 ≤ j ≤ |tr| in tr as described in Table 3.

Remark 2.Our use of static equivalent traces as indistinguishable traces is reminiscent
of what is often calledperfect recallin distributed systems- the intruder distinguishes

9

A, tr, i |= δ iff there is a name-distinct extended processA′

such thattr[i] ≡ A′ andA′ |= δ
A, tr, i |= �φ iff ∀i ≤ j ≤ |tr|. A, tr, j |= φ
A, tr, i |= ⊟φ iff ∀0 ≤ j ≤ i. A, tr, j |= φ
A, tr, i |= Kφ iff ∀tr

′ ∈ trmax(A),∀0 ≤ j ≤ |tr′|
such thattr[0, i] ∼t tr

′[0, j] ⇒ A, tr′, j |= φ
A, tr, i |= ¬φ iff A, tr, i 6|= φ
A, tr, i |= φ1 ∨ φ2 iff A, tr, i |= φ1 or A, tr, i |= φ2

Table 3.Satisfaction of epistemic formulas

traces based upon the complete history of its interaction with the process. We could
have, of course, chosen to define coarser equivalence relations. For example, we could
have declared two traces to be equivalent if the intruder cannot “statically” distinguish
the last processes in the respective traces.3 However, a coarser relation would result in
intruder “knowing” a smaller set of formulas to be true whichmay lead to declaring
a protocol secure which otherwise will be insecure. Besides, an all powerful intruder
should be able to record its history of interaction with the protocol.

Definition 7. We say thatA |= φ if for all tr ∈ trmax(A) we haveA, tr, 0 |= φ.

Not that Lemma 1 will not be true if we replace structural equivalence with static
equivalence. One reason is the presence of the predicatesêvt as static equivalence does
not depend on presence/absence of such formulas. However, even if we were to consider
the fragment of the logic without these predicates, statically equivalent processes may
satisfy different static formulas (and thus Hennessy-Milner Theorem does not hold).

Lemma 2. There are closed extended processesA1 andA2 and an epistemic formulaφ
such thatA1 ≈ A2 andA1 |= φ butA2 6|= φ.

Proof. Consider the two processesA1 = νn.{hash(n)/x} andA2 = νn.{n/x} where
hash is unary function symbol which models a cryptographic hash function and hence
cannot be inverted. We assume that the set of equationsE is empty. We have that
A1 ≈ A2. We have also thatA1 |= ∃z.(Has(hash(z)) ∧ ¬Has(z)) (the intruder has
the hash of the noncen but cannot invert it) whileA2 6|= ∃z.(Has(hash(z))∧¬Has(z))
(the intruder has every free name and can create its hash). ⊓⊔

3.3 Examples

We now give some simple examples of security protocols that can be modeled in our
logic. These examples do not use the knowledge operator. We refer to Section 4 for
such an example. We only consider closed formulas (no free variables) and formulas
without names. The idea is to annotate the process and to use the parametric events to
refer to bound names. Specifically, we will show how to specify secrecy, authentication
and fairness in exchange protocols in our formalism.

3 This is similar in spirit to what is commonly called “knowledge” in security.

10

Example 7.This is a way to express the secret (in the sense of deducibility) of the
names in P = νs.evt(s).out(c, s). Let φ = �∀z.(evt(z) ⇒ ¬Has(z)). Obviously,

we haveP 6|= φ as P → A1
νx.out(c,x)
−−−−−−−→ A2 is a trace intrmax(P) whereA1 =

νs.(out(c, s) | [evt(s)]), A2 = νs.({s/x} | [evt(s)]) and(P, tr, 2) |= evt(s) ∧ Has(s).

Another classical example is authentication modeled as an agreement property.

Example 8.Consider the following simple handshake protocol wherek is a shared key
andf any free symbol:

A → B : enc(n, k)
B → A : enc(f(n), k)

The goal of this protocol is to authenticate B from A’s point of view. In the applied
pi calculus this protocol is modeled byνk.(A | B) where

A = νn. out(enc(n, k)). in(x). if dec(x, k) = f(n) thenend(n)
B = in(y). begin(dec(y, k)). out(enc(f(dec(y, k)), k))

The eventsbegin andend are used to annotate the protocol. The authentication of B
to A is then modeled byφ = �∀z.(end(z) ⇒ begin(z)).

Yet another, less classical example of property is fairnessin contract signing protocols.

Example 9.In a fair contract signing protocols two agents want to exchange their cor-
responding signatures on a given contract in such a way that at the end of the protocol
either both participants obtain the signed contract or noneof them does so. Describing
a complete example of such a protocol would be out of the scopeof this paper and we
refer the reader to [9] for more details. These protocols either terminate in a final state
where the exchange has been aborted or in a final state where the exchange did succeed.
For the purpose of our example, we suppose that the process modeling the participantP
(eitherA or B) is annotated as follows: the eventPend(c) indicates thatP is in a final
state for some contractc; the eventPcontract(c) indicates thatP successfully received
the signed contract. Then,fairness forA can be modeled as

φ = �∀c.(Aend(c) ⇒ (¬Bcontract(c) ∨ Acontract(c))).

The formula says that for any contract wheneverA is in a final state (Aend(c)),
eitherB did not obtain the contract signed byA (¬Bcontract(c)) or A did obtain the
contract signed byB (Acontract(c)). Fairness forB can be modeled in a similar way.

4 Privacy in electronic voting protocols

Many electronic voting protocols have been proposed in the literature and their for-
mal analysis has received considerable attention [13, 4]. One important security goal
is privacy of votes– an intruder should not be able to learn (by its interaction with the
protocol) how an honest voter Alice voted. This property hasbeen formulated both
as an observational equivalence, e.g. in [13], and as an epistemic property, e.g. in [4],
although never within the same formalism. Our formalism allows us to consider both
the formalizations and compare them within the same framework. For the sake of sim-
plicity, we only consider single protocol instances in which two voters Alice and Bob
participate and we assume that there are only two voting options available to Alice and
Bob and we represent these options by0 and1.

11

Electronic voting protocols in applied pi calculus.We refer the reader to [13] for a
detailed formal definition of electronic voting protocols in applied pi calculus. Herein,
we state the salient points of the definition. We assume that there is a sortvoteoption in
our signature which contains at least two constants (0-ary function symbols), denoted
by 0 and1, that do not occur inE. Furthermore, we assume that the protocol can be
expressed as a parametricplain processV (xa, xb) with two free variablesxa andxb

of the sortvoteoption.4 Forva, vb ∈ {0,1}, the voter processV (va, vb) represents the
process in which Alice and Bob vote for optionsva andvb respectively. Although these
assumptions are sufficient to model privacy as observational equivalence, the definition
in terms of epistemic logic requires us to introduce events to annotate the individual
voter preferences and consider all possible traces within asingle process.

Towards this end we introduce a parametric eventvotes(,) with two arguments of
the sortvoteoption which is not present in the voting processV (xa, xb). From now on,
we consider the following voting process which considers all voting scenarios:

V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb).

The processV shall henceforth be called avoting process.

Privacy as observational equivalence.We are ready to state the formalization of pri-
vacy as proposed in [13], which we shall callstrong privacyfor the rest of this sec-
tion. Intuitively, the voting protocol represented asV respects strong privacy if the
intruder cannot distinguish the two protocol instances in which Alice and Bob’s votes
are swapped.

Definition 8. The voting processV respectsstrong privacyif V (0,1) ≈ V (1,0).

Privacy as epistemic formula.We need a few definitions to state privacy as an epistemic
formula. An inspection of the construction ofV shows that since the eventsvotes do
not occur inV , any maximal trace ofV consists of only one eventvotes(va, vb) in the
store and corresponds to Alice and Bob voting for optionva andvb respectively. Also
(from construction of the epistemic logic in Section 3), we assume that there is a binary
predicate in our logic corresponding to the eventvotes which we shall (again in the
interest of keeping the syntax simple) denote byvotes. We also assume that there are
two 0-ary function symbols corresponding to the two voting options which shall again
denote by0 and1. Now, givenv ∈ {0,1} consider the formula

Avote(v) = votes(v,0) ∨ votes(v,1).

Intuitively the formula is true in a state reachable fromV if Alice votes for optionv.
Similarly we can define formulaBvote(v).

Now, according to [4], a protocol respectsprivacy for Aliceif the intruder cannot
(epistemically) know which voting option Alice exercised.A protocol respects privacy
if it respects privacy for both Alice and Bob. Please note that this definition does not
usually hold for voting protocols in which the final tally of the votes are announced–
a unanimous election always reveals each individual’s vote. Hence, a more appropriate
formulation is that whenever Alice and Bob vote differently, the intruder cannot learn
how each of them voted. This gives us the following definitionwhich states that intruder
can learn how a voter voted only if the other voter voted the same option.

4 V being a plain process is a simplification and we could have started with a non-empty frame.

12

Definition 9 (privacy). The voting processV respectsprivacy if V |= Aprivacy ∧
Bprivacy where

– Aprivacy
def
= ∧v∈{0,1}�(K(Avote(v)) → Bvote(v)), and

– Bprivacy
def
= ∧v∈{0,1}�(K(Bvote(v)) → Avote(v)).

Strong privacy implies privacy.We now show that privacy in terms of observational
equivalence implies privacy in terms of epistemic formulas. In fact we show a stronger
statement, namely, that ifV (0,1) ≈t V (1,0) then the protocol will respect privacy.
The proof of the statement is deferred to the Appendix.

Theorem 1. If V (0,1) ≈t V (1,0) then the voting processV respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Now, privacy in terms of epistemic formulas does not imply strong privacy. One can
construct examples which respect privacy but not strong privacy, based on the fact that
bisimulation is a finer relation than trace equivalence. However, a partial converse of
Theorem 1 holds– under reasonable assumptions privacy impliesV (0,1) ≈t V (1,0).

Privacy implies trace equivalence.In order to state these assumptions, we need a few
definitions. First we need the definition of a publishing trace. Intuitively, we say that a
maximal tracetr is a publishing trace if the intruder learns which votes werecast (but
not the link between the voters and individual votes) and candistinguish it from any
other trace when the set of votes cast are different. For example, a publishing trace in
which Alice and Bob vote0 and1 is distinguishable from one in which they cast0

and0 but not necessarily from one in which they cast1 and0 respectively. A maximal
trace that is not publishing is said to be an abort trace. Intuitively, this says that the
protocol could not be completed and hence votes are not published.5

Definition 10 (publishing and abort traces).Givenva, vb ∈ {0,1}, a maximal trace
tr ∈ trmax(V (va, vb)) is said to be apublishing traceif for any v′

a, v′
b ∈ {0,1} such

that{va, vb} 6= {v′
a, v′

b}, there is notr′ ∈ tr(V (v′
a, v′

b)) such thattr ∼t tr′. Otherwise
tr is anabort trace.

We say that a protocol is equivalent for aborts if an abort trace can be mimicked
irrespective of how Alice and Bob decided to vote.

Definition 11 (equivalent for aborts).Givenva, vb ∈ {0,1} andtr ∈ trmax(V (va, vb))
an abort trace. We say thatV is equivalent for abortsif for anyv′

a, v′
b ∈ {0,1} there is

a tr′ ∈ trmax(V (v′
a, v′

b)) such thattr ∼t tr′.

We have the partial converse of Theorem 1. The proof is deferred to the Appendix.

Theorem 2. Let V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb) be a voting process such
thatV is equivalent for aborts and respects privacy. ThenV (0,1) ≈t V (1,0).

Theorem 1 and Theorem 2 suggest that trace-equivalence is the more appropriate
notion for defining privacy of votes in electronic voting even though the bisimulation-
based definition (which implies privacy) has better proof techniques.

5 We believe that a good electronic voting protocol should nothave abort traces. However, this
property has not been studied in literature.

13

5 Related and Future Work

Related work. Several authors (e.g. [16, 12, 19]) have recognized the complementary
nature of the process algebraic and epistemic approaches and the benefit to combine
them. Different approaches have been proposed to bridge this gap. In [16],function
viewsare used to represent partial information and make the interface between protocol
and properties. In order to get epistemic specifications closer to a behavioral specifica-
tion, van Eijck and Orzan [19] propose a dynamic epistemic logic. However, it seems
that no mediation is necessary [15, 12] and it is possible to bridge this gap by proposing
a combined framework as it is also suggested in this paper. However, in the works cited
above, the authors study abstract versions of protocols which do not take into account
cryptographic primitives (e.g. encryption, signature, . ..) and their specific properties.

Some recent works [17, 10] have been devoted to designing a logic to character-
ize static equivalence. In [17], they build upon the logic for frames and extend it with
Hennessy-Milner modalities, yielding a logic for applied pi processes which charac-
terizes labeled bisimilarity. However, as we already pointed out in the Introduction, our
goal is different and we want to define a logic that is expressive enough to state a variety
of security properties in a natural way. The advantage of this approach is evident in our
example of formalizing privacy in e-voting protocols in which we were able to establish
the exact relationship between two formal definitions of privacy in e-voting protocols.

Another similarity between our work and the work in [10] is that they also have
epistemic modalities. The work in [10] has another advantage in that they reason about
multiple agents and hence their logic has epistemic modalities for multiple agents and
not just the intruder. This is however achieved by interpreting the logic over an agent-
indexed family of frames with a frame representing the set ofmessages in an agent’s
possessions. Since they are mostly interested in studying static equivalence, they do not
mention how these frames are obtained. An applied pi-calculus process only keeps track
of the messages in intruder’s possession and thus we have only one epistemic modality.

The problem of having a suitable language which allows for anexpressive property
logic is a well-known problem in the context of cryptographic protocols verification.
In [7, 11], such a language and logic is proposed and allows specification of a large
class of security properties. However, none of the underlying protocol languages is as
expressive as the applied pi calculus. We are able to model a large class of protocols
which may use less classical cryptographic primitives, specified by an equational the-
ory, in an intuitive way. Therefore, our framework can be used for protocols such as
electronic voting protocols, contract signing protocols,. . .

Future Work. The formalism presented in this paper is a starting point, and we intend
to study stronger anonymity properties such as coercion-resistance that arise in security
protocols. Another line of investigation is to extend the formalism to allow for reasoning
about epistemic knowledge of multiple agents, and this would involve extension of both
the calculus and the logic. We also intend to study model-checking algorithms to verify
whether a process satisfies a given formula. Finally, we alsointend to investigate an
axiomatization of the logic presented in the paper.

14

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational theo-
ries. Theoretical Computer Science, 387(1-2):2–32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. InProc.
28th Symposium on Principles of Programming Languages, pages 104–115, 2001.

3. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and auto-
mated verification of the direct anonymous attestation protocol. InProc. 29th IEEE Sympo-
sium on Security and Privacy, 2008.

4. A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of voting proto-
cols. InProc. 11th Conference on Theoretical Aspects of Rationality and Knowledge, pages
62–71, 2007.

5. B. Blanchet. An Efficient Cryptographic Protocol VerifierBased on Prolog Rules. InProc.
14th Computer Security Foundations Workshop, pages 82–96, 2001.

6. B. Blanchet. From Secrecy to Authenticity in Security Protocols. In9th International Static
Analysis Symposium, pages 342–359, 2002.

7. J. Borgstr̈om, S. Kramer, and U. Nestmann. Calculus of Cryptographic Communication. In
Proc. Workshop on Foundations of Computer Security and Automated Reasoning for Security
Protocol Analysis, 2006.

8. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication.ACM Trans. Comput.
Syst., 8(1):18–36, 1990.

9. R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of multi-party contract signing.
Journal of Automated Reasoning, 36(1-2):39–83, 2006.

10. M. Cohen and M. Dam. A complete axiomatization of knowledge and cryptography. In
Proc. 22nd IEEE Symposium on Logic in Computer Science, pages 77–88, 2007.

11. R. Corin, A. Saptawijaya, and S. Etalle. PS-LTL for constraint-based security protocol anal-
ysis. InProc. 21st International Conference on Logic Programming, pages 439–440, 2005.

12. F. Dechesne, M. R. Mousavi, and S. Orzan. Operational andepistemic approaches to protocol
analysis: Bridging the gap. InProc. 14th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, pages 226–241, 2007.

13. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic
voting protocols.Journal of Computer Security, 2008. To appear.

14. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning About Knowledge. MIT Press,
1995.

15. J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in multiagent systems.
Journal of Computer Security, 13(3):483–512, 2005.

16. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: a modular ap-
proach.Journal of Computer Security, 12(1):3–36, 2004.

17. H. Hüttel and M. D. Pedersen. A logical characterisation of static equivalence.Electr. Notes
Theor. Comput. Sci., 173:139–157, 2007.

18. H. Jonker and W. Pieters. Receipt-freeness as a special case of anonymity in epistemic logic.
In Proc. IAVoSS Workshop On Trustworthy Elections, 2006.

19. J. van Eijck and S. Orzan. Epistemic verification of anonymity. Electr. Notes Theor. Comput.
Sci., 168:159–174, 2007.

20. T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. InProc. 14th
IEEE Symposium on Security and Privacy, 1993.

15

A Definition of α-renaming of traces

Definition 12 (α equivalence of traces(∼α)). Given a tracetr = A0
γ1
−→ A1 . . .

γℓ−→
An we say that a namen is bound at positionj if n ∈ bn(γj). Pickn′ /∈ ∪n

ℓ=0(bn(γk)∪
fn(γk)∪ bn(Ak)∪ fn(Ak)) and letj′ > j be the smallest number such thatn is bound
at positionj′ (if no such number occurs letj′ = ℓ + 1).

Let tr′ be the trace obtained fromtr by replacing all occurrences ofn by n′ in γk

for j ≤ k < j′ and by replacingAk by Ak{n
′/n} for j < k ≤ j′. We say thattr′ is

obtained fromtr by anα-conversion ofn by n′. We writetr −→α tr′ if there exist some
n andn′ such thattr′ is obtained fromtr by anα-conversion ofn byn′.

The relation∼α is defined to be the reflexive, symmetric and transitive closure
of −→α .

The reason for definingα-equivalence is illustrated in the following example.

Example 10.Consider the processes

A = νc.out(a, c).in(c, x).0

and
B = νd.νn.out(a, d).in(d, x).if (x = n) then out(a, c).

The two processesA andB are observationally equivalent. Assume further that the
vocabulary consists of a unary function symbolhash and a constant0 of the base type.

The processA exhibits the tracetr in A
νc.out(a,c)
−−−−−−→ in(c, x).0

in(c,hash(0))
−−−−−−−→ 0. Note

that althoughB is observationally equivalent toA, B cannot exhibit the same trace
tr as c occurs free inB. However, note that the tracetr is α-equivalent to the trace

tr′ = A
νe.out(a,e)
−−−−−−→ in(e, x).0

in(e,hash(0))
−−−−−−−→ 0 andB can exhibittr′.

B Proof of Theorem 1

Theorem 1. If V (0,1) ≈t V (1,0) then the voting processV respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Proof. The epistemic formula that expresses privacy is made of fourconjuncts. We shall
show that ifV (0,1) ≈t V (1,0) thenV satisfies one conjunct, say�(K(Avote(0)) →
Bvote(0)). The proof thatV satisfies other conjuncts is similar.

Now consider any maximal tracetr ∈ trmax(V) such that there is aj ≤ |tr| such that
V , tr, j |= K(Avote(0)). It suffices to show thatV , tr, j |= Bvote(0). SinceV , tr, j |=
K(Avote(0)), it must be the caseV , tr, j |= Avote(0), that is,V , tr, j |= votes(0,0) ∨
votes(0,1). We need to show thatV , tr, j |= Bvote(0). Hence it suffices to show that
V , tr, j 6|= votes(0,1).

We proceed by contradiction. Assume thatV , tr, j |= votes(0,1). From the fact
that the eventvotes does not occur inV and the construction ofV , we can show that
j ≥ 2 and the tracetr consists ofi initial internal steps ofV (2 ≤ i ≤ 4, i.e., i − 1

16

choices and 1 event) leading to([votes(0,1)] | V (0,1)) followed by a maximal trace
of ([votes(0,1)] | V (0,1)).

Now one can show easily thatV (0,1) ≈t V (1,0) iff ([votes(0,1)] | V (0,1)) ≈t

([votes(1,0)] | V (1,0)). Thus there is a tracetr1 ∈ tr([votes(1,0)] | V (1,0)) such
that tr[i, |tr|] ∼t tr1. Consider the tracetr′ of V which starts with two internal actions
(choice and event) leading to([votes(1,0)] | V (1,0)) followed bytr1. Now tr ∼t tr′.
By definition of equivalence of traces, we get that there mustbe ak ≤ |tr′| such that
tr[0, j] ∼t tr′[0, k].

Now, note that sincej ≥ 2 and first two actions oftr andtr′ are internal actions,
we can show thatk ≥ 2. Using the fact thattr′ consists of two internal steps followed
by a trace of([votes(1,0)] | V (1,0)) and the fact that the eventvotes(0,1) does not
occur inV , we get thattr′[k] 6|= Avote(0). Hence, for any maximaltr0 that extends
tr′ we getV , tr0, k 6|= Avote(0). On the other hand, sincetr[0, j] ∼t tr0[0, k] and
V , tr, j |= K(Avote(0)), we haveV , tr0, k |= Avote(0). A contradiction. ⊓⊔

C Proof of Theorem 2

Theorem 2. Let V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb) be a voting process such
thatV is equivalent for aborts and respects privacy. ThenV (0,1) ≈t V (1,0).

Proof. Given a tracetr ∈ trmax(V (va, vb)) we define[votes(va, vb)] | tr to be the trace
obtained by replacingtr[j] by [votes(va, vb)] | tr[j] for each0 ≤ j ≤ |tr.| We say
that [votes(va, vb)] | tr is publishing (abort) trace iftr is a publishing (abort) trace.
First we observe that it can be shown using the fact that events do not affect trace
equivalence, thatV (0,1) ≈t V (1,0) iff [votes(0,1)] | V (0,1) ≈t [votes(1,0)] |
V (1,0). We now proceed by contradiction. Assume that[votes(0,1)] | V (0,1) 6≈t

[votes(1,0)] | V (1,0). Thus either[votes(0,1)] | V (0,1) 6⊆t [votes(1,0)] | V (1,0)
or [votes(1,0)] | V (1,0) 6⊆t [votes(0,1)] | V (0,1).

Assume that[votes(0,1)] | V (0,1) 6⊆t [votes(1,0)] | V (1,0) (the other case is
similar). Thus there is a tracetr ∈ tr([votes(0,1)] | V (0,1)) such that for alltr′ ∈
tr([votes(1,0)] | V (1,0)), we have thattr 6∼t tr′. Furthermore, we can assumetr to be
maximal (otherwise we can extendtr to a maximal trace). Now since theV is equivalent
for aborts,tr cannot be an abort trace.

Now consider the maximal tracetr0 of V which consists of two internal actions
followed by the tracetr. We have thattr0(|tr0|) |= votes(0,1). Now, pick any other
maximal tracetr1 of V such that there is aj ≤ |tr1| such thattr1[0, j] ∼t tr0. Any
maximal trace ofV consists of two internal steps followed by a maximal trace of
[votes(va, vb)] | V (va, vb) for someva, vb. Since the first two steps oftr0 and tr1
are internal andj > 2, we can show thattr1[2, j] ∼t tr0[2, |tr0|].

Now tr0[2, |tr0|] is tr. Furthermoretr1[2, j] ∈ tr([votes(va, vb)] | V (va, vb)) for
someva, vb. Sincetr is a publishing trace andtr is not contained (upto equivalence) in
tr([votes(1,0)] | V (1,0)), we can conclude thattr1[2, j] is a trace of[votes(0,1)] |
V (0,1). Hencetr1[j] |= votes(0,1). Hence, we have thatV , tr0, |tr0| |= K(Avote(0))
butV , tr0, |tr0| 6|= Bvote(0). A contradiction. ⊓⊔

17

