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Abstract. We present a symbolic definition of election verifiability for electronic
voting protocols. Our definition is given in terms of reachability assertions in
the applied pi calculus and is amenable to automated reasoning using the tool
ProVerif. The definition distinguishes three aspects of verifiability, which we call
individual, universal, and eligibility verifiability. It also allows us to determine
precisely what aspects of the system are required to be trusted. We demonstrate
our formalism by analysing the protocols due to Fujioka, Okamoto & Ohta and
Juels, Catalano & Jakobsson; the latter of which has been implemented by Clark-
son, Chong & Myers.
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1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries to pro-
vide more efficient voting procedures with an increased level of security. However,
current deployment has shown that the security benefits are very hard to realise [12,
20, 11, 22]. Those systems rely on the trustworthiness of the servers and software that
is used to collect, tally and count the votes, and on the individuals that manage those
servers. In practice, it is very hard to establish the required level of trust.

The concept of election verifiability that has emerged in the academic literature [16,
19] aims to address this problem. It significantly reduces the necessity to trust elec-
tronic systems, by allowing voters and election observers to verify independently that
votes have been recorded, tallied and counted correctly. To emphasise a voter’s ability
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to verify the results of the entire election process, it is sometimes called end-to-end
verifiability.

We define election verifiability in a formal and general setting, and we analyse sev-
eral voting protocols from the literature. We work in the applied pi calculus [2], and
where possible we use the ProVerif [10] tool to automate the verification. The calcu-
lus and the tool have already been successful in analysing other properties of voting
systems [14, 6].

In this paper we use the term bulletin board to refer to the output produced at the
end of an election process. This will include, at least, legitimate ballots (also called
bulletin board entries); and the election outcome (a multiset of votes). We remark that
illegitimate ballots are assumed to be discarded prior to the end of the election process.

Election verifiability allows voters and observers to verify that the election outcome
corresponds to the votes legitimately cast. We distinguish three aspects of verifiability:

Individual verifiability: a voter can check that her own ballot is included in the bulletin
board.

Universal verifiability: anyone can check that the election outcome corresponds to the
ballots; and, a voter can check that her own vote is included.

Eligibility verifiability: anyone can check that each vote in the election outcome was
cast by a registered voter and there is at most one vote per voter; and, a voter can
check that her own vote is considered legitimate.

(Note that some authors use the term “universal verifiability” to refer to the conjunction
of what we call “universal verifiability” and “eligibility verifiability”. This distinction is
made for compatibility with protocols which do not offer eligibility verifiability.) These
three aspects of verifiability are related to the following correctness properties [6], de-
fined with respect to honest protocol executions:

Inalterability: no one can change a voter’s vote.
Declared result: the election outcome is the correct sum of the votes cast.
Eligibility: only registered voters can vote and at most once.

Election verifiability properties are intuitively stronger than correctness properties, since
they assert that voters and observers can check that the correctness properties hold,
event when administrators deviate from the protocol.

We define election verifiability in terms of a test which can be performed on the
bulletin board by either a voter or an observer. The test succeeds if and only if the
election outcome corresponds to ballots legitimately cast. That is, the following criteria
must be satisfied: 1) all votes cast by voters are included in the bulletin board (possibly
subject to some re-vote weeding policy); 2) the election outcome corresponds to the
votes cast; and 3) each vote included in the election outcome was cast by a unique
registered voter.

1.1 Contribution

We present the first formal definition of election verifiability which captures the three
desired aspects: individual verifiability, universal verifiability and eligibility verifiabil-
ity. The definition is a sufficient condition for election verifiability, but it may not be
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necessary; that is, there could be some protocols which offer verifiability but are not
captured by our definition. Our definition is initially presented independently of any
particular formal framework. Then, we formalise our definition as reachability asser-
tions in the applied pi calculus. This enables us to realise the first definition of elec-
tion verifiability which is amenable to automated reasoning, using Blanchet’s ProVerif
tool [10]. Although election verifiability reduces the set of components required to be
trustworthy, in general it does not completely eliminate the need to trust some part of the
client software. We therefore introduce the notion of a sufficiently capable voting proto-
col. Intuitively, this is the part of the protocol that needs to “behave correctly” to ensure
verifiability. Such parts of the protocol should be implemented using trusted hardware
or be auditable. We demonstrate the applicability of our definition by analysing three
protocols. The first protocol is a simple illustrative protocol which is trivially verifi-
able because voters digitally sign their ballot. (Note that this protocol does not achieve
other properties such as privacy). We then analyse two protocols from the literature by
Fujioka et al. [16] and Juels et al. [19].

1.2 Related work

Juels, Catalano & Jakobson [18, 19] present the first definition of universal verifiabil-
ity in the provable security model. Their definition assumes voting protocols produce
signature proofs of knowledge demonstrating the correctness of tallying. Automated
analysis is not discussed.

Universal verifiability was also studied by Chevallier-Mames et al. [13] with the aim
of showing an incompatibility result: protocols satisfying their definition are incompat-
ible with vote-privacy (also called ballot secrecy), and hence coercion-resistance. To
see this, note that they require functions f and f ′ such that for any bulletin board BB
and list of eligible voters L the function f(BB,L) returns the list of actual voters and
f ′(BB,L) returns the election outcome (see Definition 1 of [13]). From these functions
one could consider any single bulletin board entry b and compute f({b}, L), f ′({b}, L)
to reveal a voter and her vote. Our definitions do not reflect such an incompatibility of
properties and allow protocols to satisfy both verifiability and coercion-resistance.

Baskar, Ramanujan & Suresh [9] and subsequently Talbi et al. [21] have formalised
individual and universal verifiability with respect to the FOO [16] electronic voting
protocol. Their definitions are tightly coupled to that particular protocol and cannot
easily be generalised. Moreover, their definitions characterise individual executions as
verifiable or not; whereas such properties should be considered with respect to every
execution (that is, the entire protocol).

1.3 Outline

Section 2 recalls the applied pi calculus. In Section 3 we introduce a generic definition
of verifiability which is independent of any particular formal framework. In Section 4
our definition is formalised as reachability assertions in the context of the applied pi
calculus. In Section 5, we consider what are the minimal trust requirements that are
needed to permit election verifiability. The three case studies are analysed in Section 6.
Finally, we conclude and give directions for future work (Section 7).
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2 Applied pi calculus

The applied pi calculus [2] is a language for modelling concurrent systems and their
interactions. It is an extension of the pi calculus which was explicitly designed for mod-
elling cryptographic protocols. For this purpose, the applied pi calculus allows terms to
be constructed over a signature rather than just names. This term algebra can be used to
model cryptographic primitives.

2.1 Syntax

The calculus assumes an infinite set of names a, b, c, k,m, n, s, t, r, . . ., an infinite set
of variables v, x, y, z, . . . and a finite signature Σ, that is, a finite set of function sym-
bols each with an associated arity. A function symbol of arity 0 is a constant. We use
metavariables u,w to range over both names and variables. Terms F,L,M,N, T, U, V
are built by applying function symbols to names, variables and other terms. Tuples
u1, . . . , ul and M1, . . . ,Ml are occasionally abbreviated ũ and M̃ . We write {M1/x1,
. . . ,Ml/xl} for substitutions that replace x1, . . . , xl with M1, . . . ,Ml. The applied pi
calculus relies on a simple type system. Terms can be of sort Channel for channel names
or Base for the payload sent out on these channels. Function symbols can only be ap-
plied to, and return, terms of sort Base. A term is ground when it does not contain vari-
ables. The grammar for processes is shown in Figure 1 where u is either a name or vari-
able of channel sort. Plain processes are standard. Extended processes introduce active

P, Q, R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q conditional

A, B, C ::=extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 1. Applied pi calculus grammar

substitutions which generalise the classical let construct: the process ν x.({M/x} | P )
corresponds exactly to the process let x = M in P . As usual names and variables have
scopes which are delimited by restrictions and by inputs. All substitutions are assumed
to be cycle-free.

The sets of free and bound names, respectively variables, in process A are denoted
by fn(A), bn(A), fv(A), bv(A). We also write fn(M), fv(M) for the names, respec-
tively variables, in term M . An extended process A is closed if it has no free variables.
A context C[ ] is an extended process with a hole. We obtain C[A] as the result of fill-
ing C[ ]’s hole with A. An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output.
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The signature Σ is equipped with an equational theory E, that is a finite set of
equations of the form M = N . We define =E as the smallest equivalence relation on
terms, that contains E and is closed under application of function symbols, substitution
of terms for variables and bijective renaming of names.

We introduce linear processes as a subset of plain processes generated by the gram-
mar

P ::= 0 | ν n.P | c(x).P | c〈M〉.P
| if M = N then P else 0 (P 6= 0)
| if M = N then 0 else P (P 6= 0)

Linear processes can be sequentially composed in a natural way. Let P be a linear
processes and Q a plain process. We define the plain process P ◦ Q to be Q if P = 0
and otherwise by replacing the unique occurrence of “.0” in P by “.Q”. (Note that “.0”
does not occur in “else 0”. ) Moreover, we note that if P andQ are both linear processes
then P ◦Q is also a linear process.

2.2 Semantics

We now define the operational semantics of the applied pi calculus by the means of two
relations: structural equivalence and internal reductions. Structural equivalence (≡) is
the smallest equivalence relation closed under α-conversion of both bound names and
variables and application of evaluation contexts such that:

PAR-0 A | 0 ≡ A
PAR-A A | (B | C) ≡ (A | B) | C
PAR-C A | B ≡ B | A
NEW-0 νn.0 ≡ 0
NEW-C νu.νw.A ≡ νw.νu.A

REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x}

if M =E N
ALIAS νx.{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}

NEW-PAR A | νu.B ≡ νu.(A | B) if u 6∈ fn(A) ∪ fv(A)

Internal reduction (−→) is the smallest relation closed under structural equivalence, ap-
plication of evaluation contexts and such that

COMM c〈x〉.P | c(x).Q −→ P | Q
THEN if M = M then P else Q −→ P
ELSE if M = N then P else Q −→ Q if M,N ground and M 6=E N

2.3 Notational conventions

By convention we assume that the signatures we consider always contains the binary
function pair, the unary functions fst, snd and the constant ε. The associated equational
theory is defined by fst(pair(x, y)) = x and snd(pair(x, y)) = y. Arbitrary length tu-
ples can be constructed as pair(x1, pair(x2, . . . , pair(xn, ε))); which, for convenience,
we abbreviate (x1, . . . , xn). We also write Mj for fst(snd(snd(. . . snd(M)))) where
j ≥ 1 and there are j−1 occurrences of snd. Finally, we sometimes write c(x1, . . . , xn)
(or c(x̃)) for the sequence of inputs c(x1). . . . .c(xn).
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To aid readability, we also allow boolean combinations of M = N in conditionals
in the “if-then-else” process, and in the output of terms. If φ is such a combination, then
the output c〈φ〉.P is an abbreviation for “if φ then c〈true〉.P ”. Boolean combinations
of conditionals in “if” statements are handled as follows. First, the boolean combination
is written using only the boolean connectives ∧ and ¬. Then ∧ is encoded using nested
“if” processes; and negation (¬) is encoded by swapping “then” and “else” branches.

2.4 Events and reachability assertions

For the purpose of protocol analysis processes are annotated with events which mark
important actions performed by the protocol which do not otherwise affect behaviour.
We adopt the formalism presented by Abadi, Blanchet & Fournet [1] to capture events.
Events are modelled as outputs f〈M〉 where f ∈ F is an “event channel”: a name in
a particular set F disjoint from the set of ordinary channels a, b, c. Message input on
event channels must use “event variables” e, e′.

We assume that protocols should be executed in the presence of a so-called Dolev-
Yao adversary [15]. The adversary is permitted to input f(e) on event channels but is
forbidden from using the bound event variable e in any other manner. The former condi-
tion prevents processes blocking, whereas the latter ensures the adversary’s knowledge
cannot be extended by the occurrence of events.

Definition 1 (Adversary). An adversary is a closed process such that, any event chan-
nel f ∈ F and event variable e, only occur in inputs of the form f(e).

A reachability assertion is specified as an event f〈X̃〉where X̃ is a tuple of variables
and constants. A process satisfies reachability if there exists an adversary who is able
to expose the event (Definition 2). When such an adversary does not exist, we say the
process satisfies the unreachability assertion f〈X̃〉.

Definition 2 (Reachability). The closed process P satisfies the reachability assertion
f〈X̃〉 where X̃ is a tuple of variables and constants if there exists an adversary Q such
that P | Q −→∗ C[f〈X̃〉.P ′] for some evaluation context C and process P ′.

3 Election verifiability

Election verifiability can be formalised with respect to tests RIV , RUV , REV corre-
sponding to the three aspects of our formalisation. We assume that the bulletin board
output of an election procedure contains a set of ballots T̃ , a tuple of votes s̃ represent-
ing the election outcome declared result and a set of public voter credentials Ũ where
|s̃| = |T̃ | = |Ũ |. The credentials for voters whom abstain are assumed to be omitted
from the bulletin board and hence we have the strict equality |T̃ | = |Ũ |. Each of the
tests RIV , RUV , REV is a predicate which after substitutions from the bulletin board
and elsewhere evaluates to true or false. The designers of electronic voting protocols
need not explicitly specify the cryptographic tests since our definition considers the
existence of tests (perhaps devised after design) which satisfy our conditions. This ex-
tends the applicability of our methodology whilst also permitting the scrutiny of tests
specified by protocol designers.
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3.1 Overview

Individual verifiability. The test RIV takes parameters v (a vote), x̃ (a voter’s knowl-
edge) and z (a bulletin board entry). For RIV to be a suitable test it must allow a voter
to identify her bulletin board entry. Formally we require for all votes s, if the voter votes
for candidate s, then there exists an execution of the protocol which produces M̃ such
that some bulletin board entry T satisfies:

RIV {s/v, M̃/x̃, T/z} (1)

Moreover, the bulletin board entry should determine the vote; that is, for all bulletin
board entries T , votes s, t and tuples M̃, Ñ we have:

RIV {s/v, M̃/x̃, T/z} ∧RIV {t/v, Ñ/x̃, T/z} ⇒ (s = t) (2)

This ensures the test will only hold for at most one vote.
In addition, individual verifiability requires voters to accept distinct bulletin board

entries. This condition requires protocol executions to introduce some freshness (e.g.
randomness).

Universal verifiability. This property is encapsulated by the test RUV which takes pa-
rameters v (a vote) and z (a bulletin board entry). GivenRIV , the testRUV is suitable if
every bulletin board entry which is accepted by a voter is also accepted by an observer;
and the entry is counted by the observer in the correct way. The property requires that
for all executions of the protocol producing M̃ with respect to the voter’s vote s, if
there exists a bulletin board entry T such that the voter accepts the bulletin board entry
as hers, then the observer also accepts the entry:

RIV {s/v, M̃/x̃, T/z} ⇒ RUV {s/v, T/z} (3)

Moreover, the observer counts the vote correctly. That is for all bulletin board entries
T and votes s, t if the test succeeds for s and t then they must be votes for the same
candidate:

RUV {s/v, T/z} ∧RUV {t/v, T/z} ⇒ (s = t) (4)

This ensures that an observer may only count a vote in one way.
We remark that the implication in formula 3 is only one way because the adversary

is able to construct ballots which would be accepted by an observer. This behaviour can
be detected by eligibility verifiability.

Eligibility verifiability. The property is encoded by the test REV which takes param-
eters y (a voter’s public credential) and z (a bulletin board entry). Given RIV , the test
REV is considered suitable if it ensures: 1) an observer can attribute a bulletin board
entry to a public credential if and only if the corresponding voter would accept that en-
try as hers; and 2) a bulletin board entry can be attributed to at most one voter. Formally
the property requires for all bulletin board entries T and executions of the protocol pro-
ducing M̃ with respect to the voter’s vote s and public credential U the voter accepts T
as hers iff the bulletin board entry can be attributed to her public credential:

RIV {s/v, M̃/x̃, T/z} ⇔ REV {U/y, T/z} (5)
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This ensures that if RIV succeeds for a voter then she is assured that her vote is consid-
ered eligible by an observer; and if REV succeeds for a public credential then the cor-
responding voter must have constructed that bulletin board entry. The condition relies
upon a relationship between the voter’s knowledge M̃ and the voter’s public creden-
tial U . The second condition requires that the test must uniquely determine who cast a
bulletin board entry; that is, for all bulletin board entries T and public voter credentials
U, V if the test succeeds for U and V then the credentials are equivalent:

REV {U/y, T/z} ∧REV {V /y, T/z} ⇒ (U = V ) (6)

This property enables re-vote elimination. The concept of re-voting is particularly use-
ful since it is used by some protocols to provide coercion resistance. In such protocols
re-vote elimination is performed with respect to a publicly defined policy to ensure
voters vote at most once.

Finally, eligibility verifiability also requires that voters must have unique public
credentials and at most one ballot per registered credential may appear in the bulletin
board.

The generic definition presented here will be formalised in the context of the applied
pi calculus in §4.

3.2 Verifying an election

In addition to proving the verifiability of the electronic voting protocol (§3.1) the vot-
ers and observers must be able to check that an arbitrary election was performed in
a satisfactory manner. This is achieved by performing the tests RIV , RUV and REV

on the bulletin board. For individual verifiability, each voter should be in possession
of her vote t and M̃ representing the knowledge learnt during an execution of the
protocol, such that there exists j ∈ [1, |T̃ |] satisfying the test RIV {t/v, M̃/x̃, Tj/z}.
For universal verifiability, the bulletin board must be such that the observer can map
the ballots to the votes appearing in the election outcome. That is, there exists a bi-
jective function f : {1, . . . , |T̃ |} → {1, . . . , |T̃ |}, such that for all i ∈ [1, |T̃ |], the
test RUV {si/v, Tf(i)/z} holds. Similarly, for eligibility verifiability to hold an observer
must be able to map each public credential to a bulletin board entry. That is, there exists
a bijective function g : {1, . . . , |T̃ |} → {1, . . . , |T̃ |} such that for all i ∈ [1, |T̃ |] the
test REV {Ui/y, Tg(i)/z} holds.

Some electronic voting protocols utilise mixnets to obtain privacy. For simplicity
we omit formalising the security of mixnets and hence omit modelling the mix. This
clearly violates privacy properties. However, since mixnets are verifiable, privacy and
election verifiability properties may coexist in practice.

4 Election verifiability in the applied pi calculus

A voting protocol is captured by a voter process P and a process Q modelling ad-
ministrators whom are required to be honest for the purpose of election verifiability.
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Dishonest administrators need not be explicitly modelled since they are part of the ad-
versarial environment. The process Q is assumed to publish voter credentials. Channels
ã are assumed to be private and appear in both P,Q. In addition, we consider a con-
text C which performs setup duties; for example, the instantiation of keys for honest
administrators. Dishonest administrator keys are modelled as free names. Definition 3
formalises a voting process specification accordingly. The definition allows us to anal-
yse election verifiability with respect to an unbounded number of voters and arbitrarily
many candidates.

Definition 3 (Voting process specification). A voting process specification is a tu-
ple 〈C,P,Q[c〈U〉], ã〉 where P is a linear process, C and Q are contexts such that
P,C,Q do not contain any occurrence of event channels and event variables. U is a
term modelling public voter credential. The variable v ∈ fv(P ) refers to the value of
the vote, v 6∈ bv(C) ∪ bv(P ), c 6∈ (ã ∪ bn(C[Q])), (fv(P )\{v} ∪ fv(Q)) ⊆ bv(C) and
{xn | n ∈ bn(P )} ∩ bv(P ) = ∅.

Given a voting process specification 〈C,P,Q[c〈U〉], ã〉we can “put the pieces together”
and obtain the process modelling the voting protocol

VP =̂ ν b.(C[!ν ã.(b(v).P | Q[c〈U〉])] | !ν s.((!b〈s〉) | c〈s〉))

where b 6∈ (ã ∪ fn(C[P | Q]) ∪ bn(C[P | Q])). Intuitively, the channel b is used to
communicate to each voter the instantiation of his vote v. The process !ν s.((!b〈s〉) |
c〈s〉) models the generation of all possible choices of votes. The nested replication
allows several voters to use the same s while other voters use different values. Each
vote s is also made available to the environment by publishing it on the channel c.

The formalisation of election verifiability (Definition 5) can naturally be expressed
as reachability assertions [23, 10] associated with the propositional formulas 1-6 of §3.1
which relate to tests RIV , RUV , REV . First the tests must be incorporated into an aug-
mented voting process (Definition 4).

Definition 4 (Augmented voting process). Given a voting process specification 〈C,P,
Q[c〈U〉], ã〉 and testsRIV , RUV , REV the augmented voting process is defined as P =
ν b.(C[!ν ã, b′.(P̂ | Q̂)] | R | R′) | R′′ | R′′′ where

P̂ = b(v).P ◦ c(z).b′(y).(pass〈(RIV τ, z)〉 | fail〈ψ〉)
Q̂ = Q[b′〈U〉 | cred〈U〉 | c〈U〉]
R = !ν s.((!b〈s〉) | c〈s〉)
R′ = b(v′).b(v′′).c(x̃′).c(x̃′′).c(y′).c(y′′).c(z′).fail〈φ′ ∨ φ′′ ∨ φ′′′〉
R′′ = pass(e).pass(e′).fail〈e1 ∧ e′1 ∧ (e2 = e′2)〉
R′′′ = cred(e).cred(e′).fail〈e = e′〉

ψ = (RIV ∧ ¬RUV ) ∨ (RIV ∧ ¬REV ) ∨ (¬RIV ∧REV )
φ′ = RIV {v′

/v, x̃
′
/x̃, z

′
/z} ∧RIV {v′′

/v, x̃
′′
/x̃, z

′
/z} ∧ ¬(v′ = v′′)

φ′′ = RUV {v′
/v, z

′
/z} ∧RUV {v′′

/v, z
′
/z} ∧ ¬(v′ = v′′)

φ′′′ = REV {y′
/y, z

′
/z} ∧REV {y′′

/y, z
′
/z} ∧ ¬(y′ =E y′′)
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such that fail, pass, cred are event channels, τ = {n/xn | n ∈ bn(P ) ∧ xn ∈
fv(RIV )}, x̃ = (bv(P ) ∩ (fv(Riv)\{z})) ∪ {xn | n ∈ bn(P ) ∧ xn ∈ fv(Riv)},
b, b′ 6∈ (ã ∪ fn(C[P | Q]) ∪ bn(C[P | Q])) and c 6∈ (ã ∪ bn(C[P ])).

The augmented voting process extends P to bind the voter’s intended vote v, assigns
the voter’s public credential to y and introduces a claimed bulletin board entry z. As in
the non-augmented process, the processR produces candidates for whom the voters are
allowed to vote. The number of candidates and for whom each voter casts her vote is
controlled by the adversarial environment. The events capture the desired reachability
assertions. That is, reachability of pass〈(RIV , z)〉 captures propositional formula 1
of §3.1; unreachability of fail〈ψ〉 models propositional formulas 3 & 5 of §3.1; and
unreachability of fail〈φ′ ∨φ′′ ∨φ′′′〉 denotes formulas 2, 4 & 6 of §3.1. The universal
quantifiers of the propositional formulas 2-6 are captured by allowing the adversary to
input the required parameters. ProcessR′′ exploits communication on event channels to
detect the scenario in which two voters accept the same bulletin board entry. Similarly,
communication on the event channel cred is used to detect the situation in which two
voters are assigned the same public credential.

Definition 5 (Election verifiability). A voting process specification 〈C,P,Q[c〈U〉], ã〉
satisfies election verifiability if there exists tests RIV , RUV , REV such that the aug-
mented voting process P and tests satisfy the following conditions:

1. P satisfies the unreachability assertion: fail〈true〉.
2. P satisfies the reachability assertion: pass〈(true, x)〉.
3. The tests RIV , RUV , REV satisfy the following constraints:

– fv(RIV ) ⊆ bv(P ) ∪ {v, z} ∪ {xn | n ∈ bn(P )}
– fv(RUV ) ⊆ {v, z}
– fv(REV ) ⊆ {y, z}
– (fn(RIV ) ∪ fn(RUV ) ∪ fn(REV )) ∩ bn(P) = ∅

The reachability assertion pass〈(true, x)〉 represents the voter’s ability to identify
her bulletin board entry with respect to her vote.

Many protocols in literature do not provide eligibility verifiability. We therefore
define a weakly augmented voting process and weak election verifiability to capture only
individual and universal verifiability. A weakly augmented voting process is defined as
an augmented voting process but with R′′′ = 0, ψ = (RIV ∧ RUV ) and replacing
fail〈φ′ ∨ φ′′ ∨ φ′′′〉 with fail〈φ′ ∨ φ′′〉. The definition of weak election verifiability
is obtained by omitting conditions on REV from Definition 5.

5 Voting on Satan’s computer

In Programming Satan’s Computer, Anderson & Needham [5] describe the task of de-
signing security protocols as programming “a computer which gives answers which are
subtly and maliciously wrong at the most inconvenient possible moment.” In the con-
text of voting systems one should indeed not trust the voting software and the terminal
executing it. A virus might for instance change the vote entered by the user or even ex-
ecute a completely different protocol than the one expected. Ideally, verifiability should
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enable voters not to put any trust in the software. While it seems difficult to design pro-
tocols where this kind of absolute verifiability is achieved, in practice one may accept
to trust some parts of the protocol that rely on trusted hardware or that can be audited.
For example in the Helios voting protocol [3], the construction of the ballots can be
audited using a cast-or-audit mechanism. Any third party software can be used to audit
the ballots and the voter is ensured that the cast ballots were constructed according to
the protocol specification with high probability.

Our aim is to identify the parts of the protocol that msut be trusted to achieve verifi-
ability. In the previous section, administrators that did not need to be trusted for verifi-
ability were not specified and assimilated to the environment. We now go a step further
and allow parts of the voting protocol to be executed by the environment. Ideally, one
would just model the inputs and outputs the voter enters and receives from the vot-
ing terminal. The trusted computation components can be encoded as a voting process
specification while all the remaining parts will be controlled by the adversarial environ-
ment. We say that such a specification is sufficiently capable with respect to the original
protocol if the same tests are suitable for both.

Definition 6 (Sufficiently capable voting protocol specification). Let 〈C,P,Q[c〈U〉],
ã〉 be a voting protocol specification which satisfies election verifiability with respect to
tests RIV , RUV , REV . We say that 〈C̄, P̄ , Q̄[c〈U〉], ã′〉 is a sufficiently capable voting
protocol specification if 〈C̄, P̄ , Q̄[c〈U〉], ã′〉 satisfies election verifiability with respect
to the same tests RIV , RUV , REV .

6 Case studies

We demonstrate the applicability of our methodology by analysing electronic voting
protocols from literature. The ProVerif tool [10] has been used for automation and our
input scripts are available online4. ProVerif’s ability to reason with reachability asser-
tions is sound (when no trace is found the protocol is guaranteed to satisfy the un-
reachability assertion) but not complete (false reachability traces may be found). As a
consequence reachability traces output by ProVerif for Condition 2 of Definition 5 must
be checked by hand. In this paper all such traces correspond to valid reachable states.

6.1 Postal ballot protocol

Description. Consider an electronic variant of a “postal ballot” (or “mail-in ballot”)
protocol whereby a voter receives her private signing key skV from a keying authority,
constructs her signed ballot and sends it to the bulletin board. The keying authority
is also responsible for publishing the voter’s public verification key pk(skV ) which
will serve as her public credential. The protocol does not satisfy all of the desirable
electronic voting properties; but it should certainly provide election verifiability.

4 http://www.bensmyth.com/publications/09wissec/
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Formalisation in applied pi. The corresponding voting process specification is given
by 〈C,P,Q[c〈U〉], (a)〉 where

C =̂
P =̂ a(x).c〈(v, sign(v, x))〉

Q[c〈U〉] =̂ ν skV .(a〈skV 〉 | c〈U〉)
U =̂ pk(skV )

We model digital signatures (without message recovery) by the equation

checksign(sign(x, y), x, pk(y)) = true

The resulting (non-augmented) voting process is then defined as

VPpostal =̂ νb.
(

!νa. (b(v).a(x).c〈(v, sign(v, x))〉
| ν skV .(a〈skV 〉 | c〈pk(skV )〉))

| !νs.(!b〈s〉 | c〈s〉)
)

Analysis. The augmented voting process P can be derived with respect to tests:

RIV =̂ z =E (sign(v, x), v, pk(x))
RUV =̂ checksign(z1, z2, z3) =E true ∧ v =E z2
REV =̂ checksign(z1, z2, z3) =E true ∧ y =E z3

ProVerif is able to automatically verify the protocol satisfies election verifiability.

6.2 Protocol due to Fujioka, Okamoto & Ohta

Description. The FOO protocol [16] involves voters, a registrar and a tallier. The pro-
tocol relies on a commitment scheme and blind signatures which we model by the
following equational theory.

checksign(sign(x, y), x, pk(y)) = true
unblind(sign(blind(x, y), z), y) = sign(x, z)

unblind(blind(x, y), y) = x
open(commit(x, y), y) = x

The voter first computes her ballot as a commitment to her vote m′ = commit(v, r)
and sends the signed blinded ballot sign(blind(m′, r′), skV ) to the registrar. The regis-
trar checks the signature belongs to an eligible voter and returns sign(blind(m′, r′), skR)
the blind signed ballot. The voter verifies that this input (variable bsb in the process P
below) corresponds to the registrar’s signature and unblinds the message to recover her
ballot signed by the registrarm = sign(m′, skR). The voter then posts her signed ballot
to the bulletin board. Once all votes have been cast the tallier verifies all the entries and
appends an identifier l to each valid record5. The voter then checks the bulletin board
for her entry, the triple (l,m′,m), (modelled in P below by the input in variable bbe)
and appends the commitment factor r. Finally, using r the tallier opens all of the ballots
and announces the declared outcome. The protocol claims to provide individual and
universal verifiability but does not consider eligibility verifiability.

5 The value l is used for practical purposes only; it does not affect security.
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Formalisation in applied pi. The voting process specification is 〈 , P,Q[c〈pk(x)〉], (a)〉
where Q = c(x).(a〈x〉 | ) and P is defined as follows:

P = ν r, r′.
a(x).
let m′ = commit(v, r) in
c〈(pk(x), blind(m′, r′), sign(blind(m′, r′), x))〉.
c(bsb).
if checksign(bsb, blind(m′, r′), pk(skR)) = true then
let m = unblind(bsb, r′) in
c〈(m′,m)〉.
c(bbe).
if m′ = bbe2 ∧m = bbe3 then
c〈(bbe1, r)〉

Analysis. Let tests RIV , RUV be defined as follows:

RIV =̂ z =E 〈bbe1, commit(v, xr), unblind(bsb, xr′), xr, v〉
∧ checksign(z3, z2, pk(skR)) =E true

RUV =̂ z2 =E commit(z5, z4) ∧ checksign(z3, z2, pk(skR)) =E true ∧ z5 =E v

ProVerif enables automatic verification of election verifiability with respect weak elec-
tion verifiability.

Sufficiently capable voting protocol specification. We consider the voting process speci-
fication 〈 , ν r.c〈r〉.c(xr′ , bsb, bbe1), Q[pk(x)], ()〉. The process ν r.c〈r〉.c(x′

r′ , bsb,
bbe1) corresponds to the trusted construction of nonce r before providing it (outputting)
to the untrusted voting terminal which returns (inputs) the resulting computation. Note
that the input c(xr′ , bsb, bbe1) ensures that the test RIV is closed inside the augmented
voting process. ProVerif is able to verify that the specification is sufficiently capable. It
follows that election verifiability can be achieved by a voter who is able to construct the
fresh commitment factor r, while no other computation needs to be trusted for verifia-
bility. Other properties, for example anonymity, may of course require different parts of
the protocol to be trusted.

6.3 Protocol due to Juels, Catalano & Jakobsson and Clarkson, Chong & Myers

Description. The protocol due to Juels, Catalano & Jakobsson [19], which has been
implemented by Clarkson, Chong & Myers [?,?], involves voters, registrars and tal-
liers. The registrars provide each voter with a credential k and publishes the encrypted
credential penc(k, r′′, pk(skT )). The registrars are also responsible for announcing the
candidate list s̃ = (s1, . . . , sl). To cast her ballot the voter selects her vote s ∈ s̃ and
computes the ElGamal ciphertextsM = penc(s, r, pk(skT )),M ′ = penc(k, r′, pk(skT )).
The first ciphertext contains her vote and the second contains her credential. In addi-
tion, the voter constructs a signature proof of knowledge N demonstrating the correct
construction of her ciphertexts and that she has chosen a valid candidate; that is, s ∈ s̃.
The voter posts her ciphertexts and signature proof of knowledge to the bulletin board.
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After some predefined deadline the outcome is computed. The talliers begin by dis-
carding any entries for which signature proofs of knowledge do not hold and eliminate
re-votes by performing pairwise plaintext equality tests6 on all the ciphertexts contain-
ing voting credentials. A verifiable mix is then performed on the bulletin board. Entries
based on invalid voter credentials are then weeded using plaintext equality tests between
the entries posted to the bulletin board by the mix and those published by the registrar.
Re-vote elimination is performed in a verifiable manner with respect to some publicly
defined policy and ballot weeding is achieved similarly. The verifiable nature of these
steps is essential. Finally, the talliers perform a verifiable decryption and publish the
result.

Formalisation in applied pi. The formalism for signature proofs of knowledge due to
Backes et al. [7, 8] will be adopted. A signature proof of knowledge is a term spki,j(Ũ ,
Ṽ , F ) where Ũ = (U1, . . . , Ui) denotes the witness (or private component), Ṽ =
(V1, . . . , Vj) defines the public parameters and F is a formula over those terms. More
precisely F is a term without names or variables, but includes distinguished constants
αk, βl where k, l ∈ N. The constants αk, βl in F denote placeholders for the terms
Uk ∈ Ũ , Vl ∈ Ṽ used within a signature of knowledge spki,j(Ũ , Ṽ , F ). For example,
the signature proof of knowledge used by voters in the Juels, Catalano & Jakobsson vot-
ing protocol [19] demonstrates possession of a vote s, credential k and randomisation
factors r, r′ such thatM = penc(s, r, pk(skT )),M ′ = penc(k, r′, pk(skT )) and s ∈ s̃;
that is, the proof shows the ciphertexts are correctly formed and s is a valid candidate.
This can be captured by spk4,3+l((s, r, k, r′), (M,M ′, pk(skT ), s1, . . . , sl),F) where
F is defined as β1 = penc(α1, α2, β3)∧β2 = penc(α3, α4, β3)∧(α1 = β4∨. . .∨α1 =
β4+l). A term spki,j(Ũ , Ṽ , F ) represents a valid signature if the term obtained by sub-
stituting Uk, Vl for the corresponding αk, βl evaluates to true. Verification of such a
statement is modelled by the function veri,j . The equational theory includes the follow-
ing equations over all i, j ∈ N, tuples x̃ = (x1, . . . , xi), ỹ = (y1, . . . , yj) and formula
F which is a ground term over Σ ∪ {αk, βl | k ≤ i, l ≤ j} without any names:

publicp(spki,j(x̃, ỹ, F )) = yp where p ∈ [1, j]
formula(spki,j(x̃, ỹ, F )) = F

In addition, we define equations such that veri,j(F, spki,j(Ũ , Ṽ , F ′)) =E true if F =E

F ′ and F{U1/α1, . . . ,Ui/αi, V1/β1, . . . , Vj/βj} holds where i = |Ũ |, j = |Ṽ | and
F, F ′ are ground terms over Σ ∪ {αk, βl | k ≤ i, l ≤ j} without names. We omit the
details of these equations which are similar to [7, 8] due to lack of space.

The protocol makes use of the ElGamal encryption scheme. Decryption and re-
encryption are captured accordingly:

dec(penc(x, y, pk(z)), z) = x
renc(penc(x, y, z), y′) = penc(x, f(y, y′), z)

The ElGamal scheme also exhibits the feature expressed by the equation:

dec(penc(x, y, pk(z)), commit(penc(x, y, pk(z)), z)) = x

6 A plaintext equality test [17] is a cryptographic predicate which allows the comparison of two
ciphertexts. The test returns true if the ciphertexts contain the same plaintext.
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Verifiable decryption can then be achieved using the signature proof of knowledge
spk1,3((α1), (β1, β2),F ′) whereF ′ is given by β1 = commit(β2, α1). The proof shows
that if β2 = penc(M,N, pkα1) for some terms M,N , then β1 is a decryption key for
β2. Finally, plaintext equality tests are modelled by the equation

pet(penc(x, y, pk(z)), penc(x, y′, pk(z)),
petkey(penc(x, y, pk(z)), penc(x, y′, pk(z)), z)) = true

The voting process specification can now be defined as 〈C,P,Q[c〈U〉], (a)〉 where
U = penc(k, r′′, pk(skT )) and C,P,Q are specified as follows:

C = ν skT .(c〈pk(skT )〉 | (!Q′) | (!Q′′) | )
P = ν r.ν r′.a(x).

let M = penc(v, r, pk(skT )) in
let M ′ = penc(x, r′, pk(skT )) in
let N = spk4,3+l((v, r, x, r′), (M,M ′, pk(skT ), s1, . . . , sl),F) in
c〈(M,M ′, N)〉

Q = ν k.ν r′′.(a〈k〉 | )
Q′ = c(y).c〈petkey(y1, y2, skT )〉
Q′′ = c(z).if ver4,3+l(F , z) = true then

c〈spk1,2((skT ), (commit(public1(z), skT ), public1(z)),F ′)〉)

For simplicity we consider a single registrarQ and tallier (Q′ | Q′′) whom are assumed
to be honest. Moreover, we assume the existence of a secure mix protocol and hence do
not model or verify the shuffle. The registrar process is standard and is responsible for
publishing the public voter credentials. Process Q′ captures the tallier’s responsibility
to provide suitable keys for plaintext equality tests used for ballot weeding and re-vote
elimination. Finally, process Q′′ encodes the tallier’s willingness to provide verifiable
decryption for honestly constructed ballots.

Analysis. The protocol is dependent on the candidate list and therefore cannot be ver-
ified with respect to an arbitrary number of candidates. We must therefore restrict the
adversarial environment to consider a fixed number of candidates. This can be achieved
by modifying the construction of an augmented process; more precisely we redefine
R as (!b〈s1〉) | . . . | (!b〈sl〉) where s1, . . . , sl are free names representing the candi-
dates for whom voters may cast their votes. Let the tests RIV , RUV , REV be defined
as follows:

RIV =̂ φ′ ∧ z1 =E spk4,3+l((v, xr, xk, xr′), (M,M ′, pk(skT ), s1, . . . , sl),F)
RUV =̂ φ ∧ dec(public2(z2), public1(z2)) =E v
REV =̂ φ′ ∧ ver4,3+l(F , z1) =E true

φ =̂ ver1,2(F ′, z2) =E true ∧ public1(z1) =E public2(z2)
φ′ =̂ φ ∧ pet(y, public2(z1), z3) =E true

where M = penc(v, xr, pk(skT )) and M ′ = penc(xk, xr′ , pk(skT )). The augmented
voting process can now be derived with respect to the size of the candidate list l. Using
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ProVerif in association with a PHP script that generates ProVerif scripts for different
values of l, the protocol can be successfully verified to satisfy election verifiability with
respect to l ∈ [1, 100].

Sufficiently capable voting process specification. Consider the voting process specifica-
tion 〈 , P̄ , Q̄[c〈y〉], (a)〉 where P̄ = a(x).c(xr, xr′) and Q̄ = ν k.c〈k〉.c(y).(a〈k〉 | ).
The specification defines a registrar who constructs a credential k and sends it to the
voter on a private channel. The voter then inputs two (supposed) randomisation factors
from the untrusted voting terminal. In addition, the registrar inputs the voter’s pub-
lic credential from untrusted computation and publishes it. The individual and univer-
sal aspects of election verifiability have been successfully verified using ProVerif. For
eligibility verifiability consider the voting process specification 〈C, P̄ ′, Q̄′[c〈y〉], (a)〉
where:

P̄ ′ = a(x).c(xr, xr′).c〈spk4,3+l((v, xr, x, xr′), (M,M ′, pk(skT ), s1, . . . , sl),F)〉
Q̄′ = ν k.c〈k〉.c(xr′′).let y = penc(k, xr′′ , pk(skT )) in (a〈k〉 | )

which is sufficiently capable with respect to all three aspects of our definition. It follows
that election verifiability can be achieved in the presence of a public key infrastructure;
an honest registrar who is able to generate a random private credential k and perform
a single ElGamal encryption; and finally, the voter is able to compute signatures of
knowledge and construct a pair of ElGamal encryptions.

6.4 Discussion of trust requirements

The notion of voting using “Satan’s computer” allows the relative degrees of election
verifiability to be assessed. In this paper we studied a postal ballot protocol (as defined
in §6.1), the FOO protocol [16] and the protocol due to Juels, Catalano & Jakobs-
son [19]. Our analysis has found that no assumptions need be made to achieve universal
verifiability. In the postal ballot protocol a public key infrastructure (PKI) is required
for individual verifiability whereas only secure random generation is required for [16]
and [19]. More precisely, [16] is dependent on the voter’s ability to generate the random
commitment factor r and [19] requires the registrar to construct a random private cre-
dential k. Eligibility verifiability is provided by the postal ballot protocol and [19], both
of which require a public key infrastructure. In addition, [19] requires an honest admin-
istrator whom can generate secure randoms and perform ElGamal encryption; and the
voter is able to construct ElGamal encryptions and compute signatures of knowledge.

7 Conclusion

This paper presents a formal definition of election verifiability for electronic voting
protocols. The idea of tests for individual, universal and eligibility verifiability (and
the associated acceptability conditions) is independent of any particular formalism. We
instantiate this idea in terms of reachability assertions in the context of the applied pi
calculus. The definition is suitable for automated reasoning using the ProVerif software
tool. The applicability of our work has been demonstrated by the analysis of protocols
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from literature; namely Fujioka, Okamoto & Ohta [16] and Juels, Catalano & Jakobs-
son [19] which has been implemented by Clarkson, Chong & Myers [?,?]. Since the lat-
ter protocol also satisfies vote-privacy, receipt-freeness and coercion resistance [19, 6]
our definition is compatible with these properties, in contrast with the definition of [13].
We also discuss sufficient voter capabilities for these protocols to satisfy verifiability.

In future work, we intend to generalise our definitions of universal verifiability and
eligibility verifiability to work with voting systems that rely on homomorphic combi-
nation of encrypted votes (such as Helios 2.0 [4]). We also aim to formalise the security
of weeding policies for re-voting, present in many realistic systems, which we omitted
from our case studies.
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