
Election verifiability in electronic voting protocols? ??

Steve Kremer1, Mark Ryan2, and Ben Smyth2,3

1 LSV, ENS Cachan & CNRS & INRIA, France
2 School of Computer Science, University of Birmingham, UK

3 École Normale Supérieure & CNRS & INRIA, France

Abstract. We present a formal, symbolic definition of election verifiability for
electronic voting protocols in the context of the applied pi calculus. Our def-
inition is given in terms of boolean tests which can be performed on the data
produced by an election. The definition distinguishes three aspects of verifiabil-
ity: individual, universal and eligibility verifiability. It also allows us to determine
precisely which aspects of the system’s hardware and software must be trusted for
the purpose of election verifiability. In contrast with earlier work our definition is
compatible with a large class of electronic voting schemes, including those based
on blind signatures, homomorphic encryption and mixnets. We demonstrate the
applicability of our formalism by analysing three protocols: FOO, Helios 2.0, and
Civitas (the latter two have been deployed).

1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries to pro-
vide more efficient voting procedures. However, the security of electronic elections has
been seriously questioned [9, 20, 8, 24]. A major difference with traditional paper based
elections is the lack of transparency. In paper elections it is often possible to observe the
whole process from ballot casting to tallying, and to rely on robustness characteristics
of the physical world (such as the impossibility of altering the markings on a paper bal-
lot sealed inside a locked ballot box). By comparison, it is not possible to observe the
electronic operations performed on data. Computer systems may alter voting records in
a way that cannot be detected by either voters or election observers. A voting termi-
nal’s software might be infected by malware which could change the entered vote, or
even execute a completely different protocol than the one expected. The situation can
be described as voting on Satan’s computer, analogously with [5].

The concept of election or end-to-end verifiability that has emerged in the academic
literature, e.g., [17, 18, 10, 3, 21, 2], aims to address this problem. It should allow voters
and election observers to verify, independently of the hardware and software running
the election, that votes have been recorded, tallied and declared correctly. One generally
distinguishes two aspects of verifiability.

? This work has been partly supported by the EPSRC projects UbiVal (EP/D076625/2), Trustworthy Voting Systems
(EP/G02684X/1) and Verifying Interoperability Requirements in Pervasive Systems (EP/F033540/1); the ANR SeSur
AVOTÉ project; and the Direction Générale pour l’Armement (DGA).

?? A long version containing full proofs is available in [19].

– Individual verifiability: a voter can check that her own ballot is included in the
election’s bulletin board.

– Universal verifiability: anyone can check that the election outcome corresponds to
the ballots published on the bulletin board.

We identify another aspect that is sometimes included in universal verifiability.

– Eligibility verifiability: anyone can check that each vote in the election outcome
was cast by a registered voter and there is at most one vote per voter.

We explicitly distinguish eligibility verifiability as a distinct property.

Our contribution. We present a definition of election verifiability which captures the
three desirable aspects. We model voting protocols in the applied pi calculus and for-
malise verifiability as a triple of boolean tests ΦIV , ΦUV , ΦEV which are required to
satisfy several conditions on all possible executions of the protocol. ΦIV is intended to
be checked by the individual voter who instantiates the test with her private informa-
tion (e.g., her vote and data derived during the execution of the protocol) and the public
information available on the bulletin board. ΦUV and ΦEV can be checked by any ex-
ternal observer and only rely on public information, i.e., the contents of the bulletin
board.

The consideration of eligibility verifiability is particularly interesting as it provides
an assurance that the election outcome corresponds to votes legitimately cast and hence
provides a mechanism to detect ballot stuffing. We note that this property has been
largely neglected in previous work and our earlier work [22] only provided limited
scope for.

A further interesting aspect of our work is the clear identification of which parts of
the voting system need to be trusted to achieve verifiability. As it is not reasonable to
assume voting systems behave correctly we only model the parts of the protocol that
we need to trust for the purpose of verifiability; all the remaining parts of the system
will be controlled by the adversarial environment. Ideally, such a process would only
model the interaction between a voter and the voting terminal; that is, the messages
input by the voter. In particular, the voter should not need to trust the election hardware
or software. However, achieving absolute verifiability in this context is difficult and
protocols often need to trust some parts of the voting software or some administrators.
Such trust assumptions are motivated by the fact that parts of a protocol can be audited,
or can be executed in a distributed manner amongst several different election officials.
For instance, in Helios 2.0 [3], the ballot construction can be audited using a cast-or-
audit mechanism. Whether trust assumptions are reasonable depends on the context of
the given election, but our work makes them explicit.

Tests ΦIV , ΦUV and ΦEV are assumed to be verified in a trusted environment (if a
test is checked by malicious software that always evaluates the test to hold, it is useless).
However, the verification of these tests, unlike the election, can be repeated on different
machines, using different software, provided by different stakeholders of the election.
Another possibility to avoid this issue would be to have tests which are human-verifiable
as discussed in [2, Chapter 5].

We apply our definition on three case studies: the protocol by Fujioka et al. [15];
the Helios 2.0 protocol [4] which was effectively used in recent university elections in
Belgium; and the protocol by Juels et al. [18], which has been implemented by Clarkson
et al. as Civitas [13, 12]. This demonstrates that our definition is suitable for a large
class of protocols; including schemes based on mixnets, homomorphic encryption and
blind signatures. (In contrast, our preliminary work presented in [22] only considers
blind signature schemes.) We also notice that Helios 2.0 does not guarantee eligibility
verifiability and is vulnerable to ballot stuffing by dishonest administrators.

Related work. Juels et al. [17, 18] present a definition of universal verifiability in
the provable security model. Their definition assumes voting protocols produce non-
interactive zero-knowledge proofs demonstrating the correctness of tallying. Here we
consider definitions in a symbolic model. Universal verifiability was also studied by
Chevallier-Mames et al. [11]. They show an incompatibility result: protocols cannot
satisfy verifiability and vote privacy in an unconditional way (without relying on com-
putational assumptions). But as witnessed by [17, 18], weaker versions of these prop-
erties can hold simultaneously. Our case studies demonstrate that our definition allows
privacy and verifiability to coexist (see [14, 6] for a study of privacy properties in the
applied pi calculus). Baskar et al. [7] and subsequently Talbi et al. [23] formalised
individual and universal verifiability for the protocol by Fujioka et al. [15]. Their defi-
nitions are tightly coupled to that particular protocol and cannot easily be generalised.
Moreover, their definitions characterise individual executions as verifiable or not; such
properties should be considered with respect to every execution.

In our earlier work [22] a preliminary definition of election verifiability was pre-
sented with support for automated reasoning. However, that definition is too strong to
hold on protocols such as [18, 4]. In particular, our earlier definition was only illus-
trated on a simplified version of [18] which did not satisfy coercion-resistance because
we omitted the mixnets. Hence, this is the first general, symbolic definition which can
be used to show verifiability for many important protocols, such as the ones studied in
this paper.

2 Applied pi calculus

The calculus assumes an infinite set of names a, b, c, k,m, n, s, t, . . ., an infinite set of
variables v, x, y, z, . . . and a finite signature Σ, that is, a finite set of function sym-
bols each with an associated arity. We also assume an infinite set of record variables
r, r1, A function symbol of arity 0 is a constant. We use metavariables u, w to range
over both names and variables. Terms L,M,N, T, U, V are built by applying function
symbols to names, variables and other terms. Tuples u1, . . . , ul and M1, . . . ,Ml are oc-
casionally abbreviated ũ and M̃ . We write {M1/x1, . . . , Ml/xl} for substitutions that
replace variables x1, . . . , xl with terms M1, . . . ,Ml.

The applied pi calculus [1, ?] relies on a simple sort system. Terms can be of sort
Channel for channel names or Base for the payload sent out on these channels. Function
symbols can only be applied to, and return, terms of sort Base. A term is ground when
it does not contain variables.

The grammar for processes is shown in Figure 1 where u is either a name or variable
of channel sort. Plain processes are standard constructs, except for the record message
rec(r, M).P construct discussed below. Extended processes introduce active substitu-
tions which generalise the classical let construct: the process ν x.({M/x} | P) cor-
responds exactly to the process let x = M in P . As usual names and variables have
scopes which are delimited by restrictions and by inputs. All substitutions are assumed
to be cycle-free.

P, Q, R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
rec(r, M).P record message
if M = N then P else Q conditional

A, B, C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 1. Applied pi calculus grammar

A frame ϕ is an extended process built from 0 and active substitutions {M/x};
which are composed by parallel composition and restriction. The domain of a frame ϕ
is the set of variables that ϕ exports. Every extended process A can be mapped to a
frame φ(A) by replacing every plain process in A with 0.

The record message construct rec(r, M).P introduces the possibility to enter special
entries in frames. We suppose that the sort system ensures that r is a variable of record
sort, which may only be used as a first argument of the rec construct or in the domain of
the frame. Moreover, we make the global assumption that a record variable has a unique
occurrence in each process. Intuitively, this construct will be used to allow a voter to
privately record some information which she may later use to verify the election.

The sets of free and bound names and variables in process A are denoted by fn(A),
bn(A), fv(A), bv(A). Similarly, we write fn(M), fv(M) for the names and variables in
term M and rv(A) and rv(M) for the set of record variables in a process and a term.
An extended process A is closed if fv(A) = ∅. A context C[] is an extended process
with a hole. An evaluation context is a context whose hole is not under a replication, a
conditional, an input, or an output.

The signature Σ is equipped with an equational theory E, that is, a finite set of
equations of the form M = N . We define =E as the smallest equivalence relation
on terms, that contains E and is closed under application of function symbols, sub-
stitution of terms for variables and bijective renaming of names. In this paper we tac-
itly assume that all signatures and equational theories contain the function symbols
pair(·, ·), fst(·), snd(·) and equations for pairing:

fst(pair(x, y)) = x snd(pair(x, y)) = y

as well as some constant ⊥. As a convenient shortcut we then write (T1, . . . Tn) for
pair(T1, pair(. . . , pair(Tn,⊥))) and πi(T) for fst(sndi−1(T)).

Semantics. The operational semantics of the applied pi calculus are defined with respect
to the three relations: structural equivalence (≡), internal reductions (−→) and labelled
reduction (α−→). These semantics are standard and defined in [19]. We only illustrate
them on an example (Figure 2). We write =⇒ for (→∗ α−→→∗)∗, that is, the reflexive
transitive closure of the labelled reduction.

Let P = νa, b.rec(r, a).c〈(a, b)〉.c(x).if x = a then c〈f(a)〉. Then we have that

P → νa, b.(c〈(a, b)〉.c(x).if x = a then c〈f(a)〉 | {a/r})
≡ νa, b.(νy1.(c〈y〉.c(x).if x = a then c〈f(a)〉 | {(a,b)/y1}) | {a/r})

νx.c〈x〉−−−−−→ νa, b.(c(x).if x = a then c〈f(a)〉 | {(a,b)/y1} | {a/r})
νx.c(π1(y))−−−−−−−→ νa, b.(if a = a then c〈f(a)〉 | {(a,b)/y1} | {a/r})

→ νa, b.(c〈f(a)〉 | {| {(a,b)/y1} | {a/r})
νy2.c〈y2〉−−−−−−→ νa, b.(if a = a then c〈f(a)〉 | {(a,b)/y1} | {f(a)/y2} | {a/r}

Observe that labelled outputs are done by reference and extend the domain of the process’s frame.

Fig. 2. A sequence of reductions in the applied pi semantics

3 Formalising voting protocols

As discussed in the introduction we want to explicitly specify the parts of the election
protocol which need to be trusted. Formally the trusted parts of the voting protocol can
be captured using a voting process specification.

Definition 1 (Voting process specification). A voting process specification is a tuple
〈V,A〉 where V is a plain process without replication and A is a closed evaluation
context such that fv(V) = {v} and rv(V) = ∅.

For the purposes of individual verifiability the voter may rely on some data derived
during the protocol execution. We keep track of all such values using the record con-
struct (Definition 2).

Definition 2. Let rv be an infinite list of distinct record variables. We define the function
R on a finite process P without replication as R(P) = Rrv(P) and, for all lists rv:

Rrv(0) =̂ 0
Rrv(P | Q) =̂ Rodd(rv)(P) | Reven(rv)(Q)
Rrv(ν n.P) =̂ ν n.rec(head(rv), n).Rtail(rv)(P)
Rrv(u(x).P) =̂ u(x).rec(head(rv), x).Rtail(rv)(P)
Rrv(u〈M〉.P) =̂ u〈M〉.Rrv(P)
Rrv(if M = N then P else Q) =̂ if M = N then Rrv(P) else Rrv(Q)

where the functions head and tail are the usual ones for lists, and odd (resp. even)
returns the list of elements in odd (resp. even) position.

In the above definition odd and even are used as a convenient way to split an infinite list
into two infinite lists.

Given a sequence of record variables r̃, we denote by r̃i the sequence of variables
obtained by indexing each variable in r̃ with i. A voting process can now be constructed
such that the voter V records the values constructed and input during execution.

Definition 3. Given a voting process specification 〈V,A〉, integer n ∈ N, and names
s1, . . . , sn, we build the augmented voting process VP+

n (s1, . . . , sn) = A[V +
1 | · · · |

V +
n] where V +

i = R(V){si/v}{ri/r | r ∈ rv(R(V))}.

The process VP+
n (s1, . . . , sn) models the voting protocol for n voters casting votes

s1, . . . , sn, who privately record the data that may be needed for verification using
record variables r̃i.

4 Election verifiability

We formalise election verifiability using three tests ΦIV , ΦUV , ΦEV . Formally, a test is
built from conjunctions and disjunctions of atomic tests of the form (M =E N) where
M,N are terms. Tests may contain variables and will need to hold on frames arising
from arbitrary protocol executions. We now recall the purpose of each test and assume
some naming conventions about variables.
Individual verifiability: The test ΦIV allows a voter to identify her ballot in the bulletin
board. The test has:

– a variable v referring to a voter’s vote.
– a variable w referring to a voter’s public credential.
– some variables x, x̄, x̂, . . . expected to refer to global public values pertaining to

the election, e.g., public keys belonging to election administrators.
– a variable y expected to refer to the voter’s ballot on the bulletin board.
– some record variables r1, . . . , rk referring to the voter’s private data.

Universal verifiability: The test ΦUV allows an observer to check that the election out-
come corresponds to the ballots in the bulletin board. The test has:

– a tuple of variables ṽ = (v1, . . . , vn) referring to the declared outcome.
– some variables x, x̄, x̂, . . . as above.
– a tuple ỹ = (y1, . . . , yn) expected to refer to all the voters’ ballots on the bulletin

board.
– some variables z, z̄, ẑ, . . . expected to refer to outputs generated during the protocol

used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ΦEV allows an observer to check that each ballot in the
bulletin board was cast by a unique registered voter. The test has:

– a tuple w̃ = (w1, . . . , wn) referring to public credentials of eligible voters.
– a tuple ỹ, variables x, x̄, x̂, . . . and variables z, z̄, ẑ, . . . as above.

The remainder of this section will focus on the individual and universal aspects of our
definition; eligibility verifiability will be discussed in Section 5.

4.1 Individual and universal verifiability

The tests suitable for the purposes of election verifiability have to satisfy certain condi-
tions: if the tests succeed, then the data output by the election is indeed valid (sound-
ness); and there is a behaviour of the election authority which produces election data sat-
isfying the tests (effectiveness). Formally these requirements are captured by the defini-
tion below. We write T̃ ' T̃ ′ to denote that the tuples T̃ and T̃ ′ are a permutation of each
other modulo the equational theory, that is, we have T̃ = T1, . . . Tn, T̃ ′ = T ′

1, . . . T
′
n

and there exists a permutation χ on {1, . . . , n} such that for all 1 ≤ i ≤ n we have
Ti =E T ′

χ(i).

Definition 4 (Individual and universal verifiability). A voting specification 〈V,A〉
satisfies individual and universal verifiability if for all n ∈ N there exist tests ΦIV , ΦUV

such that fn(ΦIV) = fn(ΦUV) = rv(ΦUV) = ∅, rv(ΦIV) ⊆ rv(R(V)), and for all
names s̃ = (s1, . . . , sn) the conditions below hold. Let r̃ = rv(ΦIV) and ΦIV

i =
ΦIV {si/v, r̃i/r̃}.

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)] =⇒ B

and φ(B) ≡ νñ.σ, we have:

∀i, j. ΦIV
i σ ∧ ΦIV

j σ ⇒ i = j (1)

ΦUV σ ∧ ΦUV {ṽ′
/ṽ}σ ⇒ ṽσ ' ṽ′σ (2)∧

1≤i≤n

ΦIV
i {yi/y}σ ∧ ΦUV σ ⇒ s̃ ' ṽσ (3)

Effectiveness. There exists a context C and a process B, such that C[VP+
n (s1, . . . , sn)]

=⇒ B, φ(B) ≡ νñ.σ and ∧
1≤i≤n

ΦIV
i {yi/y}σ ∧ ΦUV σ (4)

An individual voter should verify that the test ΦIV holds when instantiated with
her vote si, the information r̃i recorded during the execution of the protocol and some
bulletin board entry. Indeed, Condition (1) ensures that the test will hold for at most
one bulletin board entry. (Note that ΦIV

i and ΦIV
j are evaluated with the same ballot yσ

provided by C[].) The fact that her ballot is counted will be ensured by ΦUV which
should also be tested by the voter. An observer will instantiate the test ΦUV with the
bulletin board entries ỹ and the declared outcome ṽ. Condition (2) ensures the observer
that ΦUV only holds for a single outcome. Condition (3) ensures that if a bulletin board
contains the ballots of voters who voted s1, . . . , sn then ΦUV only holds if the declared
outcome is (a permutation of) these votes. Finally, Condition (4) ensures that there
exists an execution where the tests hold. In particular this allows us to verify whether
the protocol can satisfy the tests when executed as expected. This also avoids tests
which are always false and would make Conditions (1)-(3) vacuously hold.

4.2 Case study: FOO

The FOO protocol, by Fujioka, Okamoto & Ohta [15], is an early scheme based on
blind signatures and has been influential for the design of later protocols.

How FOO works. The voter first computes her ballot as a commitment to her vote m′ =
commit(rnd, v) and sends the signed blinded ballot sign(skV , blind(rnd′,m′)) to the
registrar. The registrar checks that the signature belongs to an eligible voter and returns
sign(skR, blind(rnd′,m′)), the blind signed ballot. The voter verifies the registrar’s
signature and unblinds the message to recover her ballot signed by the registrar m =
sign(skR,m′). The voter then posts her signed ballot to the bulletin board. Once all
votes have been cast the tallier verifies all the entries and appends an identifier ` to each
valid entry. The voter then checks the bulletin board for her entry, the triple (`,m′,m),
and appends the commitment factor rnd. Using rnd the tallier opens all of the ballots
and announces the declared outcome.

Equational theory. We model blind signatures and commitment as follows.

checksign(pk(x), sign(x, y)) = true getmsg(sign(x, y)) = y
unblind(y, sign(x, blind(y, z))) = sign(x, z) unblind(x, blind(x, y)) = y

open(x, commit(x, y)) = y

Model in applied pi. The parts of the protocol that need to be trusted for achieving ver-
ifiability are surprisingly simple (Definition 5). The name rnd models the randomness
that is supposed to be used to compute the commitment of the vote. All a voter needs to
ensure is that the randomness used for the commitment is fresh. To ensure verifiability,
all other operations such as computing the commitment, blinding and signing can be
performed by the untrusted terminal.

Definition 5. The voting process specification 〈Vfoo, Afoo〉 is defined as

Vfoo =̂ νrnd .c〈v〉.c〈rnd〉 and Afoo[] =̂ .

Individual and universal verifiability. We define the tests

ΦIV =̂ y =E (r, commit(r, v)) ΦUV =̂
∧

1≤i≤n

vi =E open(π1(y), π2(y))

Intuitively, a bulletin board entry y should correspond to the pair formed of the random
generated by voter i and commitment to her vote.

Theorem 1. 〈Vfoo, Afoo〉 satisfies individual and universal verifiability.

4.3 Case study: Helios 2.0

Helios 2.0 [4] is an open-source web-based election system, based on homomorphic
tallying of encrypted votes. It allows the secret election key to be distributed amongst
several trustees, and supports distributed decryption of the election result. It also allows
independent verification by voters and observers of election results. Helios 2.0 was
successfully used in March 2009 to elect the president of the Catholic University of
Louvain, an election that had 25,000 eligible voters.

How Helios works. An election is created by naming a set of trustees and running a
protocol that provides each of them with a share of the secret part of a public key pair.
The public part of the key is published. Each of the eligible voters is also provided with
a private pseudo-identity. The steps that participants take during a run of Helios are as
follows.

1. To cast a vote, the user runs a browser script that inputs her vote and creates a ballot
that is encrypted with the public key of the election. The ballot includes a ZKP that
the ballot represents an allowed vote (this is needed because the ballots are never
decrypted individually).

2. The user can audit the ballot to check if it really represents a vote for her chosen
candidate; if she elects to do this, the script provides her with the random data
used in the ballot creation. She can then independently verify that the ballot was
correctly constructed, but the ballot is now invalid and she has to create another
one.

3. When the voter has decided to cast her ballot, the voter’s browser submits it along
with her pseudo-identity to the server. The server checks the ZKPs of the ballots,
and publishes them on a bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board. Any ob-
server can check that the ballots that appear on the bulletin board represent allowed
votes, by checking the ZKPs.

5. The server homomorphically combines the ballots, and publishes the encrypted
tally. Anyone can check that this tally is done correctly.

6. The server submits the encrypted tally to each of the trustees, and obtains their
share of the decryption key for that particular ciphertext, together with a proof that
the key share is well-formed. The server publishes these key shares along with the
proofs. Anyone can check the proofs.

7. The server decrypts the tally and publishes the result. Anyone can check this de-
cryption.

Equational theory. We use a signature in which penc(xpk, xrand, xtext) denotes the en-
cryption with key xpk and random xrand of the plaintext xtext, and xciph∗yciph denotes the
homomorphic combination of ciphertexts xciph and yciph (the corresponding operation
on plaintexts is written + and on randoms ◦). The term ballotPf(xpk, xrand, s, xballot)
represents a proof that the ballot xballot contains some name s and random xrand with
respect to key xpk; decKey(xsk, xciph) is a decryption key for xciph w.r.t. public key
pk(xsk); and decKeyPf(xsk, xciph, xdk) is a proof that xdk is a decryption key for xciph

w.r.t. public key pk(xsk). We use the equational theory that asserts that +, ∗, ◦ are com-
mutative and associative, and includes the equations:

dec(xsk, penc(pk(xsk), xrand, xtext)) = xtext

dec(decKey(xsk, ciph), ciph) = xplain

where ciph = penc(pk(xsk), xrand, xplain)
penc(xpk, yrand, ytext) ∗ penc(xpk, zrand, ztext) = penc(xpk, yrand ◦ zrand, ytext + ztext)
checkBallotPf(xpk, ballot, ballotPf(xpk, xrand, s, ballot)) = true

where ballot = penc(xpk, xrand, s)

checkDecKeyPf(pk(xsk), ciph, dk, decKeyPf(xsk, ciph, dk)) = true
where ciph = penc(pk(xsk), xrand, xplain)and dk = decKey(xsk, ciph)

Note that in the equation for checkBallotPf s is a name and not a variable. As the
equational theory is closed under bijective renaming of names this equation holds for
any name, but fails if one replaces the name by a term, e.g., s + s. We suppose that all
names are possible votes but give the possibility to check that a voter does not include
a term s + s which would add a vote to the outcome.

Model in applied pi. The parts of the system that are not verifiable are:

– The script that constructs the ballot. Although the voter cannot verify it, the trust in
this script is motivated by the fact that she is able to audit it.

– The trustees. Although the trustees’ behaviour cannot be verified, voters and ob-
servers may want to trust them because trust is distributed among them.

Hence, we include these two components in the context Ahelios of our voting process
specification.

Definition 6. The voting process specification 〈Vhelios, Ahelios〉 is defined where

Vhelios =̂ d(xpid). d〈v〉. d(xballot). d(xballotpf).c〈(w, xballot, xballotpf)〉
Ahelios[] =̂ νsk, d.

(
c〈pk(sk)〉 | (!νpid. d〈pid〉) | (!B) | T |

)
B =̂ νm. d(xvote).d〈penc(pk(sk),m, xvote)〉.

d〈ballotPf(pk(sk),m, xvote, penc(pk(sk),m, xvote))〉
T =̂ c(xtally). c〈(decKey(sk, xtally), decKeyPf(sk, xtally, decKey(sk, xtally)))〉

We suppose that the inputs of xpid, xballot and xballotpf are stored in record variables rpid,
rballot and rballotpf respectively. The voter Vhelios receives her voter id pid on a private
channel. She sends her vote on the channel to Ahelios, which creates the ballot for her.
She receives the ballot and sends it (paired with pid) to the server. Ahelios represents
the parts of the system that are required to be trusted. It publishes the election key and
issues voter ids. It includes the ballot creation script B, which receives a voter’s vote,
creates a random m and forms the ballot, along with its proof, and returns it to the
voter. Ahelios also contains the trustee T , which accepts a tally ciphertext and returns a
decryption key for it, along with the proof that the decryption key is correct. We assume
the trustee will decrypt any ciphertext (but only one).

The untrusted server is assumed to publish the election data. We expect the frame to
define the election public key as xpk and the individual pid’s and ballots as yi for each
voter i. It also contains the homomorphic tally ztally of the encrypted ballots, and the
decryption key zdecKey and its proof of correctness zdecKeyPf obtained from the trustees.
When the protocol is executed as expected the resulting frame should have substitution
σ such that

yiσ = (pidi, penc(pk(sk),mi, vi), ballotPf(pk(sk),mi, vi, penc(pk(sk),mi, vi)))
xpkσ = pk(sk) ztallyσ = π2(y1) ∗ · · · ∗ π2(yn)σ

zdecKeyσ = decKey(sk, ztally)σ zdecKeyPfσ = decKeyPf(sk, ztally, zdecKey)σ

Individual and universal verifiability. The tests ΦIV and ΦUV are introduced for veri-
fiability purposes. Accordingly, given n ∈ N we define:

ΦIV =̂ y =E (rpid, rballot, rballotpf)
ΦUV =̂ ztally =E π2(y1) ∗ · · · ∗ π2(yn)

∧
∧n

i=1(checkBallotPf(xpk, π2(yi), π3(yi)) =E true)
∧ checkDecKeyPf(xpk, ztally, zdecKey, zdecKeyPf) =E true
∧ v1 + · · ·+ vn =E dec(zdecKey, ztally)

Theorem 2. 〈Vhelios, Ahelios〉 satisfies individual and universal verifiability.

5 Eligibility verifiability

To fully capture election verifiability, the tests ΦIV and ΦUV must be supplemented
by a test ΦEV that checks eligibility of the voters whose votes have been counted. We
suppose that the public credentials of eligible voters appear on the bulletin board. ΦEV

allows an observer to check that only these individuals (that is, those in posession of
credentials) cast votes, and at most one vote each.

Definition 7 (Election verifiability). A voting specification 〈V,A〉 satisfies election
verifiability if for all n ∈ N there exist tests ΦIV , ΦUV , ΦEV such that fn(ΦIV) =
fn(ΦUV) = fn(ΦEV) = rv(ΦUV) = rv(ΦEV) = ∅, rv(ΦIV) ⊆ rv(R(V)), and for all
names s̃ = (s1, . . . , sn) we have:

1. The tests ΦIV and ΦUV satisfy each of the conditions of Definition 4;
2. The additional conditions 5, 6, 7 and 8 below hold.

Let r̃ = rv(ΦIV), ΦIV
i = ΦIV {si/v, r̃i/r̃, yi/y}, X = fv(ΦEV)\dom(VP+

n (s1, . . . , sn))

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)] =⇒ B

and φ(B) ≡ νñ.σ, we have:

ΦEV σ ∧ ΦEV {x′
/x | x ∈ X\ỹ}σ ⇒ w̃σ ' w̃′σ (5)∧

1≤i≤n

ΦIV
i σ ∧ ΦEV {w̃′

/w̃}σ ⇒ w̃σ ' w̃′σ (6)

ΦEV σ ∧ ΦEV {x′
/x | x ∈ X\w̃}σ ⇒ ỹσ ' ỹ′σ (7)

Effectiveness. There exists a context C and a process B such that C[VP+
n (s1, . . . , sn)]

=⇒ B, φ(B) ≡ νñ.σ and ∧
1≤i≤n

ΦIV
i σ ∧ ΦUV σ ∧ ΦEV σ (8)

The test ΦEV is instantiated by an observer with the bulletin board. Condition (5) en-
sures that, given a set of ballots ỹσ, provided by the environment, ΦEV succeeds only
for one list of voter public credentials. Condition (6) ensures that if a bulletin board
contains the ballots of voters with public credentials w̃σ then ΦEV only holds on a per-
mutation of these credentials. Condition (7) ensures that, given a set of credentials w̃,
only one set of bulletin board entries ỹ are accepted by ΦEV (observe that for such a
strong requirement to hold we expect the voting specification’s frame to contain a pub-
lic key, to root trust). Finally, the effectiveness condition is similar to Condition (4) of
the previous section.

5.1 Case study: JCJ-Civitas

The protocol due to Juels et al. [18] is based on mixnets and was implemented by
Clarkson et al. [13, 12] as an open-source voting system called Civitas.

How JCJ-Civitas works. An election is created by naming a set of registrars and talliers.
The protocol is divided into four phases: setup, registration, voting and tallying. We now
detail the steps of the protocol, starting with the setup phase.

1. The registrars (resp. talliers) run a protocol which constructs a public key pair and
distributes a share of the secret part amongst the registrars’ (resp. talliers’). The
public part pk(skT) (resp. pk(skR)) of the key is published. The registrars also
construct a distributed signing key pair sskR, pk(sskR).

The registration phase then proceeds as follows.

2. The registrars generate and distribute voter credentials: a private part d and a public
part penc(pk(skR),m′′, d) (the probabilistic encryption of d under the registrars’
public key pk(skR)). This is done in a distributed manner, so that no individual
registrar learns the value of any private credential d.

3. The registrars publish the signed public voter credentials.
4. The registrars announce the candidate list t̃ = (t1, . . . , tl).

The protocol then enters the voting phase.

5. Each voter selects her vote s ∈ t̃ and computes two ciphertexts M = penc(
pk(skT),m, s) and M ′ = penc(pk(skR),m′, d) where m,m′ are nonces. M con-
tains her vote and M ′ her credential. In addition, the voter constructs a non-interactive
zero-knowledge proof of knowledge demonstrating the correct construction of her
ciphertexts and validity of the candidate (s ∈ t̃). (The ZKP provides protection
against coercion resistance, by preventing forced abstention attacks via a write in,
and binds the two ciphertexts for eligibility verifiability.) The voter derives her bal-
lot as the triple consisting of her ciphertexts and zero-knowledge proof and posts it
to the bulletin board.

After some predefined deadline the tallying phase commences.

6. The talliers read the n′ ballots posted to the bulletin board by voters (that is, the
triples consisting of the two ciphertexts and the zero-knowledge proof) and discards
any entries for which the zero-knowledge proof does not hold.

7. The elimination of re-votes is performed on the ballots using pairwise plaintext
equality tests (PET) on the ciphertexts containing private voter credentials. (A
PET [16] is a cryptographic predicate which allows a keyholder to provide a proof
that two ciphertexts contain the same plaintext.) Re-vote elimination is performed
in a verifiable manner with respect to some publicly defined policy, e.g., by the
order of ballots on the bulletin board.

8. The talliers perform a verifiable re-encryption mix on the ballots (ballots consist
of a vote ciphertext and a public credential ciphertext; the link between both is
preserved by the mix.) The mix ensures that a voter cannot trace her vote, allowing
the protocol to achieve coercion-resistance.

9. The talliers perform a verifiable re-encryption mix on the list of public credentials
published by the registrars. This mix anonymises public voter credentials, breaking
any link with the voter for privacy purposes.

10. Ballots based on invalid credentials are weeded using PETs between the mixed
ballots and the mixed public credentials. Both have been posted to the bulletin
board. (Using PETs the correctness of weeding is verifiable.)

11. Finally, the talliers perform a verifiable decryption and publish the result.

Equational theory. The protocol uses a variant of the ElGamal encryption scheme [18].
Accordingly we adopt the signature and associated equational theory from the Helios
case study. We model the ZK proof demonstrating correct construction of the voter’s
ciphertexts, re-encryption and PETs by the equations

checkBallot(ballotPf(xpk, xrand, xtext, x
′
pk, x

′
rand, x

′
text),

penc(xpk, xrand, xtext), penc(x′pk, x
′
rand, x

′
text)) = true

renc(yrand, penc(pk(xsk), xrand, xtext)) = penc(pk(xsk), f(xrand, yrand), xtext)
pet(petPf(xsk, ciph, ciph′), ciph, ciph′) = true

where ciph =̂ penc(pk(xsk), xrand, xtext) and ciph′ =̂ penc(pk(xsk), x′rand, xtext). In
addition we consider verifiable re-encryption mixnets and introduce for each permuta-
tion χ on {1, . . . , n} the equation:

checkMix(mixPf(xciph,1, . . . , xciph,n, ciph1, . . . , ciphn, zrand,1, . . . , zrand,n),
xciph,1, . . . , xciph,n, ciph1, . . . , ciphn) = true

where ciphi =̂ renc(zrand,i, xciph,χ(i)). We also define re-encryption of pairs of cipher-
texts and introduce for each permutation χ on {1, . . . , n} the equation

checkMixPair(mixPairPf((x1, x
′
1), . . . , (xn, x′n), (c1, c

′
1), . . . , (cn, c′n),

(z1, z
′
1), . . . , (zn, z′n)), (x1, x

′
1), . . . , (xn, x′n), (c1, c

′
1), . . . , (cn, c′n)) = true

where ci =̂ renc(zi, xχ(i)) and c′i =̂ renc(z′i, x
′
χ(i)).

Model in applied pi. We make the following trust assumptions for verifiability

– The voter is able to construct her ballot; that is, she is able to generate nonces
m,m′, construct her ciphertexts and generate a zero-knowledge proof.

– The registrars construct distinct credentials d for each voter and construct the voter’s
public credential correctly. (The latter assumption can be dropped if the registrars
provides a proof that the public credential is correctly formed [18].) The registrars
keep the private part of the signing key secret.

Although neither voters nor observers can verify that the registrars adhere to such ex-
pectations, they trust them because trust is distributed. The trusted components are mod-
elled by the voting process specification 〈Ajcj, Vjcj〉 (Definition 8). The context Ajcj dis-
tributes private keys on a private channel, launches an unbounded number of registrar
processes and publishes the public keys of both the registrars and talliers. The registrar
R constructs a fresh private credential d and sends the private credential along with
the signed public part (that is, sign(sskR, penc(xpkR

,m′′, d))) to the voter; the reg-
istrar also publishes the signed public credential on the bulletin board. The voter Vjcj

receives the private and public credentials from the registrar and constructs her ballot;
that is, the pair of ciphertexts and a zero-knowledge proof demonstrating their correct
construction.

Definition 8. The voting process specification Ajcj, Vjcj is defined where:

Ajcj =̂ ν a, sskR.(!R | {pk(skR)/xpkR
, pk(sskR)/xspkR

, pk(skT)/xpkT
} |)

Vjcj =̂ ν m, m′.a(xcred).let ciph = penc(xpkT
,m, v) in

let ciph′ = penc(xpkR
,m′, π1(xcred)) in

let zkp = ballotPf(xpkT
,m, v, xpkR

,m′, π1(xcred)) in
c〈(ciph, ciph′, zkp)〉

R =̂ ν d,m′′. let sig = sign(sskR, penc(xpkR
,m′′, d)) in a〈(d, sig)〉.c〈sig〉

Election verifiability. We suppose the recording function uses record variables r̃ =
(rcred, rm, rm′) = rv(R(V)) (corresponding to the variable xcred and names m, m′ in
the process V). Accordingly, given n ∈ N we define:

ΦIV =̂ y =E (penc(xpkT
, rm, v), penc(xpkR

, rm′ , π1(rcred)),
ballotPf(xpkT

, rm, v, xpkR
, rm′ , π1(rcred))) ∧ w = π2(rcred)

ΦUV =̂ checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)),
zbal,1, . . . , zbal,n) =E true

∧
∧n

i=1 dec(zdecKey,i, π1(zbal,i)) =E vi

∧
∧n

i=1 checkDecKeyPf(xpkT
, π1(zbal,i), zdecKey,i, zdecPf,i) =E true

ΦEV =̂
∧n

i=1 checkBallot(π3(yi), π1(yi), π2(yi))
∧ checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)),

zbal,1, . . . , zbal,n) =E true
∧

∧n
i=1 pet(zpetPf,i, π2(zbal,i), ẑcred,i) =E true

∧ (zcred,1, . . . , zcred,n) ' (ẑcred,1, . . . , ẑcred,n)
∧ checkMix(zmixPf , getmsg(w1), . . . , getmsg(wn), zcred,1, . . . , zcred,n)=Etrue
∧

∧n
i=1 checksign(xspkR

, wi)

Theorem 3. 〈Ajcj, Vjcj〉 satisfies election verifiability.

6 Conclusion

We present a symbolic definition of election verifiability which allows us to precisely
identify which parts of a voting system need to be trusted for verifiability. The suitability
of systems can then be evaluated and compared on the basis of trust assumptions. We
also consider eligibility verifiability, an aspect of verifiability that is often neglected
and satisfied by only a few protocols, but nonetheless an essential mechanism to detect
ballot stuffing. We have applied our definition to three protocols: FOO, which uses blind
signatures; Helios 2.0, which is based on homomorphic encryption, and JCJ-Civitas,
which uses mixnets and anonymous credentials. For each of these protocols we discuss
the trust assumptions that a voter or an observer needs to make for the protocol to be
verifiable. Since Helios 2.0 and JCJ-Civitas have been implemented and deployed, we
believe our formalisation is suitable for analysing real world election systems.

Acknowledgements

We are particularly grateful to Michael Clarkson for careful reading of our preliminary
formal definition of election verifiability. His comments provided useful guidance for
the definition we present here.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
POPL’01: Proc. 28th ACM Symposium on Principles of Programming Languages, pages
104–115, New York, USA, 2001. ACM.

2. B. Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT, 2006.
3. B. Adida. Helios: Web-based open-audit voting. In Proc. 17th Usenix Security Symposium,

pages 335–348. USENIX Association, 2008.
4. B. Adida, O. de Marneffe, O. Pereira, and J.-J. Quisquater. Electing a university president

using open-audit voting: Analysis of real-world use of Helios. In Electronic Voting Technol-
ogy/Workshop on Trustworthy Elections (EVT/WOTE), 2009.

5. R. Anderson and R. Needham. Programming Satan’s Computer. In Jan van Leeuwen, editor,
Computer Science Today: Recent Trends and Developments, volume 1000 of LNCS, pages
426–440. Springer, 1995.

6. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In CSF’08: Proc. 21st IEEE Computer Security Foun-
dations Symposium, pages 195–209, Washington, USA, 2008. IEEE.

7. A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of voting proto-
cols. In TARK’07: Proc. 11th International Conference on Theoretical Aspects of Rationality
and Knowledge, pages 62–71. ACM, 2007.

8. D. Bowen. Secretary of State Debra Bowen Moves to Strengthen Voter Confidence in Elec-
tion Security Following Top-to-Bottom Review of Voting Systems. California Secretary
of State, press release DB07:042 http://www.sos.ca.gov/elections/voting_
systems/ttbr/db07_042_ttbr_system_decisions_release.pdf, August
2007.

9. Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use of voting
computers in 2005 Bundestag election unconstitutional. Press release 19/2009 http:
//www.bundesverfassungsgericht.de/en/press/bvg09-019en.html,
March 2009.

10. D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. In
ESORICS’05: Proc. 10th European Symposium On Research In Computer Security, volume
3679 of LNCS, pages 118–139. Springer, 2005.

11. B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traore. On Some In-
compatible Properties of Voting Schemes. In WOTE’06: Proc. Workshop on Trustworthy
Elections, 2006.

12. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting sys-
tem. Technical Report 2007-2081, Cornell University, May 2007. Revised March 2008.
http://hdl.handle.net/1813/7875.

13. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system. In
S&P’08: Proc. Symposium on Security and Privacy, pages 354–368. IEEE Computer Soci-
ety, 2008.

14. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

15. A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for Large Scale
Elections. In ASIACRYPT’92: Proc. Workshop on the Theory and Application of Crypto-
graphic Techniques, pages 244–251. Springer, 1992.

16. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via ciphertexts.
In ASIACRYPT’00: Proc. 6th International Conference on the Theory and Application of
Cryptology and Information Security, pages 162–177. Springer, 2000.

17. A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic Elections. Cryptol-
ogy ePrint Archive, Report 2002/165, 2002.

18. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In WPES
’05: Proc. workshop on Privacy in the electronic society, pages 61–70. ACM, 2005. See also
http://www.rsa.com/rsalabs/node.asp?id=2860.

19. S. Kremer, B. Smyth, and M. D. Ryan. Election verifiability in electronic voting proto-
cols. Technical Report CSR-10-06, University of Birmingham, School of Computer Sci-
ence, 2010. Available at http://www.bensmyth.com/publications/10tech/
CSR-10-06.pdf.

20. Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s Ministry of the In-
terior and Kingdom Relations). Stemmen met potlood en papier (Voting with pencil and
paper). Press release http://www.minbzk.nl/onderwerpen/grondwet-en/
verkiezingen/nieuws--en/112441/stemmen-met-potlood, May 2008.

21. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord. http:
//www.dagstuhlaccord.org/, 2007.

22. B. Smyth, M. D. Ryan, S. Kremer, and M. Kourjieh. Towards automatic analysis of election
verifiability properties. In Joint Workshop on Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security (ARSPA-WITS’10), LNCS. Springer, 2010. To
appear.

23. M. Talbi, B. Morin, V. V. T. Tong, A. Bouhoula, and M. Mejri. Specification of Electronic
Voting Protocol Properties Using ADM Logic: FOO Case Study. In ICICS’08: Proc. 10th
International Conference on Information and Communications Security Conference, pages
403–418, London, 2008. Springer.

24. UK Electoral Commission. Key issues and conclusions: May 2007 electoral
pilot schemes. http://www.electoralcommission.org.uk/elections/
pilots/May2007.

