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Abstract. Static equivalence is a well established notion of indistin-
guishability of sequences of terms which is useful in the symbolic analysis
of cryptographic protocols. Static equivalence modulo equational theo-
ries allows a more accurate representation of cryptographic primitives by
modelling properties of operators by equational axioms. We develop a
method that allows in some cases to simplify the task of deciding static
equivalence in a multi-sorted setting, by removing a symbol from the
term signature and reducing the problem to several simpler equational
theories. We illustrate our technique at hand of bilinear pairings.

1 Introduction

Many formal models for analyzing cryptographic protocols have been developed
over the last thirty years. Among them we find logical or symbolic models, based
on the seminal ideas of Dolev and Yao [11], which represent cryptographic prim-
itives in an abstract way. This is justified by the so-called perfect cryptography
assumption which states that the intruder has no means to break the crypto-
graphic primitives themselves, and that he can hence break security only by
exploiting logical flaws in the protocol.

In symbolic models, messages of the protocol are represented by terms in
an abstract algebra. The motivation this abstraction was the simplification and
even automation of the analysis and the proof of security protocols. Since the
assumption of perfect cryptography is not always realistic, some properties of
cryptographic primitives (a survey can be found in [10]) have been taken into
account in logical models by the means of equational theories on the terms.

In this paper we concentrate on static equivalence, a standard notion of indis-
tinguishability of sequences of terms originating from the applied pi calculus [3].
Intuitively static equivalence asks whether or not an attacker can distinguish
between two sequences of messages, later called frames, by exhibiting a relation
which holds on one sequence but not on the other. Static equivalence provides
an elegant means to express security properties on pieces of data, for instance
those observed by a passive attacker during the run of a protocol. In the context
of active attackers, static equivalence has also been used to characterize process
equivalences [3] and off-line guessing attacks [9, 5]. There now exist exact [2],
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and approximate [1] algorithms to decide static equivalence for a large family of
equational theories.

Our ultimate goal is to develop combination methods for deciding static
equivalence, that is to develop means to algorithmically reduce a static equiva-
lence problem modulo some equational theory to some other static equivalence
problems modulo simpler equational theories.

Contribution of this paper.We exhibit criteria on equational theories allowing
simplifications for the decision of static equivalence. The kind of simplification
we describe is the removal of a particular symbol which we call a valve. More
precisely, given a sorted signature, and two sorts r and s, a valve from r to
s is a symbol expecting arguments of sort r and producing a term of another
sort s. Moreover, it is the only function symbol which allows to build terms of
sort s out of terms of sort r. Signatures of this kind occur when representing
cryptographic primitives using elements of two distinct algebraic structures and a
mapping function from one structure to the other. A concrete example occurs in
the bilinear pairing operation [7, 12, 14]. We will use this operation as a running
example throughout the paper.

We show that under some conditions a valve can be removed from the terms
in the frames on which we want to decide the static equivalence, and from the
equational theory. Hence our purpose is dual. First we show that deciding static
equivalence of a pair of frames involving a given valve can be reduced to the
decision of the static equivalence of pairs of frames without this symbol. Second,
we show that deciding static equivalence on a pair of frames, not involving a
given valve f , in the presence of an equational theory involving f , can be done
in the presence of two other, generally simpler equational theories without f .
Obviously this cannot be done in general and the first step of this work consists
in identifying sufficient conditions on equational theories for which this kind of
reduction is possible. The result is illustrated by reducing the decision of static
equivalence for an equational theory modelling bilinear pairings between two
groups to the decision of static equivalence on groups, yielding a new decidability
result.

A completely different combination problem for deciding static equivalence
was studied in [4], namely the combination of disjoint equational theories. On the
one hand we do not require the two simpler signatures obtained by the reduction
to be disjoint, on the other hand we are working in a well-sorted setting.

Structure of the paper. In Section 2 we introduce our formal model. Sec-
tion 3 presents the running example used throughout the paper. In Section 4
we introduce the concepts of valve and reducibility. Section 5 is dedicated to the
presentation of our reduction results. We give a first syntactic criterion for the
applicability of our reduction results in Section 6, and conclude in Section 7.
Exhaustive versions of some of the proofs are given in [15].



2 Model

2.1 Sorted term algebras

A sorted signature (S,ℱ) is defined by a set of sorts S = {s, s1, s2, . . . } and a
set of function symbols ℱ = {f, f1, f2, . . . } with arities of the form arity(f) =
s1×⋅ ⋅ ⋅×sk → s where k ≥ 0. If k = 0 the symbol is called a constant and its arity
is simply written s. We fix an S-indexed family of sorted names N = (Ns)s∈S

where Ns = {ns1, ns2, . . . } and an infinite ordered set of sorted variables X .
The set of terms of sort s is defined inductively by :
t ::= term of sort s

∣ x variable x of sort s
∣ n name n of sort s
∣ f(t1, . . . , tk) application of symbol f ∈ ℱ

where each ti is a term of sort si and arity(f) = s1 × ⋅ ⋅ ⋅ × sk → s. The set
of terms T (ℱ ,N ,X ) is the union of the sets of terms of sort s for every s ∈ S.
We denote by sort(t) the sort of term t. We write var(t) and names(t) for the
set of variables and names occurring in t, respectively. A term t is ground iff
var(t) = ∅. The set of ground terms is denoted by T (ℱ ,N ).

We extend the notion of arity to terms as follows. If t is a ground term of
sort s then arity(t) = s, otherwise arity(t) = s1 × ⋅ ⋅ ⋅ × sn → s if the ordered
sequence x1, . . . , xn of variables of t are of sort s1, . . . , sn respectively.

We write ∣t∣ for the size of t, i.e. the number of symbols of t.
A context C is a term with distinguished variables sometimes called holes.

It can be formalized as a lambda-term of the form �x1. . . . .�xn.tC where the
xi may appear or not in tC . For the sake of simplicity, in most cases we simply
write C[x1, . . . , xn] instead of �x1. . . . .�xn.tC as well as C[t1, . . . , tn] instead of
(. . . (�x1. . . . .�xn.tC)t1 . . . )tn. Hence C[t1, . . . , tn] is simply the result of replac-
ing each xi by ti. A context is public if it does not involve any name.

The positions Pos(t) of a term t are defined as usual by Pos(u) = {�} when
u ∈ N ∪ X and Pos(f(t1, . . . , tn)) = {�} ∪ {i ⋅ � ∣ 1 ≤ i ≤ n, � ∈ Pos(ti)}
otherwise. The subterm of t at position p is written t∣p, and the replacement in
t at position p by u is written t[u]p.

A substitution � written � = {x1 7→ t1, . . . , xn 7→ tn} with domain dom(�) =
{x1, . . . , xn} is a mapping from {x1, . . . , xn} ⊆ X to T (ℱ ,N ,X ). We only con-
sider well sorted substitutions in which xi and ti have the same sort. A substi-
tution � is ground if all ti are ground. The application of a substitution � to a
term t is written t�.

2.2 Equational theories and rewriting systems

An equation is an equality t = u where t and u are two terms of the same sort.
An equational theory E is a finite set of equations. We denote by =E the smallest
congruence relation on T (ℱ ,N ,X ) such that t� =E u� for any t = u ∈ E and
for any substitution �. We say that a symbol f is free in E if f does not occur
in E.



A term rewriting system ℛ is a finite set of rewrite rules l → r where l ∈
T (ℱ ,N ,X ) and r ∈ T (ℱ ,N , var(l)). A term u ∈ T (ℱ ,N ,X ) rewrites to v by
ℛ, denoted u →ℛ v if there is a rewrite rule l → r ∈ ℛ, a position p and a
substitution � such that u∣p = l� and v = u[r�]p. We write →∗ for the transitive
and reflexive closure of →. Given a set of equations E, u rewrites modulo E by
ℛ to v, denoted u →ℛ/E v, if u =E t[l�]p and t[r�]p =E v for some context
t, position p in t, rule l → r in ℛ, and substitution �. ℛ is E-terminating if
there are no infinite chains t1 →ℛ/E t2 →ℛ/E . . . . ℛ is E-confluent iff whenever
t→ℛ/E u and t→ℛ/E v, there exist u′,v′ such that u→∗

ℛ/E u′, v →∗
ℛ/E v′, and

u′ =E v′. ℛ is E-convergent if it is E-terminating and E-confluent. A term t is
in normal form with respect to (ℛ/E) if there is no term s such that t→ℛ/E s.
If t→∗

ℛ/E s and s is in normal form, we say that s is a normal form of t. When

this normal form is unique (up to E) we write s = t ↓ℛ/E .

2.3 Substitutions and frames

A frame is an expression � = �ñ�.�� where ñ� is a set of bound names, and ��
is a substitution. ∣�∣ is the size of �, i.e. the number of elements in dom(��).
�� is called the underlying substitution of �. We extend the notation dom to
frames by dom(�ñ.�) = dom(�). We write � =�  when the frames � and  are
equal up to alpha-conversion of bound names. For two frames � = �ñ�.�� and
 = �ñ .� with dom(�) ∩ dom( ) = ∅ and ñ� ∩ ñ = ∅ we write � for the
disjoint composition of � and  defined as � = �(ñ� ∪ ñ ).��� . Note that
ñ� ∩ ñ = ∅ is always possible by alpha-conversion of the bound names of � and
 . The sort of a frame � is the set S = {sort(x)∣x ∈ dom(�)}, and we say that
� is S-sorted.

For simplicity, we only consider frames � = �ñ{x1 7→ t1, . . . , xn 7→ tn} that
restrict every name in use, that is, for which ñ = names(t1, . . . , tn). A name a
may still be disclosed explicitly by adding a mapping xa 7→ a to the frame.

2.4 Static equivalence

Definition 1 (equality in a frame [2]). We say that two terms M and N
are equal in a frame � for the equational theory E, and write (M =E N)�, if
and only if � =� �ñ.�, M� =E N�, and {ñ} ∩ (names(M) ∪ names(N)) = ∅.

Definition 2 (static equivalence [2]). Two frames � and  are statically
equivalent for the equational theory E, written � ≈E  , iff dom(�) = dom( ),
and for all terms M and N , we have (M =E N)� if and only if (M =E N) .

For two frames � and  , two terms M,N such that (M =E N)� and (M ∕=E
N) are called distinguishers of � and  .

3 Running example

We will illustrate our specific definitions and lemmas by a running example
involving two distinct algebraic groups G1 and G2 and a pairing operation e



mapping two elements of G1 to an element of G2. A concrete cryptographic
definition can be found in [7]. In general, a pairing operation maps elements of
an additive group to elements of a multiplicative group in the following way.

e : G1 ×G1 → G2

e(ag1, bg2) = e(g1, g2)
ab

In some protocols, e.g. [12], one has in fact g1 = g2. We use this assumption in
order to simplify our notations. Moreover, we use a multiplicative notation to
represent elements of G1, e.g. we write exp1(x) for both xg1 and xg2.

Let SBP be the set of sorts {R,G1, G2}, R is the sort of the exponents of a
chosen generator of the Gi, and G1 (resp. G2) are the sorts of the elements of
the groups G1 (resp. G2). Let ℱBP be the following set of symbols:

+, ⋅ : R ×R→ R add, mult
− : R → R inverse

0R, 1R : R constants
expi : R → Gi i ∈ {1, 2} exponentiation

∗i : Gi ×Gi → Gi i ∈ {1, 2} mult in Gi

e : G1 ×G1 → G2 pairing

We will write ∗ instead of ∗i, the sort of ∗ being always clear from the context.
As a convenient shortcut we sometimes write ti for t ∗ . . . ∗ t

︸ ︷︷ ︸

i×

. The properties of

these function symbols are defined by the following equational theory EBP.

x+ y = y + x 0R + x = x
(x+ y) + z = x+ (y + z) x+ (−x) = 0R

x ⋅ y = y ⋅ x x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z)
(x ⋅ y) ⋅ z = x ⋅ (y ⋅ z) 1R ⋅ x = x

expi(x) ∗i expi(y) = expi(x+ y) i ∈ {1, 2}
e(exp1(x), exp1(y)) = exp2(x ⋅ y)

This signature and this equational theory represent operations realized in proto-
cols where the exchanged messages are elements of the groups Gi. The symbol e
represents a pairing operation.

Example 1. Bilinear pairing is a central primitive of the Joux protocol [12], a
three participant variation of the Diffie-Hellman protocol. It implicitly relies on
the decisional Bilinear Diffie-Hellman Assumption (BDH) which can be formally
modelled using static equivalence as follows:

�a, b, c, r.{x1 7→ exp1(a), x2 7→ exp1(b), x3 7→ exp1(c), y1 7→ exp2(a ⋅ b ⋅ c)}
≈EBP

�a, b, c, r.{x1 7→ exp1(a), x2 7→ exp1(b), x3 7→ exp1(c), y1 7→ exp2(r)}



4 Valves and reducibility

The main result of our paper concerns signatures involving a special function
symbol which we call a valve. Intuitively, as it is suggested by the name “valve”,
a valve f is a symbol such that applying f on terms of sort r, we obtain a term
t of sort s and such that t cannot be a subterm of a term of sort r.

We borrow here some useful notions from graph theory.

Definition 3 (Signature graph). Let (S,ℱ) be a sorted signature. The graph
G(S,ℱ) is the directed labelled graph (V,E) where V = S, E ⊆ V × V × ℱ and
(r, s, f) ∈ E iff sort(f) = s1 × ⋅ ⋅ ⋅ × sn → s and si = r for some i.

We recall that a path in a graph is a sequence of edges such that for two
consecutive edges (r, s, f) and (r′, s′, f ′) we have s = r′.

Definition 4 (valve). A symbol f of arity ⋅ ⋅ ⋅ × r × ⋅ ⋅ ⋅ → s is a valve from r
to s iff every path from r to s in G(S,ℱ) contains (r, s, f) and there is no path
from s to r.

Example 2 (continued). Let us consider the sorted signature (SBP,ℱBP) intro-
duced in our running example in Section 3. G(SBP,ℱBP) is given in Figure 1.

R

G1

G2

exp1

e

exp2

∗1

∗2

⋅ + −

Fig. 1. G(SBP,ℱBP)

In the signature of Figure 1, e is a valve from G1 to G2 as (G1, G2, e) lies on
every path from G1 and G2, and since no path leads from G2 to G1. We also
have that exp1 is a valve from R to G1. However, exp2 is not a valve from R to
G2 as the sequence (R,G1, exp1), (G1, G2, e) is a path from R to G2.

We are now able to present the central notion of reducibility.

Definition 5 (reducible). Let r and s be two sorts and f a valve from r to s.
An equational theory E is reducible for f iff for every n ≥ 0 there exist m public
contexts T1[x1, . . . , xn], . . . , Tm[x1, . . . , xn] of arity r× ⋅ ⋅ ⋅ × r → s such that for
all public contexts C1[x1, . . . , xn], . . . , Ck[x1, . . . , xn] of arity r×⋅ ⋅ ⋅×r → r there
exists a public context D[y1, . . . , ym] of arity s × ⋅ ⋅ ⋅ × s → s such that for any
ground terms t1, . . . , tn of sort r

f(C1, . . . , Ck)[t1, . . . , tn] =E D[T1, . . . , Tm][t1, . . . , tn]



Intuitively, reducibility for a valve f means that given a cardinality n of sets
of ground terms of sort r, we can construct in a uniform way a set of terms such
that any sequence of operations performed before applying f , there will be a
way to reproduce these operations on the terms obtained with the context Ti.
The uniformity lies in the fact that the contexts Ti depend only on the number n
but not on the contexts Ci. We illustrate this notion by showing the reducibility
for e of the theory of our running example EBP in case NG1

= ∅.

Proposition 1. EBP is reducible for e if NG1
= ∅.

Proof. Let n be an integer. We define m = n+ n∗(n+1)
2 contexts

Ti = �x1. . . . .�xn.e(xi, exp1(1R)) for 1 ≤ i ≤ n
Tij = �x1. . . . .�xn.e(xi, xj) for 1 ≤ i ≤ j ≤ n

Every public context Ci[x1, . . . , xn] of arity G1 × ⋅ ⋅ ⋅ ×G1 → G1 is of the form
�x1. . . . .�xn.x

ei1
1 ∗ ⋅ ⋅ ⋅ ∗ xeinn ∗ exp1(pi) where pi =EBP

1R + ⋅ ⋅ ⋅ + 1R (li times).
Hence exp1(pi) =EBP

exp1(1R)
li .

Let us show by induction on the size of the contexts Ci that there exists a
context D such that for any sequence of ground terms t1, . . . , tn

e(C1, C2)[t1, . . . tn] =EBP
D[T1, . . . , Tn, T11, . . . , Tnn][t1, . . . , tn]

Base case. We distinguish four cases:

1. C1 = �x1. . . . .�xn.xi and C2 = �x1. . . . .�xn.xj
For any sequence of terms t1, . . . , tn we have that e(C1, C2)[t1, . . . , tn] =
e(ti, tj). As NG1

= ∅ there exist terms t′i and t
′
j of sort R such that ti =EBP

exp1(t
′
i) and tj =EBP

exp1(t
′
j). Hence

e(C1, C2)[t1, . . . , tn] =EBP
e(exp1(t

′
i), exp1(t

′
j))

=EBP
exp2(t

′
i ⋅ t

′
j) =EBP

Tij [t1, . . . , tn]

LetD = �y1. . . . .�yn.�y11. . . . .�ynn.yij . We have that e(Ci, Cj)[t1, . . . , tn] =EBP

D[T1, . . . , Tn, T11, . . . , Tnn][t1, . . . , tn].
2. C1 = �x1. . . . .�xn.xi and C2 = exp1(1R)

l

For any sequence of terms t1, . . . , tn we have that e(C1, C2)[t1, . . . , tn] =
e(ti, exp(1R)

l). As NG1
= ∅ there exists a term t′i of sort R such that ti =EBP

exp1(t
′
i). Hence

e(C1, C2)[t1, . . . , tn] =EBP
e(exp1(t

′
i), exp1(1R + ⋅ ⋅ ⋅+ 1R

︸ ︷︷ ︸

l×

))

=EBP
exp2(t

′
i ⋅ (1R + ⋅ ⋅ ⋅+ 1R

︸ ︷︷ ︸

l×

))

=EBP
exp2(t

′
i)
l =EBP

(Ti[t1, . . . , tn])
l

LetD = �y1. . . . .�yn.�y11. . . . .�ynn.y
l
i. We have that e(Ci, Cj)[t1, . . . , tn] =EBP

D[T1, . . . , Tn, T11, . . . , Tnn][t1, . . . , tn].



3. C1 = exp1(1R)
l and C2 = �x1. . . . .�xn.xi

As C1 ∗ C2 =EBP
C2 ∗ C1 this case is similar to case 2.

4. C1 = exp1(1R)
l1 and C2 = exp1(1R)

l2

We immediately conclude by defining D = exp2(1R)
l1⋅l2 .

Inductive case : Ci = Ci1 ∗ Ci2. Let i = 1. The case where i = 2 is similar.
We note that every term of sort R can be written as a sum of products of
names of sort R. More formally for any contexts C11[x1, . . . , xn], C12[x1, . . . , xn],
C2[x1, . . . , xn], for any term t1, . . . tn we have that C11[t1, . . . tn] = exp1(p11),
C12[t1, . . . tn] = exp1(p12) and C2[t1, . . . tn] = exp1(p2), for some elements of
sort R described as above. We note that the equational theory implies that
e(C11 ∗ C12, C2) = e(C11, C2) ∗ e(C12, C2).

By induction there are D1 and D2 such that e(C11 ∗ C2)[t1, . . . , tn] =E
D1[T1, . . . , Tm][t1, . . . , tn] and e(C12∗C2)[t1, . . . , tn] =E D2[T1, . . . , Tm][t1, . . . , tn].
Hence defining D as D1 ∗D2 we conclude. ⊓⊔

Example 3. For n = 2 we have that

T1 = e(x1, exp1(1)) T2 = e(x2, exp1(1))
T1,1 = e(x1, x1) T1,2 = e(x1, x2) T2,2 = e(x2, x2)

Let C1 = �x1�x2.x1 and C2 = �x1�x2.x2 ∗ x2 ∗ exp1(1 + 1). We define

D = �y1�y2�y1,1�y1,2�y2,2.y1,2 ∗ y1,2 ∗ y1 ∗ y1

since e(t1, t2 ∗ t2 ∗exp1(1+1)) = e(t1, t2)∗e(t1, t2)∗e(t1, exp1(1))∗e(t1, exp1(1))
for any ground terms t1, t2.

Remark 1. Proposition 1 requires that we do not have names of sort G1. We
argue that this is not restrictive in the context of protocols. As we expect that
terms of sort G1 represent the elements of a group with a given generator each
element of the group G1 can indeed be written as exp1(r) for some element of R.

One might have expected reducibility for a symbol f to be related to being
sufficiently complete w.r.t. f as defined in [8].

Definition 6 (sufficiently complete). E is a sufficiently complete equational
theory with respect to f ∈ ℱ if for every ground term t ∈ T (ℱ ,N ) there exists a
ground term u ∈ T (ℱ ∖ {f},N ) such that t =E u.

The next two lemmas show, however, that these two notions are in fact inde-
pendent of each other.

Lemma 1. Reducibility of an equational theory E for a symbol f does not imply
sufficient completeness of E w.r.t. f .

Proof. Let S = {r, s} and ℱ = {f}, with sort(f) = r → s, and E = ∅. We
show that E is reducible for f but not sufficiently complete w.r.t. f . Consider an
integer n and the contexts T1 = �x1. . . . �xn.f(x1), . . . , Tn = �x1. . . . �xn.f(xn).



As the only ground terms ti of sort r are names ni, we consider w.l.o.g. that
any sequence of terms t1, . . . , tn is equal to n1, . . . , nn, and as the only possible
contexts C of sort r are of the form �x1. . . . �xn.xi, we have f(C[t1, . . . , tn]) =
f(ni). Hence we only have to verify that for any i there exists a context D such
that f(ni) =E D[T1, . . . , Tn][n1, . . . , nn]. We choose D = �y1. . . . �yn.yi.

To show that E is not sufficiently complete w.r.t. f , we note that as f is free,
for any i the term f(ni) is not equivalent to a term without f . ⊓⊔

Lemma 2. Sufficient completeness of E w.r.t. a symbol f does not imply re-
ducibility of E for f .

Proof. We define a signature with two sorts r and s, no names, and the function
symbols 0r : r, sr : r → r, f : r → s, 0s : s, ss : s→ s. The function symbol f is
the valve. We have the following equational theory:

f(sr(x), y)) = ss(f(x, y)) f(0r, sr(y)) = f(sr(y), y) f(0r, 0r) = 0s

Identifying any ground term of sort r or s with a natural number, the function

f satisfies f(n,m) = n + m∗(m+1)
2 . Since there are no names E is sufficiently

complete for f . The fact that f has a quadratic growth contradicts reducibility.
A detailed proof can be found in [15]. ⊓⊔

5 Getting rid of reducible symbols

We now present the central result of our work and show that if an equational
theory E is reducible for f then it is possible to get rid of f when deciding static
equivalence.

First, we show that deciding static equivalence on {r, s}-sorted frames in the
presence of a valve from r to s can be reduced to deciding two equivalences, one
on r-sorted frames and one on s-sorted frames (Lemma 4).

Second, we show that under some conditions on the equational theory, decid-
ing static equivalence for a given equational theory can be reduced to deciding
static equivalence for an equational theory that does not involve a reducible sym-
bol (Theorem 1). As a corollary we get the possibility of splitting the equational
theory into simpler equational theories.

Definition 7 (reduction). Let the equational theory E be reducible for f ,
where f is a valve from r to s, and let � = �ñ{x1 7→ t1, . . . , xn 7→ tn} be a frame
of sort {r}. The reduction of � is defined as � = �ñ{y1 7→ T1[t1, . . . tn], . . . , ym 7→
Tm[t1, . . . tn]} where Ti are contexts as defined in Definition 5.

We note that � is {s}-sorted. Before giving an example illustrating the con-
struction of � we define the following useful notation.

Definition 8 (s-restriction). Let � = �ñ.�� be an {s1, . . . , sn}-sorted frame.
The si-restriction of �, denoted �∣si is the frame �ñ.��∣si

where ��∣si
is the

substitution �� restricted to the variables of sort si.



Example 4. Let �BDH be the G1-restriction of the frames presented in Exam-
ple 1 : �BDH = �a, b, c, r.{x1 7→ exp1(a), x2 7→ exp1(b), x3 7→ exp1(c)}. Using
the set of terms Ti and Tij defined in the proof of Proposition 1, we get

�BDH = �a, b, c, r.{ y1 7→ e(exp1(a), exp1(1)), y12 7→ e(exp1(a), exp1(b)),
y2 7→ e(exp1(b), exp1(1)), y13 7→ e(exp1(a), exp1(c)),
y3 7→ e(exp1(c), exp1(1)), y23 7→ e(exp1(b), exp1(c)) }

We now prove a technical lemma which will be used to transfer tests on a
frame to tests on its reduction.

Lemma 3. Let (S,ℱ) be a signature such that f ∈ ℱ is a valve from r to s,
and E an equational theory that is reducible for f . For any integer n, and for
any public context M of sort s there exists a public context M ′ such that for any
{r, s}-sorted frame � of size n, M� =E M ′�∣r�∣s.

Proof. Let us show this by induction on the height of M . If M is a variable or a
constant then we define M ′ = M . If M = y ∈ X then y(�∣r�∣s) = y� since the

sort of y is s. If M = c is a constant then M� =E M ′�∣r�∣s holds trivially.
If the height of M is non-null then the top symbol of M can be the valve f ,

or some function symbol f ′ ∕= f .
If M = f(C1[x1, . . . , xn], . . . , Ck[x1, . . . , xn]) then all variables of M are of

sort r, and hence M� =M�∣r where �∣r = {x1 7→ t1, . . . , xn′ 7→ tn′}. As E is re-

ducible for f , we can define �∣r as {y1 7→ T1[t1, . . . tn′ ], . . . , ym 7→ Tm[t1, . . . tn′ ]}.
By Definition 5 there exists a public context D[y1, . . . , ym] such that

f(C1, . . . , Ck)[t1, . . . , tn′ ] = D[T1, . . . , Tm][t1, . . . , tn′ ]

With M ′ = D we have that M�∣r =E M ′�∣r, and hence M� =E M ′�∣r�∣s.
IfM = f ′(C1[x1, . . . , xn, y1, . . . , ym], . . . , Ck′ [x1, . . . , xn, y1, . . . , ym]) with f ′ ∕=

f then sort(Ci) = s. By induction there exist public contexts M1 . . .Mk′ such
that for any {r, s}-sorted frame � of size n, Ci′� =E Mi′�∣r�∣s. We define

M ′ = f ′(M1 . . .Mk′), and obtain M� =E M ′�∣r�∣s. ⊓⊔

The following lemma allows us to split the decision of static equivalence of
{r, s}-sorted frames into two equivalences on r-sorted frames and s-sorted frames.

Lemma 4. For any {r, s}-sorted frames �1 and �2 built on (S,ℱ), and for a
valve f from r to s, if E is a reducible equational theory for f then �1 ≈E �2 iff
�1∣r ≈E �2∣r and �1∣r�1∣s ≈E �2∣r�2∣s.

Proof (Sketch). We prove the two directions of the equivalence separately.

(⇒) If �1 ≈E �2, then �1∣r ≈E �2∣r and �1∣r�1∣s ≈E �2∣r�2∣s. The proof is
done by contraposition. We obviously have that �1∣r ∕≈E �2∣r implies �1 ∕≈E �2
as M�i∣r = M�i for any term M having only variables of sort r. Furthermore,

we have that �1∣r�1∣s ∕≈E �2∣r�2∣s implies �1 ∕≈E �2. The proof uses the fact

that the elements �i∣r are obtained by some fixed contexts Ti in order to build
distinguishers for �1 and �2.



(⇐) If �1∣r ≈E �2∣r and �1∣r�1∣s ≈E �2∣r�2∣s then �1 ≈E �2. The proof is done
by contraposition. Suppose that �1 ∕≈E �2 and consider the two possibilities for
the sorts of the distinguishers M and N . If sort(M) = r, by the fact that f
is a valve, we have that M and N distinguish �1∣r and �2∣r. If sort(M) = s,

by invoking Lemma 3, we infer the existence of distinguishers for �1∣r�1∣s and

�2∣r�2∣s. ⊓⊔
A detailed proof can be found in [15].

By the following definition we identify a sufficient condition to get rid of the
symbol f for deciding static equivalence between frames that do not involve this
symbol. In the following section we exhibit a syntactic condition that is sufficient
to obtain such a theory.

Definition 9 (sufficient equational theory). Let (S,ℱ ⊎ {f}) be a sorted
signature and E an equational theory. An equational theory E′ is sufficient for
E without f iff for any terms u, v ∈ T (ℱ ,N ), u =E v iff u =E′ v and E′ does
not involve f .

Theorem 1. Let E be an equational theory on the sorted signature (S,ℱ ⊎{f})
such that
– f is a valve,
– E is a reducible equational theory for f ,
– E is sufficiently complete w.r.t. {f}.

If there exists an equational theory E′ sufficient for E without f then for any
{r, s}-sorted frames �1 and �2, we have that �1 ≈E �2 iff �1∣r ≈E′ �2∣r and

�1∣r�1∣s ≈E′ �2∣r�2∣s.

The proof of Theorem 1 relies on Lemma 5.

Lemma 5. Let �1 and �2 be two {r}-sorted frames, E an equational theory,
and f a valve from r to a distinct sort s, which is free in E. If for any two terms
M , N of sort r (M =E N)�1 iff (M =E N)�2, then for any two terms M and
N of sort s, (M =E N)�1 iff (M =E N)�2.

Proof (sketch). We will exhibit two replacements functions �1 (resp. �2) defined
on pairs (�, p) where � identifies M or N and p is a position in M�1 or N�1
(resp. M�2, N�2) such that M�1∣p or N�1∣p is headed by f . The co-domain
of �1 (resp. �2) is a set of fresh names w.r.t. �1 (resp. �2). We show the two
following assertions

1. M�1�1 =E M�2�2 and N�1�1 =E N�2�2,
2. M�i =E N�i iff M�i�i =E N�i�i for i ∈ {1, 2}.

Their conjunction implies that for any two terms M , N of sort s, (M =E N)�1
iff (M =E N)�2.

To show that M�1�1 =E M�2�2 and N�1�1 =E N�2�2 we rely on the
hypothesis that for any two terms M,N of sort r we have that (M =E N)�1 iff
(M =E N)�2 as well as the construction of �1 and �2.



To show that M�i =E N�i implies M�i�i =E N�i�i, we use the notion
of cut function introduced in [6]. Showing that �1 (resp. �2) corresponds to a
sequence of applications of a cut function allows us to conclude using Lemma 15
of [6]. To show thatM�i�i =E N�i�i implies M�i =E N�i we use the fact that
�1 and �2 are bijective. ⊓⊔

A complete proof is given in in [15].

Proof (of Theorem 1). We suppose that �1 ≈E �2. By Lemma 4 we have that
�1∣r ≈E �2∣r and �1∣r�1∣s ≈E �2∣r�2∣s.

We will show that

�1∣r ≈E �2∣r(p) ∧ �1∣r�1∣s ≈E �2∣r�2∣s(q)
⇔

�1∣r ≈E′ �2∣r(p1) ∧ �1∣r�1∣s ≈E′ �2∣r�2∣s(q1)

We will prove the three following assertions separately :

(1)¬q ⇔ ¬q1 (2)¬p⇒ ¬p1 ∨ ¬q1 (3)¬p1 ⇒ ¬p

The conjunction of these three assertions implies the fact that (p∧q) ⇔ (p1∧q1).

(1) �1∣r�1∣s ∕≈E �2∣r�2∣s iff �1∣r�1∣s ∕≈E′ �2∣r�2∣s
As �1∣r�1∣s ∕≈E �2∣r�2∣s there exist two terms M and N distinguishing

�1∣r�1∣s and �2∣r�2∣s. As f is a valve, there exist M and N that do not
involve any symbol f . As E is sufficiently complete w.r.t. {f} we can sup-
pose that frames �1∣r�1∣s and �2∣r�2∣s do not involve f . Hence M�i∣r�i∣s
and N�i∣r�i∣s also do not involve f . As E′ is sufficient for E without f

we have that M�i∣r�i∣s =E N�i∣r�i∣s iff M�i∣r�i∣s =E′ N�i∣r�i∣s. Hence

�1∣r�1∣s ∕≈E′ �2∣r�2∣s.

(2) if �1∣r ∕≈E �2∣r then �1∣r ∕≈E′ �2∣r or �1∣r�1∣s ∕≈E′ �2∣r�2∣s
Let M and N be two terms distinguishing �1∣r and �2∣r.
IfM is of sort r, as f is a valve, we can suppose w.l.o.g. thatM , N , �1∣r and
�2∣r do not involve any f . Hence M�i∣r and N�i∣r do not involve f . As E′ is
sufficient for E without f we have thatM�i∣r =E N�i∣r iffM�i∣r =E′ N�i∣r.
Hence �1∣r ∕≈E′ �2∣r.
If M is of sort s, by Lemma 3 there exist terms M ′ and N ′ such that
M�i∣r =E M ′�i∣r and N�i∣r =E N ′�i∣r. As f is a valve, M ′ and N ′ do
not involve any symbol f . By sufficient completeness of E w.r.t. {f}, we can
consider frames �1∣r and �2∣r that do not involve f ,M ′�i∣r and N

′�i∣r do not

involve f either. As E′ is sufficient without f we have thatM ′�i∣r =E N ′�i∣r
iff M ′�i∣r =E′ N ′�i∣r. Hence �1∣r ∕≈E′ �2∣r and �1∣r�1∣s ∕≈E′ �2∣r�2∣s.

(3) if �1∣r ∕≈E′ �2∣r then �1∣r ∕≈E �2∣r
As �1∣r ∕≈E′ �2∣r there exist terms M and N distinguishing �1∣r and �2∣r.
If there are no terms M and N of sort r distinguishing �1∣r and �2∣r, by
Lemma 5 there are no terms of sort s distinguishing �1∣r and �2∣r. Hence if
�1∣r ∕≈E′ �2∣r then there are terms M and N distinguishing �1∣r and �2∣r of
sort r.



If M is of sort r, as f is a valve, M , N , �1∣r and �2∣r do not involve any f .
Hence M�i∣r and N�i∣r do not involve f . As E′ is sufficient without f we
have that M�i∣r =E′ N�i∣r iff M�i∣r =E N�i∣r. Hence �1∣r ∕≈E �2∣r. ⊓⊔

We denote by E−r the equational theory E without equations of sort r.

Corollary 1. Let E be an equational theory on the sorted signature (S,ℱ∪{f})
such that (i) f is a valve, (ii) E is a reducible equational theory for f , and (iii)
E is sufficiently complete w.r.t. {f}. If there exists an equational theory E′

sufficient for E without f then for any {r, s}-sorted frames �1 and �2, we have
that �1 ≈E �2 iff �1∣r ≈E′−s �2∣r and �1∣r�1∣s ≈E′−r �2∣r�2∣s.

Proof. By Theorem 1, we have �1 ≈E �2 iff �1∣r ≈E′ �2∣r and �1∣r�1∣s ≈E′

�2∣r�2∣s.
By Lemma 5, we have that if for any two terms M and N of sort r (M =E

N)�1 iff (M =E N)�2, then for any two termsM and N of sort s, (M =E N)�1
iff (M =E N)�2. Hence it is sufficient to consider terms of sort r to decide static
equivalence between �1∣r and �2∣r. As f is a valve for any termM , no subterms of
M are of sort s. We can consider only E′−r to decide static equivalence between
�1∣r and �2∣r.

Let us show that �1∣r�1∣s ≈E′ �2∣r�2∣s iff �1∣r�1∣s ≈E′−r �2∣r�2∣s.

�1∣r�1∣s ∕≈E′ �2∣r�2∣s iff there are two termsM and N distinguishing �1∣r�1∣s
and �2∣r�2∣s. As f is a valve, there exist M and N that do not involve any
symbol f . As E is sufficiently complete w.r.t. {f} we can suppose that frames
�1∣r�1∣s and �2∣r�2∣s do not involve f . Hence M�i∣r�i∣s and N�i∣r�i∣s do not

involve f either. As f is a valveM�i∣r�i∣s and N�i∣r�i∣s do not involve subterms

of sort r we have that M�i∣r =E′ N ′�i∣r iff M�i∣r�i∣s =E′−r N�i∣r�i∣s. Hence

�1∣r�1∣s ∕≈E′−r �2∣r�2∣s. ⊓⊔

6 A criterion for sufficient equational theories

In this section we make a first attempt to find sufficient criteria for applying
Theorem 1. Future work includes finding broader criteria. We also briefly explain
how our running example fits this criterion.

Definition 10 (decomposition). A pair (ℛ, E′) is a decomposition of an
equational theory E iff

– E′ is an equational theory,
– ℛ is a rewriting system convergent modulo E′,
– for any terms u and v u =E v iff u ↓ℛ/E′= v ↓ℛ/E′ .

Definition 11 (exclusively define). Let (S,ℱ ⊎ {f}) be a sorted signature.
A rewriting system ℛ exclusively defines f if any term in normal form modulo
ℛ/E′ is in T (ℱ ,N ) and if for any rewrite rule l → r ∈ ℛ, f appears in l.



Lemma 6. Let (S,ℱ ⊎ {f}) be a signature. If a theory E on this signature has
a decomposition (ℛ, E′) and if ℛ exclusively defines f then E′ is sufficient for
E without f .

Proof. Let u and v be two terms not involving f . As ℛ exclusively defines f
and as u and v do not involve any f symbol, no rule of ℛ can be applied. Hence
u =E v iff u =E′ v. ⊓⊔

Example 5 (continued). We define ℛBP to be the rewriting system obtained by
orienting the rule e(exp1(x), exp1(y)) = exp2(x ⋅ y) from left to right, and E′

BP

the equational theory EBP without this rule. We remark that (ℛ, E′
BP

) is a
decomposition of EBP and it is easy to see that ℛ exclusively defines e.

Corollary 2. If the set of names of sorts G1 and G2 are empty, static equiva-
lence for EBP is decidable for {G1, G2}-sorted frames.

Proof. As ℛBP exclusively defines e, by Lemma 6, we have that E
′

BP
is sufficient

for EBP without e. By Proposition 1 we have that EBP is reducible for f . Finally,
as the set of names of sorts G1 and G2 is empty, EBP is sufficiently complete for e.
Hence by Corollary 1, for two frames �1 and �2, �1 ≈E �2 iff �1∣G1

≈
E

′−G2

BP

�2∣G1

and �1∣G1
�1∣G2

≈
E

′−G1

BP

�2∣G1
�2∣G2

.

As E
′−G2

BP
and E

′−G1

BP
correspond both to the classical equational theory mod-

elling Diffie-Hellman, which is known to be decidable [13] for frames whose only
names are of sort R we have that static equivalence is decidable for EBP on
{G1, G2}-sorted frames. ⊓⊔

7 Conclusion and future work

In this paper we have defined the notions of valve and reducibility which allow
to simplify equational theories for the decision of static equivalence. This consti-
tutes a first step towards finding generic criteria. Our results apply to the case of
bilinear pairing. We believe that this result may apply to other situations where
several algebraic structures are used in the model of the same cryptographic
operator. In the short term we are investigating the following directions:

(1) We are trying to identify criteria for reducibility which are easier to decide.
Even on our quite simple example, proving reducibility is a bit technical. Hence
we are trying to determine either syntactic criteria on the equational theory, or
more classical properties as a constrained form of sufficient completeness, that
would imply reducibility.

(2) In this paper we have analyzed the case where there is only one reducible
valve in an equational theory. Extending reducibility to the case where several
valves belong to the theory seems possible. However it requires defining a priority
order on the reductions of the different valves.

(3) We are also trying to widen the notion of valve. In the definition we
propose here, a valve is defined from a given sort to another. Yet cases where



a valve takes as argument terms of different sorts can be considered. We think
that such a notion could give rise to a wider notion of reducibility than the one
we have analyzed. It seems that we need conditions on the links between the
arguments of such valves.
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