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Abstract

In this paper, we introduce a symbolic model to analyse protocols that
use a bilinear pairing between two cyclic groups. This model consists in
an extension of the Abadi-Rogaway logic and we prove that the logic is
still computationally sound: symbolic indistinguishability implies compu-
tational indistinguishability provided that the Bilinear Decisional Diffie-
Hellman assumption holds and that the encryption scheme is IND-CPA
secure. We illustrate our results on classical protocols using bilinear pair-
ing like Joux tripartite Diffie-Hellman protocol or the TAK-2 and TAK-3
protocols. We also investigate the security of a newly designed variant of
the Burmester-Desmedt protocol using bilinear pairings. More precisely,
we show for each of these protocols that the generated key is indistin-
guishable from a random element.
Keywords: Security, Formal Methods, Dolev-Yao Model, Computa-
tional Soundness, Bilinear Pairing

1 Introduction

Recently bilinear pairings such as Weil pairing or Tate pairing on elliptic and
hyperelliptic curves have been used to build several cryptographic protocols.
One of the first practical pairing-based protocols has been designed by Joux
in [29] where a key exchange protocol based on pairing is proposed. This pro-
tocol allows three participants to build a shared secret key in a single round.
However this protocol was only designed to be secure in the passive setting and
is subject to man-in-the-middle attacks. Several key exchange protocols that
extend this original protocol were developed, either to ensure some form of au-
thentication [6] or to extend it to a group setting [10]. Pairings were also used
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as a robust building block for other cryptographic primitives such as identity
based encryption schemes or signature schemes [21].

Our contributions. In this paper, we propose an extension of the symbolic
model from Dolev and Yao [20] for protocols using bilinear pairing and sym-
metric encryption. To the best of our knowledge, this is the first time pairings
are considered in a Dolev-Yao like model. Moreover we prove that our sym-
bolic model is sound in the computational setting: if there are no attacks in the
symbolic setting, then attacks in the computational setting have only a negligi-
ble probability of success. This is done by extending the Abadi-Rogaway logic
from [3] to symbolic terms using pairings. In particular, we need to adapt for-
mal indistinguishability and keep track of linear relations between polynomials
which an adversary might use to distinguish terms. The notion of key cycles
needs also to be extended in a non-trivial way, again keeping track of linear
relations. We use classical cryptographic assumptions from the standard model
to prove soundness: the symmetric encryption scheme has to satisfy indistin-
guishability against chosen-plaintext attacks (IND-CPA) and the bilinear map-
ping has to satisfy the bilinear decisional Diffie-Hellman assumption (BDDH).
The proof also relies on a technical result of independent interest, which states
that BDDH implies an extended version of BDDH similar to recent results on
DDH [13]. Under these assumptions, our soundness result can be used to prove
computational security of protocols such as Joux tripartite Diffie-Hellman pro-
tocol [29] or the TAK-2 and TAK-3 protocols from Al-Riyami and Paterson [6].
By computational security we mean that the generated key is indistinguishable
from a random element. To illustrate the scope of our result we also design a
new pairing based variant of the Burmester-Desmedt [14] protocol and prove its
security in the passive setting.

We stick to the passive setting of [3]. This setting is restrictive compared to
results for active adversaries. However this restriction can be partially removed.
As shown by Katz and Yung [30], it is possible to automatically transform a (key
agreement) protocol that is secure in the passive setting into a protocol that is
secure in the active setting. Hence a protocol that is provably secure against
active adversaries can be designed using the following methodology: (i) design
a protocol and prove that it is secure against a passive, symbolic adversary;
(ii) use the soundness result of this paper to conclude that this protocol is
secure against passive adversaries in the computational setting; (iii) apply the
Katz and Yung compiler to generate a protocol that is secure against active
adversaries in the computational setting.

Related work. This result follows the line of a recent trend in bridging the
gap which separates the symbolic and computational views of cryptography.
This work started with [3, 2] where only passive adversaries are considered.

Further work focused on extending this result by considering the active set-
ting and by adding cryptographic primitives. The active setting has been ex-
plored through a rich and generic framework by Backes et al. in [7] and sub-
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sequent papers. Micciancio and Warinschi later proposed another soundness
result for the active case in [34]. They consider a less general framework but in
their model automatic verification of protocols in the symbolic model is possible
through existing tools. This model was later extended in [18, 28] in order to
remove some of the original limitations and to consider digital signatures. The
work of Canetti and Herzog [15] shows that symbolic proofs obtained by the
tool ProVerif imply universal composable security for a restricted class of key
exchange protocols.

In the passive setting, numerous cryptographic primitives have been stud-
ied. Baudet et al. [11] consider exclusive or and ciphers. Low entropy pass-
words which are subject to guessing attacks are studied in [1]. Garcia and van
Rossum [22] prove soundness of symbolic hashes by using probabilistic hash
functions. In [4] a stronger variant of semantic security is used to allow sym-
metric encryption schemes in the presence of key cycles. Adão et al. [5] allow
symmetric encryption which leaks partial information about the length and the
key. Laud and Corin [31] did consider composed keys. There have also been
results on completeness of symbolic models [33, 26, 5, 11]. However we are not
aware of any computational soundness result involving pairing-based protocols.

Variants of the classical Diffie-Hellman assumption are used to character-
ize the security of bilinear pairings [29]. Hence the concept and difficulties of
considering pairings are close to those introduced by considering Diffie-Hellman
exponentiation. But computational soundness for this primitive has only been
considered in a few works. In [24, 19, 35, 36], results for protocols based on
Diffie-Hellman exponentiation are given for the computational protocol com-
position logic. Herzog presents in [25] an abstract model for Diffie-Hellman
key exchange protocols; however in this work the abstract model is very dif-
ferent from classical Dolev-Yao models for modular exponentiation [16] as the
adversary is extended with the capability of applying arbitrary polynomial time
functions. Bana et al. discuss some of the difficulties to obtain computational
soundness for Diffie-Hellman exponentiation in [8]. More recently, Bresson et
al. [13] extended the computational soundness result of Abadi and Rogaway [3]
to Diffie-Hellman exponentiation. This result relies on a powerful generalization
of the Decisional Diffie-Hellman (DDH) assumption and its equivalence with the
original DDH assumption. However pairings are not considered in their work,
neither in the computational soundness result, nor in the generalization of DDH.

Outline of this paper. The next section recalls the necessary definition for
bilinear pairings and introduces BDDH security. Section 3 details our symbolic
model: terms, deducibility and equivalence are defined in this setting. In sec-
tion 4 we present our computational setting by giving concrete semantics to
symbolic terms. Our main soundness result is given in section 5: symbolic
indistinguishability implies computational indistinguishability for secure cryp-
tographic primitives. Section 6 illustrates this soundness result on some simple
protocols using bilinear pairings. Finally a short conclusion is drawn in section 7.
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2 Preliminaries on Bilinear Pairings

In this section, we briefly recall the basics of bilinear pairings. The formal
definition is given in section 4. Let G1 and G2 be two cyclic groups of same
prime order q. Let g1 be a generator of G1. We use multiplicative notations for
both groups. A mapping e from G1×G1 to G2 is called a cryptographic bilinear
map if it satisfies the three following properties.

• Bilinearity: e(gx
1 , gy

1 ) = e(g1, g1)
xy for any x, y in Zq.

• Non-degeneracy: e(g1, g1) is a generator of G2 which is also denoted by
g2, i.e., g2 6= 1G2 .

• Computable: there exists an efficient algorithm to compute e(u, v) for
any u and v in G1.

Examples of cryptographic bilinear maps include modified Weil pairing [12]
and Tate pairing [9]: G1 is a group of points on an elliptic curve and G2 is a
multiplicative subgroup of a finite field. The traditional notation for group G1

originates from elliptic curve groups and thus is additive. However we prefer a
multiplicative notation in order to simplify our symbolic model of section 3.

The classical decisional security assumption for groups with pairing is the
Bilinear Decisional Diffie-Hellman (BDDH) assumption. This assumption states
that it is difficult for an adversary that has access to three elements of G1, gx

1 ,
gy
1 and gz

1 to distinguish gxyz
2 from a randomly sampled element gr

2 of G2.
A simple key exchange protocol has been proposed by Joux in [29]. This

protocol is an extension of the classical Diffie-Hellman key exchange for three
participants. Let A, B and C be the three participants. Each of them randomly
samples a value in Zq (denoted by x for A, by y for B and by z for C). Then
the three following messages are exchanged:

(1) A → B,C : gx
1 (2) B → A,C : gy

1 (3) C → A,B : gz
1

The shared secret key is gxyz
2 . It is easy to check that A, B and C can compute

this key by using the bilinear map e on the two messages that they have received.
Security of this protocol with respect to key indistinguishability in the passive
setting is identical to the BDDH assumption [29]. No form of authentication is
provided in this protocol, so it is trivially subject to man-in-the-middle attacks.

In the following sections, our objective is to provide a symbolic model for
protocols using bilinear maps and to give a computational justification of this
model. We stick to the passive setting but as noted earlier this is not a real
restriction thanks to the Katz and Yung compiler [30]. As usual the computa-
tional setting is parameterized by a security parameter η which can be thought
of as the key length. Adversaries are probabilistic polynomial-time (in η) Tur-
ing machines. In this paper, we suppose that the adversaries are given implicit
access to as many fresh random coins as needed, as well as to the complexity
parameter η.
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3 The Symbolic Setting

In this section, we introduce the symbolic view of cryptography: messages are
represented as algebraic terms, the adversary’s capabilities are defined by an
entailment relation ` and an observational equivalence ∼=. This equivalence is
an extension of the well-known Abadi-Rogaway logic to terms using symmetric
encryption and pairing. The main difference with the original logic is that we
introduce generator g1 for the first group (G1), and generator g2 for the second
group (G2) as well as an infinite set of names representing exponents.

3.1 Terms and Deducibility

Let Keys and Exponents be two countable disjoint sets of symbols for keys
and exponents. A power-free 3-monomial is a product of three distinct expo-
nents and a power-free 3-polynomial is a linear combination of monomials using
coefficients in Z (with no constant coefficient). Hence let x1, x2, x3, x4 and
x5 be five distinct elements of Exponents, 2x1x2x3 + x3x4x5 is a power-free
3-polynomial but x2

1x2 and x1x2x3+1 are not. We let Poly be the set of power-
free 3-polynomials with variables in Exponents and coefficients in Z. With a
slight abuse of notation, we often refer to power-free 3-monomials as monomials
and to power-free 3-polynomials as polynomials. Our symbolic setting is re-
stricted to 3-monomials because this is the classical way to use bilinear pairing;
using pairings with monomials of order different than 3 might be unsafe.

Let k, x and p be meta-variables over Keys, Exponents and Poly respec-
tively. Polynomials can be used as exponents and the set T of terms is built
using symbolic encryption and concatenation of keys, exponents and exponen-
tiations:

msg ::= (msg,msg) | {msg}key | x | key | gx
1

key ::= k | gp
2

Term (t1, t2) represents the pair composed of terms t1 and t2, {t}k represents
(symmetric) encryption of term t using key k. In the remainder of the paper
we will sometimes use tuples instead of nested pairs in order to simplify the
notation. {t}gp

2
represents encryption of term t using a key derived from gp

2 (in
the computational semantics we assume the implicit application of a determin-
istic key extraction algorithm Kex which is detailed below). gx

1 and gp
2 represent

modular exponentiation of g1 (generator of the first group) and g2 (generator
of the second group) to the power of an exponent x in the first case and a
polynomial p in the second case.

We use classical notations for manipulating terms. A position is a finite
word over the natural numbers, ε denotes the empty word and w1 · w2 is the
concatenation of w1 and w2. The set of positions pos(t) of a term t is inductively
defined as pos(x) = pos(k) = pos(gi) = {ε} and pos(f(t1, t2)) = {ε}∪

⋃
i∈{1,2} i ·

pos(ti) where f represents either pairing, encryption or exponentiation. If p is
a position of t then the expression t|p denotes the subterm of t at the position
p, i.e., t|ε = t and f(t1, t2)|i·p = ti|p.
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Example 3.1 Let t = (k, {k′}k). The set of positions pos(t) of t is {ε, 1, 2, 2 ·
1, 2 · 2}. Moreover, t|1 = t|2·2 = k and t|2·1 = k′.

We say that gp
2 occurs at a key position in term t if {t′}gp

2
is a subterm of

t for some t′. Otherwise we say that gp
2 occurs as data. Note that in a same

term gp
2 may occur both at a key position and as data. An exponent x can be

used as an exponent of either g1 (e.g., in term gx
1 ) or g2 (e.g., in term gxx2x3

2 ).
Otherwise, if x is not used used as an exponent of either g1 or g2, we say that
x is used as data.

For any term t, pol (t) designates the set of polynomials p such that gp
2 is a

subterm of t and mon (t) designates the set of monomials used by polynomials
in pol (t).

Example 3.2 Let t = ({k}
g
2x1x2x3+x4x5x6
2

, gx1
1 , gx1x2x3

2 ). Then pol (t) = {2x1x2x3+
x4x5x6, x1x2x3} and mon (t) = {x1x2x3, x4x5x6}.

Equality between polynomials is considered modulo the classical equational
theory: associativity and commutativity for addition and multiplication, dis-
tributivity of multiplication over addition. Equality can easily be decided, for
instance by rewriting polynomials in some normal form

∑n
i=1 λix

pi,1
1 . . . x

pi,k

k

and comparing these normal forms.
First we define a deduction relation E ` t where E is a finite set of terms

and t is a term. The intuitive meaning of E ` t is that t can be deduced from
E. The deducibility relation is an extension of the classical Dolev-Yao inference
system [20]:

t ∈ E

E ` t

E ` (t1, t2)
E ` t1

E ` (t1, t2)
E ` t2

E ` {t}key E ` key

E ` t

Note that we did not consider composition rules such as if t1 and t2 are deducible
then (t1, t2) is also deducible. Indeed these rules are not necessary as deduction
is only used to check whether some key can be deduced from a term. As keys are
atomic, it is sufficient to consider the four previous rules. By atomic we mean
that keys do not include pairs or encryptions but they may obviously be of the
form gp

2 . We add four new deduction rules in order to handle pairing. The three
first rules correspond to the three possible ways to obtain an exponentiation
gxyz
2 using the cryptographic bilinear map:

E ` x E ` gy
1 E ` gz

1

E ` gxyz
2

E ` x E ` y E ` gz
1

E ` gxyz
2

E ` x E ` y E ` z

E ` gxyz
2

Note that these three rules correspond to “real” capacities of the adversary in
the computational setting. In the first case, an adversary knowing gy

1 and gz
1 can

use the bilinear map to produce gyz
2 . As he also knows x he can exponentiate

gyz
2 to obtain gxyz

2 . In the second case, the adversary knows y so he can produce
gy
1 and act as in the first case. Finally, the third case is also similar, as the

adversary can compute gz
1 and act as in the second case.
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The fourth rule handles linear relations between polynomials.

E ` gp
2 E ` gq

2

E ` gλp+q
2

λ ∈ Z

In the computational world an adversary can multiply two group elements gp
2

and gq
2 in order to get gp+q

2 . He can also exponentiate a group element gp
2 and

obtain gλp
2 . Thus it is feasible for the adversary to produce gλp+q

2 from gp
2 and

gq
2.

Given this deduction relation we can define the set of deducible keys of term
t as

K(t) = {k | t ` k} ∪ {gp
2 | t ` gp

2 ∧ gp
2 is a subterm of t}

After adding the new deductions, the deducibility relation is still decidable.

Proposition 3.3 Let t be a term and E be a finite set of terms. Then de-
ducibility of t from E is decidable.

Proof. In this proof, we use the notion of reachability. First remember that a
key term is either an element k of Keys or an exponentiation gq

2 where q is an
element of Poly.

A subterm t′ of t is reachable from t using a set K of key terms, iff there
exists a position p in t such that t|p = t′ and for any prefix p′ of p, i.e., p = p′ ·p′′,
if t|p′ is an encryption {u}key then key ∈ K.

We first show that the set K(t) of deducible keys is computable. Note that
K(t) is bounded (for inclusion) by the set of keys and exponentiations of t. The
set K(t) can be iteratively computed as follows.

1. Initially, K is empty.

Iterate the following steps until reaching a fix-point:

2. At each step, any key k and exponentiations gp
2 that is reachable in t using

keys and exponentiations from K is added to K.

3. We build the set of reachable monomials rm which contains all the mono-
mials x1x2x3 from t such that either

• x1, x2 and x3,

• or x1, x2 and gx3
1 ,

• or x1, gx2
1 and gx3

1

are reachable in t using K.

4. At the end of each step, if p is a polynomial from pol (t) which is a linear
combination of polynomials from K and monomials from rm, then gp

2 is
also added to K.

Now let t be a term and E a finite set of terms t1 to tn.
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1. If t is an atomic key k, then t is deducible if and only if k appears in
K((t1, . . . , tn)). Thus deducibility is decidable.

2. Else if t is a key gp
2 , then t is deducible if and only if E, {k}gp

2
` k where

k is a fresh atomic key (i.e., k does not appear in E). Thus deducibility
can be decided as in the previous case.

3. Otherwise t is either an exponent, or a pair, or an encryption, or an
exponentiation of g1. As we do not have any composition rule in the
definition of `, t is deducible if and only if t appears as a subterm in one
of the tj and is reachable using K((t1, . . . , tn)). Hence a decision algorithm
can first build K = K((t1, . . . , tn)) then check for reachability of t in any
of the tj using K.

�
Alternative definitions are possible for the deduction system. For example,

we could consider adding the deduction rule E`x
E`gx

1
. Then rules E`x E`y E`gz

1
E`gxyz

2
and

E`x E`y E`z
E`gxyz

2
would not be necessary anymore and the computational soundness

results presented later in this document would still be true. However we stick to
our deduction system as it reflects in a simple way how a key gp

2 can be deduced
from other terms.

Note that we have only shown decidability of the deduction relation. As,
in contrast to a computational adversary, a symbolic adversary is not resource-
bounded (in particular it is not polynomial-time bounded) we do not need to
detail the complexity for our soundness result. From a verification perspective,
efficient algorithms are of course needed which would require a more fine-grained
complexity analysis of the above procedure.

3.2 Equivalence

Patterns. Patterns are used to characterize the information that can be ex-
tracted from a term. These patterns are close to those introduced in [3, 32] but
are extended in order to handle modular exponentiation. We introduce a new
symbol � representing a ciphertext that the adversary cannot decrypt. More-
over we consider that the encryption scheme is not necessarily key-concealing.
Hence it may be possible for an adversary to observe whether two ciphertexts
have been produced using the same key.

Let t be a term and K be a finite set of keys and elements of the second
group gp

2 , then the pattern of t using K, pat (t, K) is inductively defined by:

pat ((t1, t2),K) =
(
pat (t1,K), pat (t2,K)

)
pat ({t′}key,K) = {pat (t′,K)}key if key ∈ K
pat ({t′}key,K) = {�}key if key /∈ K
pat (a,K) = a for a in x, k, gx

1 and gp
2

The set K is used to store keys that are known by the adversary.
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We say that two terms t1 and t2 are equivalent, t1 ≡ t2, if they have the
same pattern: t1 ≡ t2 if and only if pat (t1,K(t1)) = pat (t2,K(t2)). Intuitively
patterns hide information that are encrypted with undeducible keys. Hence two
terms have the same pattern if the information that can be extracted is the
same, so it is impossible to distinguish these two terms.

Equivalence up to renaming. We allow (bijective) renaming of keys in a
similar way as [3] but renaming of polynomials is slightly more complex and
relies on a linear relation preserving bijection between polynomials. Let us
illustrate this on the two following examples.

• Let t1 be the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx1x2x3+x4x5x6
2 ) and t2 be the term

(x1, x2, g
x3
1 , gx4x5x6

2 , gx7x8x9
2 ). A bijection from polynomials of t2 to poly-

nomials of t1 could be

{x7x8x9 7→ x1x2x3 + x4x5x6 ; x4x5x6 7→ x4x5x6}

However this bijection does not correctly preserve linear relations. In term
t1, gx1x2x3+x4x5x6

2 can be obtained by multiplying gx4x5x6
2 with gx1x2x3

2

(which is obtained by applying the bilinear map to gx2
1 and gx3

1 and raising
the result to the power x1). In term t2, gx7x8x9

2 cannot be obtained in a
similar way.

• Let t1 be the term (gx4x5x6
2 , gx1x2x3+x4x5x6

2 ) and t2 be the term (gx4x5x6
2 , gx7x8x9

2 ).
The associated bijection is

{x7x8x9 7→ x1x2x3 + x4x5x6 ; x4x5x6 7→ x4x5x6}

This bijection correctly preserves linear relations as gx1x2x3+x4x5x6
2 cannot

be obtained from other parts of t1 (x1x2x3 +x4x5x6 is not involved in any
linear relations) and gx7x8x9

2 cannot be obtained from other parts of t2.

In order to properly define what is a linear relation preserving bijection, we first
introduce the set dm(t) of deducible monomials from t, i.e., monomials that can
be obtained using the bilinear map operation (this is a slight abuse of notation
as a monomial m may not be deducible itself while its exponentiation gm

2 is
deducible). A monomial x1x2x3 from mon (t) is in dm(t) if one or more of the
following conditions hold:

• x1, x2 and x3 are deducible from t,

• x1, x2 and gx3
1 are deducible from t,

• x1, gx2
1 and gx3

1 are deducible from t.

We can now formalize the definition. Let t2 and t1 be two terms. A bijection
σ from pol (t2) to pol (t1) is linear relation preserving for t2 and t1 if the same
linear relations are verified between polynomials from t2 and their image using
σ. However monomials from dm(t2) cannot be renamed as they are linked to

9



other parts of term t2 due to the bilinear pairing. Formally, σ has to verify the
following condition:

∀p1, ..., pn ∈ pol (t2), ∀a1, ..., an ∈ Z, ∀m1, ...,mn′ ∈ dm(t2), ∀b1, ..., bn′ ∈ Z,
n∑

i=1

aipi =
n′∑

j=1

bjmj ⇔
n∑

i=1

ai(piσ) =
n′∑

j=1

bjmj

Reconsider our first example: t1 is the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx1x2x3+x4x5x6
2 )

and t2 is the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx7x8x9
2 ). We define the bijection σ =

{x7x8x9 7→ x1x2x3+x4x5x6}. We have that σ is not a linear relation preserving
bijection for t2 and t1 because x1x2x3 is in dm(t2) and

(x7x8x9) + (−1)(x4x5x6) 6= x1x2x3

but (x7x8x9)σ + (−1)(x4x5x6)σ = (x1x2x3 + x4x5x6)− (x4x5x6) = x1x2x3

Definition 3.4 Two terms t1 and t2 are equivalent up to renaming, t1 ∼= t2 if
they are equivalent up to some renaming of keys of polynomials.

t1 ∼= t2 iff ∃σ1 a renaming of Keys

∃σ2 a bijection preserving linear relations from pol (t2) to pol (t1)
such that t1 ≡ t2σ1σ2

In this definition of equivalence, we have not considered renaming of Exponents
to preserve simplicity but this can easily be added. Using this new definition,
an interesting result is the decidability of equivalence up to renaming.

Proposition 3.5 Let t1 and t2 be two terms. Equivalence up to renaming of
t1 and t2 is decidable.

Proof. As detailed in the proof of proposition 3.3, there exists an algorithm that
takes as input a term t and outputs the finite set K(t). This allows us to build
an algorithm that takes as input a term t and outputs pat (t, K(t)).

Let t1 and t2 be two terms. Then it is possible to compute pat (t1,K(t1))
and pat (t2,K(t2)) (and so equivalence without renaming, ≡, is decidable).

In order to decide equivalence up to renaming of terms t1 and t2, we apply a
unification algorithm recursively on pat (t1,K(t1)) and pat (t2,K(t2)) resulting
in a renaming σ1 and a bijection σ2 from pol (t2) to pol (t1). This unification
algorithm takes two terms u1 and u2 as an input and works as follows:

1. If u1 is a pair (v1, w1) and u2 is a pair (v2, w2) the algorithm is applied
recursively on v1 and v2 resulting in σ1 and σ2. This algorithm is also
applied recursively on w1 and w2 resulting in σ′1 and σ′2. If σ1 and σ′1 are
compatible (i.e., for any atomic key k that is in the domain of both σ1 and
σ′1, kσ1 = kσ′1) and σ2 and σ′2 are also compatible, then u1 and u2 can be
unified resulting in σ1 ∪ σ′1 and σ2 ∪ σ′2. Otherwise u1 and u2 cannot be
unified and t1 and t2 are not equivalent up to renaming.
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2. If u1 is an encryption {v1}key1 and u2 is an encryption {v2}key2 we proceed
as for pairs in the previous point: v1 and v2 are unified, key1 and key2

are unified and the compatibility is checked.

3. If u1 is an atomic key k1 and u2 is an atomic key k2. Then σ1 = {k2 7→ k1}
and σ2 = ∅.

4. If u1 is a key gp1
2 and u2 is a key gp2

2 then σ1 = ∅ and σ2 = {p2 7→ p1}.

5. If u1 is an exponentiation gx1
1 and u2 is an exponentiation gx2

1 or if u1 is
an exponent x1 and u2 is an exponent x2 and x1 is equal to x2, then u1

and u2 can be unified resulting in σ1 = σ2 = ∅. Otherwise t1 and t2 are
not equivalent up to renaming.

6. Otherwise, u1 and u2 cannot be unified and terms t1 and t2 are not equiv-
alent up to renaming.

Now, it only remains to check that σ2 is a linear relation preserving bijection
for t2 and t1. First the set dm(t2) is computed. Notice that elements of dm(t2)
are monomials using exponents from t2. For each possible monomial m, m is in
dm(t2) if and only if m = x1x2x3 and one of the three following holds:

• x1, x2 and x3 are reachable in t2 using K(t2).

• x1, x2 and gx3
1 are reachable in t2 using K(t2).

• x1, gx2
1 and gx3

1 are reachable in t2 using K(t2).

In order to check that σ2 preserves linear relations of t2 we need to check
that σ2 does neither remove nor add any linear relation. To check whether σ2

removes a linear relation in t2 we use the following algorithm. Let P be an
initially empty set of polynomials. The algorithm iterates on polynomials from
pol (t2). For each such polynomial p, the algorithm tests whether p is involved
in a linear relation with polynomials from P and monomials from dm(t2). This
can be tested by checking whether the system of linear equations

∑
1≤i≤n λipi +∑

1≤i≤j λ′jmj − p = 0 with P = {p1, . . . , pn} and dm(t2) = {m1, . . . ,mj} has a
solution, e.g. using Gauss elimination. If this is the case, then if pσ2 verifies the
same relation with Pσ2 and dm(t2), the algorithm continues, else if the relation
is not satisfied by pσ2, Pσ2 and dm(t2), then σ2 is not linear relation preserving.
If p is not involved in a linear combination with polynomials from P , then p is
added to P . After that, the loop continues. As pol (t2) is finite, this algorithm
always terminates. To check whether σ2 adds a linear relation to t2, we use
the previous algorithm and (equivalently) check whether σ−1

2 removes a linear
relation in t1. �

3.3 Examples

Here we give some examples that illustrate the choices we made when defining
the equivalence. These choices are motivated by the possibilities of adversaries
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in the computational setting. Unlike [3], our symbolic model does not include
symbolic constants like 0 or 1 as data. However these constants can be easily
encoded using for instance two key names k0 and k1 which are explicitly revealed.
Then 1 denotes k1 and 0 denotes k0. Instead of verifying the equivalence between
t and t′, we check whether (k0, k1, t) and (k0, k1, t

′) are equivalent.

1. {0}k ∼= {1}k. This example shows that symmetric encryption perfectly
hides its plaintext.

2. ({0}k, {0}k) ∼= ({0}k, {1}k). Symmetric encryption also hides equalities
among the underlying plaintexts. To achieve this, encryption has to be
probabilistic. As modular exponentiation is deterministic, we cannot ask
modular exponentiation to hide such relations.

3. (gx1
1 , gx2

1 , gx3
1 , gx1x2x3

2 ) ∼= (gx1
1 , gx2

1 , gx3
1 , g

x′1x′2x′3
2 ). This example illustrates

security of Joux’s protocol [29] against passive adversaries. The adversary
observes the unfolding of the protocol where three exponentiations are
exchanged. These exponentiations allows the three participants to build
a shared secret key gx1x2x3

2 . Then the adversary cannot distinguish the
shared key from a randomly sampled element of the second group g

x′1x′2x′3
2

(as the order of the group is prime, g
x′1x′2x′3
2 has a uniform distribution over

elements of the second group).

Moreover the symbolic setting can be used to verify that each participant
is able to compute the shared key. For example the first participant gen-
erates exponent x1 and receives gx2

1 and gx3
1 from the second and third

participants. Using this knowledge, he is able to compute the shared secret
key as x1, g

x2
1 , gx3

1 ` gx1x2x3
2 .

4. (gx1
1 , gx2

1 , gx3
1 , {0}gx1x2x3

2
) ∼= (gx1

1 , gx2
1 , gx3

1 , {1}gx1x2x3
2

). This example com-
bines the Joux protocol with an exchange of secret information using the
shared key. Thus in this example symmetric encryption and bilinear pair-
ing are used simultaneously.

5. (gx1
1 , gx2

1 , gx3
1 , x4, x5, x6, g

x1x2x3+x4x5x6
2 ) ∼= (gx1

1 , gx2
1 , gx3

1 , x4, x5, x6, g
x′1x′2x′3
2 ).

Let t2 be the second term in the equivalence relation. This example il-
lustrates a more complex renaming. The adversary has access to some
exponents from the key gx1x2x3+x4x5x6

2 but is still unable to distinguish it
from a randomly sampled key. x4x5x6 can be seen as a vulnerable part
of the key but x1x2x3 makes the whole key secure. The two terms are
equivalent up to renaming because bijection {x′1x′2x′3 7→ x1x2x3 +x4x5x6}
is linear relation preserving; indeed x′1x

′
2x

′
3 and x1x2x3 +x4x5x6 are both

not involved in any linear relation with monomials from dm(t2).

6. In the following example, there are two shared keys.

(gx1
1 , gx2

1 , gx3
1 , x4, x5, x6, g

x1x2x3+x4x5x6
2 , gx1x2x3

2 )

6∼= (gx1
1 , gx2

1 , gx3
1 , x4, x5, x6, g

x′1x′2x′3
2 , g

x′4x′5x′6
2 )

12



Let t1 and t2 be the first and second term in this (non-)equivalence rela-
tion. The bijection σ = {x′1x′2x′3 7→ x1x2x3 +x4x5x6 ; x′4x

′
5x

′
6 7→ x1x2x3}

is not linear relation preserving. Indeed, the monomial x4x5x6 is in dm(t2)
and there is a relation among polynomials used in the two keys of t1 and
x4x5x6 which is not true in t2:

(x′1x
′
2x

′
3)σ + (−1)(x′4x

′
5x

′
6)σ = x4x5x6

(x′1x
′
2x

′
3) + (−1)(x′4x

′
5x

′
6) 6= x4x5x6

4 The Computational Setting

In this section, we formalize the mapping between symbolic terms and distribu-
tions of bit-strings. This mapping depends on the algorithms used to implement
the two cryptographic primitives used in the symbolic setting: symmetric en-
cryption and pairing.

4.1 Encryption Scheme

We recall the standard definition for symmetric encryption schemes. A symmet-
ric encryption scheme SE is defined by three algorithms KG, E and D. The key
generation algorithm KG takes as input the security parameter η and outputs a
key k. The encryption algorithm E is randomized. It takes as input a bit-string
s and a key k and returns the encryption of s using k. The decryption algorithm
D takes as input a bit-string c representing a ciphertext and a key k and outputs
the corresponding plaintext. Given k ← KG(η), we have that for any bit-string
s, if c← E(s, k) then it is required that D(c) = s.

In order to characterize security of a symmetric encryption scheme, we use
the classical IND-CPA (indistinguishability against chosen plaintext attacks) no-
tion [23].

IND-CPA security. In this paper we use schemes that satisfy length-concealing
semantic security1. The definition that we recall below uses a left-right encryp-
tion oracle LRb

SE . This oracle first generates a key k using KG. Then it answers
queries of the form (bs0, bs1), where bs0 and bs1 are bit-strings, an important
point is that bs0 and bs1 may have different lengths. The oracle returns cipher-
text E(bsb, k). The goal of the adversary A is to guess the value of bit b and
for that purpose A has access to oracle LRb

SE . His advantage is defined as the
probability that he outputs 1 when using oracle LR1

SE minus the probability
that he outputs 1 when using oracle LR0

SE .

AdvCPA
SE,A(η) =

∣∣∣P [
ALR1

SE (η) = 1
]
− P

[
ALR0

SE (η) = 1
]∣∣∣

An encryption scheme SE is said to be IND-CPA secure if the advantage of any
polynomial-time adversary A is negligible in η.

1Such schemes can only exist if the maximum length of plaintexts is bounded, however we
do not take this into account in this paper.
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The difference with the standard notion of semantic security is that an ad-
versary can call oracle LRb

SE on two bit-strings bs0 and bs1 of different lengths.
Therefore in order to be secure for our notion, an encryption scheme has to hide
the length of the plaintext. By abuse of notation we call the resulting scheme
also IND-CPA secure.

4.2 Pairing

A bilinear pairing instance generator is defined as a probabilistic polynomial-
time algorithm IG which given a security parameter η outputs a tuple (q, G1, G2, g1, e)
composed of two groups G1 and G2 of prime order q, a generator g1 of G1 and
a cryptographic bilinear map e between G1 and G2. A generator g2 of group
G2 is obtained by applying e to (g1, g1).

BDDH security. An instance generator IG satisfies the Bilinear Decisional
Diffie-Hellman assumption, BDDH, iff for any probabilistic polynomial-time
adversary A, the advantage of A against BDDH, AdvBDDH

A,IG , defined below is
negligible in η.

AdvBDDH
A,IG (η) = P

[
(q, G1, G2, g1, e)← IG(η)

x, y, z ← Zq
, A(g1, g

x
1 , gy

1 , gz
1 , gxyz

2 ) = 1
]

−P
[

(q, G1, G2, g1, e)← IG(η)
x, y, z, r ← Zq

, A(g1, g
x
1 , gy

1 , gz
1 , gr

2) = 1
]

This means that an adversary that is given gx
1 , gy

1 and gz
1 can only make the

difference between gxyz
2 and a random group element with negligible probability.

4.3 Computational Semantics of Terms

Computational semantics depend on a symmetric encryption scheme SE =
(KG, E ,D) and of an instance generator IG. In order to transform elements
of the second group into keys usable for SE , we assume the existence of a key
extractor [17] algorithm Kex (this can be done for example by extracting ran-
domness using an entropy smoothing hash function [27]). We suppose that the
distribution of keys generated by KG is equal to the distribution obtained by ap-
plying Kex to a random element of G2 (which is the second group generated by
IG). We associate to each symbolic term t a distribution of bit-strings [[t]]SE,IG

that depends on the security parameter η. This distribution is defined by the
following random algorithm:

1. Algorithm IG is used to generate two paired groups G1 and G2 of order q
and of generators ĝ1 and ĝ2. For each key k from t, a value k̂ is randomly
drawn using KG. For each exponent x, a value x̂ is randomly sampled in
Zq equipped with the uniform distribution.

2. Then the bit-string evaluation of term t is computed recursively on the
structure of t:
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• If t is a key k or an exponent x, then the value t̂ is returned.

• If t is an exponentiation gx
1 , then the exponentiation of ĝ1 to the

power of x̂ is returned.

• If t is an exponentiation gp
2 , then the algorithm computes the value n

of p in Zq, and the exponentiation of ĝ2 to the power of n is returned.

• If t is a pair (t1, t2), the algorithm is applied recursively on t1 hold-
ing bs1 and on t2 holding bs2. The output of the algorithm is the
concatenation of bs1 and bs2.

• If t is an encryption {t′}k, the algorithm is applied recursively on t′

holding bs′ and on k holding bsk. The output of the algorithm is
E(bs′, bsk).

• If t is an encryption {t′}gp
2
, the algorithm is applied recursively on

t′ holding bs′ and on gp
2 holding bsk. The output of the algorithm is

E (bs′,Kex(bsk)).

5 Soundness of the Symbolic Model

In this section we prove that the extension of the Abadi-Rogaway logic given
in section 3 is computationally sound when implemented using an IND-CPA en-
cryption scheme and using an instance generator satisfying BDDH: if two terms
are equivalent up to renaming in the symbolic setting, their evaluations (given
by the computational semantics of section 4) are computationally indistinguish-
able.

Well-formed Terms. Our soundness result is only true for terms that make
a correct use of the bilinear pairing. Such terms are called well-formed terms.
Formally a term t is well-formed if for any monomial m in mon (t):

• either for any monomial m′ in mon (t) different from m, m and m′ do not
have any common exponent;

• or none of the three exponents used by m occurs as data in t.

This technical restriction is necessary to obtain soundness. Indeed let us con-
sider t1 = (x, y, gxz1z2

2 , gyz1z2
2 ) and t2 = (x, y, gr1r2r3

2 , gr4r5r6
2 ). Note that t1 is

not well-formed as xz1z2 and yz1z2 have common exponents (z1 and z2) and
exponents x and y occur as data. Terms t1 and t2 are equivalent up to renaming.
However it is possible to build an adversary A that can distinguish the corre-
sponding distributions efficiently (the precise definition of indistinguishability
will be given below). Adversary A takes as input (x, y, U, V ) and has to decide
whether U = gxz1z2

2 and V = gyz1z2
2 or U = gr1r2r3

2 and V = gr4r5r6
2 . A proceeds

as follows:

• compute x−1 and y−1;
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• output 1 if Ux−1
= V y−1

;

• output 0 otherwise.

If A outputs 1 it was indeed given the distribution corresponding to t1 with
probability close to 1 (the probability that r1r2r3x

−1 = r4r5r6y
−1 is negligible).

Otherwise, if A outputs 0 it must have been given the distribution corresponding
to t2. Hence, A efficiently distinguishes two equivalent terms. We forbid such
use of bilinear pairing by considering only well-formed terms.

Acyclicity Restrictions. The importance of key cycles was already described
in [3]. In the setting of [3] a key cycle is a sequence of keys K1, . . . ,Kn such that
Ki+1 encrypts (possibly indirectly) Ki and Kn encrypts K1. An encryption of
key K with itself, i.e., EK(K) is a key cycle of length 1. An example of a key
cycle of size 2 would be EK1(K2), EK2(K1). In general IND-CPA is not sufficient
to prove any soundness result in presence of key cycles. To better understand
the problem of key cycles suppose that SE = (KG, E ,D) is a semantically secure
encryption scheme and let SE ′ = (KG′, E ′,D′) be defined as follows:

KG′ = KG

E ′k(m, r) =
{
Ek(m, r) if m 6= k
const · k if m = k

D′k(c) =
{
Dk(c) if c 6= const · k
k if c = const · k

where const is a constant such that for any key k, the concatenation const · k
does not belong to the set of possible ciphertexts obtained by E . Obviously, if
the attacker is given a key cycle of length 1, e.g., E ′k(k, r), the attacker directly
learns the key. It is also easy to see that SE ′ is a semantic secure encryption
scheme as it behaves as SE in nearly all cases (in the security experiment the
adversary could make a query for encrypting k with itself only with negligible
probability). Hence, as in numerous previous work we forbid the symbolic terms
to contain such cycles. (Another possibility to handle key cycles is to consider
stronger computational requirements like Key Dependent Message – KDM –
security as done in [4].)

We now define a similar notion of key cycles in our setting. For any term t,
let kp(t) be the set of polynomials p such that gp

2 occurs at a key position in t
and gp

2 is not deducible from t. Let pm(t) be the set of monomials x1x2x3 such
that either:

• x1, x2 and x3 occur as data in t;

• x1 and x2 occur as data in t and gx3
1 also appears in t;

• x1 occurs as data in t and gx2
1 and gx3

1 also appear in t.

A term t is acyclic if the two following restrictions are verified.
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• For any p in kp(t), p is linearly independent from any other polynomials
from pol (t) and from monomials from pm(t), i.e., if pol (t) = {p, p1, ..., pn}
and pm(t) = {m1, ...,mn′} then there does not exist any integers a, a1 to
an and b1 to bn′ such that a 6= 0 and:

a.p =
n∑

i=1

aipi +
n′∑

j=1

bjmj

• There exists an order ≺ among keys used in t such that for any subterm
{u}key of t, either key is deducible from t or for each key key′ that occurs
in u, key′ ≺ key.

We illustrate the notion of key cycles on several examples.

• The terms {k}k and ({k1}k2 , {k2}k1) contain key cycles, as those consid-
ered already in [3].

• The term t = ({k}gx1x2x3
2

, {gx1x2x3
2 }k) obviously contains a key cycle while

({k}gx1x2x3
2

, {gx1x2x3
2 }k′) does not.

• The term t = (gx1
1 , gx2

1 , x3, {k}gx1x2x3
2

, {gx1x2x3
2 }k) is acyclic as gx1x2x3

2 is
deducible (and hence kp(t) = ∅).

• The term t = {(x1, g
x2
1 , gx3

1 )}
g
2x1x2x3
2

contains a key cycle because pm(t) =
{x1x2x3} and 2x1x2x3 ∈ kp(t) is linearly dependent.

Our acyclicity restriction is stronger than what is strictly required for compu-
tational soundness: for example {{k}k′}k is considered as a cycle whereas it is
not problematic as the underlying k is hidden by k′. We consider this stronger
definition of acyclicity as it is easier to define and it also makes our main proof
simpler.

5.1 Soundness Result

Indistinguishable Distributions. Before giving our soundness result, we
recall the usual notion of indistinguishable distributions. Intuitively, two distri-
butions D1 and D2 are computationally indistinguishable if for any adversary
A, the probability for A to detect the difference between a randomly sampled
element of D1 and a randomly sampled element of D2 is negligible in η.

Definition 5.1 Let D1 and D2 be two distributions (that depend on η). The
advantage of an adversary A in distinguishing D1 and D2 is defined by:

AdvD1,D2
A = P [x← D1(η) ; A(x) = 1]− P [x← D2(η) ; A(x) = 1]

Distributions D1 and D2 are computationally indistinguishable, written D1 ≈
D2, if the advantage for any adversary A in distinguishing D1 and D2 is negli-
gible.
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Then our main soundness result states that distributions related to equivalent
terms are computationally indistinguishable.

Proposition 5.2 Let t0 and t1 be two acyclic well-formed terms, such that
t0 ∼= t1. Let SE be a symmetric encryption scheme that is secure for IND-CPA
and IG be an instance generator satisfying BDDH, then [[t0]]SE,IG ≈ [[t1]]SE,IG.

Proof for proposition 5.2

In order to prove our main soundness result, we introduce some intermediate
lemmas. First we prove that BDDH implies an extended version of BDDH.
Intuitively this first lemma states that if BDDH holds and A is an adversary
that is given some exponents x1 to xα and some exponentiations gy1

1 to g
yβ

1 , A
cannot distinguish exponentiations of linearly independent polynomials gp1

2 to
g

pγ

2 from exponentiations of fresh exponents g
r1,1r1,2r1,3
2 to g

rγ,1rγ,2rγ,3
2 .

Lemma 5.3 Let X = (xi)1≤i≤α and Y = (yi)1≤i≤β be α + β exponents. Let
P = (pi)1≤i≤γ be γ polynomials such that there are no linear relations between
the pi and the set of monomials {xyz, x, y, z ∈ X} ∪ {xyz, x, y ∈ X, z ∈
Y } ∪ {xyz, x ∈ X, y, z ∈ Y }.

If IG is an instance generator satisfying BDDH and the two following terms
are well-formed then:

[[x1, ..., xα, gy1
1 , ..., g

yβ

1 , gp1
2 , ..., g

pγ

2 ]]IG ≈ [[x1, ..., xα, gy1
1 , ..., g

yβ

1 , gq1
2 , ..., g

qγ

2 ]]IG

where each qi is a product of three fresh exponents ri,1ri,2ri,3, i.e., the part of
the distribution related to gqi

2 corresponds to a random group element.

Proof. First, note that as the order q of the group G2 is prime, in the compu-
tational setting gZ1Z2

2 and gZ3
2 have the same distribution (Z1, Z2, and Z3 are

three independent random variables uniformly sampled over Zq).
The proof of this lemma is done in two steps.

• The first step consists in replacing monomials in the pi that are not in
dm(x1, ..., xα, gy1

1 , ..., g
yβ

1 ) with fresh monomials. This results in a new
term whose computational distribution is indistinguishable from the orig-
inal term distribution.

• Then, in the second step we prove that the computational distribution of
this new term using fresh monomials is exactly equal to the distribution
related to x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gq1
2 , . . . , g

qγ

2 .

Step 1. Let M be the set of monomials from P that are not in {xyz, x, y, z ∈
X} ∪ {xyz, x, y ∈ X, z ∈ Y } ∪ {xyz, x ∈ X, y, z ∈ Y }. The first step consists
in using BDDH to replace these monomials with fresh monomials r1r2r3. Let
p′1 to p′γ be polynomials p1 to pγ where each monomial of M has been replaced
with a fresh monomial. We prove that:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG ≈ [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2 ]]IG
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This proof is done by induction on the number j of monomials in M that use
at least one exponent which is also present in X, Y or in any other monomial
used in a polynomial from P .

If j = 0 then for each monomial m used in p1 to pγ , m uses exponents that
are not in X or Y nor in any other monomial from polynomials of P . Thus p1

to pγ are equal to p′1 to p′γ up to renaming of the exponents and so:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG = [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2 ]]IG

If j > 0 then let m = xyz be a monomial in M that uses an exponent from X
or Y or from another monomial of P and let m′ be a fresh monomial. Let p′′1
to p′′γ be polynomials p1 to pγ where m has been replaced with m′. There are
two cases to consider:

• First if x, y and z do not appear in X. Let A be an adversary trying to
distinguish distribution

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG

from distribution

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2 ]]IG.

We build an adversary B against BDDH that executes A as a subroutine.
As B tries to break BDDH, B receives four arguments (A,B, C, D). Intu-
itively, B uses the inputs A, B, C and D for gx

1 , gy
1 , gz

1 and gxyz
2 . B queries

A with the input

a1, . . . , aα, b1, . . . , bβ , c1, . . . , cγ

where

– ai are values in Zq randomly generated by B;

– bi is computed as follows. If yi equals x, y or z then bi is set to A, B
or C respectively. Otherwise bi is set to gu

1 where u = aj if yi = xj

for some j or u is randomly sampled from Zq;

– for each monomial m0 appearing in pi B computes the implementa-
tion for gm0

2 as follows. If m0 = m then gm0
2 is implemented by D.

If m0 shares two exponents with m, for example m0 = xyz′, then
the corresponding value is generated using the bilinear map: B com-
putes e(A,B)c where c is either freshly generated by B or has been
previously generated for z′. If m0 only shares one exponent with m,
for example m0 = xy′z′, then B computes Abc where where b and c
are either freshly generated by B or have been previously genrated
for y′ and z′. Given the implementations of gm0

2 for each m0 in pi

B computes implementations for each gpi

2 and use these values for
c1, . . . , cγ .
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Finally, B returns the same output as A. The advantage of B against
BDDH is given by

AdvBDDH
B,IG (η) = P [B(gx

1 , gy
1 , gz

1 , gxyz
2 ) = 1]− P [B(gx

1 , gy
1 , gz

1 , gr
2) = 1]

When B receives as input (gx
1 , gy

1 , gz
1 , gxyz

2 ), A is given a sample from dis-
tribution [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG.

When B receives as input (gx
1 , gy

1 , gz
1 , gr

2), A is given a sample from distri-

bution [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2 ]]IG.

Therefore the advantage of A in distinguishing the two distributions is
equal to the advantage of B against BDDH. As BDDH holds, the advantage
of B is negligible and so the advantage of A is also negligible. Hence,

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG

≈
[[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2 ]]IG

• If x appears in X, then by definition of M either y or z does not appear in
X and Y . Let us suppose that it is y. Exponent y only appears in m and,
as the order of the group is prime, we have the following equality between
distributions:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gm
2 ]]IG = [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gm′

2 ]]IG

Moreover as the original terms are well-formed and x occurs as data, m
does not share any exponent with other monomials used in P . Hence, we
also obtain that:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG

≈
[[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2 ]]IG

We have proved that:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG ≈ [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2 ]]IG

where p′′1 to p′′n use j − 1 monomials that use an exponent from X ∪ Y . Hence
using our induction hypothesis, we get that

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′′1
2 , . . . , g

p′′γ
2 ]]IG ≈ [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
p′1
2 , . . . , g

p′γ
2 ]]IG

And so we proved that

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 ]]IG ≈ [[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2 ]]IG

20



Step 2. Let n be the number of elements in M .
For the second step, we recall that (as q is prime), the number of solutions

over Zq for a linear system of γ independent equations involving n variables is
qn−γ .

Let (x̂i)1≤i≤α, (ŷi)1≤i≤β and (p̂i)1≤i≤γ be elements of Zq. We now compute
the probability for the distribution to output value v defined by:

v =
(
x̂1, . . . , x̂α, gŷ1

1 , . . . , g
ŷβ

1 , gp̂1
2 , . . . , g

p̂γ

2

)
It is important to see that this is a computational value and not a symbolic
term.

Then we associate to each monomial from M a variable over Zq and we
obtain a system involving γ linear equations using n variables.(

x̂1, . . . , x̂α, gŷ1
1 , . . . , g

ŷβ

1 , g
p′1
2 , . . . , g

p′γ
2

)
= v

(The system is given by the equations between g·2 as the other equalities are
trivially satisfied.) The number of solutions of this system is qn−γ . Hence when
randomly sampling values for monomials in M , the probability to obtain v is
qn−γ/qn which is equal to q−γ .

On the other side, the probability to obtain v by randomly sampling γ group
elements for the gqi

2 is also equal to q−γ so the distributions are identical:

[[x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , g
p′1
2 , . . . , g

p′γ
2 ]]IG = [[x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , gq1
2 , . . . , g

qγ

2 ]]IG

And so we obtain the expected result. �
In order to introduce the following lemmas, we define the computational

semantics of patterns (i.e., terms using �) by extending the semantics for terms
with [[�]]SE,IG = 0. Our second lemma states that evaluations of a term and of
its pattern are indistinguishable in the computational setting.

Lemma 5.4 Let t be an acyclic well-formed term. Let SE be an IND-CPA secure
symmetric encryption scheme and let IG be an instance generator satisfying
BDDH. Then we have that

[[t]]SE,IG ≈ [[pat (t, K(t))]]SE,IG

Proof. Let t be an acyclic well-formed term. Then any p in kp(t) is linearly
independent of any other polynomials from pol (t). Let K(t) be the set of keys
and exponentiations gp

2 used at a key position in t that are not in K(t), i.e.,
that are not deducible. Let key be a metavariable over K(t). As t is acyclic
there exists a total order ≺ between elements of K(t) such that for any subterm
{t′}key of t, key′ can only appear in t′ if key′ ≺ key.

This proof follows the lines of the main proof in [3]. The main difference
with the original proof is that keys can be an exponentiation gp

2 . However as
p is not involved in any linear relation, using this key is indistinguishable from
using an atomic key.
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Let us now detail the proof. Let n be the number of keys in K(t) and let
keyi be the ith key from K(t) with respect to ≺, i.e.:

K(t) = {key1, . . . , keyn} and key1 ≺ key2 ≺ . . . ≺ keyn

For i in [0, n], term ti is defined as pati(t) where pati is recursively defined by:

pati((t1, t2)) =
(
pati(t1), pati(t2)

)
pati({t′}key) = {�}key if key = keyj for j ≤ i
pati({t′}key) = {pati(t′)}key else
pati(a) = a for a in x, k, gx

1 and gp
2

In ti, encryptions using keys keyj for j ≤ i have been replaced by encryptions
of �. Hence pat0(t) = t and patn(t) = pat (t, K(t)). The advantage of an
adversary A which tries to distinguish [[t]]SE,IG and [[pat (t, K(t))]]SE,IG can be
written as:

Adv[[t]]SE,IG,[[pat(t,K(t))]]SE,IG

A = Adv[[t0]]SE,IG,[[tn]]SE,IG

A

= P [x← [[t0]]SE,IG ; A(x) = 1]− P [x← [[tn]]SE,IG ; A(x) = 1]

=
n∑

i=1

(P [x← [[ti−1]]SE,IG ; A(x) = 1]− P [x← [[ti]]SE,IG ; A(x) = 1])

=
n∑

i=1

Adv[[ti−1]]SE,IG,[[ti]]SE,IG

A

We build n adversaries (Bi)1≤i≤n against IND-CPA that use A as a subrou-
tine and such that the advantage of Bi against IND-CPA can be linked to the
advantage Adv[[ti−1]]SE,IG,[[ti]]SE,IG

A .
Each adversary Bi uses his challenge key for key keyi and has access to a

left-right encryption oracle LRb
SE . If key keyi is an exponentiation gp

2 then as
p is not involved in any linear relation and because of lemma 5.3, the evalua-
tion gp

2 is indistinguishable from a random group element. The key extraction
algorithm Kex applied to a random group element returns a random key (whose
distribution corresponds to the one of KG). Hence, using gp

2 is indistinguishable
from using a fresh atomic key.

Adversary Bi generates values for each atom used in t. For any subterm
a of t which is of the form x, k, gx

1 or gp
2 , Bi computes a bit-string value bsa

according to the values generated previously. Using his left-right encryption
oracle, Bi computes a bit-string bs which is either an evaluation of ti or an
evaluation of ti−1 depending on the challenge bit b. Formally bit-string bs is
obtained by applying the recursive evali function on ti−1:

evali((t1, t2)) = evali(t1) · evali(t2)
evali({t′}keyi) = LRb

SE(0, evali(t′))
evali({t′}key) = E(evali(t′), evali(key)) for key 6= keyi

evali(�) = 0
evali(a) = bsa for a in x, k, gx

1 and gp
2
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This algorithm works well as due to acyclicity keyi does not occur as data
in ti−1. Note that oracle LRb

SE can be given as arguments two bit-strings of
different lengths. This is why we had to assume that encryption scheme SE is
length-concealing.

After computing bs, Bi executes A with input bs and returns the same result
as A. Let us sum up how Bi works:

Adversary BLRb
SE

i (η)
for each a, compute bsa

bs← evali(ti−1)
d← A(bs)
return d

If bit b equals 0, then A is confronted to an evaluation of ti whereas if b equals
1, then A is given an evaluation of ti−1. The advantages of A and Bi can be
linked in the following way:

Adv[[ti−1]]SE,IG,[[ti]]SE,IG

A = AdvCPA
SE,Bi

Therefore we have that:

Adv[[t]]SE,IG,[[pat(t,K(t))]]SE,IG

A =
n∑

i=1

AdvCPA
SE,Bi

As SE is assumed to be IND-CPA secure, the advantage of Bi is negligible for
any i. Hence the advantage of A is also negligible. �

Our third lemma states that two patterns equal up to renaming are also
indistinguishable in the computational setting.

Lemma 5.5 Let t0 and t1 be two well-formed terms such that pat (t0,K(t0)) ∼=
pat (t1,K(t1)). Let SE be a symmetric encryption scheme (not necessarily se-
cure) and let IG be an instance generator satisfying BDDH, then

[[pat (t0,K(t0))]]SE,IG ≈ [[pat (t1,K(t1))]]SE,IG

Proof. Let t′0 be the term pat (t0,K(t0)) and t′1 be the term pat (t1,K(t1)).
There exists a renaming of Keys σ1 and a bijection σ2 preserving linear relations
between polynomials from t1 to t0 such that t′0 = t′1σ1σ2. Permutation of keys is
easy to handle: [[t′1σ1]]SE,IG and [[t′1]]SE,IG output exactly the same distribution.

There only remains to prove that [[t′0]]SE,IG ≈ [[t′1σ1]]SE,IG. For this purpose,
let u0 = t′0 and u1 = t′1σ1. Let A be an adversary trying to distinguish the
distribution related to u0 from the distribution related to u1. In the remaining,
we prove that the advantage of A is negligible if the BDDH assumption holds.
For this purpose, we introduce a term u such that:

Adv[[u1]]SE,IG,[[u0]]SE,IG

A = Adv[[u1]]SE,IG,[[u]]SE,IG

A + Adv[[u]]SE,IG,[[u0]]SE,IG

A

Intuitively u is equal to u0 where polynomials have been replaced by fresh
monomials whenever possible while conserving linear equalities. u is also equal
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to u1 where the same modification has been applied. From there, due to the
nature of u it is easy to prove that the two advantages on the right part are
negligible using lemma 5.3.

First let us define the following sets:

1. Let X = (xi)1≤i≤α be the exponents that are deducible from u0 (using u1

instead of u0 would give exactly the same X as u0 = u1σ2).

2. Let Y = (yi)1≤i≤β be the exponents such that gyi

1 is deducible from u0

(as previously, using u1 instead of u0 would give exactly the same Y ).

3. Let M = (mi)1≤i≤δ be the set of monomials dm(u0) which can easily be
obtained from X and Y .

4. The two sets of polynomials P0 = (p0,i)1≤i≤γ and P1 = (p1,i)1≤i≤γ are
built as follows:

• Initially P0 and P1 are empty.

• For each polynomial p such that gp
2 is a sub-term of u0 at position q,

we have that the sub-term of u1 at position q is also an exponentiation
gp′

2 .

• If p is not involved in any linear relation with polynomials from the
current P0 and monomials from M , then p is appended to P0 and p′

is appended to P1. Note that in this case, p′ is not involved in any
linear relation with polynomials from the current P1 and monomials
from M neither.

Let σ and σ′ be the polynomial bijections defined respectively on polynomials p
such that gp

2 occurs in term u0 for σ and on polynomials p such that gp
2 occurs

in term u1 for σ′. These two bijections are defined by:

• For p0,i in P0 , p0,iσ is defined as a fresh monomial r1,ir2,ir3,i.

• For p1,i in P1 , p1,iσ
′ is defined as a fresh monomial r1,ir2,ir3,i.

• Let p be a polynomial such that gp
2 occurs in u0 and such that p is not in

P0. Then by definition of P0, p is linked via a linear relation to polynomials
in P0 and monomials in M :

p =
γ∑

j=1

λjp0,j +
δ∑

j=1

µjmj

And we define pσ as

pσ =
γ∑

j=1

λj (p0,jσ) +
δ∑

j=1

µjmj
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• In a similar way, let p be a polynomial such that gp
2 occurs in u1 and such

that p is not in P1. Then p is linked via a linear relation to polynomials
in P1 and monomials in M :

p =
γ∑

j=1

λjp1,j +
δ∑

j=1

µjmj

And we define pσ′ as

pσ′ =
γ∑

j=1

λj (p1,jσ
′) +

δ∑
j=1

µjmj

Let u be the term u0σ. As σ2 is linear relation preserving, u is equal to u1σ
′.

Then the advantage of A can be written as:

Adv[[u1]]SE,IG,[[u0]]SE,IG

A = Adv[[u1]]SE,IG,[[u]]SE,IG

A + Adv[[u]]SE,IG,[[u0]]SE,IG

A

We now prove that the advantage Adv[[u]]SE,IG,[[u0]]SE,IG

A is negligible. The proof
that Adv[[u1]]SE,IG,[[u]]SE,IG

A is also negligible is similar. Let w and w′ be the two
terms

w = (x1, . . . , xα, gy1
1 , . . . , g

yβ

1 , gp1
2 , . . . , g

pγ

2 )
w′ = (x1, . . . , xα, gy1

1 , . . . , g
yβ

1 , g
r1,1r2,1r3,1
2 , . . . , g

r1,γr2,γr3,γ

2 )

We build an adversary B that tries to distinguish [[w]]IG from [[w′]]IG and that
uses A as a subroutine. B works as follows:

1. B receives as argument a bit-string tuple (X1, . . . , Xα, Y1, . . . , Yβ , P1, . . . , Pγ)
which is either generated by [[w]]IG or by [[w′]]IG.

2. B generates bit-string value bsk for any atomic key k used in u using KG
(these keys are also the ones used in u0).

3. B recursively computes a bit-string bs′ which is either an evaluation of u
(in case B received as input an evaluation of w′) or an evaluation of u0

(in case B received as input an evaluation of w). The computation of bs′

is done recursively on the structure of u by using the eval algorithm:

• If u is a pair (v, w), then eval(u) = eval(v) · eval(w).

• If u is an encryption {v}key, then eval(u) = E(eval(v), eval(key)).

• If u is an atomic key k, then eval(u) = bsk.

• If u is an exponent xi, then eval(u) = Xi.

• If u is an exponentiation gyi

1 , then eval(u) = Yi.

• If u is an exponentiation gpi

2 , then eval(u) = Pi.
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4. Then B executes A with bs′ as input and returns the same output as A.

We have the following relation among the advantages of A and B:

Adv[[u]]SE,IG,[[u0]]SE,IG

A = Adv[[w′]]IG,[[w]]IG

B

As BDDH holds, we apply lemma 5.3 and obtain that the advantage of B is
negligible and hence Adv[[u]]SE,IG,[[u0]]SE,IG

A is negligible.
Thus Adv[[u1]]SE,IG,[[u0]]SE,IG

A is also negligible and we finally obtain that:

[[pat (t0,K(t0))]]SE,IG ≈ [[pat (t1,K(t1))]]SE,IG

�
It is now easy to obtain our main result by using transitivity of the≈ relation.

Let t0 and t1 be two acyclic well-formed terms. Let SE be an IND-CPA secure
symmetric encryption scheme and let IG be an instance generator satisfying
BDDH. Then we have:

[[t0]]SE,IG ≈ [[pat (t0,K(t0))]]SE,IG ≈ [[pat (t1,K(t1))]]SE,IG ≈ [[t1]]SE,IG

The previous result states soundness of symbolic equivalence in the compu-
tational world. However, the reciprocal (i.e., completeness) is false in general.
There are two main problems that prevent completeness. First, the symmetric
encryption scheme may allow decryption with the wrong key and output a ran-
dom bit-string in that case. Then the distributions related to terms ({x}k, k)
and ({x}k, k′) can be computationally indistinguishable, even though these two
terms do not have the same pattern. This can be solved by requiring symmet-
ric encryption to be confusion free [33, 2] or to admit weak key-authenticity
tests for expressions [33, 2, 26]. The second problem is that the symmetric en-
cryption scheme can satisfy key concealing (this is ensured by type 0 security
in [3]). Then the distributions related to terms ({0}k, {0}k′) and ({0}k, {0}k)
are computationally indistinguishable but these terms are not equivalent even
with renaming. To solve this, one can either ask the encryption scheme to be
key revealing or modify the pattern definition in order to hide the key name
(but the encryption scheme has to be key concealing in order to prove sound-
ness). Soundness and completeness results when symmetric encryption is key
and length revealing are given in [5].

The previous proposition considers the case of equivalence and is typically
used to verify security of key-exchange protocols. In the next proposition, we
are interested in completeness for deducibility. We prove even more than com-
pleteness: if t is deducible from E then there exists an efficient algorithm which
is able to build an evaluation of t from an evaluation of E with probability 1.
This result can be used to verify that a key-agreement protocol can really be
implemented in the computational setting: we first check that the shared key is
deducible from the knowledge of any participants in the symbolic setting, then
applying the following proposition tells us that there exists an efficient algorithm
to obtain the shared key from the participant knowledge in the computational
setting.
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Proposition 5.6 Let E be a finite set of terms t1 to tn and t be a term that does
not use any encryption ( e.g., a modular exponentiation). If E ` t then there
exists a polynomial-time (with respect to the security parameter η) algorithm
A such that A ([[(t1, . . . , tn)]]SE,IG) outputs the evaluation of t using values for
exponents and keys that have been generated to compute [[(t1, . . . , tn)]]SE,IG, i.e.:

(bs, bs′)← [[((t1, . . . , tn), t)]]SE,IG : A(bs) = bs′

Proof. Let t be a term and E be a finite set of terms such that E ` t. First
note that the structure of the proof of E ` t does not depend on the security
parameter η.

Each deduction rule from the symbolic setting corresponds to an operation
which is tractable in the computational setting in polynomial-time in η using
a deterministic algorithm (note that the deducibility relation does not give the
adversary the ability to encrypt data). Hence it is easy to build the algorithm A
by following the structure of a proof of E ` t. We nevertheless need to restrict
ourselves to the case where t does not contain any encryption, as the concrete
algorithm for encryption is not deterministic: we indeed have that {{0}k} ` {0}k
while in the computational setting (bs, bs′) ← [[({0}k, {0}k)]]SE,IG yields two
different biststrings bs and bs′ as the encryption algorithm is run twice. �

Note that it is not necessary for terms to be well-formed or acyclic in this
proposition.

6 Examples of Application

Now we illustrate how proposition 5.2 can be used to prove a key-exchange
protocol secure in the computational world.

Our notion of security is strong secrecy of the shared key in the passive
setting: the adversary gets to observe messages exchanged between the partici-
pants and has to distinguish the shared key from a random group element. In
the symbolic world, let us suppose that the exchanged terms were t1 to tn and
that the shared key is gp

2 . Then security in the symbolic setting holds if:

(t1, ..., tn, gp
2) ≈ (t1, ..., tn, gr1r2r3

2 )

where r1, r2 and r3 are three fresh exponent names. It is then possible to apply
proposition 5.2 in order to prove security in the computational setting.

We are also interested in executability of key exchange protocols. A protocol
is executable if it is feasible for any participant to compute the shared key from
his knowledge. Let us again suppose that the exchanged terms are t1 to tn and
that the shared key is gp

2 . Moreover let x1
i , ..., x

ki
i be the exponents which are

generated by the ith participant. The protocol is executable in the symbolic
setting if for any i,

t1, ..., tn, x1
i , ..., x

ki
i ` gp

2

Executability in the computational world can easily be obtained from here by
applying proposition 5.6.
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6.1 Joux Protocol

The Joux protocol has been described in section 2. In an execution of this
protocol, three messages are sent, corresponding to terms gx1

1 , gx2
1 and gx3

1 . The
shared key is gx1x2x3

2 . Strong secrecy for this key-exchange protocol has been
given as an example for our symbolic equivalence notion:

(gx1
1 , gx2

1 , gx3
1 , gx1x2x3

2 ) ∼= (gx1
1 , gx2

1 , gx3
1 , g

x′1x′2x′3
2 )

Proposition 5.2 can be applied to show that this protocol is secure in the com-
putational setting if the BDDH assumption holds.

We also verify that this protocol is executable. In the symbolic setting this
is the case as we have the following deducibility relation:

x1, g
x2
1 , gx3

1 ` gx1x2x3
2

Similar relations hold when permuting the roles of x1 and x2 and of x1 and x3.
Thus proposition 5.6 proves that there exists an efficient algorithm in the com-
putational setting which allows each participant to compute his shared secret
key.

6.2 TAK-2 and TAK-3 Protocols

The TAK-2 and TAK-3 protocols are two variants of the Joux protocol which
were proposed by Al-Riyami and Paterson in [6]. TAK-1 and TAK-2 are tripar-
tite key-exchange protocols which work in the same way, the only difference lies
in the shared key. These protocols uses certificates to provide authentication.
However as we are only interested in indistinguishability of the shared key, we
use a simplified version of the protocol. Let A, B and C be three participants:

(1) A → B,C : (gx1
1 , gy1

1 )
(2) B → A,C : (gx2

1 , gy2
1 )

(3) C → A,B : (gx3
1 , gy3

1 )

In TAK-2, the shared key is gx1x2y3+x1y2x3+y1x2x3
2 . In TAK-3, gx1y2y3+y1x2y3+y1y2x3

2

is used as shared key. Our simplified version of the two protocols are quite close
as we do not make any difference between short-term secrets (y1, y2 and y3) and
long-term secrets (x1, x2 and x3). Thus in our setting it is sufficient to analyze
one of the protocol, TAK-2 for example.

Security. In the symbolic setting, strong secrecy of the key generated by the
TAK-2 protocol comes from the following equivalence (up to renaming). Note
that the two equivalent terms are trivially well-formed and acyclic:(

gx1
1 , gy1

1 , gx2
1 , gy2

1 , gx3
1 , gy3

1 , gx1x2y3+x1y2x3+y1x2x3
2

)
∼=(

gx1
1 , gy1

1 , gx2
1 , gy2

1 , gx3
1 , gy3

1 , g
x′1x′2x′3
2

)
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This equivalence is true because the set of deducible monomials dm is empty for
both terms and neither x1x2y3 +x1y2x3 +y1x2x3 in the first term nor x′1x

′
2x

′
3 in

the second term is involved in a linear relation. Hence by using proposition 5.2,
we obtain that in the computational setting an adversary that has access to
values for gx1

1 , gy1
1 , gx2

1 , gy2
1 , gx3

1 and gy3
1 cannot distinguish the shared key

gx1x2y3+x1y2x3+y1x2x3
2 from a random group element, so the adversary is not

able to obtain a single bit of information on the shared key.

Executability. We also verify executability of the protocol. By symmetry we
consider the case of A. A generates two exponents x1 and y1 and receives two
messages corresponding to terms (gx2

1 , gy2
1 ) and (gx3

1 , gy3
1 ). Hence executability

in the symbolic setting is a consequence of the following deduction:

x1, y1, g
x2
1 , gy2

1 , gx3
1 , gy3

1 ` gx1x2y3+x1y2x3+y1x2x3
2

Thus proposition 5.6 proves that there exists an efficient algorithm in the com-
putational setting which allows participant A to compute his shared secret key.
The same thing holds for B and C.

Active attacks. The TAK protocol family was designed to be secure even in
the presence of an active adversary. However, as shown by Shim [37], TAK-2 is
vulnerable to active attacks (the other variants are subject to similar attacks).
Completely defining a formal model for active adversaries is outside the scope of
this paper. Nevertheless the role of participant A could be described as follows:

send(ga
1 , gα

1 )
recv(gxB

1 , gβ
1 )

recv(gxC
1 , gγ

1 )

where a is a fresh exponent generated by A, xB and xC are variables and
gα
1 , gβ

1 , gγ
1 are the public keys which aim at guaranteeing authenticity. The key

computed by A corresponds to KA = gaxBγ+aβxC+αxBxC

2 . An active adversary
can substitute xB and xC by two fresh names b′ and c′ yielding an attack: the
key computed by A, gab′γ+aβc′+αb′c′

2 , is indeed deducible from the attacker’s
knowledge {ga

1 , gα
1 , b′, gb′

1 , gβ
1 , c′, gc′

1 , gγ
1 }. It follows directly from proposition 5.6

that this symbolic attack can be efficiently implemented by a computational
adversary. More generally, active symbolic attacks aiming at deducing the key
(weak secrecy) correspond to computational attacks. This is not surprising
and the converse is obviously not true: it does not follow from our results
that a symbolic security proof (in the presence of an active attacker) gives a
computational security guarantee.

6.3 A Variant of the Burmester-Desmedt Protocol using
Pairings

As an additional example which illustrates the scope of our results, we show how
to apply our results to a variant of the group key exchange protocol introduced
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by Burmester and Desmedt in [14]. The aim of this protocol is to establish a
secret key shared among the members of the group. It is scalable as it requires
only two rounds and a constant number of modular exponentiation per user.
This protocol is only designed for security against passive adversaries.

The Original Burmester-Desmedt Protocol. Consider a network in which
members of a group can broadcast messages to each other. Let η be a security
parameter and let A1,A2,· · · ,An, for n ∈ Z, be members of a group. We fix the
security parameter η, a finite cyclic group G of generator g and of prime order
q. These parameters G, g and q are published.

• Round 1: Each participant Ai samples a random xi ∈ Zq, and broadcasts
Zi = gxi .

• Round 2: Each participant Ai broadcasts Xi = (Zi+1/Zi−1)xi = gxixi+1−xi−1xi ,
where the indexes are taken modulo n.

• Key computation: Each party Ai computes the shared key K = g
Pn

i=1 xixi+1 .

The Bilinear Burmester-Desmedt Protocol. Now we define a family of
variants of the Burmester-Desmedt protocol. Protocols in this family are pa-
rameterized by three integers α, β and γ such that α + β + γ = 0 and either α,
β or γ is different from 0. The instance of the protocol corresponding to α, β
and γ is denoted by α, β, γ-BBD (Bilinear Burmester-Desmedt).

We still consider a group of n members A1 to An. This time the protocol
does not use a single cyclic group but uses a bilinear pairing between two cyclic
groups. Hence we fix the security parameter η and two cyclic groups G1 and
G2 of prime order q with respective generators g1 and g2, as well as a pairing
operation e from G1 ×G1 to G2 such that e(g1, g1) = g2.

• Round 1: Each participant Ai samples a random xi ∈ Zq, and broadcasts
Zi = gxi

1 .

• Round 2: Each participant Ai broadcasts Xi defined by

Xi = e(Zi−2, Zi−1)αxie(Zi−1, Zi+1)βxie(Zi+1, Zi+2)γxi

= g
αxi−2xi−1xi+βxi−1xixi+1+γxixi+1xi+2
2

where the indexes are still taken modulo n.

• Key computation: Each party Ai computes the shared key

K = g
Pn

i=1 xixi+1xi+2
2
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Security Analysis. We first prove strong secrecy for the shared key in the
symbolic setting. This secrecy property is defined as the equivalence between
the protocol execution transcript concatenated to the shared key and the tran-
script concatenated with a random group element from G2. Hence α, β, γ-BBD
verifies strong secrecy of the shared key in the symbolic setting iff the following
equivalence holds:

(Z1, ..., Zn, X1, ..., Xn,K) ∼= (Z1, ..., Zn, X1, ..., Xn, gr1r2r3
2 )

In order to obtain this equivalence, we use the following lemma which proves
that the exponent used in the key is linearly independent from other exponents
if α + β + γ = 0.

Lemma 6.1 Let α, β, γ and n be four integers. Let V be a real vector space
and u1 to un be n linearly independent elements of V . If α + β + γ = 0, then∑n

i=1 ui is linearly independent from the family of vectors (αui+βui+1+γui+2)i

(indexes are taken modulo n).

Proof. Let U be the set of vectors (αui +βui+1 +γui+2)i for i between 1 and n.
For any vector v in span(U), there exists a unique decomposition v =

∑n
i=1 λiui

and
∑n

i=1 λi is equal to 0. Hence
∑n

i=1 ui is not in span(U) and is linearly
independent from vectors in U . �

A direct consequence of this is strong secrecy of α, β, γ-BBD in the symbolic
setting. By applying proposition 5.2, we obtain strong secrecy of the key in the
computational setting for a passive adversary.

7 Conclusions and Future Work

We have proposed a first symbolic model to analyze cryptographic protocols
which use a bilinear pairing. This model can be used to verify security of well-
known key-exchange protocols using pairing like Joux protocol or the TAK-2
and TAK-3 protocol. Moreover our symbolic model consists in an extension
of Abadi-Rogaway logic which is computationally sound provided that the en-
cryption scheme and the pairing satisfy classical requirements from provable
security. A direct consequence of this soundness result is that the Joux, TAK-2
and TAK-3 protocol are also secure in the computational setting. We also de-
sign a variant based on pairings of the Burmester-Desmedt protocol and prove
its security against passive adversaries.

This paper only consider passive adversaries. An obvious line for future
work is to extend the results to deal with active adversaries. Another interesting
follow-up would be to investigate completeness of the extended version of Abadi-
Rogaway logic as in [33]. However this would require either to tighten the
symbolic model or to use stronger versions of the computational requirements
IND-CPA and BDDH.
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