Automatic verification of privacy
properties in the applied pi calculus*

Stéphanie Delaune, Mark Ryan, and Ben Smyth

Abstract We develop a formal method verification technique for crypto-
graphic protocols. We focus on proving observational equivalences of the
kind P ~ @, where the processes P and) have the same structure and differ
only in the choice of terms. The calculus of ProVerif, a variant of the applied
pi calculus, makes some progress in this direction. We expand the scope of
ProVerif, to provide reasoning about further equivalences. We also provide an
extension which allows modelling of protocols which require global synchro-
nisation. Finally we develop an algorithm to enable automated reasoning. We
demonstrate the practicality of our work with two case studies.

1 Introduction

Security protocols are small distributed programs that aim to provide some
security related objective over a public communications network like the In-
ternet. Considering the increasing size of networks and their dependence on
cryptographic protocols, a high level of assurance is needed in the correctness
of such protocols. It is difficult to ascertain whether or not a cryptographic
protocol satisfies its security requirements. Numerous protocols have ap-
peared in literature and have subsequently been found to be flawed [13, 14, 5].
Typically, cryptographic protocols are expected to achieve their objectives in

Stéphanie Delaune
LSV, ENS Cachan & CNRS & INRIA, France, e-mail: delaune@lsv.ens-cachan.fr

Mark Ryan - Ben Smyth
School of Computer Science, University of Birmingham, UK, e-mail: {B.A.Smyth,
M.D.Ryan}@cs.bham.ac.uk

* This work has been partly supported by the ARA SESUR project AVOTE and the
EPSRC projects Verifying anonymity and privacy properties (EP/E040829/1) & UbiVal
(EP/D076625/1).

the presence of an attacker that is assumed to have full control of the network
(sometimes called the Dolev-Yao attacker). He can eavesdrop, replay, inject
and block messages. The attacker can also modify them by performing cryp-
tographic operations when in possession of the required keys. Furthermore
the attacker may be in control of one or more of the protocol’s participants.
With no more than the abilities listed, and irrespective of the underlying
cryptographic algorithms, numerous protocols have been found to be vul-
nerable to attack. Formal verification of cryptographic protocols is therefore
required to ensure that cryptographic protocols can be deployed without the
risk of damage.

Traditionally cryptographic protocols have been required to satisfy secrecy
and authentication properties [6]. These requirements have been successfully
verified by modelling them as reachability problems. Current research into
applications such as electronic voting, fair exchange and trusted computing
has resulted in a plethora of new requirements which protocols must sat-
isfy (e.g. [11, 4]). Some of these properties cannot easily be expressed using
traditional reachability techniques but can be written as equivalences. For
example, the privacy, receipt-freeness and coercion-resistance properties of
electronic voting protocols can be expressed using equivalences (see [12, 7]).

We focus on proving equivalences of the kind P ~ @, where the processes P
and) have the same structure and differ only in the choice of terms. For
example, the secret ballot (privacy) property of an electronic voting protocol
can be expressed as

P(skva,vy) | P(skvb,ve) ~ P(skva,vs) | P(skvb,vy)

where P is the voter process with two parameters: its secret key (skva, skvb)
and the candidate for whom he wish to cast their vote (here vy, vo). His-
torically many applications of equivalences to prove security requirements of
cryptographic protocols have relied upon hand written proofs [12, 7]. Such
proofs are time consuming and error prone. Accordingly, we direct our at-
tention to automated techniques. The calculus developed by Blanchet et al.
makes some progress in this direction [3]. However, the method developed
for proving observational equivalence is not complete and is unable to prove
certain interesting equivalences.

Contribution. We build upon [3] to provide reasoning about further equiv-
alences (see Section 2). We also extend the syntax to allow the modelling
of a new class of processes which require global synchronisation. Finally we
develop an algorithm to enable automated reasoning about security require-
ments. The focus of our work is to model the privacy properties increasingly
found in cryptographic protocols (Section 3). We demonstrate the practical
application of our contribution with case studies (Sections 4 and 5). Using
our approach we provide the first automated proof that the electronic voting
protocol due to Fujioka, Okamoto & Ohta (FOO) [10] satisfies privacy. As a
second case study we provide a formal methods proof that the Direct Anony-
mous Attestation (DAA) [4] protocol also satisfies privacy (the DAA authors

provided a provable security proof). An extended version of this paper [9] and
our ProVerif source code are available at http://www.cs.bham.ac.uk/ bas/.

Related work. Kremer & Ryan [12] have previously demonstrated the elec-
tronic voting protocol FOO satisfies fairness, eligibility and privacy. The first
two properties were verified automatically using ProVerif, and the third relied
on a hand proof. Backes et al. [2] model a variant of DAA and provide some
proofs. We observe that their model is not accurate with regards to DAA due
to some subtleties in their formalisation. Nevertheless their idea of modelling
synchronisation by private channel communication influenced the design of
our translator.

2 Calculus of ProVerif

The process calculi of Blanchet et al. [3], used by the tool ProVerif, is a
variant of the applied pi calculus [1], a process calculi for formally modelling
concurrent systems and their interactions. In this paper we use the phrase
calculus of ProVerif to mean the calculus defined in [3], and ProVerif software
tool to refer to the software tool developed in accompaniment of [3].

2.1 Syntax and informal semantics

The calculus assumes an infinite set of names and an infinite set of vari-
ables. It also assumes a signature X, i.e. a finite set of function symbols each
with an associated arity. A function symbol with arity 0 is also called a con-
stant. We distinguish two categories of function symbols: constructors f and
destructors g and we use h to range over both. We use standard notation
for function application, i.e. h(My, ..., M,). Destructors are partial, non-
deterministic operations, that processes can apply to terms. They represent
primitives that can visibly succeed or fail, while constructors and the asso-
ciated equational theory apply to primitives that always succeed but may
return “junk”. The grammar for terms/term evaluations is given below.

M,N = term D = term evaluation
a,b,c name M term
T,Y, 2 variable choice[D, D'] choice term eval.
choice[M, M’] choice term h(Ds,...,D,) function eval.

f(My,...,M,) constructor

We equip the signature X' with an equational theory, say E, i.e. a finite
set of equations of the form M; = N;, where M; and N; are terms without
names. The equational theory is then obtained from this set of equations by

reflexive, symmetric and transitive closure, closure by substitution of terms
for variables and closure by context application. We write M =g N (resp.
M #g N) for equality (resp. inequality) modulo E.

Processes are built up in a similar way to processes in the pi calculus,
except that messages can contain terms/term evaluations (rather than just
names). In the grammar described below, M and N are terms, D is a term
evaluation, a is a name, x a variable and ¢ an integer.

PQ,R:= processes
null null process
PlQ parallel composition
\P replication
new a; P name restriction
let x =D in P else Q term evaluation
in(M,z); P message input
out(M, N); P message output
phase t; P weak phase

We note that the ProVerif software tool allows the definition of a single main
process which in turn may refer to subprocesss of the form “let P = ().” The
tool also permits the use of comments in the form (* comment *).

The choice operator allows us to model a pair of processes which have
the same structure and differ only in the choice of terms and terms evalua-
tions. We call such a pair of processes a biprocess. Given a biprocess P, we
define two processes fst(P) and snd(P) as follows: fst(P) is obtained by re-
placing all occurrences of choice[M, M'] with M and choice[D, D'] with D
in P. Similarly, snd(P) is obtained by replacing choice[M, M'] with M’
and choice[D, D'] with D’ in P. We define fst(D), fst(M), snd(D) and snd(M)
similarly.

As usual, names and variables have scopes, which are delimited by restric-
tions and by inputs. We write fu(P), bv(P) (resp. fn(P) and bn(P)) for the
sets of free and bound variables (resp. names) in P. A process is closed if
it has no free variables (but it may contain free names). A context C[] is a
process with a hole. We obtain C[P] as the result of filling C[_]’s hole with P.
An evaluation context C'is a closed context built from [], C'| P, P | C and
new a; C. We sometimes refer to contexts without choice as plain contexts.

The major difference between the syntax of the applied pi calculus and the
calculus of ProVerif, is the introduction of the choice operator. In addition
there are some minor changes. For instance, communication is permitted on
arbitrary terms, not just names. Function symbols are supplemented with
destructors. Active substitutions are removed in favour of term evaluations.
The syntax does not include the conditional “if M = N then P else Q”,
which can be defined as “let x = equals(M, N) in P else Q" where x & fu(P)
and equals is a destructor with the equation equals(z,z) = z. We omit
“else 7 when the process @ is null. Finally the calculus of ProVerif does
not rely on a sort system. We believe that processes written in the calculus of

ProVerif, can be mapped to semantically equivalent processes in the applied
pi calculus and vice-versa, although proving this remains an open problem.
This can easily be extended to biprocesses.

2.2 Operational semantics

The operational semantics of processes in the calculus of ProVerif, are de-
fined by three relations, namely term evaluation |}, structural equivalence =
and reduction —. Structural equivalence and reductions are only defined on
closed processes. We write —* for the reflexive and transitive closure of —,
and —*= for its union with =. The operational semantics for the calculus of
ProVerif differ in minor ways from the semantics of the applied pi calculus.
Structural equivalence is the smallest equivalence relation on processes that is
closed under application of evaluation contexts and some other standard rules
such as associativity and commutativity of the parallel operator. Reduction is
the smallest relation on biprocesses closed under structural equivalence and
application of evaluation contexts such that

RED I/O out(N,M);Q | in(N',z); P — Q | P{M/,}
if fst(IV) = fst(N') and snd(N) = snd(N')
RED FUN 1 let 2 = D in P else Q — P{choicelM.Mz]/
if fst(D) | M7 and snd(D) | M,
RED FUN 2 letz =D in Pelse Q — Q
if there is no M such that fst(D) | M; and
there is no My such that snd(D) || M,
Rep REPL P — P |IP

2.3 Extension to processes with weak phases

Many protocols can be broken into phases, and their security properties can
be formulated in terms of these phases. Typically, for instance, if a protocol
discloses a session key after the conclusion of a session, then the secrecy
of the data exchanged during the session may be compromised but not its
authenticity. To enable modelling of protocols with several phases the calculus
of ProVerif is extended [3]. The syntax of processes is supplemented with a
phase prefix “phase ¢t; P”, where ¢ is a non-negative integer. Intuitively, ¢
represents a global clock, and the process “phase t; P” is active only during
phase t. However, it is possible that not all instructions of a particular phase
are executed prior to a phase transition. Moreover, parallel processes may
only communicate if they are under the same phase.

Ezample 1. Let P = phase 1;out(c, a) | phase 2;out(c, b). The process P can
output b without having first output a.

The semantics of processes are extended to deal with weak phases (see [3]).

2.4 Observational equivalence

The notion of observational equivalence was introduced by Abadi & Four-
net [1], subsequently Blanchet, Abadi & Fournet [3] defined strong obser-
vational equivalence. This paper will use strong observational equivalence,
henceforth we shall use observational equivalence to mean strong observa-
tional equivalence. We first recall the standard definition of observational
equivalence. We write P |5y when P emits a message on the channel M, that
is, when P = Cfout(M’, N); R] for some evaluation context C[.] that does
not bind fn(M) and M =g M’.

Definition 1 ([3]). Observational equivalence ~ is the largest symmetric
relation R on closed processes such that P R) implies:

1.if P lM then Q l]\/[;
2.if P — P’ then there exists Q' such that Q@ — Q' and P’ R Q’;
3. C[P] R C[Q)] for all evaluation contexts C'.

Intuitively, a context may represent an attacker, and two processes are obser-
vationally equivalent if they cannot be distinguished by any attacker. Given a
biprocess P, we say that P satisfies observational equivalence when we have
that fst(P) ~ snd(P).

A reduction P — @ for a biprocess P implies the corresponding processes
have reductions fst(P) — fst(Q) and snd(P) — snd(Q). However, reductions
in fst(P) and snd(P) do not necessarily correspond to any biprocess reduc-
tion. When such a corresponding reduction does exist the processes fst(P)
and snd(P) satisfy uniformity under reduction (UUR):

Definition 2 ([3]). A biprocess P satisfies uniformity under reduction if:

1. fst(P) — @1 implies that P — @ for some biprocess @ with fst(Q) = @1,
and symmetrically for snd(P) — Qo;

2. for all plain evaluation contexts C, for all biprocess @, C[P] — @ implies
that @ satisfies UUR.

Blanchet et al. [3] have shown that if a biprocess P satisfies uniformity under
reductions then P satisfies observational equivalence. The ProVerif software
automatically verifies whether its input satisfies uniformity under reduction
and thus enables us to prove observational equivalence in some cases.

2.5 Limaitations of the calculus

There are trivial equivalences (see Example 2 described below) which the
calculus of ProVerif is unable to prove since the definition of observational
equivalence by uniformity under reductions is too strong. We overcome this
problem with data swapping.

Ezample 2. The equivalence out(c, a) | out(c,b) ~ out(c,b) | out(c,a) holds
trivially since the processes are in fact structurally equivalent. But the cor-
responding biprocess out(c, choice|a, b]) | out(c, choice[b, a]) does not satisfy
uniformity under reductions and therefore the equivalence cannot be proved
by ProVerif.

Moreover, the phase semantics introduced by the calculus of ProVerif [3]
are insufficient to model protocols which require synchronisation, as the phase
semantics do not enforce that all instances of a phase must be completed prior
to phase progression. We solve this problem with the introduction of strong
phases.

Both of these problems are encountered when modelling cryptographic
protocols from literature. As case studies we demonstrate the suitability of
our approach by modelling the privacy properties of the electronic voting
protocol FOO [10] and Direct Anonymous Attestation (DAA) [4].

3 Extending the calculus

To overcome the limitations stated in the previous section, we extend the
calculus with strong phases and data swapping.

3.1 Extension to processes with strong phases

Similarly to weak phases the syntax of processes is supplemented with a
strong phase prefix “strong phase t; P”, where ¢ is a non-negative integer. A
strong phase represents a global synchronisation and ¢ represents the global
clock. The process strong phase t; P is active only during strong phase ¢ and
a strong phase progression may only occur once all the instructions under
the previous phase have been executed.

Ezample 3. Consider our earlier example (Example 1) with the use of strong
phase. Now, the process

strong phase 1;out(c, a) | strong phase 2;out(c, b)

cannot output b without having previously output a.

3.2 Extension to processes with data swapping

Let us first consider the background to our approach. Referring back to Ex-
ample 2 we recall the biprocess @@ = out(c, choice[a, b]) | out(c, choice[b, a])
which does not satisfy UUR. We note that fst(Q)) = out(c, a) | out(c, b) and
snd(Q) = out(c,b) | out(c, a). Since out(c, b) | out(c,a) = out(c,a) | out(e,b)
it seems reasonable to rewrite snd(Q) as out(c,a) | out(c,b), enabling us to
write @ as out(c, choice[a, a]) | out(c, choice[b, b]) which is semantically equiv-
alent to out(c,a) | out(c,b). Our new biprocess satisfies uniformity under
reduction, and thus observational equivalence. It therefore seems possible
(under certain circumstances) to swap values from the left to the right side
of the parallel operator. Sometimes the swap is not done initially but instead
immediately after a strong phase. To specify data swapping we introduce the
special comment (**swap*) in process descriptions, which can be seen as a
proof hint. Returning to our example, we would rewrite @ as

Q' (**swap*) out(c, choicela, b)) | (**swap*) out(c, choice[b, a])
= out(c, choice[a, a]) | out(c, choice[b, b]).

3.3 Automated reasoning with ProVerif

To allow automated reasoning we describe a translator which accepts as input
processes written in our extended language. It will also include a single main
process and subprocesses of the form “let P = @Q”, subject to the following
restrictions.

1. The commands strong phase ¢; and (**swap*) can only appear in a single
subprocess defined using the let keyword (not in the main process);

2. The subprocess defined using the let keyword that contain strong phases
and data swapping must be instantiated precisely twice in the main pro-
cess. Moreover, it must be of the form let P = «, where « is a process that
is sequential until its last strong phase, at which point it is an arbitrary
process. Formally « is given by the grammar below:

o= R’new a;(Jz‘in(M7 x);oz’out(M, N);a’let z = D in alstrong phase t; o

where R is an arbitrary processes without data swapping and strong
phases;

3. We further require that (**swap*) may only occur at the start of a sub-
process definition or immediately after a strong phase.

The translator outputs processes in the standard language of ProVerif, which
can be automatically reasoned about by the software tool. The pseudocode
of our algorithm is presented in Figure 1.

Step one of our translator makes the necessary modifications to subpro-
cesses. It defines each strong phase as an individual subprocess. Step two
handles the main process which combines the subprocesses defined in step
one in such a way that preserves notion of strong phases. The other parts of
the translator’s input are copied to the output verbatim. We demonstrate its
application with several toy examples (see Section 3.4) and two case studies
(see Sections 4 & 5).

Step 1: We replace any subprocess declaration of the form
let P = ap; strong phase 1; «a1; strong phase 2; a2; ...; strong phase n; an.
with the declarations

let Py = ap; out(pe, Mp).
let P; = ay;out(pe, M1).

let P,—1 = an—1;0ut(pe, Mp_1).

let Py, = an.
where M; is a term consisting of a tuple containing each bound name in ag, a1, ..., a; and
the free variables in o1, ®42,...,0n.

Step 2: We replace instance declarations in the main process of the form
let 7= Nin P |let #=N'in P
with
new pco; New Pc(; New Pci;New Peh;...;new pen—1;new pe, g (
let Z = N in let pc = pco in Py
let = N’ in let pc = pcf) in Py|
in(pco, 20); in(pcfy, 2;); (* start strong phase 1 *) (
let Mo = 20 in let pc = pey in Py
let Mo = 2, in let pc = pc} in Py)|

in(pen—1, zn—1);in(pc,,_q, 25, _1); (* start strong phase n *) (
let My,_1 = 2p_1 in Pn‘
let Mp—1 =2],_, in Pp)

)

If ap starts with (**swap*), we further modify the above description, by replacing
let Z = N in with let = choice[N, N'] in
let =N’ in with let Z = choice[N’, N] in

Similarly, if «; starts with (**swap*) and 1 <4 < n, we further modify the description

let M; = z; in with let M; = choice[z;, z}] in
let M; = z] in with let M; = choice[z], z;] in

Fig. 1 Translator algorithm

3.4 Examples

Ezample 4. We begin by returning to our trivial observational equivalence:
out(c, a) | out(e, b) ~ out(c,b) | out(c, a).

As the definition of observational equivalence by UUR is too strong, the
calculus, and therefore the software tool, are unable to reason about such
an equivalence. Using our data swapping syntax, the biprocess encoding the
previous equivalence is given below.

let P = (*¥*swap*) out(c,x).
process let x = choice[a,b] in P|let x = choice[b,a] in P

Our translator gives us the following biprocess, which ProVerif can success-
fully prove.
let P = out(c,x).

process let x = choice|choice[a,b],choice[b,a]] in P|
let x = choice[choice[b,a],choice[a,b]] in P

FEzample 5. We consider the observational equivalence shown below:

out(c, a); strong phase 1;out(c,d) | out(c, b); strong phase 1; null
~ out(c,a);strong phase 1; null | out(c, b); strong phase 1; out(c, d)

The pair of processes are both able to output a and b. We then have a
synchronisation and obtain the process out(c,d) | null ~ null | out(c,d). To
allow ProVerif to prove such an equivalence we provide our translator with
the following input:
let P =out(c,x);strong phase 1; (¥*swap*)if y=ok then out(c,d).
process let x = a in let y = choice[ok,ko] in P|

let x = b in let y = choicel[ko,ok] in P

Our translator produces the biprocess described below.

let P1 = out(c,x);out(pc,y).
let P2 = if y = ok then out(c,c).
process new pcO;new pcl;(
let x = a in let y = choice[ok,ko] in let pc = pcO in P1|
let x = b in let y = choicel|ko,ok] in let pc = pcl in P1|
in(pc0,y0);in(pcl,yl);(
let y = choice[y0,yl] in P2|
let y = choice[yl,y0] in P2))

Ezxample 6. As our final example we consider the following equivalence:

out(c, a1); strong phase 1;out(c, as) | out(c, b1); strong phase 1;out(c, ba)
~ out(c,aq);strong phase 1;out(c, ba) | out(c, by); strong phase 1;out(c, az)

This is similar to Example 5 with two outputs after the strong phase. Again,
thanks to our translator, we are able to conclude on such an example.

4 E-voting protocol due to Fujioka et al.

In this section, we study the privacy property of the e-voting protocol due
to Fujioka et al. [10]. In [12], it is shown that this protocol provides fairness,
eligibility and privacy. However, the proof of privacy given in [12] is manual:
ProVerif is unable to prove it directly.

4.1 Description

The protocol involves voters, an administrator and a collector. The admin-
istrator is responsible for verifying that only eligible voters can cast votes
and the collector handles the collecting and publishing of votes. The protocol
requires three strong phases.

In the first phase, the voter gets a signature on a commitment to his vote
from the administrator, i.e. m = sign(blind(commit(v, k), r), ska) where k
is a random key, r is a blinding factor and ska is the private key of the ad-
ministrator. At the end of this first phase, the voter unblinds m and obtains
y = sign(commit(v, k), ska), i.e. the signature of his commitment. The sec-
ond phase of the protocol is the actual voting phase. The voter sends y to
the collector who checks correctness of the signature and, if the test succeeds,
enters (¢, x,y) onto a list as an f-th item. The last phase of the voting pro-
tocol starts, once the collector decides that he received all votes, e.g. after a
fixed deadline. In this phase the voters reveal the random key k which allows
the collector to open the votes and publish them. The voter verifies that his
commitment is in the list and sends ¢, r to the collector. Hence, the collector
opens the ballots.

4.2 Modelling privacy in applied p1

Privacy properties have been successfully studied using equivalences. In the
context of voting protocols, the definition of privacy is rather subtle. We
recall the definition of privacy for electronic voting protocols given in [12]. A
voting protocol guarantees ballot secrecy (privacy) whenever a process where
Alice votes for candidate v; and Bob votes for candidate v, is observationally
equivalent to a process where their votes are swapped, i.e. Alice votes vy and
Bob votes v1. We denote their secret keys skva and skvb respectively. In [12],

let V =

new k;new r;

let x = commit(v,k) in
out(c,(pk(skv),sign(blind (x,r),skv)));
in(c,m2);

let y = unblind (m2,r) in

if checksign(y,pka) = x then
strong phase 1; (**swap#*)
out(c,y);

strong phase 2;
in(c,(1,yprime));

if yprime =y then out(c,(l,k)).

process
new ska;new skva;new skvb;
let pka = pk(ska) in
out(c,(ska,pka,pk(skva),pk(skvb)));(
(let (skv,v) = (skva,choice[vl,v2]) in V)|
(let (skv,v) = (skvb,choice[v2,vl]) in V))

Process 1 FOO model (extended syntax)

they rely on hand proof techniques to show privacy on FOO. Our modelling
of FOO in the applied pi is similar to the one given in [8]. The underlying
equational theory is the same as in [12].

The main process given in Process 1 models the environment and specifies
how the other processes are combined. To establish privacy, we do not require
that the authorities are honest, so we do not need to model them and we
only consider two voter processes in parallel. First, fresh private keys for the
voters and the administrator are generated. The corresponding public keys
are then made available to the attacker. We also output the secret key of the
administrator. This allows the environment to simulate the administrator
(even a corrupted one) and hence we show that the privacy property holds
even in the presence of a corrupt administrator.

The process V given in Process 1 models the role of a voter. The specifi-
cation follows directly from our informal description. Note that we use the
strong phase command to enforce the synchronisation of the voter processes.
As mentioned initially in [12], the separation of the protocol into strong
phases is crucial for privacy to hold. We also provide a data swapping hint to
allow our translator to produce an output suitable for automatic verification
using ProVerif.

4.3 Analysis

We use our translator to remove all instances of strong phases and handle data
swapping. Our translator produces Process 2, which is suitable for automatic

let V1 =

new k;new r;

let x = commit(v,k) in
out(c,(pk(skv),sign(blind (x,r),skv)));
in(c,m2);

let y = unblind (m2,r) in

if checksign(y,pka) = x then out(pc,(y,k)).

let V2 =
out(c,y); out(pc,(y,k)).

let V3 =
in(c,(l,yprime)); ¢f yprime =y then out(c,(l,k)).

process
new ska;new skva;new skvb;
let pka = pk(ska) in
out(c,(ska,pka,pk(skva),pk(skvb)));
new pcl;new pc2;new pc3;new pcd;(
(let (skv,v)=(skva,choice[vl,v2]) in let pc=pcl in VI1)]|
(let (skv,v)=(skvb,choice[v2,vl]) in let pc=pc2 in V1)]|
(in(pcl,(yl,k1));in(pc2,(y2,k2)); (¥strong phase 1x) (*xswap*)(
(let (y,k)=choice[(yl,kl),(y2,k2)] in let pc=pc3 in V2)]|
(let (y,k)=choice[(y2,k2),(yl,kl)] in let pc=pcd in V2)))]|
(in(pc3,(y3,k3));in(pcd,(yd,k4)); (¥strong phase 2%)(
(let (y,k)=(y3,k3) in V3)|
(et (v.K)=(yd.kd) in V3))))

Process 2 Translated FOO model (ProVerif syntax)

verification using ProVerif. Hence, using our approach, we provide the first
automatic and complete proof that this protocol satisfies privacy.

5 Direct Anonymous Attestation (DAA)

The Direct Anonymous Attestation (DAA) scheme provides a means for re-
motely authenticating a trusted platform whilst preserving the user’s pri-
vacy [4]. In [15], two of the authors have shown that corrupt administrators
are able to violate the privacy of the host. Using our extended calculus we
are now able to provide a formal and automatic proof that the rectified pro-
tocol proposed in [15] satisfies its privacy requirements. We start with a short
description of the protocol (for a more complete description, see [4, 15]).

5.1 Description

The protocol can be seen as a group signature scheme without the ability to
revoke anonymity and an additional mechanism to detect rogue members. In
broad terms the host contacts an issuer and requests membership to a group.
If the issuer wishes to accept the request, it grants the host/TPM an attes-
tation identity credential. The host is now able to anonymously authenticate
itself as a group member to a verifier with respect its credential.

The protocol is initiated when a host wishes to obtain a credential. This
is known as the join protocol. The TPM creates a secret f value and a
blinding factor v’, where f = hash(hash(DAASeed||hash(PKY}))|cnt|0). The
value DAASeed is a secret known only to the TPM, cnt is a counter used by
the TPM to keep track of how many times the Join protocol has been run
and PK} is the long term public key of the issuer. The inclusion of PK}
prevents cross issuer linkability [15]. The TPM then constructs the blind
message U := blind(f,v") and Ny := C}c, where (; := hash(0]|bsny) and
bsny is the basename of the issuer (see [15] for further discussion on DAA
basenames). The U and Ny values are submitted to the issuer I. The issuer
creates a random nonce value n., encrypts it with the public key PKgg of
the host’s TPM and returns the encrypted value. The TPM decrypts the
message, revealing n., and returns hash(U||n.). The issuer confirms that the
hash is correctly formed. The issuer generates a nonce n; and sends it to
the host. The host/TPM constructs a signature proof of knowledge that the
messages U and Ny are correctly formed. The issuer verifies the proof and
generates a blind signature on the message U. It returns the signature along
with a proof that a covert channel has not been used. The host verifies the
signature and proof and the TPM unblinds the signature revealing a secret
credential v (the signed f).

Once the host has obtained an anonymous attestation credential from the
issuer it is able to produce a signature proof of knowledge of attestation on
a message m. This is known as the sign/verify protocol. The verifier sends
nonce n,, to the host. The host/TPM produce a signature proof of knowledge
of attestation on the message (n¢[|n., ||b[|m), where n; is a nonce defined by the
TPM and b is a parameter. In addition the host computes Ny := ¢/, where
¢ := hash(1||bsny) and bsny is the basename of the verifier. Intuitively if a
verifier is presented with such a proof it is convinced that it is communicating
with a trusted platform and the message is genuine.

5.2 Modelling privacy in applied pi

The DAA protocol satisfies privacy whenever a process where Alice interacts
with the verifier is observationally equivalent to when Bob interacts with the

verifier. For privacy we require that both Alice and Bob have completed the
join protocol.

Signature and equational theory. The DAA protocol makes extensive
use of signature proofs of knowledge (SPK) to prove knowledge of and rela-
tions among discrete logarithms. We will discuss our formalism with an ex-
ample. The signature proof of knowledge SPK{(a, 8) : z = g® Ay = hP}(m)
denotes a signature proof of knowledge on the message m that x,y were
constructed correctly. This leads us to define function spk/3 to construct
an SPK. The first argument contains a tuple of secret values known to the
prover «, 3. The second argument consists of a tuple of the values on which
the prover is claiming to have constructed correctly z,y, such that z = ¢g¢
and y = hP. Finally the third argument is the message m on which the prover
produces a signature on. Verifying the correctness of a SPK is specific to its
construction, thus we must require a function checkspk for each SPK that
the protocol uses. To verify the SPK produced in the aforementioned exam-
ple the verifier must be in possession of the SPK itself and x,y, g, h, m. We
define the equation: checkspk(spk((c, B), (g%, h?),m), g% h® g, h,m) = ok.
A verifier can now check a SPK using an if statement.

Modelling the DAA protocol. As in FOO, the main process (see [9])
models the environment and specifies how the other processes are combined.
First, fresh secret keys for the TPMs, the issuer and the verifier are generated
using the restriction operator. We also generate two DAASeed values. The
public keys are then sent on a public channel, i.e. they are made available to
the intruder. We also output the secret key of the verifier and issuer since the
privacy property should be preserved even if they are corrupt. Next we input
the basenames bsny, bsny of the issuer and verifier. Then we instantiate two
instances of the DAA protocol with the necessary parameters.

Our encoding of the DAA protocol (see [9]) follows directly from our infor-
mal description. Note that we use the strong phase and data swapping com-
mands introduced by our extension to the calculus to ensure synchronisation.
The two instances of the DAA processes must first execute all instructions of
DAAJoin before moving onto DAASign. The separation of the protocol into
strong phases is crucial for privacy to hold.

5.3 Analysis

We use our translator to remove all instances of strong phases from our
encoding and produce code suitable for input to ProVerif. Our translator
produces a process (see [9]) which permits the automatic verification of the
privacy property using ProVerif. We are also able to detect the vulnerability
in the original DA A protocol and prove the optimisation presented in [15].

6 Conclusion

In this paper we have extended the class of equivalences which ProVerif is
able to automatically verify. More specifically we are able to reason about
processes which require data swapping and/or strong phases. Using the ap-
proach developed we are able to automatically verify the privacy properties
of the electronic voting protocol FOO and the Direct Anonymous Attestation
scheme. In future work, we would like to generalise our translation algorithm
and provide a formal proof of the correctness of our translator. Moreover we
plan to automate the swapping procedure.

References

10.

11.

12.

13.

14.

15.

. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:

POPL’01: Proc. 28th ACM Symposium on Principles of Programming Languages, pp.
104-115. ACM Press, New York, USA (2001)

Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and auto-
mated verification of the direct anonymous attestation protocol. In: IEEE Symposium
on Security and Privacy, Proceedings of SSP’08 (2008). To appear

Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences
for security protocols. Journal of Logic and Algebraic Programming 75(1), 3-51 (2008)
Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: CCS ’04:
11th ACM conference on Computer and communications security, pp. 132-145. ACM
Press, New York, USA (2004)

Chadha, R., Kremer, S., Scedrov, A.: Formal Analysis of Multi-Party Fair Exchange
Protocols. In: R. Focardi (ed.) 17th IEEE Computer Security Foundations Workshop,
pp. 266-279. IEEE, Asilomar, USA (2004)

Clark, J., Jacob, J.: A Survey of Authentication Protocol Literature (1997). URL
http://www.cs.york.ac.uk/"jac/papers/drareviewps.ps

Delaune, S., Kremer, S., Ryan, M.: Coercion-Resistance and Receipt-Freeness in Elec-
tronic Voting. In: CSFW ’06: Proc. 19th IEEE workshop on Computer Security Foun-
dations, pp. 28-42. IEEE (2006)

Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Research report, Laboratoire Spécification et Vérification, ENS
Cachan, France (2008)

. Delaune, S., Ryan, M., Smyth, B.: Automatic verification of privacy properties in the

applied pi calculus (extended version) (2008). URL http://www.cs.bham.ac.uk/ bas/
Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale
Elections. In: ASTACRYPT ’92: Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques, pp. 244-251. Springer, London (1993)
Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In:
Eurocrypt, LNCS, vol. 1807, pp. 539-556 (2000)

Kremer, S., Ryan, M.D.: Analysis of an Electronic Voting Protocol in the Applied Pi
Calculus. In: ESOP’05: Proc. of the European Symposium on Programming, LNCS,
vol. 3444, pp. 186-200 (2005)

Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters 56(3), 131-133 (1995)

Mukhamedov, A., Ryan, M.D.: Fair Multi-party Contract Signing using Private Con-
tract Signatures. Information & Computation (2007). Preprint

Smyth, B., Ryan, M., Chen, L.: Direct Anonymous Attestation (DAA): Ensuring pri-
vacy with corrupt administrators. In: ESAS’07: 4th European Workshop on Security
and Privacy in Ad hoc and Sensor Networks, LNCS, vol. 4572, pp. 218-231 (2007)

