
Verifying privacy-type properties of electronic

voting protocols: a taster ⋆

Stéphanie Delaune1, Steve Kremer1, and Mark Ryan2

1 LSV, ENS Cachan & CNRS & INRIA, France
2 School of Computer Science, University of Birmingham, UK

Abstract. While electronic elections promise the possibility of conve-
nient, efficient and secure facilities for recording and tallying votes, recent
studies have highlighted inadequacies in implemented systems. These in-
adequacies provide additional motivation for applying formal methods
to the validation of electronic voting protocols.

In this paper we report on some of our recent efforts in using the ap-
plied pi calculus to model and analyse properties of electronic elections.
We particularly focus on anonymity properties, namely vote-privacy and
receipt-freeness. These properties are expressed using observational equiv-
alence and we show in accordance with intuition that receipt-freeness
implies vote-privacy.

We illustrate our definitions on two electronic voting protocols from the
literature. Ideally, these properties should hold even if the election offi-
cials are corrupt. However, protocols that were designed to satisfy pri-
vacy or receipt-freeness may not do so in the presence of corrupt officials.
Our model and definitions allow us to specify and easily change which
authorities are supposed to be trustworthy.

1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a conve-
nient, efficient and secure facility for recording and tallying votes. It can be used
for a variety of types of elections, from small committees or on-line communities
through to full-scale national elections. Electronic voting protocols are formal
protocols that specify the messages sent between the voters and administrators.
Such protocols have been studied for several decades. They offer the possibility
of abstract analysis of the voting system against formally-stated properties.

In this paper, we recall some existing protocols which have been developed
over the last decades, and some of the security properties they are intended
to satisfy. We focus on privacy-type properties. We present a framework for
analysing those protocols and determining whether they satisfy the properties.

⋆ This work has been partly supported by the EPSRC projects EP/E029833, Verifying
Properties in Electronic Voting Protocols and EP/E040829/1, Verifying anonymity
and privacy properties of security protocols, the ARA SESUR project AVOTÉ and
the ARTIST2 NoE.

Properties of electronic voting protocols. Some properties commonly sought for
voting protocols are the following:

– Eligibility : only legitimate voters can vote, and only once.
– Fairness : no early results can be obtained which could influence the remain-

ing voters.
– Individual verifiability : a voter can verify that her vote was really counted.
– Universal verifiability : the published outcome really is the sum of all the

votes.
– Vote-privacy : the fact that a particular voter voted in a particular way is

not revealed to anyone.
– Receipt-freeness : a voter does not gain any information (a receipt) which can

be used to prove to a coercer that she voted in a certain way.
– Coercion-resistance: a voter cannot cooperate with a coercer to prove to him

that she voted in a certain way.

The last three of these are broadly privacy-type properties since they guaran-
tee that the link between the voter and her vote is not revealed by the protocol.
The weakest of the three, called vote-privacy, roughly states that the fact that a
voter voted in a particular way is not revealed to anyone. Receipt-freeness says
that the voter does not obtain any artefact (a “receipt”) which can be used
later to prove to another party how she voted. Such a receipt may be inten-
tional or unintentional on the part of the designer of the system. Unintentional
receipts might include nonces or keys which the voter is given during the proto-
col. Receipt-freeness is a stronger property than privacy. Intuitively, privacy says
that an attacker cannot discern how a voter votes from any information that the
voter necessarily reveals during the course of the election. Receipt-freeness says
the same thing even if the voter voluntarily reveals additional information.

Coercion-resistance is the third and strongest of the three privacy properties.
Again, it says that the link between a voter and her vote cannot be established
by an attacker, this time even if the voter cooperates with the attacker during
the election process. Such cooperation can include giving to the attacker any
data which she gets during the voting process, and using data which the attacker
provides in return. When analysing coercion-resistance, we assume that the voter
and the attacker can communicate and exchange data at any time during the
election process. Coercion-resistance is intuitively stronger than receipt-freeness,
since the attacker has more capabilities.

Verifying electronic voting protocols. Because security protocols in general are
notoriously difficult to design and analyse, formal verification techniques are
particularly important. In several cases, protocols which were thought to be
correct for several years have, by means of formal verification techniques, been
discovered to have major flaws. Our aim in this paper is to use and develop
verification techniques, focusing on the three privacy-type properties mentioned
above. We use the applied pi calculus as our basic modelling formalism [2], which
has the advantages of being based on well-understood concepts. The applied pi
calculus has a family of proof techniques which we can use, and it is partly

2

supported by the ProVerif tool [5]. Moreover, the applied pi calculus allows
us to reason about equational theories in order to model the wide variety of
cryptographic primitives often used in voting protocols.

As it is often done in protocol analysis, we assume the Dolev-Yao abstraction:
cryptographic primitives are assumed to work perfectly, and the attacker controls
the public channels. The attacker can see, intercept and insert messages on
public channels, but can only encrypt, decrypt, sign messages or perform other
cryptographic operations if he has the relevant key. In general, we assume that
the attacker also controls the election officials, since the protocols we investigate
are supposed to be resistant even if the officials are corrupt. Some of the protocols
explicitly require a trusted device, such as a smart card; we do not assume that
the attacker controls those devices.

Outline of the paper. In Section 2, we recall the basic ideas and concepts of the
applied pi calculus. Next, in Section 3, we present the framework for formalising
voting protocols from the literature, and in Section 4 we show how two of our
three privacy-like properties are formalised, namely vote-privacy and receipt-
freeness. (We omit the formalisation of coercion-resistance for reasons of space;
see [9].) In Sections 5 and 6, we recall two voting protocols from the literature,
and show how they can be formalised in our framework. We analyse which of the
properties they satisfy. This paper summarises and provides a taster for a much
longer paper currently being submitted to the Journal of Computer Security [9].
In this paper we intend to give the flavour of our work without going into great
detail.

2 The applied pi calculus

The applied pi calculus [2] is a language for describing concurrent processes and
their interactions. It is based on an earlier language called the pi calculus, which
has enjoyed a lot of attention from computer scientists over the last decades
because of its simplicity and mathematical elegance. The applied pi calculus is
intended to be much richer than the pi calculus, while keeping its mathematical
rigour, and is therefore more convenient to use in real applications. The applied
pi calculus is similar to another pi calculus derivative called the spi calculus [3],
but the spi calculus has a fixed set of primitives built-in (symmetric and public-
key encryption), while the applied pi calculus allows one to define a wide class of
primitives by means of an equational theory. This is useful in electronic voting
protocols, where the cryptography is often sophisticated and purpose-built. The
applied pi calculus has been used to study a variety of security protocols, such
as a private authentication protocol [11] or a key establishment protocol [1].

2.1 Syntax and informal semantics

Messages. To describe processes in the applied pi calculus, one starts with a
infinite set of names (which are used to name communication channels or other

3

atomic data), an infinite set of variables, and a signature Σ which consists of
the function symbols which will be used to define terms. In the case of secu-
rity protocols, typical function symbols will include enc for encryption, which
takes plaintext and a key and returns the corresponding ciphertext, and dec

for decryption, taking ciphertext and a key and returning the plaintext. Terms
are defined as names, variables, and function symbols applied to other terms.
Terms and function symbols are sorted, and of course function symbol appli-
cation must respect sorts and arities. When the set of variables occurring in a
term T is empty, we say that T is ground.

Example 1. Let Σ = {enc, dec}, where enc and dec are each of arity 2. Suppose
a, b, c are names (perhaps representing some bitstring constants or keys), and
x, y, z are variables. Then enc(a, b) is a ground term (which represents the en-
cryption of a using the key b). The term dec(enc(a, b), y) is also a term (but not
a ground term), representing the decryption by y of the result of encrypting a
with b. The symbols enc and dec may be nested arbitrarily.

By the means of an equational theory E we describe the equations which
hold on terms built from the signature. We denote =E the equivalence relation
induced by E. Two terms are related by =E only if that fact can be derived from
the equations in E.

Example 2. A typical example of an equational theory useful for cryptographic
protocols is dec(enc(x, y), y) = x. In this equational theory, we have that the
terms T1 := dec(enc(enc(n, k), k′), k′) and T2 := enc(n, k) are equal, i.e. T1 =E T2,
while obviously the syntactic equality T1 = T2 does not hold.

Equational theories are the means by which we represent cryptographic op-
erations. We do not model the mechanisms (whether bitstring manipulation or
numerical calculation) that constitute the cryptographic operations. Rather, we
model the behaviour they are designed to exhibit. Thus, stipulating the equa-
tion dec(enc(x, y), y) = x models symmetric encryption. In the model terms are
unequal unless they can be proved equal by the equations. This means that the
only way of recovering x from enc(x, y) is by the application of dec(·, y) (and in
particular, the agent that makes that application is required to know the key y).

If M and N are terms, then the pair (M, N) is a term, and from it may be
extracted the components M and N . Formally, this requires us to introduce the
binary “pairing” function (·, ·) and the projection functions proj1 and proj2, but
usually we don’t bother with that and keep the equational theory for pairs (and
tuples of any finite length) implicit.

Processes. In order to model the dynamic part of protocols, we require pro-
cesses. In applied pi, there are two kinds of processes, namely plain processes,
denoted by P , Q, R and extended processes, denoted by A, B, C. In the gram-
mar described below, M and N are terms, n is a name, x a variable and u is a
metavariable, standing either for a name or a variable.

4

P, Q, R := plain processes
0
in(u, x).P
out(u, N).P
if M = N then P else Q
P | Q
!P
νn.P

A, B, C := extended processes
P
A | B
νn.A
νx.A
{M/x}

The process 0 is the plain process that does nothing. The process in(u, x).P
waits to receive a message on the channel u, and then continues as P but with x
replaced by the received message. The process out(u, N).P outputs a term N on
the channel u, and then continues as P . The process if M = N then P else Q
runs as P if the ground terms M and N are equal in the equational theory, and
otherwise as Q. If there is no “else”, it means “else 0”. The process P | Q runs P
and Q in parallel. The process !P executes P some finite number of times. The
restriction νn is used to model the creation in a process of new random numbers
(e.g., nonces or key material), or of new private channels. The process νn.P is
the process that invents a new name n and continues as P .

Extended processes add active substitutions (the process {M/x}), restriction
on names νn, and restriction on variables νx. Active substitutions are the nota-
tion that is used to denote a process that has output a term. Consider the process
out(c, N).P , where c is a channel name, N is some term, and P is some continu-
ation process. If out(c, N).P is allowed to run in an environment, it will become
the process P | {N/x}, which means the process that can now run as P , and has
output the term N . We do not retain the name of the channel name c, but we
do give a handle name, here x, to the value that was output. The environment
may now refer to the term N as x.

The handle x is important when the environment cannot itself describe the
term that was output, except by referring to it as the term that was output
(i.e., by the handle x). Consider the process νk.out(c, enc(a, k)).P which cre-
ates a new key k and then outputs the name a encrypted with k. Here, a
is a “free name” (modelling some well-known value) rather than a restricted
name (like k) that was created by the process using the ν operator. The process
νk.out(c, enc(a, k)).P can output the term on the channel c, resulting in the pro-
cess νk.(P | {enc(a,k)/x}). In this process, the environment has the term enc(a, k),
but it doesn’t have k since the process hasn’t output k. The environment can
refer to the term enc(a, k) as x.

The syntax of extended processes also allows restriction νx on variables x.
The combination of νx and active substitutions generalise the familiar “let”
operator from many functional programming languages. We define “let x = M
in P” as an abbreviation of νx.({M/x} | P).

A process can perform an input and then test the value of the input for
equality (modulo E) with some other term; for example, in(u, x). if x = M
then P . Suppose that after checking the input the process makes no further use

5

it (i.e., x does not occur in P). This idiom is quite common, so we abbreviate it
as in(u, =M).P .

An evaluation context C[] is an extended process with a hole instead of
an extended process; this is useful for describing part (e.g. the beginning) of a
process, while leaving the hole to represent the other part that will be filled in
later. Names and variables have scopes, which are delimited by restrictions νx
and νn, and by inputs in(u, x). We write fv(A), bv(A), fn(A) and bn(A) for the
sets of free and bound variables and free and bound names of A, respectively.
We also stipulate that, in an extended process, there is at most one substitution
for each variable, and there is exactly one when the variable is restricted. We say
that an extended process is closed if all its variables are either bound or defined
by an active substitution.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by
structural rules defining two relations: structural equivalence, noted ≡, and in-
ternal reduction, noted →.

Structural equivalence takes account of the fact that the syntax of processes nec-
essarily makes distinctions that are not important. For example, P | Q looks
different from Q | P but that difference is purely syntactic, and not important,
so we say that P | Q and Q | P are structurally equivalent. Formally, structural
equivalence is the smallest equivalence relation ≡ on extended processes that is
closed under α-conversion on names and variables (that is, renaming a bound
name or variable), application of evaluation contexts, and some other standard
rules such as associativity and commutativity of the parallel operator and com-
mutativity of the bindings. In addition the following three rules are related to
active substitutions and equational theories.

νx.{M/x} ≡ 0
{M/x} | A ≡ {M/x} | (A{M/x})

{M/x} ≡ {N/x} if M =E N

where, in the second equivalence, A{M/x} means A but with free occurrences
of x replaced by M . Note the absence of the |. In A{M/x}, the substitution is
not an active substitution, but a normal “metasyntactic” substitution; it tells
the reader to perform the substitution.

Example 3. Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by sending it on c1.
The second receives a message on c1, uses the secret key k to decrypt it, and
forwards the resulting plaintext on c2. The process P is structurally equivalent
to the following extended process A:

A = νs, k, x1.
(
out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1

}
)
.

6

Internal reduction is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts such that

(Comm) out(a, x).P | in(a, x).Q → P | Q
(Then) if M = M then P else Q → P
(Else) if M = N then P else Q → Q

for any ground terms M and N such that M 6=E N .

This definition looks more restrictive than it is, thanks to structural equiva-
lence. It is straightforward to prove that out(a, M).P | in(a, x).Q → P | Q{M/x}
and if M = N then P else Q → P in the case that M =E N .

The applied pi calculus has another kind of transition operation, called la-
belled reduction, denoted

α
−→, where α is a label. We don’t define that formally

here, but refer the reader to our full paper [9] or the applied pi calculus paper [2].

2.3 Observational equivalence

Now we are able to define observational equivalence. This relation is important
to understand how properties are defined in applied pi calculus. We write A ⇓ a
when A can send a message on a, that is, when A →∗ C[out(a, M).P] for some
evaluation context C[] that does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R
between closed extended processes with the same domain such that A R B im-
plies:

1. if A ⇓ a, then B ⇓ a;

2. if A →∗ A′, then B →∗ B′ and A′ R B′ for some B′;

3. C[A] R C[B] for all closing evaluation contexts C[].

Intuitively, two processes are observationally equivalent if they cannot be
distinguished by any active attacker represented by any context.

Example 4. Let E be the theory defined by the axiom dec(enc(x, y), y) = x.
Consider the processes P0 = out(c, enc(s0, k)) and Q0 = out(c, enc(s1, k)). We
have that νk.P0 ≈ νk.Q0; intuitively, the attacker cannot distinguish between
the encryption of two known values s0 and s1 where the encryption is by a
secret key. Technically, there is no context C that, given these processes, can
distinguish them, e.g., by taking some observable action in the case of P0 but
not in the case of Q0. If the key k is available to the attacker, of course the
situation changes. We have P0 6≈ Q0, since the context

C[] = in(c, x). if dec(x, k) = s0 then out(c, “Found s0!”) |

distinguishes P0 and Q0.

7

Observational equivalence can be used to formalise many interesting security
properties, in particular anonymity properties, such as those studied in this
paper (see Section 4). However, proofs of observational equivalences are difficult
because of the universal quantification over all contexts. In [9], our definitions
and proofs rely on labelled bisimulation which has been shown to coincide with
observational equivalence [2]. Labelled bisimulation has the advantage of being
more convenient to manipulate in proofs. Its definition relies on two further
notions: static equivalence and labelled reduction. To avoid additional definitions
and ease the presentation we stick to observational equivalence in this paper.

3 Formalising voting protocols

Before formalising security properties, we need to define what is an electronic
voting protocol in applied pi calculus. Different voting protocols often have sub-
stantial differences. However, we believe that a large class of voting protocols
can be represented by processes corresponding to the following structure.

Definition 2 (Voting process). A voting process is a closed plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

V is the template voter process, and the V σi are the actual voter processes (the
substitution σi provides the voter’s identity). The Ajs are the election authorities
that are required to be honest and the ñ are channel names. We also suppose that
v ∈ dom(σi) is a variable which refers to the value of the vote. We define an
evaluation context S which is as VP, but has a hole instead of two of the V σi.

In order to prove a given property, we may require some of the authorities
to be honest, while other authorities may be assumed to be corrupted by the
attacker. The processes A1, . . . , Am represent the authorities which are required
to be honest. The authorities under control of the attacker need not be modelled,
since we consider any possible behaviour for the attacker (and therefore any
possible behaviour for corrupt authorities). This arrangement implies that we
consider only one attacker; to put in another way, we consider that all dishonest
parties and attackers share information and trust each other, thus forming a
single coalition. This arrangement does not allow us to consider attackers that
do not share information with each other.

4 Formalising privacy-type properties

In this section, we show how the anonymity properties, informally described in
the introduction, can be formalised in our setting. Actually, it is rather classical
to formalise anonymity properties as some kind of observational equivalence in a
process algebra or calculus, going back to the work of Schneider and Sidiropou-
los [15]. However, the definition of anonymity properties in the context of voting
protocols is rather subtle.

8

4.1 Vote-privacy

The privacy property aims to guarantee that the link between a given voter V
and his vote v remains hidden. While generally most security properties should
hold against an arbitrary number of dishonest participants, arbitrary coalitions
do not make sense here. Consider for instance the case where all but one voter
are dishonest: as the results of the vote are published at the end, the dishonest
voter can collude and determine the vote of the honest voter. A classical device
for modelling anonymity is to ask whether two processes, one in which VA votes
and one in which VB votes, are equivalent. However, such an equivalence does
not hold here as the voters’ identities are revealed (and they need to be revealed
at least to the administrator to verify eligibility). In a similar way, an equivalence
of two processes where only the vote is changed does not hold, because the votes
are published at the end of the protocol. To ensure privacy we need to hide the
link between the voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that
at least two voters are honest. We denote the voters VA and VB and their
votes a and b. We say that a voting protocol respects privacy whenever a pro-
cess where VA votes a and VB votes b is observationally equivalent to a process
where VA votes b and VB votes a. Formally, privacy is defined as follows.

Definition 3. A voting protocol respects vote-privacy (or just privacy) if

S[VA{
a/v} | VB{b/v}] ≈ S[VA{

b/v} | VB{a/v}]

for all possible votes a and b.

The intuition is that if an intruder cannot detect if arbitrary honest voters VA

and VB swap their votes, then in general he cannot know anything about how VA

(or VB) voted. Note that this definition is robust even in situations where the
result of the election is such that the votes of VA and VB are necessarily revealed.
For example, if the vote is unanimous, or if all other voters reveal how they voted
and thus allow the votes of VA and VB to be deduced.

As already noted, in some protocols the vote-privacy property may hold even
if authorities are corrupt, while other protocols may require the authorities to
be honest. When proving privacy, we choose which authorities we want to model
as honest, by including them in Definition 2 of VP (and hence S).

4.2 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formalised as an observational
equivalence. However, we need to model the fact that VA is willing to provide
secret information, i.e., the receipt, to the coercer. We assume that the coercer
is in fact the attacker who, as usual in the Dolev-Yao model, controls the public
channels. To model VA’s communication with the coercer, we consider that VA

executes a voting process which has been modified: inputs and freshly generated

9

names of base type (i.e. not channel type) are forwarded to the coercer. We do
not forward restricted channel names, as these are used for modelling purposes,
such as physically secure channels, e.g. the voting booth, or the existence of a
PKI which securely distributes keys (the keys are forwarded but not the secret
channel name on which the keys are received).

Definition 4. Let P be a plain process and ch be a channel name. We define
the process P ch as follows:

– 0ch = 0,
– (P | Q)ch = P ch | Qch,
– (νn.P)ch = νn.out(ch, n).P ch when n is name of base type,
– (νn.P)ch = νn.P ch otherwise,
– (in(u, x).P)ch = in(u, x).out(ch, x).P ch when x is a variable of base type,
– (in(u, x).P)ch = in(u, x).P ch otherwise,
– (out(u, M).P)ch = out(u, M).P ch,
– (!P)ch = !P ch,
– (if M = N then P else Q)ch = if M = N then P ch else Qch.

In the remainder, we assume that ch 6∈ fn(P) ∪ bn(P) before applying the
transformation. Given an extended process A and a channel name ch, we need
to define the extended process A\out(ch,·). Intuitively, such a process is as the
process A, but hiding the outputs on the channel ch.

Definition 5. Let A be an extended process.

A\out(ch,·) =̂ νch.(A |!in(ch, x)).

We are now ready to define receipt-freeness. Intuitively, a protocol is receipt-
free if, for all voters VA, the process in which VA votes according to the intruder’s
wishes is indistinguishable from the one in which she votes something else. As in
the case of privacy, we express this as an observational equivalence to a process
in which VA swaps her vote with VB , in order to avoid the case in which the
intruder can distinguish the situations merely by counting the votes at the end.
Suppose the coercer’s desired vote is c. Then we define receipt-freeness as follows.

Definition 6 (Receipt-freeness). A voting protocol is receipt-free if there ex-
ists a closed plain process V ′ such that

– V ′\out(chc,·) ≈ VA{
a/v},

– S[VA{
c/v}

chc | VB{a/v}] ≈ S[V ′ | VB{c/v}],

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities
that are assumed to be honest. V ′ is a process in which voter VA votes a but
communicates with the coercer C in order to feign cooperation with him. Thus,
the second equivalence says that the coercer cannot tell the difference between
a situation in which VA genuinely cooperates with him in order to cast the

10

vote c and one in which she pretends to cooperate but actually casts the vote a,
provided there is some counterbalancing voter that votes the other way around.
The first equivalence of the definition says that if one ignores the outputs V ′

makes on the coercer channel chc, then V ′ looks like a voter process VA voting a.
The first equivalence of the definition may be considered too strong. Infor-

mally, one might consider that the equivalence should be required only in a
particular S context rather than requiring it in any context (with access to all
the private channels of the protocol). This would result in a weaker definition,
although one which is more difficult to work with. In fact, the variant definition
would be only slightly weaker. It is hard to construct a natural example which
distinguishes the two possibilities, and in particular it makes no difference to the
case studies of later sections. Therefore, we prefer to stick to Definition 6.

Note that “receipt-freeness” does not preclude voting systems which give
some kind of receipt to the voter that cannot be used for proving how she voted.

Intuition suggests an implication relation between receipt-freeness and vote-
privacy, which indeed holds and is formally proved in [9]:

If a protocol is receipt free (for a given set of honest authorities), then it
also respects vote-privacy (for the same set).

5 Protocol due to Fujioka, Okamoto and Ohta

In this section we study a protocol due to Fujioka, Okamoto and Ohta [12].

5.1 Description

The protocol involves voters, an administrator, verifying that only eligible voters
can cast votes, and a collector, collecting and publishing the votes. In comparison
with authentication protocols, the protocol also uses some unusual cryptographic
primitives such as secure bit-commitment and blind signatures. Moreover, it relies
on anonymous channels. We deliberately do not specify the way these channels
are handled; most anonymiser mechanisms could be suitable depending on the
precise context the protocol is used in. One can use MIX-nets introduced by
Chaum [7] whose main idea is to permute and modify (by using decryption or
re-encryption) some sequence of objects in order to hide the correspondence
between elements of the original and the final sequences. Some other implemen-
tations may also be possible, e.g. onion routing [16].

A bit-commitment scheme allows an agent A to commit a value v to another
agent B without revealing it immediately. Moreover, B is ensured that A cannot
change her mind afterwards and that the value she later reveals will be the same
as she thinks at the beginning. For this, A encrypts the value v in some way and
sends the encryption to B. The agent B is not able to recover v until A sends
him the key.

11

A blind signature scheme allows a requester to obtain a signature of a mes-
sage m without revealing the message m to anyone, including the signer. Hence,
the signer is requested to sign a message blindly without knowing what he signs.
This mechanism is very useful in electronic voting protocol. It allows the voter
to obtain a signature of her vote by an authority who checks that she has right
to vote without revealing it to the authority.

In a first phase, the voter gets a signature on a commitment to his vote from the
administrator. To ensure privacy, blind signatures [8] are used, i.e. the admin-
istrator does not learn the commitment of the vote. (Throughout, we assume
signatures with message recovery.)

– The voter V selects a vote v, computes the commitment x = ξ(v,r) using a
random key r, computes the message e = χ(x, b) using a blinding function
χ and a random blinding factor b, and finally digitally signs e and sends her
signature σV (e) to the administrator A together with her identity.

– The administrator A verifies that V has the right to vote, has not voted yet
and that the signature is valid; if all these tests hold, A digitally signs e and
sends his signature σA(e) to V ;

– V unblinds σA(e) and obtains y = σA(x), i.e. a signed commitment to V ’s
vote.

The second phase of the protocol is the actual voting phase.

– V sends y, A’s signature on the commitment to V ’s vote, to the collector C
using an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters
(ℓ, x, y) into a list as an ℓ-th item.

The last phase of the voting protocol starts, once the collector decides that he
received all votes, e.g. after a fixed deadline. In this phase the voters reveal the
random key r which allows C to open the votes and publish them.

– C publishes the list (ℓi, xi, yi) of commitments he obtained;
– V verifies that her commitment is in the list and sends ℓ, r to C via an

anonymous channel;
– C opens the ℓ-th ballot using the random r and publishes the vote v.

Note that we need to separate the voting phase into a commitment phase and
an opening phase to avoid releasing partial results of the election and to ensure
privacy. This is ensured by requiring synchronisation between the different agents
involved in the election.

5.2 The model in applied pi

We only give the interesting parts of the modelling. A complete formalisation
can be found in [9].

12

(* private channels *)

ν privCh . ν pkaCh1 . ν pkaCh2 . ν skaCh . ν skvaCh . ν skvbCh .
(* administrators *)

(processK | processA | processA | processC | processC |
(* voters *)

(let skvCh = skvaCh in let v = a in processV) |
(let skvCh = skvbCh in let v = b in processV))

Process 1. Main process

Cryptographic primitives as an equational theory. We model cryptography in a
Dolev-Yao style as being perfect. The equations are given below.

open(commit(m, r), r) = m

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

In this model we can note that bit commitment (modelled by the functions
commit and open) is identical to classical symmetric-key encryption. For sim-
plicity, we identify host names and public keys. Our model of cryptographic
primitives is an abstraction; for example, bit commitment gives us perfect bind-
ing and hiding. Digital signatures are modelled as being signatures with message
recovery, i.e. the signature itself contains the signed message which can be ex-
tracted using the checksign function. To model blind signatures we add a pair
of functions blind and unblind. These functions are again similar to perfect sym-
metric key encryption and bit commitment. However, we add a second equation
which permits us to extract a signature out of a blind signature, when the blind-
ing factor is known. Note that the equation modelling commitment cannot be
applied on the term open(commit(m, r1), r2) when r1 6= r2.

Process synchronisation. As mentioned, the protocol is divided into three phases,
and it is important that every voter has completed the first phase before going
onto the second one (and then has completed the second one before continuing
to the third). We enforce this in our model by the keyword synch. When a pro-
cess encounters synch n, it waits until all the other process that could encounter
synch n arrive at that point too. Then all the processes are allowed to continue.
If there are k processes that can encounter synch n, we can implement the syn-
chronisation as follows. The command synch n is replaced by out(n, 0); in(n, =1)
where n is a globally declared private channel. Moreover we assume an additional
process in(n, =0);. . . ; in(n, =0); out(n, 1); . . . ; out(n, 1) that has k ins and k outs.
This simple encoding is fine for our purpose since the value of k can be inferred
by inspecting the code; it would not work if new processes were created, e.g.
with “!”.

Main (Process 1). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the private channels are for key

13

processV = (* parameters : skvCh , v *)

(* her private key *)

in (skvCh , s kv) .
(* public keys of the administrator *)

in (pkaCh1 , pubka) .
ν b l i n d e r . ν r .
let commit tedvote = commit (v , r) in

let b l i ndedcommi t t e dvo t e=b l i n d (committedvote , b l i n d e r) in

out (ch1 , (pk (skv) , s i g n (b l indedcommi t t edvo t e , s k v))) .
in (ch2 ,m2) .
let r e s u l t = che c k s i gn (m2, pubka) in

if r e s u l t = b l i ndedcommi t t e dvo t e then

let s i gnedcommi t t edvo t e=unb l i nd (m2, b l i n d e r) in

synch 1 .
out (ch3 , (committedvote , s i gnedcommi t t edvo t e)) .
synch 2 .
in (ch4 , (l ,= committedvote ,= s i gnedcommi t t edvo t e)) .
out (ch5 , (l , r))

Process 2. Voter process

distribution. We only model the protocol for two voters and launch two copies
of the administrator and collector process, one for each voter.

Voter (Process 2). First, each voter obtains her secret key from the PKI as
well as the public keys of the administrator. The remainder of the specification
follows directly the informal description given in Section 5.1.

Our model also includes a dedicated process for generating and distributing
keying material modelling a PKI (processK), a process for the administrator and
another one for the collector (those processes are not given here, see [9]).

5.3 Analysis

Vote-privacy. According to our definition, to show that the protocol respects
privacy, we need to show that

S[VA{
a/v} | VB{b/v}] ≈ S[VA{

b/v} | VB{a/v}] (1)

where VA = processV{skvaCh/skvCh}, VB = processV{skvbCh/skvCh}. We do not
require that any of the authorities are honest, so they are not modelled in S,
but rather left as part of the attacker context. However, we have to ensure that
both voters use the same public key for the administrator. Therefore, we send
this public key on a private channel (pkaCh1), although the public key and its
counterpart are known by the attacker. Actually, we show that

νpkaCh1.(VA{
a/v} | VB{b/v}| processK)

≈
νpkaCh1.(VA{

b/v} | VB{a/v}| processK)
(2)

14

The proof, detailed in [9], uses the (equivalent) definition of labelled bisimula-
tion instead of observational equivalence. We were able to automate parts of the
proof (the static equivalence relations) using the ProVerif tool [5]. The remain-
ing of the proof (the bisimulation part) is established manually by considering
all cases. Although ProVerif provides observation equivalence checking, it was
unable to perform the proof in this case: observation equivalence checking be-
ing undecidable, ProVerif aims at proving a finer relation which relies on easily
matching up the execution paths of the two processes [6]. This relation happens
to be too fine for proving equivalence 2. Our proof relies on matching VA{

a/v}
on the left-hand side with VA{

b/v} on the right-hand side during the first stage
(before synch 1) and matching VA{

a/v} on the left with VB{a/v} on the right in
the following (after synch 1).

As mentioned above, the use of phases is crucial for privacy to be respected.
When we omit the synchronisation after the registration phase with the admin-
istrator, privacy is violated. Indeed, consider the following scenario. Voter VA

contacts the administrator. As no synchronisation is considered, voter VA can
send his committed vote to the collector before voter VB contacts the adminis-
trator. As voter VB could not have submitted the committed vote, the attacker
can link this commitment to the first voter’s identity. This problem was found
during a first attempt to prove the protocol where the phase instructions were
omitted. The original paper divides the protocol into three phases but does not
explain the crucial importance of the synchronisation after the first phase. Our
analysis emphasises this need and we believe that it increases the understanding
of some subtle details of the privacy property in this protocol.

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter gives away the random numbers
for blinding and commitment, i.e. bA and rA, the coercer can verify that the
committed vote corresponds to the coercer’s wish and by unblinding the first
message, the coercer can trace which vote corresponds to this particular voter.
Moreover, the voter cannot lie about these values as this will immediately be
detected by the coercer. In our framework, this corresponds to the fact that there
exists no V ′ such that:

– V ′\out(chc,·) ≈ VA{
a/v},

– S[VA{
c/v}

chc | VB{a/v}] ≈ S[V ′ | VB{c/v}].

We have that VA{
c/v}

chc outputs the values rA and bA on the channel chc.
This will generate entries in the frame. Hence, V ′ needs to generate similar
entries in the frame. The coercer can now verify that the values rA and bA are
used to encode the vote c in the message sent to the administrator. Thus V ′ is
not able to commit to a value different from c, in order to satisfy the second
equivalence. But then V ′ will not satisfy the first equivalence, since he will be
unable to change his vote afterwards as the commitment to c has been signed
by the administrator. Thus, the requirements on V ′ are not satisfiable.

15

Note that the failure of receipt-freeness is not due to the possible dishonesty
of the administrator or collector; even if we include them as honest parties,
the protocol still doesn’t guarantee receipt-freeness. It follows that coercion-
resistance doesn’t hold either.

6 Protocol due to Okamoto

In this section we study a protocol due to Okamoto [13] which was designed to
be incoercible. However, Okamoto himself shows a flaw [14]. According to him,
one of the reasons why the voting scheme he proposed had such a flaw is that no
formal definition and proof of receipt-freeness and coercion-resistance have been
given when the concept of receipt-freeness has been introduced by Benaloh and
Tuinstra [4].

6.1 Description

The authorities managing the election are an administrator for registration, a
collector for collecting the tokens and a timeliness member (denoted by T) for
publishing the final tally. The main difference with the protocol due to Fujioka
et al. is the use of a trap-door bit commitment scheme [10] in order to retrieve
receipt-freeness. Such a commitment scheme allows the agent who has performed
the commitment to open it in many ways. Hence, trap-door bit commitment does
not bind the voter to the vote v. Now, to be sure that the voter does not change
her mind at the end (during the opening stage) she has to say how she wants
to open her commitment during the voting stage. This is done by sending the
required information to T through an untappable anonymous channel, i.e. a
physical apparatus by which only voter V can send a message to a party, and
the message is perfectly secret to all other parties.

The first phase is similar to the one of the protocol due to Fujioka et al.. The
only change is that ξ is a trap-door bit commitment scheme. The second phase
of the protocol is the actual voting phase. Now, the voter has to say how she
wants to open her commitment to the timeliness member T .

– V sends y, A’s signature on the trap-door commitment to V ’s vote, to the
collector C using an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters (x, y)
into a list.

– V sends (v, r, x) to the timeliness member T through an untappable anony-
mous channel.

The last phase of the voting protocol starts, once the collector decides that he
received all votes, e.g. after a fixed deadline.

– C publishes the list (xi, yi) of trap-door commitments he obtained;
– V verifies that her commitment is in the list;

16

(* private channels *)

ν privCh . ν pkaCh1 . ν pkaCh2 .
ν skaCh . ν skvaCh . ν skvbCh . ν chT .
(* administrators *)

(processK | processA | processA | processC | processC |
processT | processT |

(* voters *)

(let skvCh=skvaCh in let v=a in processV) |
(let skvCh=skvbCh in let v=b in processV))

Process 3. Main process

– T publishes the list of the votes vi in random order and also proves that
he knows the permutation π and the ri’s such that xπ(i) = ξ(vi, ri) without
revealing π or the ri’s.

We have chosen to not entirely model this last phase. In particular, we do
not model the zero-knowledge proof performed by the timeliness member T ,
as it is not relevant for illustrating our definitions of privacy, receipt-freeness
and coercion-resistance. This proof of zero-knowledge is very useful to ensure
that T outputs the correct vote chosen by the voter. This is important in order
to ensure correctness, even in the case that T is dishonest. However, the proof
of knowledge is unimportant for anonymity properties. In particular, if T is the
coercer himself, then he can enforce the voter to vote as he wants as in the
protocol due to Fujioka et al. Indeed, the timeliness member T can force the
voter to give him the trap-door she has used to forge her commitment and then
he can not only check if the voter has vote as he wanted, but he can also open
her vote as he wants.

6.2 The model in applied pi

Cryptographic primitives as an equational theory. The equations modelling pub-
lic keys and blind signatures are the same as in Section 5.2. To model trap-door
bit commitment, we consider the two following equations:

open(tdcommit(m, r, td), r) = m

tdcommit(m1, r, td) = tdcommit(m2, f(m1, r, td, m2), td)

Firstly, the term tdcommit(m, r, td) models the commitment of the message m

under the key r by using the trap-door td. The second equation is used to model
the fact that a commitment tdcommit(m1, r, td) can be viewed as a commitment
of any value m2. However, to open this commitment as m2 one has to know the
key f(m1, r, td, m2). Note that this is possible only if one knows the key r used to
forge the commitment tdcommit(m1, r, td) and the trap-door td.

17

processV = (* parameters : skvCh , v *)

(* her private key *)

in (skvCh , s kv) .
(* public keys of the administrator *)

in (pkaCh1 , pubka) .
ν b l i n d e r . ν r . ν t d .
let commit tedvote = tdcommit (v , r , t d) in

let b l i ndedcommi t t e dvo t e=b l i n d (committedvote , b l i n d e r) in

out (ch1 , (pk (skv) , s i g n (b l indedcommi t t edvo t e , s k v))) .
in (ch2 ,m2) .
let r e s u l t = che c k s i gn (m2, pubka) in

if r e s u l t = b l i ndedcommi t t e dvo t e then

let s i gnedcommi t t edvo t e=unb l i nd (m2, b l i n d e r) in

synch 1 .
out (ch3 , (committedvote , s i gnedcommi t t edvo t e)) .
out (chT , (v , r , commit tedvote))

Process 4. Voter process

processT =
synch 1 .
(* reception du commitment *)

in (chT , (vt , r t , x t)) .
synch 2 .
if open (xt , r t) = v t then

out (board , v t)

Process 5. Timeliness process

Main (Process 3). Again, the main process sets up private channels and specifies
how the processes are combined in parallel. Most of the private channels are for
key distribution. The channel chT is the untappable anonymous channel on which
voters send to T how they want to open their commitment.

Voter (Process 4). This process is very similar to the one given in the previous
section. We use the primitive tdcommit instead of commit and at the end, the
voter sends, through the channel chT, how she wants to open her commitment.

Timeliness Member (Process 5). The timeliness member receives, through chT,
messages of the form (vt, rt, xt) where vt is the value of the vote, xt the trap-door
bit commitment and rt the key he has to use to open the commitment. In a second
phase, he checks that he can obtain vt by opening the commitment xt with rt.
Then, he publishes the vote vt on the board. This is modelled by sending vt on
a public channel.

18

processV =
(* her private key *)

in (skvCh , s kv) . out (chc , s kv) .
(* public keys of the administrator *)

in (pkaCh1 , pubka) . out (chc , pubka) .
ν b l i n d e r . ν r . ν t d .
out (chc , b l i n d e r) . out (chc , f (a , r , td , c)) . out (chc , td) .
let commit tedvote = tdcommit (a , r , t d) in

let b l i ndedcommi t t e dvo t e=b l i n d (committedvote , b l i n d e r) in

out (ch1 , (pk (skv) , s i g n (b l indedcommi t t edvo t e , s k v))) .
out (chc , (pk (s kv) , s i g n (b l indedcommi t t edvo t e , s k v))) .
in (ch2 ,m2) .
let r e s u l t = che c k s i gn (m2, pubka) in

if r e s u l t = b l i ndedcommi t t e dvo t e then

let s i gnedcommi t t edvo t e=unb l i nd (m2, b l i n d e r) in

synch 1 .
out (ch3 , (committedvote , s i gnedcommi t t edvo t e)) .
out (chc , (committedvote , s i gnedcommi t t edvo t e)) .
out (chT , (a , r , commit tedvote)) .
out (chc , (c , f (a , r , td , c) , commit tedvote))

Process 6. V ′- Receipt-freeness

We have also a dedicated process for generating and distributing keying ma-
terial modelling a PKI, an administrator process and a collector. Those processes
are not given here.

6.3 Analysis

Unfortunately, the equational theory which is required to model this protocol is
beyond the scope of ProVerif and we cannot rely on automated verification even
for the static equivalence parts. Thus, our analysis is entirely manual. We only
discuss receipt-freeness (since this implies vote privacy).

Receipt-freeness. To establish receipt-freeness one needs to construct a pro-
cess V ′ which successfully fakes all secrets to a coercer. The idea is for V ′ to
vote a, but when outputting secrets to the coercer, V ′ lies and gives him fake
secrets to pretend to cast the vote c. The crucial part is that, using trap-door
commitment and thanks to the fact that the key used to open the commitment
is sent through an untappable anonymous channel, the value given by the voter
to the timeliness member T can be different from the one she provides to the
coercer. Hence, the voter who forged the commitment, provides to the coercer
the one allowing the coercer to retrieve the vote c, whereas she sends to T the
one allowing her to cast the vote a.

We describe such a process V ′ in Process 6. To prove receipt-freeness, we
need to show that

19

– V ′\out(chc,·) ≈ VA{
a/v}, and

– S[VA{
c/v}

chc | VB{a/v}] ≈ S[V ′ | VB{c/v}].

The context S we consider is νpkaCh1.νchT.(| processK | processT | processT).
The first equivalence may be seen informally by considering V ′ without the
instructions “out(chc, . . .)”, and comparing it visually with VA{

a/v}. The two
processes are the same. To see the second labelled bisimulation, we have to
consider all the executions of each side. As before, the details may be found
in [9].

7 Conclusion

We have defined a framework for modelling cryptographic voting protocols in
the applied pi calculus, and shown how to express in it the properties of vote-
privacy, receipt-freeness and coercion-resistance. Within the framework, we can
stipulate which parties are assumed to be trustworthy in order to obtain the
desired property. We investigated two protocols from the literature. Our results
are summarised in Figure 1.

Property Fujioka et al. Okamoto et al.

Vote-privacy X X

trusted authorities none timeliness mbr.

Receipt-freeness × X

trusted authorities n/a timeliness mbr.

Fig. 1: Summary of protocols and properties

We have stated the intuitive relationships between the two properties: for
a fixed set of trusted authorities, receipt-freeness implies vote-privacy. This is
proved in our full version [9].

Some of our reasoning about bisimulation in applied pi has been informal. In
the future, we hope to develop better techniques for formalising and automating
this reasoning.

Acknowledgments Thanks to Michael Clarkson and Olivier Pereira for interesting
questions and discussions. Thanks also to the editors of this volume for detailed
comments about the presentation, which helped us improve the readability.

References

1. Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi
calculus. In Proc. 13th European Symposium on Programming (ESOP’04), volume
2986 of LNCS, pages 340–354. Springer, 2004.

20

2. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In Proc. 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, London, UK, 2001. ACM.

3. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In Proc. 4th ACM Conference on Computer and Communications
Security (CCS’97), pages 36–47. ACM Press, 1997.

4. Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In Proc. 26th Symposium on Theory of Computing (STOC’94), pages
544–553. ACM Press, 1994.

5. Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
82–96. IEEE Comp. Soc. Press, 2001.

6. Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In Proc. 20th IEEE Symposium on
Logic in Computer Science (LICS 2005), pages 331–340. IEEE Comp. Soc. Press,
2005.

7. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.

8. David Chaum. Blind signatures for untraceable payments. In Advances in Cryp-
tology – CRYPTO’82, pages 199–203. Plenum Press, 1983.

9. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Research report, Laboratoire Spécification
et Vérification, ENS Cachan, France, January 2008.

10. Marc Fischlin. Trapdoor Commitment Schemes and Their Applications. PhD
thesis, Fachbereich Mathematik Johann Wolfgang Goethe-Universität Frankfurt
am Main, 2001.

11. Cédric Fournet and Mart́ın Abadi. Hiding names: Private authentication in
the applied pi calculus. In Proc. International Symposium on Software Security
(ISSS’02), volume 2609 of LNCS, pages 317–338. Springer, 2003.

12. Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting
scheme for large scale elections. In Advances in Cryptology – AUSCRYPT ’92,
volume 718 of LNCS, pages 244–251. Springer, 1992.

13. Tatsuaki Okamoto. An electronic voting scheme. In Proc. IFIP World Conference
on IT Tools, pages 21–30, 1996.

14. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Proc. 5th Int. Security Protocols Workshop, volume 1361 of LNCS, pages 25–35.
Springer, 1997.

15. Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. 4th
European Symposium On Research In Computer Security (ESORICS’96), volume
1146 of LNCS, pages 198–218. Springer, 1996.

16. Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connec-
tions and onion routing. In Proc. 18th IEEE Symposium on Security and Privacy
(SSP’97), pages 44–54. IEEE Comp. Soc. Press, 1997.

21

