
Symbolic Bisimulation

for the Applied Pi Calculus ∗

Stéphanie Delaune1 Steve Kremer1

Mark D. Ryan2

1LSV, ENS Cachan & CNRS & INRIA, France
2School of Computer Science, University of Birmingham, UK

Abstract

We propose a symbolic semantics for the finite applied pi calculus.
The applied pi calculus is a variant of the pi calculus with extensions for
modelling cryptographic protocols. By treating inputs symbolically, our
semantics avoids potentially infinite branching of execution trees due to
inputs from the environment. Correctness is maintained by associating
with each process a set of constraints on terms. We define a symbolic la-
belled bisimulation relation, which is shown to be sound but not complete
with respect to standard bisimulation. We explore the lack of complete-
ness and demonstrate that the symbolic bisimulation relation is sufficient
for many practical examples. This work is an important step towards
automation of observational equivalence for the finite applied pi calculus,
e.g. for verification of anonymity or strong secrecy properties.

∗This work has been partly supported by the EPSRC projects EP/E029833, Verifying

Properties in Electronic Voting Protocols and EP/E040829/1, Verifying Anonymity and Pri-

vacy Properties of Security Protocols, the ARA SESUR project AVOTÉ and the ARTIST2
NoE. Preliminary versions of this paper appeared in [13] and [14].

1

1 Introduction 3

2 The Applied Pi Calculus 4
2.1 Syntax and Informal Semantics 5
2.2 Semantics . 6
2.3 Equivalences . 9

Part I: Intermediate Calculus 10

3 Syntax and Semantics 11
3.1 Syntax . 11
3.2 Semantics . 13

4 Soundness and Completeness 15

5 Intermediate Bisimulation 17

Part II: Symbolic Calculus 22

6 Constraint systems 22

7 Syntax and Semantics 24
7.1 Syntax . 24
7.2 Symbolic semantics . 25

8 Soundness and Completeness 27

9 Symbolic Equivalences 29

Part III: Soundness of Symbolic Bisimulation 34

10 Discussion 34

11 Related and Future Work 39

Appendix 42

B Proofs of Part I – Intermediate Calculus 42

C Proofs of Part II – Symbolic Calculus 50

2

1 Introduction

The applied pi calculus [2] is a derivative of the pi calculus [21] that is specialised
for modelling cryptographic protocols. Participants in a protocol are modelled
as processes, and the communication between them is modelled by means of
channels, names and message passing. The main difference with the pi calculus
is that the applied pi calculus allows one to manipulate complex data, instead of
just names. These data are generated by a term algebra and equality is treated
modulo an equational theory. For instance the equation dec(enc(x, y), y) = x
models the fact that encryption and decryption with the same key cancel out
in the style of the Dolev-Yao model [16]. Such complex data requires the use of
a special kind of processes called active substitutions. As an example consider
the following process and reduction step:

νa, k.out(c, enc(a, k)).P
νx.out(c,x)
−−−−−−−→ νa, k.(P | {enc(a,k)/x}).

The process outputs a secret name a which has been encrypted with the secret
key k on a public channel c. The active substitution {enc(a,k)/x} gives the envi-
ronment the ability to access the term enc(a, k) via the fresh variable x without
revealing a or k. The applied pi calculus also generalizes the spi calculus [3]
which only allows a fixed set of built-in primitives (symmetric and public-key
encryption), while the applied pi calculus allows one to define a variety of prim-
itives by means of an equational theory.

One of the difficulties in automating the proof of properties of systems is
the infinite number of possible behaviours of the attacker, even in the case that
the process itself is finite. When the process requests an input from the envi-
ronment, the attacker can give any term which can be constructed from freely
available data and the terms it has learned so far in the protocol, and therefore
the execution tree of the process is potentially infinite-branching. To address
this problem, researchers have proposed symbolic abstractions of processes, in
which terms input from the environment are represented as symbolic variables,
together with some constraints. These constraints describe the knowledge of the
attacker (and therefore, the range of possible values of the symbolic variable)
at the time the input was performed.

Reachability properties can be verified by deciding satisfiability of constraint
systems resulting from symbolic executions of process algebras (e.g. [20, 4]).
Similarly, off-line guessing attacks coded as static equivalence between process
states [5] can be decided using such symbolic executions, but this requires one to
check the equivalence of constraint systems, rather than satisfiability. Decision
procedures for both satisfiability [11] and equivalence [5] of constraint systems
exist for significant families of equational theories. Observational equivalence
properties, which can be characterized as a bisimulation, express the inability
of the attacker to distinguish between two processes no matter how it interacts
with them. These properties are useful for modelling anonymity and privacy
properties (e.g. [12]), as well as strong secrecy. In the spi calculus [3] properties
were actually expressed as a testing relation and bisimulation was used as a proof

3

technique. Symbolic methods have also been used for bisimulation in process
algebras [18, 9]. In particular, Borgström et al. [10] define a sound symbolic
bisimulation for the spi calculus.

In this paper we propose a symbolic semantics for the applied pi calculus
together with a sound symbolic bisimulation. To show that a symbolic bisim-
ulation implies the concrete one, we generally need to prove that the symbolic
semantics is both sound and complete. The semantics of the applied pi calcu-
lus is not well suited for defining such a symbolic semantics. In particular, we
argue at the beginning of Part I that defining a symbolic structural equivalence
which is both sound and complete seems impossible. The absence of sound and
complete symbolic structural equivalence significantly complicates the proof of
our main result. We therefore split it into two parts. We define a more re-
stricted semantics which will provide an intermediate representation of applied
pi calculus processes (Part I). These intermediate processes are a selected (but
sufficient) subset of the original processes. One may think of them as being pro-
cesses in some kind of normal form. We equip these intermediate processes with
a labelled bisimulation that coincides with the original one. Then we present
a symbolic semantics which is both sound and complete with respect to the
intermediate one and give a sound symbolic bisimulation (Part II).

To keep track of the constraints on symbolic variables we associate a con-
straint system to each symbolic process. Keeping these constraint systems sepa-
rate from the process allows us to have a clean division between the bisimulation
and the constraint solving part. In particular we can directly build on existing
work [5] and obtain a decision procedure for our symbolic bisimulation for a
significant family of equational theories whenever the constraint system does
not contain disequalities. This corresponds to the fragment of the applied pi
calculus without else branches in the conditional. For this fragment, one may
also notice that our symbolic semantics can be used to verify reachability prop-
erties using the constraint solving techniques from [11]. Another side-effect of
the separation between the processes and the constraint system is that we for-
bid α-conversion on symbolic processes as we lose the scope of names in the
constraint system, but allow explicit renaming when necessary (using naming
environments). We believe that the simplicity of our intermediate calculus (es-
pecially the structural equivalence) and the absence of α-conversion is appealing
in view of an implementation.

Finally, one may note that as in [10, 8], our technique for deciding bisim-
ulation is incomplete. However, we argue that our technique works for many
interesting cases. This is the purpose of Part III. Most of the proofs are in
Appendix. Those that are omitted can be found in [15].

2 The Applied Pi Calculus

The applied pi calculus [2] is a language for describing concurrent processes and
their interactions. It is based on the pi calculus [21], but is intended to be less
pure and therefore more convenient to use. In this paper we only consider the

4

finite applied pi calculus which does not have replication.

2.1 Syntax and Informal Semantics

To describe processes in the applied pi calculus, one starts with a set of names
(which are used to name communication channels or other constants), a set of
variables, and a signature Σ which consists of the function symbols which will be
used to define terms. In the case of security protocols, typical function symbols
will include enc for encryption, which takes a plaintext and a key and returns
the corresponding ciphertext, and dec for decryption, taking a ciphertext and a
key and returning the plaintext (if the decryption key matches the encryption).
Terms are defined as names, variables, and function symbols applied to other
terms. We write vars(T) for the set of variables occurring in T . When vars(T) =
∅ we say that the term T is ground.

We rely on a sort system for terms. It includes a universal base type and
a channel type. We denote by N the set of names and among those names
we distinguish the set Nch of channel names. Similarly, we denote by X the
set of variables. Among those variables, we distinghuish two disjoint sets: Xb
the set of variables of base type and Xch the set of variables of channel type.
Of course function symbol application must respect sorts and arities. Function
symbols cannot be applied to variables or names of channel sort, and cannot
return terms of that sort, so in fact the only terms of channel sort are variables
and names of that sort.

We define the equations which hold on terms constructed from the signature
as an equational theory E. We denote =E the equivalence relation induced by E.

Example 2.1 A typical example of an equational theory is defined by the equa-
tion dec(enc(x, k), k) = x. Let T1 = dec(enc(enc(n, k1), k2), k2) and T2 = enc(n, k1).
We have that T1 =E T2 (while obviously the syntactic equality T1 = T2 does not
hold).

In the applied pi calculus, one has plain processes, denoted by P , Q, R
and extended processes, denoted by A, B, C. Plain processes are built up in a
similar way to processes in the pi calculus, except that messages can contain
terms (rather than just names). In the grammar described below, M and N are
terms, n is a name, x a variable and u is a metavariable, standing either for a
name or a variable. Extended processes add active substitutions, and restriction
on names and variables.

P,Q,R := plain processes
0
P | Q
νn.P
if M = N then P else Q
in(u, x).P
out(u,N).P

A,B,C := extended processes
P
A | B
νn.A
νx.A
{M/x}

5

The substitution {M/x} replaces the variable x with the term M (x and M
have the same sort which is required to be a base sort). Active substitutions
generalise “let”. The process νx.({M/x} | P) corresponds exactly to the process
“let x = M in P”. As usual, names and variables have scopes, which are de-
limited by restrictions and by inputs. We write fv(A), bv(A), fn(A) and bn(A)
for the sets of free and bound variables and free and bound names of A, re-
spectively. In an extended process, there is at most one substitution for each
variable, and there is exactly one when the variable is restricted. We say that an
extended process is closed if all its variables are either bound or defined by an
active substitution. We also allow the usual abuse of notations: we omit trail-
ing 0 processes and “else 0” branches in conditionals and write νu1, u2, . . . , un
instead of νu1.νu2.νun.

Active substitutions are useful because they allow us to map an extended
process A to its frame φ(A) by replacing every plain process in A with 0. A
frame is an extended process built up from 0 and active substitutions by parallel
composition and restriction. The frame φ(A) can be viewed as an approximation
of A that accounts for the static knowledge A exposes to its environment, but
not A’s dynamic behaviour. The domain of a frame ϕ denoted by dom(ϕ),
is the set of variables for which ϕ defines a substitution (those variables x for
which ϕ contains a substitution {M/x} not under a restriction on x). We also
define the domain of an extended process A, written dom(A) to be the domain
of its frame, i.e., dom(A) = dom(φ(A)).

An evaluation context C[] is an extended process with a hole instead of an
extended process.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined
by structural rules defining two relations: structural equivalence and internal
reduction.

Structural equivalence, noted ≡, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion on names and variables,
application of evaluation contexts, and such that:

Par-0 A | 0 ≡ A
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A

New-0 νn.0 ≡ 0
New-C νu.νv.A ≡ νv.νu.A
New-Par A | νu.B ≡ νu.(A | B) if u 6∈ fn(A) ∪ fv(A)

Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} if M =E N

6

We also define =α for equality closed under α-renaming.

Example 2.2 Let P = νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))). The
first component publishes the message enc(s, k) by sending it on c1. The second
one receives a message on c1, uses the secret key k to decrypt it, and forwards
the resulting plaintext on c2. The process P is structurally equivalent to the
following extended process A:

A = νs, k, x1.(out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1
})

We have φ(A) = νs, k, x1.{enc(s,k)/x1
} ≡ 0 (since x1 is under a restriction).

As already noted in [2], any closed frame is structurally equivalent to a
sequence of active substitutions under some restricted names νñ.{M1/x1

} | . . . |
{Mk/xk

}. Therefore, we sometimes refer to such a frame as νñ.σ where σ is the
substitution of terms for variables obtained by taking the union of the active
substitutions.

Internal reduction, noted →, is the smallest relation on extended processes
closed under structural equivalence and application of evaluation contexts such
that

Comm out(a,M).P | in(a, x).Q → P | Q{M/x}
Then if M = N then P else Q → P where M =E N
Else if M = N then P else Q → Q

for any ground terms M and N such that M 6=E N

Note that the presentation of the communication rule (Comm) slightly differs
from the one given in [2], but our presentation is easily shown to be equivalent to
theirs. The above presentation is closer to our symbolic semantics and therefore
more convenient for the purpose of this paper. Comparisons (Then and Else)
are kept unchanged and directly depend on the underlying equational theory;
using Else sometimes requires that active substitutions in the context be ap-
plied first, to yield ground terms M and N . Terms M and N are required to be
ground in the rule Else because disequality is not stable under substitution of
terms for variables, unlike equality which explains the absence of this condition
in the Then rule.

The operational semantics is extended by a labelled operational semantics
enabling us to reason about processes that interact with their environment.
Labelled operational semantics defines the relation

α
→ where α is either in(a,M)

(a is a channel name and M is a term that can contain names and variables), or
νx.out(a, x) (x is variable of base type), or out(a, c) or νc.out(a, c) (c is a channel
name). We adopt the following rules in addition to the internal reduction rules:

7

In in(a, x).P
in(a,M)
−−−−−→ P{M/x}

Out-Ch out(a, c).P
out(a,c)
−−−−−→ P

Open-Ch
A

out(a,c)
−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

Out-T out(a,M).P
νx.out(a,x)
−−−−−−−→ P | {M/x} x 6∈ fv (P) ∪ fv(M)

Scope
A

α
−→ A′ u does not occur in α

νu.A
α
−→ νu.A′

Par
A

α
−→ A′ bv(α) ∩ fv (B) = bn(α) ∩ fn(B) = ∅

A | B
α
−→ A′ | B

Struct
A ≡ B B

α
−→ B′ A′ ≡ B′

A
α
−→ A′

Example 2.3 Consider the process P defined in Example 2.2. We have

P
νx1.out(c1,x1)
−−−−−−−−−→ νs, k.(in(c1, y).out(c2, dec(y, k)) | {enc(s, k)/x1})
in(c1,x1)
−−−−−−→ νs, k.(out(c2, dec(x1, k)) | {enc(s, k)/x1})

νx2.out(c1,x2)
−−−−−−−−−→ νs, k.({enc(s, k)/x1} | {dec(x1, k)/x2})

Let B be the extended process obtained after this sequence of reduction steps.
We have that φ(B) ≡ νs, k.{enc(s,k)/x1

,s /x2
}.

Our rules differ slightly from those described in [2]. Our rules Out-Ch and
Open-Ch can be used only when c is a channel name, whereas in [2] there
are identical rules Out-Atom and Open-Atom which can be used to output
a channel name or a variable of base type. To handle variables of base types,
we have the rule Out-T instead. Out-T can easily be derived from the rules
in [2], and, conversely, any application of Out-Atom or Open-Atom involving
a variable of base type can be replaced by an application of Out-T, though
the label out(c, x) will be replaced by a label νy.out(c, y) where y is a fresh
variable not appearing in the process. Any transition in our semantics is also
a transition in [2], but they also allow output of free variables directly. For
example, notice that in [2], the process out(c,M).P | {M/x} can transition by
label νy.out(c, y) to P | {M/x} | {M/y}, or by label out(c, x) to P | {M/x}
(since out(c,M).P | {M/x} ≡ out(c, x).P | {M/x}). Our semantics only allows
the former transition. In [15], we prove that labelled bisimulation in our system
coincides with labelled bisimulation in [2].

8

2.3 Equivalences

We can now define what it means for two frames to be statically equivalent [2].

Definition 2.4 (static equivalence (∼)) Two closed frames ϕ1 and ϕ2 are
statically equivalent, written ϕ1 ∼ ϕ2, if and only if for some names ñ1, ñ2

and substitutions σ1, σ2, such that ϕ1 ≡ νñ1σ1, ϕ2 ≡ νñ2σ2, and dom(σi) ∩
vars(img(σi)) = ∅ for i = 1, 2, we have

(i) dom(ϕ1) = dom(ϕ2),

(ii) for all terms M,N with variables included in dom(ϕi) and using no names
occurring in ñ1 or ñ2, Mσ1 =E Nσ1 is equivalent to Mσ2 =E Nσ2.

Extended processes A and B are statically equivalent, noted by A ∼ B, if we
have that φ(A) ∼ φ(B).

Example 2.5 Let ϕ0 = νk.σ0 and ϕ1 = νk.σ1 where σ0 = {enc(s0, k)/x1, k/x2},
σ1 = {enc(s1, k)/x1, k/x2} and s0, s1 and k are names. Let E be the theory de-
fined by the axiom dec(enc(x, k), k) = x. We have dec(x1, x2)σ0 =E s0 but not
dec(x1, x2)σ1 =E s0. Therefore we have ϕ0 6∼ ϕ1. However, note that we have
νk.{enc(s0, k)/x1} ∼ νk.{enc(s1, k)/x1}.

Definition 2.6 (labelled bisimilarity (≈)) Labelled bisimilarity is the largest
symmetric relation R on closed extended processes, such that A R B implies

1. A ∼ B,

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A
α
→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α→→∗

B′ and A′ R B′ for some B′.

The definition of labelled bisimilarity is like the usual definition of bisimi-
larity, except that at each step one additionally requires that the processes are
statically equivalent. In [2], it is shown that labelled bisimilarity coincides with
observational equivalence, which is a relation capturing the fact that two given
processes cannot be distinguished by any context. In general, it is easier to
work with labelled bisimilarity rather than observational equivalence because of
the quantification over all contexts. As mentioned in the introduction, contex-
tually defined equivalences are useful to formalize many security properties, in
particular anonymity properties, such as those studied in [12].

9

— PART I: Intermediate Calculus —

The idea of a symbolic semantics is to have a notion of process in which
terms that have been input from the environment are represented as variables.
This allows us to reason in a way that abstracts away from the particular term
that was input. Given such a process Ps, we can create a concrete process (an
“instance”) Psσ by applying a substitution σ that maps the input variables to
terms. We define the symbolic semantics by means of counterparts ≡s, →s,
α
−→s for the concrete relations ≡, →,

α
−→ of applied pi calculus, and aim to

show soundness and completeness results relating the symbolic and concrete
semantics. Structural equivalence occupies a crucial role in our calculi because
the transition relations are closed under structural equivalence; therefore, we
would ideally like a notion of symbolic structural equivalence which is sound
and complete in the following (informal) sense:

Soundness : Ps ≡s Qs implies for any valid instantiation σ, Psσ ≡ Qsσ;
Completeness : Psσ ≡ Q implies there exists Qs s.t. Ps ≡s Qs and Qsσ = Q.

Unfortunately, completeness in this sense appears to be unachievable. To see
this, consider the following example:

Example 2.7 Consider the following process:

P = in(c, x).in(c, y).out(c, f(x)).out(c, g(y)).

The process P can be reduced to P ′ = out(c, f(M1)).out(c, g(M2)) where M1

and M2 are two arbitrary terms provided by the environment. In the case that
f(M1) =E g(M2) we have P ′ ≡ νz.(out(c, z).out(c, z) | {f(M1)/z}), but this
structural equivalence does not hold whenever f(M1) 6=E g(M2). The aim of
symbolic semantics is to avoid instantiating the variables x and y; the process P
would reduce symbolically to P ′

s = out(c, f(x)).out(c, g(y)). In this case we need
to keep auxiliary information that allows us to infer that x and y may take
arbitrary values. The process P ′

s represents the two cases in which x and y
are equal or distinct. Hence, the question of whether the symbolic structural
equivalence P ′

s ≡s νz.(out(c, z).out(c, z) | {f(x)/z}) is valid cannot be decided,
as it depends on the concrete values of x and y.

Therefore, the notion of symbolic structural equivalence that we will in-
troduce is sound but not complete in the sense above (we will give a weaker
completeness result). This seems to be an inherent problem and it propagates
to internal and labelled reduction, since they are closed under structural equiva-
lence. In Example 2.7, the control flow is not affected by whether f(x) =E g(y).
When control flow is affected by conditions on input variables, we maintain
those conditions as a set of constraints. This allows us to give a soundness
result for symbolic labelled bisimulation.

Unfortunately, the fact that we are unable to have a notion of symbolic struc-
tural equivalence which is both sound and complete in the sense mentioned above

10

significantly complicates the proof of our main result. We therefore split it into
two parts. In this part, we define a more restricted semantics which will pro-
vide an intermediate representation of applied pi calculus processes (Section 3).
These intermediate processes are a selected (but sufficient) subset of the original
processes. One may think of them as being processes in some kind of normal
form. We equip these intermediate processes with a labelled bisimulation that
coincides with the original one (Section 5).

3 Syntax and Semantics

3.1 Syntax

One has intermediate plain processes (denoted by P , Q, R), intermediate framed
processes (F , G, H), and intermediate extended processes (A, B, C).

P,Q,R := inter. plain process
0
P | Q
if M = N then P else Q
in(u, x).P
out(u,N).P

F,G,H := inter. framed process
P
{M/x}
F | G

A,B,C := inter. extended process
F
νn.A

Additionally, we require intermediate extended processes to be

• name and variable distinct (nv-distinct): bn(A) ∩ fn(A) = bv(A) ∩ fv (A) = ∅
and any name and variable is at most bound once; and

• applied, meaning that each variable in dom(A) occurs only once in A (the
occurrence in the substitution is the only one).

Intuitively, an intermediate process is applied if all active substitutions have
been applied. Intermediate extended processes are a kind of normal form for
extended processes. Because they are applied and nv-distinct, we do not need
restriction νx on variables x, and all νn for names n occur at the beginning of
the process (which is possible as our language does not have replication).

Example 3.1 The extended process out(c, x) | {M/x} is not applied, as x occurs
twice. The corresponding intermediate process would be out(c,M) | {M/x}.

As expected, an intermediate context is an intermediate extended process
with a hole and similarly an intermediate framed context is an intermediate
framed process with a hole. An intermediate (framed) evaluation context is a
(framed) context whose hole is not under a conditional, an input or an output.
We say that such a context C[] is a context w.r.t. an extended intermediate
process A if and only if C[A] is an extended intermediate process. For instance,
the context νn.(B |) would not be a context for any A such that n ∈ fn(A) ∪
bn(A) as νn.(B | A) would violate nv-distinctness.

11

As we do not allow α-conversion we explicitly run intermediate extended
processes in a naming environment.

Definition 3.2 (naming environment) A naming environment

N : N ∪ X → {n, f, b}

is a function which maps each name and variable to one of n, f, b (standing
for “new”, “free” and “bound” respectively), such that there are infinitely many
names and infinitely many variables that are mapped to each of n, f and b.
(More precisely, the sets N−1(n) ∩ X , N−1(n) ∩ N , N−1(f) ∩ X , N−1(f) ∩ N ,
N−1(b) ∩ X , and N−1(b) ∩ N are all infinite.)

Intuitively, N(u) = f if the name or variable u occurs free in A, and N(u) = b

if the name or variable u has been bound and will not be used again. N(u) = n

means that the name or variable is new and has not been used before, either
as free or bound. This discipline helps us avoid name and variable conflicts.
We use standard notation for function updating: if N(u) = t then the naming
environment N′ = N[u 7→ t′] is defined to be the same as N except that N′(u) =
t′; and N[U 7→ t′] is defined as N[u1 7→ t′, . . . , un 7→ t′] if U = {u1, . . . , un}. If
U is a set of names and variables then N(U) = {N(u) | u ∈ U} and we write
N(U) = t if N(U) ⊆ {t}.

Definition 3.3 (compatible) We say that a naming environment N is com-
patible with an nv-distinct process A if N(bn(A) ∪ bv(A)) = b and N(fn(A) ∪ fv (A)) = f.
A naming environment N is compatible with a label α if N(bn(α) ∪ bv(α)) = n

and N(fn(α) ∪ fv(α)) = f.

Requesting that N(bn(α)∪ bv (α)) = n may seem strange with respect to the
original semantics. However, the intermediate semantics, that we present in the
following subsection, should clarify this point.

We define an intermediate process to be a pair (A ; N) where A is an in-
termediate extended process and N a naming environment, compatible with A.
Moreover, (A ; N) is closed if A is closed. We denote by ψ(A) the substitution
obtained by taking the union of the active substitutions {M/x} occurring in A.
Note that φ(A) denotes the frame of the process including the name restrictions,
while ψ(A) only refers to the substitution.

Throughout the paper we always suppose that substitutions are cycle-free
and use the following notational conventions for substitution. Given substitu-
tions σ1 = {M1/x1

, . . . ,Mp /xp
} and σ2 = {N1/y1, . . . ,

Nq /yq
} we write σ1 ∪ σ2

for {M1/x1
, . . . ,Mp /xp

,N1 /y1 , . . . ,
Nq /yq

} and σ1σ2 for {M1σ2/x1
, . . . ,Mpσ2 /xp

}.
We define img(σ) to be the image of σ, e.g., img(σ1) = {M1, . . . ,Mp}. More-
over, we write σ⋆ to emphasize that we iterate the substitution until obtaining
idempotence. This is needed when dom(σ) ∩ vars(img(σ)) 6= ∅.

We now define the ↓ operator which transforms an nv-distinct extended
processes into an intermediate extended process.

12

Definition 3.4 (A↓) Given an nv-distinct extended process A, the intermediate
extended process A↓ is defined inductively as follows:

0↓ = 0
{M/x}↓ = {M/x}

in(u, x).P↓ = νñ.in(u, x).P ′

out(u,N).P↓ = νñ.out(u,N).P ′
(νn.A)↓ = νn.(A↓)

(νx.A)↓ = Ã

if M = N then P else Q↓ = νñ.νm̃.if M = N then P ′ else Q′

(A | B)↓ = νñ.νm̃.(A′ | B′)(ψ(A′) ∪ ψ(B′))⋆

where P↓ = νñ.P ′, Q↓ = νm̃.Q′, A↓ = νñ.A′, B↓ = νm̃.B′, and Ã is A↓ but
with the unique occurrence of {M/x} replaced by 0.

The transformation ↓ consists of:

1. applying active substitutions as much as possible and allows us to get rid of
restrictions on variables. This operation preserves structural equivalence
since the rules SUBST and ALIAS allows us to do this.

2. pushing the restrictions on names in front of the process. This opera-
tion does not preserve structural equivalence (see Example 3.5) but only
labelled bisimilarity (Lemma 3.6).

This operation is extended as expected to context. If C[] is an evaluation
context, then C[]↓ is the intermediate evaluation context obtained by applying
the above rules, with the additional rule ↓ = .

Example 3.5 Let A = νx.(in(c, y).νb1.out(a, b1).out(a, x) | {
f(b2)/x}). We

have that
A↓ = νb1.(in(c, y).out(a, b1).out(a, f(b2)) | 0

Lemma 3.6 Let A be an nv-distinct extended process. We have that A↓ ≈ A.

3.2 Semantics

Structural equivalence ≡i is the smallest equivalence relation on intermediate
processes such that:

Par-0i (A ; N) ≡i (A | 0 ; N)
Par-Ai (A | (B | C) ; N) ≡i ((A | B) | C ; N)
Par-Ci (A | B ; N) ≡i (B | A ; N)
New-Ci (νn.νm.A ; N) ≡i (νm.νn.A ; N)

and that is closed by application of intermediate evaluation context, i.e.

(A ; N) ≡i (B ; N)

(C[A] ; N[bn(C[0]) 7→ b]) ≡i (C[B] ; N[bn(C[0]) 7→ b])

Note that, in this intermediate semantics, we have removed several structural
equivalence rules such as Subst, Rewrite and we do not allow α-renaming. In
particular, Example 2.7 is not problematic anymore.

13

Internal reduction →i is the smallest relation on intermediate processes closed by
structural equivalence (≡i), by application of intermediate evaluation contexts
and such that:

Commi (out(a,M).P | in(a, x).Q ; N) →i (P | Q{M/x} ; N)
Theni (if M = N then P else Q ; N) →i (P ; N) where M =E N
Elsei (if M = N then P else Q ; N) →i (Q ; N)

for any ground terms M and N such that M 6=E N

Labelled transition
α
−→i. We also extend our intermediate semantics with the

following labelled transition relation.

Ini (in(a, x).P ; N)
in(a,M)
−−−−−→i (P{M/x} ; N)

where N(fn(M) ∪ fv (M)) = f

Out-Chi (out(a, c).P ; N)
out(a,c)
−−−−−→i (P ; N)

Out-Ti (out(a,M).P ; N)
νx.out(a,x)
−−−−−−−→i (P | {M/x},N[x 7→ f])

where x ∈ Xb and N(x) = n

Open-Chi
(A ; N)

out(a,c)
−−−−−→i (A′ ; N′) c 6= a, d ∈ Nch, N(d) = n

(νc.A,N[c 7→ b])
νd.out(a,d)
−−−−−−−→i (A′{d/c},N′[c 7→ b, d 7→ f])

Scopei
(A ; N)

α
−→i (A′,N′) n does not occur in α

(νn.A ; N[n 7→ b])
α
−→i (νn.A′,N′[n 7→ b])

Pari
(A ; N)

αψ(B)
−−−−→i (A′,N′)

(A | B ; N)
α
−→i (A′ | B,N′)

Structi
(A ; N) ≡i (B ; N)

α
−→i (B′,N′) ≡i (A′,N′)

(A ; N)
α
−→i (A′,N′)

One may note two particularities in this semantics. The Open-Chi rule
requires an “on-the-fly renaming” at the point that we reveal a bound name.
This will be needed in the bisimulation because we require both the left- and
right-hand processes to use the same label without allowing α-conversion. The
second unusual detail is the αψ(B) label in the Pari rule which is needed to
keep processes applied. Note that ψ(B) can only affect labels that are of the
form in(c,M) since for the other ones, the variables in dom(ψ(B)) do not occur
in the label α.

14

Example 3.7 Let A = νa.(in(c, x).P (x) | {a/y}) and B = νa.(P (a) | {a/y}).

We have that A
in(c,y)
−−−−→ B. Let N be a naming environment compatible with

A↓ and in(c, y). We have also that (A↓ ; N)
in(c,y)
−−−−→ (B↓ ; N). The derivation

witnessing this reduction uses the fact that the label in the Pari rule can be
instantiated along the derivation.

(in(c, x).P (x) ; N)
in(c,a)
−−−−→ (P (a) ; N)

(in(c, x).P (x) | {a/y} ; N)
in(c,y)
−−−−→ (P (a) | {a/y} ; N)

(νa.(in(c, x).P (x) | {a/y}) ; N[a 7→ b])
in(c,y)
−−−−→ (νa.(P (a) | {a/y}) ; N[a 7→ b])

In particular we note that if the first label had been in(c, y) the obtained process
would have been (P (y) ; N) and the Pari rule could not have been used because
P (y) | {a/y} would not have been an intermediate process (as it is not applied).

4 Soundness and Completeness

We now introduce the relation ≅ on intermediate processes. Intuitively, ≅

captures the structural equivalences that are “missing” in ≡i with respect to ≡.
We show completeness of the intermediate semantics up to ≅. Note that the
rule New-Ci is in the relation ≅ because of some tricky interactions between
the transformation ↓ and the relation ≡ (see Example 4.2 given below).

Definition 4.1 (≅) We define ≅ to be the smallest equivalence relation on in-
termediate processes closed under bijective renaming of bound names and vari-
ables and such that

New-Ni (νñ.νm.A ; N) ≅ (νñ.A ; N) if m 6∈ fn(A)
Rew-Ni (A{M/x} ; N) ≅ (A{N/x} ; N) if M =E N
New-Ci (νn.νm.A ; N) ≅ (νm.νn.A ; N)

Example 4.2 Consider the processes: A = out(c, n1).νn2.νn
′
2.out(c, 〈n2, n

′
2〉)

and C = νn′
2.νn2.out(c, n1).out(c, 〈n2, n

′
2〉). We have that

A↓ = νn2.νn
′
2.(out(c, n1).out(c, 〈n2, n

′
2〉) and A↓ ≡ C.

Note that there is no B such that A ≡ B and B↓ = C. Nevertheless,
because of the rule New-Ci there exists B′ (e.g. B′ = A) such that A ≡
B′ and (B′↓ ; N) ≅ (C ; N) for any compatible naming environment N. This
property is needed in the proof of Proposition 5.5.

Lemma 4.3 Let (A ; N) and (A′ ; N) be two intermediate processes such that
(A ; N) ≅ (A′ ; N). Then we have that A ≡ A′.

We now show that our intermediate semantics is sound with respect to the
original semantics: any structural equivalence and (labelled) reduction that
holds in the intermediate context also holds in the original semantics.

15

Proposition 4.4 (soundness) Let (Ai ; N) and (Bi ; N′) be two intermediate

processes such that (Ai ; N) ⊲⊳i (Bi ; N′) with ⊲⊳ ∈ {≡,→,
α
−→}. Then we have

that Ai ⊲⊳ Bi.

The proofs when ⊲⊳ ∈ {≡,→} are straightforward and are sketched in Ap-

pendix A. The proof for
α
−→i is more involved and detailed in Appendix A.

We also introduce a useful commutation lemma. As we show completeness
for one step of each of these relations up to ≅ the commutation lemmas will
allow us to lift the result to sequences of steps.

Lemma 4.5 (commutation) Let (A ; N), (A′ ; N) and (B ; N′) be three inter-

mediate processes such that (A′ ; N) ≅ (A ; N) ⊲⊳ (B ; N′) with ⊲⊳ ∈ {≡i,→i,
α
−→i}.

Then there exists (B′ ; N′) such that (A′ ; N) ⊲⊳ (B′ ; N′) ≅ (B ; N′).

Proof.(sketch) This result can be proved by considering proofs in “linear form”,
i.e., by applying the rules directly under the evaluation context, resulting into
a sequence of processes rather than a proof tree. Similarly, the proof of (A′ ;
N) ≅ (A ; N) can be written as a sequence of steps. Now, it is easy to show,
by case analysis on each pair of rules, that each time there is an application
of ≅ occurring immediately to the left of an application of ≡i, this pair of rule
applications can be commuted. �

Next we show completeness of the intermediate semantics: any structural
equivalence and (labelled) reduction that holds in the original semantics should
also hold for corresponding intermediate processes in the new semantics. As
discussed previously completeness seems difficult to achieve. We therefore show
completeness up to ≅.

Proposition 4.6 (completeness) Let A and B be two nv-distinct extended

processes such that A ⊲⊳ B with ⊲⊳ ∈ {≡,→,
α
−→}. Let N be a naming environ-

ment compatible with A↓ and also with α when ⊲⊳ =
α
−→. Let N′ be a naming

environment compatible with B↓ and such that:

• N′ = N[x 7→ f] when ⊲⊳ =
α
−→ and α is of the form νx.out(a, x);

• N′ = N[d 7→ f] when ⊲⊳ =
α
−→ and α is of the form νd.out(a, d);

• N′ = N otherwise.

Then there exists an intermediate process (Di ; N′) such that

• (A↓ ; N) ⊲⊳i (Di ; N′), and

• (Di ; N′) ≅ (B↓ ; N′).

Note that, when ⊲⊳ ∈ {≡,→}, we have that N′ = N. The proofs are done in
Appendix A.

From Propositions 4.4 and 4.6 and the commutation lemma stated above,
we derive the following corollaries. (Corollary 4.8 also requires Lemmas A.5 and
A.8 in the appendix.)

16

Corollary 4.7 (soundness of →∗
i and →∗

i

α
−→i→∗

i) Let (Ai ; N) and (Bi ; N′)
be two intermediate processes such that (Ai ; N)→∗

i (Bi ; N′) (resp. (Ai ; N)→∗
i

α
−→i→∗

i (Bi ; N′)). Then we have that Ai →∗ Bi (resp. Ai →∗ α
−→→∗ Bi).

Corollary 4.8 (completeness of →∗
i and →∗

i

α
−→i→∗

i) Let A and B be two

nv-distinct extended processes such that A →∗ B (resp. A→∗ α−→→∗ B) and N

be a naming environment compatible with A↓ (resp., and α). Let N′ be a naming
environment compatible with B↓ and such that:

• N′ = N[x 7→ f] in the case →∗
i

α
−→i→∗

i when α is of the form νx.out(a, x);

• N′ = N[d 7→ f] in the case →∗
i

α
−→i→

∗
i when α is of the form νd.out(a, d);

• N′ = N otherwise.

Then there exists an intermediate process (Di ; N′) such that (A↓ ; N)→∗
i (Di ;

N′) (resp. (A↓ ; N) −→∗
i

α
−→i−→∗

i (Di ; N′)) and (Di ; N′) ≅ (B↓ ; N′).

5 Intermediate Bisimulation

We now define the intermediate labelled bisimulation. The definition is similar
to the original one, but is stated with respect to our intermediate semantics.
Moreover, note that the side condition bn(α) ∩ fn(B) = ∅ has been removed
since the fact that both processes are running in the same naming environment
ensures this condition.

Definition 5.1 (Intermediate labelled bisimilarity (≈i)) Intermediate la-
belled bisimilarity is the largest symmetric relation R on closed intermediate
processes with same naming environment, such that (Ai,N) R (Bi ; N) implies

1. Ai ∼ Bi,

2. if (Ai ; N)→i (A′
i ; N), then (Bi ; N)→∗

i (B′
i ; N) and (A′

i ; N) R (B′
i ; N)

for some B′
i,

3. if (Ai ; N)
α
→i (A′

i ; N′) and fv (α) ⊆ dom(Ai), then (Bi ; N)→∗
i

α
→i→

∗
i (B′

i ; N′)
and (A′

i ; N′) R (B′
i ; N′) for some B′

i.

The following theorem states that the intermediate and the original bisimu-
lations coincide.

Theorem 5.2 Let A and B be two nv-distinct extended processes and N be a
naming environment compatible with A↓ and B↓. We have that

A ≈ B if and only if (A↓ ; N) ≈i (B↓ ; N)

Both directions of this result are proved separately by the following propositions.

17

Proposition 5.3 Let A and B be two nv-distinct extended processes. We have

A ≈ B implies (A↓ ; N) ≈i (B↓ ; N).

for any naming environment N compatible with A↓ and B↓.

Proof. To prove this result, first we define a new relation R. Next we will show
that R is an intermediate labelled bisimulation witnessing (A↓ ; N) ≈i (B↓ ; N).

(i) Definition of R.
We define R as follows: (Ai ; N) R (Bi ; N) if Ai ≈ Bi and N is a naming
environment compatible with Ai and Bi.

(ii) R is an intermediate bisimulation relation witnessing (A↓ ; N) ≈i (B↓ ; N).
First we have to show that (A↓ ; N) R (B↓ ; N). We have that A ≈ B and hence
A↓ ≈ B↓ (by Lemma 3.6) and N is a naming environment compatible with A↓
and B↓. Hence, by definition of R, we easily conclude.

Now, we have to show that R satisfies the three points of the definition
of intermediate labelled bisimilarity. Let (Ai ; N) and (Bi ; N) be two closed
intermediate processes such that (Ai ; N) R (Bi ; N). By definition of R, we
have that Ai ≈ Bi.
We have to show that:

1. Ai ∼ Bi. By hypothesis, we have that Ai ≈ Bi which implies Ai ∼ Bi.

2. If (Ai ; N)→i (A′
i ; N) then there exists (B′

i ; N) with (Bi ; N)→∗
i (B′

i ; N)
and (A′

i ; N) R (B′
i ; N).

By Proposition 4.4, we have that Ai → A′
i. Since Ai ≈ Bi and Ai → A′

i

there exists an extended process B′ such that Bi →
∗ B′ and A′

i ≈ B
′. In

the remainder, we assume w.l.o.g. that B′ is nv-distinct and compatible
with N. By Corollary 4.8, there exists an intermediate extended process
(D ; N) such that

• (Bi↓ ; N)→∗
i (D ; N), and

• (D ; N) ≅ (B′↓ ; N).

As Bi is an intermediate process we have that Bi↓ = Bi. Let B′
i = D.

It remains to show that (A′
i ; N) R (B′

i ; N). As A′
i ≈ B′, B′ ≈ B′↓ (by

Lemma 3.6), and B′
i ≡ B′↓ (by Lemma 4.3 and the fact that (B′

i ; N) =
(D ; N) ≅ (B′↓ ; N)) we have that A′

i ≈ B
′
i. By definition of R we deduce

that (A′
i ; N) R (B′

i ; N).

3. If (Ai ; N)
α
−→i (A′

i ; N′) with fv(α) ⊆ dom(Ai) then there exists (B′
i ; N′)

such that (Bi ; N)→∗
i

α
−→i→∗

i (B′
i ; N′) and (A′ ; N′) R′ (B′

i ; N′).

This case is similar to the previous one.

�

To show the converse direction, we need an additional lemma.

18

Lemma 5.4 Let (A ; N) and (B ; N) be two intermediate processes, and N′ a
naming environment compatible with A and B. Then:

1. (A ; N) ≈i (B ; N) implies (A ; N′) ≈i (B ; N′); and

2. (A ; N) ≅ (B ; N) implies (A ; N′) ≅ (B ; N′).

To see that the first part of the lemma holds it is sufficient to note that (A ;
N) ⊲⊳i (A′ ; N′) if and only if (Aρ ; Nρ) ⊲⊳i (A′ρ ; N′ρ) where ρ is a bijective

renaming of names and variables, ⊲⊳ ∈ {≡,→,
α
−→} and Nρ(u) = N(ρ−1(u))).

The second part is immediate.

Proposition 5.5 Let (Ai ; N) and (Bi ; N) be two intermediate processes. We
have that

(Ai ; N) ≈i (Bi ; N) implies Ai ≈ Bi

Proof. To prove this result, we first define a new relation R and then we will
show that R witnesses ≈.

(i) Definition of R.
A R B if there exist two intermediate processes (Â ; N) and (B̂ ; N), and two
nv-distinct extended processes Aα and Bα such that

• (Â ; N) ≈i (B̂ ; N),

• (Â ; N) ≅ (Aα↓ ; N) and (B̂ ; N) ≅ (Bα↓ ; N),

• Aα =α A and Bα =α B.

(ii) R witnesses ≈.
First we show that Ai R Bi. Let Â = Aα = Ai and B̂ = Bα = Bi. By definition
of R we easily conclude as (Ai ; N) ≈i (Bi ; N).

Now, we show that R satisfies the three points of the definition of ≈. Let A
and B be two closed intermediate extended processes such that A R B. By
definition of R, we know that there exist two intermediate processes (Â ; N)
and (B̂ ; N) such that

• (Â ; N) ≈i (B̂ ; N),

• (Â ; N) ≅ (Aα↓ ; N) and (B̂ ; N) ≅ (Bα↓ ; N), and

• Aα =α A and Bα =α B.

We have to show that:

1. A ∼ B. Since (Â ; N) ≈i (B̂ ; N), we have that Â ∼ B̂ by definition of ≈i.
As Aα =α A and Bα =α B, we have that Â ∼ A and B̂ ∼ B. We conclude
by transitivity of ∼.

19

2. If A → A′ for some extended process A′ then there exists B′ such that
B →∗ B′ and A′ R B′.
If A → A′ we also have that Aα → A′

α for some A′
α such that A′

α =α A
′

and A′
α compatible with N. By Proposition 4.6, there exists an extended

process (D ; N) such that

• (Aα↓ ; N)→i (D ; N), and

• (D ; N) ≅ (A′
α↓ ; N).

We have that (Â ; N) ≅ (Aα↓ ; N) →i (D ; N) ≅ (A′
α↓ ; N). By

Lemma 4.5, there exists (D′,N) such that

(Â ; N)→i (D′ ; N) ≅ (D ; N) ≅ (A′
α↓ ; N).

Since (Â ; N) ≈i (B̂ ; N) and (Â ; N) →i (D′ ; N), we have that there
exists (B′

i ; N) such that (B̂ ; N)→∗
i (B′

i ; N) and (D′ ; N) ≈i (B′
i ; N). By

Corollary 4.7, we have that B̂ →∗ B′
i. Thus, we deduce that B →∗ B′′

i ,
for some B′′

i such that (B′′
i ↓ ; N) ≅ (B′

i ; N). Let B′ = B′′
i , B′

α = B′,

B̂′ = B′
i and Â′ = D′. We have that B →∗ B′ and by definition of R, we

have that A′ R B′. Indeed, we have that:

• (Â′ ; N) ≈i (B̂′ ; N), i.e. (D′ ; N) ≈i (B′
i ; N),

• (Â′ ; N) ≅ (A′
α↓ ; N) and (B̂′ ; N) ≅ (B′

α↓ ; N), and

• A′
α =α A

′ and B′
α =α B

′.

3. If A
α
−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅ for some extended

process A′ then B →∗ α−→→∗ B′ and A′ R B′ for some process B′.

First, we can assume w.l.o.g. that (fn(α)∪bn(α))∩(bn(Aα)∪bn(Bα)) = ∅
and (fn(α) ∪ bn(α)) ∩ (bn(Â) ∪ bn(B̂)) = ∅ (since Aα, Bα Â, B̂ can be
chosen to make this true). For the same reason, we can assume that
bv (α) ∩ (bv (Aα) ∪ bv(Bα)) = ∅ and bv(α) ∩ (bv(Â) ∪ bv(B̂)) = ∅. Let

N̂ = N[fn(α) 7→ f][bn(α), bv (α) 7→ n]. Note that N̂ is now compatible with
Aα, Bα Â, B̂ and α. Let A′

α be an nv-distinct extended process such that

Aα
α
−→ A′

α and A′
α compatible with N̂′ where N̂′ is defined as follows:

N̂′ =







N̂[x 7→ f] when α is of the form νx.out(a, x);

N̂[d 7→ f] when α is of the form νd.out(a, d);

N̂ otherwise.

By Proposition 4.6, there exists an extended process (D ; N̂′) such that

• (Aα↓ ; N̂)
α
−→i (D ; N̂′), and

• (D ; N̂′) ≅ (A′
α↓ ; N̂′).

20

We have that (Â ; N) ≅ (Aα↓ ; N) and thus (Â ; N̂) ≅ (Aα↓ ; N̂)

(Lemma 5.4). Moreover, we have that (Aα↓ ; N̂)
α
−→i (D ; N̂′) ≅ (A′

α↓ ;

N̂′). By Lemma 4.5, there exists (D′, N̂′) such that

(Â ; N̂)
α
−→i (D′ ; N̂′) ≅ (D ; N̂′) ≅ (A′

α↓ ; N̂′).

Since (Â ; N) ≈i (B̂ ; N), we have also that (Â ; N̂) ≈i (B̂ ; N̂)

(Lemma 5.4). Moreover, we have that (Â ; N̂)
α
−→i (D′ ; N̂′), thus there ex-

ists (B′
i ; N̂′) such that (B̂ ; N̂)→∗

i

α
−→i→∗

i (B′
i ; N̂′) and (D′ ; N̂′) ≈i (B′

i ; N̂′).

By Corollary 4.7, we have that B̂ →∗ α−→→∗ B′
i. Thus, we deduce that

B →∗ α−→→∗ B′′
i for some B′′

i such that (B′′
i ↓ ; N̂′) ≅ (B′

i ; N̂′). Let

B′ = B′′
i , B′

α = B′, B̂′ = B′
i and Â′ = D′. We have that B →∗ α−→→∗ B′

and by definition of R, we have that A′ R B′. Indeed, we have that:

• (Â′ ; N̂′) ≈i (B̂′ ; N̂′), i.e. (D′ ; N̂′) ≈i (B′
i ; N̂′),

• (Â′ ; N̂′) ≅ (A′
α↓ ; N̂′) and (B̂′ ; N̂′) ≅ (B′

α↓ ; N̂′), and

• A′
α =α A

′ and B′
α =α B

′.

�

21

— PART II: Symbolic Calculus —

A symbolic process is an intermediate process together with a constraint
system. The aim of a symbolic semantics is to avoid the infinite branching due
to the inputs of the environment. This is achieved by keeping variables rather
than the input terms. The constraint system gives a finite representation of the
value that these variables are allowed to take.

6 Constraint systems

Definition 6.1 (constraint system) A constraint system C is a set of con-
straints where every constraint is of one of the following forms:

• “ ϕ
 x”, where ϕ = νũ.σ for some tuple of names and variables ũ and
some substitution σ, and x is a variable which does not appear under a
restriction of any frame nor in the domain of any frame;

• “ M = N”, where M and N are terms;

• “ M 6= N”, where M and N are terms;

• “ gd(M)” where M is a term;

The constraint ϕ
 x is useful for specifying the information ϕ held by the
environment when it supplies an input x. As we will see in the following sec-
tion, these variables will be taken from a special set of variables. The con-
straint gd(M) means that the term M is ground. We denote by Ded(C) the de-
ducibility constraints of C, i.e. {ϕ
 x | “ϕ
 x” ∈ C}. WhenDed(C) = {ϕ1
 x1, . . . , ϕℓ
 xℓ},
we define cv(C) = {x1, . . . , xℓ} to be the constraint variables of C. Moreover,
we write names(C) (resp. vars(C)) for the names (resp. variables) of C.

The constraint systems that we consider arise while executing symbolic pro-
cesses. We therefore restrict ourselves to well-formed constraint systems, cap-
turing the fact that the knowledge of the environment always increases along
the execution: we allow it to use more names and variables (less restrictions) or
give it access to more terms (larger substitution). The fact that the constraint
system is not arbitrary is useful when solving the constraints such as in [20].

Definition 6.2 (ordering on frames �) Let ϕ1 = νũ1.σ1 and ϕ2 = νũ2.σ2

be two frames. The frame ϕ1 is smaller than or equal to ϕ2, denoted by ϕ1 � ϕ2,
if ũ1 ⊇ ũ2, dom(σ1) ⊆ dom(σ2) and yσ1 = yσ2 for any y ∈ dom(σ1).

Definition 6.3 (well-formed constraint system) A constraint system C is
well-formed if Ded(C) can be ordered ϕ1
 x1, . . . , ϕℓ
 xℓ in such a way that:

1. (monotonicity) for every i such that 1 ≤ i < ℓ, we have ϕi � ϕi+1, and

2. (origination) for every i such that 1 ≤ i ≤ ℓ, we have

22

for all x ∈ vars(img(ϕi)) ∩ cv(C), there exists j < i such that x = xj .

Moreover, if “M 6= N” ∈ C then “gd(M)” ∈ C and “gd(N)” ∈ C.

In the remainder, when we consider a well-formed constraint system C and
we write, for Ded(C), the sequence ϕ1
 x1, . . . , ϕℓ
 xℓ, this implicitly means
that we consider the ordering given by the monotonicity condition.

We say that two well-formed constraint systems C and C′ have same basis
if Ded(C) = {ϕ1
 x1, . . . , ϕℓ
 xℓ} and Ded(C′) = {ϕ′

1
 x′1, . . . , ϕ
′
ℓ
 x′ℓ} are

such that xi = x′i and dom(ϕi) = dom(ϕ′
i) for 1 ≤ i ≤ ℓ.

We now define the solutions of a well-formed constraint system. Intuitively,
each solution defines an intermediate process which corresponds to a concrete
instance of the corresponding symbolic process.

Definition 6.4 (E-solution) Let C be a well-formed constraint system such
that Ded(C) = {ϕ1
 x1, . . . , ϕℓ
 xℓ} where each ϕi = νũi.σi for some ũi
and some substitution σi. An E-solution of C is a substitution θ whose domain
is cv(C) and such that

• vars(xiθ) ∩ cv (C) = ∅ and vars(xiθ) ∩ (dom(ϕℓ) r dom(ϕi)) = ∅;

• names(xiθ) ∩ ũi = ∅ and vars(xiθ) ∩ ũi = ∅;

• for every constraint “ M = N” ∈ C, we have M(θσℓ)
⋆ =E N(θσℓ)

⋆;

• for every constraint “ M 6= N” ∈ C, we have M(θσℓ)
⋆ 6=E N(θσℓ)

⋆;

• for every constraint “ gd(M)” ∈ C, the term M(θσℓ)
⋆ is ground.

We denote by SolE(C) the set of E-solutions of C. An E-solution θ of C is closed
if vars(xiθ) ⊆ dom(ϕi) for any i ∈ {1, . . . , ℓ}. We denote by SolclE (C) the set of
closed E-solutions of C.

The condition that vars(xiθ)∩cv (C) = ∅ states that the image of θ should not
use any variables that are in the domain of θ. The second condition, vars(xiθ)∩
(dom(ϕℓ)rdom(ϕi)) = ∅, ensures that the environment does not use information
that will only be revealed “in the future”; it can use only the entries of the
frame that have previously been added. The conditions names(xiθ) ∩ ũi = ∅
and vars(xiθ) ∩ ũi = ∅ dissallow the environment to use restricted names and
variables which are supposed to be secret; thus, they ensure that the value xiθ
can be deduced from public data. (These conditions are related to the definition
of deduction given in [1].) The meaning of the remaining conditions should be
clear.

Example 6.5 Let C = {νk.νs.{enc(s,k)/y1,
k /y2}
 x′ , gd(c) , x′ = s}. Let E

be the equational theory dec(enc(x, y), y) = x and θ = {dec(y1,y2)/x′}. We have
that θ is a closed E-solution of C. Note that θ′ = {dec(y1,k)/x′} is not an E-
solution of C. Indeed, names(x′θ′) ∩ {k, s} = {k} and thus is not empty.

23

We also define what it means to apply an evaluation context on a constraint
system. This is needed because we define the semantics in a compositional way.

Definition 6.6 (C[C]) Let C = νñ.(| D) be an intermediate evaluation con-
text and e be a constraint. We have that

• C[e] = e when e is a constraint of the form M = N , M 6= N or gd(M);

• C[νṽ.σ
 x] = νñ.νṽ.(σ ∪ ψ(D))
 x otherwise.

Similarly, for a variable y ∈ X

• νy.e = e when e is a constraint of the form M = N , M 6= N or gd(M);

• νy.e = νy, ṽ.σ
 x when e = νṽ.σ
 x.

Given a constraint system C, we have that C[C] = {C[e] | e ∈ C} and νy.C =
{νy.e | e ∈ C}.

7 Syntax and Semantics

7.1 Syntax

We first need to extend naming environments used in the intermediate semantics
to the symbolic setting. For this, we introduce an infinite set Y of variables, to
be used as constraint variables, disjoint from the set X . We also distinghuish
two disjoint subsets: Yb for variables of base type and Ych for those of channel
type. The functions vars and fv are updated to also return variables from Y.

Definition 7.1 (Symbolic naming environment) A symbolic naming en-
vironment Ns : N ∪ X ∪ Y → {n, f, b, c} is a function which maps each name
and variable in N ∪ X to one of n, f and b and each variable in Y to one of n

or c. It extends naming environments with an infinite set Y of variables that can
be mapped to c (which stands for “constraint”) or n. As before, we require that
there are infinitely many names and infinitely many variables that are mapped
to each of n, f and b.

We say that a symbolic naming environment Ns is compatible with an in-
termediate extended process A and a constraint system C if

– Ns(fn(A)) = f

– Ns(fv (A)) ⊆ {f, c}
– Ns(bn(A) ∪ bv(A)) = b

– Ns(y) = c iff y ∈ cv (C)
– Ns(names(C)) ⊆ {f, b}
– Ns(vars(C)) ⊆ {f, c, b}

Intuitively, Ns(y) = c means that the variable y is a constraint variable (i.e.,
an input from the environment subject to constraints in C).

We are now ready to precisely define a symbolic process.

Definition 7.2 (Symbolic process) A symbolic process is a triple (A ; C ;
Ns) where A is an intermediate extended process, C is a constraint system and Ns
is a symbolic naming environment. We say that (A ; C ; Ns) is well-formed if

24

• Ns is compatible with A and C;

• If Ded(C) = {ϕ1
 x1, . . . , ϕℓ
 xℓ} 6= ∅ then φ(A) � ϕℓ and bv (ϕ1) ⊆
dom(A);

• for all M,N such that M = N , M 6= N or gd(M) is in C we have that
vars(M,N) ∩ dom(A) = ∅.

(A ; C ; Ns) is said to be closed if fv(A) ⊆ dom(A) ∪ cv(C).

Given a well-formed symbolic process (A ; C ; Ns) we define by SolE(C ; Ns) the
set of solutions of C which are compatible with Ns, i.e.

SolE(C,Ns) = {θ | θ ∈ SolE(C),Ns(names(img(θ)) ∪ vars(img(θ))) = f}.

We denote by SolclE (C ; Ns) the subset of SolE(C,Ns) containing closed E-
solutions of C.

Each of these solutions θ defines a corresponding (closed) intermediate pro-
cess which we call the θ-concretization.

Definition 7.3 (θ-concretization) Let (As ; C ; Ns) be a well-formed sym-
bolic process. Let θ ∈ SolE(C,Ns). We say that an intermediate process (A ; N)
is the θ-concretization of (As ; C ; Ns) if A = As(θσ)⋆ where σ is the maximal
frame of C and N = Ns|N∪X .

Example 7.4 Let As = νb.(out(c, x) | {b/y}), C = {νa.νb.{b/y}
 x, x 6=
c, gd(x)} and Ns be a naming environment compatible with As and C such that
Ns(d) = f. Let θ1 = {d/x}, θ2 = {y/x} and N = Ns|N∪X . We have that θ1, θ2 ∈
SolclE (C,Ns). Hence (νb.(out(c, d) | {b/y}) ; N) (resp. (νb.(out(c, b) | {b/y}) ; N))
is the θ1 (resp. θ2) concretization of (As ; C ; Ns). However, νb.(out(c, a) |
{b/y}) is not a concretization of (As ; C ; Ns) since no θ ∈ SolclE (C,Ns) can have
a in its image.

7.2 Symbolic semantics

Symbolic structural equivalence (≡s) is the smallest equivalence relation on well-
formed symbolic processes such that:

Par-0s (A ; C ; Ns) ≡s (A | 0 ; C ; Ns)
Par-As (A | (B | D) ; C ; Ns) ≡s ((A | B) | D ; C ; Ns)
Par-Cs (A | B ; C ; Ns) ≡s (B | A ; C ; Ns)
New-Cs (νn.νm.A ; C ; Ns) ≡s (νm.νn.A ; C ; Ns)

(A ; CA ; Ns) ≡s (B ; CB ; Ns)

(C[A] ; C[CA] ; Ns[bn(C[0]) 7→ b]) ≡s (C[B] ; C[CB] ; Ns[bn(C[0]) 7→ b])

Symbolic internal reduction →s is the smallest relation on well-formed symbolic
processes such that:

25

Comms (out(u,M).P | in(v, x).Q ; C ; Ns)→s

(P | Q{M/x} ; C ∪ {u = v , gd(u) , gd(v)} ; Ns)
where u, v ∈ Nch ∪ (cv (C) ∩ Ych).

Thens (if M = N then P else Q ; C ; Ns)→s (P ; C ∪ {M = N} ; Ns)

Elses (if M = N then P else Q ; C ; Ns)→s

(Q ; C ∪ {M 6= N ; gd(M) ; gd(N)} ; Ns)

(A ; CA ; Ns)→s (B ; CB ; Ns)

(C[A] ; C[CA] ; Ns[bn(C[0]) 7→ b])→s (C[B] ; C[CB] ; Ns[bn(C[0]) 7→ b])

(A ; CA ; Ns) ≡s (B ; CB ; Ns) −→s (B′ ; C′B ; Ns) ≡s (B′ ; C′B ; Ns)

(A ; CA ; Ns) −→s (A′ ; C′A ; Ns)

In addition to the rules for symbolic structural equivalence and internal reduc-
tion, we adopt the following rules:

Ins (in(u, x).P ; C ; Ns)
in(u,y)
−−−−→s (P{y/x} ; C ∪ {0
 y, gd(u)} ; Ns[y 7→ c])
where u ∈ Nch ∪ (Ych ∩ cv(C)), y ∈ Y, Ns(y) = n.

Out-Chs (out(u, v).P ; C ; Ns)
out(u,v)
−−−−−→s (P ; C ∪ {gd(u), gd(v)} ; Ns)

where u, v ∈ Nch ∪ (Ych ∩ cv(C)).
Out-Ts

(out(u,M).P ; C ; Ns)
νx.out(u,x)
−−−−−−−→s (P | {M/x} ; νx.C ∪ {gd(u)} ; Ns[x 7→ f])

where x ∈ Xb, Ns(x) = n.

Open-Chs

(A ; C ; Ns)
out(u,c)
−−−−−→s (A′ ; C′ ; N′

s) u 6= c, d ∈ Nch, Ns(d) = n

(νc.A ; νc.C ; Ns[c 7→ b])
νd.out(u,d)
−−−−−−−→s (A′{d/c} ; νd.(C′{d/c}) ; N′

s[c 7→ b, d 7→ f])

Scopes
(A ; C ; Ns)

α
−→s (A′ ; C′ ; N′

s) n does not occur in α

(νn.A ; νn.C ; Ns[n 7→ b])
α
−→s (νn.A′ ; νn.C′ ; Ns[n 7→ b])

Pars
(A ; C ; Ns)

α
−→s (A′ ; C′ ; N′

s)

(A | B ; C | ψ(B) ; Ns)
α
−→s (A′ | B ; C′ | ψ(B) ; N′

s)

Structs
(A ; CA ; Ns) ≡s (B ; CB ; Ns)

α
−→s (B′ ; C′B ; N′

s) ≡s (B′ ; C′B ; N′
s)

(A ; CA ; Ns)
α
−→s (A′ ; C′A ; N′

s)

For reasons similar to those cited for Open-Chi, the rules Ins and Open-

Chs require on-the-fly renaming. When a transition is executed under a context
(by the rules Scopes and Pars) the constraint system must also be put in the
context (according to Definition 6.6). In Pars we avoid the substitution ψ(B)

26

which appears on a label in Pari since here we always have that the variables
in dom(ψ(B)) do not occur in the label α. In the rule Open-Chs, the restriction
νd.(C′{d/c}) is needed to ensure that the name d is not used to instantiate the
previous inputs: those that are done before the disclosure of this name.

Example 7.5 To illustrate our symbolic semantics, consider the process (A ; ∅ ; Ns)
where A = νk.νs.(in(c, x).if x = s then out(c, ok) | {enc(s,k)/y1} | {

k/y2}) and Ns
is a symbolic environment compatible with A. Let x′ ∈ Yb be a variable such
that Ns(x

′) = n.

(A ; ∅ ; Ns)
in(c,x′)
−−−−−→s (A′ ; {νk.νs.{enc(s,k)/y1,

k /y2}
 x′ , gd(c)} ; Ns[x
′ 7→ c])

−−→s (νk.νs.(out(c, ok) | {enc(s,k)/y1} | {
k/y2}) ; C ; Ns[x

′ 7→ c])

where A′ = νk.νs.(if x′ = s then out(c, ok) | {enc(s,k)/y1} | {
k/y2}) and C is the

system
{νk.νs.{enc(s,k)/y1,

k /y2}
 x′ , gd(c) , x′ = s}

Let θ = {dec(y1,y2)/x′}. We have θ ∈ SolclE (C ; Ns[x
′ 7→ c]) (see Example 6.5)

and

(A ; N)
in(c,x′θ)
−−−−−→i→i (A′θ′ ; N)

where N = Ns|N∪X .

8 Soundness and Completeness

We now show soundness of ≡s,→s and
α
−→s with respect to their counterparts in

the intermediate semantics: whenever one of these relations holds between two
symbolic processes, the corresponding relation in the intermediate semantics
holds for each θ-concretization. The proofs can be found in Appendix B.1.

Proposition 8.1 (soundness of ≡s and →s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns)
be two well-formed symbolic processes such that (As ; CA ; Ns) ⊲⊳s (Bs ; CB ; Ns)
with ⊲⊳ ∈ {≡,→}. Let θ ∈ SolE(CB ; Ns). We have that θ ∈ SolE(CA ; Ns)
and (A ; N) ⊲⊳i (B ; N) where (A ; N) (resp. (B ; N)) is the θ-concretization of
(As ; CA ; Ns) (resp. (Bs ; CB ; Ns)).

Proposition 8.2 (soundness of
α
−→s) Let (As ; CA ; Ns) and (Bs ; CB ; N′

s)

be two well-formed symbolic processes such that (As ; CA ; Ns)
αs−→s (Bs ; CB ;

N′
s). Let θB ∈ SolE(CB ; N′

s) and θA = θB|cv(CA). We have that θA ∈ SolE(CA ;

Ns) and (A ; N)
αsθB−−−→i (B ; N′), where (A ; N) and (B ; N′) are respectively the

θA-concretization and the θB-concretization of (As ; CA ; Ns) and (Bs ; CB ; N′
s).

We also show completeness of the symbolic semantics with respect to the
intermediate one: each time a θ-concretization of a symbolic process is struc-
turally equivalent, respectively reduces, to another intermediate process, the

27

symbolic process too is structurally equivalent, respectively reduces, to a corre-
sponding symbolic process. The proofs of these two following propositions can
be found in Appendix B.2.

Proposition 8.3 (completeness of ≡s and →s) Let (As ; CA ; Ns) be a
well-formed symbolic process and θ ∈ SolE(CA ; Ns). Let (A ; N) be the θ-
concretization of (As ; CA ; Ns) and (A′,N) be an intermediate process such that
(A ; N) ⊲⊳i (A′ ; N) with ⊲⊳ ∈ {≡,→}. Then there exists a well-formed symbolic
process (A′

s ; C′A ; Ns) such that:

1. (As ; CA ; Ns) ⊲⊳s (A′
s ; C′A ; Ns),

2. θ ∈ SolE(C′A ; Ns),

3. (A′ ; N) is the θ-concretization of (A′
s ; C′A ; Ns).

Proposition 8.4 (completeness of
α
−→s) Let (As ; CA ; Ns) be a well-formed

symbolic process and θA ∈ SolE(CA ; Ns). Let (A ; N) be the θA-concretization

of (As ; CA ; Ns) and (A′ ; N′) be an intermediate process such that (A ; N)
α
−→i

(A′ ; N′). Then there exists a well-formed symbolic process (A′
s ; C′A ; N′

s) and a
substitution θ′A such that:

1. (As ; CA ; Ns)
αs−→s (A′

s ; C′A ; N′
s),

2. θ′A ∈ SolE(C′A ; N′
s) and θ′A|cv(CA) = θA,

3. (A′ ; N′) is the θ′A-concretization of (A′
s ; C′A ; N′

s), and

4. αsθ
′
A = α.

From the propositions stated above, we easily derive the following corollaries.

Corollary 8.5 (soundness of →∗
s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns) be

two well-formed symbolic processes such that (As ; CA ; Ns) →∗
s (Bs ; CB ; Ns).

Let θ ∈ SolE(CB ; Ns). We have that θ ∈ SolE(CA ; Ns) and (A ; N)→∗
i (B ; N)

where (A ; N) (resp. (B ; N)) is the θ-concretization of (As ; CA ; Ns) (resp.
(Bs ; CB ; Ns)).

Corollary 8.6 (soundness of →∗
s

α
−→s→∗

s) Let (As ; CA ; Ns) and (Bs ; CB ; N′
s)

be two well-formed symbolic processes such that (As ; CA ; Ns) →∗
s

αs−→s→∗
s

(Bs ; CB ; N′
s). Let θB ∈ SolE(CB ; N′

s) and θA = θB|cv(CA). We have that

θA ∈ SolE(CA ; Ns) and (A ; N) →∗
i

αsθB−−−→i→∗
i (B ; N′), where (A ; N)

and (B ; N′) are respectively the θA-concretization and the θB-concretization
of (As ; CA ; Ns) and (Bs ; CB ; N′

s).

28

9 Symbolic Equivalences

In this section, we define our notion of symbolic static equivalence and our notion
of symbolic bisimulation. We also show the soundness of these equivalences
w.r.t. their intermediate counterparts. We also show in Section 10 that our
symbolic bisimulation is not complete.

We define symbolic static equivalence using an encoding similar to the one
in [5]. The tests used to distinguish two frames in the definition of static equiv-
alence are encoded by means of two additional deduction constraints on fresh
variables x, y and by the equation x = y.

Definition 9.1 (symbolic static equivalence) We say that two closed well-
formed symbolic processes (As ; CA ; Ns) and (Bs ; CB ; Ns) are symbolically
statically equivalent, written (As ; CA ; Ns) ∼s (Bs ; CB ; Ns) if for some
variables x, y ∈ Yb, the constraint systems C′A, C′B have the same basis and
SolclE (C′A ; N′

s) = SolclE (C′B ; N′
s) where

• Ns({x, y}) = n,

• N′
s = Ns[x, y 7→ c],

• C′A = CA ∪ {φ(As)
 x , φ(As)
 y , x = y}, and

• C′B = CB ∪ {φ(Bs)
 x , φ(Bs)
 y , x = y}.

The following proposition states the correctness of the symbolic static equiv-
alence with respect to the concrete one.

Proposition 9.2 (soundness of symbolic static equivalence) Let (As ; CA ; Ns)
and (Bs ; CB ; Ns) be two closed and well-formed symbolic processes such that
(As ; CA ; Ns) ∼s (Bs ; CB ; Ns). Then we have that:

1. SolclE (CA ; Ns) = SolclE (CB ; Ns), and

2. for all θ ∈ SolclE (CA ; Ns) we have that φ(As(θσA)⋆) ∼ φ(Bs(θσB)⋆), where
σA (resp. σB) is the substitution corresponding to the maximal frame of
CA (resp. CB).

Proof.

1. We show one direction, i.e., SolclE (CA ; Ns) ⊆ SolclE (CB ; Ns). The other
one can be proved in a similar way. Let θ ∈ SolclE (CA ; Ns). Since (As ;
CA ; Ns) ∼s (Bs ; CB ; Ns), we know that C′A, C′B have same basis and
SolclE (C′A ; N′

s) = SolclE (C′B ; N′
s) where

• x, y ∈ Yb and Ns({x, y}) = n,

• N′
s = Ns[x, y 7→ c],

• C′A = CA ∪ {φ(As)
 x , φ(As)
 y , x = y}, and

29

• C′B = CB ∪ {φ(Bs)
 x , φ(Bs)
 y , x = y}.

Let ρ = {x 7→ a, y 7→ a} for some name a such that Ns(a) = f and that does
not occur in As, CA, Bs, CB. It is easy to see that θ ∪ ρ ∈ SolclE (C′A ; N′

s).
Since SolclE (C′A ; N′

s) = SolclE (C′B ; N′
s), we deduce that θ ∪ ρ ∈ SolclE (C′B ;

N′
s). It remains to check that θ ∈ SolclE (CB ; Ns).

Let φ(Bs) = νñ′
B.σ

′
B . By hypothesis, we know that the idempotent

substitution σ obtained by iterating (θ ∪ ρ)σ′
B satisfies the constraints

in C′B. Let νñA.σA be the maximal frame in CA and νñB.σB be the
maximal frame in CB. Since CA and CB have same basis, we have that
dom(σA) = dom(σB). Moreover, since θ ∈ SolclE (CA ; Ns), we know that
vars(img(θ)) ⊆ dom(σA) = dom(σB). Since σ = ((θ ∪ ρ)σ′

B)⋆, we deduce
that σ = ((θ ∪ ρ)σB)⋆, and actually σ = (θσB)⋆ ∪ ρ. This means that
θ ∈ SolE(CB ; Ns) since x and y do not appear in CB.

2. Let θ ∈ SolclE (CA ; Ns). Let σA be the substitution corresponding to
the maximal frame of CA. Let A = As(θσA)⋆. Note that A is a closed
intermediate extended process and φ(A) is a closed frame. Thanks to
the previous point, we also have that θ ∈ SolclE (CB ; Ns). Let σB be
the substitution corresponding to the maximal frame of CB. Let B =
Bs(θσB)⋆. We have that B is a closed intermediate extended process
and φ(B) is a closed frame. Assume that φ(A) 6∼ φ(B). Since we have
dom(φ(A)) = dom(φ(B)), this means that there exist two terms M and
N such that

• fv (M,N) ⊆ dom(φ(A)) = dom(φ(As)),

• fn(M,N) ∩ (bn(A) ∪ bn(B)) = ∅, and

• (Mσ′
A)(θσA)⋆ =E (Nσ′

A)(θσA)⋆ and (Mσ′
B)(θσB)⋆ 6=E (Nσ′

B)(θσB)⋆

(or vice-versa), where φ(As) = νñ′
A.σ

′
A and φ(Bs) = νñ′

B.σ
′
B .

Hence, we have that N′
s(fv (M,N)) = f and we can also assume w.l.o.g.

that N′
s(fn(M,N)) = f. Now, let ρ = {x 7→ M, y 7→ N}. First note that

θ∪ρ is closed w.r.t. C′A and C′B. It remains to show that θ∪ρ ∈ SolE(C′A ;
N′
s) whereas θ ∪ ρ 6∈ SolE(C′B ; N′

s) obtaining in this way a contradiction.

• θ ∪ ρ ∈ SolE(C′A ; N′
s).

We want to show that ((θ∪ρ)σ′
A)⋆ satisfies the constraints in C′A. We

have that ((θ ∪ ρ)σ′
A)⋆ = (θσA)⋆ ∪ (ρσ′

A)(θσA)⋆. By hypothesis, we
know that (θσA)⋆ satisfies the constraints in CA. Hence, we conclude
for the constraint in CA. We have also that x((θ ∪ ρ)σ′

A)⋆ =E y((θ ∪
ρ)σ′

A)⋆, since we know that (Mσ′
A)(θσA)⋆ =E (Nσ′

A)(θσA)⋆.

• θ ∪ ρ 6∈ SolE(C′B ; N′
s).

We show that ((θ ∪ ρ)σ′
B)⋆ does not satisfy the constraint x = y.

We have that x((θ ∪ ρ)σ′
B)⋆ = (Mσ′

B)(θσB))⋆ and y((θ ∪ ρ)σ′
B)⋆ =

(Nσ′
B)(θσB)⋆. We know that (Mσ′

B)(θσB)⋆) 6=E (Nσ′
B)(θσB)⋆. This

allows us to conclude.

30

�

Although we do not need completeness of symbolic static equivalence for our
result, we may note that it follows from Baudet’s result [5]. By completeness we
mean that A ∼ B implies that (A ; ∅ ; Ns) ∼s (B ; ∅ ; Ns) for any compatible
naming environment Ns.
We now define symbolic labelled bisimulation using our symbolic semantics.

Definition 9.3 (Symbolic labelled bisimilarity (≈s)) Symbolic labelled bisim-
ilarity is the largest symmetric relation R on closed well-formed symbolic pro-
cesses with same naming environment, such that (As ; CA ; Ns) R (Bs ; CB ; Ns)
implies

1. (As ; CA ; Ns) ∼s (Bs ; CB ; Ns)

2. if (As ; CA ; Ns) →s (A′
s ; C′A ; Ns) with SolclE (C′A ; Ns) 6= ∅, then there

exists a symbolic process (B′
s ; C′B ; Ns) such that

• (Bs ; CB ; Ns)→∗
s (B′

s ; C′B ; Ns), and

• (A′
s ; C′A ; Ns) R (B′

s ; C′B ; Ns);

3. if (As ; CA ; Ns)
αs→s (A′

s ; C′A ; N′
s) with SolclE (C′A ; N′

s) 6= ∅, then there
exists a symbolic process (B′

s ; C′B ; N′
s) such that

• (Bs ; CB ; Ns)→∗
s

αs−→s→∗
s (B′

s ; C′B ; N′
s), and

• (A′
s ; C′A ; N′

s) R (B′
s ; C′B ; N′

s).

The side condition SolclE (C′A ; N′
s) 6= ∅ ensures that we only consider symbolic

executions that correspond to at least one concrete execution. The following
theorem states the soundness of the symbolic bisimulation with respect to the
intermediate one.

Theorem 9.4 (soundness of symbolic labelled bisimilarity) Let (A ; N)
and (B ; N) be two intermediate processes. Let Ns be a symbolic naming envi-
ronment such that Ns|N∪X = N and Ns(y) = n for all y ∈ Y. We have that

(A ; ∅ ; Ns) ≈s (B ; ∅ ; Ns)⇒ (A ; N) ≈i (B ; N)

Proof. To prove this result, first we define a new relation R′ and then we will
show thatR′ is an intermediate labelled bisimulation witnessing (A ; N) ≈i (B ; N).
Let R be the relation witnessing (A ; ∅ ; Ns) ≈s (B ; ∅ ; Ns).

(i) Definition of R′.
(A ; N) R′ (B ; N) if there exists two closed well-formed symbolic processes (As ; CA ; Ns)
and (Bs ; CB ; Ns) such that

• (As ; CA ; Ns) R (Bs ; CB ; Ns) with N = Ns|N∪X , and

• there exists θ ∈ SolclE (CA ; Ns) such that As(θσA)⋆ = A and Bs(θσB)⋆ = B
where σA (resp. σB) is the maximal frame of CA (resp. CB).

31

(ii) R′ is an intermediate bisimulation relation witnessing (A ; N) ≈i (B ; N).
First we have to show that (A ; N) R′ (B ; N). To do this, it is sufficient to see
that the two well-formed symbolic processes (A ; ∅ ; Ns) and (B ; ∅ ; Ns) satisfy
the required conditions.

Now, we have to show that R′ satisfies the three points of the definition
of intermediate labelled bisimilarity. Let (A ; N) and (B ; N) be two closed
intermediate processes such that (A ; N) R′ (B ; N). By definition of R′, we
know that there exists two closed well-formed symbolic processes (As ; CA ; Ns)
and (Bs ; CB ; Ns) such that

• (As ; CA ; Ns) R (Bs ; CB ; Ns), with N = Ns|N∪X , and

• there exists θ ∈ SolclE (CA ; Ns) such thatAs(θσA)⋆ = A andBs(θσB)⋆ = B.

We have to show that:

1. φ(A) ∼ φ(B).
Thanks to Proposition 9.2, we deduce that

• SolclE (CA ; Ns) = SolclE (CB ; Ns), and

• for all θ′ ∈ SolclE (CA ; Ns) we have φ(As(θ
′σA)⋆) ∼ φ(Bs(θ

′σB)⋆).

Since θ ∈ SolclE (CA ; Ns) we deduce that φ(As(θσA)⋆) ∼ φ(Bs(θσB)⋆), i.e
φ(A) ∼ φ(B).

2. If (A ; N)→i (A′ ; N), then there exists (B′ ; N) such that (B ; N)→∗
i (B′ ; N)

and (A′ ; N) R′ (B′ ; N).
By definition of R′, we know that (As ; CA ; Ns) is a closed well-formed
symbolic process such that As(θσA)⋆ = A and θ ∈ SolclE (CA ; Ns). Hence,
thanks to Proposition 8.3, we know that there exists a well-formed sym-
bolic process (A′

s ; C′A ; Ns) such that

• (As ; CA ; Ns)→s (A′
s ; C′A ; Ns),

• θ ∈ SolE(C′A ; Ns), and

• A′
s(θσ

′
A)⋆ = A′.

We have that (As ; CA ; Ns) R (Bs ; CB ; Ns) and (As ; CA ; Ns)→s (A′
s ; C′A ; Ns).

Moreover θ ∈ SolE(C′A ; Ns), and actually θ ∈ SolclE (C′A ; Ns), thus we know
that SolclE (C′A ; Ns) 6= ∅. Hence, there exists a closed well-formed symbolic
process (B′

s ; C′B ; Ns) such that

• (Bs ; CB ; Ns)→∗
s (B′

s ; C′B ; Ns), and

• (A′
s ; C′A ; Ns) R (B′

s ; C′B ; Ns).

Since (A′
s ; C′A ; Ns) R (B′

s ; C′B ; Ns), we deduce that SolclE (C′A ; Ns) = SolclE (C′B ; Ns)
by using Proposition 9.2. We have that θ ∈ SolclE (C′A ; Ns) and hence,
we deduce that θ ∈ SolclE (C′B ; Ns). Now, by Corollary 8.5, we de-
duce that θ ∈ SolE(CB ; Ns) and (Bs(θσB)⋆ ; N)→∗ (B′

s(θσ
′
B)⋆ ; N). Let

32

B′ = B′
s(θσ

′
B)⋆. As (A′

s ; C′A ; Ns) and (B′
s ; C′B ; Ns) are two closed well-

formed symbolic processes such that (A′
s ; C′A ; Ns) R (B′

s ; C′B ; Ns) and
A′
s(θσ

′
A)⋆ = A′ and B′

s(θσ
′
B)⋆ = B′, we have that (A′ ; N) R′ (B′ ; N).

3. If (A ; N)
α
−→i (A′ ; N′) with fv(α) ⊆ dom(A) then (B ; N)→∗

i

α
−→i→∗

i (B′ ; N′)
and (A′ ; N′) R′ (B′ ; N′) for some B′.

By definition of R′, we know that (As ; CA ; Ns) is a closed well-formed
symbolic process such that As(θσA)⋆ = A and θ ∈ SolclE (CA ; Ns). Hence,
thanks to Proposition 8.4, we know that there exist a well-formed symbolic
process (A′

s ; C′A ; N′
s), a substitution θ′ and a label αs such that

• (As ; CA ; Ns)
αs−→s (A′

s ; C′A ; N′
s) and N′ = N′

s|N∪X ,

• θ′ ∈ SolE(C′A ; N′
s) and θ′|

cv(CA) = θ,

• A′
s(θ

′σ′
A)⋆ = A′ where σ′

A is the substitution corresponding to the
maximal frame in C′A, and

• αsθ′ = α.

Actually, we have that θ′ ∈ SolclE (C′A ; N′
s), i.e. θ′ is a closed solution.

This is clear when the label α is not an input. In the case of an input,
αs is of the form in(c, y) and we conclude by relying on the fact that
vars(yθ′) = fv (α) ⊆ dom(A).

We have that (As ; CA ; Ns) R (Bs ; CB ; Ns) and (As ; CA ; Ns)
α
−→s (A′

s ; C′A ; N′
s).

Since θ′ ∈ SolclE (C′A ; N′
s), we know that SolclE (C′A ; N′

s) 6= ∅. Hence, there
exists a closed well-formed symbolic process (B′

s ; C′B ; N′
s) such that

• (Bs ; CB ; Ns)→∗
s

αs−→s→∗
s (B′

s ; C′B ; N′
s), and

• (A′
s ; C′A ; N′

s) R (B′
s ; C′B ; N′

s).

Since (A′
s ; C′A ; N′

s) R (B′
s ; C′B ; N′

s), thanks to Proposition 9.2, we have
that SolclE (C′A ; N′

s) = SolclE (C′B ; N′
s). We have that θ′ ∈ SolclE (C′A ; N′

s)
and hence, we deduce that θ′ ∈ SolclE (C′B ; N′

s). Now, by Corollary 8.6, we
deduce that θ ∈ SolE(CB ; Ns) and (Bs(θσB)⋆ ; N)→∗ (B′

s(θ
′σ′
B)⋆ ; N).

As (A′
s ; C′A ; N′

s) and (B′
s ; C′B ; N′

s) are two closed well-formed symbolic
processes such that (A′

s ; C′A ; N′
s) R (B′

s ; C′B ; N′
s) and A′

s(θ
′σ′
A)⋆ = A′

and B′
s(θ

′σ′
B)⋆ = B′, we have that (A′ ; N) R′ (B′ ; N). This allows us to

conclude.

�

33

PART III

— Soundness of Symbolic Bisimulation —

We now put the results of the previous section together (Theorem 5.2 and
Theorem 9.4) to prove our main result.

Theorem 9.5 (Soundness of symbolic bisimulation) Let A and B be two
closed, nv-distinct extended processes. For any symbolic naming environment
Ns compatible with A↓, B↓ and the empty constraint system we have that

(A↓ ; ∅ ; Ns) ≈s (B↓ ; ∅ ; Ns) implies A ≈ B

Note that limiting the theorem to nv-distinct processes is not an onerous
restriction. If we want to prove that A ≈ B, we can construct by α-conversion
two nv-distinct processes A′, B′ such that A′ ≡ A and B′ ≡ B. Showing A′ ≈ B′

implies that A ≈ B, since ≈ is closed under structural equivalence.

10 Discussion

Our techniques suffer from the same sources of incompleteness as the ones de-
scribed for the spi calculus in [10]. In a symbolic bisimulation the instantiation
of input variables is postponed until the point at which they are actually used,
leading to a finer relation. We illustrate this point on an example, similar to
one given in [10].

Example 10.1 Consider the two following processes:

P1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | if x = a then in(c1, z).out(c2, a))
Q1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | in(c1, z).if x = a then out(c2, a))

We have that P1 ≈ Q1 whereas (P1 ; ∅ ; Ns) 6≈s (Q1 ; ∅ ; Ns) for any
compatible naming environment Ns. To see the latter inequivalence, observe that

(Q1 ; ∅ ; Ns) can make the transition
in(c2,x

′)
−−−−−→s and then an internal transition

to (νc1.(in(c1, y) | if x′ = a then out(c2, a)) ; C ; N′
s) with C = {0
 x′ ,

gd(c2)}); this process is still undecided about whether x′ = a or not. (P1 ; ∅ ;

Ns) can make the transition
in(c2,x

′)
−−−−−→s but then cannot make the corresponding

internal transition without committing either to the constraint x′ = a or to the
constraint x′ 6= a. Whichever one it does, Q1 can do the opposite, showing the
inequivalence.

The second example shows that the requirement that the constraint systems
must have the same solutions gives rise to some incompleteness.

34

Example 10.2 Consider the two following processes:

P2 = in(c, x).out(c, a)
Q2 = in(c, x).if x = a then out(c, a) else out(c, a)

We have that P2 ≈ Q2 whereas (P2 ; ∅ ; Ns) 6≈s (Q2 ; ∅ ; Ns) for any compatible

naming environment Ns. Indeed, we have that (P2 ; ∅ ; Ns)
in(c,x′)
−−−−→s (out(c, a) ;

C ; N′
s) with C = {0
 x′ , gd(c)}) whereas (Q2 ; ∅ ; Ns)

in(c,x′)
−−−−→s if x =

a then out(c, a) else out(c, a) and then can move to either (out(c, a) ; C1 ; N′
s) or

(out(c, a) ; C2 ; N′
s) where C1 = {0
 x′ , gd(c) , x′ = a} and C2 = {0
 x′ ,

gd(c) , gd(x′) , x′ 6= a}. However, neither C1 nor C2 is equivalent to C.

Although our symbolic bisimulation is not complete, as shown above, we
are able to prove labelled bisimulation on interesting examples for which the
method implemented in the state-of-the-art ProVerif tool [7] fails. For instance,
ProVerif is unable to establish labelled bisimilarity between out(c, a) | out(c, b)
and out(c, b) | out(c, a) whereas of course we are able to deal with such exam-
ples. A more interesting example, for which our symbolic semantics plays an
important role is as follows.

Example 10.3 Consider the following two processes.

P = νc1.(in(c2, x).out(c1, x).out(c2, a) | in(c1, y).out(c2, y))
Q = νc1.(in(c2, x).out(c1, x).out(c2, x) | in(c1, y).out(c2, a))

These two processes are labelled bisimilar and our symbolic labelled bisimulation
is complete enough to prove this. In particular, let P ′ = νc1.(out(c1, x

′).out(c2, a) |
in(c1, y).out(c2, y)) and Q′ = νc1.(out(c1, x

′).out(c2, x
′) | in(c1, y).out(c2, a)).

The relation R, that witnesses the symbolic bisimulation, includes

(P ; ∅ ; Ns) R (Q ; ∅ ; Ns)

(P ′ ; {νc1.0
 x′ , gd(c2)} ; N′
s) R (Q′ ; {νc1.0
 x′ , gd(c2)} ; N′

s)

(νc1.(out(c2, a) | out(c2, x
′)) ;

{νc1.0
 x′ , gd(c2) , gd(c1)} ; N′
s)

R
(νc1.(out(c2, x

′) | out(c2, a)) ;
{νc1.0
 x′ , gd(c2) , gd(c1)} ; N′

s)

The example above is inspired by the problems we encountered when we
analysed a bisimulation representing the privacy property in an electronic voting
protocol [19]. ProVerif is not able to prove this kind of equivalence; its algorithm
is limited to cases that the two processes P,Q have the same structure, and
differ only in the terms that are output. In this example, the processes differ
in their structure, providing the motivation for our methods. Our symbolic
bisimulation seems to be “sufficiently” complete to deal with examples of privacy
and anonymity properties arising in protocol analysis. We demonstrate that
more fully with the next example, which considers the privacy property of voting
systems in more detail, and illustrates the equational reasoning aspects of the
calculus.

35

Example 10.4 We consider a simplified version of the voting protocol due to
Fujioka, Okamoto and Ohta (see [17]) that is analysed in [19, 12]. In the sim-
plification we consider here, the voter casts a vote in the first phase of the voting
process by blinding his selected candidate v with a random value r, and signing
the result with his private key. He sends this signature to the collector. Using
this signature, the collector is able to check that the voter is entitled to vote, and
the collector sends back his signature on the blinded choice of the voter. The
voter now unblinds this value, obtaining the collector’s signature on his vote.
In the second phase, he anonymously sends this signature to the collector for
counting.

Voter Collector
new r signskv(blindr(v))

−−−−−−−−−−−−−−−−−−−−→
signskc(blindr(v))

←−−−−−−−−−−−−−−−−−−−−
sync.

signskc(v)−−−−−−−−−−−−−−−−−−−−→

The blinding operation allows signatures to be performed blindly. Here, the
collector signs the vote, but is not able to see its value. This helps to achieve
the property of vote-privacy for the voter. To avoid traffic analysis attacks, the
protocol is in two phases; the voter synchronises with other voters between the
two phases (represented by “sync.” in the figure). This synchronisation can
easily be modelled using private channels, but we prefer to omit that detail to
keep the example simple. Although it satisfies vote-privacy, this simple protocol
would allow a voter to vote multiple times by repeatedly sending the last message.
That problem is easily fixed, but we prefer to keep the protocol simple for the
purpose of illustration.

We assume a signature containing the binary functions sign, getmess, blind,
unblind, and the unary function pk with the equations:

getmesspk(x)(signx(y)) = y

unblindx(signy(blindx(z))) = signy(z)

Note that key arguments are written as subscripts, to aid readability. A voter
with signing key skv casting the vote v for the collector with public key pkc runs
the process P described below. (Since all the communications take place over a
public channel, we do not mention it for sake of readability.)

P (skv, v, pkc) = νr. (out(signskv(blindr(v))).in(x).
if getmesspkc(x) = blindr(v) then out(unblindr(x)))

The anonymity property we want to prove says that an observer (which may
include the collector) cannot distinguish a situation in which the voter A votes va
and the voter B votes vb, from another one in which they vote the other way
around. Roughly speaking, it is the following labelled bisimilarity:

νska, skb(out(pk(ska)).out(pk(skb)).(P (ska, va, pk(skc)) | P (skb, vb, pk(skc))))
≈

νska, skb(out(pk(ska)).out(pk(skb)).(P (ska, vb, pk(skc)) | P (skb, va, pk(skc))))
(1)

36

with the proviso that the voters A and B have to synchronise at the “sync.”
point. Note that we treat the collector’s private key skc as a public name; we
prove privacy property even in presence of a corrupted collector who disclosed
his private key.

Below, we illustrate some of the calculations to establish this equivalence
(of course we prove ≈s to establish ≈). We will only consider deducibility and
equality constraints and we do not give the naming environment associated to
each symbolic process.

intermediate process some of the constraints

P (ska, va, pk(skc)) ∅

νx1.out(x1)
−−−−−−−→s

νr.(in(x).if getmesspk(skc)(x) = blindr(va)

then out(unblindr(x)) | {M1/x1
}) ∅

in(y)
−−−→s νr.(if getmesspk(skc)(y) = blindr(va) νr.{M1/x1

}
 y
then out(unblindr(y)) | {M1/x1

})

→s νr.(out(unblindr(y)) | {
M1/x1

}) νr.{M1/x1
}
 y

getmesspk(skc)(y) = blindr(va)

νx2.out(x2)
−−−−−−−→s νr.({M1/x1

} | {M2/x2
}) νr.νx2.{M1/x1

}
 y
getmesspk(skc)(y) = blindr(va)

where M1 = signska(blindr(va)) and M2 = unblindr(y). Note that to derive the
first step, we use the rule Out-Ts and Scopes to add the restriction νr. in
front of the process. To derive the other steps, for instance νx2.out(x2) we also
use the rule Pars to put {M1/x1

} in parallel. About the naming environment,
we have assumed among others that x1, x2 and y are marked as new (namely n)
at the beginning. At the end, the variables x1, x2 are marked as f whereas y is
marked as c.

We can now consider some example evolutions for the two processes in the
equivalence (1) we want to establish. One of the expected evolutions of the left
hand side is as follows. The process P (ska, va, pk(skc)) will first do an action
directly followed by the corresponding action of the process P (skb, vb, pk(skc)).
The ↓ operator allows us to put the restrictions in front of the process to have
an intermediate process.

37

(νska, skb.(out(pk(ska)).out(pk(skb)).
(P (ska, va, pk(skc)) | P (skb, vb, pk(skc))))↓ ; ∅ ; Ns)

νx0.out(x0)
−−−−−−−→s

νx′

0
.out(x′

0
)

−−−−−−−→s (* outputs of the public keys *)
νx1.out(x1)
−−−−−−−→s

νx′

1
.out(x′

1
)

−−−−−−−→s (* outputs of the first message *)
in(y)
−−−→s

in(y′)
−−−−→s (* inputs of the second message *)

→s →s (* conditional - then branch *)
νx2.out(x2)
−−−−−−−→s

νx′

2
.out(x′

2
)

−−−−−−−→s (ϕ ; C ; N′
s)

where ϕ = νska, skb, ra, rb.({pk(ska)/x0
} | {pk(skb)/x′

0
} | {signska(blindra(va))/x1

} |

{signskb(blindrb(vb))/x′

1
} | {unblindra(y)/x2

} | {unblindrb(y
′)/x′

2
}).

Among the constraints in C, we have the following deducibility and equality
constraints.

νx2, x
′
2.ϕ
 y getmesspk(skc)(y) = blindra(va)

νx2.x
′
2.ϕ
 y′ getmesspk(skc)(y

′) = blindrb(vb)

The right hand side of equivalence (1) can evolve in a similar way, i.e. with
the same labels, to the symbolic process (ϕ′ ; C′ ; N′

s) where

• ϕ′ = νska, skb, ra, rb.({pk(ska)/x0
} | {pk(skb)/x′

0
} | {signska(blindra(vb))/x1

} |

{signskb(blindrb(va))/x′

1
} | {unblindrb(y

′)/x2
} | {unblindra(y)/x′

2
}).

• the system C′ contains νx2, x
′
2.ϕ

′

 y, getmesspk(skc)(y) = blindra(vb)

νx2, x
′
2.ϕ

′

 y′, getmesspk(skc)(y

′) = blindrb(va).

To fully show that the two processes are in symbolic bisimulation, we would
have to consider other possible evolutions as well. We omit that here. To com-
plete the picture for this path, we illustrate the calculations to show static equiv-
alence for the final processes along the paths. Consider the extended constraint
systems C̃ and C̃′ as defined in Definition 9.1.

• C̃ = C ∪ {ϕ
 z1 ; ϕ
 z2 ; z1 = z2}, and

• C̃′ = C′ ∪ {ϕ′

 z1 ; ϕ′

 z2 ; z1 = z2}.

Let Ñs = N′
s[z1, z2 7→ f] where z1, z2 are constraint variables that are marked as

n in N′
s. We have to establish that SolclE (C̃ ; Ñs) = SolclE (C̃′ ; Ñs). We don’t prove

this fully, but just illustrate with an expected solution. A solution is a map θ
from the constraint variables {y, y′, z1, z2} to terms not including the constraint
variables or the restricted names ska, skb, ra, rb, and in the case of y, y′, not
including x2, x

′
2. Consider for instance the solution

θ :=

{

y 7→ signskc(getmessx0
(x1)) z1 7→ x2

y′ 7→ signskc(getmessx′

0

(x′1)) z2 7→ va

38

We have that θ ∈ SolclE (C̃ ; Ñs) and also θ ∈ SolclE (C̃′ ; Ñs).
ProVerif can handle the equational theory of this example, but it is not able to

prove the privacy property. The reason is that ProVerif is not able to construct
the bisimulation that is required. In the first phase, the behaviour of voter A must
be matched with the behaviour of voter A, and B’s behaviour with B’s behaviour,
so that the signatures respect the static equivalence; while in the second phase,
A’s behaviour must be matched with B’s behaviour, and B’s behaviour with A’s
behaviour, so that the votes output respect the static equivalence. (However, our
algorithms are not yet implemented!)

11 Related and Future Work

Pioneering work in symbolic bisimulations has been done by Henessy and Lin [18]
for value-passing CCS. However, the result which is most closely related to ours
is by Borgström et al. [10]: they define a symbolic bisimulation for the spi calcu-
lus with the same sources of incompleteness as we have. However, our treatment
of general equational theories is non trivial as illustrated by the problems im-
plied for structural equivalence.

For many important equational theories, static equivalence has been shown
to be decidable in [1]. More interestingly, some work has also been done to auto-
mate observational equivalence. The ProVerif tool [7] automates observational
equivalence checking for the applied pi calculus (with process replication), but
since the problem is undecidable the technique it uses is necessarily incomplete.
The tool aims at proving a finer equivalence relation and relies on easily match-
ing up the execution paths of the two processes [8]. In his thesis, Baudet [6]
presents a decision procedure for a similar equivalence, called diff-equivalence,
in a simplified process calculus. Examples where this equivalence relation is too
fine occur when proving the observational equivalence required to show vote-
privacy [19, 12]. Although our symbolic bisimulation is not complete, we are
able to conclude on examples where ProVerif fails (see Section 10).

The technique used in ProVerif will generally fail in the case where the two
processes take different branches at some point. This is the case in Example 10.3:
after a synchronisation (modelled by a communication on the private channel c1)
between the two parallel components of process P (resp. Q), the output action
of the left component of P matches the output action of the right component
of Q.

Concerning future work, the obvious next step is to study the equivalence
of solutions for constraint systems under different equational theories. Promis-
ing results have already been shown in [5] for a significant class of equational
theories but for constraint systems that do not have disequalities. These results
readily apply for deciding our symbolic bisimulation on the fragment without
else branches in conditionals. We plan to implement an automated tool for
checking observational equivalence. In particular we aim at automating proofs

39

arising in case studies of electronic voting protocols which currently rely on hand
proofs [12].

Another direction for future work is how to include process replication (the
“!” operator), which is omitted entirely from this paper. Since we require to
put the ν operator in outermost position in intermediate extended processes,
one could first try to include replications that do not have ν in their scope.
This corresponds to processes that may not terminate, but can only create
finitely many names. Including replication having ν in its scope is certainly
more challenging.

Acknowledgements. We would like to thank Mart́ın Abadi, Cédric Fournet,
Magnus Johansson and Bjorn Victor for interesting discussions. We also warmly
thank the anonymous reviewers for their many detailed comments; they helped
us significantly to improve the paper. Thanks also to Liu Jia, who asked us
several questions that were instrumental in helping us prepare the final version.

References

[1] M. Abadi and V. Cortier. Deciding knowledge in security protocols under
equational theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In Proc. 28th Symposium on Principles of Programming Languages,
pages 104–115. ACM Press, 2001.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In Proc. 4th Conference on Computer and Communications
Security, pages 36–47. ACM, 1997.

[4] R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction
of processes with cryptographic functions. Theoretical Computer Science,
290:695–740, 2002.

[5] M. Baudet. Deciding security of protocols against off-line guessing at-
tacks. In Proc. 12th Conference on Computer and Communications Secu-
rity, pages 16–25. ACM Press, 2005.

[6] M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques et
calculatoires. Thèse de doctorat, LSV, ENS Cachan, France, Jan. 2007.

[7] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In Proc. 14th Computer Security Foundations Workshop, pages 82–
96. IEEE Comp. Soc. Press, 2001.

[8] B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected
Equivalences for Security Protocols. In Proc. 20th Symposium on Logic in
Computer Science, pages 331–340. IEEE Comp. Soc. Press, 2005.

40

[9] M. Boreale and R. D. Nicola. A symbolic semantics for the pi-calculus.
Information and Computation, 126(1):34–52, 1996.

[10] J. Borgström, S. Briais, and U. Nestmann. Symbolic bisimulation in the
spi calculus. In Proc. 15th Int. Conference on Concurrency Theory, volume
3170 of LNCS, pages 161–176. Springer, 2004.

[11] S. Delaune and F. Jacquemard. A decision procedure for the verification
of security protocols with explicit destructors. In Proc. 11th ACM Confer-
ence on Computer and Communications Security (CCS’04), pages 278–287.
ACM Press, 2004.

[12] S. Delaune, S. Kremer, and M. D. Ryan. Coercion-resistance and receipt-
freeness in electronic voting. In Proc. 19th Computer Security Foundations
Workshop, pages 28–39. IEEE Comp. Soc. Press, 2006.

[13] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the
applied pi calculus. In Preliminary Proc. 5th International Workshop on
Security Issues in Concurrency (SecCo’07), 2007.

[14] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the
applied pi-calculus. In Proc. 27th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’07), volume 4855
of Lecture Notes in Computer Science, pages 133–145. Springer, 2007.

[15] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the
applied pi calculus. Research Report LSV-08-32, Laboratoire Spécification
et Vérification, ENS Cachan, France, 2008. 73 pages.

[16] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(12):198–208, 1983.

[17] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for
large scale elections. In Advances in Cryptology – AUSCRYPT ’92, volume
718 of Lecture Notes in Computer Science, pages 244–251. Springer, 1992.

[18] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer
Science, 138(2):353–389, 1995.

[19] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Proc. 14th European Symposium on Programming,
volume 3444 of LNCS, pages 186–200. Springer, 2005.

[20] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proc. 8th Conference on Computer and
Communications Security, pages 166–175, 2001.

[21] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I.
Information and Computation, 100(1):1–40, 1992.

41

A Proofs of Part I – Intermediate Calculus

A.1 Soundness Results

Proposition A.1 (soundness of ≡i) Let (Ai ; N) and (Bi ; N) be two inter-
mediate processes such that (Ai ; N) ≡i (Bi ; N). Then we have that Ai ≡ Bi.

Proof. This proof is straightforward and can be done by induction on the proof
tree witnessing (Ai ; N) ≡i (Bi ; N). The only point where we have to pay
attention is closure by application of intermediate evaluation context. However,
to deal with this case, it is sufficient to note that any intermediate evaluation
context w.r.t. an intermediate extended process A is also an evaluation context
w.r.t. A. �

Proposition A.2 (soundness of −→i) Let (Ai ; N) and (Bi ; N) be two inter-
mediate processes such that (Ai ; N) −→i (Bi ; N). Then we have that Ai → Bi.

Proof. This proof is straightforward and can be done by induction on the proof
tree witnessing (Ai ; N) →i (Bi ; N). The base case, i.e. Commi, Theni and
Elsei are obvious since corresponding rules exist in the initial semantics. To
deal with closure by application of evaluation context, it is sufficient to note that
any intermediate evaluation context w.r.t. an intermediate extended process A
is also an evaluation context w.r.t. A. Lastly, closure by structural equivalence
can be easily done thanks to Proposition A.1. �

Proposition A.3 (soundness of
α
−→i) Let (Ai ; N) and (Bi ; N′) be two inter-

mediate processes such that (Ai ; N)
α
−→i (Bi ; N′). Then we have that Ai

α
−→ Bi.

Proof. To prove this result, we distinguish two cases depending on the fact
whether α is an output or an input. In both cases, we perform the proof by
induction on the prooftree witnessing the fact that (Ai ; N)

α
−→i (Bi ; N′).

However, if α is an input, we need to show an intermediate result in order to
be able to deal with the inductive case Pari. Note that in the case where α is
a label of the form out(a, c), νd.out(a, d) or νx.out(a, x), we do not have such a
problem since the rule Pari is equivalent to the rule described below. This is
due to the fact that fv(α) = ∅.

Par-Outi
(A ; N)

α
−→i (A′,N′)

(A | B ; N)
α
−→i (A′ | B,N′)

First case: α is of the form out(a, c), νd.out(a, d) or νx.out(a, x). The two base
cases, Out-Chi and Out-Ti, are trivial. We only need to pay attention that
the side condition of Out-T is satisfied. This is due to the fact that N(x) = n

whereas N(fv (P) ∪ fv (M)) = f. Hence, we have that x 6∈ fv (P) ∪ fv (M). Now,
we have to deal with the inductive cases.

42

Case Open-Chi. In such a case, we have that the prooftree witnessing the fact
that (Ai ; N)

α
−→i (Bi ; N′) ends with the following inference rule.

(A′ ; N′′)
out(a,c)
−−−−−→i (B′ ; N′′′) c 6= a,N′′(d) = n

(νc.A′,N)
νd.out(a,d)
−−−−−−−→i (B′{d/c},N′)

By induction hypothesis, we know that A′ out(a,c)
−−−−−→ B′ and we deduce that

A′{d/c}
out(a,d)
−−−−−→ B′{d/c} since A′ and B′ are nv-distinct and d is fresh (it

does not appear in A′ nor in B′). By application of the rule Open-Ch, we

obtain νd.A′{d/c}
νd.out(a,d)
−−−−−−−→ B′{d/c}. Since νd.A′{d/c} ≡ νc.A′, we deduce

that νc.A′ νd.out(a,d)
−−−−−−−→ B′{d/c}, i.e. exactly what we want.

Case Scopei. This case is completely straightforward.

Case Par-Outi. The proof tree ends with the following inference rule

Par-Outi
(A′ ; N)

α
−→i (B′,N′)

(A′ | D ; N)
α
−→i (B′ | D,N′)

In such a case, we need to pay attention that the side condition of the rule Par

is satisfied. Since N(bn(α) ∪ bv(α)) = n and N(fn(D) ∪ fv(D)) = f, we deduce
that bn(α) ∩ fn(D) = bv(α) ∩ fv (D) = ∅.

Case Structi. We easily conclude for this case by using Proposition A.1.

Second case: α is of the form in(a,M). To deal with this case, we rely on the
claim stated below.

Claim: Let (Ai ; N) and (Bi ; N′) be two extended processes
such that Ai and Bi are intermediate framed processes and (Ai ;

N)
in(a,M)
−−−−−→i (Bi ; N′). Let Di be an intermediate framed process

such that (Ai | Di ; N) and (Bi | Di ; N′) are also intermediate pro-
cesses. Then, for any term M ′ such that M = M ′ψ(Di), we have

that Ai | Di
in(a,M ′)
−−−−−−→ Bi | Di.

Note that this result will allow us to conclude. Our claim allows us to deal
with the case where Ai and Bi are intermediate framed processes. For this
it is sufficient to apply the claim above with Di = 0 and M ′ = M . Then it
remains to notice that Ai | 0 ≡ Ai and Bi | 0 ≡ Bi in order to conclude.
Now, let us consider the case where (Ai ; N), (Bi ; N′) are not intermediate
framed processes. We show the result by induction on the prooftree witnessing

(Ai ; N)
in(a,M)
−−−−−→i (Bi ; N′). In such a case, this prooftree ends either with an

instance of Scopei or an instance of Structi. In both cases, we easily conclude
by using the induction hypothesis and applying the corresponding rules, that is
either Scope or Struct and using Proposition A.1.

It remains to establish the claim.

43

Proof of the claim. We show this result by induction on the prooftree wit-

nessing (Ai ; N)
in(a,M)
−−−−−→i (Bi ; N′). First, we consider the base case, i.e. the

rule Ini. In such a case, we have that Ai = in(a, x).P , Bi = P{M/x} and
N′ = N. We have that

in(a, x).P
in(a,M ′)
−−−−−−→ P{M

′

/x}

in(a, x).P | Di
in(a,M ′)
−−−−−−→ P{M

′

/x} | Di ≡ P{
M/x} | Di

Ai | Di
in(a,M ′)
−−−−−−→ Bi | Di

Now, we have to deal with the inductive cases, that is Structi and Pari

since the other rules do not allow us to derive framed processes. For Structi

the result can be easily obtained by applying the induction hypothesis and
Proposition A.1. Hence, we focus on Pari. In such a case, we have that the

proof tree witnessing (Ai ; N)
in(a,M)
−−−−−→i (Bi ; N′) ends with the following rule:

(A′
i ; N)

in(a,Mψ(D))
−−−−−−−−→i (B′

i ; N′)

(A′
i | D ; N)

in(a,M)
−−−−−→i (B′

i | D ; N′)

Recall that Di is an intermediate framed process such that (A′
i | D | Di ; N) and

(B′
i | D | Di ; N′) are also intermediate framed processes. Let M ′ be a term such

that M = M ′ψ(Di). By induction hypothesis and since Mψ(D) = M ′ψ(D|Di),

we have that A′
i | (Di | D)

in(a,M ′)
−−−−−−→ B′

i | (Di | D) and we easily conclude by

using the fact that
α
−→ is closed by structural equivalence. �

A.2 Completeness Results

Given a nv-distinct extended process A containing an active substitution {M/x}.
The process A\x is A but with the unique occurrence of {M/x} replaced by 0.
This notation is extended as expected to sequences of variables. Now, we intro-
duce a lemma which allows us to describe the process C[A]↓ from C↓ and A↓.

Lemma A.4 Let C be an evaluation context which is nv-distinct. Let x̃ be the
tuple of variables such that the hole is in the scope of an occurrence of “νx”
in C. Then there exists some sequences of names ñ1, ñ2 and an intermediate
framed evaluation context G such that

• C↓ = νñ1.νñ2.G, and

• for all extended process A such that C[A] is nv-distinct, we have that

C[A]↓ = νñ1.νm̃.νñ2.G[F\x̃](ψ(G) ∪ ψ(F))⋆

where A↓ = νm̃.F for some sequence of names m̃ and some intermediate
framed process F .

44

Proof. We prove this result by induction on the structure of C. In the base case,
i.e. C = , we can show that ñ1 = ∅, ñ2 = ∅ and G = satisfy the require-
ments. Indeed, let A be an extended process such that A↓ = νm̃.F , we have
νñ1.νm̃.νñ2.G[F\x̃](ψ(G) ∪ ψ(F))⋆ = νm̃.Fψ(F)⋆ = νm̃.F = A↓ = C[A]↓.

The inductive cases are C = C′ | B, C = B | C′, C = νn.C′ and C = νx.C′.
Let x̃′ be the tuple of variables x′ such that the hole of C′ is in the scope of
an occurrence of νx′ in C′. By induction hypothesis, we know that there exists
some sequences of names ñ′

1 and ñ′
2 and an intermediate framed evaluation

context G′ such that

• C′↓ = νñ′
1.νñ

′
2.G

′, and

• for all extended process A such that C′[A] is nv-distinct, we have that

C′[A]↓ = νñ′
1.νm̃.νñ

′
2.G

′[F\x̃′](ψ(G′) ∪ ψ(F))⋆ where A↓ = νm̃.F .

Inductive case 1 : C = C′ | B. Let B↓ = νb̃.B′. In such a case, we have that

C[A]↓ = (C′[A] | B)↓

= νñ′
1.νm̃.νñ

′
2.νb̃.(G

′[F\x̃′](ψ(G′) ∪ ψ(F))⋆ | B′)(ψ(C′[A]) ∪ ψ(B′))⋆

Let ñ1 = ñ′
1, ñ2 = ñ′

2, b̃ andG = G′ | B′. As x̃= x̃′ and ψ(G′)∪ψ(F) = ψ(C′[A])
we obtain the expected result.

Inductive case 2 : C = B | C′. This case is similar to the previous one.

Inductive case 3 : C = νn.C′. In such a case, we have that

C[A]↓ = νn.(C′[A]↓)
= νn.νñ′

1.νm̃.νñ
′
2.G

′[F\x̃′](ψ(G′) ∪ ψ(F))⋆

Let ñ1 = n, ñ′
1, ñ2 = ñ′

2 and G′ = G. We obtain the expected result.

Inductive case 4 : C = νx.C′. In such a case, we have that

C[A]↓ = (C′[A]↓)\x
= (νñ′

1.νm̃.νñ
′
2.G

′[F\x̃′](ψ(G′) ∪ ψ(F))⋆)\x

Let ñ1 = ñ′
1, ñ2 = ñ′

2 and G′ = G. We obtain the expected result since we have
that x̃ = x̃′, x. �

The following lemma relies on the notion of linear proof defined below. A
proof in linear form of A ≡ B is a sequence A = A1, . . . , An = B such that for
every 1 ≤ j ≤ n, there exist an evaluation context Cj , two extended processesA′

j

and A′
j+1 such that:

• Aj = Cj [A
′
j], Aj+1 = Cj [A

′
j+1], and

• either A′
j ≡ A′

j+1 (or A′
j+1 ≡ A′

j) is an instance of PAR-0, PAR-A,
PAR-C, New-0, New-C, New-Par, Alias, Subst, or Rewrite,

45

• or A′
j =α A

′
j+1.

Similarly, a proof in linear form ofA→∗ B is a sequenceA = A1, . . . , An = B
such that for every 1 ≤ j ≤ n, there exist an evaluation context Cj , two extended
processes A′

j and A′
j+1 such that:

• Aj = Cj [A
′
j], Aj+1 = Cj [A

′
j+1], and

• either A′
j ≡ A′

j+1 (or A′
j+1 ≡ A′

j) is an instance of PAR-0, PAR-A,
PAR-C, New-0, New-C, New-Par, Alias, Subst, or Rewrite,

• or A′
j =α A

′
j+1,

• or A′
j → A′

j+1 is an instance of Comm, Then or Else.

Moreover, there must exist at least one j such that A′
j → A′

j+1 is an instance
of Comm, Then or Else.

Lemma A.5 Let A and B be two nv-distinct extended processes such that A ⊲⊳
B with ⊲⊳ ∈{≡,→∗} and N be a naming environment compatible with A and B.
Then there exists a proof in linear form such that every process in the proof is
nv-distinct and compatible with N.

Proposition A.6 (completeness of ≡i) Let A and B be two nv-distinct ex-
tended processes such that A ≡ B and N be a naming environment compatible
with A↓ and B↓. Then there exists an intermediate process (Di ; N) such that
(A↓ ; N) ≡i (Di ; N) ≅ (B↓ ; N).

Proof. Let A and B be two nv-distinct extended processes such that A ≡
B. We consider the proof of structural equivalence in linear form. Thanks to
Lemma A.5, we can assume that extended processes involved in this derivation
are nv-distinct and compatible with N. We show the result by induction on the
length ℓ of the derivation. We first show the result when ℓ = 1 by considering
each rule of structural equivalence in turn. Then, we show the inductive case,
i.e. ℓ > 1. We denote by C the evaluation context under which the structural
equivalence rule is applied. We denote by ñ1, ñ2, (resp. x̃) and G the sequences
of names (resp. variables) and the intermediate framed evaluation context which
satisfy the condition stated in Lemma A.4.

Case Par-0: C[D] ≡ C[D | 0].
Let Di = B↓. Clearly, we have that (Di ; N) ≅ (B↓ ; N). Now, let m̃ be the
sequence of names and F be the framed process such that D↓ = νm̃.F . We
have that (D | 0)↓ = νm̃.(F | 0) and thanks to Lemma A.4 we have

• (A↓ ; N) = (C[D]↓ ; N) = (νñ1.νm̃.νñ2.G[F\x̃](ψ(G) ∪ ψ(F))⋆ ; N), and

• (B↓ ; N) = (C[D | 0]↓ ; N) = (νñ1.νm̃.νñ2.G[(F | 0)\x̃](ψ(G) ∪ ψ(F | 0))⋆ ; N).

46

Hence, we have that (A↓ ; N) ≡i (B↓ ; N).

A similar reasoning allows us to conclude for Par-A, Par-C. For the rule
New-C, if the commutation involves two names, we conclude as in the previous
case since this rule has a counterpart in the intermediate semantics. Otherwise,
we have that A↓ = B↓ and we easily conclude.

The rule New-0, New-Par, Subst, Alias and Rewrite are also straight-
forward. Note also that if A ≡ B is a renaming step, then Di = A↓ satisfies the
requirement. This concludes the base cases.

Now, it remains to show the inductive case. Let A and A′ be two extended
processes such that A ≡ A′ by a derivation of length ℓ > 1. Then there exists B
such that A ≡ B by a derivation of length 1 and B ≡ A′ by a derivation of length
ℓ′ < ℓ. Firstly, we know that there exists an intermediate extended process
(Di ; N) such that (A↓ ; N) ≡i (Di ; N) and (Di ; N) ≅ (B↓ ; N). By using our
induction hypothesis, we also know that there exists an intermediate extended
process (D′

i ; N) such that (B↓ ; N) ≡i (D′
i ; N) and (D′

i ; N) ≅ (A′↓ ; N). Hence
by using Lemma 4.5, we deduce that there exists an intermediate extended
process (D′′

i ; N) such that (Di ; N) ≡i (D′′
i ; N) and (D′′

i ; N) ≅ (D′
i ; N).

Hence, the process (D′′
i ; N) satisfies the requirements. �

Proposition A.7 (completeness of →i) Let A and B be two nv-distinct ex-
tended processes such that A →∗ B (resp. A → B) and N be a naming en-
vironment compatible with A↓ and B↓. Then there exists an extended process
(Di ; N) such that:

• (A↓ ; N)→∗
i (Di ; N) (resp. (A↓ ; N)→i (Di ; N)) and,

• (Di ; N) ≅ (B↓ ; N).

Proof. Let A and B be two nv-distinct extended processes such that A →∗ B.
The case where B = A (reflexivity) is trivial. Otherwise we consider the proof of
A→∗ B in linear form. Each step of this proof will be either a single reduction
step or a sequence of steps of structural equivalence. Thanks to Lemma A.5, we
can assume that extended processes involved in this derivation are nv-distinct
and compatible with N. We show the result by induction on the length ℓ of
the derivation. We first show the result when ℓ = 1. In the case of structural
equivalence, Proposition A.6 allows us to conclude. Hence, we only consider
the three rules of internal reduction in turn. Then, we show the inductive case,
i.e. ℓ > 1. We denote by C the evaluation context under which the rule is
applied. We denote by ñ1, ñ2, (resp. x̃) and G the sequences of names (resp.
variables) and the intermediate framed evaluation context which satisfy the
condition stated in Lemma A.4.

Case Comm: out(a,M).P | in(a, x).Q → P | Q{M/x}. We have that A =
C[out(a,M).P | in(a, x).Q] and B = C[P | Q{M/x}]. Let P↓ = νñp.Fp and
Q↓ = νñq.Fq. By using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñq.νñ2.G[out(a,M).Fp | in(a, x).Fq]ψ(G)⋆ ; N),

47

• (B↓ ; N) = (νñ1.νñp.νñq.νñ2.G[Fp | Fq{M/x}]ψ(G)⋆ ; N).

Note that Fp and Fq are intermediate plain processes (as P , resp. Q, are prefixed
by an input, resp. output) and hence ψ(Fp) and ψ(Fq{M/x}) are empty. Let
Di = B↓. It is easy to see that Di satisfies the requirements.

We deal with the rules Then and Else in a similar way.

Now, it remains to show the inductive case. Let A and A′ be two extended
processes such that A→∗ A′ by a derivation of length ℓ > 1. Then there exists B
such that A ≡ B (or A → B) and B →∗ A′ by a derivation of length ℓ′ < ℓ.
In both case we conclude thanks to Lemma 4.5 and the induction hypothesis
on B →∗ A′. �

Lemma A.8 Let A and B be two nv-distinct extended processes such that A
α
−→

B and N be a naming environment compatible with A and α. Let N′ be a naming
environment compatible with B and such that:

• N′ = N[x 7→ f] when α is of the form νx.out(a, x);

• N′ = N[d 7→ f] when α if of the form νd.out(a, d);

• N′ = N otherwise.

Then there exist two nv-distinct extended processes A′ and B′ such that:

• A ≡ A′ α
−→ B′ ≡ B (where A′ α

−→ B′ does not rely on some structural
equivalence steps); and

• N is compatible with A′, and N′ is compatible with B′.

Proposition A.9 (completeness of
α
−→i) Let A and B be two nv-distinct ex-

tended processes such that A
α
−→ B and N be a naming environment compatible

with A↓ and α. Let N′ be a naming environment compatible with B↓ such that:

• N′ = N[x 7→ f] when α is of the form νx.out(a, x);

• N′ = N[d 7→ f] when α if of the form νd.out(a, d);

• N′ = N otherwise.

Then there exists an intermediate process (Di ; N′) such that

(A↓ ; N)
α
−→i (Di ; N′) ≅ (B↓ ; N′).

Proof. Thanks to Lemma A.8, we can assume that A and B are two nv-distinct
extended processes such that A

α
−→ B without involving any structural equiva-

lence step. Otherwise, we will have that A ≡ A′ α
−→ B′ ≡ B and we can easily

conclude, thanks to Lemma 4.5, by applying the result on A′ α
−→ B′ and by

using Proposition A.6 on A ≡ A′ and B ≡ B′. We consider the different kind
of labels in turn: out(a, c), νx.out(a, x), in(a,M) and νc.out(a, c).

48

We denote by C the evaluation context (constructed by successive applica-
tions of the rules Pari and Scopei) under which the rule is applied. We denote
by ñ1, ñ2, (resp. x̃) and G the sequences of names (resp. variables) and the
intermediate framed evaluation context which satisfy the condition stated in
Lemma A.4.

Case Out-Ch: out(a, c).P
out(a,c)
−−−−−→ P .

We have thatA = C[out(a, c).P] andB = C[P]. Note that a, c /∈ bn(C[out(a, c).P]).
Let P↓ = νñp.Fp. By using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñ2.G[out(a, c).Fp]ψ(G)⋆ ; N),

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp]ψ(G)⋆ ; N′).

Let Di = B↓. Obviously, (Di ; N′) ≅ (B↓ ; N′). Moreover, we see that

(out(a, c).Fp)ψ(G)⋆
out(a,c)
−−−−−→i Fpψ(G)⋆. By successive applications of rules Pari

and Scopei we obtain that (A↓ ; N)
out(a,c)
−−−−−→i (Di ; N′).

Case Out-T: out(a,M).P
νx.out(a,x)
−−−−−−−→ P | {M/x} x 6∈ fv (P) ∪ fv (M).

We have that A = C[out(a,M).P] and B = C[P | {M/x}]. Let P↓ = νñp.Fp.
By using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñ2.G[out(a,M).Fp]ψ(G)⋆ ; N)

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp | {M/x}]ψ(G)⋆ ; N′).

Note that applying the substitution ψ(G) is sufficient as ψ(Fp) is empty and x
is a fresh variable. Let Di = B↓. Obviously, we have that (Di ; N′) ≅ (B↓ ; N′).

Similarly to the previous case we show that (A↓ ; N)
νx.out(a,x)
−−−−−−−→i (Di ; N′).

Case In: in(a, x).P
in(a,M)
−−−−−→ P{M/x}.

We have that A = C[in(a, x).P] and B = C[P{M/x}]. Let P↓ = νñp.Fp. By
using Lemma A.4, we obtain

• (A↓ ; N) = (νñ1.νñp.νñ2.G[in(a, x).Fp]ψ(G)⋆ ; N)

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp{M/x}]ψ(G)⋆ ; N′).

Let Di = B↓. Obviously, we have that (Di ; N′) ≅ (B↓ ; N′). Moreover, we see
that (we omit the naming environment for the moment)

(in(a, x).Fp)ψ(G)⋆
in(a,Mψ(G)⋆)
−−−−−−−−−→i (Fp{

M/x})ψ(G)⋆.

By application of the rule Pari we obtain

(in(a, x).Fp)ψ(G)⋆ | Gψ(G)⋆
in(a,M)
−−−−−→i (Fp{

M/x})ψ(G)⋆ | Gψ(G)⋆, i.e.

G[in(a, x).Fp]ψ(G)⋆
in(a,M)
−−−−−→i G[Fp{

M/x}]ψ(G)⋆.

49

Note that Gψ(G)⋆ is an intermediate framed process and ψ(Gψ(G)⋆) = ψ(G)⋆.

By successive applications of Scopei, we obtain that (A↓ ; N)
in(a,M)
−−−−−→ (B↓ ; N).

Note that since N is compatible with A↓ and α = in(a,M), we have that ñ1, ñ2

and ñp are marked as bound, i.e. b, whereas names that occur in M are marked
as f, and thus ñ1, ñ2 and ñ do not occur in α.

Case Open-Ch. Here, we assume that A = νd.C[out(a, d).P] and B = C[P].
Otherwise this can be obtained using structural equivalence. These structural
equivalence steps are handled as explained above. Let P↓ = νñp.Fp. By using
Lemma A.4, we obtain

• (A↓ ; N) = (νd.νñ1.νñp.νñ2.G[out(a, d).Fp]ψ(G)⋆ ; N),

• (B↓ ; N′) = (νñ1.νñp.νñ2.G[Fp]ψ(G)⋆ ; N′).

Let Di = B↓. Obviously, we have that (Di ; N′) ≅ (B↓ ; N′). As above we show

that (A↓ ; N)
νd.out(a,d)
−−−−−−−→i (Di ; N′). This allows us to conclude. �

B Proofs of Part II – Symbolic Calculus

We first show a useful lemma which allows us to transfer solutions of symbolic
processes when we apply evaluation contexts to these processes.

Lemma B.1 Let (A ; C ; Ns) be a symbolic process and C = νũ.(| D) an
intermediate evaluation context such that (C[A] ; C[C] ; Ns[bn(C[0]) 7→ b]) is a
symbolic process. We have that

θ ∈ SolE(C[C],Ns[bn(C[0]) 7→ b])
iff

(θψ(C[0]))⋆ ∈ SolE(C,Ns) and bn(C[0]) ∩ names(img(θ)) = ∅

Proof. Let N′
s = Ns[bn(C[0]) 7→ b]).

(⇒) We need to consider two cases.

Case C[] = νñ. .
We have that θ ∈ SolE(νñ.C,N′

s). Let Ded(C) = {φi
 xi | 1 ≤ i ≤
ℓ} with φi = νũi.σi. We have that (θψ(νn.0))⋆ = θ⋆ = θ (as vars(xiθ) ∩
cv(C) = ∅ and dom(θ) = cv (C)). It is easy to check that θ is an E-solution
of C. As N′

s(names(img(θ))) = f and N′
s(vars(img(θ))) = f we also have that

Ns(names(img(θ))) = f and Ns(vars(img(θ))) = f. Hence, θ ∈ SolE(C,Ns) and
ñ ∩ names(img(θ)) = ∅ (as N′

s(ñ) = b).

Case C[] = | D.
We have that θ ∈ SolE(C | D,N′

s). Let Ded(C) = {φi
 xi | 1 ≤ i ≤ ℓ} with
φi = νũi.σi and let θ′ = θψ(D). We have to show that θ′⋆ ∈ SolE(C,Ns). For
this, we need to show that:

50

• vars(xiθ
′⋆) ∩ cv(C) = ∅. Actually we have that dom(θ′) = dom(θ) =

cv (C) = cv (C | D) = {x1, . . . , xℓ}. Hence the result.

• vars(xiθ
′⋆) ∩ (dom(φℓ) r dom(φi)) = ∅. By hypothesis we have that

vars(xiθ) ∩ (dom(φℓ ∪ ψ(D)) r dom(φi ∪ ψ(D))) = ∅. We have that
dom(φℓ∪ψ(D))rdom(φi∪ψ(D)) = dom(φℓ)rdom(φi) and vars(xiθ

′⋆) ⊆
vars(xiθ) ∪ vars(img(ψ(D))).

As A | D is applied we have that vars(img(ψ(D))) ∩ dom(φℓ) = ∅. Hence
vars(xiθ

′⋆) ∩ (dom(φℓ) r dom(φi)) = ∅.

• names(xiθ
′⋆) ∩ ũi = ∅. By definition of an intermediate process we have

that bn(0 | D) = ∅. Hence, ũi is a sequence of variables and this condition
trivially holds.

• vars(xiθ
′⋆) ∩ ũi = ∅. As the process A | D is applied we have that

vars(img(ψ(D)))∩dom(A) = ∅. As for all x ∈ ũi we have that x ∈ dom(A)
we conclude that vars(xiθ

′⋆) ∩ ũi = ∅.

• For any constraint gd(M) ∈ C we need to show that M(θ′⋆σℓ)
⋆ is ground.

By hypothesis we have that M(θσℓ)
⋆ is ground. Hence, as dom(ψ(D)) ∩

dom(σℓ) = ∅ we have that M(θψ(D))⋆ = Mθ which allows us to conclude.

• For any constraint M = N ∈ C we need to show that M(θ′⋆σℓ)
⋆ =E

N(θ′⋆σℓ)
⋆. By hypothesis M(θσℓ)

⋆ =E N(θσℓ)
⋆. As E is closed under

substitution of terms for variables we conclude.

• For any constraint M 6= N ∈ C we need to show that M(θ′⋆σℓ)
⋆ 6=E

N(θ′⋆σℓ)
⋆. By hypothesis M(θσℓ)

⋆ 6=E N(θσℓ)
⋆. Moreover, we have that

gd(M) ∈ C and gd(N) ∈ C. Hence, we have that Mθ′⋆ = Mθ and Nθ′⋆ =
Nθ which allows us to conclude.

• Ns(names(img(θ′)) ∪ vars(img(θ′))) = f. By hypothesis we have that
Ns(names(img(θ)) ∪ vars(img(θ))) = f. Moreover, as bn(D) = ∅ we have
that N′

s(names(img(ψ(D)))) = f which implies that Ns(names(img(ψ(D)))) =
f. Hence we conclude that Ns(names(img(θ′⋆))) = f. We similarly con-
clude that Ns(vars(img(θ′⋆))) = f.

In order to conclude, it remains to show that bn(D) ∩ names(img(θ)) = ∅.
This trivially holds since bn(D) = ∅.

(⇐) We again consider two cases

Case C[] = νñ. .
By hypothesis, (θψ(C[0]))⋆ = θ ∈ SolE(C,Ns). We need to show that θ ∈

SolE(νñ.C,N′
s). The only tricky case is to show that ñ ∩ names(img(θ)) = ∅.

However this is directly implied by the additional hypothesis, i.e. bn(C[0]) ∩
names(img(θ)) = ∅.

Case C[] = | D.

51

By hypothesis we have that (θψ(D))⋆ ∈ SolE(C,Ns). As C[A] is an ex-
tended intermediate process, we have that bn(C[0]) = ∅. Hence, Ns = N′

s.
Let Ded(C) = {φi
 xi | 1 ≤ i ≤ ℓ} with φi = νũi.σi. Then Ded(C | D) =
{νũi.σi ∪ψ(D)
 xi | 1 ≤ i ≤ ℓ}. We have to show that θ ∈ SolE(C[C],N′

s). For
this, we need to show that:

• vars(xiθ) ∩ cv(C | D) = ∅. By hypothesis vars(xi(θψ(D))⋆) ∩ cv(C) = ∅.
As dom(ψ(D)) ∩ cv (C) = ∅ and cv(C | D) = cv (C) we conclude.

• vars(xiθ)∩(dom(φℓ∪ψ(D))rdom(φi∪ψ(D))) = ∅. By hypothesis we have
that vars(xi(θψ(D))⋆) ∩ (dom(φℓ) r dom(φi)) = ∅. Moreover, dom(φℓ) r

dom(φi) = dom(φℓ ∪ ψ(D)) r dom(φi ∪ ψ(D)). Hence it is sufficient to
show that (vars(xiθ)rvars(xi(θψ(D))⋆))∩ (dom(φℓ)rdom(φi)) = ∅. We
have that (vars(xiθ)rvars(xi(θψ(D))⋆)) ⊆ dom(ψ(D)). As dom(ψ(D))∩
dom(φℓ) = ∅ and dom(φℓ) ⊇ dom(φℓ) r dom(φi) we conclude.

• names(xiθ) ∩ ũi = ∅. By hypothesis we have that names(xi(θψ(D))⋆) ∩
ũi = ∅. As names(xiθ) ⊆ names(xi(θψ(D))⋆) we conclude.

• vars(xiθ)∩ũi = ∅. By hypothesis we have that vars(xi(θ ψ(D))⋆)∩ũi = ∅.
We also have that vars(xiθ) r vars(xi(θψ(D))⋆) ⊆ vars(img(ψ(D))). We
have that ũi ⊆ dom(A | D) and, as (A | D) is applied, vars(img(ψ(D))) ∩
dom(A | D) = ∅. Hence vars(img(ψ(D))) ∩ ũi = ∅ and we conclude.

• For any constraint gd(M) ∈ C[C] we need to show thatM(θ(σℓ∪ψ(D)))⋆ is
ground. Note that gd(M) ∈ C. By hypothesis we have thatM((θψ(D))⋆σℓ)

⋆

is ground. As C[A] is applied we have that dom(σℓ)∩ vars(img(ψ(D))) =
dom(ψ(D)) ∩ vars(img(σℓ)) = ∅. Hence, M((θψ(D))⋆σℓ)

⋆ = M(θ(σℓ ∪
ψ(D)))⋆ and we conclude. The cases for M = N and M 6= N are similar.

Finally, as bn(C[0]) = ∅ we obtain that θ ∈ SolE(C | D,N′
s). This allows us

to conclude the proof. �

B.1 Soundness Results

Proposition B.2 (soundness of ≡s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns) be
two well-formed symbolic processes such that (As ; CA ; Ns) ≡s (Bs ; CB ; Ns).
Then CA = CB and for all θ ∈ SolE(CA ; Ns), we have that (A ; N) ≡i (B ; N)
where (A ; N) (resp. (B ; N)) is the θ-concretization of (As ; CA ; Ns) (resp.
(Bs ; CB ; Ns)).

Proof. We show this result by induction on the proof tree witnessing the fact
that (As ; CA ; Ns) ≡s (Bs ; CB ; Ns). First we need to consider the following
base cases:

Case Par-0s: (As ; CA ; Ns) ≡s (As | 0 ; CA ; Ns).
Trivially, CA = CB. Let θ ∈ SolE(CA ; Ns) and (A ; N) (resp. (B ; N))
be the θ-concretization of (As ; CA ; Ns) (resp. (As | 0 ; CA ; Ns)). Let σ

52

be the substitution corresponding to the maximal frame in CA. We have that
(A ; N) = (As(θσ)⋆ ; N) ≡i (As(θσ)⋆ | 0 ; N) = ((As | 0)(θσ)⋆ ; N) = (B ; N).

We can deal with the rules Par-A)s, Par-Cs, and New-Cs in a similar way.
We now consider the inductive case, i.e. application of an evaluation context.

The proof tree witnessing the fact that (As ; CA ; Ns) ≡s (Bs ; CB ; Ns) ends
with an application of the following inference rule.

(A′
s ; C′A ; N′

s) ≡s (B′
s ; C′B ; N′

s)

(C[A′
s] ; C[C′A] ; Ns) ≡s (C[B′

s] ; C[C′B] ; Ns)

We have that Ns = N′
s[bn(C[0]) 7→ b]. As C′A = C′B we directly have that

C[C′A] = C[C′B]. Let θ ∈ SolE(C[C′A] ; Ns) and (A ; N) (resp. (B ; N)) be the θ-
concretization of (C[A′

s] ; C[C′A] ; Ns) (resp. (C[B′
s] ; C[C′B] ; Ns)). Let σ be the

substitution corresponding to the maximal frame in CA = C[C′A]. We have to
show that (A ; N) ≡i (B ; N), i.e. (C(θσ)⋆[A′

s(θσ)⋆] ; N) ≡i (C(θσ)⋆[B′
s(θσ)⋆] ;

N). Since ≡i is closed under application of evaluation context, it is sufficient to
show that (A′

s(θσ)⋆ ; N′) ≡i (B′
s(θσ)⋆ ; N′) where N′ = N′

s|N∪X .
Let θ′ = (θψ(C[0]))⋆. By Lemma B.1 we have that θ′ ∈ SolE(C′A ; N′

s) and
(A′ ; N′) ≡i (B′ ; N′) where (A′ ; N′) (resp. (B′ ; N′)) is the θ′-concretization
of (A′

s ; C′A ; N′
s) (resp. (B′

s ; C′B ; N′
s)). We have that A′ = A′

s(θ
′σ′)⋆ and

B′ = B′
s(θ

′σ′)⋆ where σ′ is the maximal frame of C′A. This allows us to conclude
since (θ′σ′)⋆ = ((θψ(C[0]))⋆σ′)⋆ = (θ(ψ(C[0])σ′))⋆ =(θσ)⋆. �

Proposition B.3 (soundness of −→s) Let (As ; CA ; Ns) and (Bs ; CB ; Ns)
be two well-formed symbolic processes such that (As ; CA ; Ns) →s (Bs ; CB ;
Ns). Let θ ∈ SolE(CB ; Ns). We have that θ ∈ SolE(CA ; Ns) and (A ; N) →i

(B ; N) where (A ; N) (resp. (B ; N)) is the θ-concretization of (As ; CA ; Ns)
(resp. (Bs ; CB ; Ns)).

Proof. The proof is done by induction on the proof witnessing (As ; CA ; Ns) −→s

(Bs ; CB ; Ns). We first consider the three base cases.

Case Comms. We have that As = out(u,M).Ps | in(v, x).Qs, Bs = Ps |
Qs{M/x} and CB = CA ∪ {u = v, gd(u), gd(v)}. Let θ ∈ SolE(CA ∪ {u = v ,
gd(u) , gd(v)} ; Ns). We also have that θ ∈ SolE(CA ; Ns). Let σA (resp.
σB) be the substitution corresponding to the maximal frame of CA (resp. CB).
Trivially, we have that σA = σB . Let ρ = (θσA)⋆.

(A ; N) = (Asρ ; N)
= (out(uρ,Mρ).Psρ | in(vρ, x).Qsρ ; N) as x 6∈ dom(ρ)
= (out(uρ,Mρ).Psρ | in(uρ, x).Qsρ ; N) as θ ∈ SolE(CB ; Ns)

u, v are of channel type
→i (Psρ | Qsρ{Mρ/x} ; N) as uρ is a channel name

as gd(u) ∈ CB
= ((Ps | Qs{

M/x})ρ ; N)
= (Bsρ ; N)
= (B ; N) as σA = σB

53

Again, the rules Thens and Elses are similar to the previous case.
We now consider the two inductive cases.

The case of the structural equivalence rule is straightforward.
Case Application of an evaluation context

The proof witnessing the fact that (As ; CA ; Ns) →s (Bs ; CB ; Ns) ends
with an application of the following inference rule.

(A′
s ; C′A ; N′

s)→s (B′
s ; C′B ; N′

s)

(C[A′
s] ; C[C′A] ; Ns)→s (C[B′

s] ; C[C′B] ; Ns)

We have that Ns = N′
s[bn(C[0]) 7→ b]. Let θ ∈ SolE(CB ; Ns) and (A ; N)

(resp. (B ; N)) be the θ-concretization of (C[A′
s] ; C[C′A] ; Ns) (resp. (C[B′

s] ;
C[C′B] ; Ns)). Let σ′

A (resp. σ′
B) be the substitution corresponding to the

maximal frame in C′A and σA (resp. σB) be the substitution corresponding to
the maximal frame in CA = C[C′A] (resp. CB = C[C′B]). Note that since→s does
never add deduction constraints we have that σ′

A = σ′
B and hence σA = σB .

We have to show that (A ; N) →i (B ; N), i.e. (C(θσA)⋆[A′
s(θσA)⋆] ; N) →i

(C(θσB)⋆[B′
s(θσB)⋆] ; N). Since →i is closed under application of evaluation

context, it is sufficient to show that (A′
s(θσA)⋆ ; N′)→i (B′

s(θσB)⋆ ; N′) where
N′ = N′

s|N∪X .
Let θ′ = (θψ(C[0]))⋆. By Lemma B.1 we have that θ′ ∈ SolE(C′B ; N′

s)
and hence by induction hypothesis, we deduce that θ′ ∈ SolE(C′A ; N′

s) and
(A′ ; N) →i (B′ ; N) where (A′ ; N′) (resp. (B′ ; N′)) is the θ′-concretization
of (A′

s ; C′A ; N′
s) (resp. (B′

s ; C′B ; N′
s)). Hence, by Lemma B.1 we deduce

that θ ∈ SolE(CA ; Ns) = SolE(C[C′A] ; Ns). We have that A′ = A′
s(θ

′σ′
A)⋆

and B′ = B′
s(θ

′σ′
B)⋆. This allows us to conclude since (θ′σ′

A)⋆ = (θσA)⋆ and
(θ′σ′

B)⋆ = (θσB)⋆. �

Proposition 8.2 (soundness of
α
−→s) Let (As ; CA ; Ns) and (Bs ; CB ; N′

s)

be two well-formed symbolic processes such that (As ; CA ; Ns)
αs−→s (Bs ; CB ;

N′
s). Let θB ∈ SolE(CB ; N′

s) and θA = θB|cv(CA). We have that θA ∈ SolE(CA ;

Ns) and (A ; N)
αsθB−−−→i (B ; N′), where (A ; N) and (B ; N′) are respectively the

θA-concretization and the θB-concretization of (As ; CA ; Ns) and (Bs ; CB ; N′
s).

Proof. The proof is done by induction on the proof tree witnessing the following
reduction step (As ; CA ; Ns)

αs−→s (Bs ; CB ; N′
s). We first consider the three

base cases.

Case Ins. We have that As = in(u, x).Ps, Bs = Ps{y/x}, αs = in(u, y) for
some y ∈ Y such that Ns(y) = n and CB = CA ∪ {0
 y, gd(u)}). Moreover, we
have that N′

s = Ns[y 7→ c]. Note that we have that N = N′. Let θB ∈ SolE(CB ;
N′
s) and θA = θB|cv(CA). As CA ⊂ CB we have that θA ∈ SolE(CA ; Ns).

Let σA (resp. σB) be the substitution corresponding to the maximal frame of
CA (resp. CB). Trivially, we have that dom(σA) = dom(σB) = ∅ since φ(Ps) = 0
and (As ; CA ; Ns) is well-formed.

54

(A ; N) = (AsθA ; N)
= (in(uθA, x).PsθA ; N) as x 6∈ dom(θA)

in(u,y)θB
−−−−−−→i (PsθA{yθB/x} ; N′) as uθB ∈ Nch,

N(fv (yθB) ∪ fn(yθB)) = f

= (PsθA{y/x}{yθB/y} ; N′)
= (BsθB ; N′) as θB = θA ∪ {y 7→ yθB}
= (B ; N′)

Case Out-Chs. This case is similar to the previous one.
Case Out-Ts. We have that As = out(u,M).Ps, Bs = Ps | {M/x}, αs =
νx.out(u, x) where x ∈ Xb and Ns(x) = n. We have also that CB = νx.CA ∪
{gd(u)} and N′

s = Ns[x 7→ f]. Let θB ∈ SolE(CB ; N′
s) and θA = θB|cv(CA), i.e.

θB = θA. As νx.CA ⊂ CB we have that θA ∈ SolE(CA ; Ns). Let σA (resp. σB) be
the substitution corresponding to the maximal frame of CA (resp. CB). Trivially,
we have that dom(σA) = dom(σB) = ∅ since φ(Ps) = 0 and (As ; CA ; Ns) is
well-formed.

(A ; N) = (AsθA ; N)
= (out(uθA,MθA).PsθA ; N)

νx.out(u,x)θB
−−−−−−−−−→i (PsθA | {MθA/x} ; N′) as x 6∈ dom(θB)

= (PsθB | {MθB/x} ; N′) as θA = θB
= (BsθB ; N)
= (B ; N)

Moreover, as θB ∈ SolE(νx.CA) we have that x 6∈ img(θB) and hence, x occurs
only once in B.

We now consider the inductive cases.

Case Open-Chs.

(A′
s ; C′A ; N′′

s)
out(u,c)
−−−−−→s (B′

s ; C′B ; N′′′
s) u 6= c, N′′

s (d) = n, d ∈ Nch

(νc.A′
s ; νc.C′A ; Ns)

νd.out(u,d)
−−−−−−−→s (B′

s{
d/c} ; νd.(C′B{

d/c}) ; N′
s)

We have that As = νc.A′
s, Bs = B′

s{
d/c}, αs = νd.out(u, d), CA = νc.C′A and

CB = νd.C′B{
d/c}. Moreover, we have that

• Ns = N′′
s [c 7→ b], and

• N′
s = N′′′

s [c 7→ b, d 7→ f].

Let θB ∈ SolE(CB ; N′
s). We also have that θB ∈ SolE(C′B ; N′′′

s) and c, d 6∈
names(img(θB)) and uθB 6= c. Let θA = θB|cv(CA), i.e. θB = θA. By induction

hypothesis we deduce that (A′ ; N′′)
out(u,c)θB
−−−−−−−→i (B′ ; N′′′) where (A′ ; N′′)

(resp. (B′ ; N′′′)) are the θB-concretization of (A′
s ; C′A ; N′′

s) (resp. (B′
s ; C′B ;

N′′′
s)) and θB ∈ SolE(C′A ; N′′

s). As c 6∈ names(img(θB)), we also have that

55

c 6∈ names(img(θA)) and hence θA ∈ SolE(CA ; Ns). Since (A′ ; N′′)
out(u,c)θB
−−−−−−−→i

(B′ ; N′′′), we deduce that (νc.A′ ; N)
νd.out(uθB ,d)
−−−−−−−−−→i (B′{d/c} ; N′′′). Note that

c 6= uθB and d ∈ Nch and N′′(d) = n.

Case Scopes.

(A′
s ; C′A ; N′′

s)
α
−→s (B′

s ; C′B ; N′′′
s) n does not occur in α

(νn.A′
s ; νn.C′A ; Ns)

α
−→s (νn.B′

s ; νn.C′B ; N′
s)

We have that As = νn.A′
s, Bs = νn.B′

s, CA = νn.C′A and CB = νn.C′B. More-
over, we have that Ns = N′′

s [n 7→ b] and N′
s = N′′′

s [n 7→ b]. Let θB ∈ SolE(CB ;
N′
s). We have that n 6∈ names(img(θB)). Let θ′B = θB. By Lemma B.1 we have

that θ′B ∈ SolE(C′B ; N′′′
s). Let θ′A = θ′B|cv(C′

A
). By induction hypothesis, we

have that (A′ ; N′′)
αθ′B−−−→i (B′ ; N′′′) where (A′ ; N′′) and (B′ ; N′′′) are respec-

tively the θ′A and the θ′B-concretization of (A′
s ; C′A ; N′′

s) and (B′
s ; C′B ; N′′′

s).
As n 6∈ names(img(θB)), n does not occur in αθ′B and θA = θ′A ∈ SolE(CA ; Ns)

by Lemma B.1. Since (A′ ; N′′)
αθ′B−−−→i (B′ ; N′′′), θB = θ′B and n does not occur

in αθB, we deduce that (νn.A′ ; N)
αθB−−−→i (νn.B′ ; N′)

Case Pars.

(A′
s ; C′A ; Ns)

α
−→s (B′

s ; C′B ; N′
s)

(A′
s | Ds ; C′A | ψ(Ds) ; Ns)

α
−→s (B′

s | Ds ; C′B | ψ(Ds) ; N′
s)

We have that As = A′
s | Ds, Bs = B′

s | Ds, CA = C′A | ψ(Ds) and CB =
C′B | ψ(Ds). Let θB ∈ SolE(CB ; N′

s). Then, by Lemma B.1 we also have
that θ′B = (θBψ(Ds))

⋆ ∈ SolE(C′B ; N′
s). Let θ′A = θ′B|cv(C′

A
). By induction

hypothesis we have that θ′A ∈ SolE(C′A ; Ns) and (A′ ; N)
αθBψ(Ds)
−−−−−−−→i (B′ ; N′)

where (A′ ; N) and (B′ ; N′) are respectively the θ′A and the θ′B concretization
of (A′

s ; C′A ; Ns) and (B′
s ; C′B ; N′

s).
Let θA = θB|cv(CA). We have θ′A = θBψ(Ds)|cv(CA) and θ′A ∈ SolE(C′A ;

Ns). Hence by Lemma B.1 we have that θB|cv(CA) ∈ SolE(C′A | ψ(Ds) ; Ns),
i.e. θA ∈ SolE(CA ; Ns). Let σA (resp. σB , σ′

A and σ′
B) be the substitution

corresponding to the maximal frame of CA (resp. CB, C′A and C′B), We also
have that σA = σ′

A ∪ ψ(Ds) and σB = σ′
B ∪ ψ(Ds). As N′

s(dom(ψ(Ds))) = f

and N′
s(fv (α)) = c, we have that αθBψ(Ds) = αθB. Hence, we have that

(A ; N)
αθB−−−→i (B ; N′) where (A ; N) and (B ; N′) are respectively the θA and

the θB concretization of (As ; CA ; Ns) and (Bs ; CB ; N′
s).

Case Structs. This case is straightforward by relying on Proposition B.2.
�

56

B.2 Completeness Results

Proposition B.4 (completeness of ≡s) Let (As ; CA ; Ns) be a well-formed
symbolic process and θ ∈ SolE(CA,Ns). Let (A ; N) be the θ-concretization of
(As ; CA ; Ns) and B be a process such that (A ; N) ≡i (B ; N). Then there
exists a well-formed symbolic process (Bs ; CB ; Ns) such that:

1. (As ; CA ; Ns) ≡s (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns), and

3. (B ; N) is the θ-concretization of (Bs ; CB ; Ns).

Proof. We show this result by induction on the proof tree witnessing the fact
that (A,N) ≡i (B,N). First we need to consider the following base cases:

Case Par-0i: (D,N) ≡i (D | 0,N). In such a case, we have that A = D and
B = D | 0. Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we
have that A = As(θσA)⋆. Hence, we know that As = Ds for some process Ds

such that Ds(θσA)⋆ = D. Let Bs = Ds | 0 and CB = CA. The symbolic process
(Bs ; CB ; Ns) is well-formed. Moreover, we have

1. (As ; CA ; Ns) ≡s (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns),

3. Bs(θσB)⋆ = (Ds | 0)(θσA)⋆ = D | 0 = B, i.e., (B ; N) is the θ-
concretization of (Bs ; CB ; Ns).

Symmetrically, we have to consider the case where A = D | 0 and B = D. We
know that A = As(θσA)⋆ and we deduce that As = Ds|0 for some process Ds

such that Ds(θσA)⋆ = D. Let Bs = Ds and CB = CA. We easily conclude.

We can deal with the rules Par-A, Par-C and New-C in a similar way.
Now, we show the inductive case, i.e. application of an evaluation context.

In such a case, we have that the proof tree witnessing the fact that (A ; N) ≡i
(B ; N) ends with an application of the following inference rule.

(A′ ; N′) ≡i (B′ ; N′)

(C[A′] ; N) ≡i (C[B′] ; N)

Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that
As(θσA)⋆ = C[A′]. Hence, we deduce that As = Cs[A

′
s] for some evaluation

context Cs and some process A′
s such that Cs(θσA)⋆ = C and A′

s(θσA)⋆ = A′.
Since (As ; CA ; Ns) is well-formed, we have also that CA = Cs[C

′
A] for some

constraint system C′A. Let

N′
s(u) =

{

N′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y.

Let θ′ = (θψ(Cs))
⋆. By Lemma B.1 we have that θ′ ∈ SolE(C′A ; N′

s). We can
apply our induction hypothesis on (A′

s ; C′A ; N′
s) and (A′ ; N′) ≡i (B′ ; N′).

57

We deduce that there exists a well-formed symbolic process (B′
s ; C′B ; N′

s) such
that (A′

s ; C′A ; N′
s) ≡s (B′

s ; C′B ; N′
s), θ

′ ∈ SolE(C′B ; N′
s) and B′

s(θ
′σ′
B)⋆ = B′.

Let Bs = Cs[B
′
s] and CB = Cs[C′B]. We have that

1. (As ; CA ; Ns) ≡ (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns) (by Lemma B.1),

3. Bs(θσB)⋆ = Cs(θσB)⋆[B′
s(θσB)⋆] = C[B′

s(θ
′σ′
B)⋆] = C[B′] = B, i.e.,

(B ; N) is the θ-concretization of (Bs ; CB ; Ns).

This concludes our proof. �

Proposition B.5 (completeness of →s) Let (As ; CA ; Ns) be a well-formed
symbolic process and θ ∈ SolE(CA ; Ns). Let (A ; N) be the θ-concretization of
(As ; CA ; Ns) and (A′,N) be an intermediate process such that (A ; N)→i (A′ ; N).
Then there exists a well-formed symbolic process (A′

s ; C′A ; Ns) such that:

1. (As ; CA ; Ns) −→s (A′
s ; C′A ; Ns),

2. θ ∈ SolE(C′A ; Ns),

3. (A′ ; N) is the θ-concretization of (A′
s ; C′A ; Ns).

Proof. We show this result by induction on the proof tree witnessing the fact
that (A ; N) →i (A′ ; N). First, we need to consider the three base cases, i.e.
the rules Then, Else and Comm. We detail the case of the rule Else, the two
other ones are very similar.
Case Else: (if M = N then P else Q ; N)→i (Q ; N) with M,N ground terms
such that M 6=E N . In such a case, we have that

• A = if M = N then P else Q for some ground termsM,N such thatM 6=E N
and some processes P and Q, and

• A′ = Q.

Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that
A = As(θσA)⋆. Hence, we deduce that

• As = if Ms = Ns then Ps else Qs for some termsMs, Ns, some processes Ps
and Qs such that

• Ms(θσA)⋆ = M , Ns(θσA)⋆ = N , Ps(θσA)⋆ = P and Qs(θσA)⋆ = Q.

Let A′
s = Qs and C′A = CA ∪ {Ms 6= Ns , gd(Ms) , gd(Ns)}. The symbolic

process (A′
s ; C′A ; Ns) is well-formed. Moreover, we have

1. (As ; CA ; Ns) −→s (Qs ; CA ∪ {Ms 6= Ns , gd(Ms) , gd(Ns)} ; Ns)

2. θ ∈ SolE(C′A ; Ns). Indeed, by hypothesis, we know that θ ∈ SolE(CA ; Ns).
We know also that Ms(θσA)⋆ and Ns(θσA)⋆ are ground terms which are
not equal modulo E.

58

3. A′
s(θσA)⋆ = Qs(θσA)⋆ = Q = A′, i.e., (A′ ; N) is the θ-concretization of

(A′
s ; C′A ; Ns).

Now, we show the inductive cases. In case of the structural equivalence inductive
rule, we easily conclude by induction and thanks to Proposition B.4.

Case Application of an evaluation context. In such a case, we have that
the tree witnessing the fact that (A ; N)→i (B ; N) ends with an application of
the following inference rule.

(A′ ; N′)→i (B′ ; N′)

(C[A′] ; N)→i (C[B′] ; N)

Moreover, since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that
As(θσA)⋆ = C[A′]. Hence, we deduce that As = Cs[A

′
s] for some evaluation

context Cs and some process A′
s such that Cs(θσA)⋆ = C and A′

s(θσA)⋆ = A′.
Since (As ; CA ; Ns) is well-formed, we have also that CA = Cs[C

′
A] for some

constraint system C′A. Let

N′
s(u) =

{

N′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y

Let θ′ = (θφ(Cs))
⋆. By Lemma B.1 we have that θ′ ∈ SolE(C′A ; N′

s).
We can apply our induction hypothesis on (A′

s ; C′A ; N′
s) and (A′ ; N′) →i

(B′ ; N′). We deduce that there exists a well-formed symbolic process (B′
s ; C′B ;

N′
s) such that (A′

s ; C′A ; N′
s)→s (B′

s ; C′B ; N′
s), θ

′ ∈ SolE(C′B ; N′
s) and (B′ ; N′)

is the θ-concretization of (B′
s ; C′B ; N′

s). Let Bs = Cs[B
′
s] and CB = Cs[C′B].

We have that

1. (As ; CA ; Ns)→s (Bs ; CB ; Ns),

2. θ ∈ SolE(CB ; Ns) (by Lemma B.1),

3. Bs(θσB)⋆ = Cs(θσB)⋆[B′
s(θσB)⋆] = C[B′

s(θ
′σ′
B)⋆] = C[B′] = B i.e., (B ;

N) is the θ-concretization of (Bs ; CB ; Ns).

This concludes our proof. �

Proposition 8.4 (completeness of
α
−→s) Let (As ; CA ; Ns) be a well-formed

symbolic process and θA ∈ SolE(CA ; Ns). Let (A ; N) be the θA-concretization

of (As ; CA ; Ns) and (A′ ; N′) be an intermediate process such that (A ; N)
α
−→i

(A′ ; N′). Then there exists a well-formed symbolic process (A′
s ; C′A ; N′

s) and a
substitution θ′A such that:

1. (As ; CA ; Ns)
αs−→s (A′

s ; C′A ; N′
s),

2. θ′A ∈ SolE(C′A ; N′
s) and θ′A|cv(CA) = θA,

3. (A′ ; N′) is the θ′A-concretization of (A′
s ; C′A ; N′

s), and

4. αsθ
′
A = α.

59

Proof. We show this result by induction on the tree witnessing the fact that
(A ; N)

α
−→i (A′ ; N′). First, we need to consider the following base cases:

Case Ini: (in(a, x).P ; N)
in(a,M)
−−−−−→i (P{M/x} ; N). In such a case, we have that

• A = in(a, x).P for some channel name a, some variable x and some P ,

• A′ = P{M/x},

• α = in(a,M) for some term M , and

• N(fn(M) ∪ fv (M)) = f.

Since (A ; N) is the θ-concretization of (As ; CA ; Ns) we have that As(θσA)⋆ = A.
Hence, we know that

• As = in(u, x).Ps for some metavariable u and some process Ps such that

• u(θσA)⋆ = a and Ps(θσA)⋆ = P .

We have that u is either a channel name or a constraint variable of channel type
since u(θσA)⋆ = a and a is a channel name.

Let y ∈ Y having the same type than M and such that Ns(y) = n. Let
A′
s = Ps{y/x}, C′A = CA ∪ {0
 y , gd(u)}, αs = in(u, y), θ′ = θ ∪ {y 7→M} and

N′
s = Ns[y 7→ c]. The symbolic process (A′

s ; C′A ; N′
s) is well-formed, and we

have:

1. (As ; CA ; Ns) = (in(u, x).Ps ; CA ; Ns)
αs−→s (Ps{y/x} ; CA ∪ {0
 y , gd(u)} ; N′

s)
= (A′

s ; C′A ; N′
s)

2. We know that θ ∈ SolE(CA ; Ns). It remains to check that θ′ ∈ SolE(C′A ; N′
s),

i.e. θ′ satisfies the constraints
 y and gd(u). This is clearly true due
to the fact that Ns(fn(M) ∪ fv (M)) = f and u(θσA)⋆ = a. Lastly, by
definition of θ′, we have that θ′|

cv(CA) = θ.

3. We have A′
s(θ

′σ′
A)⋆ = Ps{

y/x}(θσA)⋆[y 7→ M] = P{M/x} = A′ since
dom(σA) = dom(σ′

A) = ∅, i.e., (A′ ; N′) is the θ′-concretization of (A′
s ;

C′A ; N′
s), and

4. αsθ
′ = in(u, y)θ′ = in(uθ′, yθ′) = in(a,M) = α.

We can deal with the rules Out-Chi and Out-Ti in a rather similar way.

We now consider the inductive cases.

Case Open-Chi: In such a case, we have that the tree witnessing the fact that
(A ; N)

α
−→i (A′ ; N′) ends with an application of the following inference rule

(B ; N′′)
out(a,c)
−−−−−→i (B′ ; N′′′) c 6= a, N′′(d) = n and d ∈ Nch

(νc.B ; N)
νd.out(a,d)
−−−−−−−→i (B′{d/c} ; N′)

60

Since (νc.B ; N) is the θA-concretization of (As ; CA ; Ns) we have that
As(θAσA)⋆ = νc.B. Hence, we know that As = νc.Bs for some process Bs
such that Bs(θAσA)⋆ = B. Since (νc.Bs ; CA ; Ns) is well-formed, we know that
CA = νc.CB for some well-formed constraint system CB. Let N′′

s be the symbolic
naming environment such that

N′′
s (u) =

{

N′′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y.

Firstly, we have that (Bs ; CB ; N′′
s) is well-formed. We have also that θA ∈

SolE(CB ; N′′
s). We can apply our induction hypothesis on (Bs ; CB ; N′′

s),

θA, (B ; N′′)
out(a,c)
−−−−−→i (B′ ; N′′′). We deduce that there exist a well-formed

symbolic process (B′
s ; C′B ; N′′′

s), a substitution θ′B and a label αBs such that

1. (Bs ; CB ; N′′
s)

αB
s−−→s (B′

s ; C′B ; N′′′
s) and N′′′ = N′′′

s [N′′′−1
s (c) 7→ b],

2. θ′B ∈ SolE(C′B ; N′′′
s) and θ′B|cv(CB) = θA and θ′B|cv(CB) = θ′B since con-

straint variables increase only after an input action.

3. B′
s(θAσA)⋆ = B′, i.e., (B′ ; N′′′) is the θ′B-concretization of (B′

s ; C′B ; N′′′
s)

and

4. αBs θA = out(a, c). Note also that since c 6∈ names(img(θA)), we have that
αBs = out(u, c) for some metavariable u such that uθA = a.

Let A′
s = B′

s{
d/c}, C′A = νd.(C′B{

d/c}), N′
s = N′′′

s [c 7→ b, d 7→ f]. Let
θ′A = θ′B = θA and αs = νd.out(u, d). We have that

1. (As ; CA ; Ns)
αs−→s (A′

s ; C′A ; N′
s). Indeed, we have that

(Bs ; CB ; N′′
s)

out(u,c)
−−−−−→s (B′

s ; C′B ; N′′′
s)

(νc.Bs ; νc.CB ; Ns)
νd.out(u,d)
−−−−−−−→s (B′

s{
d/c} ; νd.(C′B{

d/c}) ; N′
s)

2. θ′A ∈ SolE(C′A ; N′
s) since θ′B ∈ SolE(C′B ; N′′′

s) and c, d 6∈ names(img(θ′B)).
We have also that θ′A|cv(CA) = θ′B|cv(CB) = θA,

3. We have thatA′
s(θ

′
Aσ

′
A)⋆ = (B′

s{
d/c})(θAσ′

A)⋆ = (B′
s{
d/c})(θA(σA{d/c}))⋆ =

B′
s(θAσA)⋆{d/c} = B′{d/c} = A′, i.e., (A′ ; N′) is the θ′A-concretization of

(A′ ; C′A ; N′
s),

4. αsθ
′
A = (νd.out(u, d))θA = νd.out(a, d) = α.

Case Scopei: In such a case, we have that the proof tree witnessing the fact
that (A ; N)

α
−→ (A′ ; N′) ends with an application of the following inference rule

(B ; N′′)
α
−→i (B′ ; N′′′)

with n does not occur in α
(νn.B ; N)

α
−→i (νn.B′ ; N′)

61

Hence, we know that there exist a name n, a label α such that n does not occur
in α and two intermediate extended processes (B ; N′′) and (B′ ; N′′′) such that

A = νn.B, A′ = νn.B′ and (B ; N′′)
α
−→ (B′ ; N′′′). Since (νn.B ; N) is the

θA-concretization of (As ; CA ; Ns) we have that As(θAσA)⋆ = νn.B. Hence, we
know that As = νn.Bs for some process Bs such that Bs(θAσA)⋆ = B. Since
(νn.Bs ; CA ; Ns) is well-formed, we know that CA = νn.CB for some well-formed
constraint system CB. Let N′′

s be the symbolic naming environment such that

N′′
s (u) =

{

N′′(u) if u ∈ N ∪X
Ns(u) if u ∈ Y.

Firstly, we have (Bs ; CB ; N′′
s) is well-formed. By Lemma B.1 we have

θA ∈ SolE(CB ; N′′
s). We apply our induction hypothesis on (Bs ; CB ; N′′

s),

θA, (B ; N′′)
α
−→ (B′ ; N′′′). We deduce that there exist a well-formed symbolic

process (B′
s ; C′B ; N′′′

s), a substitution θ′B and a label αBs such that:

1. (Bs ; CB ; N′′
s)

αB
s−−→s (B′

s ; C′B ; N′′′
s) and N′′′ = N′′′

s |N∪X .

2. θ′B ∈ SolE(C′B ; N′′′
s) and θ′B|cv(CB) = θA,

3. B′
s(θ

′
Bσ

′
B)⋆ = B′, i.e., (B′ ; N′′′) is the θ′B-concretization of (B′

s ; C′B ; N′′′
s),

4. αBs θ
′
B = α.

Let A′
s = νn.B′

s, C
′
A = νn.C′B, N′

s = N′′′
s [n 7→ b]. Let θ′A = θ′B and αs = αBs .

Note that the symbolic process (A′
s ; C′A ; N′

s) is well-formed. Moreover, we have

1. (As ; CA ; Ns)
αs−→ (A′

s ; C′A ; N′
s). Indeed, we have that

(Bs ; CB ; N′′
s)

αs−→s (B′
s ; C′B ; N′′′

s)

(νn.Bs ; νn.CB ; Ns)
αs−→s (νn.B′

s ; νn.C′B ; N′
s)

2. θ′A ∈ SolE(C′A ; N′
s) by Lemma B.1 since θ′B ∈ SolE(C′B ; N′′′

s) and n 6∈
names(img(θ′B)). We have also that θ′A|cv(CA) = θ′B|cv(CB) = θA,

3. We have that A′
s(θ

′
Aσ

′
A)⋆ = (νn.B′

s)(θ
′
Bσ

′
B)⋆ = νn.B′ = A′, i.e., (A′ ; N′)

is the θ′A-concretization of (A′
s ; CA ; N′

s),

4. αsθ
′
A = (αBs)θ′B = α.

Case Pari: In such a case, we have that the proof tree witnessing the fact that
(A ; N)

α
−→i (A′ ; N′) ends with an application of the following inference rule.

(B ; N)
αψ(D)
−−−−→i (B′ ; N′)

(B | D ; N)
α
−→i (B′ | D ; N′)

Since (As ; N) is the θA-concretization of (As ; CA ; Ns) we have that A = B |
D = As(θAσA)⋆. Hence, we know that

62

• As = Bs | Ds for some processes Bs and Ds such that

• Bs(θAσA)⋆ = B and Ds(θAσA)⋆ = D.

Since (Bs | Ds ; CA ; Ns) is well-formed, we deduce that CA = CB | ψ(Ds)
for some well-formed constraint system CB. We have that (Bs ; CB ; Ns) is well-
formed. Let θB = (θAψ(Ds))

⋆. By Lemma B.1 we have that θB ∈ SolE(CB ; Ns).
We can apply our induction hypothesis. We deduce that there exists a well-
formed symbolic process (B′

s ; C′B ; N′
s), a substitution θ′B and a label αBs such

that:

1. (Bs ; CB ; Ns)
αB

s−−→s (B′
s ; C′B ; N′

s) and

N′
s(u) =

{

N′(u) if u ∈ N ∪ X
Ns(u) if u ∈ Y.

2. θ′B ∈ SolE(C′B ; N′
s) and θ′B|cv(CB) = θB ,

3. B′
s(θ

′
Bσ

′
B)⋆ = B′, i.e., (B′ ; N′) is the θ′B-concretization of (B′

s ; C′B ; N′
s),

4. αBs θ
′
B = αψ(D).

Let A′
s = B′

s | Ds, C
′
A = C′B | ψ(Ds). To define θ′A, we distinguish two cases.

1. Either α is of the form in(c,M) and αBs = in(u, y) for some metavariable
u and some variable y with Ns(y) = n such that uθA = uθB = c. In such a
case, let θ′A = θA∪{y 7→M}. Moreover, as θB = (θAψ(Ds))

⋆, θ′B |cv(CB) =
θB, αBs θ

′
B = αψ(D) and Ds(θAσA)⋆ = D we have that θ′B = (θ′Aψ(Ds))

⋆.

2. Otherwise, θ′A = θA. Moreover in this case we have that θ′B = θB =
(θAψ(Ds))

⋆ = (θ′Aψ(Ds))
⋆.

Let αs = αBs . Note that the symbolic process (A′
s ; C′A ; N′

s) is well-formed.
Moreover, we have

1. (As ; CA ; Ns)
αs−→ (A′

s ; C′A ; N′
s). Indeed, we have that

(Bs ; CB ; Ns)
αs−→s (B′

s ; C′B ; N′
s)

(Bs | Ds ; CB | ψ(Ds) ; Ns)
αs−→s (B′

s | Ds ; C′B | ψ(Ds) ; N′
s)

2. We have to show that θ′A ∈ SolE(C′A ; N′
s). As θ′B = (θ′Aψ(Ds))

⋆ ∈
Sol(C′B ; N′

s) we have by Lemma B.1 that θ′A ∈ SolE(C′B | ψ(Ds) ; N′
s). It

is clear that we have also θ′A|cv(CA) = θA.

3. We have thatA′
s(θ

′
Aσ

′
A)⋆ = (B′

s | Ds)(θ
′
Aσ

′
A)⋆ = B′

s(θ
′
Aσ

′
A)⋆ | Ds(θ

′
Aσ

′
A)⋆ =

B′
s(θ

′
Bσ

′
B)⋆ | Ds(θAσA)⋆ = B′ | D = A′, i.e., (B′ | D ; N′) is a θ′A-

concretization of (A′
s ; C′A ; N′

s),

63

4. In the case where α = in(c,M), we have that αsθ
′
A = in(u, y)θ′A =

in(c,M) = α. Otherwise, the equality holds since ψ(D) and ψ(Ds) do
not affect variables which occurs in a label since those variables are of
type channel.

Lastly, we can deal with the rule Structi by relying on our Proposition B.4.
This allows us to conclude. �

64

