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Abstract

Electronic voting promises the possibility of a convenjegfticient and secure facility
for recording and tallying votes in an election. Recentlghtighted inadequacies of im-
plemented systems have demonstrated the importance oélgraerifying the underly-
ing voting protocols. We study three privacy-type proprtof electronic voting proto-
cols: in increasing order of strength, they are vote-psiveeceipt-freeness, and coercion-
resistance.

We use the applied pi calculus, a formalism well adapted tdetiimg such protocols,
which has the advantages of being based on well-understwuzkpts. The privacy-type
properties are expressed using observational equivalartae show in accordance with
intuition that coercion-resistance implies receipt-fregs, which implies vote-privacy.

We illustrate our definitions on three electronic votingtpomls from the literature. Ide-
ally, these three properties should hold even if the eladatificials are corrupt. However,
protocols that were designed to satisfy receipt-freenessercion-resistance may not do
so in the presence of corrupt officials. Our model and dedfingiallow us to specify and
easily change which authorities are supposed to be trugtyor
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1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a con-
venient, efficient and secure facility for recording andiytal votes. It can be used
for a variety of types of elections, from small committeenfline communities
through to full-scale national elections. Electronic ugtprotocols are formal pro-
tocols that specify the messages sent between the votemdamdistrators. Such
protocols have been studied for several decades. Theytb#gpossibility of ab-
stract analysis of the voting system against formallyestadroperties.

In this paper, we recall some existing protocols which hasenbdeveloped over
the last decades, and some of the security properties teeytanded to satisfy.
We focus on privacy-type properties. We present a framevi@mrknalysing those
protocols and determining whether they satisfy the progert

From the protocol point of view, the main challenge in desigran election system
is to guarante®ote-privacy We may distinguish three main kinds of protocols in
the literature, classified according to the mechanism thayl@y to guarantee pri-
vacy. Inblind signature schem¢$6,25,31,36], the voter first obtains a token, which
is a message blindly signed by the administrator and knovyntorthe voter her-
self. The signature of the administrator confirms the veteligibility to vote. She
later sends her vote anonymously, with this token as proehigibility. In schemes
usinghomomorphic encryptiofv,28], the voter cooperates with the administrator
in order to construct an encryption of her vote. The admiaist then exploits ho-
momorphic properties of the encryption algorithm to conepilie encrypted tally
directly from the encrypted votes. A third kind of schemesussndomisation (for
example by mixnets) to mix up the votes so that the link betwaster and vote is
lost [17,18]. Our focus in this paper is on protocols of thstfiype, although our
methods can probably be used for protocols of the second Bgmause it involves
mixes, which are probabilistic, the third type is hard tor@dd with our methods
that are purely non-deterministic.

Properties of electronic voting protocols. Some properties commonly sought
for voting protocols are the following:

¢ Eligibility: only legitimate voters can vote, and only once

e Fairness: no early results can be obtained which could infei¢he remaining
voters.

¢ Individual verifiability: a voter can verify that her vote waeally counted.

e Universal verifiability: the published outcome really i€tbum of all the votes.

e \ote-privacy: the fact that a particular voter voted in atjgatar way is not re-
vealed to anyone.



e Receipt-freeness: a voter does not gain any informatisegq@ip) which can be
used to prove to a coercer that she voted in a certain way.

e Coercion-resistance: a voter cannot cooperate with a eosr@rove to him that
she voted in a certain way.

The last three of these are broagiyvacy-typeproperties since they guarantee that
the link between the voter and her vote is not revealed by b gol.

The weakest of the three, calledte-privacyroughly states that the fact that a voter
voted in a particular way is not revealed to anyone. Wheragtatthis simple way,
however, the property is in general false, because if althers vote unanimously
then everyone will get to know how everyone else voted. Tha#&tisation we give

in this paper in fact says that no party receives informatrbich would allow them
to distinguish one situation from another one in which twteve swap their votes.

Receipt-freenessays that the voter does not obtain any artefact (a “regangtich
can be used later to prove to another party how she voted. Sueteipt may be
intentional or unintentional on the part of the designehefsystem. Unintentional
receipts might include nonces or keys which the voter isrgtgring the protocol.
Receipt-freeness is a stronger property than privacyitiveely, privacy says that
an attacker cannot discern how a voter votes from any infoomahat the voter
necessarily reveals during the course of the election.iBefreeness says the same
thing even if the voter voluntarily reveals additional infaation.

Coercion-resistances the third and strongest of the three privacy propertigmia,

it says that the link between a voter and her vote cannot ladblesdied by an at-
tacker, this time even if the voter cooperates with the k&aduring the election
process. Such cooperation can include giving to the attaake data which she
gets during the voting process, and using data which thekattgrovides in return.
When analysing coercion-resistance, we assume that teead the attacker can
communicate and exchange data at any time during the elquticess. Coercion-
resistance is intuitively stronger than receipt-freenssee the attacker has more
capabilities.

Of course, the voter can simply tell an attacker how she vdbetl unless she
provides convincing evidence the attacker has no reasoeltevb her. Receipt-
freeness and coercion-resistance assert that she cammwdegiconvincing evi-
dence.

Coercion-resistance cannot possibly hold if the coercemptysically vote on be-
half of the voter. Some mechanism is necessary for isolatiegvoter from the
coercer at the moment she casts her vote. This can be rebjisedoting booth,
which we model here as a private and anonymous channel hetieesoter and
the election administrators.



Note that in literature the distinction between receipefiess and coercion-resistance
is not very clear. The definitions are usually given in ndtia@guage and are insuf-
ficiently precise to allow comparison. The notion of recdrpeness first appeared
in the work of Benaloh and Tuinstra [8]. Since then, sevethkses [8,40] were
proposed in order to meet the condition of receipt-fregnasislater shown not to
satisfy it. One of the reasons for such flaws is that no forneéihdion of receipt-
freeness has been given. The situation for coercion-aegistis similar. Systems
have been proposed aiming to satisfy it; for example, Okarjit] presents a sys-
tem resistant to interactive coercers, thus aiming tofgatrtbat we call coercion-
resistance, but this property is stated only in naturaluagg. Recently, a rigorous
definition in a computational model has been proposed by &ueal. for coercion-
resistance [32]. We present in this paper what we believeetthb first “formal
methods” definition of receipt-freeness and coercionstasce. It is difficult to
compare our definition and the one proposed by Jetetd. [32] due to the inher-
ently different models.

Verifying electronic voting protocols. Because security protocols in general are
notoriously difficult to design and analyse, formal verifioa techniques are par-
ticularly important. In several cases, protocols which evlrought to be correct
for several years have, by means of formal verification teghes, been discovered
to have major flaws. Our aim in this paper is to use and devetoification tech-
niques, focusing on the three privacy-type properties rmopatl above. We choose
the applied pi calculugl] as our basic modelling formalism, which has the ad-
vantages of being based on well-understood concepts. Thieadpi calculus has

a family of proof techniques which we can use, and it is pastlpported by the
ProVerif tool [9]. Moreover, the applied pi calculus allows to reason about equa-
tional theories in order to model the wide variety of cryptgghic primitives often
used in voting protocols.

As it is often done in protocol analysis, we assume the Dykw-abstraction:
cryptographic primitives are assumed to work perfectly] #re attacker controls
the public channels. The attacker can see, intercept aed imessages on public
channels, but can only encrypt, decrypt, sign messagesrforpeother crypto-
graphic operations if he has the relevant key. In generahssame that the attacker
also controls the election officials, since the protocoldgnvestigate are supposed
to be resistant even if the officials are corrupt. Some of tieséggols explicitly re-
quire a trusted device, such as a smart card; we do not assinthé attacker
controls those devices.

How the properties are formalised. As already mentioned, the vote-privacy
property is formalised as the assertion that the attackes dot receive informa-
tion which enables him to distinguish a situation from aeotbne in which two
voters swap their votes. In other words, the attacker cagistihguish a situation



in which Alice votesa and Bob vote$, from another one in which they vote the
other way around. This is formalised as an observationalvalgnce property in
applied pi.

Receipt-freeness is also formalised as an observationalagnce. Intuitively, a
protocol is receipt-free if the attacker cannot detect éekhce between Alice
voting in the way he instructed, and her voting in some othay,wrovided Bob
votes in the complementary way each time. As in the case wqyj Bob’s vote is
required to prevent the observer seeing a different numibastes for each candi-
date. Alice cooperates with the attacker by sharing sedratghe attacker cannot
interact with Alice to give her some prepared messages.

Coercion-resistance is formalised as an observationavagquce too. In the case
of coercion-resistance, the attacker (which we may alddhteatoercer) is assumed
to communicate with Alice during the protocol, and can prepaessages which
she should send during the election process. This givesdbeer much more
power.

Ideally, these three properties should hold even if thetieleofficials are corrupt.
However, protocols that were designed to satisfy voteagsiyreceipt-freeness or
coercion-resistance do not necessarily do so in the presaincorrupt officials.
Our model and definitions allow us to specify and easily cleamngich authorities
are supposed to be trustworthy.

Related properties and formalisations. The idea of formalising privacy-type
properties as some kind of observational equivalence ilmegss algebra or calcu-
lus goes back to the work of Schneider and Sidiropoulos [@Bhilar ideas have
been used among others by Fournet and Abadi [24], Maual. [37] as well as
Kremer and Ryan [35]. Other formalizations of anonymity laased on epistemic
logics, e.g. [27]. All of these definitions are mainly conued with possibilistic
definitions of anonymity. It is also possible to defpr@babilisticanonymity, such
asin [42,45,27,12], which gives a more fine-grained charesation of the level of
anonymity which has been achieved. In [21,44,13], inforamatheoretic measures
have been proposed to quantify the degree of anonymityidrptiper we only fo-
cus onpossibilisticflavours of privacy-type properties and assume that channel
are anonymous (without studying exactly how these chararelsnplemented).

Receipt-freeness and coercion-resistance are more shdntisimple privacy. They
involve the idea that the voter canmbve how she voted to the attacker. This is
a special case of incoercible multi-party computation,chihas been explored
in the computational security setting [11]. Similarly teethdefinition, we define
incoercibility as the ability to present the coercer witkdalata which matches the
public transcript as well as the real data. Our definitioncgdises the setting to
electronic voting, and is designed for a Dolev-Yao-like rlod



Independently of our work, Jonker and de Vink [29] give a tadicharacterisa-
tion of the notion of receipt in electronic voting processkmker and Pieters [30]
also define receipt-freeness in epistemic logic. Howevailenthese formalisms
may be appealing to reason about the property, they seersuisd for modelling

the protocol and attacker capabilities. These logics aagegkto expressing prop-
erties rather than operational steps of a protocol. Thusletfing protocols using

epistemic-logic-based approaches is tedious and reqaihégh degree of exper-
tise. Baskaet al. [5] present a promising approach defining an epistemic Iogic

a protocol language.

The “inability to prove” character of coercion-resistarened receipt-freeness is
also shared by the property callause-freeness contract-signing protocols. A
contract-signing protocol is abuse-free if signer Alicamat prove to an observer
that she is in a position to determine the outcome of the aohtAbuse-freeness
has been formalised in a Dolev-Yao-like setting [33] as th#itg to provide a
message that allows the observer to test whether Alice iagh a position. This
notion of test is inspired by static equivalence of the aappi calculus. However,
this notion of test is purelpffling which is suitable for abuse-freeness. In our for-
malization the voter may provide data that allows an actilxeesary to distinguish
two processes which yields a more general notion of recpipb@bly too general
for abuse-freeness).

To the best of our knowledge, our definitions constitute th&t bservational
equivalence formalisations of the notion bt being able to proven the formal
methods approach to security.

Electronic voting in the real world. Governments the world over are trialling
and adopting electronic voting systems, and the securpigcs have been con-
troversial. For example, the electronic voting machinesdus recent US elec-
tions have been fraught with security problems. ReseasdBéj have analysed the
source code of the Diebold machines used in 37 US statesamnhlgsis has pro-
duced a catalogue of vulnerabilities and possible attddkse recent work [22]
has produced a security study of the Diebold AccuVote-T3$ngomachine, in-
cluding both hardware and software. The results showsttigavulnerable to very
serious attacks. For example, an attacker who gets physicaks to a machine or
its removable memory card for as little as one minute coutalhmalicious code,
which could steal votes undetectably, modifying all respidgs, and counters to
be consistent with the fraudulent vote count it createsyTdigo showed how an
attacker could create malicious code that spreads autcatigtirom machine to
machine during normal election activities. In another gtwdDutch voting ma-
chine was reprogrammed to play chess, rather than courg,wetech resulted in
the machine being removed from use [26].

These real-world deployments do not rely on the kind of fdrpratocols studied



in this paper, and therefore our work has no direct bearinthem. The protocols
studied here are designed to ensure that vote stealingpsognaphically impos-
sible, and the properties of individual and universal valility provide guaran-
tee that voters can verify the outcome of the election théraselt is hoped that
work such as ours in proving the security properties of suotogols will promote

their take-up by makers of electronic voting equipment.dpldyed, these proto-
cols would—at least to some extent—remove the requirenognii$t the hardware
and software used by election officials, and even to trusttfi@als themselves.

This paper. We recall the basic ideas and concepts of the applied pi lcalcu
in Section 2. Next, in Section 3, we present the frameworkdamalising voting
protocols from the literature, and in Section 4 we show how ttiree privacy-
like properties are formalised. Also in Section 4, we inigede the relationships
between the properties and we show that the expected imiphsahold between
them. In Sections 5, 6 and 7 we recall three voting protoaasfthe literature,
and show how they can be formalised in our framework. We @ealyhich of the
properties they satisfy.

Some of the results have been published in two previous p4p8&r19]. This pa-
per extends and clarifies our results, provides more exanipétter explanations,
additional case studies and includes proofs. In particalardefinition of coercion-
resistance in this paper is much simpler than our previofisitien [19], where we
relied on a notion we calleddaptive simulationThat notion turned out to have
some counter-intuitive properties, and we have removed it.

2 The applied pi calculus

The applied pi calculus [1] is a language for describing corent processes and
their interactions. It is based on the pi calculus, but iendied to be less pure and
therefore more convenient to use. The applied pi calculus 8me sense, similar
to the spi calculus [2]. The key difference between the twonfdisms concerns
the way that cryptographic primitives are handled. The afiudus has a fixed set
of primitives built-in (symmetric and public-key encrypti), while the applied pi
calculus allows one to define less usual primitives (oftemdus electronic vot-
ing protocols) by means of an equational theory. The apgiedlculus has been
used to study a variety of security protocols, such as atermathentication proto-
col [24] or a key establishment protocol [3].



2.1 Syntax and informal semantics

To describe processes in the applied pi calculus, one stétfisa set ofnames
(which are used to name communication channels or otheriatdata), a set of
variables and asignatureX: which consists of théunction symbolsvhich will be
used to defingerms In the case of security protocols, typical function synsbol
will include enc for encryption, which takes plaintext and a key and retuhes t
corresponding ciphertext, anidc for decryption, taking ciphertext and a key and
returning the plaintext. Terms are defined as names, vagabhd function sym-
bols applied to other terms. Terms and function symbols ared, and of course
function symbol application must respect sorts and aritasthe means of an
equational theor§ we describe the equations which hold on terms built from the
signature. We denoteg the equivalence relation induced ByA typical example
of an equational theory useful for cryptographic protoeetec(enc(x, k), k) = z.

In this theory, the term%; = dec(enc(enc(n, k1), k), ko) andT, = enc(n, k;) are
equal, we havé’ =g T (while obviously the syntactic equalif§} = 7> does not
hold). Two terms are related byg only if that fact can be derived from the equa-
tions inE. When the set of variables occurring in a tefhis empty, we say thaf’

is ground

In the applied pi calculus, one hatain processeandextended processeBlain
processes are built up in a similar way to processes in thalpilus, except that
messages can contain terms (rather than just names). Inrdh@@r described
below, M and N are terms;: is a name,r a variable and: is a metavariable,
standing either for a name or a variable.

PQ,R:= plain processes
0 null process
P|Q parallel composition
P replication
vn.P name restriction
if M = N thenP else) conditional
in(u, x).P message input
out(u, N).P message output

We use the notatiom(u, =M) to test whether the input om is equal (modulo
E) to the termM/ (if it doesn’t, the process blocks). Moreover, we sometiss
tuples of terms, denoted by parentheses, while keepinggbatienal theory for
these tuples implicit.

Extended processes addtive substitutionand restriction on variables:

A B,C = extended processes
P plain process



A|B parallel composition

vn.A name restriction
ve.A variable restriction
{M/.} active substitution

{M/.} is the substitution that replaces the variablith the terma/. Active sub-
stitutions generalise “let”. The process.({*/,} | P) corresponds exactly to the
process “letr = M in P”. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We wrjtg A), bv(A), fn(A) andbn(A)

for the sets of free and bound variables and free and boundsaf, respectively.

We also assume that, in an extended process, there is at mestbstitution for
each variable, and there is exactly one when the variabkstsicted. We say that

an extended processdtosedif all its variables are either bound or defined by an
active substitution.

Active substitutions are useful because they allow us to amegxtended process

to its frame ¢(A) by replacing every plain process i with 0. A frame is an
extended process built up frotnand active substitutions by parallel composition
and restriction. The frame(A) can be viewed as an approximationfthat ac-
counts for the static knowledgé exposes to its environment, but nds dynamic
behaviour.

Example 1 Forinstance, consider the extended processes {*/,.} | {¥2/.,} | P
and A, = {1/, } | {*/,,} | P.. Even if these two processes are different from
the point of view of their dynamic behaviour, the framég, ) and¢(A,) are equal.
This witnesses the fact thdt and A, have the same static knowledge.

The domain of a frame, denoted bylom(yp), is the set of variables for which
defines a substitution (those variablefor which ¢ contains a substitutiof* /. }
not under a restriction on).

An evaluation context[_] is an extended process with a hole instead of an ex-
tended process. Structural equivalence, netgid the smallest equivalence relation
on extended processes that is closed undeonversion on names and variables,
by application of evaluation contexts, and such that

PAR-0 Al0=A REPL lP=P|P

PAR-A A|(B|C)=(A|B)|C Rewrite {M/.} ={"/.}

PAR-C A|B=B|A if M =g N
NEwW-0 vn.0 =0 ALias v {M/,} =0

NEw-C vu.vv.A = vv.vu. A Susst  {M/. 31 A={M/}]| A{M/.}

NEW-PAR A |vu.B = vu.(A|B) ifué fn(A)U fu(A)



Example 2 Consider the following proceds:
vs.vk.(out(cy,enc(s, k)) | in(cy,y).out(cs, dec(y, k))).

The first component publishes the messagés, k) by sending it ore; . The second
receives a message on, uses the secret kdyto decrypt it, and forwards the
resulting plaintext orx,. The procesg’ is structurally equivalent to the following
extended process4:

A= Vs,k,xl.(out(cl,xl) | in(cy,y).0ut(csy, dec(y, k)) | {enc(s’k)/wl})
We haves(A) = vs, k, z,.{"=K /. 1 =0 (sincer; is under a restriction).
The following lemma will be useful in the remainder of the pap

Lemma3 LetCy = vuy.(- | By) andCy = vio.(- | B2) be two evaluation
contexts such that, N (fv(Bz) U fn(By)) = 0 anday N (fo(By) U fn(By)) = 0.
We have tha€'[Cs][A]] = C,[C1[A]] for any extended process

PROOF. Let A be an extended process. We have that
C1[Cs[A]] = viy.(vue.(A | By) | By)
= vig.viy.((A| By) | Ba)  sinceuy € fu(By) U fn(By)
= vig.(viy.(A| By) | By)  sincedy € fu(By) U fn(Bs)
= C[C1[A4]] O

2.2 Semantics

The operational semantics of processes in the applied pulcal is defined by
structural rules defining two relationstructural equivalencébriefly described in
Section 2.1) andhternal reduction noted—. Internal reduction— is the smallest
relation on extended processes closed under structuratdepce and application
of evaluation contexts such that

(Comm) out(a,z).P |in(a,z).Q — P | Q

(THEN) if M = M thenP elseQ — P

(ELSE) if M = N thenP else — @

for any ground termd@/ and N such thatM #g N.
The operational semantics is extended lgteelledoperational semantics enabling
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us to reason about processes that interact with their enwieot. Labelled opera-
tional semantics defines the relati&nwhereq is either an input, or the output of
a channel name or a variable of base type.

(IN) in(a, z).p =@M, poary
(OuT-ATOM) out(a, u).P out(au) - p
PRLICONYY u#a
(OPEN-ATOM) T
N
(Scop) A% A wdoes not occur im
vu. A 2, vu. A’
(PAR) A% A bu(a) N fo(B) = bn(a) N fa(B) =0
A|BS A | B
(STRUCT) A=B B=-B A=B

AS A

Note that the labelled transition is not closed under appbo of evaluation con-
texts. Moreover the output of a terf needs to be made “by reference” using a
restricted variable and an active substitution.

Example 4 Consider the procesB defined in Example 2. We have
Po= v ka(out(er, ) | in(ey,y).0ut(es,dec(y, b)) | {4/, })
vay.out(c1,r1) vs, k.(in(cy,y).out(cy, dec(y, k)) | {enc(&k)/m})
O, s, k.(0ut(es, dec(ay, k)) | {6/, 1)

= vs, k, xa.(0Ut(c, z2) | {0CM [y} | {decer) /1)
vag.out(c1,r2) Vs, k'({enc(s,k)/m} | {dec(xl,k)/m})

Let A be the extended process obtained after this sequence dftienlsteps. We
have thatp(A) = vs.vk.{erek) /s /1,
2.3 Equivalences

We can now define what it means for two frames tetaically equivalenfl].

11



Definition 5 (Static equivalence £,)) Two termsV/ and N areequal in the frame
¢, written (M =g N)¢, if, and only if there exist8 and a substitutiorr such that
¢ =vin.o, Mo =g No,andn N (fn(M)U fn(N)) = 0.

Two framesp; and ¢, are statically equivalenty; ~g ¢, when:

e dom(¢;) = dom(¢y), and
e forall termsM, N we have thatM =g N)¢, if and only if (M =g N)¢ps.

Two extended processe$ and B are said to be statically equivalent, denoted
by A =~ B, if we have that)(A) ~, ¢(B).

Example 6 Let oy = vk.op and ¢, = vk.o; whereg, = {ectok)/ F/ 1
oy = {ecbuk) )/ F /) and sg,s; and k are names. LeE be the theory de-
fined by the axiondec(enc(x, k), k) = x. We havedec(xy, z2)00 =g so but not
dec(z1,x2)01 =g so. Therefore we have, %, ;. However, note that we have
Vk,_{enc(so,k)/ml} ~ Vk.{enc(sl,k’)/ml}.

Definition 7 (Labelled bisimilarity ( ~,)) Labelled bisimilarityis the largest sym-
metric relationR on closed extended processes, such th@& B implies

(1) A=, B,

(2) if A— A',thenB —* B’and A’ R B’ for someB’,

() if A= A'andfv(a) C dom(A) andbn(a)Nfn(B) = 0, thenB —*%—* B’
and A’ R B’ for someB’.

The definition of labelled bisimilarity is like the usual defion of bisimilarity,
except that at each step one additionally requires that ribeepses are statically
equivalent. It has been shown that labelled bisimilarityncmles with observa-
tional equivalence [1]. We prefer to work with labelled bidarity, rather than
observational equivalence, because proofs for labellsonbarity are generally
easier. Labelled bisimilarity can be used to formalise msagurity properties, in
particular anonymity properties, such as those studiekisnpaper.

When we model protocols in applied pi calculus, we model theelst parties as
processes. The dishonest parties are considered to be ttvedeontrol of the at-
tacker, and are not modelled explicitly. The attacker (togewith any parties it
controls) form the environment in which the honest processa. This arrange-
ment implies that we consider only one attacker; to put irtla@roway, we consider
that all dishonest parties and attackers share informatmitrust each other, thus
forming a single coalition. This arrangement does not aliswo consider attackers
that do not share information with each other.

12



3 Formalising voting protocols

Before formalising security properties, we need to definatidan electronic vot-

ing protocol in applied pi calculus. Different voting protds often have substantial
differences. However, we believe that a large class of gqgpirotocols can be rep-
resented by processes corresponding to the followingtsiieic

Definition 8 (Voting process) A voting process is a closed plain process
VP=vn.(Voy |- | Vo, | A1 |-+ | An).

TheV g, are the voter processes, thgs the election authorities which are required
to be honest and th& are channel names. We also suppose that dom(s;) is

a variable which refers to the value of the vote. We define afuation contexts
which is asVP, but has a hole instead of two of ther;.

In order to prove a given property, we may require some of ththaities to be
honest, while other authorities may be assumed to be ceduptthe attacker. The
processed\, ..., A,, represent the authorities which are required to be honbst. T
authorities under control of the attacker need not be mede#lince we consider
any possible behaviour for the attacker (and therefore asgiple behaviour for
corrupt authorities). In this case the communications nbbnare available to the
environment.

We have chosen to illustrate our definition with three clzsselectronic voting
protocols of the literature: a protocol due to Fujiodaal. [25], a protocol due to
Okamoto [40] and one due to Le al. [36]. After a brief and informal descrip-
tion of those protocols, we formalise them in the appliedgdcelus framework in
Sections 5, 6 and 7.

4 Formalising privacy-type properties

In this section, we show how the anonymity properties, imfaity described in the
introduction, can be formalised in our setting and we shovadcordance with in-
tuition, that coercion-resistance implies receipt-fiees) which implies privacy. It
is rather classical to formalise anonymity properties aseskind of observational
equivalence in a process algebra or calculus, going bachketavbrk of Schnei-
der and Sidiropoulos [43]. However, the definition of anortyrproperties in the
context of voting protocols is rather subtle.

13



4.1 \ote-privacy

The privacy property aims to guarantee that the link betveegimen votel” and his
vote v remains hidden. Anonymity and privacy properties have lsmcessfully
studied using equivalences. However, the definition ofgmyvin the context of
voting protocols is rather subtle. While generally mostusiig properties should
hold against an arbitrary number of dishonest participaartsitrary coalitions do
not make sense here. Consider for instance the case whdyetahe voter are
dishonest: as the results of the vote are published at thelendishonest voter can
collude and determine the vote of the honest voter. A claksick for modelling
anonymity is to ask whether two processes, one in whighvotes and one in
which V votes, are equivalent. However, such an equivalence ddadsithere
as the voters’ identities are revealed (and they need tousalexl at least to the
administrator to verify eligibility). In a similar way, argeivalence of two processes
where only the vote is changed does not hold, because thea@@ublished at the
end of the protocol. To ensure privacy we need to hiddithkebetween the voter
and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we needuppose that at
least two voters are honest. We denote the votérand Vs and their votes:,
respectivelyb. We say that a voting protocol respects privacy wheneveoegss
wherel/, votesa andV votesh is observationally equivalent to a process whére
votesh andVz votesa. Formally, privacy is defined as follows.

Definition 9 (Vote-privacy) A voting protocol respectgote-privacy(or just pri-
vacy) if

SWal®/o} | VB /o3 e SIVa{"/o} | Va{"/u}]

for all possible votes andb.

The intuition is that if an intruder cannot detect if arbiyréionest votery’, andVp
swap their votes, then in general he cannot know anythingtatowy V4 (or Vg)
voted. Note that this definition is robust even in situatiatgere the result of the
election is such that the votes Bf andV; are necessarily revealed. For example,
if the vote is unanimous, or if all other voters reveal howytheted and thus allow
the votes ofl’, andV5 to be deduced.

A protocol satisfying privacy also allows arbitrary per@itibns of votes between
voters. For example, we may prove that

SWVa{®/o} [ VB{"/u} | Vel /ol me SVa{®/u} | VB{/o} [ Vel /u}]
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as follows:

S[VA{Q/U} ‘ VB{b/v} ‘ VC{C/U}]
~e SIVa{®/o} | Ve{®/o} | Ve{©/u}] using privacy, withS” = S[_ | Vo{/.}]
~e S[Val®/o} | Ve{/u} | Ve{?/.}] using privacy, withS” = S[Vo{"/.} | ]

As already noted, in some protocols the vote-privacy pryparay hold even if au-

thorities are corrupt, while other protocols may requiredhthorities to be honest.
When proving privacy, we choose which authorities we wanhazel as honest,
by including them in Definition 8 of/P (and hence).

4.2 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formaliseda observational equiv-
alence. We also formalise receipt-freeness using obsenzhtequivalence. How-
ever, we need to model the fact thét is willing to provide secret information, i.e.,
the receipt, to the coercer. We assume that the coercerastitfe attacker who, as
usual in the Dolev-Yao model, controls the public chanriedsnodelV4’s commu-
nication with the coercer, we consider that executes a voting process which has
been modified: any input of base type and any freshly gerceretenes of base type
are forwarded to the coercer. We do not forward restricteshokl names, as these
are used for modelling purposes, such as physically sebareels, e.g. the voting
booth, or the existence of a PKI which securely distribuegskthe keys themself
are forwarded but not the secret channel name on which treddeyreceived).

Definition 10 (ProcessP") Let P be a plain process andh a channel name. We
defineP" as follows:

ch = 0
P | )ch = Pch | Qch
vn.P)" = vn.out(ch, n). P whenn is name of base type,
vn.P)" = yn. P otherwise,
u

[ ]
. (
° (
° (
e (in(u,r).P)" = in(u, z).out(ch, z).P» whenz is a variable of base type,
o (in(u,z).P)" = in(u, z).P" otherwise,
e (out(u, M).P)*" = out(u, M).P",
° (; )ch S 'PCh,

o (if M = N thenP elseQ)"* = if M = N thenP elseQ“".

In the remainder, we assume that ¢ fn(P) U bn(P) before applying the trans-
formation.
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Given an extended procegsand a channel namé:, we need to define the ex-
tended procesd \*“(<") Intuitively, such a process is as the procdssut hiding
the outputs on the channgl.

Definition 11 (ProcessA\**!¢")) Let A be an extended process. We define the
processA\*“#ch) asych.(A |lin(ch, ).

We are now ready to define receipt-freeness. Intuitivelypgogol is receipt-free if,
for all votersV/,, the process in whicl’, votes according to the intruder’s wishes
is indistinguishable from the one in which she votes somettglse. As in the
case of privacy, we express this as an observational eguislto a process in
which V4, swaps her vote witlvz, in order to avoid the case in which the intruder
can distinguish the situations merely by counting the vatdbe end. Suppose the
coercer’s desired vote is Then we define receipt-freeness as follows.

Definition 12 (Receipt-freeness)A voting protocol igeceipt-freaf there exists a
closed plain procesg” such that

o VNeutleher) o~ Vu{/,},
o S[Va{®/u}" | VB{*/u}] 2 SIV' | VB{/u}],

for all possible votes andc.

As before, the context in the second equivalence includes those authorities that
are assumed to be honegt.is a process in which votér, votesa but communi-
cates with the coercer' in order to feign cooperation with him. Thus, the second
equivalence says that the coercer cannot tell the differéetween a situation in
which V4 genuinely cooperates with him in order to cast the vond one in
which she pretends to cooperate but actually casts theaygteovided there is
some counterbalancing voter that votes the other way arduelfirst equivalence

of the definition says that if one ignores the outplitsnakes on the coercer chan-
nelche, thenV’ looks like a voter process, voting a.

The first equivalence of the definition may be considered tomng; informally,
one might consider that the equivalence should be requinddio a particular
S context rather than requiring it in any context (with accessll the private
channels of the protocol). This would result in a weaker d&im, although one
which is more difficult to work with. In fact, the variant dettion would be only
slightly weaker; it is hard to construct a natural examplecidistinguishes the
two possibilities, and in particular it makes no differenc¢he case studies of later
sections. Therefore, we prefer to stick to Definition 12.

According to intuition, if a protocol is receipt-free (foigaven set of honest author-
ities), then it also respects privacy (for the same set):

Proposition 13 If a voting protocol is receipt-free then it also respects/pcy.
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Before we prove this proposition we need to introduce a lemma

Lemma 14 Let P be a closed plain process and a channel name such that
ch & fn(P) U bn(P). We have Peh)\out(ch-) ~, P,

PROOF. (sketch, see Appendix A for details)

We show by induction on the size @t that for any channel namé&: such that
ch & fn(P)Ubn(P), the equivalencé"\°u(<") ~, P holds. The base case where
P = 0is trivial. Then, we consider the different possibilities building P. a

PROOF. (of Proposition 13)
By hypothesis, there exists a closed plain prodéssuch that

° V/\out(chc,-) ~ VA{a/v}1 and
o SVa{e/u}" | VB{®/u} me SIV' | VB{¢/u}]-

By applying the evaluation contexthc.( _ |lin(che, z)) on both sides we obtain
S[VA{C/U}C]’LC ‘ VB{Q/U}]\Out(ChC,~) ~ S[V, | VB{C/U}]\OM(C}IC’.)-

By using Lemma 3, we obtain that:

° S[VA{c/v}chc | VB{a/U}]\out(chc,-) = S[(VA{c/v}chc)\out(chc,~) ‘ VB{a/v}]a
o S[V'| VB{C/U}]\out(chc,~) = S[vl\out(chc,-) | Ve{</u}.

Lastly, thanks to Lemma 14 and the fact that labelled bisirityl is closed under
structural equivalence, we deduce that

SIWVa{*/o} | Va{"/}] me SV | Vi {e,}].

Since we havé/\eutcher) ~, v, {2/ 1 we easily conclude. O
4.3 Coercion-Resistance

Coercion-resistance is a stronger property as we give teecep the ability to
communicatenteractivelywith the voter and not only receive information. In this
model, the coercer can prepare the messages he wants thaovetnd. As for
receipt-freeness, we modify the voter process. In the chseaycion-resistance,
we give the coercer the possibility to provide the messagesater should send.
The coercer can also decide how the voter branchéfs-statements.

Definition 15 (ProcessP*?) Let P be a plain process and;, c; be channel
names. We definé“-* inductively as follows:
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v =0,

(P ’ Q)Cl €2 = Pe1,c2 ’ QCI e

(vn.P)2 = pyn.out(cq, n). P2 whenn is a name of base type,

(vn.P)2 = yn. P2 otherwise,

(in(u, z).P)* = in(u, x).out(cy, z). P> whenz is a variable of base type,

(in(u, z).P)* = in(u, z). P otherwise,

(out(u M).P)“e =in(cq, z).0ut(u, z). P> whenM is a term of base type
andz is a fresh variable,

(out(u, M).P) = out(u, M ). P otherwise,

o (IP)crc2 = |perez

e (if M = N thenP elseQ)** = in(cy, x). if z = true then P> else)**
wherez is a fresh variable and true is a constant.

As a first approximation, we could try to define coercionssice in the following
way: a protocol is coercion-resistant if there i§asuch that

SWVal' /o | Ve {®/o}] e SIV' | VB{*/u}]. (1)

On the left, we have the coerced votér{’/,}2; no matter what she intends to
vote (the “?7), the idea is that the coercer will force her taex. On the right, the
process)/’ resists coercion, and manages to veté&nfortunately, this character-
isation has the problem that the coercer could obligé¢’/, }¢*2 to voted # c.

In that case, the proce${“/,} would not counterbalance the outcome to avoid a
trivial way of distinguishing the two sides.

To enable us to reason about the coercer’s choice of vote, agelnthe coercer’s
behaviour as a context that defines the interfaeg, ¢, for the voting process. The
contextC' coerces a voter to vote Thus, we can characterise coercion-resistance
as follows: a protocol is coercion-resistant if there is’asuch that

SICIVa{' o} | VE{"/u}] = SICIV] | Va{/}, (@)

where C' is a context ensuring that the coerced vatar’/,}<* votesc. The
contextC' models the coercer’'s behaviour, while the environment risoithe co-
ercer’s powers to observe whether the coerced voter belaaviestructed. We ad-
ditionally require that the context’ does not directly use the channel names
restricted byS. Formally one can ensure thit {*/, }¢*2 votesc by requiring that
CVa{?/,yere2] =y Va{¢/,}". We actually require a slightly weaker condition,
S[CIVa{ /o3 | VB{/u}] ~¢ S[Va{¢/,}" | Vs{*/,}], which results in a
stronger property.

Putting these ideas together, we arrive at the followingnitedn:

Definition 16 (Coercion-resistance)A voting protocol icoercion-resistantthere
exists a closed plain proce$8 such that for anyC' = vey.ve,.( - | P) satisfying
AN fn(C) = 0andS[C[Va{* [} | VE{"/u}] e SIVa{*/o}" | VB{"/.}, we
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have

° C[V/]\out(chc,-) ~ VA{Q/U}’
o S[CIVa{'/u}r=] | VB{*/u}] = SICIV'] | VE{*/u}].

Note thatV4{*/,}“*2 does not depend on what we put for “?".

The condition thatS[C[Va{?/,}4?] | Ve{*/u}] ~¢ S[Va{¢/u} | Vs{*/u}]
means that the contekt outputs the secrets generated during its computation; this
is required so that the environment can make distinctiontherasis of those se-
crets, as in receipt-freeness. The first bullet point exg@aeshal’’ is a voting pro-
cess forA which fakes the inputs/outputs with and succeeds in votingin spite

of the coercer. The second bullet point says that the coeeserot distinguish be-
tweenV’ and the really coerced voter, provided another vbigcounterbalances.

As in the case of receipt-freeness, the first equivalencleflefinition could be
made weaker by requiring it only in a particuldrcontext. But we chose not to
adopt this extra complication, for the same reasons as givtie case of receipt-
freeness.

Remark 17 The contextC' models the coercer’s behaviour; we can see its role
in equivalence (2) as imposing a restriction on the distisging power of the
environment in equivalence (1). Since the coercer’s behavs modelled by
while its distinguishing powers are modelled by the enviment, it would be useful
to write (2) as

CISWVal' /o] | Va{®/u}]] e CISIV! | Va{*/,}]. 3)
Equivalences (2) and (3) are the same (Lemma 3).

According to intuition, if a protocol is coercion-resistahen it respects receipt-
freeness too (as before, we keep constant the set of horiketitias):

Proposition 18 If a voting protocol is coercion-resistant then it also resfs receipt-
freeness.

PROOF. Let C be an evaluation context such tl@t= vc,.vce.( - | P) for some
plain process? and S[C[Va{"/.,}"?] | Vi{®/}] m0 SIVal*/u}" | Va{*/u}]:
Note that such &' can be constructed directly from the vote procés8y hypoth-
esis, we know that there exists a closed plain prot&ssich that

° C[vl]\out(chc,-) ~ VA{Q/U}’
o S[CIVa{'/u}r=] | VB{*/u}] = SICIV'] | VB{*/u}].

We need to show that there exi$t§ such that
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° V//\out(chc,.) ~2 VA{a/U}’
o SVa{e/u}" | VB{*/u}l = SIV" | VB{/u}].

Let V = C[V']. We directly obtain the first requirement. For the second aree
take the hypotheses

o S[CIVa{®/u}=2] | VB{"/u}] m¢ S[C[V'] | VB{°/.}], and
o SCIVa{ o} [ VB{*/u}] me SIVa{/u}" [ VB{*/u}].

By transitivity of ~,, we obtainS[Va{¢/,}"¢ | Ve{®/.,}] ¢ S[C[V'] | V5{¢/.}].
Lastly, we replac&”[V’] on the right byl”. O

Using the definition of coercion-resistance. To show that a voting protocol sat-
isfies coercion-resistance, it is necessary to give a psdcesand it is necessary
to show the two bullet points in the definition for all context which satisfy the
requirement stated in the definition. In case studies, iffi€dlt to reason about all
possible context§’, and our analysis is rather informal. In future work, we hape
provide better methods for doing that.

To show that a voting protocol does not satisfy coerciofstasce, it is necessary
to show that for alll’’, there exists a context' for which the bullet points fail.
In practice, one may try to give a singlé which works for allV’. Since this is a
stronger condition, it is sufficient.

5 Protocol due to Fujioka, Okamoto and Ohta

In this section we study a protocol due to Fujioka, Okamotb@hta [25]. We first
give an informal description of the protocol (see Sectiah).5Then, we show in
Section 5.2 how this protocol can be modelled in the appliegiculus. Lastly, in
Section 5.3, we show that the protocol respects privacy. é¥ew the protocol is
not receipt-free [40]. The Fujioka, Okamoto and Ohta protegas also analysed
by Nielseret al.[39], but their focus is on properties such as verifiabilygibility,
and fairness, rather than the privacy-type propertiesisfaper.

5.1 Description

The protocol involves voters, an administrator, verifythgt only eligible voters
can cast votes, and a collector, collecting and publishiegvbtes. In comparison
with authentication protocols, the protocol also uses samesual cryptographic
primitives such as secure bit-commitment and blind sigeatuMoreover, it relies
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on anonymous channels. We deliberately do not specify tlyahese channels are
handled as any anonymiser mechanism could be suitable diegemm the precise
context the protocol is used in. One can use MIX-nets intceduoy Chaum [14]
whose main idea is to permute and modify (by using decryptiore-encryption)
some sequence of objects in order to hide the correspondstaeen elements
of the original and the final sequences. Some other impleatiens may also be
possible, e.g. onion routing [46].

A bit-commitment scheme allows an ageatto commit a valuev to another
agentB without revealing it immediately. MoreoveR is ensured thatl cannot
change her mind afterwards and that the value she laterlsewdbbe the same as
she thinks at the beginning. For thi$ encrypts the value in some way and sends
the encryption td3. The agent3 is not able to recover until A sends him the key.

A blind signature scheme allows a requester to obtain a gignaf a message:
without revealing the messageto anyone, including the signer. Hence, the signer
is requested to sign a message blindly without knowing weaigns. This mech-
anism is very useful in electronic voting protocol. It allwhe voter to obtain a
signature of her vote by an authority who checks that sheighsto vote without
revealing it to the authority.

In a first phase, the voter gets a signature on a commitmets tote from the ad-
ministrator. To ensure privacy, blind signatures [15] asedy i.e. the administrator
does not learn the commitment of the vote.

e \oter I/ selects a vote and computes the commitment= (v r) using the
commitment schemgand a random key;

e IV computes the message-= x(z,b) using a blinding functiony and a random
blinding factorb;

¢ V digitally signse and sends her signatuse (e¢) to the administratod together
with her identity;

e A verifies thatl” has the right to vote, has not voted yet and that the signature
is valid; if all these tests hold4 digitally signse and sends his signatueg, (e)
toV;

e VV nowunblindsc4(e) and obtaing; = o4(x), i.e. a signed commitment 3’s
vote.

The second phase of the protocol is the actual voting phase.

e V sendg, A’s signature on the commitment t0s vote, to the collecto€' using
an anonymous channel;

e (' checks correctness of the signatyrend, if the test succeeds, entéfsr, y)
into a list as arf-th item.
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The last phase of the voting protocol starts, once the dolletecides that he re-
ceived all votes, e.g. after a fixed deadline. In this phasegadlters reveal the random
key r which allowsC' to open the votes and publish them.

e (' publishes the list/;, x;, y;) of commitments he obtained,;

¢ V verifies that her commitmentis in the list and seidsto C' via an anonymous
channel;

e (' opens thée-th ballot using the randomand publishes the vote

Note that we need to separate the voting phase into a comntifpi@ase and an
opening phase to avoid releasing partial results of theieleand to ensure privacy.
This is ensured by requiring synchronisation between tfierdnt agents involved
in the election.

5.2 The model in applied pi

Cryptographic primitives as an equational theory. We model cryptography in
a Dolev-Yao style as being perfect. The equations are gieéwb

open(commit(m,r),r) = m
checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m,r),r) = m
unblind(sign(blind(m, r), sk),r) = sign(m, sk)

In this model we can note that bit commitment (modelled byftimetionscommit
and open) is identical to classical symmetric-key encryption. Fondicity, we
identify host names and public keys. Our model of cryptogi@aprimitives is an
abstraction; for example, bit commitment gives us perfedibg and hiding. Digi-
tal signatures are modeled as being signatures with messameery, i.e. the signa-
ture itself contains the signed message which can be esttasing thehecksign
function. To model blind signatures we add a pair of fundaibind andunblind.
These functions are again similar to perfect symmetric keyygption and bit com-
mitment. However, we add a second equation which permite egttact a signa-
ture out of a blind signature, when the blinding factor iswnoNote that the equa-
tion modelling commitment cannot be applied on the tepen(commit(m,ry), 1)
Whenrl 7é ra.

Process synchronisation. As mentioned, the protocol is divided into three phases,
and it is important that every voter has completed the firasptbefore going onto
the second one (and then has completed the second one befirruing to the
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(* private channels )

v privCh.r pkaChly pkaCh2 v skaCh v skvaChv skvbCh.
(* admi nistrators =*)

(processK | processA| processA| processC | processC |
(* voters =)

(let skvCh = skvaChin let v = a in processV) |

(let skvCh = skvbChin let v = b in processV) )

Process 1. Main process

processK=
(* private keys *)
v ska. v skva. v skvb.
(* correspondi ng public keys =)
let (pka, pkva, pkvb)=(pk(ska), pk(skva), pk(skvbn
(* public keys disclosure x)
out(ch,pka). out(ch, pkva). out(ch, pkvb).
(* register legitimte voters *)
(out(privCh , pkva) out(privCh , pkvb) |
(* keys disclosure on private channels x*)
out(pkaChl, pka)| out(pkaChl, pka)| out(pkaCh2,pka) |
out(pkaCh2,pka)| out(skaCh,ska) | out(skaCh,ska) |
out(skvaCh,skva)| out(skvbCh, skvb))

Process 2. Administrator for keying material

third). We enforce this in our model by the keywarghch. When a process en-
counterssynch n, it waits until all the other process that could encousteich n
arrive at that point too. Then all the processes are allowedntinue.

If there arek processes that can encoundgrich n, we can implement the syn-
chronisation as follows. The commasghch n is replaced byut(n,0);in(n,=1)
wheren is a globally declared private channel. Moreover we assumaditional
procesgin(n,=0);...;in(n,=0);0out(n, 1);...;out(n, 1) that has: ins andk outs.
This simple encoding is fine for our purpose since the valueazin be inferred by
inspecting the code; it would not work if new processes wesated, e.g. with “1”.

Main (Process 1). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the privamrels are for key
distribution. We only model the protocol for two voters amadrich two copies of

the administrator and collector process, one for each voter

Keying material (Process 2). Our model includes a dedicated process for gener-
ating and distributing keying material modelling a PKI. Atitwhally, this process
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processV = (*» paraneters: skvCh, v x)
(* her private key =)
in(skvCh,skv).
(* public keys of the adm nistrator =*)
in(pkaChl, pubka).
v blinder. v r.
let committedvote = commit(v,r)in
let blindedcommittedvote=blind(committedvote , blindei
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
synch 2.
in(ch4 ,(l,=committedvote ,=sighedcommittedvote)) .
out(ch5,(1,r))

Process 3. Voter process

processA =
(» administrator’s private key x)
in(skaCh,skadm).
(* register legimtate voters x)
in(privCh , pubkv).
in(chl,ml).
let (pubkeyv,sig) = mlin
if pubkeyv = pubkvthen
out(ch2,sign(checksign(sig,pubkeyv),skadm))

Process 4. Administrator process

registers legitimate voters and also distributes the putdis of the election au-
thorities to legitimate voters: this is modelled using riegtd channels so that the
attacker cannot provide false public keys.

Voter (Process 3). First, each voter obtains her secret key from the PKI as well
as the public keys of the administrator. The remainder okfexification follows
directly the informal description given in Section 5.1.

Administrator (Process 4). The administrator first receives through a private
channel his own public key as well as the public key of a legate voter. Le-
gitimate voters have been registered on this private chamiFocess 2 described
above. The received public key has to match the voter whgiisgto get a signed
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processC =
(* administrator’s public key =)
in (pkaCh2, pkadmin) .
synch 1.in(ch3,(m3,m4)).
if checksign(m4,pkadmin) = m3hen
synch 2.
v |.
out(ch4 ,(1,m3,m4)).
in (ch5,(=1,rand)).
let voteV=open(m4,rand)in
out(ch,voteV)

Process 5. Collector process

ballot from the administrator. If the public key indeed niegs, then the adminis-
trator signs the received message which he supposes to beladballot.

Collector (Process 5). When the collector receives a committed vote, he asso-
ciates a fresh labél with this vote. Publishing the list of votes and labels is mod
elled by sending those values on a public channel. Then tiee an send back the
random number which served as a key in the commitment schayether with the
label. The collector receives the key matching the label@rehs the vote which

he then publishes.

5.3 Analysis

Vote-privacy. According to our definition, to show that the protocol respgxi-
vacy, we need to show that

SWVal®/o} | Va{®/u}]) = SVal®/o} | Va{*/.}]. (4)

whereV, = processV{*** "/ cn}, Vi = processV{*k**Ch /. cn} andS is de-
fined as the parallel composition of the voter processesylitita hole instead of
the two voter processes. We do not require that any of theoatids are honest,
so they are not modelled i, but rather left as part of the attacker context. To
establish this equivalence, we show that

vpkaChl.(V4{%/,} | VB{®/,}| processK)
~ ()
vpkaChl.(V4{®/,} | VB{?/,}| processK)
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Note that this implies privacy (equivalence 4) only in theesaf precisely two vot-
ers (i.e.,S doesn’t contain any additional voters). To deduce equncded for an
arbitrary context, one would like to use the fact that labelled bisimilaritglissed
under application of evaluation contexts. Unfortunatilg, context/pkaChl._pre-
vents us from easily making this inference (recall thietCh1 is the channel on
which the voters receive the public key of the administiaOur proof is formally
valid only for two voters, although a similar proof can eadie made for other
numbers.

Note that to ensure privacy we do not need to require any okelge to be secret.
However, we need to ensure that both voters use the same fallifor the ad-
ministrator. Therefore, we send this public key on a privdtannel, although the
secret key itself is a free name. Werename the bounded variables and names in
the two voter processes in a straightforward way. AlthougVerif is not able to
prove this observational equivalence directly, we were &bcheck all of the static
equivalences on the frames below using ProVerif (see Leni@asd 20).

We denote the left-hand processfaand the right-hand process@sWe have that
bothprocessK start with the output of all the keys. None of these transgidepend
on the value of the vote, and so they commute in the same wak ford . For
the sake of readability, we do not detail this part. The onipartant point is that
the output of the administrator’s public key is sent on agitevchannel yielding an
internal reduction. We have that

in(skvaCh,skva) in(skvbCh,skvb)

P

P1 P2—>

vay.out(ch,x1) l/bA-VTA-VbB-VTB-<P3 | {(pk(skva),sign(blind(commit(a,rA),bA),sk’Ua))/xl}

vaa.out(ch,2) l/bA.l/TA.I/bB.I/TB.<P4 ‘ {(pk(skva),sign(blind(commit(a,rA),bA),skva)/ml}

| {(pk(skvb),sign(blind(commit(b,rB),bB),skvb)/z2})

Similarly,

in(skvaCh,skva) in(skvbCh,skvb)

Q

1 Q2 —*

vzy.out(ch,r1) VbA-VTA-VbB-VTB-(Q?, | {(pk:(skva),sign(blind(commit(b,rA),bA),skva))/$1}

vza.out(ch,x2) I/bA-VTA~VbB-V7"B~(Q4 | {(pk skva),sign(blind(commit(b,r 4),ba), skva/ }

| { (pk(skuvbd),sign(blind(commit(a,rp),bg),skvb) / })

We could have considered any permutation of these transitdhich respects the
partial order dictated by the processes. Note that for tbgemputs we may con-
sider any public term, i.e. term that does not use boundectsaiithe processes.
For the next input of both voters, we need to consider twoaséher the input
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of both voters corresponds to the expected messages froadthimistrator or at
least one input does not correspond to the correct adnatoss signature. In the
second case, one of the voters will block, as testing coresst of the message
fails and hence they cannot synchronise. In the first cagh,ymders synchronise
at phasel. Until that point any move of votev,{*/,} on the left-hand side has
been imitated by votev,{®/, } on the right-hand side and equally for the second
voter. However, from now on, any move of voté;{*/,} on the left-hand side
will be matched with the corresponding movelgf{*/,} on the right-hand side
and similarly for the second voter. The voters will now outiie committed votes
signed by the administrator. The corresponding framesesertbed below and are
statically equivalent.

¢P’ = I/bA.I/TA.VbB.I/TB. {(pk(skva),sign(blind(commit(a,r,q),bA),skva))/ml} ‘

{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/$2} |
{(commit(a,rA),sign(commit(a,rA),ska))/:E?)} |

{ (commit(b,rg),sign(commit(b,rg),ska)) /x4 }

¢Q/ = I/bA.I/TA.VbB.I/TB. {(pk(skva),sign(blind(commit(b,rA),bA),skUa))/xl} ’
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/xQ} ‘
{(commit(a,rB),sign(commit(a,rB),ska))/$3} |

{ (commit(b,r4),sign(commit(b,r4),ska)) /504 }

The following result can be establish using ProVerif.
Lemma 19 The frames)p and ¢ are statically equivalent.

For the following input, we again consider two cases: eitherninput of both voters
corresponds to the expected messages or at least one irggihdbsucceed the
tests. In the second case, one of the voters will block, @aimgesorrectness of the
message fails and hence they cannot synchronise. In thedssf we obtain at the
end the two frames below which are again statically equntale

ng” = I/bA.I/TA.VbB-VTB- {(pk(skva),sign(blind(commit(a,rA),bA),skva))/wl}
{(pk(skvb),sign(blind(commit(b,rg),bB),skvb))/IQ} ‘

{(commit(a,rA),sign(commit(a,rA),Ska))/13} |

{(commit(b,rB),sign(commit(b,rB),ska))/x4} |

{ara) o} {0 [}
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ng// = l/bA.l/TA.VbB.VTB- {(pk(skva),sign(blind(commit(b,r‘,q),bA),skva))/ml} |

{(pk(sk:vb),sign(blind(commit(a,’rg),bB),skUb))/IQ} |
{(commit(a,rB),sign(commit(a,rB),sk’a))/x3} |

{(commit(b,rA),sign(commit(b,r,q),ska))/z4} ‘

{0478 [} [ {0270 [}

Again, ProVerif is able to establish the following result.
Lemma 20 The frames)p» and ¢~ are statically equivalent.

Note that it is sufficient to prove static equivalences forahchable final states.
Thus, Lemma 19 is actually a consequence of Lemma 20.

Note that the use of phases is crucial for privacy to be résge®When we omit
the synchronisation after the registration phase with thriaistrator, privacy is
violated. Indeed, consider the following scenario. Vdtgrcontacts the adminis-
trator. As no synchronisation is considered, vdtgrcan send his committed vote
to the collector before votéry contacts the administrator. As voteég could not
have submitted the committed vote, the attacker can lirkkdbmmitment to the
first voter’s identity. This problem was found during a firsteanpt to prove the
protocol where the phase instructions were omitted. Thggrai paper divides the
protocol into three phases but does not explain the cruzipbrtance of the syn-
chronisation after the first phase. Our analysis emphatfigeseed and we believe
that it increases the understanding of some subtle defaite @rivacy property in
this protocol. We may also note that we do not make any assongpabout the
correctness of the administrator or the collector, who nmeagdrrupt, However, we
need to assume that both voters use the same value for theiattator’s public
key. Otherwise, privacy does not hold.

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter givesiyathe random numbers
for blinding and commitment, i.é., andr4, the coercer can verify that the com-
mitted vote corresponds to the coercer’s wish and by unioighthe first message,
the coercer can trace which vote corresponds to this phaticoter. Moreover,

the voter cannot lie about these values as this will immedidie detected by the
coercer.

In our framework, this corresponds to the fact that therstexiol’’ such that:
° V/\out(chc,-) ~ VA{a/v}y
o S[Va{/u}" [ Ve{®/u} e SIV' | VB{*/}]-
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We show that there is nB’ by proving that the requirements 6ff are not satis-
fiable. We have that/4{¢/,}"* outputs the values, andb, on the channethc.
This will generate entries in the frame. Hent@,needs to generate similar entries
in the frame. The coercer can now verify that the valugsandb, are used to
encode the vote in the message sent to the administrator. Thuss not able to
commit to a value different from, in order to satisfy the second equivalence. But
thenV” will not satisfy the first equivalence, since he will be ureatd change his
vote afterwards as the commitmenttbas been signed by the administrator. Thus,
the requirements o’ are not satisfiable.

The failure of receipt-freeness is not due to the possildbatiesty of the admin-
istrator or collector; even if we include them as honestigegrthe protocol still
doesn't guarantee receipt-freeness. It follows that ¢oeresistance doesn't hold
either.

6 Protocol due to Okamoto

In this section we study a protocol due to Okamoto [40] whidswlesigned to
be incoercible. However, Okamoto himself shows a flaw [4-Jc@xding to him,
one of the reasons why the voting scheme he proposed had dlash ia that no
formal definition and proof of receipt-freeness and coergesistance have been
given when the concept of receipt-freeness has been irdeadby Benaloh and
Tuinstra [8].

6.1 Description

The authorities managing the election are an administfateegistration, a collec-
tor for collecting the tokens and a timeliness member (dshbyT") for publishing
the final tally. The main difference with the protocol due tgiékaet al.is the use
of a trap-door bit commitment scheme [23] in order to rewiegceipt-freeness.
Such a commitment scheme allows the agent who has perfolmetbtnmitment
to open it in many ways. Hence, trap-door bit commitment dussind the voter
to the votev. Now, to be sure that the voter does not change her mind atnithe e
(during the opening stage) she has to say how she wants toh@&peommitment
during the voting stage. This is done by sending the requinémmation to7’
through an untappable anonymous channel, i.e. a physiparafus by which only
voter V' can send a message to a party, and the message is perfecdi teedll
other parties.

The first phase is similar to the one of the protocol due todkajet al. The only
change is thaf is a trap-door bit commitment scheme.
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The second phase of the protocol is the actual voting phase, tde voter has to
say how she wants to open her commitment to the timeliness@ei

e VV sendgy, A’s signature on the trap-door commitmentf& vote, to the collec-
tor C using an anonymous channel;

e (' checks correctness of the signatyrand, if the test succeeds, entéisy)
into a list.

e IV sendqu,r, z) to the timeliness membé&r through an untappable anonymous
channel.

The last phase of the voting protocol starts, once the dolletecides that he re-
ceived all votes, e.g. after a fixed deadline.

e (' publishes the listz;, y;) of trap-door commitments he obtained,;

e V verifies that her commitment is in the list;

e T publishes the list of the vote in random order and also proves that he knows
the permutationr and ther;’s such thate,;, = £(v;, ;) without revealingr or
ther;’s.

We have chosen to not entirely model this last phase. Inquadati we do not
model the zero-knowledge proof performed by the timelimassnberT’, as it is
not relevant for illustrating our definitions of privacycespt-freeness and coercion-
resistance. This proof of zero-knowledge is very usefuhsuee thafl” outputs the
correct vote chosen by the voter. This is important in ordegrisure correctness,
even in the case thdt is dishonest. However, the proof of knowledge is unimpor-
tant for anonymity properties. In particular,ifis the coercer himself, then he can
enforce the voter to vote as he wants as in the protocol duejtola et al. Indeed,
the timeliness membdr can force the voter to give him the trap-door she has used
to forge her commitment and then he can not only check if thenttas vote as he
wanted, but he can also open her vote as he wants.

6.2 The model in applied pi

Cryptographic primitives as an equational theory. The equations modelling
public keys and blind signatures are the same as in Secoif®@model trap-door
bit commitment, we consider the two following equations:

open(tdcommit(m,r,td),r) = m

tdcommit(my, r, td) = tdcommit(my, f(my, r, td, m,), td)

Firstly, the termtdcommit(m, r, td) models the commitment of the messagen-
der the keyr by using the trap-dootd. The second equation is used to model
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(* private channels )

v privCh. v pkaChl. v pkaCh2.

v skaCh. v skvaCh.rv skvbCh.v chT.

(* administrators x)

(processK | processA| processA| processC | processC |
processT | processT |

(* voters =)

(let skvCh=skvaChin let v=a in processV) |

(let skvCh=skvbChin let v=b in processV) )

Process 6. Main process

processV = (* paraneters: skvCh, v x)
(* her private key *)
in(skvCh,skv).
(* public keys of the adninistrator =)
in(pkaChl, pubka).
v blinder. v r. v td.
let committedvote = tdcommit(v,r,td)n
let blindedcommittedvote=blind (committedvote , blindeiih
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubka)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
out(chT,(v,r,committedvote))

Process 7. Voter process

the fact that a commitmenticommit(m;, r, td) can be viewed as a commitment
of any valuem,. However, to open this commitment as one has to know the
key f(my, r, td, my). Note that this is possible only if one knows the keysed to
forge the commitmentdcommit(my, r, td) and the trap-dootd.

Main (Process 6). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the privadermels are for key dis-
tribution. The channethT is the untappable anonymous channel on which voters
send tadl” how they want to open their commitment.

We have also a dedicated process for generating and distglbkeying material

modelling a PKI. This process is the same as the one we hage fpvthe protocol
due to Fujiokeet al. (see Section 5).
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processC =
(* administrator’s public key =)
in (pkaCh2, pkadmin) .
synch 1.
in(ch3,(m3,m4)).
if checksign(m4,pkadmin) = m3hen
synch 2.
out(chBB,(m3,m4))

Process 8. Collector process

processT =
synch 1.
(* reception du commitment =)
in(chT,(vt,rt,xt)).
synch 2.
if open(xt,rt) = vt then
out(board, vt)

Process 9. Timeliness process

Voter (Process 7). This process is very similar to the one given in the previous
section. We use the primitivelcommit instead okcommit and at the end, the voter
sends, through the chanrIT, how she wants to open her commitment.

Administrator.  The administrator process is exactly the same as the one igive
Section 5 to model the protocol due to Fujickieal.

Collector (Process 8). When( receives a commitment, he checks the correct-
ness of the signature and if he succeeds, he enters thimpa list. This list is
published in a second phase by sending the values contaitieel list on the public
channekhBB.

Timeliness Member (Process 9). The timeliness member receives, througf,
messages of the forrivt, rt, xt) wherevt is the value of the votext the trap-door

bit commitment andt the key he has to use to open the commitment. In a second
phase, he checks that he can obtaiby opening the commitmert with rt. Then,

he publishes the votet on the board. This is modelled by sendiwtgon a public
channel.
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6.3 Analysis

Unfortunately, the equational theory which is required todel this protocol is
beyond the scope of ProVerif and we cannot rely on automatetication, even
for the static equivalence parts.

Vote-privacy. Privacy can be established as in the protocol due to Fupbled.
Note that the equivalence proved there does not hold hereéhade to hide the
outputs on the channehT. Hence, we establish the following equivalence

vpkaChl.uchT.(V4{?/,} | VB{®/,}| processK | processT | processT)
~

vpkaChl.vchT.(Va{?/,} | VB{%/,}| processK | processT | processT)

Below we show that the protocol respects receipt-freenedance privacy also
holds.

Receipt-freeness. To show receipt-freeness one needs to construct a précess
which successfully fakes all secrets to a coercer. The &léaril’”’ to votea, but
when outputting secrets to the coerdéflies and gives him fake secrets to pretend
to cast the vote. The crucial part is that, using trap-door commitment araohkis

to the fact that the key used to open the commitment is seoiigfran untappable
anonymous channel, the value given by the voter to the timreagd memberf can

be different from the one she provides to the coercer. Heheeyoter who forged
the commitment, provides to the coercer the one allowingctiexcer to retrieve
the votec, whereas she sends’iothe one allowing her to cast the vate

We describe such a procesgsin Process 10. To prove receipt-freeness, we need to
show that

° V/\out(chc,-) R~y VA{a/v}a and
o SVa{/u} [ Ve{*/u}] = SIV" | Vs{*/u}]-

The contextS we consider here is the same we have used to establish privacy
i.e. vpkaChl.vchT.( _ | processK | processT | processT); thus, as for Fujiokaet

al., the proof is valid for two voters. The first equivalence mayseen informally

by considering/’ without the instructionsdut(chc, . ..)", and comparing it visu-

ally with V4{*/,,}. The two processes are the same.

To see the second labelled bisimulation, one can inforncalihsider all the execu-
tions of each side. We denote the left-hand proces8 aad the right-hand ag.
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processV =
(* her private key =)
in(skvCh,skv).out(chc,skv).
(* public keys of the adm nistrator =*)
in(pkaChl, pubka). out(chc, pubka).
v blinder. v r. v td.
out(chc, blinder). out(chc,f(a,r,td,c)). out(chc,td).
let committedvote = tdcommit(a,r,td)n
let blindedcommittedvote=blind (committedvote , blindeiih
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
out(chc,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
out(chc,(committedvote ,signedcommittedvote)).
out(chT,(a,r,committedvote)) .
out(chc,(c,f(a,r,td,c),committedvote))

Process 10. V'- Receipt-freeness

Both processK start with the output of all the keys. For sake of readabiity ignore
these outputs which are not really important for what we viessehow. We denote
by 7 the sequence of names, r4,tda, bg, g, tdg. After distribution of keying
material which can be done in the same way on both sides, wenabghat the
instructions oft/4{¢/, }<"* can be matched with those &f. Similarly, execution
steps performed bys{*/,} on the left are matched withz{°/,} on the right.
We need, of course, to consider all the possible executibtiseatwo processes.
However, to argue that the processes are bisimilar, we denbelow a particular
execution and we describe the interesting part of the twodsawe obtained after
execution of the first phase by the two processes.
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p in(skvaCh,skva) vzi.out(chc,z1) P1 | {Skva/xl} in(skvbCh,skvb) _x P2 | {Skva/ml}

veg.out(che,xa)  vas.out(che,xs) vaa.out(che,xa)

2O, s (Py | {599} | PR [} | 4} |} ] {44 })

vze.out(ch,ze)

viv (Py | {5 )o } [{POR) [} 10 o} 1 faid 109 s}
’ {(pk(sk’va),sign(blind(tdcommit(c,rA,tdA),bA),sk’va))/xG})
vr.out(che,zr) - skva ska r
— " v (P [ {0 PR [ P e T i} T}
| {(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/xG} | {xs/$7})
vxg.out(ch,rg) - va a r
———— i (Po [ {0 o b [ {PPR o b 1 {0 o} {74} {4 0}

| {(pk(sk’va),sign(blind(tdcommit(c,rA,tdA),bA),sk’va))/z6} ‘ {x6/$7})

|{(pk(skvb),sign(blind(tdcommit(a,rg,tdB),bB),skvb))/ })
xs S )

Similarly,

in(skvaCh,skva)

Q

vry.out(che,xy) Ql | {Skva/xl} in(skvbCh,skvb) o QQ | {Skva/{rl}

veg.out(che,xa)  ves.out(che,xs) vra.out(che,ry)

ves.out(che,xs)
_ T4

s
N

Qs [ o} PR [y} [ {08 o} [ {T0ratdad) [ 3 [ {1940 })
Qa7 o AP o} [ {04 o} [ e atdac) [ 3 | {404 /0 }

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/ })
z6

(Qs | {70 o} [{PRERD [y} 104 o } | {T 07000 o 3 | {19 /0 }

‘ {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/xs} ’ {$6/17})

(Qo | {70 [} [{PRERD [y} 108 oy } | {Tl0m 009 o | {1 /0 }

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/xG} | {xg/$7}

vze.out(ch,ze)
_—

S
N

ver.out(che,xr)
B

<
il

vg.out(ch,xg)
—_ 5

R
Il

‘{(pk:(skvb),sign(blind(tdcommit(c,rg,tdB),bB),skvb))/ })
xzg )

We argue informally that the frames obtained at the end sffitst phase are stati-
cally equivalent. In particular, note that the test

open(unblind(checksign(proja(xg), pk(x1)),%3),x4) = €

is true in both frames. Indeed, if we dendt the process obtained on the left
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hand-side after this first phase, we have that

open(unblind(checksign(proja(xg), pk(x1)),X3),X4)0
= open(tdcommit(a, ra, tda), f(a, ra, tda,c))
= open(tdcommit(c, f(a, ra, tda, c), tda), f(a, ra, tda,c))

=cC
wheregp(B') = vin.o.

For the “first input”, of both voters, we need to consider tvases: either the input
of both voters corresponds to the expected messages froadthmistrator or at
least one input does not correspond to the correct adnatoss signature. In the
second case, one of the voters will block, as testing caresstof the message fails
and hence the voters cannot synchronise. In the first casebia@ at the end the
two frames below.

Opr = v {0 o b [ PR [} 1 {04 fan b [{74 2} [ {9425} |

{(pk(sk:w),sign(blind(tdcommit(c,rA,tdA),bA),skmua))/m } | {$6/x } |
6 7
{(pk(skvb),sign(blind(tdcommit(a,rB,tdB),bB),skvb))/$ } |
3
{(tdcommit(c,rA,tdA),sign(tdcommit(c,rA,tdA),ska))/ } | {:1:9/ } |
Z9 Z10

{(tdcommit(a,rB tdp),sign(tdcommit(a,rg,tdg),ska)) / } ‘
T11

((oratteommiter i [} {0y} (o)

b = i {00} | (PR [, ) | oa ), ) | {Feratdad) ) Y| fiaag, ) |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/ } | {16/ } |
z6 x7
{(pk(skvb),sign(blind(tdcommit(c,rs,tdB),bB),skvb))/I } |
8
{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/$ } | {xg/ } |
9 10

{(tdcommit(c,rB tdp),sign(tdcommit(c,rp,tdg),ska)) / } |
Z11

{(c,f(a,rA,tdA,c),tdcommz‘t(a,rA,tdA))/:m} ‘ {a/:cm} ‘ {C/x14}

We observe that the frames are statically equivalent. Itiqudar, note that the
testtdcommit(c, x4, x5) = proji(x9) IS true in both frames and the attacker cannot
distinguish the termsdcommit(a, rg, tdg) andtdcommit(c, rg, tdg) Since he is not
able to open this commitment. As the goal of this section iustrate our defini-
tions and as tool support is not provided for this equatitmabry we do not give a
formal proof of this static equivalence.
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processC|[] =
v cl.vece2. (.|
(* private key of V x)
in(cl,x1). out(chc,x1).
(* public keys of the administrator =*)
in(cl,x2). out(chc,x2).
v blinder. v r. v td.
(* nonces of V - blinder, r, td *)
in(cl,x3). out(chc, blinder).
in(cl,x4). out(chc,r).
in(cl,x5). out(chc,td).

let committedvote = tdcommit(c,r,td)n
let blindedcommittedvote=blind(committedvote , blindei
out(c2,(pk(xl),sign(blindedcommittedvote ,x1))).

(* signature of the adm nistrator =)

in(cl,x6). out(chc,x6).

let result = checksign(x6,x2)in

if result = blindedcommittedvotethen
out(c2,true).

let signedcommittedvote=unblind (x6, blinderin
synch 1.

out(c2,(committedvote ,signedcommittedvote)).
out(c2,(c,r,committedvote))

Process 11. Context - coercion-resistance

Coercion-resistance. This scheme is not coercion-resistant [41]. If the coercer
provides the coerced voter with the commitment that he hasédout without re-
vealing the trap-door, the voter cannot cast her own udadece the voter cannot
produce fake outputs as she did for receipt-freeness. imstef our definition, we
need to show that there is #3 such that for all coercet' satisfyingn N fn(C') = 0
and S[C[Va{"/,}v2] | Va{%/o} =¢ S[Va{¢/,}" | VB{%/,}], we have the two
bullet points of the definition of coercion-resistance. [gagel’ was such a pro-
cess. LetC be the context given as Process 11 (note that it is, in fagepandent
of V’). In order to satisfy the second bullet poift, has to use the commitment
provided by the coercer, for otherwise this would yield aservable. But then it
cannot give to the timeliness member the key to open the coment to obtain
the voter’s desired vote, in order to satisfy the first bulkatcel”’ does not know
the trap-door. Hence, for the given, the requirements olf’ are not satisfiable
simultaneously.
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7 Protocol due to Leeet al.

In this section we study a protocol based on the éea. protocol [36]. One of the
main advantages of this protocol is that iviste and govoters need to participate
in the election only once, in contrast with [25] and [40] (s&ections 5 and 6),
where all voters have to finish a first phase before any of themparticipate in
the second phase. We simplified the protocol in order to aunaie on the aspects
that are important with respect to privacy, receipt-fressnend coercion-resistance.
In particular we do not consider distributed authorities.

7.1 Description

The protocol relies on re-encryption and on a less usualtegypphic primitive:
designated verifier proofs (DVP) of re-encryption. We startexplaining these
primitives.

A re-encryption of a ciphertext (obtained using a randothisecryption scheme)
changes the random coins, without changing or revealinglthetext. In the EIGa-
mal scheme for instance, (it, y) is the ciphertext, this is simply done by comput-
ing (zg",yh"), wherer is arandom number, andandh are the subgroup generator
and the public key respectively. Note that neither the oreaftthe original cipher-
text nor the person re-encrypting knows the random coind umsthe re-encrypted
ciphertext, for they are a function of the coins chosen by lpairties. In particular,
a voter cannot reveal the coins to a potential coercer whinleme this information
to verify the value of the vote, by ciphering his expectecewsith these coins.

A DVP of the re-encryption proves that the two ciphertextstam indeed the same
plaintext. However, a designated verifier proof only cooesone intended person,
e.g., the voter, that the re-encrypted ciphertext conttiasoriginal plaintext. In
particular this proof cannot be used to convince the coefi@ahnically, this is
achieved by giving the designated verifier the ability to \dee the transcripts
of the proof. A more abstract description is the followingDXP for a designated
verifier A of a statemenp is a proof of the statemeng*Vv | know A’s private key”.
As A is the only one to know his own private key a proof that has eretigenerated
by himself must be a proof of the statementhile A himself can generate a proof
of the second part of the disjunction.

Our simplified protocol can be described in three steps.

e Firstly, the voter encrypts his vote with the collector'dopa key (using the El-
Gamal scheme), signs the encrypted vote and sends it to aimiattator on a
private channel. The administrator checks whether the v®gelegitimate voter
and has not voted yet. Then the administragsencryptsthe given ciphertext,
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signs it and sends it back to the voter. The administrator@isvides a DVP that
the two ciphertexts contain indeed the same plaintext. dctpre, this first stage
of the protocol can be done using a voting booth where elitilof the voter
is tested at the entrance of the booth. The booth containsgetaproof device
which performs re-encryptions, signatures and DVP proofs.

e Then, the voter sends (via an anonymous channel) the rggadrvote, which
has been signed by the administrator to the public board.

¢ Finally, the collector checks the administrator's sigmatan each of the votes
and, if valid, decrypts the votes and publishes the finalltesu

7.2 The model in applied pi

Cryptographic primitives as an equational theory. The functions and equa-
tions that handle public keys and digital signature are aslusee Section 5 for
instance). To model re-encryption we add a functiemcrypt, that permits us to
obtain a different encryption of the same message with @noémdom coin which

is a function of the original one and the one used during theniryption. We also
add a pair of functiondvp andcheckdvp: dvp permits us to build @esignated ver-
ifier proof of the fact that a message is a re-encryption of another ashehatkdvp
allows the designated verifier to check that the proof isdvaliote thatcheckdvp
also succeeds forfake dvpcreated using the designated verifier’s private key. We
have the following equations:

decrypt(penc(m, pk(sk),r),sk) = m
rencrypt(penc(m, pk(sk), rl), r2) = penc(m, pk(sk), f(r1,r2))
checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok
checkdvp(dvp(x,y, z,skv), x, y, pk(skv)) = ok

Main (Process 12). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the privamrels are for key
distribution. The private channehA; (resp.chA,) is a private channel between
the voter and her administrator. This is motivated by thétfaat the administrator
corresponds to a tamper-proof hardware device in this pobtdVe only model the
protocol for two voters and launch two copies of the admiatst and collector
process, one for each voter.

Keying material (Process 13). Our model includes a dedicated process for gen-
erating and distributing keying material modelling a PKtditionally, this process
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(* private channels )

v privCh. v pkaChl. v pkaCh2. v pkcCh. v skaCh. v skcCh.
v skvaCh.v skvbCh.v chAl. v chA2.

(* administrators x)

(processK | processC | processC |

(* voters =)

(let chA = chAl in processA |

(let skvCh = skvaChin let v = a in processV)) |

(let chA = chA2 in processA |

(let skvCh = skvbChin let v = b in processV)))

Process 12. Main process

processK =
(* private key =)
v ska. v skc. v skva. v skvb.
(* correspondi ng public keys =)
let (pka, pkc) = (pk(ska), pk(skc))in
let (pkva, pkvb) = (pk(skva), pk(skvb))n
(* publik keys disclosure =)
out(ch,pka). out(ch,pkc). out(ch,pkva). out(ch, pkvb).
(* register legitinate voters =)
(out(privCh , pkva) out(privCh , pkvb) |
(* keys disclosure on private channels *)
out(pkaCh,pka) | out(pkaCh,pka)| out(pkaCh,pka) |
out(pkaCh,pka) | out(skaCh,ska)| out(skaCh,ska)|
out(pkcCh,pkc) | out(pkcCh,pkc) | out(skcCh,skc)|
out(skcCh,skc)| out(skvaCh,skva)| out(skvbCh, skvb))

Process 13. Administrator for keying material

registers legitimate voters and also distributes the putdis of the election au-
thorities to legitimate voters: this is modelled using riegtd channels so that the
attacker cannot provide false public keys.

Voter (Process 14). First, each voter obtains her secret key from the PKI as well
as the public keys of the election authorities. Then, a frasdom number is gen-
erated to encrypt her vote with the public key of the collediext, she signs the
result and sends it on a private channel to the administrittire voter has been
correctly registered, she obtains from the administratoe-encryption of her vote
signed by the administrator together with a designatedigegroof of the fact that
this re-encryption has been done correctly. If this proafasrect, then the voter
sends her re-encrypted vote signed by the administratbwetodllector.

Note that we used the synchronisation command to model thieeps. This com-
mand is crucial for privacy to hold in presence of a corrugtector. This ensures
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processV = (*» paraneters: skvCh, v x)
(* her private key =)
in(skvCh,skv).
(* public keys of the admi nistrators =)
in(pkaChl, pubka).in(pkcCh, pubkc).
synch 1.v r.
let e = penc(v, pubkc,r)in
out(chA,(pk(skv),e,sign(e,skv))).
in(chA,m2).
let (re,sa,dvpV) = m2in
if checkdvp(dvpV,e,re,pk(skv)) = ok
then if checksign(sa,pubka) = re
then out(ch,(re,sa))

Process 14. Voter process

processA =
(» administrator’s private key x)
in(skaCh,skadm).
(» register a legimtate voter x)
in(privCh , pubkv).
synch 1.
in(chA,ml).
let (pubv,enc,sig)=mlin
if pubv=pubkv then
if checksign(sig,pubv)= enc
then v rl.
let reAd=rencrypt(enc,rl)in
let signAd=sign (reAd,skadm)in
let dvpAd=dvp(enc,reAd,rl,pubv)n
out(chA,(reAd, signAd ,hdvpAd))

Process 15. Administrator process

that key distribution is finished before any of the two voteyqeeds. Otherwise an
attack on privacy can be mounted since the attacker canmgreve of the vot-
ers from obtaining her keys. One may also note that this pobis vote and go
even if synchronisation is used the voters participatealgtionly during one of the
synchronised phases.

Administrator (Process 15). The administrator first receives through a private
channel his own private key as well as the public key of a ilegite voter. The
received public key has to match the voter who is trying toageg-encryption of
her vote signed by the administrator. The administratordiss to prove to the
voter that he has done the re-encryption properly. For Hashuilds a designated
verifier proof which will be only convincing for the voter.
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processC =
(* collector’s private key *)
in(skcCh, privc) .
(* administrator’s public key =*)
in(pkaCh2, pkadmin).
synch 1.
in(ch,m3).
let (ev,sev) = m3in
if checksign(sev,pkadmin) = ev
then let voteV = decrypt(ev, privc)in
synch 2.
out(ch,voteV)

Process 16. Collector process

Collector (Process 16). First, the collector receives all the signed ballots. He
checks the signature and decrypts the result with his grivay to obtain the value
of the vote in order to publish the results. Although it is n@ntioned in the de-
scription of the protocol [36], it seems reasonable to thhmdt the collector does
not accept the same ballot twice. For sake of readabilitydaveot model this fea-
ture in Process 16; however, we will model it when we come teip-freeness,
since it is crucial there. Finally, when all votes have beebnsitted to the col-
lector (synchronisation is achieved using the synchraioisanstruction), they are
published.

7.3 Analysis

Let VA — V{SkvaCh/Sk’Uch}{ChAl/ChA} and VB — V{SkvbCh/skah}{ChA2/chA}-
Note that again we have to establish all the static equicalemanually: ProVerif

is not able to deal with equational theories such as this one.

Vote privacy. We show that the protocol respects privacy. For this, webéista
the following equivalence

SWal®/o} | VEL"/o}] e SIVa{"/u} | VB{"/u}]

whereS = vpkaChl, pkcCh, skaCh, chAl, chA2.( _ | processK
| processA{"1/ a}

| processA{"2/ A })

As for the other case studies, we prove privacy only for treead two voters.
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Privacy does not require any of the keys to be secret. Howexeneed to ensure
that both voters use the same public key for the administeatd for the collector.

Therefore, we send public keys on a private channel, althadlig corresponding
private keys can be considered as free names. We assumethatdministrators

have the same private key and that both voters have the agloté. If any of these
conditions is not satisfied, privacy does not hold.

We denote the left-hand processfaand the right-hand process@sTheprocessK
starts with the output of all the keys. For the sake of rediighie ignore some of
these outputs which are not important for our analysis andvrite v instead of
the sequencer,.vrg.vry.vrs.

in(skvaCh,skva) « n(skvbCh,skub)
H

P —* P

raoutehn) g (P | {ene(apkef(rair)).sign(penc(aphe f(ra;r)ska) [

oz outlchaa) s (g | {(pene(apke,f(ra) sign(penc(apke.f(ram)) ska) /Y

| {(penc(b,pkc,f(rB,7"2)),sign(penc(b,pkc,f(rB ,r2)),ska) /332})

Similarly,
Q in(skvaCh,skva) « n(skvbCh,skuvb) _x Ql
vz .out(ch,x1) UT. (Q2 | {(penc a,pke, f(rg,r2)),sign(penc(a,pke, f(rg,r2) ska)/ }
vapout(chea) L (Qy | {(penctapke,f(rpra) sign(penclapke,f(rp.ra)) ska) /Y

| {(penc b,pke,f(ra,r1)),sign(penc(b,pke,f(ra,r1)), ska/ })

The resulting frames are statically equivalent. Note tthating key distribution, the
processV4{?/,} is matched with’,{®/, }, while afterwards’4{*/, } is matched
with Vz{*/,}. Therefore, we require a phase after the keying distributio

Receipt-freeness. To show receipt-freeness one needs to construct a prétess
which can successfully fake all secrets to a coercer. Treeiglthatl”’ votesa, but
when outputting secrets to the coert@iprepares all outputs as if she was voting
The crucial part is that, using her private key, she provalése DVP stating that
the actual re-encryption of the encryption of vatis a re-encryption of the encryp-
tion of votec. Given our equational theory, the two resulting frames &aBcslly
equivalent because for both the real and the fake RWdkdvp returnsok.

To establish receipt-freeness, we have to assume that Heetoo is trusted. In-
deed, it is important to be sure that its private key remagtset. Otherwise, an
attack against receipt-freeness can be mounted: if theeoknows the collector’s
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processV'’=
(* her private key =)
in(skvaCh,skv).out(chc,skv).
(* public keys of administrators x)
in(pkaCh, pubka).out(chc,pubka).
in(pkcCh, pubkc).out(chc, pubkc).
synch 1.
v r. out(chc,r).
let e = penc(a, pubkc,r)in
out(chAl,(pk(skv),e,sign(e,skv))).

(» message fromthe adm nistrator =)
in(chAl,m2).

let (re,sa,dvpV) = m2in

if checkdvp(dvpV,e,re,pk(skv))=okhen
vor.

let fk=dvp(penc(c,pubkc,r), re,r’,skv)in
out(chc,(re,sa,fk)).

if checksign(sa,pubka) = rethen
out(ch,(re,sa))

Process 17. ProcesB’ - Receipt-Freeness

private key he can directly decrypt the re-encryption aneckhwvhether the vote
is ¢ rather than relying on the designated verifier proof. No&, tim reality [36], a
threshold encryption scheme is used and decryption has petbermed by mul-
tiple collectors. Hence, their scheme can deal with someaupbrcollectors. It is
also important that the private key of the administratoragms secret. Otherwise
an attacker can forge any vote and submit it to the collector.

Process 17 shows a possiié To prove receipt-freeness, we need to show

° V/\out(chc,-) R~ VA{a/v}u and
o SIVa{e/u} | Va{®/u} me SIV' | VB{/u}]-

whereS represents all of the remaining process.

The first labelled bisimulation may be seen informally by sideringV”’ with the
“out(chec, ...)” commands removed, and comparing it visually with. To see the
second labelled bisimulation, one can informally considkrthe executions of
each side.S consists of the Main process, and therefore inclugtesessK, the
two processA’s, and the twoprocessC’s, but it has a hole for the two voter pro-
cesses. As shown above, the hole is filledihy </, }<"* | Vz{*/,} on the left and
by V' | Vg{¢/,} on the right. Executions oF4{¢/,}" are matched with those
of V'; similarly, Vz{*/,} on the left is matched with/z{¢/,} on the right. To
illustrate this, we consider a particular execution on #it hnd we give the corre-
sponding execution on the right. Here the procBsss the one obtained after key
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distribution. The sequence of nameslenotes 4, r1, 7z, r2, 7’ and alsaskvb, skc
andska but notskva (coerced voter). We writpkva instead ofpk(skva) and as-
sume that public keys are in the frame. We denote by= penc(c, pke, f(ra,r1))

and bypg = penc(a, pke, f(rp,r2)).

vzy.out(ch,x - r
Py ), g (P | {74 })

”CCQ‘OUt(Ch’“); mzb_(p3 ’ {m/ml} ’ {(pA,sign(pAvsk‘a)7dvp(p6n6(c,pkc,TA),pA,rl,pkva))/m})

”9”3'0“'5(0}"9”3)) Vf.(P4 | {m/m} | {(pA7si9n(pA7ska),dvp(pen0(cvpkc,m)7pA,r1,pkva))/$2}

| {(PA7SZ'QVL(PA,5>’/€L1)/I3 })

L), 7 (P | {74} | {25t @ashe) dontpenccphernparshue) /)

| {(pA,sign(pmska)/m} ‘ {(pB,sign(pBﬁka))/M})

Similarly, we have that

vy .out(ch,x1) - r
Q1 ——— vi(Q2 [ {"/z,})

va.out(ch,z2) l/ﬁ-(Qg | {rA/xl} ‘ {(qA,sz’gn(qA,ska),dvp(penc(c,pkc,rA),qA,r/,skva))/xz})

M Vﬁ.(@4 | {TA/QH} | {(qA,sign(qA,sk’a),dvp(penc(c,pk’c,rA),qA,r’,skva))/:m}

| {(QA75i9n(QA75ka)/z3 })

vz4.out(ch,z4) Vﬁ-(QS | {TA/:El} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r/,skva))/xQ}

| {(QA,sign(QA,ska)/IB} ‘ {(qsysign(qs,ska))/m})

wheregs = penc(a, pke, f(ra,r1)) andgg = penc(c, pke, f(rp,r3)).

Note that, the testheckdvp(projs(x2), penc(c, pke, x1), proji (x2), pk(skva)) = ok is
true in both frames. Now, for the input of the collector, werdndo consider any
public terms. There are essentially two cases. Either tpetiof both collectors
corresponds to the votes submitted by both voters or at twastof the inputs
does not. In the last case, since the attacker is not ablewderfake inputs of the
expected form, i.e. the input needs to be signed by the adtrator, this means that
either the collector will block or that both inputs are exathe same. To prevent
the last case, we have to ensure that the collector doescegtieac same vote twice.
This can be modelled by adding a process in charge of chedkinlgle votes and by
slightly modifying theprocessC. The additional process is described in Process 18.
In the collector process we add the following instructionst jpefore “synch 2”:
out(privDbIChk, ballot).in(privDbIChk, x). if x = ok then]. ..] whereprivDblChk is

a restricted channel.
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doubleCheck =
in(privDblChk, ballotl). out(privDbIChk, ok).
in(privDbIChk , ballot2).
if ballotl=ballot2 then 0 else outfprivDbIChk , ok)

Process 18. Process to prevent double ballot

We know that if the tests succeeded, both collectors symiteat phase 2. Up to
that point any move of the collector that received the votgdf/, } on the left-
hand side has been imitated on the right-hand side by theatoflthat received the
vote of the vote/z{°/,}, and similarly for the second collector. The interesting
part of the frames obtained after a complete execution isrdbesi below.

¢P’ = un. ({TA/JJI} | {(pA,sign(pA,ska),dvp(penc(c,pkc,rA),pA,7'1,pkva))/xz}

| {{pastontpasske) [} | {Gostontvmska)) [ 31 {0 o} 1 {26 })

¢Q’ = vh. ({T‘A/ml} ’ {(‘IA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r’,skva))/m}

| {(aasintansko)/, ) | {Comsiontamtad [, | {2/} | {/})

Coercion-resistance. We prove coercion resistance by constructifigwhich is
similar to the one for receipt-freeness. However, for clogrcesistance the coercer
also provides the inputs for the messages to send out. Thariks fact that

SICWAL /oy ] [ Vi{®/u}] =0 SIVA{/u}" | VB{*/u}],

we know that the coercer prepares messages correspondihg tven votec.
Hence,

e /' fakes the outputs as in the case of receipt-freeness; thegensed voter will
counter-balance the outcome, by choosing the ¥pte
e 1V simply ignores the inputs provided by the coercer.

Such a procesg’ is shown in Process 19. Similar reasoning to the one usedeabov
(for receipt freeness) can be used here, to establish thabtiditions

o ClV/\utleher) ooy Vy{2/,}
o S[CIVa{?/u}r | VB{*/u}] = S[C[V'] | VB{°/u}],

hold, thus establishing coercion resistance. It is a bitenttifficult to perform this
reasoning since we have to consider any conféxt vc;.vcs.(- | P) such that

a0 fn(C) =0 andS[CVa{*/u} 2] | Ve{*/u}] me SVa{/u} | VB{*/.}].
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For the first condition, we can see that if the proc@gl’]\°*(¢h*) does not block
then it has the same behaviourlas{*/,} sinceV’ completely ignores the inputs
provided byC. The only point is to ensure th&t’ can fake the outputs t0' as in
the case of receipt-freeness. This is indeed possible t@ dinse the voter does
not have to know any private data used by the coercer to prépamessages. (For
instance, the voter does not have to know the nonce used lwo#reer when he
encrypts the vote.)

To obtain the second condition, it is sufficient to show thatéquivalence
SV Ve{"/u}] me SICIV'T | VB{*/u}]

holds, wherel/” is the process provided for receipt-freeness (ProcessNiie
that the processeS[V’] and V" are not bisimilar by themselves, because some
tests involving messages outputted dmil allows us to distinguish them. In-
deed, it may be possible that the coercer (i.e. the coni@xthooses to gener-
ate his own nonce, to encrypt his votec and does not use the one provided
by the voter. In such a case, the coercer has to outpwin the channethc,
and does not forward the nonce provided by the voter, in orolensure that
S[CIVa{"/uyer2] | VB{/u}] =~ S[Va{¢/,}"¢ | V{%/,}]. This means that the
outputs performed onhc by V" on the left hand-side and by the coerc¢épn the
right hand-side are not quite the same. However, those ¢astsot be performed
when these processes are put inside the costexécausehAl is restricted.

8 Conclusion

We have defined a framework for modelling cryptographicngtprotocols in the
applied pi calculus, and shown how to express in it the ptaseof vote-privacy,
receipt-freeness and coercion-resistance. Within thedveork, we can stipulate
which parties are assumed to be trustworthy in order to pibtes desired property.
We investigated three protocols from the literature. Ogults are summarised in
Figure 1.

We have proved the intuitive relationships between theetpreperties: for a fixed
set of trusted authorities, coercion-resistance impkesgipt-freeness, and receipt-
freeness implies vote-privacy.

Our definition of coercion-resistance does not attempt twllea‘fault attacks”, in
which the coercer supplies material which forces the vaierate randomly, or
to vote incorrectly resulting in an abstention (these &tare respectively called
randomisatiorandforced abstentioattacks in the work of Juekt al.[32]). A pro-
tocol which succumbs to such attacks could still be consmleoercion-resistant
according to our definition. In our model, the coercer camtadle votes for each
candidate, so it seems to be in fact impossible to resist &ialcks fully.
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processV'’=
(* her private key =)
in(skvaCh,skv).out(cl, skv).
(* public keys of administrators x)
in(pkaCh, pubka).out(cl, pubka).
in(pkcCh, pubkc).out(cl, pubkc).
synch 1.
v r. out(cl,r).
let e = penc(a, pubkc,r)in
(* instruction fromthe coercer *)
in(c2,x1).
let (pi,ei,si) = x1in
out(chAl,(pk(skv),e,sign(e,skv))).

(* nmessage fromthe admnistrator x)
in(chAl,m2).

let (re,sa,dvpV) = m2in

if checkdvp(dvpV,e,re,pk(skv)) = okhen
v r',

let fk = dvp(ei,re,r’,skv)in
out(cl,(re,sa,fk)).

if checksign(sa,pubka) = rethen
in(c2,x2). out(ch,(re,sa))

Process 19. ProcesE’ - coercion-resistance

Property Fujioka etal. Okamoto et al. Leeetal.
Vote-privacy v v v
trusted authorities none timeliness mbr. administrator
Receipt-freeness X v v
trusted authorities n/a timeliness mbr. admin. & collector
Coercion-resistance X X v
trusted authorities n/a n/a admin. & collector

Fig. 1: Summary of protocols and properties

Our reasoning about bisimulation in applied pi is ratheoinfal. In the future, we
hope to develop better techniques for formalising and aatmg this reasoning.
The ProVerif tool goes some way in this direction, but thénteque it uses is fo-
cused on process which have the same structure and diffenrotihe choice of
terms [10]. The sort of reasoning we need in this paper oftealves a bisimula-

tion relation which does not follow the structure of the msses.

For example, in

proving vote-privacy for Fujiokat al., early on we match,{*/,} on the left-hand
side withV4{®/, } on the right-hand side, while later we maf¢h{®/,} on the left
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with Vz{*/,} on the right. It would be useful to automate this kind of resasg, or
to investigate more general and more powerful methods tab&shing bisimula-
tion. Symbolic reasoning has proved successful for realitygroperties [38,6],
in which terms input from the environment are representeslyagolic variables,
together with some constraints. One direction we are ilyatstg is the develop-
ment of symbolic bisimulation and corresponding decisimtpdures for the finite
applied pi calculus. This work has been initiated in [20].

Our definition of coercion-resistance involves quantifamabver all possible con-
texts which satisfy a certain condition, and this makesiitiit@ work with in prac-
tice. Coercion-resistance may thus be seen as a kind ofwatigeral equivalence
but with a restriction on the powers of the observer. Ouliegplaper [19] included
a notion which we calle@ddaptive simulationa variant of bisimulation which at-
tempts to model the coerced voter’s ability to adapt her aotrding to the in-
structions of the coercer. Unfortunately, we have found tfotion to have some
undesirable properties, and we have not used it in this phaptre future, we hope
to find a corresponding restriction of labelled bisimilgritvhich will help us to
reason with coercion-resistance more effectively. In Weis, some new work has
appeared [4] that builds on our definitions and avoids thearsal quantification
over contexts.
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Appendix A Proof of Lemma 14

Lemma 14 Let P be a closed plain process and a channel name such that
ch & fn(P) U bn(P). We have Pe")\out(ch) ~, P,

PROOF. Let P be a closed plain process. We show by induction on the size of
that for any channel nam such thath ¢ fn(P)Ubn(P) we haveP\ou(ch) ~, P,
The size of the null process is defined tobé&refixing the procesB by a restric-
tion, an input or an output or putting it under a replicati@dsy to its size. The
size of the proces® | @ (resp. if M = N thenP else(@) is the sum of the size
of P and(@ plus1.

The base case where = 0 is trivial. Let ch be a channel name such that ¢
fn(P) U bn(P). The possibilities for building® are the following:

e P = P, | P, Insuch a case, we have:

peh\out(ch,) = (Plch | P2ch>\out(ch,.)
= vch.(P" | P, |lin(ch, x))
~ veh. (P |lin(ch, 2)) | veh.((Py)*" |lin(ch, x))
sincein(ch, .) occurs neither ilP" nor in Pt
rop PEMUt(ehL) | peh\out(ch.)
~y P | P, by induction hypothesis
= P

e P =uvn.P,. We have:

Pch\out(ch,.) — (Vn‘Pl)ch\out(ch,.)
= ych.(vn.out(ch,n).P" Jlin(ch, x))
~y veh.(vn. Py |lin(ch, x))

vn.veh.(P" lin(ch, x)) sincen # ch

vn. P, ch\out(ch,.)

I

Q

¢ vn.Py by induction hypothesis
= P
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e P =in(c,y).P . Note thatc # ch. We have:

Pch\out(ch,.) — (in(c, y).Pl)Ch\OUt(Ch")
= wch.(in(c,y).out(ch, y). P |lin(ch, x))

~y in(c,y).vch.(out(ch,y). P |lin(ch, z))
~y in(c,y).vch.(PM |lin(ch, z))

= in(c, y).Pfh\OUt(Ch")

~y in(c,y). Py

To establish the last step, we can see that for any ground€rthe processes

Q1 andQ, such thain(c, ). ") 22, Q. andin(c, y).P, 2 Q,

are such thaQ), = P, {"/, }Ch\"“t (h) and@, = P,{/,}. By induction hy-
pothesis, we have thal; and(), are bisimilar. Note that for this step we assume
thatw.l.o.gch € fu(M). This can always be obtained byrenaming-h. Lastly,
we conclude thanks to the fact thatc, y).P, = P.

e P =out(c, M).P;. Note thatc # ch. We have:

pech\out(ch,.) _ (out(c, M)'P)ch\out(ch,.)
(out(c, M).P¢" |lin(ch, x))
M).vch.(Pf" lin(ch, x))
= out(c, M).p{"\ )
M).P by induction hypothesis

e P =!P,. Insuch a case, we have:

Pch\out(ch,.) = (!Pl)ch\out(ch,.)
= vch.(\Pf lin(ch, x))
~¢ veh.! (P lin(ch, x))

~¢ (veh.(P" |lin(ch, x))) sincein(ch,.) does not occur iP¢"
= !Plch\out(ch,.)

~y Py by induction hypothesis
=P

o P =if M = N thenP,; elseP,. Hence, we have:
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peteut(ch.) — (if M = N thenP; elsePy)™\ (")

vch.(if M = N thenPh else P |lin(ch, x))

~y vch.(if M = N then (Pf" |lin(ch, z) else Ps" |lin(ch, x)))

~, veh.(if M = N then Pf" |lin(ch, z) else @™ |lin(ch, z)))

~, if M = N thenvch.(P" |lin(ch, z)) elsevch.(P" |lin(ch, z))

1>

sincein(ch, .) occurs neither i’ nor in Pgh
= if M = N thenP"\oeh) g|gg peiout(ch.)
~, if M = N thenP, elseP,
= P
This last case conludes the proof.
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