
Composition of Password-based Protocols ∗

Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA

France

Steve Kremer

LSV, ENS Cachan & CNRS & INRIA

France

Mark Ryan

School of Computer Science

Birmingham University, UK

Abstract

We investigate the composition of protocols that
share a common secret. This situation arises when
users employ the same password on different services.
More precisely we study whether resistance against
guessing attacks composes when the same password is
used. We model guessing attacks using a common def-
inition based on static equivalence in a cryptographic
process calculus close to the applied pi calculus. We
show that resistance against guessing attacks composes
in the presence of a passive attacker. However, com-
position does not preserve resistance against guessing
attacks for an active attacker. We therefore propose
a simple syntactic criterion under which we show this
composition to hold. Finally, we present a protocol
transformation that ensures this syntactic criterion and
preserves resistance against guessing attacks.

1 Introduction

Security protocols are small programs that aim at
securing communications over a public network like
the Internet. Considering their increasing ubiquity a
high level of assurance is needed in the correctness
of such protocols. Developments in formal methods
have produced considerable success in analysing secu-
rity protocols. Automated tools such as Avispa [5] and
ProVerif [9] are now capable of analysing large pro-
tocols involving several or even an unbounded num-

∗This work has been partly supported by the ARA
SESUR project AVOTÉ and the following EPSRC projects
EP/F033540/1 Verifying Interoperability Requirements in Per-

vasive Systems, EP/D076625/2 UbiVal: Fundamental Ap-

proaches to Validation of Ubiquitous Computing Applications

and Infrastructures, and EP/E040829/1 Verifying anonymity

and privacy properties of security protocols.

ber of sessions. However, these analyses usually con-
sider that the protocol is executed in isolation, ignoring
other protocols that may be executed in parallel. The
assumption that another parallel protocol cannot in-
terfere with the protocol under investigation is valid if
the two protocols do not share any secret data (such as
cryptographic keys or passwords). But if such data is
shared between protocols, then this assumption is not
valid.

While the absence of shared keys between different
protocols is obviously desirable, it is not always possi-
ble or realistic. For example, password-based protocols
are those in which a user picks a password which forms
one of the secrets used in the protocol. It is unreal-
istic to assume that users never share the same pass-
words between different applications. In this paper,
we consider the situation in which secret data may be
shared between protocols, and we particularly focus on
password-based protocols. We investigate under what
conditions we can guarantee that such protocols will
not interfere with each other. Under certain condi-
tions, we may have that

if P1 and P2 are secure then P1 | P2 is secure.

For example, in the context of cryptographic pi calculi
(e.g. spi calculus [3], applied pi calculus [2]), “is secure”
is often formalised as observational equivalence to some
specification. We have that P1 ≈ S1 and P2 ≈ S2 imply
P1 | P2 ≈ S1 | S2, where S1 and S2 are specifications,
and therefore the security of the composition follows
from the security of each protocol. Here, the composi-
tion of security relies on two facts. First, as mentioned,
security means observational equivalence to a specifica-
tion; the attacker is an arbitrary context, and P1 ≈ S1

means P1 and S1 are equivalent in any environment.
Second, by forming the composition P1 | P2 we have
made the assumption that P1 and P2 do not share any
secret.



Now suppose that P1 and P2 do share a secret w.
To prove that their security composes, one would like
to show that

if νw.P1 and νw.P2 are secure
then νw.(P1 | P2) is secure.

Note in particular that νw.(P1 | P2) is different from
(νw.P1) | (νw.P2) because the later refers to two dif-
ferent secrets as they have different scope. In contrast
with the previously mentioned composition result, this
one does not hold in general.

Additionally, the notion of security we consider in
this paper is resistance to guessing attacks, which is
not expressible as observational equivalence to some
specification. Guessing attacks are a kind of dictionary
attack in which the password is supposed to be weak,
i.e. part of a dictionary for which a brute force attack
is feasible. A guessing attack works in two phases. In
a first phase the attacker eavesdrops or interacts with
one or several protocol sessions. In a second offline
phase, the attacker tries each of the possible passwords
on the data collected during the first phase. To re-
sist against a guessing attack, the protocol must be
designed such that the attacker cannot discover on the
basis of the data collected whether his current guess of
the password is the actual password or not. If the at-
tacker’s interaction with the protocol during the first
phase is limited to eavesdropping, then the attack is
called passive; if the attacker can participate fully with
the protocol, then it is active.

Several attempts have been made, based on the ini-
tial work of Lowe [22], to characterize guessing at-
tacks [13, 15, 18]. In [14], Corin et al. proposed an
elegant definition of resistance to passive guessing at-
tacks, based on static equivalence in the applied pi
calculus. A similar definition has also been used by
Baudet [7] who uses constraint solving techniques to
decide resistance against guessing attacks for an ac-
tive attacker and a bounded number of sessions. Re-
cent versions of the ProVerif tool also aim at proving
resistance against guessing attacks for an active at-
tacker and an unbounded number of sessions (at the
price of being incomplete and not guaranteeing termi-
nation) [10]. Moreover, Abadi et al. further increase
the confidence in this definition by showing its compu-
tational soundness for a given equational theory in the
case of a passive attacker [1].

In this paper, we study whether resistance against
guessing attacks composes when the same password is
used for different protocols. Protocols are modelled in
a cryptographic process calculus inspired by the ap-
plied pi calculus. We use the definition introduced by
Corin et al. (see [14]). This allows us to provide re-

sults for protocols involving a variety of cryptographic
primitives represented by means of an arbitrary equa-
tional theory. First we show that in the case of a pas-
sive attacker, resistance against guessing attacks com-
poses (Section 4). In the case of an active attacker we
prove that as expected, resistance against guessing at-
tacks does compose when no secrets are shared. How-
ever, resistance against active guessing attacks does not
compose in general when the same password is shared
between different protocols. Nevertheless, we present
a simple syntactic criterion, which we call well-tagged,
which ensures that security composes even when the
same password is reused for different protocols (Sec-
tion 5). To provide an effective design methodology
we also propose a simple transformation to ensure that
the protocol is well-tagged. We prove that this trans-
formation preserves resistance against guessing attacks
(Section 6). Some of the proofs are omitted but can be
found in [19].

Related work. The dangers of ignoring the environ-
ment (i.e. all other protocols that may be running con-
currently with the protocol in question) when analysing
the security of a protocol have been demonstrated in
several works (e.g. [12]). The problem of secure com-
position has also been approached by several authors.
Datta et al. provide a general strategy [17] whereas
our composition result identifies a specific class of pro-
tocols that can be composed. In [21, 16], some criteria
are given to ensure that parallel composition is safe.
Andova et al. provide conditions to allow a broader
class of composition operations [4].

However, none of these works deal with composing
resistance against guessing attacks. They consider se-
crecy in terms of deducibility or authentication prop-
erties. To the best of our knowledge only Malladi et
al. [23] have studied composition w.r.t. guessing at-
tacks. They point out vulnerabilities that arise when
the same password is used for different applications and
develop a method to derive conditions that the envi-
ronment has to satisfy to prevent multi-protocol guess-
ing attacks. They identify as future work the problem
solved in this paper, i.e. the development of techniques
of general applicability to prevent multi-protocol guess-
ing attacks. Moreover, their work relies on a definition
of guessing attacks due to Lowe [22] which considers a
particular set of cryptographic primitives. The results
presented here are general and independent of the un-
derlying equational theory. Our work is also related
to Canetti et al.’s [11] who use a different approach
and different model to study universal composability
of password-based key exchange protocols.

2



2 Preliminaries

2.1 Messages

A protocol consists of some agents communicating
on a network. The messages sent by the agents are
formed from data that the agents hold, as well as cryp-
tographic keys and messages that the agent has previ-
ously received. We assume an infinite set of names N ,
for representing keys, data values, nonces, and names
of agents, and we assume a signature Σ, i.e. a finite
set of function symbols such as senc and sdec, each
with an arity. Messages are abstracted by terms, and
cryptographic operations are represented by function
symbols. Given a signature Σ and an infinite set of
variables X , we denote by T (Σ) (resp. T (Σ,X )) the
set of terms over Σ ∪ N (resp. Σ ∪ N ∪ X ). The for-
mer is called the set of ground terms over Σ, while the
latter is simply called the set of terms over Σ. We
write fn(M) (resp. fv(M)) for the set of names (resp.
variables) that occur in the term M . A substitution σ
is a mapping from a finite subset of X called its domain
and written dom(σ) to T (Σ,X ). Substitutions are ex-
tended to endomorphisms of T (Σ,X ) as usual. We use
a postfix notation for their application. Similarly, we
allow replacement of names: the term M{N/n} is the
term obtained from M after replacing every occurrence
of the name n by the term N .

As in the applied pi calculus [2], we use equa-
tional theories for modelling the algebraic properties
of the cryptographic primitives. An equational the-
ory is defined by a finite set E of equations M = N
with M, N ∈ T (Σ,X ) and M, N without names. We
define =E to be the smallest equivalence relation on
terms, that contains E and that is closed under appli-
cation of contexts and substitutions of terms for vari-
ables. Since the equations in E do not contain any
names, we have that =E is also closed by substitutions
of terms for names.

Example 1 Consider the signature Σenc =
{sdec, senc, adec, aenc, pk, 〈 〉, proj1, proj2}. The sym-
bols sdec, senc, adec, aenc, and 〈 〉 are functional
symbols of arity 2 that represent respectively the
symmetric and asymmetric decryption and encryption
as well as pairing functions whereas pk, proj1 and
proj2 are functional symbols of arity 1 that represent
public key and projection functions on respectively
the first and the second component of a pair. A
typical example of an equational theory useful for
cryptographic protocols is Eenc, defined by the following

equations:

sdec(senc(x, y), y) = x
senc(sdec(x, y), y) = x

adec(aenc(x, pk(y)), y) = x
proji(〈x1, x2〉) = xi (i ∈ {1, 2})

Let T1 = sdec(senc(senc(n, k1), k2), k2) and
T2 = senc(n, k1). In this theory, we have that the
terms T1 and T2 are equal modulo Eenc, written
T1 =Eenc

T2, while obviously the syntactic equality
T1 = T2 does not hold.

2.2 Assembling Terms into Frames

At some moment, while engaging in one or more ses-
sions of one or more protocols, an attacker may have
observed a sequence of messages M1, . . . , Mℓ. We want
to represent this knowledge of the attacker. It is not
enough for us to say that the attacker knows the set
of terms {M1, . . . , Mℓ}, since he also knows the order
in which he observed them. Furthermore, we should
distinguish those names that the attacker knows from
those that were freshly generated by others and which
remain secret from the attacker; both kinds of names
may appear in the terms. We use the concept of frame
from the applied pi calculus [2] to represent the knowl-
edge of the attacker. A frame φ = νñ.σ consists of a
finite set ñ ⊆ N of restricted names (those that the
attacker does not know), and a substitution σ of the
form {M1/x1

, . . . , Mℓ/xℓ
}. The variables enable us to

refer to each Mi. We always assume that the terms Mi

are ground. The names ñ are bound and can be re-
named. We denote by =α the α-renaming relation on
frames. The domain of the frame φ, written dom(φ),
is defined as {x1, . . . , xℓ}.

2.3 Deduction

Given a frame φ that represents the information
available to an attacker, we may ask whether a given
ground term M may be deduced from φ. Given an
equational theory E on Σ, this relation is written
φ ⊢E M and is formally defined below.

Definition 1 (deduction) Let M be a ground term
and νñ.σ be a frame. We have that νñ.σ ⊢E M if and
only if there exists a term N ∈ T (Σ,X ) such that
fn(N) ∩ ñ = ∅ and Nσ =E M . Such a term N is a
recipe of the term M .

Intuitively, the deducible messages are the messages
of φ and the names that are not protected in φ, closed
by equality in E and closed by application of function

3



symbols. When νñ.σ ⊢E M , every occurrence of names
from ñ in M is bound by νñ. So νñ.σ ⊢E M could be
formally written νñ.(σ ⊢E M).

Example 2 Consider the theory Eenc given in Exam-
ple 1. Let φ = νk, s1.{

senc(〈s1,s2〉,k)/x1
, k/x2

}. We have
that φ ⊢Eenc

k, φ ⊢Eenc
s1 and φ ⊢Eenc

s2. Indeed x2,
proj1(sdec(x1, x2)) and s2 are recipes of the terms k,
s1 and s2 respectively.

2.4 Static Equivalence

The frames we have introduced are a bit too fine-
grained as representations of the attacker’s knowledge.
For example, νk.{senc(s0,k)/x} and νk.{senc(s1,k)/x} rep-
resent a situation in which the encryption of the public
name s0 (resp. s1) by a randomly-chosen key has been
observed. Since the attacker cannot detect the differ-
ence between these situations, the frames should be
considered equivalent. To formalise this, we note that
if two recipes M, N on the frame φ produce the same
term, we say they are equal in the frame, and write
(M =E N)φ. Thus, the knowledge of the attacker can
be thought of as his ability to distinguish such recipes.
If two frames have identical distinguishing power, then
we say that they are statically equivalent. Formally:

Definition 2 (static equivalence [2]) We say that
two terms M and N are equal in the frame φ, and
write (M =E N)φ, if there exists ñ and a substitution σ
such that φ =α νñ.σ, ñ ∩ (fn(M) ∪ fn(N)) = ∅, and
Mσ =E Nσ.

We say that two frames φ1 and φ2 are statically
equivalent, φ1 ≈E φ2, when:

• dom(φ1) = dom(φ2), and

• for all terms M, N we have that (M =E N)φ1 if
and only if (M =E N)φ2.

Note that by definition of ≈, we have that φ1 ≈ φ2

when φ1 =α φ2 and we have also that νn.φ ≈ φ when n
does not occur in φ.

Example 3 Consider again the equational theory Eenc

provided in Example 1. Let

• φ = νk.{senc(s0,k)/x1
, k/x2

}, and

• φ′ = νk.{senc(s1,k)/x1
, k/x2

}.

Intuitively, s0 and s1 could be the two possible (pub-
lic) values of a vote. We have (sdec(x1, x2) =Eenc

s0)φ
whereas (sdec(x1, x2) 6=Eenc

s0)φ
′. Therefore we have

that φ 6≈Eenc
φ′. However, as discussed at the beginning

of Section 2.4, we have that

νk.{senc(s0,k)/x1
} ≈ νk.{senc(s1,k)/x1

}.

The following lemma is a consequence of some lem-
mas stated in [2] and will be useful later on to establish
our composition result.

Lemma 1 Let φ1 = νñ1.σ1 and φ2 = νñ2.σ2 be two
frames such that φ1 ≈ φ2.

1. νn.φ1 ≈ νn.φ2 when n 6∈ ñ1 ∪ ñ2,

2. φ1{s/n} ≈ φ2{s/n} when n 6∈ ñ1 ∪ ñ2 and s is a
fresh name.

3 Modelling Protocols and Guessing

Attacks

We now define our cryptographic process calculus
for describing protocols. This calculus is inspired by
the applied pi calculus [2] but we prefer a simplified
version which is sufficient for the purpose of this pa-
per. In particular we only consider one channel, which
is public (i.e. under the control of the attacker). More-
over, we only consider closed processes: all variables
appearing in terms are under the scope of an input.
Finally, we only consider finite processes, i.e., without
replication. As we will argue at the end of Section 5
this is not a restriction and our composition result car-
ries over to an unbounded number of sessions.

3.1 Protocol Language

The grammar for processes is given below. One has
plain processes P, Q, R and extended processes A, B, C.
Plain processes are formed from the grammar

P, Q, R := plain processes
0 null process
P | Q parallel composition
in(x).P message input
out(M).P message output
if M = N then P else Q conditional

such that a variable x appears in a term only if the term
is in the scope of an input in(x). The null process 0 does
nothing; P | Q is the parallel composition of P and Q.
The conditional if M = N then P else Q is standard,
but M = N represents equality modulo the underlying
equational theory E. We omit else Q when Q is 0. The
process in(x).P is ready to input on the public channel,
then to run P with the actual message instead of x,
while out(M).P is ready to output M , then to run P .
Again, we omit P when P is 0.

Further, we extend processes with active substitu-
tions and restrictions:

A, B, C := P
∣

∣ A | B
∣

∣ νn.A
∣

∣ {M/x}

4



where M is a ground term. As usual, names and
variables have scopes, which are delimited by restric-
tions and by inputs. We write fv(A), bv(A), fn(A),
bn(A) for the sets of free and bound variables (resp.
names). Moreover, we require processes to be name
and variable distinct, meaning that bn(A)∩ fn(A) = ∅,
bv(A)∩fv(A) = ∅, and also that any name and variable
is bound at most once in A. Note that the only free
variables are introduced by active substitutions (the x
in {M/x}). Lastly, in an extended process, we require
that there is at most one substitution for each vari-
able. We also extend replacements of names {M/n}
from terms to processes when the names fn(M) ∪ {n}
are not bound by the process. An evaluation context
is an extended process with a hole instead of an ex-
tended process. Extended processes built up from the
null process, active substitutions using parallel compo-
sition and restriction are called frames (extending the
notion of frame introduced in Section 2.2). Given an
extended process A we denote by φ(A) the frame ob-
tained by replacing any embedded plain processes in it
with 0.

Example 4 Consider the following process:

A = νs, k1.(out(a) | {senc(s,k1)/x} | νk2.out(senc(s, k2))).

We have that φ(A) = νs, k1.(0 | {senc(s,k1)/x} | νk2.0).

3.2 Semantics

Structural equivalence. We consider a basic struc-
tural equivalence, i.e. the smallest equivalence relation
closed by application of evaluation contexts and such
that

Par-0 A | 0 ≡ A
Par-C A | B ≡ B | A
Par-A (A | B) | C ≡ A | (B | C)

New-Par A | νn.B ≡ νn.(A | B) n 6∈ fn(A)
New-C νn1.νn2.A ≡ νn2.νn1.A

Using structural equivalence, every extended pro-
cess A can be rewritten to consist of a substitution
and a plain process with some restricted names, i.e.

A ≡ νñ.({M1/x1
} | . . . | {Mk/xk

} | P ).

In particular any frame can be rewritten as νn.σ
matching the notion of frame introduced in Sec-
tion 2.2. Note that static equivalence on frames co-
incides with [2] (even though our process calculus is
different). We note that unlike in the original applied
pi calculus, active substitutions cannot “interact” with

the extended processes. As we will see in the follow-
ing active substitutions record the outputs of a pro-
cess to the environment. The notion of frames will be
particularly useful to define resistance against guessing
attacks.

Example 5 Note that in Example 4, we have that
φ(A) ≡ νs, k1, k2.{senc(s,k1)/x}.

We have the following useful lemma which comes
from [2].

Lemma 2 Let φ1 = νñ1.σ1 and φ2 = νñ2.σ2 be two
frames. Let s 6∈ ñ1 ∪ ñ2.

1. νs.νñ1.(σ1 | {s/x}) ≈ νs.νñ2.(σ2 | {s/x}) if and
only if φ1 ≈ φ2;

2. Let φ be another frame such that φ1 | φ and φ2 | φ
are frames (this can always been obtained by α-
renaming φ). If φ1 ≈ φ2, then φ1 | φ ≈ φ2 | φ.

Operational semantics. We now define the seman-
tics of our calculus. The labelled semantics defines a
relation A

ℓ
−→ A′ where ℓ is a label of one of the follow-

ing forms:

• a label in(M), where M is a ground term such
that φ(A) ⊢E M . This corresponds to an input
of M ;

• a label out(M), where M is a ground term, which
corresponds to an output of M ;

• a label τ corresponding to a silent action.

Labelled operational semantics (
ℓ
−→) is the smallest

relation between extended processes which is closed un-
der structural equivalence (≡) and such that

In in(x).P
in(M)
−−−−→ P{M/x}

Out out(M).P
out(M)
−−−−−→ P | {M/x}

where x is a fresh variable

Then if M = N then P else Q
τ
−→ P

where M =E N

Else if M = N then P else Q
τ
−→ Q

where M 6=E N

Cont.
A

ℓ
−→ B

C[A]
ℓ
−→ C[B]

where C is an evaluation context, and
if ℓ = in(M) then φ(C[A]) ⊢E M

5



These rules use standard ideas known from pi calcu-
lus derivatives. Note that the in(M) label has as pa-
rameter the closed term being input, unlike in the ap-
plied pi calculus where the input term may contain
variables. The side condition on Cont. ensures that
the environment can deduce the input message M even
though the context may restrict some names in M .
The output of a message M adds an active substitu-
tion. Note that an output M may contain restricted
names without revealing these names. As explained
previously, some of the design choices of the seman-
tics differ slightly from the applied pi calculus. Our
choices allow us to consider a very simple structural
equivalence and avoid unnecessary complications in the
proofs of our main results. We denote by → the rela-

tion
⋃

{ ℓ
−→ | ℓ ∈ {in(M), out(M), τ}, M ∈ T (Σ)

}

and
by →∗ its reflexive and transitive closure.

Example 6 We illustrate our syntax and semantics
with the well-known handshake protocol.

A → B : senc(n, w)
B → A : senc(f(n), w)

The goal of this protocol is to authenticate B from A’s
point of view, provided that they share an initial se-
cret w. This is done by a simple challenge-response
transaction: A sends a random number (a nonce) en-
crypted with the shared secret key w. Then, B decrypts
this message, applies a given function (for instance
f(n) = n + 1) to it, and sends the result back, also en-
crypted with w. Finally, the agent A checks the validity
of the result by decrypting the message and checking the
decryption against f(n). In our calculus, we model the
protocol as νw.(A | B) where

• A = νn.out(senc(n, w)). in(x).
if sdec(x, w) = f(n) then P

• B = in(y). out(senc(f(sdec(y, w)), w)).

where P models an application that is executed when B

has been successfully authenticated The derivation de-
scribed in Figure 1 represents a normal execution of
the protocol. For simplicity of this example we suppose
that x 6∈ fv (P ).

3.3 Guessing Attacks

The idea behind the definition is the following. Sup-
pose the frame φ represents the information gained by
the attacker by eavesdropping one or more sessions and
let w be the weak password. Then, we can represent re-
sistance against guessing attacks by checking whether
the attacker can distinguish a situation in which he

guesses the correct password w and a situation in which
he guesses an incorrect one, say w′. We model these
two situations by adding {w/x} (resp. {w′

/x}) to the
frame. We use static equivalence to capture the no-
tion of indistinguishability. This definition is due to
Baudet [7], inspired from the one of [14]. In our defini-
tion, we allow multiple shared secrets, and write w̃ for
a sequence of such secrets.

Definition 3 Let φ ≡ νw̃.φ′ be a frame. We say that
the frame φ is resistant to guessing attacks against w̃
if

νw̃.(φ′ | {w̃/x̃}) ≈ νw̃′.νw̃.(φ′ | {w̃′

/x̃})

where w̃′ is a sequence of fresh names and x̃ a sequence
of variables such that x̃ ∩ dom(φ) = ∅.

Note that this definition is general w.r.t. to the
equational theory and the number of guessable data
items.

Now, we can define what it means for a protocol to
be resistant against guessing attacks (in presence of an
active attacker). Intuitively, a protocol A is resistant
against guessing attacks on a weak password w if it is
not possible for an active attacker to mount a guess-
ing attack on it even after some interactions with the
protocol during a first phase. In other words, for any
process B such that A →∗ B (note that the attacker
can intercept and send messages during this phase),
the frame φ(B) has to be resistant to guessing attack.

Definition 4 Let A be a process and w̃ ⊆ bn(A). We
say that A is resistant to guessing attacks against w̃ if,
for every process B such that A →∗ B, we have that the
frame φ(B) is resistant to guessing attacks against w̃.

Example 7 Consider the handshake protocol de-
scribed in Example 6. An interesting problem arises
if the shared key w is a weak secret, i.e. vulnerable to
brute-force off-line testing. In such a case, the protocol
has a guessing attack against w. Indeed, we have that

νw.(A | B) →∗ D

with φ(D) = νw.νn.({senc(n,w)/x1
} | {M/x2

}).
The frame φ(D) is not resistant to guessing attacks

against w. The test f(sdec(x1, x))
?
= sdec(x2, x) allows

us to distinguish the two associated frames:

• νw.νn.({senc(n,w)/x1
} | {M/x2

} | {w/x}), and

• νw′.νw.νn.({senc(n,w)/x1
} | {M/x2

} | {w′

/x}).

This corresponds to the classical guessing attack
on the handshake protocol (see [20]). After a
normal execution of one session of this protocol,

6



νw.(A | B)
out(senc(n,w))
−−−−−−−−−→ νw.νn.(B | {senc(n,w)/x1

} | in(x). if sdec(x, w) = f(n) then P )
in(senc(n,w))
−−−−−−−−→ νw.νn.(out(M) | {senc(n,w)/x1

} | in(x). if sdec(x, w) = f(n) thenP )
out(M)
−−−−−→ νw.νn.({senc(n,w)/x1

} | {M/x2
} | in(x). if sdec(x, w) = f(n) thenP )

in(senc(f(n),w))
−−−−−−−−−−→ νw.νn.({senc(n,w)/x1

} | {M/x2
} | if sdec(senc(f(n), w), w) = f(n) then P )

τ
−−→ νw.νn.({senc(n,w)/x1

} | {M/x2
} | P )

where M = senc(f(sdec(senc(n, w), w)), w) =E senc(f(n), w).

Figure 1. Example 6

the attacker learns two messages, namely senc(n, w)
and senc(f(n), w). By decrypting these two messages
with his guess x, he can easily test whether x = w and
thus recover the weak password w by brute-force testing.

4 Composition Result – Passive Case

The goal of this section is to establish a composition
result in the passive case for resistance against guessing
attacks. We first show the equivalence of three defini-
tions of resistance against guessing attacks: the first
definition is due to Baudet [7] and the second one is
due to Corin et al. [14]. The last definition is given
in a composable way and establishes our composition
result (see Corollary 1).

Proposition 1 Let φ be a frame such that φ ≡ νw̃.φ′.
The three following statements are equivalent:

1. φ is resistant to guessing attacks against w̃ (ac-
cording to Definition 3),

2. φ′ ≈ νw̃.φ′,

3. φ′ ≈ φ′{w̃′

/w̃} where w̃′ is a sequence of fresh
names.

Proof. Let φ be a frame such that φ ≡ νw̃.φ′. We first
establish that the two first statements are equivalent.
Indeed, we have that:

φ′ ≈ νw̃.φ′

⇔ φ′ ≈ νw̃′.φ′{w̃′

/w̃} by α-renaming

⇔ νw̃.(φ′ | {w̃/x̃}) ≈ νw̃.νw̃′.(φ′{w̃′

/w̃} | {w̃/x̃})
by Lemma 2 (item 1.)

⇔ νw̃.(φ′ | {w̃/x̃}) ≈ νw̃′.νw̃.(φ′ | {w̃′

/x̃})
by α-renaming

Now, we show that 3 ⇒ 2. We have the following
implications.

φ′ ≈ φ′{w̃′

/w̃}

⇒ νw̃.φ′ ≈ νw̃.φ′{w̃′

/w̃} by Lemma 1 (item 1.)

⇒ νw̃.φ′ ≈ φ′{w̃′

/w̃}

since w̃ does not occur in φ′{w̃′

/w̃}
⇒ νw̃.φ′ ≈ φ′

since φ′ ≈ φ′{w̃′

/w̃} by hypothesis

Finally, we prove that 2 ⇒ 3.

φ′ ≈ νw̃.φ′

⇒ φ′ ≈ νw̃′.φ′{w̃′

/w̃} by α-renaming

⇒ φ′{w̃′

/w̃} ≈ νw̃′.φ′{w̃′

/w̃} by Lemma 1 (item 2.)

⇒ φ′{w̃′

/w̃} ≈ νw̃.φ′ by α-renaming

⇒ φ′{w̃′

/w̃} ≈ φ′

since φ′ ≈ νw̃.φ′ by hypothesis �

Now, by relying on Proposition 1 (item 3.), it is easy
to show that resistance to guessing attack against w̃ for
two frames that share only the names w̃ is a composable
notion. This is formally stated in the corollary below:

Corollary 1 Let φ1 ≡ νw̃.φ′
1 and φ2 ≡ νw̃.φ′

2 be two
frames such that νw̃.(φ′

1 | φ′
2) is also a frame (this can

be achieved by using α-renaming).
If φ1 and φ2 are resistant to guessing attacks

against w̃ then νw̃.(φ′
1 | φ′

2) is also resistant to guessing
attacks against w̃.

Proof. By relying on Proposition 1 (point 3.), we have
that φ′

1 ≈ φ′
1{

w̃′

/w̃} and also that φ′
2 ≈ φ′

2{
w̃′

/w̃}.
Now, thanks to Lemma 2 (item 2.), we have that

• φ′
1 | φ′

2 ≈ φ′
1{

w̃′

/w̃} | φ′
2, and

• φ′
1{

w̃′

/w̃} | φ′
2 ≈ φ′

1{
w̃′

/w̃} | φ′
2{

w̃′

/w̃}.

This allows us to conclude that

φ′
1 | φ′

2 ≈ (φ′
1 | φ′

2){
w̃′

/w̃}

7



which means that the frame νw̃.(φ′
1 | φ′

2) is resistant
to guessing attacks against w̃. �

Note that a similar result does not hold for de-
ducibility (see Definition 1): even if w is neither de-
ducible from φ1 nor from φ2, it can be deducible
from φ1 | φ2. Such an example is given below.

Example 8 Consider again the equational the-
ory Eenc. Consider the two following frames:
φ1 = {senc(w,senc(w,w))/x1

} and φ2 = {senc(w,w)/x2
}.

We have that νw.φi 6⊢E w for i = 1, 2 whereas
νw.({senc(w,senc(w,w))/x1

} | {senc(w,w)/x2
}) ⊢E w. In-

deed, the term sdec(x1, x2) is a recipe of the term w.

In the case of password-only protocols, i.e., protocols
that only share a password between different sessions
and do not have any other long-term shared secrets we
have the following direct consequence. We can prove
resistance against guessing attacks for an unbounded
number of parallel sessions by proving only resistance
against guessing attacks for a single session. An exam-
ple of a password-only protocol is the well-known EKE
protocol [8], which has also been analysed in [14].

Example 9 The EKE protocol [8] can be informally
described by the following 5 steps. A formal description
of this protocol in our calculus is given in Figure 2.

A → B : senc(pk(k), w) (EKE.1)
B → A senc(aenc(r, pk(k)), w) (EKE.2)
A → B senc(na, r) (EKE.3)
B → A senc(〈na, nb〉, r) (EKE.4)
A → B senc(nb, r) (EKE.5)

In the first step (EKE.1) A generates a new private
key k and sends the corresponding public key pk(k)
to B, encrypted (using symmetric encryption) with the
shared password w. Then, B generates a fresh session
key r, which he encrypts (using asymmetric encryp-
tion) with the previously received public key pk(k). Fi-
nally, he encrypts the resulting ciphertext with the pass-
word w and sends the result to A (EKE.2). The last
three steps (EKE.3-5) perform a handshake to avoid
replay attacks. One may note that this is a password-
only protocol. A new private and public key are used
for each session and the only shared secret between dif-
ferent sessions is the password w.

We use the equational theory Eenc presented in Ex-
ample 1 to model this protocol. An execution of this
protocol in the presence of a passive attacker yields the
frame νw.φ where

φ = νk, r, na, nb.{senc(pk(k),w)/x1
,senc(aenc(r,pk(k)),w) /x2

,
senc(na,r)/x3

,senc(〈na,nb〉,r) /x4
,senc(nb,r) /x5

}

We have that νw.(φ | {w/x}) ≈ νw, w′.(φ | {w′

/x}).
We have verified this static equivalence using the YAPA
tool [6].

Corin et al. [14] also analysed one session of this pro-
tocol (with a slight difference in the modelling). It di-
rectly follows from our previous result that the protocol
is secure for any number of sessions as the only secret
shared between different sessions is the password w.

5 Composition Result – Active Case

In the active case, contrary to the passive case, resis-
tance against guessing attacks does not compose: even
if two protocols separately resist against guessing at-
tacks on w, their parallel composition under the shared
password w may be insecure. Consider the following
example.

Example 10 Consider the processes defined in Fig-
ure 2 where the occurrence of 0 in B has been replaced
by out(w). Let A′ and B′ be these two processes. The
process νw.(A′ | B′) models a variant of the EKE pro-
tocol where B′ outputs the password w if the authenti-
cation of A′ succeeds. We have that νw.A′ and νw.B′

resist against guessing attacks on w. We have veri-
fied these statements by using the ProVerif tool [10].
However, νw.(A′ | B′) trivially leaks w. More gener-
ally any secure password only authentication protocol
can be modified in this way to illustrate that resistance
against guessing attacks does not compose in the active
case.

The previous example may not be entirely convinc-
ing, since there is no environment in which either of
the separate processes νw.A′ and νw.B′ is executable.
We do not give a formal definition of what it means
for a process to be executable. Therefore we present
a second example (more complicated but in the same
spirit) in which each of the constituent processes ad-
mits a complete execution.

Example 11 Consider the processes A and B de-
fined in Figure 2 where the occurrences of 0 in A
and B have been replaced by out(senc(w, ra)) and
in(y).out(sdec(y, r)) respectively. Let A1 and B1 be
these two processes. We can see νw.(A1 | B) and
νw.(A | B1) as two extensions of the EKE proto-
col with an additional exchange. Note also that these
two protocols admit a normal execution and in this
sense are executable. We have that νw.(A1 | B)
and νw.(A | B1) are resistant against guessing attacks
on w. In particular the additional exchange does not
lead to an attack. We have verified these statements

8



A = νk, na. B = νr, nb.
out(senc(pk(k), w)). in(y1).
in(x1). out(senc(aenc(r, sdec(y1, w)), w)).
let ra = adec(sdec(x1, w), k). in(y2).
out(senc(na, ra)). out(senc(〈sdec(y2, r), nb〉, r)).
in(x2). in(y3).
if proj1(sdec(x2, ra)) = na then if sdec(y3, r) = nb then
out(sdec(proj2(sdec(x2, ra)), ra)). 0 0

We use the construction let x = M to enhance readability. The semantics of this construction is to simply replace x
by M in the remaining of the process.

Figure 2. Modelling of the EKE protocol

using the tool ProVerif. However, νw.(A1 | B1) and
thus νw.((A1 | B) | (A | B1)), trivially leaks w.

This example shows that there is no hope to ob-
tain a general composition result (even if we restrict
to protocols that are executable) that holds even for a
particular and relatively simple equational theory. To
reach our goal, we consider a restricted class of proto-
cols: the class of well-tagged protocols.

5.1 Well-tagged Protocols

Intuitively, a protocol is well-tagged w.r.t. a secret w
if all the occurrences of w are of the form h(α, w). We
require that h is a hash function (i.e., has no equations
in the equational theory), and α is a name, which we
call the tag. The idea is that if each protocol is tagged
with a different name (e.g. the name of the protocol)
then the protocols compose safely. Note that a proto-
col can be very easily transformed into a well-tagged
protocol (see Section 6). In the remainder, we will con-
sider an arbitrary equational theory E, provided there
is no equation for h.

Definition 5 (well-tagged) Let M be a term and w
be a name. We say that M is α-tagged w.r.t. w if
there exists M ′ such that M ′{h(α,w)/w} =E M .

A term is said well-tagged w.r.t. w if it is α-tagged
w.r.t. w for some name α. An extended process A is
α-tagged if any term occurring in it is α-tagged. An ex-
tended process is well-tagged if it is α-tagged for some
name α.

Other ways of tagging a protocol exist in the liter-
ature. For example, in [16] encryption are tagged to
ensure that they cannot be used to attack other pro-
tocols. That particular method would not work here;
on the contrary, that kind of tagging is likely to add
guessing attacks.

Example 12 Let A = νw, s.out(senc(s, w)). We have
that A is resistant to guessing attacks against w. How-
ever, the corresponding well-tagged protocol, according
to the definition given in [16], is not. Indeed,

A′ = νw, s.out(senc(〈α, s〉, w))

is not resistant to guessing attack against w. The
tag α which is publicly known can be used to mount
such an attack. An attacker can decrypt the mes-
sage senc(〈α, s, 〉, w) with his guess x and check whether
the first component of the pair is the publicly known
value α. Hence, he can test whether x = w and recover
the password w by brute force testing.

Another tagging method we considered is to re-
place w by 〈α, w〉 (instead of h(α, w)), which has the
advantage of being computationally cheaper. This
transformation does not work, although the only coun-
terexamples we have are rather contrived. For ex-
ample, this transformation does not preserve resis-
tance against guessing attacks as soon as the equa-
tional theory allows one to test whether a given mes-
sage is a pair (see Example 13). In particular this
is possible in the theory Eenc by testing whether
〈proj1(x), proj2(x)〉 =Eenc

x.

Example 13 Consider the equational theory Eenc.

Let A = νw, k.out(senc(w, k)).in(x). if
proj1(dec(x, k)) = α then out(w).

The process A is resistant to guessing attacks against w
since the last instruction can never been executed.
However, the protocol obtained by replacing w by 〈α, w〉
is clearly not.

Note that we can built a similar example without
using α in the specification of A. We can simply com-
pare the first component of two ciphertexts issued from
the protocols. This should lead to an equality (i.e. a
test) which does not necessarily exist in the original
protocol.

9



5.2 Composition Theorem

We show that any two well-tagged protocols that are
separately resistant to guessing attacks can be safely
composed provided that they use different tags. The
following theorem formalizes the intuition that replac-
ing the shared password with a hash parametrized by
the password and a tag is similar to using different
passwords which implies composition.

Theorem 1 (composition result) Let A1 and A2

be two well-tagged processes w.r.t. w such that the pro-
cess A1 (resp. A2) is α-tagged (resp. β-tagged) and
νw.(A1 | A2) is a process (this can be achieved by us-
ing α-renaming).

If νw.A1 and νw.A2 are resistant to guessing attacks
against w and α 6= β, then we have that νw.(A1 | A2)
is also resistant to guessing attacks against w.

Theorem 1 is proved by contradiction in two main
steps. First, we show that separately secure proto-
cols compose safely when no secret is shared, i.e.,
νw1.A1{w1/w} | νw2.A2{w2/w} resists against guess-
ing attacks on w1, w2. This is rather easy to establish
since these two protocols do not share any secret data
(Proposition 2).

Proposition 2 Let A1 and A2 be two extended pro-
cesses such that A1 (resp. A2) is resistant to guessing
attack against w1 (resp. w2) and A1 | A2 is a process.
We have that A1 | A2 is resistant to guessing attack
against w1, w2.

Now, we show how to map an execution of
νw.(A1{w/w1

} | A2{w/w2
}) (same password) to an ex-

ecution of νw1.A1 | νw2.A2 (different password) by
maintaining a strong connection between these two
derivations. Intuitively, as A1 is α-tagged and A2 is β-
tagged we can simply replace h(α, w) by h(α, w1) and
h(β, w) by h(β, w2) in any execution.

Proposition 3 Let A be an extended process with no
occurrence of w in it and such that w1, w2, α, β 6∈ bn(A)
and A′{h(α,w1)/w1

}{h(β,w2)/w2
} =E A for some A′.

Let B be such that νw.(A{w/w1
}{w/w2

})
ℓ
−→ B. More-

over, when ℓ = in(M̃) we assume that w1, w2 6∈ fn(M̃).
Then there exists B and B′ such that

• B ≡ νw.(B{w/w1
}{w/w2

}) with no occurrence
of w in B, and

• B′{h(α,w1)/w1
}{h(β,w2)/w2

} =E B, and

• νw1.νw2.A → νw1.νw2.B.

Finally, we show that if a frame, obtained by execut-
ing two protocols sharing a same password, is vulnera-
ble to guessing attacks then the frame obtained by the
corresponding execution of the protocols with different
passwords is also vulnerable to guessing attacks. The
proof of the lemma is technical because mapping w1

and w2 on the same password can introduce additional
equalities between terms. Again, the lemma holds be-
cause the frames are well-tagged.

Lemma 3 Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two
frames such that φ1 ≈ φ2, w1, w2, α, β 6∈ ñ and
such that φi =E φ′

i{
h(α,w1)/w1

}{h(β,w2)/w2
} for some

frame φ′
i (i = 1, 2). Let w be a fresh name. We have

that
φ1{

w/w1
}{w/w2

} ≈ φ2{
w/w1

}{w/w2
}

Now, we can prove Theorem 1.

Proof. We prove our composition result by contradic-
tion. Assume that the process νw.(A1 | A2) is not re-
sistant to guessing attacks against w. We show that
the process νw1.A1{w1/w} | νw2.A2{w2/w} is not re-
sistant to guessing attack against w1, w2. This means,
by Proposition 2, that νwi.Ai{wi/w} is not resistant to
guessing attacks against wi for i = 1 or i = 2. Thus, by
α-renaming, νw.Ai is not resistant to guessing attacks
against w for i = 1 or i = 2. Hence, a contradiction.

By definition of guessing attacks, we have that there
exists an extended process A such that:

• νw.(A1 | A2) →∗ A, and

• the frame φ(A) is not resistant to guessing attacks
against w.

We assume w.l.o.g. that the free names w1, w2, which
do not occur in νw.(A1 | A2), are not used along the
derivation. By iterating Proposition 3, we have that
there exist two extended processes A and A′ such that:

• A ≡ νw.A{w/w1
}{w/w2

},

• A′{h(α,w1)/w1
}{h(β,w2)/w2

} =E A, and

• νw1.νw2.(A1{w1/w} | A2{w2/w}) →∗ νw1.νw2.A.

It remains to show that φ(A) 6≈ φ(A){w′

1/w1
}{w′

2/w2
}.

Suppose that φ(A) ≈ φ(A){w′

1/w1
}{w′

2/w2
}. Apply-

ing Lemma 3 with the replacements {w/w1
}{w/w2

} and
{w′

/w′

1
}{w′

/w′

2
}, we obtain that:

• φ(A){w/w1
}{w/w2

} ≈ φ(A){w′

1/w1
}{w′

2/w2
}, and

• φ(A) ≈ φ(A){w′

/w1
}{w′

/w2
}.

10



Since φ(A) ≈ φ(A){w′

1/w1
}{w′

2/w2
}, by transitivity

of ≈, we obtain that

φ(A){w/w1
}{w/w2

} ≈ (φ(A){w/w1
}{w/w2

}){w′

/w}.

Hence, φ(A) is resistant to guessing attacks
against w. Thus, we obtain a contradiction and con-
clude the proof. �

Assuming that any attack only uses a finite num-
ber of sessions, one may note that our composition re-
sult holds for an unbounded number of sessions (even
though our protocol language does not include repli-
cation). Indeed, suppose that two protocols are sep-
arately resistant against guessing attacks for an un-
bounded number of sessions and that their parallel
composition allows a guessing attack. As any attack
only requires a finite number of sessions, by Theorem 1,
we have that one of the protocols admits an attack
leading to a contradiction.

6 Transformation to Obtain Well-

Tagged Protocols

In the previous section, we proved a composition re-
sult for protocols that resist against guessing attacks.
Unfortunately, it only applies to protocols that are
well-tagged. This is indeed a restriction, since most of
the existing protocols are not well-tagged. In this sec-
tion, we give a simple, syntactic transformation which
allows us to transform any protocol into a well-tagged
one. If νw.A is a process resistant to guessing attacks
against w, then the transformed process is defined as
νw.(A{h(α,w)/w}): any occurrence of the password w
in A is replaced by h(α, w). In this section, we show
that this transformation is safe in the sense that if a
process is resistant to guessing attacks against w, then
the transformed process is also resistant to guessing
attack against w.

Theorem 2 Let A ≡ νw.A′ be a process resistant
to guessing attacks against w, then we have that
νw.(A′{h(α,w)/w}) is also resistant to guessing attacks
against w.

Theorem 2 is proved by contradiction in two main
steps by relying on Proposition 4 and Lemma 4. In
Proposition 4, we show how to map an execution of
a well-tagged protocol to an execution of the original
(not well-tagged) protocol. We maintain a strong con-
nection between the two executions.

Proposition 4 Let A be a process with w, α 6∈ bn(A)
and A′{h(α,w)/w} =E A for some A′. If νw.A → B,
then B ≡ νw.B and there exists a process B′ such that
B′{h(α,w)/w} =E B and νw.A′ → νw.B′.

Then, we show that static equivalence is preserved
by the transformation {h(α,w)/w}. This is crucial to do
not introduce guessing attack.

Lemma 4 Let φ1 and φ2 be two frames such that
φ1 ≈ φ2. Let w, α be such that w, α 6∈ bn(φ1)∪ bn(φ2).
We have that

φ1{
h(α,w)/w} ≈ φ2{

h(α,w)/w}.

Now, we are able to prove Theorem 2.

Proof. Assume that νw.(A′{h(α,w)/w}) is not resistant
to guessing attacks on w. This means that there exists
a process B such that:

• νw.(A′{h(α,w)/w}) →∗ B, and

• the frame φ(B) is not resistant to guessing attacks
against w.

By applying Proposition 4, we easily obtained that
B ≡ νw.B for some process B and there exists B′

such that B′{h(α,w)/w} =E B and νw.A′ →∗ νw.B′.
To conclude, it remains to show that

φ(B′) 6≈ φ(B′){w′

/w}.

Assume that φ(B′) ≈ φ(B′){w′

/w}, thanks to
Lemma 4, we easily obtain that

• φ(B) =E φ(B′){h(α,w)/w}
≈ (φ(B′){w′

/w}){h(α,w)/w} = φ(B′){w′

/w},
and

• φ(B′) = φ(B′){h(α,w′)/w′}
≈ (φ(B′){w′

/w}){h(α,w′)/w′} =E φ(B){w′

/w}.

Since φ(B′) ≈ φ(B′){w′

/w}, and by transitivity of ≈,
we obtain φ(B) ≈ φ(B){w′

/w} which contradicts the
fact that φ(B) is not resistant to guessing attacks
against w. �

We have shown that resistance against guessing at-
tacks is preserved by our transformation. The simplic-
ity of our transformation should also ensure that the
functionalities of the protocol are preserved as well. A
rigorous proof of this would require a formal definition
of what it means to “preserve the functionalities” of a
protocol.

11



7 Conclusion

We investigated the composition of protocols that
share a common secret, and answered the question
of whether such composition preserves resistance to
guessing attacks. In the passive case (where the at-
tacker cannot interact with the protocol but can anal-
yse the transcript of messages it generated), we showed
that if the two protocols individually resist guessing
attacks, then the composition does too. In the active
case, we showed that this result does not hold in gen-
eral, but we showed that one could tag the protocols in
such a way that they compose without compromising
the resistance to guessing attacks.

An alternative direction of research would be to in-
vestigate whether there are conditions on the equa-
tional theory and on the protocols that would make the
composition result hold without tagging for the active
case. It would also be interesting to consider the case
where additional long term keys are shared. Broader
directions for future research include composition of
other security properties, such as observational equiv-
alence for processes that share secrets, and different
composition operators, e.g. sequential composition.

Acknowledgments. Our paper benefited from com-
ments and discussions with Ştefan Ciobâcă, Véronique
Cortier, Cédric Fournet and Bogdan Warinschi.

References

[1] M. Abadi, M. Baudet, and B. Warinschi. Guessing at-
tacks and the computational soundness of static equiv-
alence. In Proc. 9th International Conference on Foun-
dations of Software Science and Computation Struc-
tures (FoSSaCS’06), volume 3921 of LNCS, pages 398–
412. Springer, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In Proc. 28th Symposium
on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, 2001.

[3] M. Abadi and A. D. Gordon. A calculus for cryp-
tographic protocols: The spi calculus. In Proc. 4th
Conference on Computer and Communications Secu-
rity (CCS’97), pages 36–47. ACM, 1997.

[4] S. Andova, C. Cremers, K. G. Steen, S. Mauw, S. M.
lsnes, and S. Radomirović. A framework for compo-
sitional verification of security protocols. Information
and Computation, 206(2-4):425–459, 2007.

[5] A. Armando, D. Basin, Y. Boichut, Y. Chevalier,
L. Compagna, J. Cuellar, P. H. Drielsma, P. Heám,
O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Tu-
ruani, L. Viganò, and L. Vigneron. The Avispa tool for
the automated validation of internet security protocols

and ap plications. In Proc. 17th International Confer-
ence on Computer Aided Verification (CAV’05), vol-
ume 3576 of LNCS, 2005.

[6] M. Baudet. YAPA. http://www.lsv.ens-cachan.fr/
~baudet/yapa/.

[7] M. Baudet. Deciding security of protocols against
off-line guessing attacks. In Proc. 12th ACM Con-
ference on Computer and Communications Security
(CCS’05), pages 16–25. ACM Press, 2005.

[8] S. M. Bellovin and M. Merritt. Encrypted key ex-
change: Password-based protocols secure against dic-
tionary attacks. In Proc. Symposium on Security
and Privacy (SP’92), pages 72–84. IEEE Comp. Soc.,
1992.

[9] B. Blanchet. An Efficient Cryptographic Protocol Ver-
ifier Based on Prolog Rules. In Proc. 14th Computer
Security Foundations Workshop (CSFW’01), pages
82–96. IEEE Comp. Soc. Press, 2001.

[10] B. Blanchet. Automatic Proof of Strong Secrecy for
Security Protocols. In Proc. Symposium on Security
and Privacy (SP’04), pages 86–100. IEEE Comp. Soc.,
2004.

[11] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D.
MacKenzie. Universally composable password-based
key exchange. In Proc. 24th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT’05), volume 3494
of LNCS, pages 404–421, Aarhus, Denmark, 2005.
Springer.

[12] R. Canetti, C. Meadows, and P. F. Syverson. Envi-
ronmental requirements for authentication protocols.
In Proc. International Symposium on Software Secu-
rity – Theories and Systems (ISSS’02), volume 2609 of
LNCS, pages 339–355, Tokyo, Japan, 2003. Springer.

[13] E. Cohen. Proving cryptographic protocols safe from
guessing attacks. In Proc. Foundations of Computer
Security (FCS’02), 2002.

[14] R. Corin, J. Doumen, and S. Etalle. Analysing pass-
word protocol security against off-line dictionary at-
tacks. ENTCS, 121:47–63, 2005.

[15] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle.
Guess what? Here is a new tool that finds some new
guessing attacks. In Proc. of the Workshop on Issues
in the Theory of Security (WITS’03), 2003.

[16] V. Cortier, J. Delaitre, and S. Delaune. Safely com-
posing security protocols. In Proc. 27th Conference
on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS’07), LNCS. Springer,
2007. To appear.

[17] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A
derivation system and compositional logic for security
protocols. Journal of Computer Security, 13(3), 2005.

[18] S. Delaune and F. Jacquemard. Decision procedures
for the security of protocols with probabilistic encryp-
tion against offline dictionary attacks. Journal of Au-
tomated Reasoning, 36(1-2):85–124, Jan. 2006.

[19] S. Delaune, S. Kremer, and M. Ryan. Composition
of password-based protocols. Research Report LSV-
08-12, Laboratoire Spécification et Vérification, ENS
Cachan, France, Mar. 2008. 19 pages.

12



[20] L. Gong. Increasing availability and security of an au-
thentication service. IEEE Journal on Selected Areas
in Communications, 11(5):657–662, 1993.

[21] J. D. Guttman and F. J. Thayer. Protocol indepen-
dence through disjoint encryption. In Proc. 13th Com-
puter Security Foundations Workshop (CSFW’00),
pages 24–34. IEEE Comp. Soc. Press, 2000.

[22] G. Lowe. Analysing protocols subject to guessing
attacks. Journal of Computer Security, 12(1):83–98,
2004.

[23] S. Malladi, J. Alves-Foss, and S. Malladi. What
are multi-protocol guessing attacks and how to pre-
vent them. In Proc. 11th International Workshops on
Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE 2002), pages 77–82. IEEE
Comp. Soc., 2002.

13


