
Computational Soundness of Observational Equivalence

Hubert Comon-Lundh
Research Center for Information Security and

ENS Cachan
AIST, Akihabara-Daibiru, Tokyo, Japan

h.comon-lundh@aist.go.jp

Véronique Cortier∗
LORIA, CNRS & INRIA project CASSIS

Nancy, France
cortier@loria.fr

ABSTRACT
Many security properties are naturally expressed as indis-
tinguishability between two versions of a protocol. In this
paper, we show that computational proofs of indistinguisha-
bility can be considerably simplified, for a class of processes
that covers most existing protocols. More precisely, we show
a soundness theorem, following the line of research launched
by Abadi and Rogaway in 2000: computational indistin-
guishability in presence of an active attacker is implied by
the observational equivalence of the corresponding symbolic
processes.
We prove our result for symmetric encryption, but the same
techniques can be applied to other security primitives such
as signatures and public-key encryption. The proof requires
the introduction of new concepts, which are general and can
be reused in other settings.

Categories and Subject Descriptors
D.2.4 [Verification]: Formal methods

General Terms
Verification

1. INTRODUCTION
Two families of models have been designed for the rigor-

ous analysis of security protocols: the so-called Dolev-Yao
(symbolic, formal) models on the one hand and the cryp-
tographic (computational, concrete) models on the other
hand. In symbolic models messages are formal terms and
the adversary can only perform a fixed set of operations on
them. The main advantage of the symbolic approach is its
relative simplicity which makes it amenable to automated
analysis tools [14] In cryptographic models, messages are
bit strings and the adversary is an arbitrary probabilistic

∗This work has been partially supported by the ARA SSIA

FormaCrypt and the ARA project AVOTÉ.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation onthe first page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08 October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008ACM 978-1-59593-810-7/08/10 ...$5.00.

polynomial-time (ppt) Turing machine. While the proofs in
such models yield strong security guarantees, they are often
quite involved and seldom suitable for automation.

Starting with the seminal work of Abadi and Rogaway [4],
a lot of efforts has been directed to bridging the gap between
the two approaches. The goal is to obtain the best of both
worlds: simple, automated security proofs that entail strong
security guarantees. The numerous relevant works can be
divided into two categories. In the first one ([1, 12, 31] and
many others), the authors generalize Abadi and Rogaway re-
sult, typically considering a larger set of security primitives.
However, they still only consider a passive adversary. This
rules out the so-called “man-in-the-middle attacks”. Ana-
lyzing real protocols requires to consider active adversaries,
which is the aim of the second category of papers (e.g. [8,
18, 22, 30]). It is also the aim of the present paper. We
consider however a wider class of security properties.

Trace properties vs. Equivalence properties. We
call here a trace property a formal statement that something
bad never occurs on any trace of a protocol. (Formally, this
is a property definable in linear time temporal logic). In-
tegrity and authentication are examples of trace properties.
That is why they were the first for which computational
guarantees were derived out of symbolic ones [10, 32].
There are however several security properties, which cannot
be defined (or cannot be naturally defined) as trace proper-
ties.

• Anonymity states that any two execution traces, in
which names are swapped, cannot be distinguished by
an attacker. More precisely, anonymity requires two
instances of the protocol PAB and PBA, the names
A,B being switched in the second copy. An adver-
sary interacting with one of the two copies should not
be able to tell (with non-negligible probability) with
which copy he is interacting. There is no known way
to reduce this problem to a property of a single proto-
col copy.
Privacy related properties involved in electronic vot-
ing protocols [23] also use an equivalence and cannot
be expressed in linear temporal logic.

• Similarly, in the computational worlds, anonymity of
group signatures [5] is defined through the indistin-
guishability of two games where different identities are
used in each game. A similar definition is proposed for
“blindness” of signatures in [27].

• The “computational secrecy” states that the protocol
does not leak any piece of the secret (this is sometimes



called “real or random”). Such a property is naturally
expressed as an indistinguishability property: the at-
tacker cannot distinguish between two games, one of
which is the real protocol, and, in the other one, the
secret has been replaced by a random string. There
are several works [32, 9, 22, 26, 18, 21]showing how to
soundly abstract it as a trace property in the symbolic
model, in a number of particular cases. It is not clear,
however, that such a property can be expressed as a
trace property in general. Consider e.g. the case of a
hash function and assume that a protocol reveals the
hash h(s) of some secret s. Then s cannot be computed
(by one-wayness of h), which, from the trace property
point of view, would be sufficient for confidentiality.
On the other hand, an attacker certainly learns some-
thing about s and the computational secrecy is not
preserved.

• Strong (also called “black-box”) simulatability [11, 29],
states that, given a real protocol P and an ideal func-
tionality F , there is a simulator S such that P can-
not be distinguished from S‖F by any environment.
Again, this is not a property of any particular trace,
but rather a relationship between the real traces and
the ideal ones. Various notions of universal compos-
ability [17, 19] can be defined in a similar way.

This shows the importance and generality of indistinguisha-
bility properties compared to trace properties.

The main question is then: “is it possible to get sound ab-
straction results for computational indistinguishability, anal-
ogous to the results obtained so far for trace properties ?”
This is the question, which we want to address in this paper,
for a sample set of cryptographic primitives.

Our contribution. There is a well-known similar no-
tion in concurrency theory: observational equivalence, intro-
duced by Milner and Hoare in the early 80s. Two processes
P and Q are observationally equivalent, denoted by P ∼o Q,
if for any process O (a symbolic observer) the processes P‖O
and Q‖O are equally able to emit on a given channel. This
means that O cannot observe any difference between P and
Q. Observational equivalence is therefore a natural can-
didate for the symbolic counterpart of indistinguishability,
the attacker being replaced by the observer. And indeed, we
show in this paper a result of the form “two networks of ma-
chines are indistinguishable if the processes they implement
are observationally equivalent”. As a consequence, proving
computational indistinguishability can be reduced to prov-
ing observational equivalence (for a class of protocols and
assuming some standard security hypotheses on the crypto-
graphic primitives). This is a simpler task, which can be
completely formalized and sometimes automated [15, 24].

We prove our result for symmetric encryption and pair-
ing, using a fragment of the applied pi-calculus [2] for spec-
ifying protocols and relying on standard cryptographic as-
sumptions (IND-CPA and INT-CTXT) as well as hypothe-
ses, which are similar to those of [8]. The main difference
with this latter work is that we prove the soundness of ob-
servational equivalence, which covers more properties. The
fragment of applied pi-calculus we consider allows to express
an arbitrary (unbounded) number of sessions of a protocol.

To prove our result, we need first to show that any compu-
tational trace is, with overwhelming probability, an instance
of a symbolic one. This lemma is similar to [22, 26], though

with different hypotheses and in a different model. A naive
idea would be then to consider any pair of related symbolic
traces: by observational equivalence (and actually labeled
bisimilarity) the two traces are statically equivalent. Then
we could try to apply soundness of static equivalence on
these traces (using results in the passive case, e.g. [4, 1,
12, 31]). This idea does not work, since the computational
traces could be spread over the symbolic ones: if there is only
one computational trace corresponding to a given symbolic
trace, then the symbolic traces indistinguishability does not
tell us anything relevant on the computational ones.

That is why we need a new tool; the main technical in-
gredient of our proof is the introduction of tree soundness
in the case of passive attackers and the use of intermedi-
ate structures, which we called computation trees: on one
end such trees roughly correspond to the labeled transition
semantics of some process algebra, and, on the other end,
they are interpreted as an encryption oracle, scheduled by
the attacker. These notions are defined independently of the
cryptographic setting. Tree soundness captures the fact that
even a passive attacker can adaptively choose its requests.
It seems related to “adaptive soundness of static equiva-
lence” as defined in [28] though no precise relationship has
been established yet. We can then derive a general method
for proving that observational equivalence implies compu-
tational indistinguishability. We believe our techniques are
general and can be reused in other settings. In particular,
using our generic approach, it should not be difficult to ex-
tend our result to other security primitives like asymmetric
encryption and signatures.

Related Work. In a series of papers starting with Mic-
ciancio and Warinschi [32] and continued with e.g. [22, 26],
the authors show trace mapping properties: for some se-
lected primitives (public-key encryption and signatures in
the above-cited papers) they show that a computational
trace is an instance of a symbolic trace, with overwhelm-
ing probability. We have a similar result for symmetric
encryption in the present paper, but this is not our main
contribution.

There is a huge amount of work on simulatability/universal
composability, especially the work of Backes et. al. and
Canetti [17, 11, 10, 8, 9]. In the black-box simulatability
approach of [11], which we refer to as BPW, the symbolic
model is different than ours: there are essential construc-
tions such as handles, which we do not have in our (more
abstract) symbolic model, that is a standard process alge-
bra. The BPW model also requires to construct a simulator,
within the model, which we do not require. Therefore, we
must be cautious with any comparison.

BPW-simulatability roughly states that [[P ]] ≈ P‖S: the
computational interpretation of the process P is indistin-
guishable from the simulated version of P . As shown in [7],
this implies the trace mapping property, hence that symbolic
trace properties transfer to the computational level. The
BPW-simulatability should also imply the soundness of ob-
servational equivalence of the corresponding BPW-processes
in a simple way (D. Unruh, private communication). The
precise relationships with our work are worth being further
investigated.

Conversely, if a simulated process S‖P could be seen as
the computational interpretation of a process Q, then the
BPW-simulatability itself could be seen as an instance of
our result.



Our work can also be seen as a generalization of soundness
results for static equivalence [4, 3, 12] from a passive attacker
to an active one. However, as we sketched above and as
we will see on an example later, these results cannot be
used directly in the active attacker case, which is the one we
consider.

In [18] the authors show how to encode an equivalence
property (actually computational secrecy for a given set of
primitives) in the symbolic trace, using patterns. This allows
to show how an indistinguishability property can be lifted to
the symbolic case. The method, contrary to ours, is however
dedicated to this particular property.

The work of Mitchell et. al. [33] also aims at faithfully
abstracting the model of interactive Turing machines. Their
results concern general processes and not only a small frag-
ment, as we do here. In this respect, they are much more
general than us. However, on the other hand, they abstract
much less: there are still computations, coin tossing and
probabilistic transitions in their model. Our aim is really to
show that it makes no difference if the attacker is given only
a fixed set of operations (encryption, decryption, name gen-
eration...) and if there is no probabilities nor coin tossing.

To our knowledge, the only previous work formally con-
necting observational equivalence and computational indis-
tinguishability is [6]. In this paper, the authors give sound-
ness and completeness results of a cryptographic implemen-
tation of processes. The major difference with our work is
that they do not have explicit cryptographic constructions
in the formal model. For instance encryption keys cannot
be sent or leaked since they are implicit. Most standard
security protocols cannot be described at this level of ab-
straction without possibly missing attacks. The results of
[6] are useful in designing secure implementations of abstract
functionalities, not for the verification of existing protocols.

Finally, the work on automation and decision of observa-
tional equivalence [25, 15, 24] shows that there exist sys-
tematic ways of deriving such equivalences in the symbolic
world. This is also the advantage of using a standard process
algebra as a symbolic model.

Organization of the paper: we first give the definitions
of our computational model in section 2. Next we recall some
of the general definitions of applied π-calculus in section 3.
Note that, in the following, we only consider a fragment of
the calculus for the protocol description (as usual), and we
will only consider a particular equational theory correspond-
ing to symmetric encryption. The relationship between the
two models, as well as the protocol description language is
given in section 4. In section 5 we give our main result
and outline the proof. More details, including intermediate
lemmas, the notions of computation trees, tree oracles, tree
soundness are provided in section 6. We omit details and
proofs in this short paper: they can be found in [20].

2. COMMUNICATING TURING MACHINES
Randomized Turing machines are Turing machines with

an additional random tape. We assume w.l.o.g. that these
machine first draw an infinite random input string on the
random tape, and then compute deterministically. Commu-
nicating Turing machines are randomized machines equipped
with input/output tapes and two special instructions: send

and receive. They are restricted to work in polynomial time
with respect to their original input (see [11] for a discussion).
The adversary is a special CTM with an additional schedul-

ing tape. A network F‖A consists of an adversary A and a
family of CTMs F = (Mn)n∈N. We also call F the envi-
ronment of A. This model is a simplification of interactive
Turing machines of [17], keeping only the essential features.

In brief, in the initial configuration, each machine of the
network has the security parameter in unary on its input
tape and possibly other data such as secret keys. For sim-
plicity we do not model here the key distribution. Moves be-
tween configurations are defined according to the attacker’s
view: in each configuration, the attacker decides to perform
an internal move, to ask for the initialization of a new ma-
chine or to schedule a communication. In the latter case,
the identity of the recipient is written on the scheduling
tape and either a send or a receive action is performed. In
case of a send, the contents of the sending tape is copied to
the receiving tape of the scheduled recipient, who performs
(in one single step) all its computations, until (s)he is wait-
ing for another communication. In case of a receive action,
the whole content of the sending tape of the scheduled ma-
chine is copied on the receiving tape of the attacker. The
number of CTMs in the network is unbounded. Note that
this setting does allow dynamically corrupted parties as in
most results relating symbolic and computational models.
Initially corrupted machines simply send their keys on the
network.

We say that a function f : N → N is negligible if, for
every polynomial P , ∃N ∈ N,∀η > N, f(η) < 1

P (η)
. We

write Pr{x : P (x)} the probability of event P (x) when the
sample x is drawn according to an appropriate distribution
(the key distribution or the uniform distribution; this is kept
implicit).

Two families of machines are indistinguishable if any ad-
versary cannot tell with which family he is connected with
non negligible probability:

Definition 1. Two environments F and F ′ are indistin-
guishable, which we write F ≈ F ′, if, for every attacker A,

|Pr{r, r : (F(r)‖A(r))(0η) = 1}−Pr{r, r : (F ′(r)‖A(r))(0η) = 1}|

is negligible. r is the sequence of random inputs of the ma-
chines in F (resp. F ′), including keys. r is the random
input of the attacker.

As described in introduction, the computational secrecy
of s can be expressed as follows. In F0, the machines using
s are set with s0 while in F1, they are set with s1. The
values s0 and s1 could also be chosen by the attacker. Then
the data s is computationally secret if F0 ≈ F1. Note that
the environments Fb may contain corrupted machines, not
holding si, that start by leaking their private information to
the adversary.

Anonymity of group signatures [5] is defined through the
following game: the adversary chooses a message m and two
identities i0 and i1. Then in F0, the machines sign m with
identity i0 while in F1, the machines sign m with identity
i1. Again the property is defined by F0 ≈ F1.

3. THE APPLIED PI-CALCULUS
We use the applied π-calculus of [2] as a symbolic model.

There are several reasons for this choice. First, there are
verification tools relying on this model [15]. Next, Though
only a small fragment of this process calculus is used in



the present paper, we plan several extensions in various di-
rections: considering more primitives (and equational theo-
ries), enriching the control structure, e.g. with conditionals
and sequential composition,... The applied π-calculus is well
suited for such extensions.

We recall the definitions in this section. Note that we will
only consider a small fragment of the applied-π-calculus for
the protocol descriptions and only a particular equational
theory for our main result.

3.1 Syntax
A signature is a finite set of function symbols with an

arity. It represents the security primitives (e.g. encryp-
tion, pairing, decryption). Given a signature Σ, an infi-
nite set N of names and an infinite set X of variables,
T (N ,X ) is the set of terms, the least set containing N ,X
and closed by application of a symbol in Σ. We assume
that Σ contains a binary pairing function < u, v >, the cor-
responding projections functions π1, π2, and a length func-
tion l, which is a morphism from T (N ,X ) to N. We as-
sume infinitely many names of any length. Terms represent
messages and names stand for (randomly) generated data.
α, β, . . . are meta-variables that range over names and vari-
ables. We confuse the name generation and the local vari-
ables using the same ν construction, as they obey the same
scoping/renaming rules. u stands for a sequence u1, . . . , un.
σ = {x1 7→ s1, . . . , xk 7→ sk} is the substitution that re-
places the variable xi with the term si. The domain of σ,
denoted by dom(σ) is the set {x1, . . . , xk}.

Example 3.1. Σ0 is the signature consisting of the bi-
nary pairing < ·, · >, the two associated projections π1, π2,
the binary decryption dec and the ternary symbol {·}·· for
symmetric encryption: {x}rk stands for the encryption of x
with the key k and the random r. Σ0 also contains constants
with in particular a constant 0l of length l for every l.

The syntax of processes and extended processes is dis-
played in Figure 1. In what follows, we restrict ourselves
to processes with public channels. P is a set of predicate
symbols with an arity. A difference with [2] is that we
consider conditionals with arbitrary predicates. This leaves
some flexibility in modeling various levels of assumptions on
the cryptographic primitives. Typical examples are the abil-
ity (or not) to check whether a decryption succeeds, or the
ability (or not) to check that two ciphertexts are produced
using the same encryption key. Other examples are typing
predicates, which we may want (or not). In [2] the condition
is always an equality. Encoding the predicate semantics with
equalities is (only) possible when there is no negative con-
dition: it suffices then to express when a predicate is true.
We believe that predicates allow to better reflect the abil-
ity of the adversary, with less coding. As we will see in the
section 4, the predicates will be interpreted as polynomially
computable Boolean functions.

Note that we use unbounded (un-guarded) replication of
processes. This does not prevent from getting both sound-
ness and completeness w.r.t. the computational interpreta-
tion: we show that if there is a computational attack, then
there is a symbolic one (soundness). This symbolic attack
does not depend on the security parameter: in this respect,
it is a constant size attack. Interpreting back the attack in
the computational world, this means that there is an attack
whose size is independent of the security parameter.

φ, ψ ::= conditions
p(s1, . . . , sn) predicate application
φ ∧ ψ conjunction

P,Q,R ::= processes
c(x).P input
c(s).P output
0 terminated process
P ‖Q parallel composition
!P replication
(να)P restriction
if φ then P else Q conditional

A,B,C ::= extended processes
P plain process
A‖B parallel composition
(να)A restriction
{x 7→ s} active substitution

Figure 1: Syntax of processes

In the paper, we often confuse “process”an “extended pro-
cess” (and do not follow the lexicographic convention A,B...
vs P.Q, ...).

3.2 Operational semantics
We briefly recall the operational semantics of the applied

pi-calculus (see [2] for details). E is a set of equations on the
signature Σ, defining an equivalence relation =E on T (N ),
which is closed under context. =E is meant to capture sev-
eral representations of the same message. Predicate symbols
are interpreted as relations over T (N )/ =E. This yields a
structureM.

Example 3.2. The equations E0 corresponding to Σ0 are
dec({x}zy, y) = x π1(< x, y >) = x π2(< x, y >

) = y
They can be oriented, yielding a convergent rewrite sys-

tem: every term s has a unique normal form s ↓. We may
also consider the following predicates:

• M is unary and holds on a (ground) term s iff s ↓ does
not contain any projection nor decryption symbols.

• EQ is binary and holds on s, t iff M(s),M(t) and s ↓=
t ↓: this is a strict interpretation of equality.

• Psamekey is binary and holds on ciphertexts using the
same encryption key: M |= Psamekey(s, t) iff

∃k, u, v, r, r′.EQ(s, {u}rk) ∧EQ(t, {v}r
′

k ).

• EL is binary and holds on s, t iff M(s),M(t) and s, t
have the same length. we assume that there is a length
function, which is defined on terms as a homomor-
phism from terms to natural numbers.

The structural equivalence is the smallest equivalence re-
lation on processes that is closed under context application
and that satisfies the relations of Figure 2. fn(P ) (resp.
fv(P )) is the set of names (resp. variables) that occur free
in P . Bound names are renamed thus avoiding captures.
P{x 7→ s} is the process P in which free occurrences of



A ‖ 0 ≡ A
A ‖ B ≡ B ‖A

(A ‖B) ‖ C ≡ A ‖ (B ‖ C)
(να)(νβ)A ≡ (νβ)(να)A

(να)(A ‖B) ≡ A ‖ (να)B if α /∈ fn(A) ∪ fv(A)
(νx){x 7→ s} ≡ 0

(να)0 ≡ 0

!P ≡ P ‖ !P
{x 7→ s} ‖A ≡ {x 7→ s} ‖ A{x 7→ s}
{x 7→ s} ≡ {x 7→ t} if s =E t

Figure 2: Structural equivalence

x are replaced by s. An evaluation context is a process
C = (να)([·] ‖ P ) where P is a process. We write C[Q] for
(να)(Q ‖ P ). A context (resp. a process) C is closed when
fv(C) = ∅ (there might be free names).

Possible evolutions of processes are captured by the rela-
tion →, which is the smallest relation, compatible with the
process algebra and such that:

(Com) c(x).P ‖ c(s).Q → {x 7→ s} ‖ P ‖Q
(Cond1) if φ then P else Q → P ifM |= φ
(Cond2) if φ then P else Q → Q ifM 6|= φ

∗
−→ is the smallest transitive relation on processes con-

taining ≡ and −→ and closed by application of contexts. We

write P
c(t)
−−→ Q (resp. P

c(t)
−−→ Q) if there exists P ′ such that

P
∗
−→ c(x).P ′ and {x 7→ t}‖P ′ ∗

−→ Q (resp. P
∗
−→ c(t).P ′

and P ′ ∗
−→ Q).

Definition 2. The observational equivalence relation ∼o

is the largest symmetric relation S on closed extended pro-
cesses such that ASB implies:

1. if, for some context C, term s and process A′,

A
∗
−→ C[c(s) · A′] then for some context C′, term s′

and process B′, B
∗
−→ C′[c(s′) ·B′].

2. if A
∗
−→ A′ then, for some B′, B

∗
−→ B′ and A′SB′

3. C[A]SC[B] for all closed evaluation contexts C

Example 3.3 (Group signature). Group signature as
defined in [5] can be modeled as observational equivalence
as follows. Let P (x, i) be the protocol for signing message
x with identity i. Let P1 = c(y).P (π1(y), π1(π2(y))) and
P2 = c(y).P (π1(y), π2(π2(y))). Intuitively, the adversary
will send < m,< i1, i2 >> where m is a message to be signed
and i1, i2 are two identities. P1 signs m with i1 while P2

signs m with i2. Then P preserves anonymity if P1 ∼o P2.

3.3 Simple processes
We do not need the full applied pi-calculus to symbolically

represent CTMs. For example, CTMs do not communicate
directly: all communications are controlled by the attacker
and there is no private channel. Thus we consider the frag-
ment of simple processes built on basic processes. Simple
processes capture the usual fragment used for security pro-
tocols. A basic process represents a session of a protocol

role where a party waits for a message of a certain form and
when all equality tests succeed, outputs a message accord-
ingly. Then the party waits for another message and so on.
The sets of basic processes B(i, n, x), where x is a variable
sequence, i is a name, called pid, standing for the process id
and n is a name sequence (including for instance fresh and
long-term keys), are the least sets of processes such that
0 ∈ B(i, n, x) and

• If B ∈ B(i, n, x), s ∈ T (n, x), φ is a conjunction of
EQ and M atomic formulas such that fn(φ) ⊆ n and
fv(φ) ⊆ x, ⊥ is a special error message, then if

φ then cout(s) · B else cout(⊥) · 0 ∈ B(i, n, x).
Intuitively, if all tests are satisfied, the process sends a
message depending on its inputs.

• if B ∈ B(i, n, x, x) and x /∈ x, then

cin(x). if EQ(π1(x), i) then B else cout(⊥) · 0

∈ B(i, n, x). Intuitively, on input x, the basic process
first checks that it is the expected recipient of the mes-
sage, before processing it.

cout and cin are two special names, representing resp. the
send tape and the receive tape.

Example 3.4. The Wide Mouth Frog [16] is a simple pro-
tocol where a server transmits a session key from an agent
A to an agent B.

A→ S : A, {Na, B,Kab}Kas

S → B : {Nb, A,Kab}Kbs

A session of role A played by agent a can be modeled by the
basic process

A(a, b) = if true then cout(< a, {< na, < b, kab >>}
r
kas

>)·0

else cout(⊥) · 0

Similarly a session of role S played for agents a, b and whose
id is l, can be modeled by

S(a, b, l) = cin(x). if EQ(π1(x), l) then

if π1(π2(x)) = a ∧ π1(π2(deckas(π2(π2(x))))) = b then

cout({< nb, < a, π2(π2(deckas(π2(π2(x))))) >>}
r
kbs

) · 0

else cout(⊥) · 0 else cout(⊥) · 0

A simple process combines any number of instances of the
protocol roles, hiding names that are meant to be (possibly
shared) secrets:

(νn)[ (νx1, n1B1‖σ1)‖ · · · ‖(νxk, nkBk‖σk)

!(νy1, l1,m1cout(l1)B
′
1) ‖ · · · ‖ !(νyn, ln,mn.cout(ln)B′

n) ]

where Bj ∈ B(ij , n⊎nj , xj), dom(σj) ⊆ xj , B
′
j ∈ B(lj , n⊎

mj , yj). Note that each basic process B′
j first publishes its

identifier lj , so that an attacker can communicate with it.
Each process of the form !((νyi, li)cout(li).B

′
i) is a replicated

process.
In the definition of simple processes, we assume that for

any subterm {t}vk occurring in a simple process, v is a name
that does not occur in any other term, and belongs to the
set of restricted names n. (Still, there may be several occur-
rences of {t}vk, unlike in [4]).



Example 3.5. Continuing Example 3.4, a simple process
representing unbounded number of sessions in which A plays
a (with b) and s plays S (with a, b) for the Wide Mouth Frog
protocol is

ν(kas, kbs) ( !((νkab, na, r, l)cout(l).A(a, b))

‖ !((νx, nb, r, l)cout(l).S(a, b, l)) )

For simplicity, we have only considered sessions with the
same agent names a, b.

3.4 Deduction and static equivalence
As in the applied pi calculus [2], message sequences are

recorded in frames φ = νn.σ, where n is a finite set of names,
and σ is a ground substitution. n stands for fresh names that
are a priori unknown to the attacker.

Given a frame φ = νn.σ that represents the information
available to an attacker, a ground term s is deducible, which
we write νn.(σ ⊢ s) if σ ⊢ s can be inferred using the fol-
lowing rules:

if ∃x ∈ dom(σ)
s.t. xσ = s

or s ∈ N r nσ ⊢ s

σ ⊢ s1 . . . φ ⊢ sℓ
f ∈ Σ

σ ⊢ f(s1, . . . , sℓ)

σ ⊢ s
M |= s = s′

σ ⊢ s′

Example 3.6. Consider the signature and equational the-
ory of example 3.2. Let φ = νn1, n2, n3, r1, r2, r3.σ with σ =
{x1 7→ {n1}

r1

k1
, x2 7→< {n2}

r2
n1
, {n3}

r3
n2

>}. Then
νn1, n2, n3, r1, r2, r3.(σ ⊢ n3).

Deduction is not sufficient for expressing the attacker’s
knowledge. We have also to consider its distinguishing ca-
pabilities. Using the predicate symbols, we get the following
slight extension of static equivalence:

Definition 3 (static equivalence). Let φ be a frame,
p be a predicate and s1, . . . , sk be terms. We say that φ |=
p(s1, . . . , sk) if there exists n such that φ = νn.σ, fn(si) ∩ n = ∅
for any 1 ≤ i ≤ k and M |= p(s1, . . . , sk)σ. We say that
two frames φ1 = νn.σ1 and φ2 = νn′.σ2 are statically equiv-
alent, and write φ1 ∼ φ2 when dom(φ1) = dom(φ2), and

∀s1, . . . , sk ∈ T (N ,X ),∀p ∈ P .

φ1 |= p(s1, . . . , sk)⇔ φ2 |= p(s1, . . . , sk).

Example 3.7. Consider (again for the theory of Example
3.2) the two frames φ1 = νn1, r1, r2.{x 7→ {{k}

r1
n1
}r2

n1
} and

φ2 = νn2, r3.{x 7→ {s}r3
n2
}. If s has the same length as

{k}r1
n1

, then the two frames are statically equivalent

4. COMPUTATIONAL INTERPRETATION
Given a security parameter η and a mapping τ from names

to actual bitstrings of the appropriate length, which de-
pends on η, the computational interpretation [[s]]τη of a term
s is defined as a F-homomorphism: for each function sym-
bol f there is a polynomially computable function [[f ]] and

[[f(t1, . . . , tn)]]τη
def
= [[f ]]([[t1 ]]

τ
η , . . . , [[tn]]τη).

In addition, for names, [[n]]τη
def
= τ (n). Such an inter-

pretation must be compatible with the equational theory:
∀s, t, η, τ. s =E t⇒ [[s]]τη = [[t]]τη .

Similarly, each predicate symbol p gets a computational
interpretation [[p]] as a PPT that outputs a Boolean value.
This is extended to conditions, using the standard inter-
pretation of logical connectives. Given an interpretation
M of the predicates symbols in the symbolic model we as-
sume that [[p]] is an implementation of this interpretation
p ⊆ (T (N ))n, that is

Pr{(x1, . . . , xn)
R
←− [[t1, . . . , tn]]η : [[p]](x1, . . . , xn) = 1− b}

is negligible for any t1, . . . , tn, where b = 1 ifM |= p(t1, . . . , tn)
and 0 otherwise.

Example 4.1. Consider the predicate symbols of Exam-
ple 3.2. Assume that the decryption and projection functions
return an error message ⊥ when they fail. Then here are
possible interpretations of some predicates:

• [[M ]] is the set of bitstrings, which are distinct from
⊥. [[M ]] implements M if the encryption scheme is
confusion-free (a consequence of INT-CTXT [31]).

• [[EQ]] is the set of pairs of identical bitstrings, which
are distinct from ⊥. It is an implementation of EQ as
soon as [[M ]] implements M .

Given a random tape τ and a security parameter η, a sim-
ple process P is implemented as expected. In particular, we
assume that shared names are distributed to the expected
machines in an initialization phase and random number are
computed according to the random tape. The implementa-
tion of P is denoted by [[P ]]τη .

5. MAIN RESULT

5.1 Assumptions and result

Encryptionscheme.
We assume that it is IND-CPA (more precisely “type 3”-

secure of [4]) and INT-CTXT, as defined in [13]. Moreover,
we assume that each time the adversary needs a new key,
it requests it to the protocol (e.g. using a corrupted party).
The parties are supposed to check that the keys they are
using have been properly generated.

Keyhierarchy.
A term u which occurs at least once in t at another po-

sition than a key or a random number (third argument in
encryption) is called a plaintext subterm of t. E.g. k1 and k3

occur in plaintext in < k1, {{k3}
r2

k2
}r1

k1
> but not k2. We say

that k encrypts k′ in a set of terms S if S contains a subterm
{u}rk such that k′ is a plaintext subterm of u. We assume a
key hierarchy, i.e. an ordering on private keys such that, for
any execution of the protocol no key encrypts a greater key.
If there is a key hierarchy, no key cycle can be created. Note
that, when comparing two processes, the two key hierarchies
do not need to be identical.

Parsing.
To ease parsing operations, we assume that the pairing,

key generation and encryption functions add a typing tag
(which can be changed by the attacker), which includes
which key is used in case of encryption. This can be eas-
ily achieved by assuming that a symmetric key k consists of



two parts (k1, k2), k1 being generated by some standard key
generation algorithm and k2 selected at random. Then one
encrypts with k1 and tags the ciphertext with k2.

We are now ready to state our main theorem: observa-
tional equivalence implies indistinguishability.

Theorem 4. Let P1 and P2 be two simple processes such
that each Pi admits a key hierarchy. Assume that the en-
cryption scheme is joint IND-CPA and INT-CTXT. Then
P1 ∼o P2 implies that [[P1]] ≈ [[P2]].

For example, anonymity of group signature as defined in
section 2 is soundly abstracted by the property defined in
Example 3.3. Computational secrecy as defined in section 2
can be soundly abstracted by strong secrecy: a secret x is
strongly secret in P if P (s) ∼o P (s′) for any term s, s′.

5.2 Overview of the proof
The rest of the paper is devoted to the proof sketch of

Theorem 4.

A first approach.
Let us first show why the naive ideas do not work. Assume

we have proved that any computational trace is an interpre-
tation (for some sample input) of a symbolic trace. Assume
moreover that we have a soundness result showing that, if
s1, . . . , sn and u1, . . . , un are two equivalent sequences of
terms, then the distributions [[s1, . . . , sn]] and [[u1, . . . , un]]
are indistinguishable. Assume finally that the traces of P1

and the traces of P2 can be pairwise associated in statically
equivalent traces (as a consequence of observational equiva-
lence).

One could think that it is possible to conclude, pretending
that [[P2]] ≈ [[P1]] since [[t1]] ≈ [[t2]] for each trace t1 of P1 and
the corresponding trace t2 of P2. This is however incorrect.
Indeed, an attacker can choose his requests (hence the trace)
depending on the sample input. In the equivalence [[t1]] ≈
[[t2]], we use an average on the samples, while the choice of
t1 (and t2), may depend on this sample: there is a circular
dependency.

To be more concrete, here is a toy example. Assume that
an attacker, given a random input τ , first gets [[s]]τ (in both
experiments) and then, schedules his requests depending on
the ith bit of [[s]]τ : at the ith step, he will get tji (resp. uj

i

in the second experiment), where j is the ith bit of [[s]]τ .
Assume that, for any sequence of bits j1, . . . , jn,

[[s, tj11 , . . . , t
jn
n ]] ≈ [[s, uj1

1 , . . . , u
jn
n ]]

but that, for the particular sample τ such that [[s]]τ = j1 · · · jn,
the attacker outputs 1 on input [[s, tj11 , . . . , t

jn
n ]]τ and out-

puts 0 on input [[s, uj1
1 , . . . , u

jn
n ]]τ . This may happen as the

distributions could be indistinguishable while distinguished
on one particular sample value. Note that, in the distribu-
tion equivalence, we draw again a sample, while the choice
of j1, ..., jn depended precisely of that sample. Then the
attacker always outputs 1 in the first experiment since he
precisely chose from τ the sequence j1, ...jn. Similarly, he
always outputs 0 in the second experiment: he gets a signif-
icant advantage, distinguishing the two processes.

The example shows that we cannot simply use the sound-
ness of static equivalence on traces. The idea is to consider
trees labeled with terms, instead of sequences of terms. Then
we do not commit first to a particular trace (as choosing

j1, ..., jn above). Considering such trees requires an exten-
sion of the results of Abadi and Rogaway, which are proved
for sequences of terms.

Proof sketch.
We associate a tree TP with each process P , which we

call process computation tree and define symbolic and com-
putational equivalences (denoted respectively ∼ and ≈) on
process computation trees (see the definitions in the section
6). Such trees record the possible behaviors of the symbolic
process, depending on the input they get from the environ-
ment: TP is a labeled transition system, whose initial state
is P . We use process computation trees as an intermediate
step and show the following implications:

P ∼o Q⇒ TP ∼ TQ ⇒ TP ≈ TQ ⇒ [[P ]] ≈ [[Q]]

P ∼o Q⇒ TP ∼ TQ : (Lemma 7) It holds for any term al-
gebra, relying however on the particular fragment of
process algebra (simple processes). This is similar to
the classical characterization of observational equiva-
lence as labeled bisimilarity.

TP ∼ TQ ⇒ TP ≈ TQ : (Lemma 11) It uses the (tree) sound-
ness in the ground case. This is a new concept, which
generalizes the soundness of static equivalence from se-
quences to trees. It is necessary for the preservation of
trace equivalences.

As a (very simple) example, consider the trees TP and TQ

whose edges are labeled with any possible pair of symbolic
messages. The path labeled < u1, v1 >, . . . , < un, vn >
yields a node labeled with {u1}

r1

k , . . . , {un}
rn

k in TP and
yields a node labeled with {v1}

r1

k , . . . , {vn}
rn

k . This corre-
sponds to a Left-Right oracle of an IND-CPA game. The
tree soundness states in this case that the two trees are in-
distinguishable: even if the attacker adaptatively chooses
his requests (i.e. a path in the tree), he cannot make a dif-
ference between the two experiments. IND-CCA2 could be
also expressed in this way. Here we consider more general
experiments, specified by the two processes P,Q.

TP ≈ TQ ⇒ [[P ]] ≈ [[Q]] (Lemma 13) It uses trace lifting: we
need to prove that a computational trace is, with an
overwhelming probability, an instance of a symbolic
trace.

For instance in the above IND-CPA game, we cheated a
little bit since the requests of the attacker were instances
of symbolic requests, while in a true IND-CPA game they
can be arbitrary bitstrings. This last step shows that it is
actually not cheating: it does not make a significant differ-
ence (actually it does not make any difference at all in an
IND-CPA game).

The two last implications are proved here in the context of
pairing and symmetric encryption only. However, we believe
that the use of computation trees and the way we get rid of
encryption, can be extended to other primitives.

6. COMPUTATION TREES
We first define a general notion of trees that could serve to

design oracles: the main purpose is to lift static equivalence
(of frames) to trees, i.e. in an adaptative setting. Trees
defined by the protocols (processes) are special cases, as we
will see next. But we use the general definition in further
transformations of the oracles.



6.1 General Computation Trees
Let S = T (N ) be a set of labels, typically a pair < i, u >

of a pid and a term for a request u to the process i, or a
request to start a new process. For i = 1, 2, let φi = νnσi be
two frames. We write t ∈ φ1 if t = xσ1 for some x ∈ dom(σ1)
and φ1 ⊆ φ2 if xσ1 = xσ2 for all x ∈ dom(σ1).

Definition 5. A computation tree T is a mapping from
a prefix closed subset of S∗ (Pos(T ), the positions of T ) to
pairs (P, φ) where P is a simple process and φ is a ground
frame over T (N ). If p ∈ Pos(T ) and T (p) = (P, φ), we write
φ(T, p) the frame φ. Moreover T must satisfy the following
conditions:

• for every positions p, q, if p > q, then φ(T, q) ⊆ φ(T, p)

• for every position p · t, t ∈ φ(T, p · t)

• for every positions p · t, p · u, if t =E u, then t = u.
This ensures that there is no two branches labeled with
the same (equivalent) message.

Such trees will be used in the next section to represent all
possible behaviors of the processes, in a structured way.
Since we have unbounded replication, the trees need not
to be bounded in depth: there may be infinite paths. They
may also be infinitely branching, as, at any time, the possi-
ble attacker’s actions are unbounded

In this definition, positions need not to be closed lexico-
graphically. The definition of static equivalence ∼ is ex-
tended to computation trees. T |p is the sub-tree of T at
position p.

Definition 6. ∼ is the largest equivalence relation on
computation trees such that if T1 ∼ T2, then φ(T1, ǫ) ∼
φ(T2, ǫ) and there is an one-to-one mapping β from T (N )
to itself such that, for any length 1 position t of T1, T1|t ∼
T2|β(t).

Typically, requests sent by the adversary need not to be
identical, but must be equivalent. Then β is a mapping,
which depends on T1, T2, which associates the messages in
the labels of T1 with equivalent messages labeling T2.

6.2 Process computation trees
We organize all possible symbolic executions of a simple

process P in a tree TP . Each node of TP is labeled by (Q,φ)
where Q is the current state of the process and φ represents
the sequence of messages sent over the network by P so far.

Let P ≡ νn, νx. Q1‖σ1‖ · · · ‖QN‖σN‖S be a simple pro-
cess where S = S1‖ · · · ‖Sk is the composition of a finite
number of replicated processes Si and everyQi ∈ B(li, ni, xi)
is either 0 or a basic process cin(xi).Pi and σi is a ground
substitution whose domain contains only free variables of
Pi. Note that li is the pid of Qi. The process computation
tree TP is defined as follows. The labeling and positions are
defined by induction on the position length: TP(ǫ) = (P , id)
where id denotes the empty frame, and, for any p ∈ Pos(TP),
let

TP(p) = (νnνx. Qp
1‖σ

p
1‖ · · · ‖Q

p
N‖σ

p
N‖S , νnσ)

where each Qp
j is either 0 or cin(x

p
j ).P

p
j . Then q = p · α ∈

Pos(TP) if α =< li, u >, Qp
i 6≡ 0, νnσ ⊢ α and

Qp
i

cin(α)
−−−→

cout(α1)···cout(αm)
−−−−−−−−−−−−→ Qq

i ‖σ
p
i ‖{x

p
i 7→ α}

in which case

TP(p · α) = (νnνx.Qq
1‖σ

q
1‖ · · · ‖Q

q
N‖σ

q
N ,

νn.σ ∪ {xα 7→ α} ∪
Sm

i=1 {xαi
7→ αi})

where, for every j 6= i, Qq
j = Qp

j , σ
q
j = σp

j , Qq
i is either 0

or cin(x
q
i ).P (xq

i ) and σq
i = σp

i ◦ {x
p
i 7→ α}. This corresponds

to the case where an attacker sends a message to an active
process Q of pid li. The attacker may also ask for the ini-
tialization of a process. S = S1‖ · · · ‖Sk and there is a fixed
ordering on the Sj (which correspond to the roles of the pro-
tocol). Then q = p ·newj ∈ Pos(TP), where newj is a special
constant (1 ≤ j ≤ k). Let Sj =!(νyνl cout(l).B). Then

TP(p · newj) = (νnνxνy. Qp
1‖σ

p
1‖ · · · ‖Q

p
N‖σ

p
N‖B‖S ,

νnσ ∪ {z 7→ l})

where z is a fresh variable and assuming by renaming that
the names of y do not appear free in Qp

1‖σ
p
1‖ · · · ‖Q

p
N‖σ

p
N .

Note that by construction, B ∈ B(l, nl, xl) thus l is the
identifier of B. l is first published such that the intruder
can use it to schedule B.

A process computation tree is a computation tree. Ob-
servational equivalence yields equivalence between the cor-
responding process computation trees:

Lemma 7. Let P and Q be two simple processes.
If P ∼o Q then TP ∼ TQ.

This does not follow directly from [2] (see the proof in [20]).

6.3 Scheduled computation trees
When all behaviors of a concrete attacker are instances of

behaviors of a symbolic attacker, the concrete attacker can
be seen as a machine which schedules the behavior of the
symbolic attacker. That is what we try to capture here.

We assume that, given a security parameter η and a map-
ping τ from names to actual bitstrings, there is a parsing
function κτ

η that maps bitstring to their symbolic represen-
tation. This parsing function is assumed to be total, using
possibly constants or new names of the appropriate length.

For any symbolic computation tree T , and random tape τ ,
we let OT,τ be an oracle, whose replies depend on the tree T
and the sample τ . When T is a process computation tree, the
oracle can be simply understood as simulating the network
and answering to attacker’s messages. This is convenient for
an intuitive understanding ofOT,τ , but we will transform the
tree T later on. That is why we need a general definition.

Intuitively, the tree specifies how the oracle can be adap-
tively queried and what are its answers. This is formalized
as follows.

When queried with mn, after being queried successively
with m1, . . . ,mn−1,

• the oracle first computes κτ
η(mn). Let rj = κτ

η(mj) for
1 ≤ j ≤ n.

• the oracle returns 0 if r1 · · · rn is not a position of T

• otherwise, let φ1 = νn1σ1 = φ(T, r1 · · · rn−1), φ2 =
νn2σ2 = φ(T, r1 · · · rn) be the labels of the two suc-
cessive nodes of T . For any name k that occurs in σ2

and not in σ1, the oracle draws a random number τ (k)
using its random tape τ . If k /∈ n2 then the oracle
returns τ (k) (the value is public in that case).

Next, the oracle returns [[xσ2]]
τ for all x ∈ dom(σ2) \

dom(σ1). Intuitively, the oracle replies by sending back



the (interpretation of the) terms labeling the target
node of the tree that have not been already given.

In the last case, the oracle answer corresponds, in case T
is a process computation tree, to the messages sent by the
process answering the attacker’s message.

Definition 8. Given two symbolic computation trees T1, T2,
the two trees are computationally indistinguishable, which
we write T1 ≈ T2 if, for any PPT A, |Pr{τ : AOT1,τ (0η) =
1} −Pr{τ : AOT2,τ (0η) = 1}| is negligible.

7. MAIN STEPS OF THE PROOF
From now on, we fix the signature Σ0, the equations E0

and the predicate set P0, defined in Example 3.2 and in the
following examples of Section 3.2.

7.1 Getting rid of encryption
The function Ψk on trees replaces terms under encryption

by constants 0l of the same length and is used later for
stepwise simplifications:

Ψk(n) = n if n is a name or a constant
Ψk(< t1, t2 >) = < Ψk(t1),Ψk(t2) >

Ψk({t}rk) = {0l(t)}rk
Ψk({t}rk′) = {Ψk(t)}rk′ if k 6= k′

Then Ψk is extended to computation trees by applying
Ψk on the requests and frames. Intuitively, the underlying
process remains the same but the adversary is given a view of
the execution where any encryption by k has been replaced
by an encryption of zeros by k. If k is not deducible, then
an intruder is unable to make a difference:

Lemma 9. For any computation tree T and for any name
k such that k is not deducible from any frame labeling a node
of T , then T ∼ Ψk(T ).

The lemma is proved by choosing Ψk for the one-to-one
function β.

Now, once every encryption has been replaced by encryp-
tion of zeros then static equivalence coincides with equality
up-to name renaming:

Lemma 10. Let φ1 and φ2 be two frames such that for
any subterm of φ1 or φ2 of the form {u}rk, we have u = 0l

for some l ∈ N. If Psamekey is in the set of predicates, then
φ1 ∼ φ2 iff φ1 and φ2 are equal up-to name renaming.

7.2 Soundness of static equivalence on trees
Static equivalence on process trees can be transferred at

a computational level.

Lemma 11. Let P1 and P2 be two simple processes such
that each Pi admits a key hierarchy. Let TPi

be the process
computation tree associated to Pi. If TP1

∼ TP2
then TP1

≈
TP2

or the encryption scheme is not joint IND-CPA and
INT-CTXT.

This key lemma is proved by applying the functions Ψk

following the key ordering, to the trees TPi
. We preserve

equivalence on trees thanks to Lemma 9. If we find a key k
such that Ψk(TPi

) 6≈ TPi
, then we can construct an attacker

who breaks IND-CPA. Otherwise we are left to trees labeled
with frames whose only subterms of the form {u}rk are such
that u = 0l for some l. In this case, we show that equivalence
of such frames coincides with equality using Lemma 10.

7.3 Relating concrete and symbolic traces
We need here to show that concrete traces are, with over-

whelming probability, interpretations of symbolic ones. We
first define formally what it means.

Given P , η, τ, A, the behavior of the network A‖[[P ]]τ is
deterministic.

Its computation can be represented as
m1 · · ·mn, the sequence of messages sent by the adversary.

If T is a process computation tree and p ∈ Pos(T ), p
fully abstracts the computation sequence m1 · · ·mn if p =
u1 · · ·un and, for every j ≤ n, [[uj ]]

τ = mj . In other
words, p fully abstracts a computation sequence if it defines
a symbolic trace whose interpretation is that computation
sequence.

Lemma 12. Assume that the encryption scheme is INT-
CTXT and IND-CPA. Let P be a simple process that ad-
mits a key ordering and TP be its process computation tree.
Let A be a concrete attacker. The probability over all sam-
ples τ , that any computational sequence of A‖[[P ]]τ is fully
abstracted by some path p in TP , is overwhelming.

To prove this lemma, we first simplify the trees by applying
the functions Ψk thanks to Lemmas 11 and 9. Then, we
investigate in which cases the adversary may produce traces
that cannot be lifted and, in each situation, we break either
INT-CTXT or IND-CPA.

In the last lemma, we simply apply the previous result.
Since traces can be lifted, an attacker on the concrete pro-
cesses is actually a scheduler of the computation trees, hence
distinguishing the concrete processes amounts to distinguish
the corresponding computation trees.

Lemma 13. Let P1 and P2 be two simple processes admit-
ting a key hierarchy. Let TPi

be the process computation tree
associated to Pi. If the encryption scheme is joint IND-CPA
and INT-CTXT, then TP1

≈ TP2
implies that [[P1]] ≈ [[P2]].

Theorem 4 is now a straightforward consequence of Lemma 7,
11 and 13.

8. EXTENSIONS
Following our proof scheme, we believe that our results

can be extended to other security primitives, e.g. public-key
encryption or signatures. We also wish to extend the sim-
ple process, for instance addind conditionals and sequential
composition.

There are harder extensions. For instance, can we drop
the requirement that private keys are not dynamically dis-
closed? As explained in [8], there is a commitment problem
if we rely on a simulator. We could also extend our results
to a wider class of equational theories by extending in par-
ticular Lemma 11.

Acknowledgements
We thank Michael Backes, Steve Kremer, Dominique Unruh
and Bogdan Warinschi for their comments on this paper, as
well as the anonymous referees.

9. REFERENCES
[1] M. Abadi, M. Baudet, and B. Warinschi. Guessing

attacks and the computational soundness of static



equivalence. In Foundations of Software Science and
Computation Structure (FoSSaCS’06), volume 3921 of
LNCS, pages 398–412, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In Principles of Program-
ming Languages (POPL’01), pages 104–115, 2001.

[3] M. Abadi and J. Jürgens. Formal eavesdropping and
its computational interpretation. In Theoretical
Aspects of Computer Software, LNCS 2215, 2001.

[4] M. Abadi and P. Rogaway. Reconciling two views of
cryptography: the computational soundness of formal
encryption. J. Cryptology, 2007.

[5] M. Abdalla and B. Warinschi. On the minimal
assumptions of group signature schemes. In 6th
International Conference on Information and
Communication Security, pages 1–13, 2004.

[6] P. Adão and C. Fournet. Cryptographically sound
implementations for communicating processes. In
International Colloquium on Algorithms, Languages
and Programming (ICALP’06), 2006.

[7] M. Backes, M. Dürmuth, and R. Küsters. On
simulatability soundness and mapping soundness of
symbolic cryptography. In Proc. of 27th FSTTCS,
volume 4855 of LNCS, 2007.

[8] M. Backes and B. Pfitzmann. Symmetric encryption in
a simulatable Dolev-Yao style cryptographic library.
In Computer Security Foundations Workshop
(CSFW’04), 2004.

[9] M. Backes and B. Pfitzmann. Relating cryptographic
und symbolic key secrecy. In Symp. on Security and
Privacy (SSP’05), pages 171–182, 2005.

[10] M. Backes, B. Pfitzmann, and M. Waidner. A com-
posable cryptographic library with nested operations.
In 10th ACM Concerence on Computer and
Communications Security (CCS’03), 2003.

[11] M. Backes, B. Pfitzmann, and M. Waidner. The
reactive simulatability (RSIM) framework for
asynchronous systems. Information and Computation,
205(12):1685–1720, 2007.

[12] M. Baudet, V. Cortier, and S. Kremer. Computation-
ally sound implementations of equational theories
against passive adversaries. In Proc. ICALP’05,
volume 3580 of LNCS, 2005.

[13] M. Bellare and C. Namprempre. Authenticated
encryption: relations among notions and analysis of
the generic composition paradigm. In Advances in
Cryptology (ASIACRYPT 2000), volume 1976 of
LNCS, pages 531–545, 2000.

[14] B. Blanchet. An efficient cryptographic protocol
verifier based on Prolog rules. In Computer Security
Foundations Workshop (CSFW’01), 2001.

[15] B. Blanchet, M. Abadi, and C. Fournet. Automated
verification of selected equivalences for security
protocols. Journal of Logic and Algebraic
Programming, 75(1):3–51, 2008.

[16] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. Technical Report 39, Digital Systems
Research Center, February 1989.

[17] R. Canetti. Universal composable security: a new
paradigm for cryptographic protocols. In Symposium
on Foundations of Computer Science, 2001.

[18] R. Canetti and J. Herzog. Universally composable
symbolic analysis of cryptographic protocols. In
Theory of Cryptography Conference (TCC’06), 2006.

[19] R. Canetti and T. Rabin. Universal composition with
joint state. Cryptology ePrint Archive, report
2002/47, Nov. 2003.

[20] H. Comon-Lundh and V. Cortier. Computational
soundness of observational equivalence. Research
Report 6508, INRIA,
https://hal.inria.fr/inria-00274158, Apr. 2008.

[21] V. Cortier, S. Kremer, R. Küsters, and B. Warinschi.
Computationally sound symbolic secrecy in the
presence of hash functions. In Proc. FSTTCS, volume
4337 of LNCS, pages 176–187, 2006.

[22] V. Cortier and B. Warinschi. Computationally sound,
automated proofs for security protocols. In European
Symposium on Programming (ESOP’05), volume 3444
of LNCS, pages 157–171, 2005.

[23] S. Delaune, S. Kremer, and M. D. Ryan.
Coercion-resistance and receipt-freeness in electronic
voting. In Computer Security Foundations Workshop
(CSFW’06), pages 28–39, 2006.

[24] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic
bisimulation for the applied pi-calculus. In
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’07), volume 4855 of
LNCS, pages 133–145, 2007.

[25] H. Hüttel. Deciding framed bisimilarity. In Proc.
INFINITY’02, 2002.

[26] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing
the picture: Soundness of formal encryption in the
presence of active adversaries. In European Symposium
on Programming (ESOP’05), volume 3444 of LNCS,
pages 172–185. Springer, 2005.

[27] A. Juels, M. Luby, and R. Ostrovsky. Security of blind
digital signatures. In advances in cryptology,
(CRYPTO-97), volume 1294 of LNCS, pages 150–164,
1997.

[28] S. Kremer and L. Mazaré. Adaptive soundness of
static equivalence. In European Symposium on
Research in Computer Security (ESORICS’07),
volume 4734 of LNCS, pages 610–625, 2007.

[29] R. Küsters and M. Tuengerthal. Joint state theorems
for public-key encryption and digital signature
functionalities with local computations. In Computer
Security Foundations (CSF’08), 2008.

[30] P. Laud. Symmetric encryption in automatic analyses
for confidentiality against active adversaries. In Symp.
on Security and Privacy (SSP’04), pages 71–85, 2004.

[31] D. Micciancio and B. Warinschi. Completeness
theorems for the Abadi-Rogaway language of
encrypted expressions. Journal of Computer Security,
2004.

[32] D. Micciancio and B. Warinschi. Soundness of formal
encryption in presence of an active attacker. In Theory
of Cryptography Conference (TCC’04), volume 2951 of
LNCS, 2004.

[33] J. Mitchell, A. Ramanathan, and V. Teague. A
probabilistic polynomial-time process calculus for the
analysis of cryptographic protocols. Theoretical
Comput. Sci., 353:118–164, 2006.


