
Computing knowledge in security protocols
under convergent equational theories ?

(for presentation only)

Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer

LSV, ENS Cachan & CNRS & INRIA, France

Abstract. We propose a procedure for the intruder deduction problem
and for the static equivalence problem, in the case where cryptographic
primitives are modeled by a convergent equational theory.
Our procedure terminates on a wide range of equational theories. In
particular, we obtain a new decidability result for a theory of trapdoor
commitment that we encountered in the study of e-voting protocols. We
also provide a prototype implementation.
This work has been accepted for publication at CADE 22.

1 Introduction

Cryptographic protocols are small distributed programs that use cryptographic
primitives such as encryption and digital signatures to communicate securely
over a network.

In symbolic approaches to cryptographic protocol analysis, the protocol mes-
sages and cryptographic primitives (e.g. encryption) are generally modeled using
a term algebra. This term algebra is interpreted modulo an equational theory.
Using equational theories provides a convenient and flexible framework for mod-
eling cryptographic primitives [10]. For instance, a simple equational theory for
symmetric encryption can be specified by the equation dec(enc(x, y), y) = x.
This equation models the fact that decryption cancels out encryption when the
same key is used.

Traditionally, the knowledge of the attacker is expressed in terms of deducibil-
ity (e.g. [14, 6]). A message s (intuitively the secret) is said to be deducible from
a set of messages ϕ, if an attacker is able to compute s from ϕ. To perform this
computation, the attacker is allowed, for example, to decrypt deducible mes-
sages by deducible keys. The problem of determining if a message is deducible
from some set of messages is called the intruder deduction problem or simply the
deducibility problem.

However, deducibility is not always sufficient. Consider for example the case
where a protocol participant sends over the network the encryption of one of
the constants “yes” or “no” (e.g. the value of a vote). Deducibility is not the
right notion of knowledge in this case, since both possible values (“yes” and

? This work has been partly supported by the ANR SeSur AVOTÉ.

“no”) are indeed “known” to the attacker. In this case, a more adequate form
of knowledge is indistinguishability (e.g. [1]): is the attacker able to distinguish
between two transcripts of the protocol, one running with the value “yes” and
the other one running with the value “no”? Given two sets of messages, the
problem of determining if the intruder can distinguish between the two is called
the static equivalence problem (see for example [2]).

Our contributions. We provide a procedure which is correct, in the sense that
if it terminates it gives the right answer, for any convergent equational theory.
As deduction and static equivalence are undecidable for this class of equational
theories [1], the procedure does not always terminate. However, we show that it
does terminate for the class of subterm convergent equational theories (already
shown decidable in [1]) and several other theories among which the theory of
trapdoor commitment encountered in our electronic voting case studies [11].

Our second contribution is an efficient prototype implementation of this
generic procedure. Our procedure relies on a simple fixed point computation
based on a few saturation rules, making it convenient to implement.

Related work. Many decision procedures have been proposed for deducibility (e.g.
[6, 3, 12]) under a variety of equational theories modeling encryption, digital
signatures, exclusive OR, and homomorphic operators. Several papers are also
devoted to the study of static equivalence. Most of these results introduce a
new procedure for each particular theory and even in the case of the general
decidability criterion given in [1, 9], the algorithm underlying the proof has to
be adapted for each particular theory, depending on how the criterion is fulfilled.

The first generic algorithm that has been proposed handles subterm conver-
gent equational theories [1] and covers the classical theories for encryption and
signatures. This result is encompassed by the recent work of Baudet et al. [5]
in which the authors propose a generic procedure that works for any convergent
equational theory, but which may fail or not terminate. This procedure has been
implemented in the YAPA tool [4] and has been shown to terminate without
failure in several cases (e.g. subterm convergent theories and blind signatures).
However, due to its simple representation of deducible terms (represented by a
finite set of ground terms), the procedure fails on several interesting equational
theories like the theory of trapdoor commitments. Our representation of de-
ducible terms overcomes this limitation by including terms with variables which
can be substituted by any deducible terms.

2 Formal model

2.1 Term algebras

As usual, messages will be modeled using a term algebra. Let F be a finite set of
function symbols coming with an arity function ar : F → N. Function symbols of
arity 0 are called constants. We consider several kind of atoms among which an

infinite set of names N , an infinite set of variables X and a set of parameters P.
The set of terms T (F ,A) built over F and the atoms in A is defined as

t, t1, . . . ::= term
| a atom a ∈ A
| f(t1, . . . , tk) application of symbol f ∈ F , ar(f) = k

A term t is said to be ground when t ∈ T (F ,N). We assume the usual
definitions to manipulate terms. We write fn(t) (resp. var(t)) the set of (free)
names (resp. variables) that occur in a term t and st(t) the set of its (syntactic)
subterms. These notations are extended to tuples and sets of terms in the usual
way. We denote by |t| the size of t defined as the number of symbols that occur
in t (variables do not count), and #T denotes the cardinality of the set T .

The set of positions of a term t is written pos(t) ⊆ N∗. If p is a position of t
then t|p denotes the subterm of t at the position p. The term t[u]p is obtained
from t by replacing the occurrence of t|p at position p with u. A context C is
a term with (1 or more) holes and we write C[t1, . . . tn] for the term obtained
by replacing these holes with the terms t1, . . . , tn. A context is public if it only
consists of function symbols and holes.

Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) =
{x1, . . . , xn}. The application of a substitution σ to a term t is written tσ. The
substitution σ is grounding for t if the resulting term tσ is ground. We use the
same notations for replacements of names and parameters by terms.

2.2 Equational theories and rewriting systems

Equality between terms will generally be interpreted modulo an equational the-
ory. An equational theory E is defined by a set of equations M ∼ N with
M,N ∈ T (F ,X). Equality modulo E , written =E , is defined to be the smallest
equivalence relation on terms such that M =E N for all M ∼ N ∈ E and which
is closed under substitution of terms for variables and application of contexts.

It is often more convenient to manipulate rewriting systems than equa-
tional theories. A rewriting system R is a set of rewriting rules l→ r where
l, r ∈ T (F ,X) and var(r) ⊆ var(l). A term t rewrites to t′ by R, denoted by
t →R t′, if there exists l → r ∈ R, a position p ∈ pos(t) and a substitution σ
such that t|p = lσ and t′ = t[rσ]p. We denote by →+

R the transitive closure
of →R, →∗R its reflexive and transitive closure, and =R its reflexive, symmetric
and transitive closure.

A rewrite system R is convergent if is terminating, i.e. there is no infinite
chains u1 →R u2 →R . . ., and confluent, i.e. for every terms u1, u2 such that
u1 =R u2, there exists u such that u1 →∗R u and u2 →∗R u. A term u is in
R-normal form if there is no term u′ such that u →R u′. If u →∗R u′ and u′ is
in R-normal form then u′ is a R-normal form of u. When this reduced form is
unique (in particular if R is convergent), we write u′ = u↓RE .

We are particularly interested in theories E that can be represented by a
convergent rewrite system R, i.e. theories for which there exists a convergent

rewrite system R such that the two relations =R and =E coincide. Given an
equational theory E we define the corresponding rewriting system RE by orient-
ing all equations in E from left to right, i.e., RE = {l → r | l ∼ r ∈ E}. We say
that E is convergent if RE is convergent.

Example 1. A classical equational theory modelling symmetric encryption is
Eenc = {dec(enc(x, y), y) ∼ x}. As a running example we consider a slight ex-
tension of this theory modelling malleable encryption

Emal = Eenc ∪ {mal(enc(x, y), z) ∼ enc(z, y)}.
This malleable encryption scheme allows one to arbitrarily change the plain-

text of an encryption. This theory does certainly not model a realistic encryption
scheme but it yields a simple example of a theory which illustrates well our pro-
cedures. In particular all existing decision procedure we are aware of fail on this
example. The rewriting system REmal

is convergent.

From now on, we assume given a convergent equational theory E built over
a signature F and represented by the convergent rewriting system RE .

2.3 Deducibility and static equivalence

In order to describe the messages observed by an attacker, we consider the
following notions of frame that comes from the applied-pi calculus [2].

A frame ϕ is a sequence of messages u1, . . . , un meaning that the attacker ob-
served each of these message in the given order. Furthermore, we distinguish the
names that the attacker knows from those that were freshly generated by others
and that are a priori unknown by the attacker. Formally, a frame is defined as
νñ.σ where ñ is its set of bound names, denoted by bn(ϕ), and a replacement
σ = {w1 7→ u1, . . . , wn 7→ un}. The parameters w1, . . . , wn enable us to refer to
u1, . . . , un ∈ T (F ,N). The domain dom(ϕ) of ϕ is {w1, . . . , wn}. Given terms M
and N such that fn(M,N)∩ ñ = ∅, we sometimes write (M =E N)ϕ (resp. Mϕ)
instead of Mσ =E Nσ (resp. Mσ).

Definition 1 (deducibility). Let ϕ be a frame. A ground term t is deducible
in E from ϕ, written ϕ `E t, if there exists M ∈ T (F ,N ∪ dom(ϕ)), called the
recipe, such that fn(M) ∩ bn(ϕ) = ∅ and Mϕ =E t.

Deducibility does not always suffice for expressing the knowledge of an at-
tacker. For instance deducibility does not allow one to express indistinguisha-
bility between two sequences of messages. This is important when defining the
confidentiality of a vote or anonymity-like properties. This motivates the follow-
ing notion of static equivalence introduced in [2].

Definition 2 (static equivalence). Let ϕ1 and ϕ2 be two frames such that
bn(ϕ1) = bn(ϕ2). They are statically equivalent in E, written ϕ1 ≈E ϕ2, if

– dom(ϕ1) = dom(ϕ2)

– for all terms M,N ∈ T (F ,N ∪ dom(ϕ1)) such that fn(M,N) ∩ bn(ϕ1) = ∅
(M =E N)ϕ1 ⇔ (M =E N)ϕ2.

Example 2. Consider the two frames described below:
ϕ1 = νa, k.{w1 7→ enc(a, k)} and ϕ2 = νa, k.{w1 7→ enc(b, k)}.

We have that b and enc(c, k) are deducible from ϕ2 in Emal with recipes b and
mal(w1, c) respectively. We have that ϕ1 6≈Emal

ϕ2 since (w1 6=Emal
mal(w1, b))ϕ1

while (w1 =Emal
mal(w1, b))ϕ2. Note that ϕ1 ≈Eenc

ϕ2 (in the theory Eenc).

3 Procedures for deduction and static equivalence

In this section we describe our procedures for checking deducibility and static
equivalence. After some preliminary definitions, we present the main part of
our procedure, i.e. a set of saturation rules used to reach a fixed point. Then,
we show how to use this saturation procedure to decide deducibility and static
equivalence. The complete proofs of correctness can be found in our research
report [8].

Since both problems are undecidable for arbitrary convergent equational the-
ories [1], our saturation procedure does not always terminate. In Section 4, we
exhibit (classes of) equational theories for which the saturation terminates.

3.1 Preliminary definitions

The main objects that will be manipulated by our procedure are facts, which
are either deduction facts or equational facts.

Definition 3 (facts). A deduction fact (resp. an equational fact) is an expres-
sion denoted [U B u | ∆] (resp. [U ∼ V |∆]) where ∆ is a finite set of the form
{X1 B t1, . . . , Xn B tn} that contains the side conditions of the fact. Moreover,
we assume that:

– u, t1, . . . , tn ∈ T (F ,N ∪ X) with var(u) ⊆ var(t1, . . . , tn);
– U, V ∈ T (F ,N ∪ X ∪ P) and X1, . . . , Xn are distinct variables;
– var(U, V,X1, . . . , Xn) ∩ var(u, t1, . . . , tn) = ∅.

A fact is solved if ti ∈ X (1 ≤ i ≤ k). Otherwise, it is unsolved. A deduction
fact is well-formed if it is unsolved or if u 6∈ X .

A fact makes a statement about a frame. We read [UBu | {X1 Bt1, . . . , Xn B
tn}] (resp. [U ∼ V | {X1 B t1, . . . , Xn B tn}]) as “u is deducible with recipe U
(resp. U is equal to V) if ti is deducible with recipe Xi (for all 1 ≤ i ≤ n)”.

For notational convenience we sometimes omit curly braces for the set of side
conditions and write [U Bu | X1 B t1, . . . , Xn B tn]. When n = 0 we simply write
[U B u] or [U ∼ V]. We say that two facts are equivalent if they are equal up
to bijective renaming of variables. In the following we implicitly suppose that
all operations are carried out modulo the equivalence classes. In particular set

union will not add equivalent facts and inclusion will test for equivalent facts.
Also, we allow on-the-fly renaming of variables in facts to avoid variable clashes.

We now introduce the notion of generation of a term t from a set of facts F.
Intuitively, t is generated if it can be syntactically “deduced” from F.

Definition 4 (generation). Let F be a finite set of well-formed deduction facts.
A term t is generated by F with recipe R, written F `R t, if

1. either t = x ∈ X and R = x;
2. or there exist a solved fact [R0Bt0 | X1Bx1, . . . , XnBxn] ∈ F, some terms Ri

for 1 ≤ i ≤ n and a substitution σ with dom(σ) ⊆ var(t0) such that t = t0σ,
R = R0[X1 7→ R1, . . . , Xk 7→ Rk], and F `Ri xiσ for every 1 ≤ i ≤ n.

A term t is generated by F, written F ` t, if there exists R such that F `R t.

From this definition follows a simple recursive algorithm for effectively deciding
whether F ` t, providing also the recipe. Termination is ensured by the fact
that |xiσ| < |t| for every 1 ≤ i ≤ n. Note that using memoization we can obtain
an algorithm in polynomial time.

Given a finite set of equational facts E and terms M,N , we write E |= M ∼ N
if M ∼ N is a consequence, in the usual first order theory of equality, of

{Uσ ∼ V σ | [U ∼ V | X1 B x1, . . . , Xk B xk] ∈ E} where σ = {Xi 7→ xi}1≤i≤k.

Note that it may be the case that xi = xj for i 6= j (whereas Xi 6= Xj).

3.2 Saturation procedure

We define for each fact f its canonical form f which is obtained by first apply-
ing rule (1) and then rule (2) defined below. The idea is to ensure that each
variable xi occurs at most once in the side conditions and to get rid of those
variables that do not occur in t. Unsolved deduction facts are kept unchanged.

(1)
[RB t | X1 B x1, . . . , Xk B xk] {i, j} ⊆ {1, . . . , n} j 6= i and xj = xi

[R[Xi 7→ Xj] B t | X1 B x1, . . . , Xi−1 B xi−1, Xi+1 B xi+1, . . . , Xk B xk]

(2)
[RB t | X1 B x1, . . . , Xk B xk] xi 6∈ var(t)

[RB t | X1 B x1, . . . , Xi−1 B xi−1, Xi+1 B xi+1, . . . , Xk B xk]

A knowledge base is a tuple (F,E) where F is a finite set of well-formed
deduction facts that are in canonical form and E a finite set of equational facts.

Definition 5 (update). Given a fact f = [R B t | X1 B t1, . . . , Xn B tn] and a
knowledge base (F,E), the update of (F,E) by f, written (F,E)⊕ f, is defined as

(F ∪ {f ′},E) if f is solved and F 6` t useful fact
where f ′ is the canonical form of f

(F,E ∪ {[R′ ∼ R{Xi 7→ ti}1≤i≤n}]) if f is solved and F ` t useless fact

where F `R′ t

(F ∪ {f},E) if f is not solved unsolved fact

The choice of the recipe R′ in the useless fact case is defined by the imple-
mentation. While this choice does not influence the correctness of the procedure,
it might influence its termination as we will see later. Note that, the result of
updating a knowledge base by a (possibly not well-formed and/or not canonical)
fact is again a knowledge base. Facts that are not well-formed will be captured
by the useless fact case, which adds an equational fact.

Initialisation. Given a frame ϕ = νñ.{w1 7→ t1, . . . , wn 7→ tn}, our procedure
starts from an initial knowledge base associated to ϕ and defined as follows:

Init(ϕ) = (∅, ∅)⊕
1≤i≤n [wi B ti]⊕
n∈fn(ϕ) [nB n]⊕
f∈F [f(X1, . . . , Xk) B f(x1, . . . , xk) | X1 B x1, . . .BXk B xk]

Example 3. Consider the rewriting systemREmal
and ϕ2 = νa, k.{w1 7→ enc(b, k)}.

The knowledge base Init(ϕ2) is made up of the following deduction facts:

[w1 B enc(b, k) | ∅] (f1) [enc(Y1, Y2) B enc(y1, y2) | Y1 B y1, Y2 B y2] (f3)
[b B b | ∅] (f2) [dec(Y1, Y2) B dec(y1, y2) | Y1 B y1, Y2 B y2] (f4)

[mal(Y1, Y2) B mal(y1, y2) | Y1 B y1, Y2 B y2] (f5)

Saturation. The main part of our procedure consists in saturating the knowledge
base Init(ϕ) by means of the transformation rules described in Figure 1. The rule
Narrowing is designed to apply a rewriting step on an existing deduction fact.
Intuitively, this rule allows us to get rid of the equational theory and nevertheless
ensure that the generation of deducible terms is complete. The rule F-Solving is
used to instantiate an unsolved side condition of an existing deduction fact. Uni-
fying and E-Solving add equational facts which remember when different recipes
for a same term exist.

Note that this procedure may not terminate and that the fixed point may
not be unique. We write =⇒∗ for the reflexive and transitive closure of =⇒.

Example 4. Continuing Example 3, we illustrate the saturation procedure. We
can apply the rule Narrowing on fact f4 and rewrite rule dec(enc(x, y), y) → x,
as well as on fact f5 and rewrite rule mal(enc(x, y), z)→ enc(z, y) adding facts

[dec(Y1, Y2) B x | Y1 B enc(x, y), Y2 B y] (f6)
[mal(Y1, Y2) B enc(z, y) | Y1 B enc(x, y), Y2 B z] (f7)

The facts f6 and f7 are not solved and we can apply the rule F-Solving with f1
adding the facts:

[dec(w1, Y2) B b | Y2 B k] (f8) [mal(w1, Y2) B enc(z, k) | Y2 B z] (f9)

Rule Unifying can be used on facts f1/f3, f3/f9 as well as f1/f9 to add equational
facts. This third case allows one to obtain f10 = [w1 ∼ mal(w1, Y2) | Y2Bb] which
can be solved (using E-Solving with f2) to obtain f11 = [w1 ∼ mal(w1, b)]. Because
of lack of space we do not detail the remaining rule applications. When reaching
a fixed point the knowledge base contains the solved facts f9 and f11 as well as
those in Init(ϕ2).

Narrowing

f = [M B C[t] | X1 B x1, . . . , Xk B xk] ∈ F, l→ r ∈ RE
with t 6∈ X , σ = mgu(l, t) and var(f) ∩ var(l) = ∅.

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M B (C[r])σ | X1 B x1σ, . . . ,Xk B xkσ].

F-Solving

f1 = [M B t | X0 B t0, . . . , Xk B tk], f2 = [N B s | Y1 B y1, . . . , Y` B y`] ∈ F
with t0 6∈ X , σ = mgu(s, t0) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M{X0 7→ N}B tσ | X1 B t1σ, . . . ,Xk B tkσ, Y1 B y1σ, . . . , Y` B y`σ].

Unifying

f1 = [M B t | X1 B x1, . . . , Xk B xk], f2 = [N B s | Y1 B y1, . . . , Y` B y`] ∈ F
with σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [M ∼ N | {Xi B xiσ}1≤i≤k ∪ {Yi B yiσ}1≤i≤`].

E-Solving

f1 = [U ∼ V | Y B s,X1 B t1, . . . , Xk B tk] ∈ E, f2 = [M B t | Y1 B y1, . . . , Y` B y`} ∈ F
with s 6∈ X , σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [U{Y 7→M} ∼ V {Y 7→M} | {Xi B tiσ}1≤i≤k ∪ {Yi B yiσ}1≤i≤`].

Fig. 1. Saturation rules

3.3 Application to deduction and static equivalence

Procedure for deduction. Let ϕ be a frame and t be a ground term. The procedure
for checking ϕ `E t runs as follows:

1. Apply the saturation rules to obtain (if any) a saturated knowledge base
(F,E) such that Init(ϕ) =⇒∗ (F,E). Let F+ = F∪{[nBn] | n ∈ fn(t)rbn(ϕ)}.

2. Return yes if there exists N such that F+ `N t↓RE (that is, the RE -normal
form of t is generated by F with recipe N); otherwise return no.

Example 5. We continue our running example. Let (F,E) be the knowledge base
obtained from Init(ϕ2) described in Example 4. We show that ϕ2 ` enc(c, k) and
ϕ2 ` b. Indeed we have that F ∪ {[c B c]} `mal(w1,c) enc(c, k) using facts f9 and
[cB c], and F `b b using fact f2.

Procedure for static equivalence. Let ϕ1 and ϕ2 be two frames. The procedure
for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated knowl-
edge bases (Fi,Ei), i = 1, 2 such that Init(ϕi) =⇒∗ (Fi,Ei), i = 1, 2.

2. For {i, j} = {1, 2}, for every solved fact [M ∼ N | X1 B x1, . . . , Xk B xk]
in Ei, check if (M{X1 7→ x1, . . . , Xk 7→ xk} =E N{X1 7→ x1, . . . , Xk 7→ xk})ϕj .

3. If so return yes; otherwise return no.

Example 6. Consider again the frames ϕ1 and ϕ2 which are not statically equiv-
alent (see Example 2). Our procedure answers no since [mal(w1, b) ∼ w1] ∈ E2

whereas (mal(w1, b) 6=Emal
w1)ϕ1.

4 Termination

As already announced the saturation process does not always terminate.

Example 7. Consider the convergent rewriting system consisting of the single
rule f(g(x))→ g(h(x)) and the frame φ = νa.{w1 7→ g(a)}. We have that

Init(ϕ) ⊇ {[w1 B g(a)], [f(X) B f(x) | X B x]}.
By applying the saturation rules, we generate an infinity of solved facts of the

form [f(. . . f(w1) . . .) B g(h(. . . h(a) . . .))]. Intuitively, this happens because our
symbolic representation is unable to express that the function h can be nested
an unbounded number of times when it occurs under an application of g.

The same kind of limitation already exists in the procedure implemented in
YAPA [5]. However, our symbolic representation, that manipulates terms that
are not necessarily ground and facts with side conditions, allows us to go beyond
YAPA. We are able for instance to treat equational theories such as malleable
encryption and trapdoor commitment.

4.1 Applications

We now give several examples for which the saturation procedure indeed termi-
nates. The complete proofs of termination can be found in our research report [8].

Subterm convergent equational theories. Abadi and Cortier [1] have shown
that deduction and static equivalence are decidable for subterm convergent equa-
tional theories in polynomial time. We retrieve the same results with our algo-
rithm. An equational theory E is subterm convergent if RE is convergent and
for every rule l→ r ∈ RE , we have that either r is a strict subterm of l, or r is
a ground term in RE -normal form.

Malleable encryption. We obtain also termination for the equational the-
ory Emal described in Example 1. This is a toy example that does not fall in the
class studied in [1]. Indeed, this theory is not locally stable: the set of terms in
normal form deducible from a frame ϕ cannot always be obtained by applying
public contexts over a finite set (called sat(ϕ) in [1]) of ground terms.

As a witness consider the frame ϕ2 = νa, k.{w1 7→ enc(b, k} introduced in
Example 2. Among the terms that are deducible from ϕ2, we have those of
the form enc(t, k) where t represents any term deducible from ϕ2. From this
observation, it is easy to see that Emal is not locally stable.

Our procedure does not have this limitation. A prerequisite for termination
is that the set of terms in normal form deducible from a frame is exactly the set
of terms obtained by nesting in all possible ways a finite set of contexts. The
theory Emal falls in this class. In particular, for the frame ϕ2, our procedure
produces the fact f9 = [mal(w1, Y2) B enc(z, k) | Y2 B z] allowing us to capture
all the terms of the form enc(t, k) by the means of a single deduction fact.

Trap-door commitment. The following convergent equational theory Etd is a
model for trap-door commitment:

open(td(x, y, z), y) = x td(x2, f (x1, y, z, x2), z) = td(x1, y, z)
open(td(x1, y, z), f (x1, y, z, x2)) = x2 f (x2, f (x1, y, z, x2), z, x3) = f (x1, y, z, x3)

As said in introduction, we encountered this equational theory when studying
electronic voting protocols. The term td(m, r, td) models the commitment of the
message m under the key r using an additional trap-door td. Such a commitment
scheme allows a voter who has performed a commitment to open it in different
ways using its trap-door. Hence, trap-door bit commitment td(v, r, td) does not
bind the voter to the vote v. This is useful to ensure privacy-type properties in
e-voting and in particular receipt-freeness [13]. With such a scheme, even if a
coercer requires the voter to reveal his commitment, this does not give any useful
information to the coercer as the commitment can be viewed as the commitment
of any vote (depending on the key that will be used to open it).

For the same reason as Emal , the theory of trap-door commitment described
below cannot be handle by the algorithms described in [1, 5].

Termination of our procedure is also ensured for theories such as blind sig-
nature and addition as defined in [1].

4.2 Going beyond with fair strategies

In [1] decidability is also shown for an equational theory modeling homomorphic
encryption. For our procedure to terminate on this theory we use a particular
saturation strategy.

Homomorphic encryption. We consider the theory Ehom of homomorphic
encryption that has been studied in [1, 5].

fst(pair(x, y)) = x snd(pair(x, y)) = y dec(enc(x, y), y) = x
enc(pair(x, y), z) = pair(enc(x, z), enc(y, z))
dec(pair(x, y), z) = pair(dec(x, z), dec(y, z))

In general, our algorithm does not terminate under this equational theory.
Consider for instance the frame φ = νa, b.{w1 7→ pair(a, b)}. We have that:

Init(ϕ) ⊇ {[w1 B pair(a, b)], [enc(X,Y) B enc(x, y) | X B x, Y B y]}.

As in Example 7 we can obtain an unbounded number of solved facts whose
projections are of the form:

[pair(enc(. . . enc(a, z1) . . . , zn), enc(. . . enc(b, z1) . . . , zn)) | z1, . . . , zn].

However, we can guarantee termination by using a fair saturation strategy.
We say that a saturation strategy is fair if whenever a rule instance is enabled it
will eventually be taken. Indeed in the above example using a fair strategy we will
eventually add the facts [fst(w1) B a] and [snd(w1) B b]. Now the “problematic”
facts described above become useless and are not added to the knowledge base
anymore. One may note that a fair strategy does not guarantee termination in
Example 7 (intuitively, because the function g is one-way and a is not deducible
in that example).

5 Conclusion and future work

We have proposed a procedure for the intruder deduction problem and the static
equivalence problem for the case in which the cryptographic primitives are mod-
eled by a convergent equational theory. Our procedure terminates for a wide
range of equational theories relevant to cryptographic protocols. In particular,
we obtain a new decidability result for the theory of trapdoor commitment.

A C++ implementation of the procedures described in this paper is provided
in the KiSs (Knowledge in Security protocols) tool [7].

In our implementation, we use a DAG representation of terms and special-
ized F-Solving and E-Solving rules for solving ground side conditions. Indeed, by
checking whether the side condition is generated or not we know whether solv-
ing it will eventually produce a solved fact. Note that checking generation can
be done in polynomial time. This makes the procedure terminate in polynomial
time for subterm convergent equational theories, and the theories Eblind , Emal

and Etd .
Our procedure terminates on all examples of equational theories presented

in [5]. In addition, our tool terminates on the theories Emal and Etd whereas
YAPA does not. In [5] a class of equational theories for which YAPA terminates
is identified; it is not known whether our procedure terminates for this class of

theories. YAPA may also terminate on examples outside this class. Hence the
question of whether termination of our procedures encompasses termination of
YAPA is still open.

As directions for future work, we plan to investigate how our technique can
be extended to handle equational theories which contain AC operators (such as
XOR) and how it can be extended to handle the active case.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01).
ACM, 2001.

3. S. Anantharaman, P. Narendran, and M. Rusinowitch. Intruders with caps.
In Proc. 18th International Conference on Term Rewriting and Applications
(RTA’07), volume 4533 of LNCS. Springer, 2007.

4. M. Baudet. YAPA (Yet Another Protocol Analyzer), 2008. http://www.lsv.ens-
cachan.fr/˜baudet/yapa/index.html.

5. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing
intruder knowledge. Research Report LSV-09-03, Laboratoire Spécification et
Vérification, ENS Cachan, France, Feb. 2009. 26 pages.

6. Y. Chevalier. Résolution de problèmes d’ accessibilité pour la compilation et la
validation de protocoles cryptographiques. PhD thesis, Université Henri Poincaré,
Nancy (France), 2003.

7. Ş. Ciobâcă. KiSs, 2009. http://www.lsv.ens-cachan.fr/˜ciobaca/kiss.
8. Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocols

under convergent equational theories. Research Report LSV-09-05, Laboratoire
Spécification et Vérification, ENS Cachan, France, Mar. 2009. 42 pages.

9. V. Cortier and S. Delaune. Deciding knowledge in security protocols for monoidal
equational theories. In Proc. 14th Int. Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’07), LNAI. Springer, 2007.

10. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

11. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 2008. To appear.

12. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for the equational
theory of Abelian groups with distributive encryption. Information and Computa-
tion, 205(4):581–623, 2007.

13. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Proc. 5th Int. Security Protocols Workshop, volume 1361. Springer, 1997.

14. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
and composed keys is NP-complete. Theoretical Computer Science, 299:451–475,
2003.

