
Computing knowledge in security protocols
under convergent equational theories ?

Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer

LSV, ENS Cachan & CNRS & INRIA, France

Abstract. In the symbolic analysis of security protocols, two classical
notions of knowledge, deducibility and indistinguishability, yield corre-
sponding decision problems. We propose a procedure for both problems
under arbitrary convergent equational theories. Our procedure termi-
nates on a wide range of equational theories. In particular, we obtain a
new decidability result for a theory we encountered when studying elec-
tronic voting protocols. We also provide a prototype implementation.

1 Introduction

Cryptographic protocols are small distributed programs that use cryptographic
primitives such as encryption and digital signatures to communicate securely
over a network. It is essential to gain as much confidence as possible in their
correctness. Therefore, symbolic methods have been developed to analyse such
protocols [4, 18, 20]. In these approaches, one of the most important aspects is
to be able to reason about the knowledge of the attacker.

Traditionally, the knowledge of the attacker is expressed in terms of deducibil-
ity (e.g. [20, 10]). A message s (intuitively the secret) is said to be deducible from
a set of messages ϕ if an attacker is able to compute s from ϕ. To perform this
computation, the attacker is allowed, for example, to decrypt deducible messages
by deducible keys.

However, deducibility is not always sufficient. Consider for example the case
where a protocol participant sends over the network the encryption of one of the
constants “yes” or “no” (e.g. the value of a vote). Deducibility is not the right
notion of knowledge in this case, since both possible values (“yes” and “no”) are
indeed “known” to the attacker. In this case, a more adequate form of knowledge
is indistinguishability (e.g. [1]): is the attacker able to distinguish between two
transcripts of the protocol, one running with the value “yes” and the other one
running with the value “no”?

In symbolic approaches to cryptographic protocol analysis, the protocol mes-
sages and cryptographic primitives (e.g. encryption) are generally modeled using
a term algebra. This term algebra is interpreted modulo an equational theory. Us-
ing equational theories provides a convenient and flexible framework for modeling
cryptographic primitives [15]. For instance, a simple equational theory for sym-
metric encryption can be specified by the equation dec(enc(x, y), y) = x. This

? This work has been partly supported by the ANR SeSur AVOTÉ.

equation models the fact that decryption cancels out encryption when the same
key is used. Different equational theories can also be used to model randomized
encryption or even more complex primitives arising when studying electronic
voting protocols [16, 5] or direct anonymous attestation [6]: blind signatures,
trapdoor commitments, zero-knowledge proofs, . . .

The two notions of knowledge that we consider do not take into account the
dynamic behavior of the protocol. Nevertheless, in order to establish that two
dynamic behaviors of a protocol are indistinguishable, an important subproblem
is to establish indistinguishability between the sequences of messages generated
by the protocol [20, 2]. Indistinguishability, also called static equivalence in the
applied-pi calculus framework [2], plays an important role in the study of guess-
ing attacks (e.g. [13, 7]), as well as for anonymity properties in e-voting protocols
(e.g. [16, 5]). This was actually the starting point of this work. During the study
of e-voting protocols, we came across several equational theories for which we
needed to show static equivalence while no decision procedure for deduction or
static equivalence existed.

Our contributions. We provide a procedure for deduction and static equivalence
which is correct, in the sense that if it terminates it gives the right answer,
for any convergent equational theory. As deduction and static equivalence are
undecidable for this class of equational theories [1], the procedure does not always
terminate. However, we show that it does terminate for the class of subterm
convergent equational theories (already shown decidable in [1]) and several other
theories among which the theory of trapdoor commitment encountered in our
electronic voting case studies [16].

Our second contribution is an efficient prototype implementation of this
generic procedure. Our procedure relies on a simple fixed point computation
based on a few saturation rules, making it convenient to implement.

Related work. Many decision procedures have been proposed for deducibility (e.g.
[10, 3, 17]) under a variety of equational theories modeling encryption, digital
signatures, exclusive OR, and homomorphic operators. Several papers are also
devoted to the study of static equivalence. Most of these results introduce a
new procedure for each particular theory and even in the case of the general
decidability criterion given in [1, 14], the algorithm underlying the proof has to
be adapted for each particular theory, depending on how the criterion is fulfilled.

The first generic algorithm that has been proposed handles subterm conver-
gent equational theories [1] and covers the classical theories for encryption and
signatures. This result is encompassed by the recent work of Baudet et al. [9]
in which the authors propose a generic procedure that works for any convergent
equational theory, but which may fail or not terminate. This procedure has been
implemented in the YAPA tool [8] and has been shown to terminate without
failure in several cases (e.g. subterm convergent theories and blind signatures).
However, due to its simple representation of deducible terms (represented by a
finite set of ground terms), the procedure fails on several interesting equational

2

theories like the theory of trapdoor commitments. Our representation of de-
ducible terms overcomes this limitation by including terms with variables which
can be substituted by any deducible terms.

Due to a lack of space, the proofs are given in [12].

2 Formal model

2.1 Term algebras

As usual, messages will be modeled using a term algebra. Let F be a finite set of
function symbols coming with an arity function ar : F → N. Function symbols
of arity 0 are called constants. We consider several kind of atoms: an infinite set
of names N , an infinite set of variables X and a set of parameters P. Names are
used to represent keys, nonces and other data exchanged during a protocol run,
while variables are used as usual. Parameters act as global variables which are
used as pointers to messages exchanged during the protocol run. The essential
difference between parameters and variables is that parameters can never be
safely α-renamed.

The set of terms T (F ,A) built over F and the atoms in A is defined as

t, t1, . . . ::= term
| a atom a ∈ A
| f(t1, . . . , tk) application of symbol f ∈ F , ar(f) = k

A term t is said to be ground when t ∈ T (F ,N). We assume the usual
definitions to manipulate terms. We write fn(t) (resp. var(t)) to represent the
set of (free) names (resp. variables) that occur in a term t and st(t) the set of
its (syntactic) subterms. This notation is extended to tuples and sets of terms in
the usual way. We denote by |t| the size of t defined as the number of symbols
that occur in t (variables do not count), and #T denotes the cardinality of the
set T .

The set of positions of a term t is written pos(t) ⊆ N∗. If p is a position of t
then t|p denotes the subterm of t at the position p. The term t[u]p is obtained
from t by replacing the occurrence of t|p at position p with u. A context C is
a term with (1 or more) holes and we write C[t1, . . . tn] for the term obtained
by replacing these holes with the terms t1, . . . , tn. A context is public if it only
consists of function symbols and holes.

Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) =
{x1, . . . , xn}. The application of a substitution σ to a term t is written tσ. The
substitution σ is grounding for t if the resulting term tσ is ground. We use the
same notations for replacements of names and parameters by terms.

2.2 Equational theories and rewriting systems

Equality between terms will generally be interpreted modulo an equational the-
ory. An equational theory E is defined by a set of equations M ∼ N with

3

M,N ∈ T (F ,X). Equality modulo E , written =E , is defined to be the smallest
equivalence relation on terms such that M =E N for all M ∼ N ∈ E and which
is closed under substitution of terms for variables and application of contexts.

It is often more convenient to manipulate rewriting systems than equa-
tional theories. A rewriting system R is a set of rewriting rules l→ r where
l, r ∈ T (F ,X) and var(r) ⊆ var(l). A term t rewrites to t′ by R, denoted by
t →R t′, if there exists l → r ∈ R, a position p ∈ pos(t) and a substitution σ
such that t|p = lσ and t′ = t[rσ]p. We denote by →+

R the transitive closure
of →R, →∗R its reflexive and transitive closure, and =R its reflexive, symmetric
and transitive closure.

A rewrite system R is convergent if it is terminating, i.e. there is no infinite
chains u1 →R u2 →R . . ., and confluent, i.e. for every term u such that u→∗R u1

and u →∗R u2, there exists v such that u1 →∗R v and u2 →∗R v. A term u is in
R-normal form if there is no term u′ such that u →R u′. If u →∗R u′ and u′ is
in R-normal form then u′ is an R-normal form of u. When this reduced form is
unique (in particular if R is convergent), we write u′ = u↓RE .

We are particularly interested in theories E that can be represented by a
convergent rewrite system R, i.e. theories for which there exists a convergent
rewrite system R such that the two relations =R and =E coincide. Given an
equational theory E we define the corresponding rewriting system RE by orient-
ing all equations in E from left to right, i.e., RE = {l → r | l ∼ r ∈ E}. We say
that E is convergent if RE is convergent.

Example 1. A classical equational theory modelling symmetric encryption is
Eenc = {dec(enc(x, y), y) ∼ x}.

As a running example we consider a slight extension of this theory modelling
malleable encryption

Emal = Eenc ∪ {mal(enc(x, y), z) ∼ enc(z, y)}.
This malleable encryption scheme allows one to arbitrarily change the plain-

text of an encryption. This theory certainly does not model a realistic encryption
scheme but it yields a simple example of a theory which illustrates well our pro-
cedures. In particular all existing decision procedure we are aware of fail on this
example. The rewriting system REmal

is convergent.

From now on, we assume given a convergent equational theory E built over
a signature F and represented by the convergent rewriting system RE .

2.3 Deducibility and static equivalence

In order to describe the messages observed by an attacker, we consider the
following notion of frame that comes from the applied-pi calculus [2].

A frame ϕ is a sequence of messages u1, . . . , un meaning that the attacker
observed each of these messages in the given order. Furthermore, we distinguish
the names that the attacker knows from those that were freshly generated by
others and that are a priori unknown by the attacker. Formally, a frame is
defined as νñ.σ where ñ is its set of bound names, denoted by bn(ϕ), and a

4

replacement σ = {w1 7→ u1, . . . , wn 7→ un}. The parameters w1, . . . , wn enable
us to refer to u1, . . . , un ∈ T (F ,N). The domain dom(ϕ) of ϕ is {w1, . . . , wn}.

Given terms M and N such that fn(M,N) ∩ ñ = ∅, we sometimes write
(M =E N)ϕ (resp. Mϕ) instead of Mσ =E Nσ (resp. Mσ).

Definition 1 (deducibility). Let ϕ be a frame. A ground term t is deducible
in E from ϕ, written ϕ `E t, if there exists M ∈ T (F ,N ∪ dom(ϕ)), called the
recipe, such that fn(M) ∩ bn(ϕ) = ∅ and Mϕ =E t.

Deducibility does not always suffice for expressing the knowledge of an at-
tacker. For instance deducibility does not allow one to express indistinguisha-
bility between two sequences of messages. This is important when defining the
confidentiality of a vote or anonymity-like properties. This motivates the follow-
ing notion of static equivalence introduced in [2].

Definition 2 (static equivalence). Let ϕ1 and ϕ2 be two frames such that
bn(ϕ1) = bn(ϕ2). They are statically equivalent in E, written ϕ1 ≈E ϕ2, if

– dom(ϕ1) = dom(ϕ2)
– for all terms M,N ∈ T (F ,N ∪ dom(ϕ1)) such that fn(M,N) ∩ bn(ϕ1) = ∅

(M =E N)ϕ1 ⇔ (M =E N)ϕ2.

Example 2. Consider the two frames described below:
ϕ1 = νa, k.{w1 7→ enc(a, k)} and ϕ2 = νa, k.{w1 7→ enc(b, k)}.

We have that b and enc(c, k) are deducible from ϕ2 in Emal with recipes b and
mal(w1, c) respectively. We have that ϕ1 6≈Emal

ϕ2 since (w1 6=Emal
mal(w1, b))ϕ1

while (w1 =Emal
mal(w1, b))ϕ2. Note that ϕ1 ≈Eenc

ϕ2 (in the theory Eenc).

3 Procedures for deduction and static equivalence

In this section we describe our procedures for checking deducibility and static
equivalence on convergent equational theories. After some preliminary defini-
tions, we present the main part of our procedure, i.e. a set of saturation rules
used to reach a fixed point. Then, we show how to use this saturation procedure
to decide deducibility and static equivalence. Soundness and completeness of the
saturation procedure are stated in Theorem 1 and detailed in Section 4.

Since both problems are undecidable for arbitrary convergent equational the-
ories [1], our saturation procedure does not always terminate. In Section 5, we
exhibit (classes of) equational theories for which the saturation terminates.

3.1 Preliminary definitions

The main objects that will be manipulated by our procedure are facts, which
are either deduction facts or equational facts.

5

Definition 3 (facts). A deduction fact (resp. an equational fact) is an expres-
sion denoted [U Bu | {X1 B t1, . . . , Xn B tn}] (resp. [U ∼ V | {X1 B t1, . . . , Xn B
tn}]) where Xi B ti (1 ≤ i ≤ n) are called the side conditions of the fact. More-
over, we assume that:

– u, t1, . . . , tn ∈ T (F ,N ∪ X) with var(u) ⊆ var(t1, . . . , tn);
– U, V ∈ T (F ,N ∪ X ∪ P) and X1, . . . , Xn ∈ X ;
– var(U, V,X1, . . . , Xn) ∩ var(u, t1, . . . , tn) = ∅.

We say that a fact is solved if ti ∈ X (1 ≤ i ≤ k). Otherwise, it is unsolved.
A deduction fact is well-formed if it is unsolved or if u 6∈ X .

A fact makes a statement about a frame. We read [UBu | {X1 Bt1, . . . , Xn B
tn}] (resp. [U ∼ V | {X1 B t1, . . . , Xn B tn}]) as “u is deducible with recipe U
(resp. U is equal to V) if ti is deducible with recipe Xi (for all 1 ≤ i ≤ n)”.
For notational convenience we sometimes omit curly braces for the set of side
conditions and write [U Bu | X1 B t1, . . . , Xn B tn]. When n = 0 we simply write
[U B u] or [U ∼ V].

We say that two facts are equivalent if they are equal up to bijective re-
naming of variables. In the following we implicitly suppose that all operations
are carried out modulo the equivalence classes. In particular set union will not
add equivalent facts and inclusion will test for equivalent facts. Also, we allow
on-the-fly renaming of variables in facts to avoid variable clashes.

We now introduce the notion of generation of a term t from a set of facts F.
Intuitively, we say that a term t is generated if it can be syntactically “deduced”
from F.

Definition 4 (generation). Let F be a finite set of well-formed deduction facts.
A term t is generated by F with recipe R, written F `R t, if

1. either t = x ∈ X and R = x;
2. or there exist a solved fact [R0Bt0 | X1Bx1, . . . , XnBxn] ∈ F, some terms Ri

for 1 ≤ i ≤ n and a substitution σ with dom(σ) ⊆ var(t0) such that t = t0σ,
R = R0[X1 7→ R1, . . . , Xk 7→ Rk], and F `Ri xiσ for every 1 ≤ i ≤ n.

A term t is generated by F, written F ` t, if there exists R such that F `R t.

From this definition follows a simple recursive algorithm for effectively deciding
whether F ` t, providing also the recipe. Termination is ensured by the fact
that |xiσ| < |t| for every 1 ≤ i ≤ n. Note that using memoization we can obtain
an algorithm in polynomial time.

Given a finite set of equational facts E and terms M,N , we write E |= M ∼ N
if M ∼ N is a consequence, in the usual first order theory of equality, of

{Uσ ∼ V σ | [U ∼ V | X1 B x1, . . . , Xk B xk] ∈ E} where σ = {Xi 7→ xi}1≤i≤k.

Note that it may be the case that xi = xj for i 6= j (whereas Xi 6= Xj).

6

3.2 Saturation procedure

We define for each fact its canonical form which is obtained by first applying rule
(1) and then rule (2) defined below. The idea is to ensure that each variable xi

occurs at most once in the side conditions and to get rid of those variables that
do not occur in t. Unsolved deduction facts are kept unchanged.

(1)
[RB t | X1 B x1, . . . , Xk B xk] {i, j} ⊆ {1, . . . , n} j 6= i and xj = xi

[R[Xi 7→ Xj] B t | X1 B x1, . . . , Xi−1 B xi−1, Xi+1 B xi+1, . . . , Xk B xk]

(2)
[RB t | X1 B x1, . . . , Xk B xk] xi 6∈ var(t)

[RB t | X1 B x1, . . . , Xi−1 B xi−1, Xi+1 B xi+1, . . . , Xk B xk]

A knowledge base is a tuple (F,E) where F is a finite set of well-formed
deduction facts that are in canonical form and E a finite set of equational facts.

Definition 5 (update). Given a fact f = [R B t | X1 B t1, . . . , Xn B tn] and a
knowledge base (F,E), the update of (F,E) by f, written (F,E)⊕ f, is defined as

(F ∪ {f ′},E) if f is solved and F 6` t useful fact
where f ′ is the canonical form of f

(F,E ∪ {[R′ ∼ R{Xi 7→ ti}1≤i≤n}]) if f is solved and F ` t useless fact

where F `R′ t

(F ∪ {f},E) if f is not solved unsolved fact

The choice of the recipe R′ in the useless fact case is defined by the imple-
mentation. While this choice does not influence the correctness of the procedure,
it might influence its termination as we will see later. Note that, the result of
updating a knowledge base by a (possibly not well-formed and/or not canonical)
fact is again a knowledge base. Facts that are not well-formed will be captured
by the useless fact case, which adds an equational fact.

Initialisation. Given a frame ϕ = νñ.{w1 7→ t1, . . . , wn 7→ tn}, our procedure
starts from an initial knowledge base associated to ϕ and defined as follows:

Init(ϕ) = (∅, ∅)⊕
1≤i≤n [wi B ti]⊕
n∈fn(ϕ) [nB n]⊕
f∈F [f(X1, . . . , Xk) B f(x1, . . . , xk) | X1 B x1, . . .BXk B xk]

Example 3. Consider the rewriting systemREmal
and ϕ2 = νa, k.{w1 7→ enc(b, k)}.

The knowledge base Init(ϕ2) is made up of the following deduction facts:

[w1 B enc(b, k) | ∅] (f1) [enc(Y1, Y2) B enc(y1, y2) | Y1 B y1, Y2 B y2] (f3)
[b B b | ∅] (f2) [dec(Y1, Y2) B dec(y1, y2) | Y1 B y1, Y2 B y2] (f4)

[mal(Y1, Y2) B mal(y1, y2) | Y1 B y1, Y2 B y2] (f5)

7

Saturation. The main part of our procedure consists in saturating the knowledge
base Init(ϕ) by means of the transformation rules described in Figure 1. The rule
Narrowing is designed to apply a rewriting step on an existing deduction fact.
Intuitively, this rule allows us to get rid of the equational theory and nevertheless
ensure that the generation of deducible terms is complete. The rule F-Solving is
used to instantiate an unsolved side condition of an existing deduction fact. Uni-
fying and E-Solving add equational facts which remember when different recipes
for the same term exist.

Note that this procedure may not terminate and that the fixed point may
not be unique.

We write =⇒∗ for the reflexive and transitive closure of =⇒.

Narrowing

f = [M B C[t] | X1 B x1, . . . , Xk B xk] ∈ F, l→ r ∈ RE
with t 6∈ X , σ = mgu(l, t) and var(f) ∩ var(l) = ∅.

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M B (C[r])σ | X1 B x1σ, . . . ,Xk B xkσ].

F-Solving

f1 = [M B t | X0 B t0, . . . , Xk B tk], f2 = [N B s | Y1 B y1, . . . , Y` B y`] ∈ F
with t0 6∈ X , σ = mgu(s, t0) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E)⊕ f0

where f0 = [M{X0 7→ N}B tσ | X1 B t1σ, . . . ,Xk B tkσ, Y1 B y1σ, . . . , Y` B y`σ].

Unifying

f1 = [M B t | X1 B x1, . . . , Xk B xk], f2 = [N B s | Y1 B y1, . . . , Y` B y`] ∈ F
with σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [M ∼ N | {Xi B xiσ}1≤i≤k ∪ {Yi B yiσ}1≤i≤`].

E-Solving

f1 = [U ∼ V | Y B s,X1 B t1, . . . , Xk B tk] ∈ E, f2 = [M B t | Y1 B y1, . . . , Y` B y`} ∈ F
with s 6∈ X , σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F,E) =⇒ (F,E ∪ {f0})
where f0 = [U{Y 7→M} ∼ V {Y 7→M} | {Xi B tiσ}1≤i≤k ∪ {Yi B yiσ}1≤i≤`].

Fig. 1. Saturation rules

Example 4. Continuing Example 3, we illustrate the saturation procedure. We
can apply the rule Narrowing on f4 and on the rewrite rule dec(enc(x, y), y)→ x,
as well as on f5 and the rewrite rule mal(enc(x, y), z)→ enc(z, y), thereby adding

8

the facts

[dec(Y1, Y2) B x | Y1 B enc(x, y), Y2 B y] (f6)
[mal(Y1, Y2) B enc(z, y) | Y1 B enc(x, y), Y2 B z] (f7)

The facts f6 and f7 are not solved and we can apply the rule F-Solving with f1,
thereby adding the facts:

[dec(w1, Y2) B b | Y2 B k] (f8) [mal(w1, Y2) B enc(z, k) | Y2 B z] (f9)

Rule Unifying can be used on facts f1/f3, f3/f9 as well as f1/f9 to add equational
facts. This third case allows one to obtain f10 = [w1 ∼ mal(w1, Y2) | Y2Bb] which
can be solved (using E-Solving with f2) to obtain f11 = [w1 ∼ mal(w1, b)]. Because
of lack of space we do not detail the remaining rule applications. When reaching
a fixed point the knowledge base contains the solved facts f9 and f11 as well as
those in Init(ϕ2).

We now state the soundness and completeness of our transformation rules.
The technical lemmas used to prove this result are detailed in Section 4.

Theorem 1 (soundness and completeness). Let ϕ be a frame and (F,E) be
a saturated knowledge base such that Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N) and

F+ = F ∪ {[nB n] | n ∈ fn(t) r bn(ϕ)}. We have that:

1. For all M ∈ T (F ,N ∪ dom(ϕ)) such that fn(M) ∩ bn(ϕ) = ∅, we have that

Mϕ =E t⇔ ∃N, E |= M ∼ N and F+ `N t↓RE

2. For all M,N ∈ T (F ,N ∪ dom(ϕ)) such that fn(M,N)∩ bn(ϕ) = ∅, we have

(M =E N)ϕ ⇔ E |= M ∼ N.

3.3 Application to deduction and static equivalence

Procedure for deduction. Let ϕ be a frame and t be a ground term. The procedure
for checking ϕ `E t is described bellow. Its correctness is a direct consequence
of Theorem 1, Item 1.

1. Apply the saturation rules to obtain (if any) a saturated knowledge base
(F,E) such that Init(ϕ) =⇒∗ (F,E). Let F+ = F∪{[nBn] | n ∈ fn(t)rbn(ϕ)}.

2. Return yes if there exists N such that F+ `N t↓RE (that is, the RE -normal
form of t is generated by F with recipe N); otherwise return no.

Example 5. We continue our running example. Let (F,E) be the knowledge base
obtained from Init(ϕ2) described in Example 4. We show that ϕ2 ` enc(c, k) and
ϕ2 ` b. Indeed we have that F ∪ {[c B c]} `mal(w1,c) enc(c, k) using facts f9 and
[cB c], and F `b b using fact f2.

9

Procedure for static equivalence. Let ϕ1 and ϕ2 be two frames. The procedure
for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated knowl-
edge bases (Fi,Ei), i = 1, 2 such that Init(ϕi) =⇒∗ (Fi,Ei), i = 1, 2.

2. For {i, j} = {1, 2}, for every solved fact [M ∼ N | X1 B x1, . . . , Xk B xk]
in Ei, check if (M{X1 7→ x1, . . . , Xk 7→ xk} =E N{X1 7→ x1, . . . , Xk 7→ xk})ϕj .

3. If so return yes; otherwise return no.

Proof. (Sketch) If the algorithm returns no, then there exists an equation that
holds in one frame but not in the other; therefore, the two frames are not stati-
cally equivalent.

Assume that the algorithm returns yes. Let M ∼ N be an arbitrary equation
that holds in ϕ1. By Theorem 1, Item 2, we have that E1 |= M ∼ N . As all
equations in E1 also hold in ϕ2, and because E1 |= M ∼ N , it follows that
M ∼ N holds in ϕ2. We have shown that all equations that hold in ϕ1 also hold
in ϕ2. Similarly, all equations that hold in ϕ2 hold in ϕ1 and therefore the two
frames are statically equivalent. ut

Example 6. Consider again the frames ϕ1 and ϕ2 which are not statically equiv-
alent (see Example 2). Our procedure answers no since [mal(w1, b) ∼ w1] ∈ E2

whereas (mal(w1, b) 6=Emal
w1)ϕ1.

4 Soundness and completeness

In this section we give the key results to prove Theorem 1. The soundness of
our saturation procedure relies on Lemma 1 whereas its completeness is more
involved: the key propositions are stated below.

Intuitively Lemma 1 states that any ground term which can be generated is
indeed deducible. Similarly all equations which are consequences of the knowl-
edge base are true equations in the initial frame. The soundness of our saturation
procedure can be easily derived from this lemma.

Lemma 1 (soundness). Let ϕ be a frame and (F,E) be a knowledge base such
that Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N), M,N ∈ T (F ,N ∪ dom(ϕ)) such that
fn(M,N) ∩ bn(ϕ) = ∅, and F+ = F∪{[nBn] | n ∈ fn(t)rbn(ϕ)}. We have that:

1. F+ `M t ⇒ Mϕ =E t; and
2. E |= M ∼ N ⇒ (M =E N)ϕ.

We now give two propositions that are used to show the completeness of the satu-
ration rules. The first one states that whenever there exist two recipes to generate
a ground term from F then the equation on the two recipes is a consequence of E.

Proposition 1 (completeness, equation). Let (F,E) be a saturated knowl-
edge base, and M,N be two terms such that F `M t and F `N t for some ground
term t. Then, we have that E |= M ∼ N .

10

Next we show that whenever a ground term (not necessarily in normal form)
can be generated then its normal form can also be generated and there exists an
equation on the two recipes.

Proposition 2 (completeness, reduction). Let (F,E) be a saturated knowl-
edge base, M a term and t a ground term such that F `M t and t↓RE 6= t. Then
there exists M ′ and t′ such that F `M ′

t′ with t→+
RE t

′ and E |= M ∼M ′.

Relying on these propositions, we can show completeness of our saturation
procedure (i.e. ⇒ of Theorem 1).

1. To prove Item 1, we first observe that if t is deducible from ϕ modulo E then
F+ `M ′

t0 for some M ′ and t0 such that E |= M ∼ M ′ and t0 →∗ t↓RE .
Actually M ′ differs from M by the fact that some public names that do not
occur in the knowledge base are replaced by fresh variables. Then, we rely
on Proposition 2 and we show the result by induction on t0 equipped with
the order < induced by the rewriting relation (t < t′ iff t→+ t′).

2. Now, to prove Item 2, we apply the result shown in item 1 on Mϕ =E t
and Nϕ =E t where t = Mϕ↓RE = Nϕ↓RE . We deduce that there exist M ′

and N ′ such that E |= M ∼M ′, F+ `M ′
t, E |= N ∼ N ′, and F+ `N ′

t. Then,
Proposition 1 allows one to deduce that E |= M ′ ∼ N ′, thus E |= M ∼ N .

5 Termination

As already announced the saturation process will not always terminate.

Example 7. Consider the convergent rewriting system consisting of the single
rule f(g(x))→ g(h(x)) and the frame φ = νa.{w1 7→ g(a)}. We have that

Init(ϕ) ⊇ {[w1 B g(a)], [f(X) B f(x) | X B x]}.

By Narrowing we can add the fact f1 = [f(X) B g(h(x)) | X B g(x)]. Then we
can apply F-Solving to solve its side condition X B g(x) with the fact [w1 B g(a)]
yielding the solved fact [f(w1) B g(h(a))]. Now, applying iteratively F-Solving
on f1 and the newly generated fact, we generate an infinity of solved facts of the
form [f(. . . f(w1) . . .) B g(h(. . . h(a) . . .))]. Intuitively, this happens because our
symbolic representation is unable to express that the function h can be nested
an unbounded number of times when it occurs under an application of g.

The same kind of limitation already exists in the procedure implemented in
YAPA [9]. However, our symbolic representation, that manipulates terms that
are not necessarily ground and facts with side conditions, allows us to go beyond
YAPA. We are able for instance to treat equational theories such as malleable
encryption and trapdoor commitment.

11

5.1 Generic method for proving termination

We provide a generic method for proving termination, which we instantiate in
the following section on several examples.

In order to prove that the saturation algorithm terminates, we require that
the update function ⊕ be uniform: i.e., the same recipe R′ be used for all use-
less solved deduction facts that have the same canonical form. Note that the
soundness and completeness of the algorithm does not depend on the choice of
the recipe R′ when updating the knowledge base with a useless fact (cf. Defini-
tion 5).

Definition 6 (projection). We define the projection of a deduction fact f =
[RB t | X1 B t1, . . . , Xn B tn] as f̂ = [t | {t1, . . . , tn}]. We extend the projection
to sets of facts F and define F̂ = {f̂ | f ∈ F}.

We identify projections which are equal up to bijective renaming of variables
and we sometimes omit braces for the side conditions.

Proposition 3 (generic termination). The saturation algorithm terminates
if ⊕ is uniform and there exist some functions Q, mf , me and some well-
founded orders <f and <e such that for all frames ϕ, and for all (F,E) such
that Init(ϕ) =⇒∗ (F,E), we have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;
2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving.

5.2 Applications

We now give several examples for which the saturation procedure indeed termi-
nates. For each of these theories the definition of the function Q relies on the
following notion of extended subterms.

Definition 7 (extended subterm). Let t be a term; its set of extended sub-
terms stRE (t) (w.r.t. E) is the smallest set such that:

1. t ∈ stRE (t),
2. f (t1, . . . , tk) ∈ stRE (t) implies t1, . . . , tk ∈ stRE (t),
3. t′ ∈ stRE (t) and t′ →RE t′′ implies t′′ ∈ stRE (t).

This notation is extended to frames in the usual way.

All the examples in this section rely on the same measures mf and me.
Let {X1 B t1, . . . , Xn B tn} be the set of side conditions of a fact f. We de-
fine mf(f) = (# var(t1, . . . , tn),

∑
1≤i≤n |ti|) and <f is the lexicographical order

on ordered pairs of integers. The measure me and the order <e are defined in
the same way.

We now present the class of subterm convergent equational theories as well
as the theories for malleable encryption and trap-door commitment.

12

Subterm convergent equational theories. Abadi and Cortier [1] have shown
that deduction and static equivalence are decidable for subterm convergent equa-
tional theories in polynomial time. We retrieve the same results with our algo-
rithm. An equational theory E is subterm convergent if RE is convergent and
for every rule l→ r ∈ RE , we have that either r is a strict subterm of l, or r is
a ground term in RE -normal form.

The termination proof for this class relies on the function Q where Q(ϕ) is
defined as the smallest set that contains

1. [t | ∅], where t ∈ stRE (ϕ);
2. [f(x1, . . . , xk) | x1, . . . , xk], where ar(f) = k.

Malleable encryption. We also obtain termination for the equational the-
ory Emal described in Example 1. This is a toy example that does not fall in the
class studied in [1]. Indeed, this theory is not locally stable: the set of terms in
normal form deducible from a frame ϕ cannot always be obtained by applying
public contexts over a finite set (called sat(ϕ) in [1]) of ground terms.

As a witness consider the frame ϕ2 = νa, k.{w1 7→ enc(b, k} introduced in
Example 2. Among the terms that are deducible from ϕ2, we have those of
the form enc(t, k) where t represents any term deducible from ϕ2. From this
observation, it is easy to see that Emal is not locally stable.

Our procedure does not have this limitation. A prerequisite for termination
is that the set of terms in normal form deducible from a frame is exactly the set
of terms obtained by nesting in all possible ways a finite set of contexts. The
theory Emal falls in this class. In particular, for the frame ϕ2, our procedure
produces the fact f9 = [mal(w1, Y2) B enc(z, k) | Y2 B z] allowing us to capture
all the terms of the form enc(t, k) by the means of a single deduction fact.

The termination proof relies on the function Q where Q(ϕ) is defined as the
smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ);
2. [f (x1, x2) | x1, x2], where f ∈ {enc, dec,mal};
3. [enc(x, t) | x], if there exists t′ such that enc(t′, t) ∈ stRE (ϕ).

Trap-door commitment. The following convergent equational theory Etd is a
model for trap-door commitment:

open(td(x, y, z), y) = x td(x2, f (x1, y, z, x2), z) = td(x1, y, z)
open(td(x1, y, z), f (x1, y, z, x2)) = x2 f (x2, f (x1, y, z, x2), z, x3) = f (x1, y, z, x3)

As said in the introduction, we encountered this equational theory when
studying electronic voting protocols. The term td(m, r, td) models the com-
mitment of the message m under the key r using an additional trap-door td.
Such a commitment scheme allows a voter who has performed a commitment to
open it in different ways using its trap-door. Hence, trap-door bit commitment
td(v, r, td) does not bind the voter to the vote v. This is useful to ensure privacy-
type properties in e-voting and in particular receipt-freeness [19]. With such a

13

scheme, even if a coercer requires the voter to reveal his commitment, this does
not give any useful information to the coercer as the commitment can be viewed
as the commitment of any vote (depending on the key that will be used to open
it).

For the same reason as Emal , the theory of trap-door commitment described
below cannot be handled by the algorithms described in [1, 9]. Our termination
proof relies on the function Q where Q(ϕ) is the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ);
2. [td(t1, r, tp) | ∅] such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2;
3. [g(x1, . . . , xk) | x1, . . . , xk], where g ∈ {open, td , f } and ar(g) = k;
4. [f (t1, r, tp, x) | x], such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2.

Termination of our procedure is also ensured for theories such as blind sig-
nature and addition as defined in [1].

5.3 Going beyond with fair strategies

In [1] decidability is also shown for an equational theory modeling homomorphic
encryption. For our procedure to terminate on this theory we use a particular
saturation strategy.

Homomorphic encryption. We consider the theory Ehom of homomorphic
encryption that has been studied in [1, 9].

fst(pair(x, y)) = x snd(pair(x, y)) = y dec(enc(x, y), y) = x
enc(pair(x, y), z) = pair(enc(x, z), enc(y, z))
dec(pair(x, y), z) = pair(dec(x, z), dec(y, z))

In general, our algorithm does not terminate under this equational theory.
Consider for instance the frame φ = νa, b.{w1 7→ pair(a, b)}. We have that:

Init(ϕ) ⊇ {[w1 B pair(a, b)], [enc(X,Y) B enc(x, y) | X B x, Y B y]}.

As in Example 7 we can obtain an unbounded number of solved facts whose
projections are of the form:

[pair(enc(. . . enc(a, z1) . . . , zn), enc(. . . enc(b, z1) . . . , zn)) | z1, . . . , zn].

However, we can guarantee termination by using a fair saturation strategy.
We say that a saturation strategy is fair if whenever a rule instance is enabled
it will eventually be taken.

Indeed in the above example using a fair strategy we will eventually add the
facts [fst(w1)Ba] and [snd(w1)Bb]. Now the “problematic” facts described above
become useless and are not added to the knowledge base anymore. One may note
that a fair strategy does not guarantee termination in Example 7 (intuitively,
because the function g is one-way and a is not deducible in that example).

The proof of termination will as for the previous theories define functions Q,
mf and me. The main argument of the proof is the observation that due to
fairness only a finite number of solved fact not in Q(ϕ) can be added.

14

6 Implementation

A C++ implementation of the procedures described in this paper is provided
in the KiSs (Knowledge in Security protocols) tool [11]. The tool implements
a uniform ⊕ and contains several optimizations. First, as the order of solving
side conditions is not important, we always solve the first unsolved side condi-
tion rather than considering all the combinations. We also use DAG represen-
tation of terms and specialized F-Solving and E-Solving rules for solving ground
side conditions. Indeed, by checking whether the side condition is generated or
not we know whether solving it will eventually produce a solved fact. Checking
generation takes only polynomial time. This makes the procedure terminate in
polynomial time for subterm convergent equational theories, and the theories
Eblind , Emal and Etd .

The performance of the tool is comparable to the YAPA tool [8, 9] and on
most examples the tool terminates in less than a second. In [9] a family of
contrived examples is presented to diminish the performance of YAPA, exploiting
the fact that YAPA does not implement DAG representations of terms and
recipes, as opposed to KiSs. As expected, KiSs indeed performs better on these
examples.

Regarding termination, our procedure terminates on all examples of equa-
tional theories presented in [9]. In addition, our tool terminates on the theo-
ries Emal and Etd whereas YAPA does not. In [9] a class of equational theories
for which YAPA terminates is identified and it is not known whether our proce-
dure terminates. YAPA may also terminate on examples outside this class. Hence
the question whether termination of our procedures encompasses termination of
YAPA is still open.

7 Conclusion

We have proposed a procedure for deduction and for static equivalence for con-
vergent equational theories. Our procedure terminates for a wide range of equa-
tional theories. In particular, we obtain a new decidability result for the theory
of trapdoor commitment.

As future work, we indent to extend our approach in order to handle associa-
tive commutative operators (like xor) and the active case of the two problems.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th ACM Symp. on Principles of Programming Languages, 2001.

3. S. Anantharaman, P. Narendran, and M. Rusinowitch. Intruders with caps.
In Proc. 18th International Conference on Term Rewriting and Applications
(RTA’07), volume 4533 of LNCS. Springer, 2007.

15

4. A. Armando et al. The AVISPA Tool for the automated validation of internet
security protocols and applications. In Proc. 17th Int. Conference on Computer
Aided Verification (CAV’05), volume 3576 of LNCS, pages 281–285. Springer, 2005.

5. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In Proc. 21st IEEE Computer Security
Foundations Symposium (CSF’08), 2008.

6. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus
and automated verification of the direct anonymous attestation protocol. In IEEE
Symposium on Security and Privacy (S&P’08). IEEE Comp. Soc. Press, 2008.

7. M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th
ACM Conference on Computer and Communications Security (CCS’05), 2005.

8. M. Baudet. YAPA (Yet Another Protocol Analyzer), 2008. http://www.lsv.ens-
cachan.fr/˜baudet/yapa/index.html.

9. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing
intruder knowledge. In R. Treinen, editor, Proceedings of the 20th International
Conference on Rewriting Techniques and Applications (RTA’09), Lecture Notes in
Computer Science, Braśılia, Brazil, June-July 2009. Springer. To appear.

10. Y. Chevalier. Résolution de problèmes d’accessibilité pour la compilation et la
validation de protocoles cryptographiques. PhD thesis, Univ. Henri Poincaré, 2003.

11. Ş. Ciobâcă. KiSs, 2009. http://www.lsv.ens-cachan.fr/˜ciobaca/kiss.
12. Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocol

under convergent equational theories. Research Report LSV-09-05, Laboratoire
Spécification et Vérification, ENS Cachan, France, Mar. 2009. 42 pages.

13. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against
off-line dictionary attacks. In Proc. 2nd International Workshop on Security Issues
with Petri Nets and other Computational Models (WISP’04), ENTCS, 2004.

14. V. Cortier and S. Delaune. Deciding knowledge in security protocols for monoidal
equational theories. In Proc. 14th Int. Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’07), LNAI. Springer, 2007.

15. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

16. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 2008. To appear.

17. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for the equational
theory of Abelian groups with distributive encryption. Information and Computa-
tion, 205(4):581–623, 2007.

18. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. 8th ACM Conference on Computer and Communica-
tions Security (CCS’01), 2001.

19. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Proc. 5th Int. Security Protocols Workshop, volume 1361. Springer, 1997.

20. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
and composed keys is NP-complete. Theoretical Computer Science, 299:451–475,
2003.

16

