
J Autom Reasoning (2011) 46:261–291
DOI 10.1007/s10817-010-9186-x

Automated Proofs for Asymmetric Encryption

J. Courant · M. Daubignard · C. Ene ·
P. Lafourcade · Y. Lakhnech

Received: 16 June 2010 / Accepted: 17 June 2010 / Published online: 3 July 2010
© Springer Science+Business Media B.V. 2010

Abstract Many generic constructions for building secure cryptosystems from primi-
tives with lower level of security have been proposed. Providing security proofs has
also become standard practice. There is, however, a lack of automated verification
procedures that analyze such cryptosystems and provide security proofs. In this
paper, we present a sound and automated procedure that allows us to verify that
a generic asymmetric encryption scheme is secure against chosen-plaintext attacks
in the random oracle model. It has been applied to several examples of encryption
schemes among which the construction of Bellare–Rogaway 1993, of Pointcheval at
PKC’2000.

Keywords Provable cryptography · Asymmetric encryption ·
Automated verification · Hoare logic

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to manip-
ulate it securely. This requires solutions based on cryptographic systems (primitives
and protocols). In 1976, Diffie and Hellman invented public-key cryptography [15],
coined the notion of one-way functions and discussed the relationship between
cryptography and complexity theory. Shortly after, the first cryptosystem with a
reductionist security proof appeared [20]. The next breakthrough towards formal
proofs of security was the adoption of computational theory for the purpose of
rigorously defining the security of cryptographic schemes. In this framework, a
system is provably secure if there is a polynomial-time reduction proof from a

This work is partially supported by the ANR projects SCALP, AVOTE and SFINCS.

J. Courant · M. Daubignard · C. Ene · P. Lafourcade (B) · Y. Lakhnech
Université Joseph Fourier (Grenoble 1), CNRS, Verimag, Grenoble, France
e-mail: pascal.lafourcade@imag.fr

262 J. Courant et al.

hard problem to an attack against the security of the system. The provable security
framework has been later refined into the exact (also called concrete) security frame-
work where better estimates of the computational complexity of attacks is achieved.
While research in the field of provable cryptography has achieved tremendous
progress towards rigorously defining the functionalities and requirements of many
cryptosystems, little has been done for developing computer-aided proof methods
or more generally for investigating a proof theory for cryptosystems as it exists for
imperative programs, concurrent systems, reactive systems, etc.

In this paper, we present an automated proof method for analyzing generic asym-
metric encryption schemes in the random oracle model (ROM). Generic encryption
schemes aim at transforming schemes with weak security properties, such as one-
wayness, into schemes with stronger security properties, specifically security against
chosen ciphertext attacks. Examples of generic encryption schemes are [7, 8, 13, 18,
19, 21, 23, 25]. In this paper we propose a compositional Hoare logic for proving
IND-CPA security. An important feature of our method is that it is not based on a
global reasoning as it is the case for the game-based approach [9, 22]. Instead, it is
based on local reasoning. Indeed, both approaches can be considered complementary
as the Hoare logic-based one can be considered as aiming at characterizing by
means of predicates the set of contexts in which the game transformations can be
applied safely. In future work [11], we also present a method for proving plaintext
awareness (PA). Plaintext awareness together with IND-CPA security imply IND-
CCA security [3]. Combining the results of this paper with plaintext awareness, leads
to a proof method for verifying the constructions in [7, 18, 19].

Related work We restrict our discussion to work aiming at providing computa-
tional proofs for cryptosystems. In particular, this excludes symbolic verification.
We mentioned above the game-based approach [9, 17, 22]. B. Blanchet and D.
Pointcheval developed a dedicated tool, CryptoVerif, that supports security proofs
within the game-based approach [5, 6]. From the theoretical point of view, the main
differences in our approaches are the following. CryptoVerif is based on observa-
tional equivalence. The equivalence relation induces rewriting rules applicable in
contexts that satisfy some properties. Invariants provable in our Hoare logic can be
considered as logical representations of these contexts. Moreover, as we are working
with invariants, that is we follow a state-based approach, we need to prove results
that link our invariants to game-based properties such as indistinguishability (cf.
Propositions 1 and 3). G. Barthe, J. Cederquist and S. Tarento were among the first
to provide machine-checked proofs of cryptographic schemes without relying on the
perfect cryptography hypothesis. They have provided formal models of the Generic
Model and the Random Oracle Model in the Coq proof assistant, and used this
formalization to prove hardness of the discrete logarithm [1], security of signed El-
Gamal encryption against interactive attacks [10], and of Schnorr signatures against
forgery attacks [24]. Recently in [4], the authors have been developing CertiCrypt,
which provides support for formalizing game-based proofs in the Coq proof assistant.
They have used their formalization to give machine-checked proofs of IND-CPA
for OAEP. Another interesting piece of work to mention is the Hoare-style proof
system proposed by R. Corin and J. Den Hartog for game-based cryptographic proofs
[12]. Yet, there is no computer-assistance for the developed logic. In [14], Datta
et al. present a computationally sound compositional logic (PCL) for key exchange

Automated Proofs for Asymmetric Encryption 263

protocols. PCL has been applied successfully to the IEEE 802.11i wireless security
standard and the IETF GDOI standard. PCL is a computationally sound Hoare-
like logic for indistinguishability; one important difference is that, being focused on
protocols, PCL does not provide support for standard cryptographic constructions
such as one-way functions.

Outline In Section 2, we introduce notions used in the rest of the paper. In Section 3
we define our programming language and generic asymmetric encryption schemes.
In Section 4, we present our Hoare logic for proving IND-CPA security. In Section 5,
we explain how we can automate our procedure. Finally we conclude in Section 6 .

2 Preliminaries

In this section, we recall some basic definitions as well as poly-time indistinguisha-
bility. To do so, let us first introduce the following notations. If d is a distribution
over a set E, we use v

r← d to denote that an element v ∈ E is sampled according to
distribution d. Moreover, as usual, if d1, . . . , dn are distributions, [u1

r← d1; . . . ; un
r←

dn : (ui1 , . . . , uik)] denotes the distribution obtained by performing the samplings in
the order they are written and returning the result which is specified after the semi-
colon.

We are interested in analyzing generic schemes for asymmetric encryption assum-
ing ideal hash functions. That is, we are working in the random oracle model [7, 16].
Using standard notations, we write H

r← � to denote that H is chosen uniformly at
random from the set of functions with appropriate domain. By abuse of notation, for
a list H = H1, · · · , Hn of hash functions, we write H

r← � instead of the sequence
H1

r← �, . . . , Hn
r← �. We fix a finite set {H1, . . . , Hn} of hash functions and also a

finite set � of trapdoor permutations. We assume an arbitrary but fixed ordering on
� and H; this allows us to freely switch between set-based and vector-based notation.
A distribution ensemble is a countable sequence of distributions {Xη}η∈� over states,
H and �. We only consider distribution ensembles that can be constructed in
polynomial time in η by probabilistic algorithms that have oracle access to H—
this set is formally defined in the next section. Given two distribution ensembles
X = {Xη}η∈� and X ′ = {X ′

η}η∈�, an algorithm A and η ∈ �, we define the advantage
of A in distinguishing Xη and X ′

η as the following quantity:

Adv(A, η, X, X ′) =
∣
∣
∣Pr

[

x
r← Xη : AH(x) = 1

]

− Pr
[

x
r← X ′

η : AH(x) = 1
]∣
∣
∣

The probabilities are taken over X and the random coins used by the probabilistic
adversary A. We insist, above, that for each hash function H, the probabilities are
indeed taken over the set of maps with the appropriate type. Two distribution ensem-
bles X and X ′ are called indistinguishable, denoted by X ∼ X ′, if Adv(A, η, X, X ′)
is negligible as a function of η, for any polynomial-time (in η) probabilistic algorithm
A. All security notions we are going to use are in the ROM, where all algorithms,
including adversaries, are equipped with oracle access to the hash functions.

264 J. Courant et al.

3 A Simple Programming Language for Encryption and Decryption Oracles

In this section, we fix a notation for specifying encryption schemes. The notation we
choose is a simple imperative language with random assignment. The language does
not include loops since loops are usually not used for generic encryption schemes.
Moreover, whereas the language allows the application of a trapdoor permutation f ,
it does not include the application of the inverse of a permutation. This choice is due
to the fact that our analysis is carried out on encryption algorithms only, which, in
the case of generic encryption schemes, seldom use permutation inverses.

Let Var be a finite set of variables. We assume that Var is large enough to deal
with the considered examples. It should be obvious that our results do not depend on
the size of Var. Our programming language is built according to the following BNF
described in Table 1, where:

– x
r← U samples a value in Uη and assigns it to x. Here, (Uη)η is the family of

uniform distributions over the set of bit-strings of length τ(x, η), where τ(x, η) is
a polynomial in η.

– x := f (y) applies the trapdoor one-way function f to the value of y and assigns
the result to x.

– x := H(y) applies the hash function H to the value of y and assigns the result to
x. As a side effect, the pair (v, H(v)), where v is the value of y, is added to the
variable�H which stores the queries to the hash function H.

– x := y ⊕ z applies the exclusive or operator to the values of y and z and assigns
the result to x.

– x := y||z represents the concatenation of the values of y and z.
– c1; c2 is the sequential composition of c1 and c2.
– N (x, y) : var x1; · · · ; xn; c is a procedure declaration, where N is its name

(identifier for encryption or decryption procedure), var x1; · · · ; xn; declares the
local variables x1, · · · , xn, c is the body of the procedure and x and y are the
input and output variables, respectively.

Example 1 The following command encodes the encryption scheme proposed by
Bellare and Rogaway in [7] (shortly f (r)||ine ⊕ G(r)||H(ine||r)):

E(ine, oute) :
var r; a; g; b ; s; c;
r

r← {0, 1}η; a := f (r); g := G(r);
b := ine ⊕ g; s := ine||r; c := H(s);
oute := (a||b)||c; (where f ∈ � and G, H ∈ H)

Semantics In addition to the variables in Var, we consider variables �H1 , . . . ,�Hn .
Variable�Hi is used to record the queries to the hash function Hi. Thus, we consider
states that assign bit-strings to the variables in Var and lists of pairs of bit-strings to

Table 1 Language grammar

Command c ::= x
r← U | x := f (y) | x := H(y) | x := y ⊕ z| x := y||z | c; c

Oracle declaration O ::= N (x, y) : var x1; · · · ; xn; c

Automated Proofs for Asymmetric Encryption 265

�Hi . Let �H = {�H1 , . . . ,�Hn }. The reader should notice that the variables in �H

are not in Var, and hence, cannot occur in commands.
We assume that all variables range over bit-strings (or pairs of bit-strings) with

polynomial size in the security parameter η, so that domains of the variables in
Var have a cardinality exponential in η. Given a state S, S(�H).dom, respectively
S(�H).res, denotes the list obtained by projecting each pair in S(�H) to its first,
respectively second, element. Also we extend S(·) to expressions in the usual way,
for instance S(y ⊕ z) = S(y) ⊕ S(z), etc.

A program takes as input a conf iguration (S, H, (f, f −1)) and yields a distribution
on configurations. A configuration is composed of a state S, a vector of hash functions
(H1, . . . , Hn) and a pair (f, f −1) of a trapdoor permutation and its inverse, drawn
thanks to a generator denoted �. Let � denote the set of configurations and Dist(�)

the set of distributions on configurations. The semantics is given in Table 2, where
δ(x) denotes the Dirac measure, i.e. Pr[x] = 1 and S(�H) · (S(y), v) denotes the
concatenation to �H of a query to the hash function and its answer. Notice that
the semantic function of commands can be lifted in the usual way to a function
from Dist(�) to Dist(�). That is, let F : � → Dist(�) be a function. Then, F defines
a unique function F∗ : Dist(�) → Dist(�) such that F∗(D) = [γ r← D; γ ′ r← F(γ) :
γ ′]. By abuse of notation we also denote the lifted semantics by [[c]].

It is easy to prove that commands preserve the values of H and (f, f −1).
Therefore, we can, without ambiguity, write S′ r← [[c]](S, H, (f, f −1)) instead of
(S′, H, (f, f −1))

r← [[c]](S, H, (f, f −1)). According to our semantics, commands de-
note functions that transform distributions on configurations to distributions on
configurations. However, only distributions that are constructible are of interest.

A family X of distributions is called constructible, if there is an algorithm A such
that

Xη =
[

(f, f −1)
r← �(1η); H

r← �; S
r← AH(f, 1η) : (S, H, f, f −1)

]

,

where� is a trapdoor permutation generator that on input η generates an η-bit-string
trapdoor permutation pair (f, f −1), and A is a poly-time probabilistic algorithm with
oracle access to the hash function, and such that A’s queries to the hash oracles are
recorded in the lists �H ’s in S. The latter condition should not be understood as a
restriction on the set of considered adversaries. Indeed, it does not mean that the
adversaries need to honestly record their queries in the�H lists. It rather means that
in our reduction proofs, when we simulate such adversaries, we need to record their

Table 2 The semantics of the programming language

[[x r← U]](S, H, (f, f −1)) = [u r← U : (S{x 	→ u}, H, (f, f −1))]
[[x := f (y)]](S, H, (f, f −1)) = δ(S{x 	→ f (S(y))}, H, (f, f −1))

[[x := H(y)]](S, H, (f, f −1)) =
{

δ(S{x 	→ v}, H, (f, f −1)) if (S(y), v) ∈ �H

δ(S{x 	→ v,�H 	→ S(�H) · (S(y), v)}, H, (f, f −1)) if (S(y), v)
∈ �H and v = H(H)(S(y))

[[x := y ⊕ z]](S, H, (f, f −1)) = δ(S{x 	→ S(y) ⊕ S(z)}, H, (f, f −1))

[[x := y||z]](S, H, (f, f −1)) = δ(S{x 	→ S(y)||S(z)}, H, (f, f −1))

[[c1; c2]] = [[c2]] ◦ [[c1]]
[[N (x, y) : var x; c]](S, H, (f, f −1)) = ([[c]](S, H, (f, f −1))){x 	→ S(x)}

266 J. Courant et al.

queries. We emphasize that the algorithm denoted above by A can, but does not
necessarily represent (only) an adversary, e.g. it can be the sequential composition
of an adversary and a command. We denote by Dist(�, H,�) the set of constructible
families of distributions. Distributions that are element of a constructible family of
distributions are called constructible too.

Notice that [[c]](X) ∈ Dist(�, H,�), for any command c and X ∈ Dist(�, H,�).

3.1 Generic Asymmetric Encryption Schemes

We are interested in generic constructions that convert any trapdoor permutation
into a public-key encryption scheme. More specifically, our aim is to provide an
automatic verification method for generic encryption schemes.

Definition 1 A pair (�,E(ine, oute) : var x; c) defines a generic encryption scheme,
where:

– � is a trapdoor permutation generator that on input η generates an η-bit-string
trapdoor permutation pair (f, f −1),

– E(ine, oute) : var x; c is a procedure declaration that describes the encryption
algorithm. The variables in x are the local variables of the encryption algorithm.
We require that the outcome of E(ine, oute) only depends on the value of
ine. Formally, for a triple (S, H, (f, f −1)), let Out(S, H, (f, f −1)) denote the
distribution:

[

(S′, H, (f, f −1))
r← [[E(ine, oute)]](S, H, (f, f −1)) : S′(oute)

]

.

Then, we require that Out(S, H, (f, f −1)) = Out(S′, H, (f, f −1)) holds, for
every states S and S′ such that S(ine) = S′(ine).

Let S0 be the state that associates the bit-string 0τ(x,η), for any variable x ∈ Var that
ranges over {0, 1}τ(x,η), and the empty list [] with each variable in�H . Then, the usual
definition of the IND-CPA security criterion (e.g. see [3]) can be stated as follows:

Definition 2 Let GE = (�,E(ine, oute) : var x; c) be a generic encryption scheme
and A = (A1,A2) be an adversary. For η ∈ �, let

Advind−cpa
A,GE (η) = |2.Pr[(f, f −1)

r← �(1η); H
r← �;

(m0, m1, σ)
r← AH

1 (f);
b

r← {0, 1};
S′ r← [[E(ine, oute)]](S0{ine 	→ mb }, H, (f, f −1)) :
AH

2 (f, m0, m1, σ, S′(oute)) = b] − 1|

We insist, above, that A1 outputs bit-strings m0, m1 such that |m0| = |m1|, and an
internal state σ to be forwarded to its guess-phase A2.

Automated Proofs for Asymmetric Encryption 267

We say that GE is IND-CPA secure if Advind−cpa
A,GE (η) is negligible for any

polynomial-time adversary A.

Notice that because of the condition put on generic encryption schemes, the choice
of the state S0 is not crucial. In other words, we can replace S0 by any other state,
we then get the same distribution of S′(oute) as a result. In fact, an equivalent
formulation of Definition 2, consists in considering that the 1st-phase adversary A1

outputs a state S, such that messages m0 and m1 are stored in variables x0 and x1 and
that σ is stored in variable xσ :

Advind−cpa
A,GE (η) = |2.Pr[(f, f −1)

r← �(1η); H
r← �;

S
r← AH

1 (f);
b

r← {0, 1};
S′ r← [[E(ine, oute)]](S{ine 	→ s(xb)}, H, (f, f −1)) :
AH

2 (f, S(x0), S(x1), S(xσ), S′(oute)) = b] − 1|

Thus, we arrive at the following more appropriate equivalent definition of IND-
CPA:

Definition 3 Let GE = (�,E(ine, oute) : var x; c) be a generic encryption scheme
and A be an adversary and X ∈ Dist(�, H,�). For η ∈ �, let

Advind−cpa
A,GE (η, Xη) = 2.Pr[(S, H, (f, f −1))

r← Xη; b
r← {0, 1};

S′ r← [[E(ine, oute)]](S{ine 	→ S(xb)}, H, (f, f −1)) :
AH(f, S(x0), S(x1), S(sσ), S′(oute)) = b] − 1

We say that GE is IND-CPA secure, if Advind−cpa
A,GE (η, Xη) is negligible for any

constructible distribution ensemble X and polynomial-time adversary A.

4 A Hoare Logic for IND-CPA Security

In this section, we present our Hoare logic for proving IND-CPA security. We
prove that the presented logic is sound. In addition to axioms that deal with each
basic command and operation, random assignment, concatenation, xor, etc..., our
logic includes the usual sequential composition and consequence rules of the Hoare
logic. In order to apply the consequence rule, we use entailment (logical implication)
between assertions as in Lemma 2.

Our Hoare logic can be easily transformed into a procedure that allows us to
prove properties by computing invariants of the encryption oracle. More precisely,
the procedure annotates each control point of the encryption command with a set
of predicates that hold at that point for any execution. Given an encryption oracle
E(ine, oute) : var x; c we want to prove that at the final control point, we have an
invariant that tells us that the value of oute is indistinguishable from a random value.
Classically, this implies IND-CPA security.

268 J. Courant et al.

First, we present the assertion language we use to express the invariant properties
we are interested in. Then, we present a set of rules of the form {ϕ}c{ϕ′}, meaning
that execution of command c in any distribution that satisfies ϕ leads to a distribution
that satisfies ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}c{ϕ′} is
valid. From now on, we suppose that the adversary has access to the hash functions
H, and he is given the trapdoor permutation f , but not its inverse f −1.

4.1 The Assertion Language

Before specifying the assertion language, we give a few definitions and notations that
we use to define the predicates of the language.

Definition 4 The set of variables used as substring of an expression e is denoted
subvar(e): x ∈ subvar(e) iff e = x or e = e1||e2 and x ∈ subvar(e1) ∪ subvar(e2), for
some expressions e1 and e2.

For example, consider the following expression: e = (R||(ine|| f (R||r)))||g ⊕ G(R).
Here, subvar(e) = {R, ine}, but r, g /∈ subvar(e).

Definition 5 Let X be a family of distributions in Dist(�, H,�) and V1 and V2 be
sets of local variables or variables in Var. By D(X, V1, V2) we denote the following
distribution family (on tuples of bit-strings):

D(X, V1, V2)η =
[

(S, H, (f, f −1))
r← Xη : (S(V1), f (S(V2)), H, f)

]

Here S(V1) is the point-wise application of S to the elements of V1 and f (S(V2)) is
the point-wise application of f to the elements of S(V2). We say that X and X ′ are
V1; V2-indistinguishable, denoted by X ∼V1;V2 X ′, if D(X, V1, V2) ∼ D(X ′, V1, V2).

We emphasize that in the above definition, we have that V1, V2 ⊆ Var, and since
for any i ∈ {1, . . . , n},�Hi
∈ Var, we get�Hi
∈ V1 ∪ V2 for any i ∈ {1, . . . , n}. Hence,
every time we use the equivalence ∼V1;V2 , the variables Hi are not given to the
adversary.

Example 2 Let S0 be any state and let H1 be a hash function. Recall that we are
working in the ROM. Consider the following distributions: Xη = [β; S := S0{x 	→
u, y 	→ H1(u)} : (S, H, (f, f −1))] and X ′

η = [β; u′ r← {0, 1}η; S := S0{x 	→ u, y 	→
H1(u′)} : (S, H, (f, f −1))], where β = H

r← �; (f, f −1)
r← �(1η); u

r← {0, 1}η. Then,
we have X ∼{y};{x} X ′ but we do not have X ∼{y,x};∅ X ′, because then the adversary
can query the value of H1(x) and match it to that of y.

Definition 6 We write νx · Xη to denote the following distribution:

[

v
r← Uη; (S, H, (f, f −1))

r← Xη : (S{x 	→ v}, H, (f, f −1))
]

,

Automated Proofs for Asymmetric Encryption 269

We recall that U is the family of uniform distributions on the values on which
x ranges. We lift this notation to families of distributions in usual way: νx.X =
(νx.Xη)η∈�.

Our assertion language is defined by the following grammar, where ψ defines the
set of atomic assertions:

ψ ::= Indis(νx; V1; V2) | WS(x; V1; V2) | H(H, e)
ϕ ::= true | ψ | ϕ ∧ ϕ,

where V1, V2 ⊆ Var and e is an expression constructible (by the adversary) out of the
variables used in the program, that is to say, possibly using concatenation, xor, hash
oracles or f .

Intuitively, Indis(νx; V1; V2) is satisfied by a distribution on configurations, if
given values of variables in V1 and images by f of values of variables in V2, any
polynomial adversary in η has negligible probability to distinguish between the fol-
lowing two distributions: first, the distribution resulting of computations performed
using the original value of x as is in X, secondly, the distribution resulting from
computations performed replacing everywhere the value of x by a random value
of the same length as x. In Section 4.4, in order to analyze schemes using one-way
functions f that are not permutations, we generalize the predicate Indis into Indis f .
The predicate Indis f models the fact that the adversary cannot distinguish between
the value of a variable and the image by f of a random value sampled uniformly. The
assertion WS(x; V1; V2) stands for Weak Secret and is satisfied by a distribution, if
any adversary has negligible probability to compute the value of x, when he is given
the values of the variables in V1 and the image by the one-way permutation of those
in V2. Lastly, H(H, e) is satisfied when the probability that the value of e has been
submitted to the hash oracle H is negligible.

Notations We use Indis(νx; V) instead of Indis(νx; V; ∅) and Indis(νx) instead of
Indis(νx;Var). Similarly WS(x; V) stands for WS(x; V; ∅).

Formally, the meaning of the assertion language is defined by a satisfaction
relation X |= ϕ, which tells us when a family of distributions on configurations X
satisfies the assertion ϕ.

The satisfaction relation X |= ψ is defined as follows:

– X |= true.
– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.
– X |= Indis(νx; V1; V2) iff X ∼V1;V2 νx · X
– X |= WS(x; V1; V2) iff Pr[(S, H, (f, f −1))

r← Xη : AH(S(V1), f (S(V2))) = S(x)]
is negligible, for any adversary AH.

– X |= H(H, e) iff Pr[(S, H, (f, f −1))
r← Xη : S(e) ∈ S(�H).dom] is negligible.

Moreover, we write ϕ ⇒ ϕ′ iff for any family of distributions X such that X |= ϕ,
then X |= ϕ′.

270 J. Courant et al.

The relation between our Hoare triples and semantic security is established
by the following proposition that states that if the value of oute is indistinguish-
able from a random value then the scheme considered is IND-CPA (see [2] for
details).

Proposition 1 Let (�,E(ine, oute) : var x; c,D(ind, outd) : var y; c′) be a generic en-
cryption scheme. It is IND-CPA secure, if {true}c{Indis(νoute)} is valid.

Indeed, if {true}c{Indis(νoute)} holds then the encryption scheme is secure with
respect to randomness of ciphertext. It is standard that randomness of ciphertext
implies IND-CPA security.

In the rest of the paper, for simplicity, we omit to write the draw of f and
its inverse, and we do not mention them in the description of the configurations
either.

4.2 Some Properties of the Assertion Language

In this section, we prove properties of our assertions that are useful for proving IND-
CPA security of encryption schemes and soundness of our Hoare Logic.

The predicates Indis and WS are compatible with indistinguishability in the
following sense:

Lemma 1 For any X, X ′ ∈ Dist(�, H,�), any sets of variables V1 and V2, and any
variable x:

1. if X ∼V1;V2 X ′ then X |= Indis(νx; V1; V2) ⇐⇒ X ′ |= Indis(νx; V1; V2).
2. if X ∼V1;V2∪{x} X ′ then X |= WS(x; V1; V2) ⇐⇒ X ′ |= WS(x; V1; V2).
3. if X ∼ X ′ then X |= H(H, e) ⇐⇒ X ′ |= H(H, e).

Proof By symmetry of indistinguishability and equivalence, for each proposition, the
conclusion follows from a single implication.

Let us start with the proof of the first item. We assume X ∼V1;V2 X ′ which
is equivalent to X ′ ∼V1;V2 X. Hence, νx.X ∼V1;V2 νx.X ′; this can be justified by
an immediate reduction. Moreover, the hypothesis X |= Indis(νx; V1; V2) implies
X ∼V1;V2 νx.X. By transitivity of the indistinguishability relation, we get X ′ ∼V1;V2

νx.X ′. Thus, X ′ |= Indis(νx; V1; V2).
We now consider the second item. We prove by reduction that X ′ |=

WS(x; V1; V2) must hold, provided that X ∼V1;V2∪{x} X ′ and X |= WS(x; V1; V2).
Given an adversary A that falsifies X ′ |= WS(x; V1; V2), we construct an adversary
B that falsifies X ∼V1;V2∪{x} X ′. Informally, on input values for variables in V1 and
V2, denoted (v, v′), and a value u for f (x), B runs A on (v, v′), which outputs vx, its
guess for x. Then B compares f (vx) to u. If the equality holds, B answers 1 (that is,
the values (v, v′) were sampled according to distribution X ′); otherwise B answers a
bit picked at random uniformly.

Let A denote the event AH(S(V1), f (S(V2)))= f (S(x)) , ¬A denote the event
AH(S(V1), f (S(V2)))
= f (S(x)) and B denote the event BH(S(V1), f (S(V2)),

Automated Proofs for Asymmetric Encryption 271

f (S(x))) = 1. Moreover, let AdvB abbreviate Adv(BH, η, D(X, V1, V2 ∪ {x})η,
D(X ′, V1, V2 ∪ {x})η). Then, we have

AdvB = ∣
∣Pr

[

(S, H)
r← X ′

η : B
] − Pr

[

(S, H)
r← Xη : B

]∣
∣

= ∣
∣Pr

[

(S, H)
r← X ′

η : B|A]

.Pr
[

(S, H)
r← X ′

η : A
]

+Pr[(S, H)
r← X ′

η : B|¬A
]

.Pr
[

(S, H)
r← X ′

η : ¬A
]

−Pr[(S, H)
r← Xη : B|A]

.Pr
[

(S, H)
r← Xη : A

]

−Pr[(S, H)
r← Xη : B|¬A

]

.Pr
[

(S, H)
r← Xη : ¬A

]∣
∣

= ∣
∣Pr

[

(S, H)
r← X ′

η : A
] + 1

2
.Pr

[

(S, H)
r← X ′

η : ¬A
]

−Pr[(S, H)
r← Xη : A

] − 1

2
.Pr

[

(S, H)
r← Xη : ¬A

]∣
∣

using Pr
[

(S, H)
r← X ′

η : B|A] = 1 = Pr
[

(S, H)
r← Xη : B|A]

and Pr
[

(S, H)
r← X ′

η : B|¬A
] = 1

2
= Pr

[

(S, H)
r← Xη : B|¬A

]

= 1

2
.
∣
∣Pr

[

(S, H)
r← X ′

η : A
] − 1

2
.Pr

[

(S, H)
r← X : A

]∣
∣

using Pr
[

(S, H)
r← X ′

η : ¬A
] = 1 − Pr

[

(S, H)
r← X ′

η : A
]

and Pr
[

(S, H)
r← Xη : ¬A

] = 1 − Pr
[

(S, H)
r← Xη : A

]

Therefore,
∣
∣Pr

[

(S, H)
r← X ′

η : A
] − Pr

[

(S, H)
r← Xη : A

]∣
∣ = 2AdvB.

Since X |= WS(x; V1; V2), we obtain that
∣
∣Pr[(S, H)

r← Xη : A]∣∣ is negligible. Hence
∣
∣Pr[(S, H)

r← X ′
η : A]∣∣ is negligible if and only if AdvB is negligible.

Concerning the third item, it easy to see that a polynomial adversary dealing
with X ∼ X ′, has access to all variables in Var ∪�H, and hence he can evaluate the
expression e and check whether the value he gets, is or not among the bit-strings
obtained by projecting the list given by�H ∈ �H to the first element. ��

We now present a lemma that relates atomic assertions and states some
monotonicity properties:

Lemma 2 Let X ∈ Dist(�, H,�) be a distribution:

1. If X |= Indis(νx; V1; V2), V ′
1 ⊆ V1 and V ′

2 ⊆ V1 ∪ V2 then X |= Indis(νx; V ′
1; V ′

2).
2. If X |= WS(x; V1; V2) and V ′

1 ⊆ V1 and V ′
2 ⊆ V1 ∪ V2 then X |= WS(x; V ′

1; V ′
2).

3. If X |= Indis(νx; V1; V2 ∪ {x}) and x
∈ V1 ∪ V2 then X |= WS(x; V1; V2 ∪ {x}).

Proof The first two properties are straightforward.
To prove the last assertion, we let X ∈ Dist(�, H,�) such that X |=
Indis(νx; V1; V2 ∪ {x}). Thus, X ∼V1;V2∪{x} νx.X. Lemma 1 allows us to say
that it is sufficient to prove that νx.X |= WS(x; V1; V2 ∪ {x}) in order to
conclude that X |= WS(x; V1; V2 ∪ {x}). Let us consider an adversary A against
νx.X |= WS(x; V1; V2 ∪ {x}). It takes as input, among others, a value f (u) for f (x),

272 J. Courant et al.

with u
r← U . If A successfully computes a value for x, it obviously equals u, so that A

in fact computes the pre-image of the one-way function f on the random value f (u).
This latter event has a negligible probability to happen. Hence, we can conclude that
X |= WS(x; V1; V2 ∪ {x}). ��

An expression e is called constructible from (V1; V2), if it can be constructed
from variables in V1 and images by f of variables in V2, calling oracles if necessary.
Obviously, we can give an inductive definition: if x ∈ V1 then x is constructible from
(V1; V2); if x ∈ V2 then f (x) is constructible from (V1; V2); if e1, e2 are constructible
from (V1; V2) then H(e1), f (e1), e1||e2 and e1 ⊕ e2 are constructible from (V1; V2).
Then Indis is preserved by constructible computations.

Lemma 3 For any X, X ′ ∈ Dist(�, H,�), any sets of variables V1 and V2, any
expression e constructible from (V1; V2), and any variable x, if X ∼V1;V2 X ′ then
[[x := e]](X) ∼V1∪{x};V2 [[x := e]](X ′).

Proof We assume X ∼V1;V2 X ′. If we suppose that [[x := e]](X)
∼V1∪{x};V2 [[x :=
e]](X ′), then there exists A a poly-time adversary that, on input V1, x and f (V2)

drawn either from [[x := e]](X) or [[x := e]](X ′), guesses the right initial distribution
with non-negligible probability.
We let B be the following adversary against X ∼V1;V2 X ′:
B(V1, f (V2)):= let x := e in A(V1, x, f (V2)).
The idea is that B can evaluate in polynomial time the expression e using its own
inputs. Hence it can provide the appropriate inputs to A. It is clear that the advantage
of B is exactly that of A, which would imply that it is not negligible, although we
assumed X ∼V1;V2 X ′. ��

Corollary 1 For any X, X ′ ∈ Dist(�, H,�), any sets of variables V1 and V2, any ex-
pression e constructible from (V1; V2), and any variable x, z such that z
∈ {x} ∪ Var(e)
if X |= Indis(νz; V1; V2) then [[x := e]](X) |= Indis(νz; V1 ∪ {x}; V2). We emphasize
that here we use the notation Var(e) (in its usual sense), that is to say, the variable z
does not appear at all in e.

Proof X |= Indis(νz; V1; V2) is equivalent to X ∼V1;V2 νz.X. Using Lemma 3 we
get [[x := e]](X) ∼V1∪{x};V2 [[x := e]](νz.X). Since z
∈ {x} ∪ Var(e) we have that [[x :=
e]](νz.X) = νz.[[x := e]](X) and hence [[x := e]](X) ∼V1∪{x};V2 νz.[[x := e]](X), that is
[[x := e]](X) |= Indis(νz; V1 ∪ {x}; V2). ��

Lemma 4 For any X ∈ Dist(�, H,�), any sets of variables V1 and V2, any expression
e constructible from (V1; V2), and any variable x
= z, if X |= WS(z; V1; V2) then
[[x := e]](X) |= WS(z; V1 ∪ {x}; V2).

Proof If we suppose that [[x := e]](X)
|= WS(z; V1 ∪ {x}; V2), then there exists A
a poly-time adversary that, on input V1, x and f (V2) drawn from [[x := e]](X),
computes the right value for z with non-negligible probability.
We let B be the following adversary against X |= WS(z; V1; V2):
B(V1, f (V2)):= let x := e in A(V1 ∪ {x}, f (V2)).

Automated Proofs for Asymmetric Encryption 273

Since A and B have the same advantage, we obtain a contradiction, so that [[x :=
e]](X)
|= WS(z; V1 ∪ {x}; V2) cannot be true. ��

4.3 The Hoare Logic

In this section we present our Hoare logic for IND-CPA security. We begin with a
set of preservation rules that tell us when an invariant established at the control point
before a command can be transferred to the control point following the command.
Then, for each command, we present a set of specific rules that allow us to establish
new invariants. The commands that are not considered are usually irrelevant for
IND-CPA security. We summarize all our Hoare logic rules in Table 3 (given at the
end of the paper).

4.3.1 Generic Preservation Rules

We assume z
= x1 and c is x
r← U or of the form x := e′ with e′ being either t||y or

t ⊕ y or f (y) or H(y) or t ⊕ H(y).
Before getting started, let us notice that for any of these commands c, [[c]] affects

at most x and�H . The next lemma directly follows from this remark.

Lemma 5 For every X ∈ Dist(�, H,�), all sets V1 and V2 such that x /∈ V1 ∪ V2, and
all commands c of the form x

r← U or x := e, we have [[c]](X) ∼V1;V2 X.

Proof Let X ∈ Dist(�, H,�).

D([[c]](X), V1, V2)η = D
([

(S, H)
r← [[c]](Xη) : (S, H)

]

, V1, V2
)

= [

(S, H)
r← Xη; (S′, H)

r← [[c]]((S, H)) :
(

S′(V1), f (S′(V2)), H, f
)]

= [

(S, H)
r← Xη : (

S(V1), f (S(V2)), H, f
)]

since x
∈ V1 ∪ V2

= D(X, V1, V2)η

��

We now give generic preservation rules for our predicates. We comment them
right below.

Lemma 6 The following rules are sound, when z
= x, and c is x
r← U or of the form

x := e′ with e′ being either t||y or t ⊕ y or f (y) or H(y) or t ⊕ H(y):

– (G1) {Indis(νz; V1; V2)} c {Indis(νz; V1; V2)}, provided x
∈ V1 ∪ V2 or e′ is con-
structible from (V1 � {z}; V2 � {z}).

– (G2) {WS(z; V1; V2)} c {WS(z; V1; V2)}, provided x
∈ V1 ∪ V2 or e′ is con-
structible from (V1 � {z}; V2 � {z}).

1By x = y we mean syntactic equality.

274 J. Courant et al.

Table 3 Summary of our Hoare logic rules

Generic preservation rules: when z
= x1 and c is x
r← U or of the form x := e′ with e′ being

either t||y or t ⊕ y or f (y) or H(y) or t ⊕ H(y)

(G1) {Indis(νz; V1; V2)} c {Indis(νz; V1; V2)}, provided x
∈ V1 ∪ V2 or e′ is constructible from
(V1 � {z}; V2 � {z})

(G2) {WS(z; V1; V2)} c {WS(z; V1; V2)}, provided x
∈ V1 ∪ V2 or e′ is constructible from
(V1 � {z}; V2 � {z})

(G3) {H(H′, e[e′/x])} c {H(H′, e)}, provided H′
= H in case c is either x := H(y) or x := t ⊕ H(y)

Here, by convention, e[e′/x] is either e if c is x
r← U or the expression obtained from e by

replacing x by e′ in case c ≡ x := e′
Random assignment rules

(R1) {true} x
r← U {Indis(νx)}

(R2) {true} x
r← U {H(H, e)} if x ∈ subvar(e)

We assume x
= y, for the next two rules

(R3) {Indis(νy; V1; V2)}x
r← U{Indis(νy; V1 ∪ {x}; V2)}

(R4) {WS(y; V1; V2)}x
r← U{WS(y; V1 ∪ {x}; V2)}

Hash functions rules: when x
= y, and α is either a constant or a variable
(H1) {WS(y; V1; V2) ∧ H(H, y)}x := α ⊕ H(y){Indis(νx; V1 ∪ {x}; V2)}
(H2) {H(H, y)} x := H(y) {H(H′, e)}, if x ∈ subvar(e)
(H3) {Indis(νy; V1; V2 ∪ {y}) ∧ H(H, y)} x := H(y) {Indis(νx; V1 ∪ {x}; V2 ∪ {y})} if y
∈ V1

We assume x
= y and z
= x for the next rules
(H4) {WS(y; V1; V2) ∧WS(z; V1; V2) ∧ H(H, y)}x := H(y) {WS(z; V1 ∪ {x}; V2)}
(H5) {H(H, e) ∧WS(z; y)}x := H(y){H(H, e)}, if z ∈ subvar(e) ∧ x /∈ subvar(e)
(H6) {Indis(νy; V1; V2 ∪ {y}) ∧ H(H, y)} x := H(y) {Indis(νy; V1 ∪ {x}; V2 ∪ {y})}, if y
∈ V1

(H7) {Indis(νz; V1 ∪ {z}; V2)∧WS(y; V1 ∪ {z}; V2)∧H(H, y)}x := H(y){Indis(νz; V1 ∪ {z, x}; V2)}
One-way function rules: when y
∈ V ∪ {x}

(O1) {Indis(νy; V1; V2 ∪ {y})} x := f (y) {WS(y; V1 ∪ {x}; V2 ∪ {y})}
(O2) {Indis(νz; V1 ∪ {z}; V2 ∪ {y})} x := f (y) {Indis(νz; V1 ∪ {z, x}; V2 ∪ {y})}, if z
= y
(O3) {WS(z; V1; V2) ∧ Indis(νy; V1; {y, z} ∪ V2)} x := f (y) {WS(z; V1 ∪ {x}; V2 ∪ {y})}
(P1){Indis(νy; V1; V2 ∪ {y})} x := f (y) {Indis(νx; V1 ∪ {x}; V2)}, if y
∈ V1 ∪ V2

(PO1) {Indis(νx; V ∪ {x, y}) ∧ Indis(νy; V ∪ {x, y})}z := f (x||y){WS(x; V ∪ {z})∧
Indis f (νz; V ∪ {z})}
(P1’) {Indis(νy; V1; V2 ∪ {y})}x := f (y){Indis f (νx; V1 ∪ {x}; V2)} if y
∈ V1 ∪ V2

Exclusive or rules: when y
∈ V1 ∪ V2, and y
= x
(X1) {Indis(νy; V1 ∪ {y, z}; V2)}x := y ⊕ z{Indis(νx; V1 ∪ {x, z}; V2)}
(X2) {Indis(νt; V1 ∪ {y, z}; V2)}x := y ⊕ z{Indis(νt; V1 ∪ {x, y, z}; V2)}, provided that t
= x, y, z
(X3) {WS(t; V1 ∪ {y, z}; V2)}x := y ⊕ z{WS(t; V1 ∪ {x, y, z}; V2)}, if t
= x

Concatenation rules
(C1) {WS(y; V1; V2)} x := y||z {WS(x; V1; V2)}, if x
∈ V1 ∪ V2. A dual rule applies for z
(C2) {Indis(νy; V1 ∪ {y, z}; V2) ∧ Indis(νz; V1 ∪ {y, z}; V2)} x := y||z {Indis(νx; V1 ∪ {x}; V2)},

if y, z
∈ V1 ∪ V2

(C3) {Indis(νt; V1 ∪ {y, z}; V2)} x := y||z {Indis(νt; V1 ∪ {x, y, z}; V2)}, if t
= x, y, z
(C4) {WS(t; V1 ∪ {y, z}; V2)} x := y||z {WS(t; V1 ∪ {y, z, x}; V2)}, if t
= x

Consequence and sequential composition rules
(Csq) if ϕ0 ⇒ ϕ1, {ϕ1} c {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} c {ϕ3}
(Seq) if {ϕ0} c1 {ϕ1} and {ϕ1} c2 {ϕ2}, then {ϕ0} c1; c2 {ϕ2}
(Conj) if {ϕ0} c {ϕ1} and {ϕ2} c {ϕ3}, then {ϕ0 ∧ ϕ2} c {ϕ1 ∧ ϕ3}

– (G3) {H(H′, e[e′/x])} c {H(H′, e)}, provided H′
= H in case c is either x := H(y)

or x := t ⊕ H(y). Here, by convention, e[e′/x] is either e if c is x
r← U or the

expression obtained from e by replacing x by e′ in case c ≡ x := e′.

Automated Proofs for Asymmetric Encryption 275

The rules deal with predicates on a variable z different from x, y, t appearing in
the command c that is applied. Thus, the predicates Indis andWS are quite intuitively
preserved as soon as either x does not appear in sets V1, V2 the adversary is provided,
or x does appear, but the value of e′ was already deducible from values given for
V1, V2. As for rule (G3), it is meant to express preservation of predicate H(H′, .).
Intuitively, if for states drawn in distribution X, e[e′/x] has negligible probability to
belong to �H before performing x := e′, then e has negligible probability to belong
to�H for states drawn in [[x := e′]](X), that is, once the command is performed.

Proof

(G1) The case when e′ is constructible from (V1 � {z}; V2 � {z}) follows from
Corollary 1. Let us suppose that x /∈ V1 ∪ V2. The previous lemma en-
tails [[c]](X) ∼V1;V2 X. Then, according to the preservation of properties
through indistinguishability proved in Lemma 1, X |= Indis(νz; V1; V2) im-
plies [[c]](X) |= Indis(νz; V1; V2). The case of x

r← U is obvious.
(G2) As for (G1) using Lemma 4 instead of Corollary 1.
(G3) Consider any X ∈ Dist(�, H,�) and any [[c]] affecting at most x and

�H such that X |= H(H′, e[e′/x]). Let pη = Pr[(S, H)
r← [[c]](Xη) : S(e) ∈

S(�H′).dom]. Then pη = Pr[S′ r← Xη; S
r← [[c]](S′, H) : S(e) ∈ S(�H′).dom].

Now, S′(e[e′/x])2 is equal to S(e) and S′(�H′).dom = S(�H′).dom. Hence,

pη = Pr
[

S′ r← Xη; S
r← [[c]]S′ : S′(e[e′/x]) ∈ S′(�H′).dom

]

= Pr
[

(S′, H)
r← Xη : S′(e[e′/x]) ∈ S′(�H′).dom

]

Since X |= H(H′, e[e′/x]), the last probability is a negligible function of η.
Therefore pη is also negligible in η and [[c]](X) |= H(H′, e). ��

4.3.2 Random Assignment

Rule (R1) below states that Indis(νx) is satisfied after assigning a randomly sampled
value to the variable x. Rule (R2) takes advantage of the fact that the cardinality
of U is exponential in the security parameter, and that since e contains the freshly
generated x the probability that it has already been submitted to H is small. Rules
(R3) and (R4) state that the value of x cannot help an adversary in distinguishing the
value of y from a random value in (R3) or computing its value in (R4). This is the
case because the value of x is randomly sampled.

Lemma 7 The following rules are sound:

– (R1) {true} x
r← U {Indis(νx)}

– (R2) {true} x
r← U {H(H, e)} if x ∈ subvar(e).

2We recall that in the case of x
r← U, e[e′/x] is actually e.

276 J. Courant et al.

Additionally, we have the following preservation rules, where we assume x
= y, are
sound:

– (R3) {Indis(νy; V1; V2)}x
r← U{Indis(νy; V1 ∪ {x}; V2)}

– (R4) {WS(y; V1; V2)}x
r← U{WS(y; V1 ∪ {x}; V2)}

Proof

(R1) Immediate.
(R2) The fact that x ∈ subvar(e) implies that there exists a poly-time function g

such that g(S(e)) = S(x) for any state S (namely g consists in extracting the
right substring corresponding to x from the expression e). We are interested
in bounding

Pr
[

S
r← [[x r← U]](Xη) : S(e) ∈ S(�H).dom

]

= Pr
[

S
r← Xη; u

r← U; S′ := S{x 	→ u} : S′(e) ∈ S′(�H).dom
]

= Pr
[

S
r← Xη; u

r← U; S′ := S{x 	→ u} : S′(e) ∈ S(�H).dom
]

= Pr
[

S
r← Xη; u

r← U : u ∈ g(S(�H).dom)
]

which is negligible for the cardinality of�H is bounded by a polynomial.
(R3) The intuition is that x being completely random, providing its value to the

adversary does not help him in any way. We show the result by reduction. As-
sume that there exists an adversary B against [[x r← U]](X) |= Indis(νy; V1 ∪
{x}; V2) that can distinguish with non-negligible advantage between y and a
random value given the values of V1 ∪ {x} and f (V2). Then, we can construct
an adversary A(V1, f (V2)) playing against X |= Indis(νy; V1; V2) that has
the same advantage as B: A(V1, f (V2)) draws a value u at random and
runs B(V1, u, f (V2)), and then returns B’s answer. If B has non-negligible
advantage, then so does A, which contradicts our hypothesis.

(R4) The previous reduction can be adapted in a straightforward way to prove
(R4). ��

4.3.3 Hash Functions

In this section, we present a set of proof rules that deal with hash functions in the
random oracle model. We first state properties of hash functions that are used to
prove soundness of our proof rules.

Preliminary Results

In the random oracle model, hash functions are drawn uniformly at random from the
space of functions of suitable type at the beginning of the execution of a program.
Thus, the images that the hash function associates to different inputs are completely
independent. Therefore, one can delay the draw of each hash value until needed.
This is the very idea that the first lemma formalizes. It states that while a hash value
has not been queried, then one can redraw it without this changing anything from
the adversary’s point of view. We introduce the notation H{v 	→ u} to denote the
function behaving like H at any point except v, with which it associates u.

Automated Proofs for Asymmetric Encryption 277

Lemma 8 (Dynamic draw) For any X ∈ Dist(�, H,�) and any y ∈ Var such that
X |=H(H, y), X ∼([(S,H)

r← Xη; u
r← Uη; H←{H{S(y) 	→u}}∪(H�{H}) :(S, H)])η.

Proof Let X ∈ Dist(�, H,�) and y ∈ Var such that X |= H(H, y). We denote X ′
η the

distribution [(S, H)
r← Xη; u

r← Uη; H ← {H{S(y) 	→ u}} ∪ (H � {H}) : (S, H)]. Let
us we recall that for X ∈ Dist(�, H,�), all queries that have been made to the hash
oracles are recorded in the lists�H .

First, we begin with some remarks which help us bounding the advantage of an ad-
versary A trying to distinguish between X and X ′. Since X |= H(H, y), and using the
definition of X ′, it follows that the probability Pr[(S, H)

r← Xη : S(y) ∈ S(�H).dom]
is equal to Pr[(S, H)

r← X ′
η : S(y) ∈ S(�H).dom] = n(η) where n(·) is a negligible

function. Indeed, the state output by distribution Xη is not modified in the com-
putation of X ′

η. Moreover Pr[(S, H)
r← X ′

η : AH(S(Var)) = 1|S(y)
∈ S(�H).dom] =
Pr[(S, H)

r← Xη : AH(S(Var)) = 1|S(y)
∈ S(�H).dom], since under the condition
S(y)
∈ S(�H).dom, drawing H in � and redrawing the value of H on S(y) yields
the same distribution as just drawing H in �.

Adv(AH, η, D(X,Var,∅)η, D(X ′,Var,∅)η)

= ∣
∣Pr[(S, H)

r← X ′
η : AH(S(Var)) = 1]

−Pr[(S, H)
r← Xη : AH(S(Var)) = 1]∣∣

We then distinguish according to whether S(y) ∈ �H .dom

= ∣
∣Pr[(S, H)

r← X ′
η : AH(S(Var)) = 1|S(y)
∈ S(�H).dom].

Pr[(S, H)
r← X ′

η : S(y)
∈ S(�H).dom]
+ Pr[(S, H)

r← X ′
η : AH(S(Var)) = 1|S(y) ∈ S(�H).dom].

Pr[(S, H)
r← X ′

η : S(y) ∈ S(�H).dom]
−Pr[(S, H)

r← Xη : AH(S(Var)) = 1|S(y)
∈ S(�H).dom].
Pr[(S, H)

r← Xη : S(y)
∈ S(�H).dom]
−Pr[(S, H)

r← Xη : AH(S(Var)) = 1|S(y) ∈ S(�H).dom].
Pr[(S, H)

r← Xη : S(y) ∈ S(�H).dom]∣∣
We then take into account the equalities between terms justified above.

= ∣
∣Pr[(S, H)

r← X ′
η : AH(S(Var)) = 1|S(y) ∈ S(�H).dom]

−Pr[(S, H)
r← Xη : AH(S(Var)) = 1|S(y) ∈ S(�H).dom]∣∣.

Pr[(S, H)
r← Xη : S(y) ∈ S(�H).dom]

≤ 2.n(η)

��

278 J. Courant et al.

We now want to prove something a little stronger, involving the variable �H .
Indeed, to execute the command x := α ⊕ H(y), we can either draw a value for H(y)

at random and bind it by storing it in �H , or draw x at random and bind H(y) to
be worth x ⊕ α. This uses the same idea as before, but this time we have to carefully
take into account the side effects of the command on �H . To deal with rebinding
matters, we introduce a new notation: S(�H) • (v, u) means that if v belongs to
S(�H).dom, then its associated value in S(�H).res is replaced by u, otherwise, it
is the concatenation of (v, u) to S(�H).

Definition 7 We define rebindy	→e
H (S, H) by

(S{�H 	→ S(�H) • (S(y), S(e))}, H � {H} ∪ {H{S(y) 	→ S(e)}}).
We extend this definition canonically to any family of distributions X ∈
Dist(�, H,�):
rebindy	→e

H (X) = ([(S, H)
r← Xη : rebindy	→e

H (S, H)])η. It simply denotes the family
of distributions where H(S(y)) is defined to be equal to S(e).

Lemma 9 (Rebinding Lemma) For any X ∈ Dist(�, H,�), any hash function sym-
bol H, any variables x and y, if X |= H(H, y), then

[[x := α ⊕ H(y)]](X) ∼ rebindy	→α⊕x
H (νx · X),

where α is either a constant or a variable.

Proof To lighten the proof, we assume without loss of generality that there is
only one hash function H. First, since X |= H(H, y), thanks to the dynamic draw
lemma, we know that Xη ∼ [(S, H)

r← Xη; u
r← Uη : (S, H{S(y) 	→ u})]. Then, using

a similar reasoning to that used in the proof of Lemma 3 (but this time the adversary
B has to update also the variable TH and to pass it to the adversary A), we get:

[[x :=α⊕H(y)]](Xη) ∼ [[x :=α⊕H(y)]]
([

(S,H)
r← Xη; u

r← Uη : (S, H{S(y) 	→u})
])

.

Executing the hash command, the second distribution is in turn equal to
[

(S, H)
r← Xη; u

r← Uη : (S{x 	→ S(α)⊕u;�H 	→ S(�H) • (S(y), u)}, H{S(y) 	→u})
]

.

Then, we eventually replace the draw of y by that of x, and propagate the side effects
of that change, to obtain another way to denote the same distribution:

[

(S, H)
r← Xη; v

r← Uη : (S{x 	→ v,�H 	→ S(�H)

•(S(y), v ⊕ S(α))}, H{S(y) 	→ v ⊕ S(α)})
]

.

Now, this last distribution is exactly (rebindy	→α⊕x
H (νx · X))η, and we conclude. ��

Now we are interested in formally proving the useful and intuitive following
lemma, which states that to distinguish between a distribution and its ’rebound’
version, an adversary must be able to compute the argument y whose hash value
has been rebound. More precisely,

Automated Proofs for Asymmetric Encryption 279

Lemma 10 (Hash vs. rebind) For any X ∈ Dist(�, H,�), any two variables x and
y, any two f inite sets of variables V1 and V2, and any hash function H, if X |=
WS(y; V1; V2), then

X ∼V1;V2 rebindy	→α⊕x
H (X).

where α is either a constant or a variable.

Proof Consider finite sets V1 and V2 and X such that X |= WS(y; V1; V2). The sole
difference between the distributions is the value of H(y). Namely,

D(rebindy	→x⊕α

H (X), V1, V2)η = [(S, H)
r← Xη;

S′ ← S{�H 	→ S(�H) • (S(y), S(α ⊕ x))} :
(S′(V1), f (S′(V2)),H{S(y) 	→ S(α⊕x)}∪(H�{H}))]
since�H /∈ V1 ∪ V2 by definition,

and it is the only difference between S and S′

= [(S, H)
r← Xη;

S′ ← S{�H 	→ S(�H) • (S(y), S(α ⊕ x))} :
(S(V1), f (S(V2)),H{S(y) 	→ S(α⊕x)} ∪ (H�{H}))]
and since S′ is not used anywhere,

= [(S, H)
r← Xη :

(S(V1), f (S(V2)), H{S(y) 	→ S(α⊕x)}∪(H�{H}))]
An adversary trying to distinguish D(X, V1, V2)η from this last distribution can
only succeed if it calls H on S(y). However, the probability of an adversary
computing S(y) is negligible since X |= WS(y; V1; V2). Therefore, D(rebindy	→α⊕x

H
(X), V1, V2)η ∼ D(X, V1, V2)η. ��

Proof rules for hash functions

We are now prepared to present and prove our proof rules for hash functions. Rule
(H1) captures the main feature of the random oracle model, namely that the hash
function is a random function. Hence, if an adversary cannot compute the value
of y and this latter has not been hashed yet then he cannot distinguish H(y) from
a random value. Rule (H2) is similar to rule (R2): as the hash of a fresh value
is seemingly random, it has negligible probability to have already been queried to
another hash oracle.

Rule (H3) deserves a more elaborate comment. It concludes to a predicate still
involving variable y, which is why it is different from rule (H1). It states that the
value of variable x is random given first values of V1, x and f (V2) as in rule (H1),
but also the value of f (y). Indeed, as the value of y is seemingly random, we can use
the definition of one-wayness to state that an adversary cannot efficiently compute a
satisfactory value for f −1(f (y)). Hence, the value of y is unlikely to be queried to H,
and the predicate holds.

280 J. Courant et al.

Lemma 11 The following basic rules are sound, when x
= y, and α is either a constant
or a variable:

– (H1) {WS(y; V1; V2) ∧ H(H, y)}x := α ⊕ H(y){Indis(νx; V1 ∪ {x}; V2)}
– (H2) {H(H, y)} x := H(y) {H(H′, e)}, if x ∈ subvar(e).
– (H3) {Indis(νy; V1; V2 ∪ {y}) ∧ H(H, y)} x := H(y) {Indis(νx; V1 ∪ {x}; V2 ∪

{y})} if y
∈ V1

Proof

(H1) First, we use that X |= WS(y; V1; V2), that provides thanks to rule (R4)
νx.X |= WS(y; V1 ∪ {x}; V2). Hence, the ‘hash-vs-rebind’ Lemma 10 applies,
we obtain the following νx.X ∼V1∪{x};V2 rebind

y	→x⊕α

H (νx.X). Then, as we
assumed that X |= H(H, y), we can use the rebinding lemma, according
to which we have the following rebindy	→α⊕x

H (νx · X) ∼V1∪{x};V2 [[x := α ⊕
H(y)]](X). By transitivity of the indistinguishability relation, we thus have
νx.X ∼V1∪{x};V2 [[x := α ⊕ H(y)]](X). Finally, noticing that νx.X ∼V1∪{x};V2

νx.[[x := α ⊕ H(y)]](X) (since carrying out the command only impacts on the
values of x and�H these family of distributions are in fact equal), we have by
transitivity νx.[[x := α ⊕ H(y)]](X) ∼V1∪{x};V2 [[x := α ⊕ H(y)]](X). This last
statement is equivalent to [[x := α ⊕ H(y)]](X) |= Indis(x; V1 ∪ {x}; V2).

(H2) Consider any X ∈ Dist(�, H,�) such that X |= H(H, y), and let X ′ =
rebindy	→x

H (νx · X). Since X |= H(H, y), the rebinding lemma implies [[x :=
H(y)]]X ∼ X ′. Consider an expression e such that x ∈ subvar(e). Using
Lemma 1(3), it suffices to show X ′ |= H(H′, e), that is, that pη = Pr[(S, H)

r←
X ′

η : S(e) ∈ S(�H′).dom] is negligible.

pη = Pr
[

(S, H)
r← νx · Xη; (S′, H′) ← rebindy	→x

H (S, H) :
S′(e) ∈ S(�H).dom

]

since S′(�H′).dom ⊆ S(�H).dom ∪ {S(y)}, we have

≤ Pr
[

(S, H)
r← νx · Xη; (S′, H′) ← rebindy	→x

H (S, H) :
S′(e) ∈ S(�H).dom or S′(e) = S(y)

]

now with S(e) = S′(e) by definition of the rebinding :
= Pr

[

(S, H)
r← νx · Xη; (S′, H′) ← rebindy	→x

H (S, H) :
S(e) ∈ S(�H).dom or S(e) = S(y)

]

we can remove the rebinding, since it does not change the event:

= Pr
[

(S, H)
r← νx · Xη : S(e) ∈ S(�H).dom or S(e) = S(y)

]

which by definition and because we assume y
= x equals

= Pr
[

S1
r← Xη; v

r← U;S ← S1{x 	→v} : S(e)∈ S1(�H).dom or S(e)= S1(y)
]

and as x ∈ subvar(e), i.e. x is some substring of e

≤ Card(S1(�H).dom) + 1

2|x|

Automated Proofs for Asymmetric Encryption 281

Moreover, for every state S1, Card(S1(�H).dom) is bounded by a polynomial
in η, and variables in Var have a size polynomial in η too, so that pη is indeed
a negligible function in η.

(H3) Consider any X ∈ Dist(�, H,�). Assume y /∈ V1 and X |= Indis(νy; V1; V2 ∪
{y}) ∧ H(H, y). Then, X |= WS(y; V1; V2 ∪ {y}) follows from the third weak-
ening lemma (see Lemma 2). Consequently, rule H1 provides [[x :=
H(y)]](X) |= Indis(νx; V1 ∪ {x}; V2 ∪ {y}). ��

We now comment on four other rules to deal with hash commands which are
stated below. The idea behind (H4) is the following one: an adversary that is not
able to compute the value of y, can not ask this value to H; hence, the value of x
(computed as H(y)) seems completely random; so if z was not efficiently computable
by the adversary given V1, f (V2), it remains so when it is additionally provided x.
Rule (H5) states that the fact that the value of e has probably not been hashed
yet remains true after a hash command, as long as e contains a variable z whose
value is not computable out from y. (H6) and (H7) give necessary conditions to the
preservation of indistinguishability that is based on the apparent randomness of a
hash value. The intuition behind rule (H6) is very similar to that of rule (H3). As for
rule (H7), as we want more than just preserving the seemingly randomness of z with
respect to V1, f (V2), the conditions under which x doesn’t help an adversary are that
y is not easily deductible from V1, V2 and that x is a fresh hash value.

Lemma 12 The following preservation rules are sound provided that x
= y and z
= x:

– (H4) {WS(y; V1; V2) ∧ WS(z; V1; V2) ∧ H(H, y)}x := H(y) {WS(z; V1 ∪ {x};
V2)}

– (H5) {H(H, e) ∧ WS(z; y)}x := H(y){H(H, e)}, if z ∈ subvar(e) ∧ x /∈ subvar(e)
– (H6) {Indis(νy; V1; V2 ∪ {y}) ∧ H(H, y)} x := H(y) {Indis(νy; V1 ∪ {x}; V2 ∪

{y})}, if y
∈ V1

– (H7) {Indis(νz; V1 ∪ {z}; V2) ∧ WS(y; V1 ∪ {z}; V2) ∧ H(H, y)}x := H(y){Indis
(νz; V1 ∪ {z, x}; V2)}

Proof

(H4) First, we use rule (R4), to state that since X |= WS(y; V1; V2), νx.X |=
WS(y; V1 ∪ {x}; V2). Then, from the hash-vs-rebind Lemma 10 applied on
νx.X, we obtain that νx.X ∼V1∪{x};V2 rebind

y	→x
H (νx.X). Now, using the as-

sumption X |= H(H, y) and the rebinding lemma, rebindy	→x
H (νx.X) ∼V1∪{x};V2

[[x := H(y)]](X). Hence, νx.X ∼V1∪{x};V2 [[x := H(y)]](X). Besides, as X |=
WS(z; V1; V2), rule (R4) provides the conclusion νx.X |= WS(z; V1 ∪
{x}; V2). With Lemma 1, we can conclude that [[x := H(y)]](X) |= WS(z; V1 ∪
{x}; V2) too.
We could do this proof by reduction too, the main idea being that as the
value of x is random to an adversary, any adversary against WS(z; V1; V2)

before the execution of the command could simulate an adversary against
WS(z; V1 ∪ {x}; V2) by providing this latter with a randomly sampled value in
place of x. Both those adversaries would therefore have the same advantage.

(H5) Since z ∈ subvar(e), there is a polynomial function g such that for every
S, g(S(e)) = S(z) (namely g consists in extracting the right substring

282 J. Courant et al.

corresponding to z from the expression e). Given X ∈ Dist(�, H,�), let pη

be equal to:

Pr[(S, H)
r← Xη; (S′, H′) r← [[x := H(y)]](S) : S′(e) ∈ S′(�H).dom]

Then, since the command only has an effect on x and�H ,

pη = Pr[(S, H)
r← Xη; (S′, H′) r← [[x := H(y)]](S) :

S(e) ∈ S(�H).dom ∪ {S(y)}]
≤ Pr[(S, H)

r← Xη : S(e) ∈ S(�H)] + Pr[(S, H)
r← Xη : S(e) = S(y)]

Now, we can bound the second term as follows:

Pr[(S, H)
r← Xη : S(e) = S(y)] ≤ Pr[(S, H)

r← Xη : g(S(e)) = g(S(y))]
= Pr[(S, H)

r← Xη : S(z) = g(S(y))]
for this is how g was defined

Besides, X |= WS(z; y), so that the probability one can extract the value of z
from that of y is negligible. Moreover if X |= H(H, e) then Pr[(S, H)

r← Xη :
S(e) ∈ S(�H)] is negligible.

(H6) Consider any X ∈ Dist(�, H,�). Assume y /∈ V1, and X |= Indis(νy; V1;
V2 ∪ {y}) ∧ H(H, y). By rule (R3) for random assignment, since y
= x, νx ·
X |= Indis(νy; V1 ∪ {x}; V2 ∪ {y}). Therefore, using that y /∈ V1 and y
= x and
applying Lemma 2.3 we get νx · X |= WS(y; V1 ∪ {x}; V2 ∪ {y}). Now, the
hash-vs-rebind Lemma 10 provides us with rebindy	→x

H (νx · X) ∼V1∪{x};V2∪{y}
νx · X. Thus, rebindy	→x

H (νx · X) |= Indis(νy; V1 ∪ {x}; V2 ∪ {y}) by Lemma 1.
Since X |= H(H, y), by the rebinding lemma, we have [[x := H(y)]] ∼
rebindy	→x

H (νx · X), so that the result follows from applying once more
Lemma 1.

(H7) Consider any X ∈ Dist(�, H,�) such that X |= Indis(νz; V1 ∪ {z}; V2) ∧
WS(y; V1 ∪ {z}; V2) ∧ H(H, y). By rule (R3) and (R4) for random assign-
ment, and because x
= z, y, νx · X |= Indis(νz; V1 ∪ {z, x}; V2) ∧WS(y; V1 ∪
{z, x}; V2). Therefore, the hash-vs-rebind Lemma 10 allows to conclude that
rebindy	→x

H (νx · X) ∼V1∪{z,x};V2 νx · X. Thus, by the preservation Lemma 1,
rebindy	→x

H (νx · X) |= Indis(νz; V1 ∪ {z, x}; V2). Finally, the rebinding lemma
entails [[x := H(y)]](X) ∼ rebindy	→x

H (νx · X). Therefore [[x := H(y)]](X) |=
Indis(νz; V1 ∪ {z, x}; V2), once more by Lemma 1.

��

4.3.4 One-Way Functions

Rules to deal with one-way functions are given below. The first rule captures one-
wayness of f . Indeed, it states that an adversary can not efficiently compute a pre-
image to an apparently random challenge. Rule (O2) and (O3) are meant to provide
a little more than mere preservation of the properties of z. (O2) is quite obvious
since f (y) is given to the adversary in the precondition. As for rule (O3), it follows
from the fact that since y is apparently random with respect to values V1, z, f (V2),
hence computing x boils down to computing the image by f of a random value.

Automated Proofs for Asymmetric Encryption 283

Consequently, providing an adversary with the values of x and f (y) does not help it.
Rule (P1) simply ensues from the fact that f is a permutation and is thus surjective.
However, y has to be removed from the sets in the conclusion, otherwise an adversary
could compare the value of f (y) with the value given for x and trivially tell if x is real
or random.

Lemma 13 The following rules are sound when z
= x:

– (O1) {Indis(νy; V1; V2 ∪ {y})} x := f (y) {WS(y; V1 ∪ {x}; V2 ∪ {y})} if y
∈ V1 ∪
{x}.

– (O2) {Indis(νz; V1 ∪ {z}; V2 ∪ {y})} x := f (y) {Indis(νz; V1 ∪ {z, x}; V2 ∪ {y})}, if
z
= y

– (O3) {WS(z; V1; V2) ∧ Indis(νy; V1; {y, z} ∪ V2)} x := f (y) {WS(z; V1 ∪ {x};
V2 ∪ {y})}

For one-way permutations, we also have the following rule:

– (P1){Indis(νy; V1; V2 ∪ {y})} x := f (y) {Indis(νx; V1 ∪ {x}; V2)}, if y
∈ V1 ∪ V2

Proof

(O1) Let X be such that X |= Indis(νy; V1; V2 ∪ {y}). It follows from Lemma 2
that X |= WS(y; V1; V2 ∪ {y}). Since f (y) is obviously constructible from
(V1; V2 ∪ {y}), we apply Lemma 4, to obtain [[x := f (y)]](X) |= WS(y; V1 ∪
{x}; V2 ∪ {y}). Notice that the one-wayness of f is not used apparently here.
Indeed, the proof of the weakening lemma (see Lemma 2) uses it, and once
we apply it, there is only a simple rewriting step left to be able to conclude.

(O2) Since f (y) is constructible from (V1 ∪ {z}; V2 ∪ {y}), we apply Corollary 1 to
obtain [[x := f (y)]](X) |= Indis(νz; V1 ∪ {z, x}; V2 ∪ {y}).

(O3) If z = y, then the assertion is a consequence of Rule (O1). Hence, we as-
sume z
= y. From X |= Indis(νy; V1; V2 ∪ {z, y}) it follows by definition that
X ∼V1;V2∪{z,y} νy.X. Using Lemma 3 we get [[x := f (y)]](X) ∼V1∪{x};V2∪{z,y}
[[x := f (y)]](νy.X). Now using Lemma 1, to be able to conclude to
[[x := f (y)]](X) |= WS(z; V1 ∪ {x}; V2 ∪ {y}), it suffices to prove [[x :=
f (y)]](νy.X) |= WS(z; V1 ∪ {x}; V2 ∪ {y}). Intuitively, this comes from the
randomness of x and y, which allows us to think it is useless to any adver-
sary trying to compute z. Formally, we show that: Pr[S r← Xη; u

r← Uη; S1 =
S{y 	→ u; x 	→ f (u)} : A(S1(V1), S1(x), f (S1(V2)), f (S1(y))) = S1(z)] is neg-
ligible. Now let A be an efficient adversary against WS(z; V1 ∪ {x}; V2 ∪ {y}).
Let B(v) be the adversary against WS(z; V1 ∪ {x}; V2 ∪ {y}) that proceeds as
follows: it samples a value u

r← Uη and replaces every occurrence of y by u,
and every occurrence of x by f (u), in the values v it got as an input. This
provides a tuple of values v′. Adversary B runs A on v′, before outputting
A’s guess for the value of z. This adversary B has the same advantage as A in
falsifyingWS(z; V1 ∪ {x}; V2 ∪ {y}). As we assumed this latter was an efficient
adversary, B is efficient as well, which contradicts X |= WS(z; V1 ∪ {x}; V2 ∪
{y}).

(P1) Since X |= Indis(νy; V1; V2 ∪ {y}) and f (y) is constructible from (V1; V2∪
{y}), we apply Lemma 3 to obtain [[x := f (y)]](X) ∼V1∪{x};V2∪{y} [[x := f (y)]]
(νy.X), and by weakening (see Lemma 2) we get [[x := f (y)]](X) ∼V1∪{x};V2

284 J. Courant et al.

[[x := f (y)]](νy.X). Using that f is a permutation and y
∈ V1 ∪ V2, we have
D([[x := f (y)]](νy.X), V1 ∪ {x}, V2) = D(νx.X, V1 ∪ {x}, V2), and hence by
transitivity of indistinguishability, [[x := f (y)]](X) ∼V1∪{x};V2 νx.X. Now we
use νx.X = νx.[[x := f (y)]](X) to conclude.

��

4.3.5 The Exclusive or Operator

In the following rules, we assume y
= z. To understand rule (X1) one should consider
y as a key and think about x as the one-time pad encryption of z with the key y. Of
course, y has to be random given y and z and not just only y; otherwise, there may
exist a some relation between both subterms of x that may allow an adversary to
distinguish this latter from a random value. Rules (X2) and (X3) take advantage of
the fact that is easy to compute x given y and z.

Lemma 14 The following rule is sound when y
∈ V1 ∪ V2, and y
= x:

– (X1) {Indis(νy; V1 ∪ {y, z}; V2)}x := y ⊕ z{Indis(νx; V1 ∪ {x, z}; V2)},
Moreover, we have the following rules that are sound:

– (X2) {Indis(νt; V1 ∪ {y, z}; V2)}x := y ⊕ z{Indis(νt; V1 ∪ {x, y, z}; V2)}, provided
that t
= x, y, z.

– (X3) {WS(t; V1 ∪ {y, z}; V2)}x := y ⊕ z{WS(t; V1 ∪ {x, y, z}; V2)}, if t
= x.

Proof

(X1) Let X be such that X |= Indis(νy; V1 ∪ {y, z}; V2), which means
X ∼(V1∪{y,z};V2) νy.X. Moreover, y ⊕ z is constructible from (V1 ∪ {y, z}; V2).
We apply Lemma 3 to obtain [[x := y ⊕ z]](X) ∼V1∪{x,y,z};V2 [[x :=
y ⊕ z]](νy.X), and by weakening (see Lemma 2) it we get [[x :=
y ⊕ z]](X) ∼V1∪{x,z};V2 [[x := y ⊕ z]](νy.X).

D([[x := y ⊕ z]](νy.X), V1 ∪ {x, z}, V2)η

= [S r← Xη; u
r← Uη; S′ := S{y 	→ u}; S′′ r← [[x := y ⊕ z]](S′) :

S′′(V1 ∪ {x, z}), f (S′′(V2))]
= [S r← Xη; u

r← Uη; S′ := S{y 	→ u}; S′′ := S′{x 	→ u ⊕ S(z)} :
S′′(V1 ∪ {x, z}), f (S′′(V2))]

and since xor is a permutation we can write:

= [S r← Xη; v
r← Uη; S′′ := S{x 	→ v; y 	→ v ⊕ S(z)} :

S′′(V1 ∪ {x, z}), f (S′′(V2))]
but changing y is useless since y
∈ V1 ∪ V2 ∪ {z}

= [S r← Xη; v
r← Uη; S′′ := S{x 	→ v} : S′′(V1 ∪ {x, z}), f (S′′(V2))]

= D(νx.X, V1 ∪ {x, z}, V2)η

Automated Proofs for Asymmetric Encryption 285

From this equality of distributions, we get [[x := y ⊕ z]](νy.X) ∼V1∪{x,z};V2

νx.X. Then, by transitivity of indistinguishability, we can conclude that [[x :=
y ⊕ z]](X) ∼V1∪{x,z};V2 νx.X. Then, as νx.X = νx.[[x := y ⊕ z]](X), and apply-
ing transitivity once more, we can conclude to [[x := y ⊕ z]](X) ∼V1∪{x,z};V2

νx.[[x := y ⊕ z]](X), which is exactly the definition of [[x := y ⊕ z]](X) |=
Indis(νx; V1 ∪ {x, z}; V2).

(X2) Since y ⊕ z is constructible from (V1 ∪ {y, z}; V2), we apply Corollary 1 to
obtain [[x := y ⊕ z]](X) |= Indis(νt; V1 ∪ {x, y, z}; V2).

(X3) Since y ⊕ z is constructible from (V1 ∪ {y, z}; V2), we apply Lemma 4 to
obtain [[x := y ⊕ z]](X) |= WS(t; V1 ∪ {x, y, z}; V2).

��

4.3.6 Concatenation

We have four rules to deal with concatenation command x := y||z. Rule (C1) states
that if computing a substring of x out of the elements of V1 and V2 is hard, then
so is computing x itself. The idea behind (C2) is that y and z being random implies
randomness of x, with respect to V1 and V2. Of course, y has to be random given
y and z and not just only y; otherwise, there might exist a dependency between
both substrings of x that allows an adversary to distinguish this latter from a random
value. A similar comment can be made concerning z. Eventually, rules (C3) and
(C4) are more than the simple preservation of the properties of a variable t different
from x, y, z that the preservation rules would provide. The value of x being easily
computable from those of y and z accounts for soundness of these rules.

Lemma 15 The following rules are sound:

– (C1) {WS(y; V1; V2)} x := y||z {WS(x; V1; V2)}, if x
∈ V1 ∪ V2. A dual rule ap-
plies for z.

– (C2) {Indis(νy; V1 ∪ {y, z}; V2) ∧ Indis(νz; V1 ∪ {y, z}; V2)} x := y||z {Indis(νx;
V1 ∪ {x}; V2)}, if y, z
∈ V1 ∪ V2

– (C3) {Indis(νt; V1 ∪ {y, z}; V2)} x := y||z {Indis(νt; V1 ∪ {x, y, z}; V2)}, if t
= x,

y, z
– (C4) {WS(t; V1 ∪ {y, z}; V2)} x := y||z {WS(t; V1 ∪ {y, z, x}; V2)}, if t
= x

Proof

(C1) From X |= WS(y; V1; V2), for any adversary A, we have that the probability
Pr[S r← Xη : A(S(V1), f (S(V2))) = S(y)] is negligible. This implies that for
any adversary B, Pr[S r← Xη : B(S(V1), f (S(V2))) = S(y)||S(z)] is negligible;
otherwise we can build an adversary A that uses B as a subroutine and whose
advantage is the same as B’s advantage as follows. A calls B and then uses the
answer of B to extract the value of S(y) from S(y)||S(z). Since x
∈ V1 ∪ V2, we
get that for any adversary B, Pr[S r← [[x := y||z]](Xη) : B(S(V1), f (S(V2))) =
S(x)] = Pr[S r← Xη : B(S(V1), f (S(V2))) = S(y)||S(z)], which is negligible.

(C2) We have that X |= Indis(νz; V1 ∪ {y, z}; V2) ⇒ X ∼V1∪{y,z};V2 νz.X, so that
in turn νy.X ∼V1∪{y,z};V2 νy.νz.X. But X |= Indis(νy; V1 ∪ {y, z}; V2) can be
written as X ∼V1∪{y,z};V2 νy.X. Hence, by transitivity we get X ∼V1∪{y,z};V2

νy.νz.X. Since y||z is constructible from (V1 ∪ {y, z}; V2), we apply Lemma 3

286 J. Courant et al.

to obtain [[x := y||z]](X) ∼V1∪{x,y,z};V2 [[x := y||z]](νy.νz.X), and by weaken-
ing (see Lemma 2) we get [[x := y||z]](X) ∼V1∪{x};V2 [[x := y||z]](νy.νz.X).
Using the properties of || and that {y, z} ∩ (V1 ∪ V2) = ∅, we have D([[x :=
y||z]](νy.νz.X), V1 ∪ {x}, V2) = D(νx.X, V1 ∪ {x}, V2), and hence by transi-
tivity of indistinguishability, [[x := y||z]](X) ∼V1∪{x};V2 νx.X.

(C3) Since y||z is constructible from (V1 ∪ {y, z}; V2), we apply Corollary 1 to
obtain [[x := y||z]](X) |= Indis(νt; V1 ∪ {x, y, z}; V2).

(C4) Since y||z is constructible from (V1 ∪ {y, z}; V2), we apply Lemma 4 to obtain
[[x := y||z]](X) |= WS(t; V1 ∪ {x, y, z}; V2).

��

4.3.7 Additional General Rules

Classically, to reason on programs built according to the language grammar de-
scribed in Table 1, we additionally need the following couple of rules.

Lemma 16 Let ϕ0, ϕ1, ϕ2, ϕ3 be assertions from our language, and c, c1, c2 be any
commands. The following rules are sound:

– (Csq) if ϕ0 ⇒ ϕ1 and {ϕ1} c {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} c {ϕ3}.
– (Seq) if {ϕ0} c1 {ϕ1} and {ϕ1} c2 {ϕ2} then {ϕ0} c1; c2 {ϕ2}.
– (Conj) if {ϕ0} c {ϕ1} and {ϕ0} c {ϕ2}, then {ϕ0} c {ϕ1 ∧ ϕ2}.

We omit the proofs of these classical rules. The soundness of the Hoare logic
follows by induction from the soundness of each rule.

Proposition 2 The Hoare triples given in Section 4.3 are valid.

Example 3 We illustrate our proposition with Bellare & Rogaway’s generic con-
struction [7], which can be written shortly as f (r)||(ine ⊕ G(r))||H(ine||r). Where we
note Var = {ine, oute, xσ , r, a, g, b , s, c}.

var r; a; g; b ; s; c;
true
1. r

r← {0, 1}n0 using (R1), (R2), and (R2)

Indis(νr;Var) ∧ H(G, r) ∧ H(H, ine||r)
2. a := f (r) using (P1), (O1), (G3), and (G3)

Indis(νa;Var� {r}) ∧WS(r;Var� {r})∧
H(G, r) ∧ H(H, ine||r)
3. g := G(r) using (H7), (H1), (H4), and (G3)

Indis(νa;Var� {r}) ∧ Indis(νg;Var� {r})∧
WS(r;Var� {r}) ∧ H(H, ine||r)
4. b := ine ⊕ g using (X2), (X1), (X3), and (G3)

Indis(νa;Var� {r}) ∧ Indis(νb ;Var� {g, r})∧
WS(r;Var� {r}) ∧ H(H, ine||r)
5. s := ine||r using (G1), (G1), (C1), and (G3)

Indis(νa;Var� {r, s})∧
Indis(νb ;Var� {g, r, s})∧
WS(s;Var� {r, s}) ∧ H(H, s)

Automated Proofs for Asymmetric Encryption 287

6. c := H(s) using (H7), (H7), and (H1)

Indis(νa;Var� {r, s})∧
Indis(νb ;Var� {r, g, s})∧
Indis(νc;Var� {r, s})
7. oute := a||b ||c using (C2) twice
Indis(νoute;Var� {a, b , c, r, g, s})

4.4 Extensions of the Logic

In this section, we show how our Hoare logic, and hence our verification procedure,
can be adapted to deal with injective partially trapdoor one-way functions. This
extension is motivated by Pointcheval’s construction in [19].

The first observation we have to make is that Proposition 1 is too demand-
ing in case f is not a permutation. Therefore, we introduce a new predicate
Indis f (νx; V1; V2) whose meaning is as follows:

X |= Indis f (νx; V1; V2) if and only if X ∼V1;V2 [u r← U; (S, H)
r← X : (S{x 	→

f (u)}, H)].
Notice that, when f is a bijection, Indis f (νx; V1; V2) is equivalent to

Indis(νx; V1; V2) (f can be the identity function as in the last step of Example 4.
Now, let oute, the output of the encryption oracle, have the form a1|| · · · ||an with
ai = fi(xi), where fi are arbitrary functions. Then, we can prove the following:

Proposition 3 Let GE be a generic encryption scheme of the form (�,E(ine, oute) : c),
and let fi be any functions. Let assume that oute, the output of the encryption oracle,
has the form a1|| · · · ||an with ai = fi(xi).

If {true}c{
n∧

i=1
Indis fi(νai; a1, . . . , an, Var � {oute)}} is valid then GE is IND-CPA.

The proof of this proposition follows from the transitivity of the relation ∼V1;V2 .
Now, we introduce a new rule for Indis f (νx; V1; V2) that replaces rule (P1) in case
the one-way function f is not a permutation:

(P1’) {Indis(νy; V1; V2 ∪ {y})} x := f (y) {Indis f (νx; V1 ∪ {x}; V2)} if y
∈ V1 ∪ V2.

Many of rules that hold for Indis could be generalized to Indis f . For simplicity
we consider only the rules that are needed in the examples. Clearly all preservation
rules can be generalized for Indis f . Concretely, we have the following lemma, and
the proof is similar as for the case Indis.

Lemma 17 (Generalization to Indis f) Let X, X ′ ∈ Dist(�, H,�) be arbitrary dis-
tributions, let V1 and V2 be arbitrary sets of variables, and let x, y, z, t be arbitrary
variables. Then, the following assertions hold.

1. If X ∼V1;V2 X ′ then X |= Indis f (νx; V1; V2) ⇐⇒ X ′ |= Indis f (νx; V1; V2).
2. For any expression e constructible from (V1; V2) such that z
∈ {x} ∪ Var(e),

if X |= Indis f (νz; V1; V2) then [[x := e]](X) |= Indis f (νz; V1 ∪ {x}; V2).

3. If z
= x, and c is x
r← U or x := e′ with e′ ∈ {t||y, t ⊕ y, f (y), H(y), t ⊕ H(y)},

then
(G1) f {Indis f (νz; V1; V2)} c {Indis f (νz; V1; V2)},
provided that x
∈ V1 ∪ V2 or e′ is constructible from (V1 � {z}; V2 � {z}).

288 J. Courant et al.

4. (R3) f {Indis f (νy; V1; V2)} x
r← U {Indis f (νy; V1 ∪ {x}; V2)}, provided x
= y.

5. (H7) f {Indis f (νz; V1 ∪ {z}; V2) ∧ WS(y; V1 ∪ {z}; V2) ∧ H(H, y)} x := H(y)

{Indis f (νz; V1 ∪ {z, x}; V2)}, provided that x
= y and z
= x.
6. (X2) f {Indis f (νt; V1 ∪ {y, z}; V2)}x := y ⊕ z{Indis f (νt; V1 ∪ {x, y, z}; V2)}, pro-

vided that t
= x, y, z.

The reader should notice that some rules that hold for Indis can not be generalized
to Indis f . It is the case for (P1), (X1), (C2), etc.

Injective Partially Trapdoor One-way Functions In contrast to the previous section,
we do not assume f to be a permutation. On the other hand, we demand a stronger
property than one-wayness. Let f : X × Y → Z be a function and let f −1 : Z → X
be such that ∀z ∈ dom(f −1)∃y ∈ Y, z = f (f −1(z), y). Here f −1 is a partial function.
The function f is said partially one-way, if for any given z = f (x, y), it is computa-
tionally impossible to compute a corresponding x. In order to deal with the fact that f
is now partially one-way, we add the following rules, where we assume x, y
∈ V ∪ {z}
and where we identify f and (x, y) 	→ f (x||y):

(PO1){Indis(νx; V ∪ {x, y}) ∧ Indis(νy; V ∪ {x, y})}z := f (x||y) {Indis f (νz; V ∪ {z})
∧WS(x; V ∪ {z})}

The intuition behind the first part of (PO1) is that f guarantees one-way secrecy of
the x-part of x||y. The second part follows the same idea that (P1’).

Example 4 We verify Pointcheval’s transformer [19], which can be written shortly as
f (r||H(ine||s))||(ine||s) ⊕ G(r). We note Var = {ine, oute, xσ , r, s, w, h, a, b}.

var r; s;w; h; a; b ;
true
1. r

r← {0, 1}n0 using (R1) and (R2)

Indis(νr;Var) ∧ H(G, r)
2. s

r← {0, 1}n0 using (R3), (R1), (G3) and (R2)

Indis(νr;Var) ∧ Indis(νs;Var)∧
H(G, r) ∧ H(H, ine||s)

3. w := ine||s using (C3), (C1), (G3), and (G3)

Indis(νr;Var) ∧WS(w;Var� {s, w})∧
H(G, r) ∧ H(H, w)

4. h := H(w) using (H7), (H1), and (G3)

Indis(νr;Var� {w, s})∧
Indis(νh;Var� {w, s}) ∧ H(G, r)

5. a := f (r||h) using the new rule (PO1) and (G3)

Indis f (νa;Var� {r, s, w, h})∧
WS(r;Var� {r, s, w, h}) ∧ H(G, r)

6. b := w ⊕ G(r) using (G1) f and (H1)

Indis f (νa;Var� {r, s, w, h})∧
Indis(νb ;Var� {r, s, w, h})

By the Consequence rule using (†)

Indis f (νa; a, b ,Var� {r, s, w, h, oute})∧
Indis(νb ; a, b ,Var� {r, s, w, h, oute})

Automated Proofs for Asymmetric Encryption 289

7. oute := a||b
Indis f (νa; a, b ,Var� {r, s, w, h, oute})∧ using (G1) f and (G1)

Indis(νb ; a, b ,Var� {r, s, w, h, oute})
(†) Indis f (νa; a, V) ∧ Indis(νb ; a, b , V) implies Indis f (νa; a, b , V � {x})

5 Automation

We can now fully automate our verification procedure of IND-CPA for the encryp-
tion schemes. The idea is, for a given program, to compute invariants backwards,
starting with the invariant Indis(νoute; oute, ine, xσ) at the end of the program.

As several rules can lead to the same postcondition, we in fact compute a set
of sufficient conditions at all points of the program: for each set (of postcon-
ditions) {φ1, . . . , φn} and each instruction c, we can compute a set of assertions
(preconditions) {φ′

1, . . . , φ
′
m} such that, for each i = 1, . . . , n, there exists a subset J ⊆

[1, . . . , m] such that {∧ j∈J φ′
j}c{φi} can be derived using the rules given Section 4.3,

The set {φ′
1, . . . , φ

′
m} is computed by applying two steps:

1. First, a set of assertions are computed by matching the command and assertion
φi with postconditions of the Hoare axioms. This allows to compute for each
assertion φi a set of preconditions Pre(φi).

2. Next, the consequence rule is applied using Lemma 2, i.e., the assertions
in Pre(φi) are replaced by stronger assertions, leading to the assertions in
{φ′

1, . . . , φ
′
m}.

Since the commands we consider do not include loops, our verification procedure
always terminates. However, this verification is potentially exponential in the num-
ber of instructions in the encryption command as each postcondition may potentially
have several preconditions. This does not seem to be a problem in practice. Indeed,
checking Bellare & Rogaway generic construction, for instance, is instantaneous.
We implemented that procedure as an Objective Caml program, taking as input a
representation of the encryption program.

6 Conclusion

In this paper we proposed an automatic method to prove IND-CPA security of
generic encryption schemes in the random oracle model. Then, IND-CCA can be
proved using a general method for proving plaintext awareness as described in [11].
It does not seem difficult to adapt our Hoare logic to allow a security proof in the
concrete framework of provable security. Another extension of our Hoare logic
could concern OAEP. Here, we need to express that the value of a given variable
is indistinguishable from a random value as long as a value r has not been submitted
to a hash oracle G. This can be done by extending the predicate Indis(νx; V1; V2).
The details are future work.

Acknowledgements We thank the anonymous and non-anonymous reviewers for their valuable
comments that greatly helped improving the paper.

290 J. Courant et al.

References

1. Barthe, G., Cederquist, J., Tarento, S.: A machine-checked formalization of the generic model
and the random oracle model. In: Basin, D., Rusinowitch, M. (eds.) Proceedings of IJCAR’04,
vol. 3097 of LNCS, pp. 385–399 (2004)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric
encryption. In: FOCS, pp. 394–403 (1997)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for
public-key encryption schemes. In: CRYPTO ’98: Proceedings of the 18th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pp. 26–45, London, UK. Springer,
Heidelberg (1998)

4. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic
proofs. In: POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 90–101. ACM, New York (2009)

5. Blanchet, B.: A computationally sound mechanized prover for security protocols. In: IEEE
Symposium on Security and Privacy (S&P 2006), 21–24, pp. 140–154. IEEE Computer Society,
Washington (2006)

6. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games. In: Dwork,
C. (ed.) CRYPTO, vol. 4117 of Lecture Notes in Computer Science, pp. 537–554. Springer,
Heidelberg (2006)

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient pro-
tocols. In: CCS ’93: Proceedings of the 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, New York (1993)

8. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EURO-
CRYPT, vol. 950 of Lecture Notes in Computer Science, pp. 92–111. Springer, Heidelberg
(1994)

9. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption.
Cryptology ePrint Archive, Report 2004/331. http://eprint.iacr.org/ (2004)

10. Barthe, G., Tarento, S.: A machine-checked formalization of the random oracle model. In:
Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) Proceedings of TYPES’04, vol. 3839 of
Lecture Notes in Computer Science, pp. 33–49. Springer, Heidelberg (2004)

11. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lahknech, Y.: Towards automated proofs
for asymmetric encryption schemes in the random oracle model. Technical report, Verimag,
Verimag, Centre Équation, 38610 Gières (2009)

12. Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based cryptographic proofs.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP (2), vol. 4052 of Lecture
Notes in Computer Science, pp. 252–263. Springer, Heidelberg (2006)

13. Damgard, I.: Towards practical public key systems secure against chosen ciphertext attacks.
In: CRYPTO ’91: Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptology, pp. 445–456. Springer, London (1992)

14. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound compositional logic
for key exchange protocols. In: CSFW ’06: Proceedings of the 19th IEEE Workshop on Com-
puter Security Foundations, pp. 321–334. IEEE Computer Society, Washington (2006)

15. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory IT-22, 644–
654 (1976)

16. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)
17. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. http://theory.lcs.

mit.edu/∼shaih/pubs.html (2005)
18. Okamoto, T., Pointcheval, D.: React: Rapid enhanced-security asymmetric cryptosystem trans-

form. In: CT-RSA 2001: Proceedings of the 2001 Conference on Topics in Cryptology, pp. 159–
175. Springer, London(2001)

19. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: PKC ’00: Proceed-
ings of the Third International Workshop on Practice and Theory in Public Key Cryptography,
pp. 129–146. Springer, London (2000)

20. Rabin, M.O.: Digitalized signatures as intractable as factorization. Technical Report MIT/
LCS/TR-212, Massachusetts Institute of Technology, Cambridge (1979)

21. Shoup, V.: OAEP reconsidered. J. Cryptol. 15(4), 223–249 (2002)
22. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs http://eprint.

iacr.org/2004/332 (2004)

http://eprint.iacr.org/
http://theory.lcs.mit.edu/~shaih/pubs.html
http://theory.lcs.mit.edu/~shaih/pubs.html
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

Automated Proofs for Asymmetric Encryption 291

23. Soldera, D., Seberry, J., Qu, C.: The analysis of Zheng–Seberry scheme. In: Batten, L.M.,
Seberry, J. (eds.) ACISP, vol. 2384 of Lecture Notes in Computer Science, pp. 159–168. Springer,
Heidelberg (2002)

24. Tarento, S.: Machine-checked security proofs of cryptographic signature schemes. In: De Cap-
itani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) Computer Security–ESORICS 2005,
vol. 3679 of Lecture Notes in Computer Science, pp. 140–158. Springer, Heidelberg (2005)

25. Zheng, Y., Seberry, J.: Immunizing public key cryptosystems against chosen ciphertext attacks.
IEEE J. Sel. Areas Commun. 11(5), 715–724 (1993)

	Automated Proofs for Asymmetric Encryption
	Abstract
	Introduction
	Preliminaries
	A Simple Programming Language for Encryption and Decryption Oracles
	Generic Asymmetric Encryption Schemes

	A Hoare Logic for IND-CPA Security
	The Assertion Language
	Some Properties of the Assertion Language
	The Hoare Logic
	Generic Preservation Rules
	Random Assignment
	Hash Functions
	Preliminary Results
	Proof rules for hash functions
	One-Way Functions
	The Exclusive or Operator
	Concatenation
	Additional General Rules

	Extensions of the Logic

	Automation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

