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Abstract. In formal approaches, messages sent over a network are usually modeled
by terms together with an equational theory, axiomatizing the properties of the cryp-
tographic functions (encryption, exclusive or, . . . ). The analysis of cryptographic
protocols requires a precise understanding of the attacker knowledge. Two standard
notions are usually considered: deducibility and indistinguishability. Those notions
are well-studied and several decidability results already exist to deal with a variety of
equational theories. Most of the existing results are dedicated to specific equational
theories and only few results, especially in the case of indistinguishability, have been
obtained for equational theories with associative and commutative properties (AC).

In this paper, we show that existing decidability results can be easily combined
for any disjoint equational theories: if the deducibility and indistinguishability rela-
tions are decidable for two disjoint theories, they are also decidable for their union.
We also propose a general setting for solving deducibility and indistinguishability for
an important class (called monoidal) of equational theories involving AC operators.

As a consequence of these two results, new decidability and complexity results
can be obtained for many relevant equational theories.

Keywords: Formal methods, Security protocols, Equational theories.

1. Introduction

Security protocols are paramount in today’s secure transactions through
public channels. It is therefore essential to obtain as much confidence
as possible in their correctness. Formal methods have proved their use-
fulness for precisely analyzing the security of protocols. Understanding
security protocols often requires reasoning about knowledge of the at-
tacker. In formal approaches, two main definitions have been proposed
in the literature to express knowledge. They are known as message
deducibility and indistinguishability relations.
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2 Cortier, Delaune

Most often, the knowledge of the attacker is described in terms of
message deducibility [29, 32, 30]. Given some set of messages φ repre-
senting the knowledge of the attacker and another message M , intu-
itively the secret, one can ask whether an attacker is able to computeM
from φ. To obtain such a message he uses his deduction capabilities.
For instance, he may encrypt and decrypt using keys that he knows.

This concept of deducibility does not always suffice for expressing
the knowledge of an attacker. For example, if we consider a protocol
that transmits an encrypted Boolean value (e.g. the value of a vote),
we may ask whether an attacker can learn this value by eavesdropping
on the protocol. Of course, it is completely unrealistic to require that
the Boolean true and false are not deducible. We need to express the
fact that the two transcripts of the protocol, one running with the
Boolean value true and the other one with false are indistinguishable.
Besides allowing more careful formalization of secrecy properties, indis-
tinguishability can also be used for proving the more involved notion of
cryptographic indistinguishability [11, 1, 28]: two sequences of messages
are cryptographically indistinguishable if their distributions are indis-
tinguishable to any attacker, that is to any probabilistic polynomial
Turing machine.

In both cases, deduction and indistinguishability apply to obser-
vations on messages at a particular point in time. They do not take
into account the dynamic behavior of the protocol. For this reason the
indistinguishability relation is called static equivalence. Nevertheless
those relations are quite useful to reason about the dynamic behav-
ior of a protocol. For instance, the deducibility relation is often used
as a subroutine of many decision procedures [33, 13, 19]. In the ap-
plied pi calculus framework [3], it has been shown that observational
equivalence (relation which takes into account the dynamic behav-
ior) coincides with labeled bisimulation which corresponds to checking
static equivalences and some standard bisimulation conditions.

Both of these relations rely on an underlying equational theory
axiomatizing the properties of the cryptographic functions (encryp-
tion, exclusive or, . . . ). Many decision procedures have been provided
to decide these relations under a variety of equational theories. For
instance algorithms for deduction have been provided for exclusive
or [19], homomorphic operators [21], Abelian groups with distributive
encryption [27] and subterm theories [2]. These theories allow basic
equations for functions such as encryption, decryption and digital sig-
nature. There are also results for static equivalence. For instance, a
general decidability result for the class of subterm convergent equa-
tional theories is given in [2]. Also in [2] some abstract conditions on
the underlying equational theory are proposed to ensure decidability
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of deduction and static equivalence. Note that the use of this result
requires checking some assumptions, which might be difficult to prove.
Regarding theories with associative and commutative properties (AC),
they only obtain decidability for pure AC and exclusive or. The goal
of this paper is to go further and to develop decision methods for de-
duction and static equivalence under an even larger class of equational
theories.

Firstly, we provide a general combination result for both deduction
and static equivalence: if the deducibility and indistinguishability re-
lations are decidable for two disjoint theories E1 and E2 (that is, the
equations of E1 and E2 do not share any signature symbol), they are
also decidable for their union E1 ∪ E2, provided that the word problem
is decidable. Our algorithm for combining theories is polynomial (in the
DAG-size of the inputs). It ensures in particular that if the deducibility
and indistinguishability relations are decidable for two disjoint theories
in polynomial time, they are decidable in polynomial time for their
union.

This result, described in Part I, allows us to obtain new decidability
results from any combination of the existing ones: for example, we
obtain that static equivalence is decidable for the theory of encryption
combined with exclusive or (and also for example with blind signature),
which was not known before. This result allows a modular approach.
Deciding interesting equational theories can be done simply by reducing
to the decision of simpler and independent theories. Our combination
result relies on combination algorithms for solving unification problems
modulo an equational theory [34, 7]. It follows the approach of Chevalier
and Rusinowitch [14], who show how to combine decision algorithms for
the deducibility problem in the presence of an active attacker. However,
they do not consider static equivalence at all, which is needed to express
larger classes of security properties. Considering static equivalence no-
toriously involves more difficulties since static equivalence is defined
through universal quantification. In particular, proving static equiva-
lence requires a careful understanding of the (infinite) set of equalities
satisfied by a sequence of terms. Although our combination result for
deduction is clearly related to the results by Chevalier and Rusinowitch,
how deduction can be combined for disjoint equational theories is not
stated in their papers [14, 17].

Secondly, we provide new decidability and complexity results for
an important class of equational theories. We consider the axioms of
Associativity-Commutativity (AC), Unit element (U), Nilpotency (N),
Idempotency (I), homomorphism (h), and more especially the combi-
nations of these axioms that constitute monoidal theories. We propose
a general approach (see Part II) to handle monoidal theories that
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covers several cases already studied, and furthermore includes some
new decidability and complexity results on homomorphic operators.
Monoidal theories have been extensively studied by F. Baader and
W. Nutt [31, 5, 6] who have provided a complete survey of unification
in these theories. More recently, these theories have been studied in
the context of security protocols. S. Delaune et al. have shown that
deduction is decidable for a subclass of monoidal equational theories,
also considering active attacks [22]. However, they do not address static
equivalence.

In Part III, we give a list of relevant equational theories for which
deduction and static equivalence have been studied by us or others.
This gives a (hopefully) complete picture of existing results in this
area.

This paper represents a synthesis of the work published at FROCOS
2007 and LPAR 2007 with improvements in presentation and additional
technical material throughout.

2. Preliminaries

We first start by introducing some common material for the next sec-
tions. In Section 2.1 we recall some basic definitions. Then, in Sec-
tion 2.2, we explain our representation for the information available
to an intruder who has seen messages exchanged in the course of a
protocol execution. In the applied pi calculus framework [3], such a
representation is known as a frame. Lastly we describe our two notions
of knowledge for an intruder.

2.1. Basic definitions

A signature Σ consists of a finite set of function symbols, such as
enc and pair, each with an arity. A function symbol with arity 0 is
a constant symbol. We assume given a signature Σ, an infinite set of
names N , and an infinite set of variables X . Let M be a set of names
and variables. We denote by T (Σ,M) the set of terms over Σ ∪M.
The concept of names is borrowed from the applied pi calculus [3] and
corresponds to the notion of free constant used for instance in [14].
We write fn(M) (resp. fv(M)) for the set of names (resp. variables)
that occur in the term M . A term M is ground when it does not
have variables, i.e. fv(M) = ∅. A context C is a term with holes, or
(more formally) a term with distinguished variables that occur only
once. When C is a context with n distinguished variables x1, . . . , xn,
we may write C[x1, . . . , xn] instead of C in order to show the variables,
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and when T1, . . . , Tn are terms we may also write C[T1, . . . , Tn] for the
result of replacing each variable xi with the corresponding term Ti. A
substitution σ is a mapping from a finite subset of X called its domain
and written dom(σ) to T (Σ,N ∪ X ). Substitutions are extended to
endomorphisms of T (Σ,N ∪X ) as usual. We use a postfix notation for
their application.

An equational presentation H = (Σ,E) is defined by a set E of equa-
tions over T (Σ,X ), i.e. a set of unordered pairs of terms without
names. For any equational presentation H, the relation =H denotes the
equational theory generated by E on T (Σ,N ∪X ), that is the smallest
congruence containing all instances of axioms of E. Abusively, we shall
not distinguish between an equational presentation H over a signa-
ture Σ and a set E of equations presenting it. Hence, we write M =E N
instead of M =H N when the signature is clear from the context. Since
the equations in E do not contain any names, we have that =E is closed
by substitutions of terms for names. A theory E is consistent if there
do not exist two distinct names n1 and n2 such that n1 =E n2. Note
that, in an inconsistent theory, the problem we are interested in, i.e.
deduction (defined in Section 2.3) and static equivalence (defined in
Section 2.4) are trivial.

Given two sets of terms S1 and S2, we say that S1 is a subset of S2

modulo E, denoted S1 ⊆E S2, if for any T1 ∈ S1, there exists T2 ∈ S2

such that T1 =E T2. When S1 ⊆E S2 and S2 ⊆E S1, we also write
S1 =E S2.

Example 1. Let Σ+ be the signature made up of the constant symbol 0
and the binary function + and E+ be the following set of equations:

x+ (y + z) = (x+ y) + z (A) x+ 0 = x (U)
x+ y = y + x (C) x+ x = 0 (N)

We have that n1 + (n2 + n1) =E+
n2. Let t1 and t2 be two terms.

Since E+ is closed by substitutions of terms for names, we have that
t1 + (t2 + t1) =E+

t2. Note that this equality still holds when t1 = t2.

Example 2. Consider the signature Σenc = {dec, enc, pair, proj1, proj2}.
The symbols dec, enc and pair are functional symbols of arity 2 that
represent respectively the decryption, encryption and pairing functions
whereas proj1 and proj2 are functional symbols of arity 1 that represent
the projection function on respectively the first and the second compo-
nent of a pair. As usual, we may write 〈x, y〉 instead of pair(x, y). The
equational theory of pairing and symmetric encryption, denoted by Eenc,
is defined by the following equations:

dec(enc(x, y), y) = x, proj1(〈x, y〉) = x and proj2(〈x, y〉) = y.
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Definition 3. (syntactic subterm). The set Sts(M) of syntactic
subterms of a term M is defined recursively as follows:

Sts(M) =



















{M} if M is a variable, a name or
a constant

{M} ∪
ℓ

⋃

i=1

Sts(Mi) if M = f(M1, . . . ,Mℓ)

The positions in a term M are defined recursively as usual (i.e. se-
quences of integers with ǫ being the empty sequence). We denote by
M |p the syntactic subterm of M at position p. The term obtained by
replacing M |p by N is denoted M [N ]p.

2.2. Assembling terms into frames

At a particular point in time, while engaging in one or more sessions
of one or more protocols, an attacker may know a sequence of mes-
sages M1, . . . ,Mℓ. This means that he knows each message but he also
knows in which order he obtained the messages. So it is not enough for
us to say that the attacker knows the set of terms {M1, . . . ,Mℓ}. Fur-
thermore, we should distinguish those names that the attacker knows
from those that were freshly generated by others and which remain
secret from the attacker; both kinds of names may appear in the terms.

In the applied pi calculus [3], such a sequence of messages is orga-
nized into a frame φ = νñ.σ, where ñ is a finite set of restricted names
(intuitively the fresh ones), and σ is a substitution of the form:

{M1/x1
, . . . ,Mℓ/xℓ

} with dom(σ) = {x1, . . . , xℓ}.

The variables enable us to refer to each Mi and we always assume that
the terms Mi are ground. For notational convenience, we will write
νn1, . . . , nk instead of ν{n1, . . . , nk}.

2.3. Deduction

Given a frame φ that represents the information available to an at-
tacker, we may ask whether a given ground term M may be deduced
from φ. Given an equational theory E on Σ, this relation is written
φ ⊢E M and is axiomatized by the following rules:

if ∃x ∈ dom(σ) s.t. xσ = M
νñ.σ ⊢E M

s ∈ N r ñ
νñ.σ ⊢E s

φ ⊢E M1 . . . φ ⊢E Mℓ
f ∈ Σ

φ ⊢E f(M1, . . . ,Mℓ)

φ ⊢E M
M =E M

′

φ ⊢E M
′
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Decidability and combination results for two notions of knowledge 7

Intuitively, the deducible messages are the messages of φ and the
names that are not protected in φ, closed by equality in E and closed
under application of function symbols. Note that φ, M ,M ′, M1, . . ., Mℓ

might be built on a signature Σ′ that possibly contains some additional
function symbol not in Σ, i.e. such that Σ ⊆ Σ′. Hence the relation =E

means =H′ where H′ = (Σ′,E). When νñ.σ ⊢E M , any occurrence of
names from ñ in M is bound by νñ. So νñ.σ ⊢E M could be formally
written νñ.(σ ⊢E M).

Definition 4. (recipe). Let M be a ground term and νñ.σ be a frame
built on Σ′ ⊇ Σ. A recipe ofM in φmodulo E is a term ζ ∈ T (Σ,N∪X )
such that fn(ζ) ∩ ñ = ∅ and ζσ =E M .

It is easy to prove (see [2]) by induction the following characteriza-
tion of deduction.

Lemma 5. (characterization of deduction). Let M be a ground
term and νñ.σ be a frame built on Σ′ (possibly larger than Σ). Then
νñ.σ ⊢E M if, and only if, there exists a recipe of M in φ modulo E.

Example 6. Consider the equational theory (Σenc,Eenc) given in Ex-
ample 2. Let φ = νk, s1.{

enc(〈s1,s2〉,k)/x1
, k/x2

} where k, s1, and s2 are
names (only k and s1 are restricted). We have that φ ⊢Eenc

k, φ ⊢Eenc
s1

and also that φ ⊢Eenc
s2. Indeed x2, proj1(dec(x1, x2)) and s2 are recipes

of the terms k, s1 and s2 respectively.

Example 7. Consider the equational theory (Σ+,E+) given in Exam-
ple 1. Let φ = νn1, n2, n3.{

n1+n2+n3/x1
, n1+n2/x2

, n2+n3/x3
}. We have

that φ ⊢E+
n2 + n4. Indeed the term x1 + x2 + x3 + n4 is a recipe of

the term n2 + n4.

Definition 8. (Deduction problem). The deduction problem for
the equational theory E built over Σ is as follows:

Entries: A frame φ and a ground term M (both built over Σ)

Question: φ ⊢E M?

Note that the deduction relation ⊢E for the equational theory (Σ,E)
is defined for frames and terms built over a signature Σ′ which is pos-
sibly larger than Σ. However, what we call the deduction problem for
the equational theory (Σ,E) contains only the instances where Σ′ = Σ.
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2.4. Static equivalence

Deduction does not always suffice for expressing the knowledge of an
attacker, as discussed in the introduction. Sometimes, the attacker can
deduce exactly the same set of terms from two different frames but he
could still be able to tell the difference between these two frames. Static
equivalence, also called the indistinguishability relation, is particularly
important when defining for example the confidentiality of a vote or
anonymity-like properties.

In the frame φ = νñ.σ, the names ñ are bound in σ and can be
renamed. Moreover names that do not appear in φ can be added or
removed from ñ. In particular, we can always assume that two frames
share the same set of restricted names. Thus, in the definition below,
we will assume w.l.o.g. that the two frames φ and φ′ have the same set
of restricted names.

Definition 9. (static equivalence). Let (Σ,E) be an equational the-
ory. Let φ be a frame built on Σ′ ⊇ Σ and M,N ∈ T (Σ,N∪X ). We say
that M and N are equal in the frame φ, and write (M =E N)φ, if there
exists ñ such that φ = νñ.σ, (fn(M) ∪ fn(N)) ∩ ñ = ∅ and Mσ =E Nσ.

We say that two frames φ = νñ.σ and φ′ = νñ.σ′ built on Σ′ are
statically equivalent, and write φ ≈E φ

′ (or shortly φ ≈ φ′) when:

−dom(φ) = dom(φ′), and

−for all M,N ∈ T (Σ,N∪X ) we have (M =E N)φ⇔ (M =E N)φ′.

Let (Σ,E) be an equational theory. We define EqE(φ) to be the set
of equations satisfied by the frame φ = νñ.σ.

EqE(φ) = {(M,N) ∈ T (Σ,N ∪ X )× T (Σ,N ∪ X ) | (M =E N)φ}.

We write ψ |= EqE(φ) if (M =E N)ψ for any (M,N) ∈ EqE(φ).

Checking for static equivalence is clearly equivalent to checking
whether each of the two frames under consideration satisfies the equal-
ities of the other frame.

Lemma 10. (characterization of static equivalence). Let φ1 =
νñ.σ1 and φ2 = νñ.σ2 be two frames. We have

φ1 ≈E φ2 ⇔ φ2 |= EqE(φ1) and φ1 |= EqE(φ2).

Example 11. Consider the equational theory (Σenc,Eenc) (see Exam-
ple 2). Let φ = νk.σ, φ′ = νk.σ′ where σ = {enc(s0,k)/x1

, k/x2
} and
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Decidability and combination results for two notions of knowledge 9

σ′ = {enc(s1,k)/x1
, k/x2

}. Intuitively, s0 and s1 could be the two possi-
ble (public) values of a vote. We have dec(x1, x2)σ =Eenc

s0 whereas
dec(x1, x2)σ

′ 6=Eenc
s0. Therefore we have that φ 6≈Eenc

φ′. However,
note that νk.{enc(s0,k)/x1

} ≈Eenc
νk.{enc(s1,k)/x1

}.

Example 12. Consider the equational theory ACUN (also called E+)
given in Example 1 and let φ = νn1, n2, n3.{

n1+n2+n3/x1
, n2+n3/x2

, n1/x3
}.

Let M = x1 + x2 and N = x3. We have that (M =E N)φ, thus
(M,N) ∈ Eq(φ).

Definition 13. (static equivalence problem). The static equiva-
lence problem for the equational theory E built over Σ is as follows:

Entries: Two frames φ1 and φ2 (both built over Σ)

Question: φ1 ≈E φ2?

Again, the static equivalence relation ≈E for the equational theory
(Σ,E) is defined for frames built over a signature Σ′ which is possibly
larger than Σ. However, what we call the static equivalence problem for
the equational theory (Σ,E) contains only the instances where Σ′ = Σ.
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— PART I: Combination algorithms —

In this part of the paper, we provide a general combination result
for both deduction and static equivalence: if the deducibility and in-
distinguishability relations are decidable for two disjoint theories E1

and E2 (that is, the equations of E1 and E2 do not share any signature
symbol), they are also decidable for their union E1 ∪ E2. Our result as-
sumes the word problem to be decidable. Our combination results follow
the approach of Chevalier and Rusinowitch [14, 17], who show how to
combine decision algorithms for the deducibility problem in presence of
an active attacker. Our procedures also rely on combination algorithms
for solving unification problems modulo E [34, 7], and we partly reuse
the techniques introduced by Baader and Schulz to combine constraint
solvers [8].

3. Material for combination algorithms

We consider two equational presentations H1 = (Σ1,E1) and H2 =
(Σ2,E2) that are disjoint (in the sense that Σ1 ∩ Σ2 = ∅) and consistent.
Note that T (Σ1,N∪X ) and T (Σ2,N∪X ) share symbols, namely names
and variables. Names are used to represent agent identities, keys or
nonces. We denote by Σ the union of the signatures Σ1 and Σ2 and
by E the union of the sets of equations E1 and E2. The union of the
two equational presentations H1 and H2 is the equational presentation
defined by (Σ,E).

3.1. Factors, Subterms

We denote by sign(·) the function that associates to each term M ∈
T (Σ,N ∪X ), the signature (Σ1 or Σ2) of the function symbol at posi-
tion ǫ (root position) in M . For M ∈ N ∪ X , we define sign(M) = ⊥,
where ⊥ is a new symbol. The term N is alien to M if sign(N) 6=
sign(M). We now introduce our notion of subterms. A similar notion is
also used in [14].

Definition 14. (factors, subterms). Let M ∈ T (Σ,N ∪ X ). The
factors of M are the maximal syntactic subterms of M that are alien
to M . This set is denoted Fct(M). The set of its subterms, denoted
St(M), is defined recursively by

St(M) = {M} ∪
⋃

N∈Fct(M)

St(N)
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Decidability and combination results for two notions of knowledge 11

These notations are extended as expected to sets of terms and frames.
By abuse of notation, we may write St(Φ ∪ {M}) instead of St(Φ) ∪
St({M}), where Φ is a frame and M a term.

Note that the names and the variables that occur in a term M are
in St(M). In the rest of this part, the notion of subterm will refer to the
notion introduced in Definition 14. When we want to refer to the notion
of syntactic subterm (Definition 3), we will mention this explicitly.

Let M ∈ T (Σ,N ∪X ). The size |M | of a term M is defined |M | = 0
if M is a name or a variable and by 1+

∑n
i=1 |Ni| if M = C[N1, . . . , Nn]

where C is a context built on Σ1 (or Σ2) and N1, . . . , Nn are the factors
of M .

Example 15. Consider the theories (Σenc,Eenc) and (Σ+,E+). Let M
be the term dec(〈n1+〈n2, n3〉, proj1(n1+n2)〉, n3). The term n1+〈n2, n3〉
is a syntactic subterm of M alien to M since sign(n1 + 〈n2, n3〉) = Σ+

and sign(M) = Σenc. We have that

− Fct(M) = {n1 + 〈n2, n3〉, n1 + n2, n3}, and

− St(M) = Fct(M) ∪ {M, n1, n2, 〈n2, n3〉}.

Moreover, we have that |M | = 4. Indeed, we have that

|M | = 1 + |n1 + 〈n2, n3〉|+ |n1 + n2|+ |n3| = 1 + 2 + 1 + 0 = 4.

This notion of size of terms is quite non-standard and does not
correspond to the actual size of a term. It is only used for proving
our lemmas by induction. Our complexity results stated later on in the
paper rely on the more usual notion of DAG-size.

3.2. Ordered rewriting

Most of the definitions and results in this subsection are borrowed
from [15] since we use similar techniques. We consider the notion of
ordered rewriting defined in [23], which is a useful tool that has been
used (e.g. [7]) for proving correctness of combination of unification algo-
rithms. Let ≺ be a simplification ordering1 on ground terms assumed
to be total and such that the minimum for ≺ is a name nmin and
the constants in Σ are smaller that any ground term that is neither
a constant nor a name. We define Σ0 to be the set of the constant
symbols of Σ1 and Σ2 plus the name nmin, i.e. Σ0 = Σ1 ∪Σ2 ∪ {nmin}.

1 By definition ≺ satisfies that for all ground terms M, N1, N2, and for any
position p 6= ǫ in M , we have N1 ≺ M [N1]p and N1 ≺ N2 implies M [N1]p ≺ M [N2]p.
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12 Cortier, Delaune

In what follows, we furthermore assume that nmin is never used under
restriction in frames.

Given a possibly infinite set of equations O we define the ordered
rewriting relation →O by M →O M ′ if and only if there exists an
equation N1 = N2 ∈ O, a position p in M and a substitution τ such
that:

M = M [N1τ ]p, M ′ = M [N2τ ]p and N2τ ≺ N1τ .

It has been shown (see [23]) that by applying the unfailing comple-
tion procedure to a set of equations E we can derive a (possibly infinite)
set of equations O such that on ground terms:

1. the relations =O and =E are equal,

2. the rewriting system →O is convergent.

Applying unfailing completion to E = E1 ∪ E2, it is easy to notice [7]
that the set of generated equations O is the disjoint union of the two
systems O1 and O2 obtained by applying unfailing completion proce-
dures to E1 and to E2 respectively. Since the relation →O is convergent
on ground terms, we define M↓E (or briefly M↓) as the unique normal
form of the ground term M for →O. We denote by M↓E1

(resp. M↓E2
)

the unique normal form of the ground term M for →O1
(resp. →O2

).
These notations are extended as expected to sets of terms.

We can easily prove (see Appendix B) the following results.

Lemma 16. Let M be a ground term such that all its factors are in
normal form. Then

− either M↓ ∈ Fct(M) ∪ {nmin},

− or sign(M) = sign(M↓) and Fct(M↓) ⊆ Fct(M) ∪ {nmin}.

By relying on Lemma 16, we can show the following result whose
proof is given in Appendix B.

Corollary 17. Let M be a ground term: St(M↓) ⊆ St(M)↓∪{nmin}.

Example 18. Consider the equational theory (Σ+,E+) described in
Example 1. Let Σ0 = {f} and E0 = {f(x) = f(y)}. We have that the
theories E+, E0 and E+ ∪ E0 are consistent. Let M = f(n1 + n2). We
have that M↓ = f(nmin). Hence Fct(M↓) (resp. St(M↓)) contains nmin

whereas Fct(M) (resp. St(M)) does not contain this term.
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Lemma 19. Let M be a ground term such that sign(M) = Σi (i =
{1, 2}) and all its factors are in normal form. Then M↓ = M↓Ei

.

3.3. Normalization and replacements

If Π is a set of positions in a term M and N is a term, we denote
by M [Π ← N ] the term obtained by replacing all terms at a position
in Π by N . We denote by δN,N ′ the replacement by N ′ of all the occur-
rences of N that appear at a subterm position. It is easy to establish
the following lemma (see Appendix B).

Lemma 20. Let M be a ground term such that all its factors are in
normal form. Let N ∈ Fct(M) and N ′ be a term alien to M . We have
that

(MδN,N ′)↓ = ((M↓)δN,N ′)↓.

Example 21. Consider the equational theories (Σenc,Eenc) and (Σ+,E+).
Let M = dec(enc(〈n1 +n2, n1 +n2+n3〉, n1 +n2), n1 +n2), N = n1+n2

and N ′ = n. We have that M , N and N ′ satisfy the conditions given
in Lemma 20. Moreover, we have that

− MδN,N ′ = dec(enc(〈n, n1 + n2 + n3〉, n), n),

− M↓δN,N ′ = 〈n, n1 + n2 + n3〉.

Hence, we have that MδN,N ′↓ = M↓δN,N ′↓ = 〈n, n1 + n2 + n3〉.

Let ρ : F → ñF be a replacement (that is a function) from a finite
set of terms F to names ñF . Let F = {N1, . . . , Nk} be a set such that
whenever Ni is a syntactic subterm of Nj then i > j. For any term M ,
we denote by Mρ the term obtained by replacing in M (in an order that
is consistent with the syntactic subterm relation) any subterm N ∈ F
by ρ(N). Formally, we have that Mρ = (MδN1,ρ(N1)) · · · δNk,ρ(Nk). This
extends in a natural way to sets of terms, substitutions, frames . . .

Example 22. Consider the equational theories (Σenc,Eenc) and (Σ+,E+)
and the term M = dec(〈n1 + 〈n1 + n2, n3〉, proj1(n1 + n2)〉, n1 + n2).
Let ρ be the replacement {n1 + 〈n1 + n2, n3〉 → k1, n1 + n2 → k2}.
Mρ = dec(〈k1, proj1(k2)〉, k2).
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14 Cortier, Delaune

3.4. Word problem and weak normalization

Since the underlying rewriting system may be infinite, we can not
compute the normal form of a term in an effective way. Instead, we will
use weak normal form (see Definition 24) and we will assume that the
well-known word problem modulo E is decidable, allowing us to decide
whether two terms are equal or not (without putting those terms in
normal form).

Definition 23. (word problem). The word problem for the equa-
tional theory E built over Σ is as follows:

Entries: Two terms M1 and M2 (both built over Σ)

Question: M1 =E M2?

The decidability of the word problem modulo E is a direct conse-
quence of the decidability of the static equivalence problem modulo E.
However, it is not a consequence of the decidability of the deduction
problem modulo E2. Thus, in our combination result for deduction,
we will assume the decidability of the word problem modulo E. It is
interesting to note that, for disjoint theories, decidability (in PTIME)
of the word problem modulo E is a consequence of its decidability (in
PTIME) in E1 and E2 [9].

Definition 24. (weak normal form). The term nmin is in weak
normal form. A term M (that is not syntactically equal to nmin) is
in weak normal form if for any M ′ ∈ Fct(M) ∪ {nmin} we have that
M ′ is in weak normal form and M 6=E M

′.

Given a term M , we say that M ′ is in weak normal form of M modulo E

if M is in weak normal form and M =E M ′. Provided that the word
problem modulo E is decidable, we can compute a weak normal form
of a term M modulo E as follows:

− Either Fct(M) = ∅. In such a case, if M =E nmin then return nmin.
Otherwise return M .

− Otherwise, we have that M = C[M1, . . . ,Mk] where M1, . . . ,Mk

are the factors of M . Compute a weak normal form M ′
i for each

factor Mi. If M =E M ′
i for some i ∈ {1, . . . , k} then retrun M ′

i .
Otherwise return C[M ′

1, . . . ,M
′
k].

2 We give in Appendix A an example of a theory for which the deduction problem
is - trivially - decidable, while the word problem is not.

main.tex; 13/10/2010; 8:18; p.14



Decidability and combination results for two notions of knowledge 15

Note that the weak normal form of a term is not necessarily unique.
The following lemma will be used later on to avoid computing normal

form of terms.

Lemma 25. Let M be a ground term and M ′ be a weak normal form
of M modulo E that is also ground. We have that:

− Either M ′ is a name, say n, and we have that M↓ = n;

− Or M ′ = C[M ′
1, . . . ,M

′
k] where M ′

1, . . . ,M
′
k are the factors of M ′

and C is built on Σi (i = {1, 2}), and M↓ =Ei
C[M1, . . . ,Mk] for

some M1, . . . ,Mk that are the factors of M↓. Moreover, we have
that M1 =E M

′
1, . . . , Mk =E M

′
k.

In both cases, we have that sign(M ′) = sign(M↓).

Proof. Let M be a ground term and M ′ be a weak normal form
of M modulo E that is also ground. We show this result by induction
on |M ′|.

Base case: |M ′| = 0. In such a case, M ′ is a name, say n, we have that
M ′↓ = n. Hence, we have that M↓ = M ′↓ = n (see Remark at the
beginning of Appendix B).

Induction step: |M ′| > 0. In such a case, M ′ = C[M ′
1, . . . ,M

′
k] where

M ′
1, . . . ,M

′
k are the factors of M ′ and we can assume w.l.o.g. that C

is built on Σ1. We apply Lemma 16 on C[M ′
1↓, . . . ,M

′
k↓]. Note that

M ′
1↓, . . . ,M

′
k↓ are inded the factors of C[M ′

1↓, . . . ,M
′
k↓] since thanks to

our induction hypothesis we know that sign(M ′
i) = sign(M ′

i↓) for each
i ∈ {1, . . . , k}. Since M ′ is in weak normal form, we know that M ′↓ 6∈
{M ′

1↓, . . . ,M
′
k↓, nmin}. Thus, we have that sign(M ′) = sign(M ′↓) and

Fct(M ′↓) ⊆ {M ′
1↓, . . . ,M

′
k↓, nmin}. Hence, thanks to Lemma 19, we

know that:

C[M ′
1↓, . . . ,M

′
k↓]↓ = C[M ′

1↓, . . . ,M
′
k↓]↓E1

.

Hence, we have that M↓ = M ′↓ =E1
C[M ′

1↓, . . . ,M
′
k↓]. 2

4. Combining algorithms for deduction

Our first combination result is devoted to deduction: it is possible to
combine decision procedures of deduction for any two disjoint theories.
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16 Cortier, Delaune

Theorem 26. Let (Σ1,E1) and (Σ2,E2) be two consistent equational
theories such that Σ1∩Σ2 = ∅ and for which the word problem is decid-
able. If deduction is decidable for (Σ1,E1) and (Σ2,E2) then deduction
is decidable for (Σ1 ∪ Σ2,E1 ∪ E2).

The rest of this section is devoted to the proof of this theorem.
First (see Section 4.1), we establish a locality lemma. If φ ⊢E M , then
by definition we know that there exists a proof tree witnessing this
fact. Actually, the locality lemma states that there exists a proof tree
such that the interface terms (i.e. those obtained by applying a function
symbol in Σ1 and used as a premise for an application of a symbol in Σ2,
or the converse) are in St(φ ∪ {M}). Hence, we reduce the deduction
problem φ ⊢E M where E = E1∪E2 to several other deduction problems.
Each of them will be solved either in the equational theory E1 or in
the theory E2. In order to obtain deduction problems where terms are
built over Σ1 (or Σ2) only, we abstract alien subterms by fresh names
(see Section 4.2). Our algorithm, described in Section 4.3, proceeds by
saturation of φ by the terms in St(φ∪{M}) which are deducible either
in (Σ1,E1) or in (Σ2,E2).

4.1. Locality

Our procedure first relies on the existence of a local proof of φ ⊢E M
which involves only terms in St(φ ∪ {M}).

Lemma 27. (locality lemma). Let φ = νñ.σ be a frame and M be a
ground term built on Σ such that terms in φ and M are in normal form.
If φ ⊢E M then there exists a term ζ built on Σ such that fn(ζ)∩ ñ = ∅
and ζσ =E M , and for all ζ ′ ∈ St(ζ), we have that

1.ζ ′σ↓ ∈ St(φ ∪ {M}) ∪ {nmin}, and

2.ζ ′σ↓ ∈ St(φ) ∪ {nmin} when sign(ζ ′) 6= sign(ζ ′σ↓).
Proof. By Lemma 5, we know that there exists a recipe built on

Σ such that fn(ζ) ∩ ñ = ∅ and ζσ =E M . We choose one, say that
ζ ′′M , whose size |ζ ′′M | is minimal. Let ζM be the term obtained from ζ ′′M
after replacing every occurrence of a name n 6∈ St(φ ∪ {M}) by nmin.
Since E is closed by substitutions of terms for names, from the fact that
ζ ′′Mσ =E M , we easily deduce that ζMσ =E M . Now, we establish (by
induction) that such a ζM satisfies conditions 1 and 2.

Base case: ζM is a name, a variable or a ground term built over Σ1 (resp.
Σ2) only. In such a case, we easily conclude since St(ζM ) = {ζM}. Note
that sign(ζM ) 6= sign(ζMσ↓) implies that ζM is a variable. In such a
case, condition 2 trivially holds.

Induction step: There exist ζ0, ζ1, . . . , ζℓ such that
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Decidability and combination results for two notions of knowledge 17

− ζM = ζ0[ζ1, . . . , ζℓ],

− ζ0 is built on Σi and in the remainder of the proof we assume
w.l.o.g. that i = 1,

− ζ1, . . . , ζℓ are built on Σ and sign(ζi) 6= Σ1.

First, we prove that condition 1 is satisfied. By induction hypothesis,
we know that for all i ≤ ℓ, for all ζ ′ ∈ St(ζi), we have ζ ′σ↓ ∈ St(φ ∪
{ζiσ↓}) ∪ {nmin}. To conclude that ζ ′σ↓ ∈ St(φ ∪ {M}) ∪ {nmin} for
any ζ ′ ∈ St(ζ), it is sufficient to show that for all i ≤ ℓ we have
ζiσ↓ ∈ St(φ ∪ {M}) ∪ {nmin}.

− If sign(ζi) = ⊥, then we have ζiσ↓ ∈ St(φ ∪ {M}) ∪ {nmin}.

− If sign(ζi) = Σ2 and sign(ζiσ↓) 6= Σ2, then we conclude that ζiσ↓ ∈
St(φ) ∪ {nmin} thanks to the induction hypothesis.

− Now, we assume that sign(ζi) = Σ2 and sign(ζiσ↓) = Σ2. We
distinguish several cases.

1. ζiσ↓ ∈ St(M) ∪ {nmin}. In such a case, we easily conclude.

2. ζiσ↓ ∈ St(ζjσ↓) for some j such that sign(ζjσ↓) = Σ1. By
induction hypothesis, since sign(ζj) 6= Σ1 and sign(ζjσ↓) = Σ1,
we have ζjσ↓ ∈ St(φ) ∪ {nmin}. Thus ζiσ↓ ∈ St(φ) ∪ {nmin}.

3. Otherwise, we consider among the ζi such that ζiσ↓ 6∈ St(φ ∪
{M}) ∪ {nmin} a maximal one (w.r.t. the subterm ordering).
Let ζ be such a term. Now, we show that we can build a recipe
ζ ′M of M smaller than ζM . Let ∆ = {j ∈ {1, . . . , ℓ} | ζjσ↓ =
ζσ↓}. Note that ∆ 6= ∅. Let ζ ′M = ζ0[ζ ′1, . . . , ζ

′
ℓ] where ζ ′j is

equal to nmin if j ∈ ∆ and to ζj otherwise. Note that |ζ ′M | <
|ζM |. Lastly, we have that ζ ′M is a recipe of M . Indeed

ζ ′Mσ↓
= ζ0[ζ ′1σ↓, . . . , ζ

′
ℓσ↓]↓

= ((ζ0[ζ1σ↓, . . . , ζℓσ↓])δ(ζσ)↓,nmin
)↓ since ζσ↓ /∈ St(ζjσ↓) for j /∈ ∆

= ((ζ0[ζ1σ↓, . . . , ζℓσ↓])↓δ(ζσ)↓,nmin
)↓ thanks to Lemma 20

= (Mδ(ζσ)↓,nmin
)↓ since M = ζ0[ζ1σ↓, . . . , ζℓσ↓]↓

= M since ζσ 6∈ St(M)

Now, it remains to prove that condition 2 is satisfied. By induction
hypothesis, we know that for all i ≤ ℓ, for all ζ ′ ∈ St(ζi) such that
sign(ζ ′) 6= sign(ζ ′σ↓), we have that ζ ′σ↓ ∈ St(φ) ∪ {nmin}. It remains
to show that this condition holds for ζM .
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18 Cortier, Delaune

Assume that sign(ζM ) 6= sign(ζMσ↓). Applying Lemma 16 on the
term ζ0[ζ1σ↓, . . . , ζℓσ↓] whose normal form is equal to ζMσ↓, we obtain
that ζMσ↓ ∈ Fct(ζ0[ζ1σ↓, . . . , ζℓσ↓]) ∪ {nmin}. For each 1 ≤ i ≤ ℓ, if
sign(ζi) 6= sign(ζiσ↓), we have seen that ζiσ↓ ∈ St(φ) ∪ {nmin}. Hence,
we deduce that ζMσ↓ ∈ St(φ) ∪ {ζ1σ↓, . . . , ζℓσ↓, nmin}. By minimality
of ζM , there exists no ζi such that ζMσ↓ = ζiσ↓. Then we conclude
that ζMσ↓ ∈ St(φ) ∪ {nmin} 2

Example 28. Consider the theory (Σ,E) = (Σenc∪Σ+,Eenc∪E+), the
term M = n2+n3 and the frame φ = νn2, n3.{

enc(〈n1+n2,n3〉,n4)/x1
}. We

have that φ ⊢E M . The recipe ζ = proj1(dec(x1, n4))+proj2(dec(x1, n4))+
n1 satisfies the conditions given in Lemma 27.

4.2. Abstraction of alien subterms

We also need to decide deducibility in the theory E1 (resp. E2) for terms
built on Σ1 ∪ Σ2. Therefore, we show that we can abstract the alien
factors by new names.

Lemma 29. Let φ be a frame and M be a ground term built on Σ.
Let F2 = {N | N ∈ St(φ ∪ {M}) and sign(N) = Σ2}, ñF2

be a set of
names, distinct from the names occurring in φ and M , of the same
cardinality as F2 and ρ2 : F2 → ñF2

be a replacement.
Assume that terms in φ and M are in normal form. We have that

φ ⊢E1
M if and only if νñF2

.(φ ⊢E1
M)ρ2 .

A similar result holds by inverting the indices 1 and 2.
Proof. (⇒) Let φ = νñ.σ. By Lemma 5, we know that there exists

a term ζ ∈ T (Σ1,N ∪ X ) such that fn(ζ) ∩ ñ = ∅ and ζσ =E1
M .

Hence, we know that ζσ↓ = M . We have to show that there exists a
term ζ ′ ∈ T (Σ1,N ∪X ) such that fn(ζ ′) ∩ (ñ ∪ ñF2

) = ∅ and ζ ′σρ2 =E1

Mρ2 . W.l.o.g. we can assume that fn(ζ) ∩ ñF2
= ∅. Let us show that

the term ζ satisfies the required conditions. Either sign(Mρ2) = ⊥ or
sign(Mρ2) = Σ1. In this last case, since M is in normal form, applying
Lemma 19, we get Mρ2↓ = Mρ2↓E1

. In both cases, we get

Mρ2↓ =E1
Mρ2 (1)

Since sign((ζσ)ρ2) 6= Σ2 and (ζσ)ρ2 does not contain subterms of sign Σ2

anymore, i.e. sign(U) 6= Σ2 for every U ∈ St((ζσ)ρ2), we deduce that
all the factors of (ζσ)ρ2 are in normal form. Thus we can apply again
Lemma 19, yielding to (ζσ)ρ2↓ = (ζσ)ρ2↓E1

. We deduce

(ζσ)ρ2↓ =E1
(ζσ)ρ2 (2)
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Decidability and combination results for two notions of knowledge 19

Since all the factors of ζσ are in normal form, we can apply Lemma 20

(ζσ)ρ2↓ = (ζσ)↓ρ2↓ (3)

By equality (3) and the fact that (ζσ)↓ = M , we get (ζσ)ρ2↓ = Mρ2↓.
Using equalities (1) and (2), we deduce that (ζσ)ρ2 =E1

Mρ2 . Now,
since ζ ∈ T (Σ1,N ∪ X ), we have that (ζσ)ρ2 = ζ(σρ2) (syntactically).
This allows us to conclude.

(⇐) By Lemma 5, there exists a term ζ on Σ1 such that fn(ζ) ∩ (ñ ∪
ñF2

) = ∅ and ζσρ2 =E1
Mρ2 . We show that fn(ζ)∩ ñ = ∅ (obvious) and

ζσ =E1
M . Since ζσρ2 =E1

Mρ2 and since E1 is closed by substitutions

of terms for names, we deduce that (ζσρ2)ρ
−1

2 =E1
(Mρ2)ρ

−1

2 . We have

(Mρ2)ρ
−1

2 = M and (ζσρ2)ρ
−1

2 = ζ((σρ2)ρ
−1

2 ) = ζσ since ñF2
6∈ fn(ζ).

Hence, we conclude that ζσ =E1
M . 2

4.3. Combination algorithm for deduction

Our algorithm proceeds by saturation of φ by the subterms in St(φ ∪
{M}) which are deducible either in (Σ1,E1) or in (Σ2,E2).

To ease the presentation, we will consider φ = νñ.{M1/x1
, . . . ,Mℓ/xℓ

}
as the set {M1, . . . ,Mℓ}. When we write φ ∪ {T}, we mean the frame
νñ.{M1/x1

, . . . ,Mℓ/xℓ
, T /xℓ+1

} where xℓ+1 is a fresh variable that does
not already occur in dom(φ).

We first show that φ↓ ⊢Ei
M↓ is decidable. This is used as a sub-task

in our combination algorithm for deduction.

Lemma 30. The following problem is decidable.

Entries: A frame φ, a term M , i ∈ {1, 2} and F1, F2, ρ1, ρ2 defined
like in Lemma 29.

Question: φ↓ ⊢Ei
M↓?

Proof. Let us show that φ↓ ⊢E1
M↓ is decidable. The case φ↓ ⊢E2

M↓
is similar. Thanks to Lemma 29, it suffices to check whether νñF2

.(φ↓ ⊢E1

M↓)ρ2 . Since normalization is not effective, we can not compute
νñF1

.(φ↓ ⊢E1
M↓)ρ1 by simply mormalizing the terms and performing

replacements. However, thanks to Lemma 25, it is sufficient to compute
weak normal forms of the terms that occur in the problem and then to
replace modulo E alien factors by names. This means that two factors
that are equal modulo E are replaced by the same name. This is effective
by relying on the fact that the word problem modulo E is decidable. 2

Algorithm. Given a frame φ and a term M (not necessarily in normal
form), we saturate φ as follows.
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20 Cortier, Delaune

− we start with φ0 = φ ∪ {nmin},

− for any term T ∈ St(φ∪{M}), if we have φk↓ ⊢E1
T↓ or φk↓ ⊢E2

T↓
(which is decidable thanks to Lemma 42) we add T to the set of
deducible subterms: φk+1 = φk ∪ {T}.

We make a fixpoint iteration until no more terms are added in φk. Let
φ∗ be the saturated set. Using Lemma 27, we can show (Claim 1) that
φ∗ contains (modulo E) the set of all deducible subterms of St(φ∪{M}).
We deduce that φ ⊢E M if and only if there exists M ′ ∈ φ∗ such that
M =E M

′.

The following claim shows the correctness of the saturation algorithm.

Claim 1. We have φ∗ =E {T | φ ⊢E T and T ∈ St(φ∪{M})}∪{nmin}.

Proof. Let d(φ,M) = {T | φ ⊢E T and T ∈ St(φ ∪ {M})}. We show
both inclusions separately.
• φ∗ ⊆ d(φ,M) ∪ {nmin}.
We show by induction on k that φk ⊆ d(φ,M)∪{nmin}. The base case,
that is φ0 ⊆ d(φ,M) ∪ {nmin}, is obvious. Assume now that for every
U ∈ φk, U is deducible, that is φ ⊢E U . We have φk+1 = φk ∪{T} with
T ∈ St(φ ∪ {M}) such that φk↓ ⊢E1

T↓, thus φ ⊢E T and thus we have
that φk+1 ⊆ d(φ,M) ∪ {nmin}.

• d(φ,M) ∪ {nmin} ⊆E φ∗.
Clearly, we have that nmin ∈ φ∗. Let T ∈ St(φ ∪ {M})↓ be some
deducible term, that is φ ⊢E T . Thus φ↓ ⊢E T with T already in normal
form. Lemma 27 ensures that there exists ζ such that fn(ζ) ∩ ñ = ∅,
ζσ↓ = T and for all ζ ′ ∈ St(ζ), we have

ζ ′σ↓ ∈ St(φ↓ ∪ {ζσ↓}) ∪ {nmin} (∗)

We show by induction on |ζ| that, whenever ζσ↓ ∈ St(φ ∪ {M})↓
and for all ζ ′ ∈ St(ζ), the property (*) holds, then ζσ↓ ∈ φ∗↓.

Base case. If |ζ| ≤ 1 then either ζ is a name or a variable and we easily
conclude, or ζ is built on Σ1 or Σ2. We assume w.l.o.g. that ζ is built
on Σ1. Thanks to Lemma 19, we have that ζσ↓ = ζ(σ↓)↓E1

. Hence,
we deduce that ζ(σ↓) =E1

ζσ↓, i.e. φ↓ ⊢E1
ζσ↓. Thus we have that

ζσ↓ ∈ φ∗↓.

Induction step. Assume that ζ = ζ0[ζ1, . . . , ζk]. We have that ζiσ↓ ∈
St(φ↓∪{ζσ↓})∪{nmin} for 1 ≤ i ≤ k. Actually, thanks to Corollary 17,
we have that ζiσ↓ ∈ St(φ∪{ζσ↓})↓∪{nmin}. Since ζσ↓ ∈ St(φ∪{M})↓,
we deduce that ζiσ↓ ∈ St(φ∪{M})↓∪{nmin}. Since |ζi| < |ζ|, applying
the induction hypothesis, we deduce that ζiσ↓ ∈ φ

∗↓. W.l.o.g. we as-
sume that sign(ζ0) = Σ1. Thus, we have that φ∗↓ ⊢E1

ζ0[ζ1σ↓, . . . , ζkσ↓].
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Thanks to Lemma 19, we deduce that φ∗↓ ⊢E1
ζ0[ζ1σ↓, . . . , ζkσ↓]↓, i.e.

φ∗↓ ⊢E1
ζσ↓. Thus we have that ζσ↓ ∈ φ∗↓. 2

Example 31. Consider Example 28, we successively add in the frame
the terms nmin, n1, n4, n1 + n2, n3, n2 and n2 + n3.

Complexity. Our reduction is polynomial. Our notion of size for terms
was introduced for proving our lemmas by induction. It does not cor-
respond to the actual size of a term since our notion of subterms does
not take into account intermediate syntactic subterms. In addition,
complexity results for deduction and static equivalence are usually
given as functions of the DAG-size of the terms. Thus we express the
complexity of our procedure as function of the DAG-size. The DAG-
size of a term T , denoted tdag(T ), is the number of distinct syntactic
subterms. Similarly, the DAG-size of a set S is the number of distinct
syntactic subterms of terms in S. The DAG-size of a frame φ is defined
to be the number of distinct syntactic subterms of terms in φ plus the
size of dom(φ), to take into account the variables of dom(φ).

We assume that φ ⊢Ei
M can be decided in time fi(tdag(φ)+tdag(M))

where fi : N → R, i ∈ {1, 2}, and we assume that M =E N can be
decided in time f0(tdag(N) + tdag(M)) where f0 : N → R. We also
assume that the fi are non-decreasing functions.

Saturating φ requires at most |St(φ ∪ {M})| ≤ tdag(φ) + tdag(M)
steps. Let A0 = tdag(φ) + tdag(M).

At each step, we check whether νñF2
.(φk↓ ⊢E1

T↓)ρ2 and νñF1
.(φk↓ ⊢E2

T↓)ρ1 for each T ∈ St(φ ∪ {M}). (φk↓)
ρi and (T↓)ρi can be computed

in polynomial time. Indeed, we first have to put term in weak normal
forms. A weak normal form of a term T can be computed in tdag(T ).
Moreover, the resulting term T ′ will be such that T ′ ∈ St(T ) and thus
tdag(T

′) ≤ tdag(T ). In the same way, a weak normal form of the frame
φk can be computed in tdag(φk) · dom(φk) ≤ tdag(φk)

2. Moreover, the
resulting frame φ′k is such that tdag(φ

′
k) ≤ tdag(φk). Then, we have to

duplicate some nodes of the DAG representation of φ′k and T ′ such that
the fathers of a node are all from the same signature (either Σ1 or Σ2).
It is then sufficient to check for equality in E for each factor of φ′k and
T ′ and replace equal alien subterms by equal fresh names. There are
at most tdag(φ

′
k) + tdag(T

′) equality tests, each of the form N1 = N2,
with N1, N2 ∈ St(φ′k∪{T

′}). Each equality test is performed in at most
f0(tdag(N1) + tdag(N2)). Thus, this can be done in at most

(tdag(φ
′
k) + tdag(T

′))(f0(2(tdag(φ
′
k) + tdag(T

′))))
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Note that at each step, the frame φk is of the same DAG-size than
φ∪{M} plus the number of added terms, that is at most the cardinality
of St(φ ∪ {M}). We thus have that

tdag(φ
′
k) ≤ tdag(φk) ≤ (tdag(φ) + tdag(M)) + (tdag(φ) + tdag(M)) ≤ 2A0.

Moreover, since T ′ ∈ St(T ) and T ∈ St(φ ∪ {M}), we have that

tdag(T
′) ≤ tdag(T ) ≤ tdag(φ) + tdag(M) = A0.

Thus computing (φk↓)
ρi and (T↓)ρi can be done in at most

4A0
2 +A0 + 3A0f0(6A0) ≤ 4A0

2 +A0 + 3A0f0(6A0).

It then remains to check whether νñF2
.(φk↓ ⊢E1

T↓)ρ2 or νñF1
.(φk↓ ⊢E2

T↓)ρ1 . We have just seen that computing (φk↓)
ρi and (T↓)ρi requires

to at most duplicate all nodes thus

tdag((φk↓)
ρi) ≤ 2tdag(φk) ≤ 4A0

and

tdag((T↓)
ρi) ≤ 2tdag(T ) ≤ 2(tdag(φ) + tdag(M)) = 2A0.

Hence, we deduce that φ∗ can be computed in time

O(A0[f1(6A0) + f2(6A0) + 2(4A0
2 +A0 + 3A0f0(6A0))]

where A0 = tdag(φ) + tdag(M). In particular, if deciding ⊢Ei
and =Ei

can be done in polynomial time for i ∈ {1, 2} then deciding ⊢E1∪E2
is

also polynomial.

5. Combining algorithms for static equivalence

Our second combination result regards static equivalence.

Theorem 32. Let (Σ1,E1) and (Σ2,E2) be two equational theories
such that Σ1∩Σ2 = ∅. If deduction and static equivalence are decidable
for (Σ1,E1) and (Σ2,E2) then static equivalence is decidable for the
equational theory (Σ1 ∪ Σ2,E1 ∪ E2).

We more precisely show that whenever static equivalence is decid-
able for (Σ1,E1) and (Σ2,E2) and deduction is decidable for (Σ,E),
then static equivalence is decidable for (Σ,E) where Σ = Σ1 ∪ Σ2

and E = E1 ∪ E2. Thanks to our combination result for deduction
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(Theorem 26), we know it is sufficient for deduction to be decidable for
(Σ1,E1) and (Σ2,E2). Note that the decidability of ⊢Ei

is not necessarily
a consequence of the decidability of ≈Ei

. The encoding proposed in [2]
works only when there exists a free function symbol in Σ1.

Our decision procedure works as follows:

− Step 1 : We first add to the frames all their deducible subterms.
This is the reason why we require the decidability of ⊢E. We
show that we can perform such a transformation preserving static
equivalence (Lemma 38).

− Step 2 : Then, we show that to decide whether φ1 |= EqE(φ2), it
is sufficient, to check whether φ1 |= EqE1

(φ2) and φ1 |= EqE2
(φ2)

(Proposition 39).

− Step 3 : Lastly, we abstract alien subterms by fresh names in order
to reduce the signature (Lemma 41).

The rest of the section is devoted to the (sketch of the) proof of
the following theorem. Omitted proofs and a detailed analysis of the
complexity of our combination algorithm can be found in Appendix C.

5.1. Step 1: adding deducible terms to the frames

Let φ = νñ.σ be a frame. A recipe ζ is compatible with φ if fn(ζ)∩ñ = ∅
and fv(ζ) ⊆ dom(φ).

Definition 33. (φ
Π
). Let φ = νñ.σ be a frame and Π = ζ1, . . . , ζℓ be

a sequence of recipes compatible with φ. We define φ
Π

to be:

φ
Π

= νñ.σ ∪ {ζ1σ/y1
, . . . ,ζℓσ /yℓ

}

where for i ∈ {1, . . . , ℓ}, yi is a fresh variable.

Example 34. Let φ = νn1, n2.{
enc(n1,n2)/x1

} and Π be the sequence
proj1(x1), proj2(x1), nmin. We have that

φ
Π

= νn1, n2.{
enc(n1,n2)/x1

,proj1(enc(n1,n2)) /y1
,proj2(enc(n1,n2)) /y2

,nmin /y3
}.

Let φ = νñ.σ be a frame. We say that φ contains all its deducible
subterms if {M | M ∈ St(φ) and φ ⊢E M} ∪ {nmin} ⊆E φ.

Example 35. Consider the frame φ = νn2, n3.{
enc(〈n1+n2,n3〉,n4)/x1

}
given in Example 28 and let E = Eenc∪Exor. Clearly, φ does not contain
all its deducible subterms. Let Π be the sequence proj1(dec(x1, n4)),
proj1(dec(x1, n4)) + n1, proj2(dec(x1, n4)), n1, n4, nmin. We have that:

φ
Π
=E νn2, n3.{

enc(〈n1+n2,n3〉,n4)/x1
, n1+n2/y1

, n2/y2
, n3/y3

, n1/y4
, n4/y5

, nmin/y6
}.
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Lemma 36. Let φ = νñ.σ be a frame and Π be a sequence of recipes
compatible with φ such that:

1. St(Π) ⊆ Π ∪ dom(φ);

2. {M | M ∈ St(φ) and φ ⊢E M} ∪ {nmin} ⊆E {ζσ | ζ ∈ Π} ∪ φ.

We have that φ
Π

contains all its deducible subterms.

Proof. We have to show that:

{M | M ∈ St(φ
Π
) and φ

Π
⊢E M} ∪ {nmin} ⊆E φ

Π
.

We have that: St(φ
Π
) = St(φ) ∪

⋃

ζ∈Π St(ζσ) = St(φ) ∪ {ζσ | ζ ∈ Π}.
The last equality comes from our hypothesis 1. Hence, we have that:

{M | M ∈ St(φ
Π
) and φ

Π
⊢E M} ∪ {nmin}

= {M | M ∈ St(φ) and φ ⊢E M} ∪ {nmin} ∪ {ζσ | ζ ∈ Π}
⊆E {ζσ | ζ ∈ Π} ∪ φ thanks to our hypothesis 2

= φ
Π

Hence we have that φ
Π

contains all its deducible subterms. 2

Example 37. Going back to Example 35, we have that:

− St(Π) ⊆ Π ∪ dom(φ) since St(Π) = Π ∪ {x1};

− {M | M ∈ St(φ) and φ ⊢E M} = φ ∪ {n1, n2, n3, n4, n1 + n2};

− {ζσ↓ | ζ ∈ Π} ∪ φ = {nmin, n1, n2, n3, n4, n1 + n2} ∪ φ.

Hence, according to Lemma 36, we have that φ
Π

contains all its de-
ducible subterms. This is indeed the case.

The following lemma ensures that extending frames preserves static
equivalence.

Lemma 38. Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two frames such that
dom(φ1) = dom(φ2). For any sequence Π of recipes compatible with φ1

(and φ2), we have that:

φ2
Π
|= EqE(φ1

Π
) if and only if φ2 |= EqE(φ1).
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Proof. (⇒) Assume that φ2
Π
|= EqE(φ1

Π
) and consider (M,N) ∈

EqE(φ1). As (φ1
Π
)|dom(φ1) = φ1 and (φ2

Π
)|dom(φ1) = φ2, it follows that

(M =E N)φ1
Π
, thus (M =E N)φ2

Π
, that is (M =E N)φ2.

(⇐) Assume that φ2 |= EqE(φ1) and consider (M,N) ∈ EqE(φ1
Π
). Let

Π = ζ1, . . . , ζn. We have that φ1
Π

= φ1 ∪ {
ζ1σ1/y1

, . . . ,ζnσ1 /yn}. Let
M ′ = Mθ and N ′ = Nθ where θ = {ζ1/y1

, . . . ,ζn /yn}. Since (M =E

N)φ1
Π
, we have that (M ′ =E N ′)φ1, i.e. (M ′, N ′) ∈ Eq(φ1). Since

φ2 |= EqE(φ1), we have (M ′ =E N
′)φ2, and thus (M =E N)φ2

Π
. 2

Thanks to Lemma 38, we deduce that deciding whether φ1 ≈E φ2

is thus equivalent to deciding whether φ1
Π
≈E φ2

Π
(for any suitable

sequence Π). We are looking for a sequence Π such that φ1
Π

and φ2
Π

contain all their deducible subterms. Thanks to Lemma 36, we know
that it is sufficient to chose a set Π such that:

1. St(Π) ⊆ Π ∪ dom(φi);

2. {M | M ∈ St(φ1) and φ1 ⊢E M} ∪ {nmin} ⊆E {ζσ1 | ζ ∈ Π} ∪ φ1;

3. {M | M ∈ St(φ2) and φ2 ⊢E M} ∪ {nmin} ⊆E {ζσ2 | ζ ∈ Π} ∪ φ2.

Computing Π. To compute such a set Π, we need to compute the set
of deducible subterms of φ1 (resp. φ2). Moreover, for each deducible
subterm T of φ1 (resp. φ2), we also need to compute a recipe ζT of T
in φ1 (resp. φ2) modulo E. Such a recipe can usually be deduced from
the decision algorithm applied to φ1 ⊢E T (resp. φ2 ⊢E T ). However, if
it is not the case, once we know that φ1 ⊢E T (resp. φ2 ⊢E T ) using the
decision algorithm, we can enumerate all the recipes until we find such
a ζT . Once we have computed a recipe for each deducible subterm T
of φ1 (resp. φ2), we obtain a set Π′. In order to obtain a set Π satisfying
the three conditions stated above, it is sufficient to consider Π = St(Π′).

5.2. Step 2: Checking for equalities in EqEi

Checking for φ ≈E ψ is equivalent to checking for φ |= EqE(ψ) and
ψ |= EqE(φ). We show that checking for ψ |= EqE(φ) can actually be
done using only equalities in E1 and E2.

Proposition 39. Let φ and ψ be two frames in normal form such that
φ contains all its deducible subterms. We have that ψ |= EqE(φ) if and
only if ψ |= EqE1

(φ) and ψ |= EqE2
(φ).
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It is straightforward that ψ |= EqE(φ) implies ψ |= EqE1
(φ) and

ψ |= EqE2
(φ). To prove the converse, we consider the following ordering

on pairs of terms. We have (M,N) < (M ′, N ′) if

(max(|M |, |N |), |M | + |N |) <lex (max(|M ′|, |N ′|), |M ′|+ |N ′|)

where <lex is the lexicographic order.
Now, assuming that ψ |= EqE1

(φ) and ψ |= EqE2
(φ), we show by

induction that (M,N) ∈ EqE(φ) implies (M =E N)ψ.
When (max(|M |, |N |), |M | + |N |) ≤ (1, 1), we have that (M,N) ∈

EqE1
(φ) (or (M,N) ∈ EqE2

(φ)) and we easily conclude. Otherwise, we
distinguish the following cases (detailed in Appendix C):

− There exists ζ ∈ Fct(M) (or ζ ∈ Fct(N)) such that ζσ↓ ∈ St(φ).
By relying on the fact that φ contains all its deducible subterms, we
know that there exists a variable x in dom(φ) such that (ζ =E x)φ.
By using our induction hypothesis, we deduce that (ζ =E x)ψ.
This will allow us to build a term M ′ that is smaller than M
such that (M =E M

′)φ and (M =E M
′)ψ. Then, by relying again

on our induction hypothesis, we deduce from (M ′ =E N)φ that
(M ′ =E N)ψ, and thus (M =E N)ψ.

− The same kind of reasoning holds when there exists ζ ∈ Fct(M)
(or ζ ∈ Fct(N)) such that sign(ζσ) 6= sign(ζσ↓). By relying on the
fact that φ contains all its deducible subtems, we will find M ′ such
that |M ′| ≤ |M |, (M =E M

′)φ and (M =E M
′)ψ (this is formally

stated in Lemma 40). Then, using again our induction hypothesis,
we deduce that (M ′ =E N)ψ, and thus (M =E N)ψ.

− Otherwise, we can built a smaller test (M ′, N ′) by abstracting
some of the factors of M and N by fresh names. We will still have
that (M ′ =E N ′)φ. By relying on our induction hypothesis, we
deduce that (M ′ =E N

′)ψ. Then, it remains to go back to the test
(M,N) by replacing the fresh names by the original terms, still
preserving the equality.
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Lemma 40. Let φ = νñ.σ and ψ = νñ.σ′ be two frames in normal
form such that φ contains all its deducible subterms, ψ |= EqE1

(φ) and
ψ |= EqE2

(φ). Let (M,N) ∈ EqE(φ) be such that (fn(M)∪fn(N))∩ñ = ∅
and assume that for all terms M ′, N ′

(M ′, N ′) < (M,N) implies (M ′ =E N
′)φ⇒ (M ′ =E N

′)ψ.

If there exists ζ ∈ St(M) such that sign(ζσ) 6= sign(ζσ↓), then there
exists M1 such that |M1| < |M |, (M =E M1)φ and (M =E M1)ψ.

The proofs of Lemma 40 and Proposition 39 are given in Appendix C.

5.3. Step 3: Abstraction of alien subterms

Since ψ and φ are built on Σ (and not on Σi), we cannot check whether
ψ ≈Ei

φ using the decision algorithm for ≈Ei
. We show however that

we can simply abstract the alien subterms by fresh names.

Lemma 41. Let φ and ψ be two frames built on Σ. Let F2 = {N ∈
St(φ ∪ ψ) | sign(N) = Σ2}, ñF2

be a set of names, distinct from the
names occurring in φ and ψ, of the same cardinality as F2 and ρ2 :
F2 → ñF2

a replacement. Assume that φ and ψ are in normal form.
We have that

φ |= EqE1
(ψ) if and only if νñF2

.φρ2 |= EqE1
(νñF2

.ψρ2)

A similar result holds when inverting the indices 1 and 2.
Proof. (⇒) Let (M,N) ∈ EqE1

(νñF2
.ψρ2). We have to show (M =E1

N)φρ2 .
Since (M =E1

N)ψρ2 and since E1 is closed by substitutions of terms

for names, we deduce that ((M =E1
N)ψρ2)ρ2

−1

. Moreover, we have
that

− (Mψρ2)ρ2
−1

= M(ψρ2)ρ2
−1

= Mψ since ñF2
6∈ fn(M), and

− (Nψρ2)ρ2
−1

= N(ψρ2)ρ2
−1

= Nψ since ñF2
6∈ fn(N).

This allows us to obtain that (M =E1
N)ψ. Now, since φ |= EqE1

(ψ),
we deduce that (M =E1

N)φ. Let φ = νñ.σ. We have that Mσ↓ =
Nσ↓. Since sign((Mσ)ρ2) 6= Σ2 and (Mσ)ρ2 does not contain subterms
of sign Σ2, all its factors are in normal form. Thus, we can apply
Lemma 19, yielding to (Mσ)ρ2↓ = (Mσ)ρ2↓E1

. We deduce that

(Mσ)ρ2↓ =E1
(Mσ)ρ2 (4)

In the same way, we can obtain (Nσ)ρ2↓ =E1
(Nσ)ρ2 .
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Since all the factors of Mσ and Nσ are in normal form, we can apply
Lemma 20, yielding to

(Mσ)ρ2↓ = (Mσ)↓ρ2↓ (Nσ)ρ2↓ = (Nσ)↓ρ2↓ (5)

By the equalities (5) and the fact that Mσ↓ = Nσ↓, we obtain that
(Mσ)ρ2↓ = (Nσ)↓ρ2↓ = (Nσ)ρ2↓. Now, using equalities (4), we obtain
(Mσ)ρ2 =E1

(Nσ)ρ2 . Now, since M and N are terms built on Σ1, we
have that (Mσ)ρ2 = M(σρ2) and (Nσ)ρ2 = N(σρ2) (syntactically).
This allows us to conclude.
(⇐) Let (M,N) ∈ EqE1

(ψ). We have to show that (M =E1
N)φ. Firstly,

we can assume w.l.o.g. that (fn(M)∪ fn(N)) ∩ ñF2
= ∅. Let ψ = νñ.σ.

Since sign((Mσ)ρ2) 6= Σ2 and (Mσ)ρ2 does not contain subterms
of sign Σ2, all its factors are in normal form. Thus, we can apply
Lemma 19, yielding to (Mσ)ρ2↓ = (Mσ)ρ2↓E1

. We deduce that

(Mσ)ρ2↓ =E1
(Mσ)ρ2 (6)

In the same way, we obtain (Nσ)ρ2↓ =E1
(Nσ)ρ2 .

Since all the factors of Mσ and Nσ are in normal form, we can apply
Lemma 20, yielding to

(Mσ)ρ2↓ = (Mσ)↓ρ2↓ (Nσ)ρ2↓ = (Nσ)↓ρ2↓ (7)

By the equalities (7) and the fact that Mσ↓ = Nσ↓, we obtain that
(Mσ)ρ2↓ = (Nσ)↓ρ2↓ = (Nσ)ρ2↓. Now, using equalities (6), we ob-
tain (Mσ)ρ2 =E1

(Nσ)ρ2 . Now, since M and N are terms built on
Σ1, we have that (Mσ)ρ2 = M(σρ2) and (Nσ)ρ2 = N(σρ2) (syntac-
tically). Hence, we obtain that (M =E1

N)ψρ2 . Since νñF2
.φρ2 |=

EqE1
(νñF2

.ψρ2), we deduce that (M =E1
N)φρ2 . Since E1 is closed by

substitutions of terms for names, we deduce that ((M =E1
N)φρ2)ρ2

−1

.

We have (Mφρ2)ρ2
−1

= M(φρ2)ρ2
−1

= Mφ since ñF2
∩ fn(M) = ∅. For

the same reason, we have that (Nφρ2)ρ2
−1

= Nφ. This allows us to
conclude. 2

5.4. Combination algorithm for static equivalence

Similarly to the deduction case, we first show that φ1↓ ≈Ei
φ2↓ is

decidable. This is used as a sub-task in our combination algorithm for
static equivalence.

Lemma 42. The following problem is decidable.

Entries: Two frames φ1 and φ2, i ∈ {1, 2} and F1, F2, ρ1, ρ2 defined
like in Lemma 41.
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Question: φ1↓ ≈Ei
φ2↓?

Proof. Without loss of generality, let us show that φ1↓ ≈E1
φ2↓ is

decidable. Thanks to Lemma 41, it suffices to check whether we have
that νñF2

.φ1↓
ρ2 ≈E1

νñF2
.φ2↓

ρ2 . Since normalization is not effective,
we have to compute νñF2

.(φ1↓)
ρ2 and νñF2

.(φ2↓)
ρ2 without normaliz-

ing terms. For this, we rely on Lemma 25. It is actually sufficient to
compute weak normal forms of the terms that occur in the problem
and then to replace modulo E alien factors by names. This means that
two factors that are equal modulo E are replaced by the same name.
This is effective by relying on the fact that the word problem modulo E

is decidable. Note that checking whether M =Ei
N amounts to check

whether {M/x} ≈Ei
{N/x}. Hence decidability of =E is a consequence

of the facts that ≈E1
and ≈E2

are decidable by relying on a well-known
combination result [9]. 2

To sum up, checking for φ1 ≈E φ2 is performed in two steps:

1. computing φ′1 = φ1
Π

and φ′2 = φ2
Π

where Π is a set of recipes
compatible with φ1 (and φ2) such that:

St(Π) ⊆ Π ∪ dom(φi);

{M | M ∈ St(φ1) and φ1 ⊢E M} ∪ {nmin} ⊆E {ζσ1 | ζ ∈ Π} ∪ φ1;

{M | M ∈ St(φ2) and φ2 ⊢E M} ∪ {nmin} ⊆E {ζσ2 | ζ ∈ Π} ∪ φ2.

2. checking for φ′1↓ ≈E1
φ′2↓ and φ′1↓ ≈E2

φ′2↓.

Complexity. The complexity of the procedure mostly depends on the
complexity of computing φ′1 and φ′2 and on their size. In particular, it
depends on the time for computing recipes and on their size. Assume
that:

− φ ⊢E M can be decided in f3(tdag(φ) + tdag(M)),

− a recipe ζ such that (ζ =E M)φ can be computed in f4(tdag(φ) +
tdag(M)) and that we control the size of the recipe tdag(ζ) ≤
f5(tdag(φ) + tdag(M))

− φ ≈Ei
ψ can be decided in fi(tdag(φ) + tdag(ψ)) for i ∈ {1, 2}.

− M =E N can be decided in f0(tdag(M)+ tdag(N)). Since M =Ei
N

can be decided by checking whether {M/x} ≈Ei
{N/x}, we can

decide =Ei
using the decidability of ≈Ei

and then combine the
algorithms to get the decidability of =E (see [9]). In particular,
if f1 and f2 are polynomial, then f0 is polynomial. However, it is
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often the case that an easier algorithm exists for the word problem
for E.

Then it is easy to check (see Appendix C) that φ ≈E ψ can be decided
in a time that can expressed as a polynomial in fi(P (f5(Q(tdag(φ) +
tdag(ψ))), tdag(φ) + tdag(ψ))) with i ∈ {0, . . . , 5} where P and Q are
polynomials. In particular, if the fi are polynomial, ≈E is decidable in
polynomial time.
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— PART II: Monoidal theories —

In this part of the paper, we develop a general approach for deciding
deduction and static equivalence for the class of monoidal theories
introduced by F. Baader [4] and W. Nutt [31]. This class captures
many theories with associative and commutative properties (AC), which
are known to be difficult to deal with. Actually, we propose a general
schema for deciding deduction and static equivalence. This schema has
to be filled with procedures for linear equations in order to yield com-
plete algorithms. Such algorithms strongly depend on the structure of
the semiring associated to a monoidal theory. We will see in Part III
that Algebra provides useful techniques and results to fill in this gap.

In Section 6, we define the central notion of monoidal theory. We
show how monoidal theories are related to semirings and how to rep-
resent terms (resp. frames) by means of vectors (resp. matrices) over
semirings. Then Section 7 and 8 are devoted to the study of deduction
and static equivalence respectively.

6. Monoidal theories

Monoidal theories generalise the equational theories AC, exclusive or,
. . . In this section, we first define monoidal theories and then give
examples.

Definition 43. (monoidal theory). A theory E over Σ is called monoidal
if it satisfies the following properties:

1.The signature Σ contains a binary function symbol + and a constant
symbol 0, and all other function symbols in Σ are unary.

2.The symbol + is associative-commutative with unit 0, i.e. the equa-
tions x + (y + z) = (x + y) + z, x + y = y + x and x + 0 = x are
in E.

3.Every unary function symbol h ∈ Σ is an endomorphism for + and 0,
i.e. h(x+ y) = h(x) + h(y) and h(0) = 0 are in E.

Example 44. Suppose + is a binary function symbol and 0 is nullary.
Moreover assume that the others symbols, i.e −, h, are unary symbols.
The equational theories below are monoidal.

− The theory ACU over Σ = {+, 0} which consists of the axioms of
associativity and commutativity with unit 0.
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− The theory ACUI over Σ = {+, 0} which consists of the axioms
(AC), (U), and the axiom of Idempotency (I) x+ x = x.

− The theory ACUN ( exclusive or, previously denoted E+) over Σ =
{+, 0} which consists of the axioms (AC), (U), and the axiom of
Nilpotency (N) x+ x = 0.

− The theory AG (Abelian groups) over Σ = {+,−, 0} which is
generated by the axioms (AC), (U) and x+−(x) = 0 (Inv). Indeed,
the equations −(x+y) = −(x)+−(y) and −0 = 0 are consequences
of the others.

− The theories ACUh, ACUIh, ACUNh over Σ = {+, h, 0} and AGh

over Σ = {+,−, h, 0}: these theories correspond to the ones de-
scribed above extended by the homomorphism laws (h) for the sym-
bol h, i.e. h(x + y) = h(x) + h(y) and h(0) = 0 (if it is not a
consequence of the other equations).

Note that there are two homomorphisms in the theory AGh, namely−
and h. These two homomorphisms commute: h(−x) = −(h(x)) is a
consequence of the others. Other examples of monoidal theories can be
found in [31].

It has been shown that the deduction problem for ACU amounts
to solving linear equations over the semiring N whereas for AGh this
problem amounts to solving linear equations over the ring Z[h], the
ring of polynomials in one indeterminate with coefficients over Z [21].
Some results of this kind also exist in the case of static equivalence.
For instance, static equivalence has been shown decidable for the equa-
tional theories ACUN and AC [2]. By using an algebraic characterization
of the problem, we will generalize these results by associating to ev-
ery monoidal theory E a semiring SE, that will be used to solve the
deduction and the static equivalence problems in E.

6.1. Monoidal theories define semirings

Monoidal theories have an algebraic structure close to rings except that
elements might not have an additive inverse. Such a structure is called
a semiring.

Definition 45. (semiring). A semiring is a set S (called the universe
of the semiring) with distinct elements 0 and 1 that is equipped with
two binary operations + and · such that (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, and the following identities hold for all
α, β, γ ∈ S:
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(α+ β) · γ = α · γ + β · γ (right distributivity)

α · (β + γ) = α · β + α · γ (left distributivity)

0 · α = α · 0 = 0 (zero laws).

We call the binary operations + and · respectively the addition and
the multiplication of the semiring. The elements 0 and 1 are called
respectively zero and unit. In the sequel we will often omit the · sign and
write αβ instead of α · β. A semiring is commutative if its multiplication
is commutative. Semirings are different from rings in that they need not
be groups with respect to addition. Every ring is a semiring. In a ring,
we will denote by −α the additive inverse of α, and we write α− β as
an abbreviation of α+ (−β).

It has been shown in [31] that for any monoidal theory E there
exists a corresponding semiring SE. We can rephrase the definition
of SE as follows. Let 1 be a free constant (1 6∈ Σ). The universe
of SE is T (Σ, {1})/E, that is the set of equivalence classes of terms
built over Σ and 1 under equivalence by the equational axioms E.
The constant 0 and the sum + of the semiring are defined as in the
algebra T (Σ, {1})/E. The multiplication in the semiring is defined by
s · t := s[1 7→ t] where M [N1 7→ N2] denotes the replacement of all
occurrences of N1 in M by N2. As a consequence, 1 acts as a neutral
element of multiplication in SE. This is the reason why we call this new
generator 1 instead of, say, x, as it is often done in the literature. It
can be shown [31] that SE is a ring if, and only if, E is a group theory,
and also that SE is commutative if, and only if, E has commuting ho-
momorphisms, i.e. h1(h2(x)) =E h2(h1(x)) for any two homomorphisms
h1 and h2. For instance, we have that

1. The semiring SACU is isomorphic to N, the semiring of natural
numbers.

2. The semiring SACUN consists of the two elements 0 and 1 and we
have 0 + 1 = 1 + 0 = 1, 0 + 0 = 1 + 1 = 0, 0 · 0 = 1 · 0 = 0 · 1 = 0,
and 1 · 1 = 1. Hence, SACUN is isomorphic to the commutative ring
(field) Z/2Z.

3. The semiring SAGh is isomorphic to Z[h] which is a commutative
ring.

Let b be a free symbol (name or variable). We denote by ψb : T (Σ, {b})→ SE

the function which maps any term M ∈ T (Σ, {b}) to M [b 7→ 1] consid-
ered as an element of the semiring SE.
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Example 46. Let E = ACUN and t = b + b + b. We have ψb(t) =
1 + 1 + 1 = 1.

6.2. Representation of terms and frames

In this section, we show how to represent terms and frames by means of
vectors and matrices over a semiring. For this, we introduce the notion
of base to decompose terms and frames. We also consider frames which
are saturated w.r.t. a base (see Definition 51). This will be convenient
in the next two sections and can be easily achieved.

A base B is a sequence [b1, . . . , bm] of free symbols (names or vari-
ables), We say that B is a base of names when b1, . . . , bm are names.

Definition 47. (decomposable in a base). A term M ∈ T (Σ,N ∪
X ) is decomposable in B if fn(M) ∪ fv(M) ⊆ B.

Let φ = νñ.{M1/x1
, . . . ,Mℓ/xℓ

} be a frame. We say that φ is decom-
posable in B if each Mi is decomposable in B.

Let B = [b1, . . . , bm]. We generalize the construction of the previous
section and obtain a function which assigns to any term in T (Σ,B) a
tuple in Sm

E , that is a tuple of m elements over SE.
The function ψB : T (Σ, {b1, . . . , bm})→ S

m
E is defined as follows: Any

term M ∈ T (Σ, {b1, . . . , bm}) has a unique decomposition M1, . . . ,Mm

such that M = M1 + . . . + Mm with Mi ∈ T (Σ, {bi}) [31]. We define
ψB(M) = (ψb1(M1), . . . , ψbm

(Mm)). Given a vector X ∈ Sm
E of size m,

ψ−1
B (X) is a term M ∈ T (Σ,B) such that ψB(M) = X. This term is

uniquely defined modulo E.

Example 48. Taking into account that the semiring SAGh is (isomor-
phic to) Z[h], we have that ψ[b1,b2,b3](b1 + b1 + h(b3) + h(h(h(b3)))) =

(2, 0, h + h3). Indeed, we have that ψb1(b1 + b1) = 2, ψb2(0) = 0 and
ψb3(h(b3) + h(h(h(b3)))) = h + h3.

A term can be uniquely decomposed on a base B. This can be extended
to associate a (unique) matrix to a frame. Let φ = νñ.σ be a frame and
B = [b1, . . . , bm] be a base of names in which φ is decomposable. Let
σ = {M1/x1

. . .Mℓ/xℓ
}. We denote by ψB(φ) the matrix of size ℓ×m (ℓ

rows and m columns) defined by (ψB(M1); . . . ;ψB(Mℓ)). This matrix
is the decomposition of φ in B.

Example 49. Consider the equational theory ACU given in Exam-
ple 44 and let

φ = νn1, n2, n3.{
3n1+2n2+3n3/x1

, n2+3n3/x2
, 3n2+n3/x3

, 3n1+n2+4n3/x4
}
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where the notation kn with k ∈ N denotes n+ · · · + n (k times). Let
B = [n1, n2, n3]. We have that

ψB(φ) =









3 2 3
0 1 3
0 3 1
3 1 4









since

− ψB(3n1 + 2n2 + 3n3) = (3, 2, 3),

− ψB(n2 + 3n3) = (0, 1, 3),

− ψB(3n2 + n3) = (0, 3, 1), and

− ψB(3n1 + n2 + 4n3) = (3, 1, 4).

Applying a recipe to a frame is equivalent to multiplying the corre-
sponding matrices.

Lemma 50. Let φ = νñ.σ be a frame and ζ be a term in T (Σ, dom(φ)).
Let B be a base of names in which we can decompose φ. We have that:

ψB(ζσ) = ψdom(φ)(ζ) · ψB(φ).

Proof. Let σ = {M1/x1
, . . . ,Mℓ/xℓ

} and ζ be a term in T (Σ, dom(φ)).
We have that ζ = ζ1 + . . .+ ζℓ for some ζi ∈ T (Σ, {xi}).

ψB(ζσ) = ψB(ζ1σ + . . .+ ζℓσ)
= ψB(ζ1[x1 7→M1] + . . .+ ζℓ[xℓ 7→Mℓ])
= ψB(ζ1[x1 7→M1]) + . . .+ ψB(ζℓ[xℓ 7→Mℓ])
= ψx1

(ζ1) · ψB(M1) + . . .+ ψxℓ
(ζℓ) · ψB(Mℓ)

= ψdom(φ)(ζ) · ψB(φ) 2

Note that to apply the equation stated in Lemma 50, the recipe ζ has
to be built without names. To ensure that such kind of recipes always
exist, we will work with frames saturated w.r.t. B (base of names in
which the frames are decomposable).

Definition 51. (frame saturated w.r.t. B). Let φ = νñ.σ be a frame
and B be a base of names [b1, . . . , bm] in which φ is decomposable. We
say that φ is saturated w.r.t. B if for each bi ∈ B such that bi 6∈ ñ we
have that bi = xσ for some x ∈ dom(φ).

Given a frame φ = νñ.{M1/x1
, . . . ,Mℓ/xℓ

} and a base of names B = [b1, . . . , bk]

in which φ is decomposable, we denote by φ
B

the frame defined as
follows:

φ
B

= νñ.{M1/x1
, . . . ,Mℓ/xℓ

, bi1/y1
, . . . , bip/yp}

where bi1 , . . . , bip is a subsequence of B such that bij 6∈ ñ and bij 6= xσ
for every x ∈ dom(φ). The variables y1, . . . yp are fresh, which means

that they do not appear in dom(φ). Note that the resulting frame φ
B

is saturated w.r.t. B.
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Example 52. Let φ be the frame given in Example 49. Let B =
[n1, n2, n3]. We have that φ is decomposable on B and also that φ is
saturated w.r.t. B. However, note that φ is not saturated w.r.t. B′ =
[n1, n2, n3, n4]. We have that

φ
B′

= νn1, n2, n3.{
3n1+2n2+3n3/x1

, n2+3n3/x2
, 3n2+n3/x3

, 3n1+n2+4n3/x4
, n4/y1

}.

7. Deduction

We show that solving a deduction problem can be reduced to solving
a linear system of equations in the corresponding semiring.

Theorem 53. Let E be a monoidal theory and SE be its associated
semiring. Deduction in E is reducible in polynomial time to the follow-
ing problem:

Entries: A matrix A over SE of size ℓ ×m and a vector b over SE of
size ℓ
Question: Does there exist X (a vector over SE of size ℓ) such that
X · A = b?

Note that when SE is commutative, this problem is equivalent to the
problem of deciding whether AT ·Y = bT, i.e whether bT is in the image
of AT where MT is the transpose of M . Before proving the reduction
we need to establish that we can restrict our attention to saturated
frames. Moreover, for such frames, it is sufficient to consider recipes
without names, i.e. such that fn(ζ) = ∅.

Lemma 54. Let φ = νñ.σ be a frame and M be a ground term. Let B
be a base of names in which φ and M are decomposable. We have that

φ ⊢E M if and only if φ
B
⊢E M . Moreover when φ

B
⊢E M there exists

a recipe ζ of M such that fn(ζ) = ∅.
Proof. Intuitively, the first point is due to the fact that we extend φ

with some names which are deducible from φ. Hence, in term of de-

ducible power φ and φ
B

are equivalent. More formally, if φ ⊢E M , we can
assume that there exists ζ such that fn(ζ) ⊆ Brñ and fv(ζ) ⊆ dom(φ).
From such a ζ it is easy to compute ζ ′ by replacing any occurrence of a

name in B r ñ by the corresponding variable in dom(φ
B
) which refers

to this name. Since we can always assume that fn(ζ) ⊆ Br ñ, we have
that fn(ζ ′) = ∅. The reverse transformation, i.e. the replacement of

variables in dom(φ
B
) r dom(φ) by names refered by these variables in

φ
B
, allows us to conclude for the converse. 2
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Reduction. Let φ = νñ.σ be a frame and M be a ground term. Let B
be a base of names in which φ and M are decomposable. We will also
assume w.l.o.g. that φ is saturated w.r.t. B. Let A = ψB(φ) be matrix
of size ℓ×m over SE, and b = ψB(M) be a vector of size m over SE.

Proof. (of Theorem 53) The construction described above is such
that X · A = b has a solution over SE if and only if φ ⊢E M .
(⇒) We know that there exists X ∈ Sℓ

E such that X · A = b. Consider

the recipe ζ = ψ−1
dom(φ)(X). By construction, we have that fn(ζ)∩ñ = ∅.

It remains to show that ζσ =E M . For this, we establish that ψB(ζσ) =
ψB(M). Thanks to Lemma 50, we have that ψB(ζσ) = ψdom(φ)(ζ) ·
ψB(φ). Hence we deduce that ψB(ζσ) = X ·A = b = ψB(M). Hence the
result.
(⇐) Assume that φ ⊢E M . Thanks to Lemma 54 and by the fact that
φ is saturated w.r.t. B, we know that there exists ζ ∈ T (Σ, dom(φ))
such that ζσ =E M . Let Y = ψdom(φ)(ζ). It remains to establish that
Y · A = b. Since ζσ =E M , we have ψB(ζσ) = ψB(M). By Lemma 50,
we have ψdom(φ)(ζ) ·ψB(φ) = ψB(M), i.e. Y ·A = b witnessing the fact
that X · A = b has a solution over SE. 2

Example 55. Consider the theory ACUNh and the term M = n1 +
h(h(n1)). Let φ = νn1, n2.{

n1+h(n1)+h(h(n1))/x1
, n2+h(h(n1))/x2

, h(n2)+h(h(n1))/x3
}.

We have:

A =

(

1 + h + h2 h2 h2

0 1 h

)

and b =

(

1 + h2

0

)

The equation X ·A = b has a solution over Z/2Z[h] : (1 + h, h, 1). The
term M is deducible from φ by using the recipe x1 + h(x1) + h(x2) + x3.

As a consequence, decidability/complexity results for deduction can
be deduced from decidability/complexity results for solving linear sys-
tem of equations over semirings (see Section 9).

8. Static equivalence

We show that deciding whether two frames are equivalent can be re-
duced to deciding whether two matrices satisfy the same set of equali-
ties.

Theorem 56. Let E be a monoidal theory and SE be its associated
semiring. Static equivalence in E is reducible in polynomial time to the
following problem:
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Entries: Two matrices A1 and A2 over SE of size ℓ×m
Question: Does the following equality holds?
{(X,Y ) ∈ Sℓ

E × S
ℓ
E | X ·A1 = Y · A1} = {(X,Y ) ∈ Sℓ

E × S
ℓ
E | X · A2 =

Y ·A2}

Similarly to deduction, we first show that we can restrict our attention
to saturated frames. Moreover, we show that it is sufficient to consider
recipes, i.e. tests (M,N), without names.

Lemma 57. Let φ1 = νñ.σ1, φ2 = νñ.σ2. and B be a base of names
in which φ1 and φ2 are decomposable. We have that φ1 ≈E φ2 if and

only if φ1
B
≈E φ2

B
. Moreover, if φ1

B
6≈E φ2

B
then there exist M,N ∈

T (Σ, dom(φ1
B
)) such that (M =E N)φ1

B
6⇔ (M =E N)φ2

B
.

Proof. (⇒) Assume that φ1 ≈E φ2. We have that φ1
B

= νñ.(σ1∪σ
0
1)

and φ2
B

= νñ.(σ2 ∪ σ
0
2) for some substitutions σ0

1 and σ0
2 such that

σ0
1 = σ0

2. Indeed, otherwise, we will obtain a test of the form x = ni with
x ∈ dom(φ1) and ni ∈ B r ñ such that (x =E ni)φ1 6⇔ (x =E ni)φ2.

Hence, we have that dom(φ1
B
) = dom(φ2

B
). Now, assume that φ1

B
6≈E

φ2
B
, then there exists a test (M,N) such that (M =E N)φ1

B
whereas

(M 6=E N)φ2
B

(or the converse). Let M ′ = Mσ0
1 and N ′ = Nσ0

1. We
have (M ′ =E N

′)φ1 whereas (M ′ 6=E N
′)φ2. Hence contradiction.

(⇐) Assume that φ1 6≈E φ2. Let M,N be such that (M =E N)φ1

whereas (M 6=E N)φ2 (or the converse). It is clear that φ1
B
6≈E φ2

B
.

Indeed, a witness of this fact is the test (M,N).
Lastly, if we have that φ1 6≈E φ2, then there exists a witness (M,N)

such that fn(M) ∪ fn(N) ⊆ B r ñ. Hence, if we consider M ′ and N ′

the terms obtained from M and N by replacing any occurrence of a

name in Br ñ by the corresponding variables in dom(φ1
B
) which refers

to this name. This allows us to easily conclude. 2

Reduction. Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two frames having the
same domain. Let B be a base of names in which the two frames are
decomposable. We assume w.l.o.g. that φ1 and φ2 are saturated w.r.t.
B. Let m = |B|. Let A1 = ψB(φ1) and A2 = ψB(φ2), two matrices of
size ℓ×m, over SE.

Proof. (of Theorem 56) The construction above is such that φ1 ≈E φ2

iff
{(X,Y ) ∈ Sℓ

E × S
ℓ
E | X · A1 = Y ·A1} = {(X,Y ) ∈ Sℓ

E × S
ℓ
E | X · A2 =

Y ·A2}.
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(⇒) Assume by contradiction that there exists (XM ,XN ) such that
XM · A1 = XN · A1 and XM · A2 6= XN · A2 (or the converse). Let
M = ψ−1

dom(φ1)(XM ) and N = ψ−1
dom(φ1)(XN ). We have that

− (M =E N)φ1. For this, it is sufficient to show that ψB(Mσ1) =
ψB(Nσ1), i.e. ψdom(φ1)(M) ·ψB(φ1) = ψdom(φ1)(N) ·ψB(φ1) thanks
to Lemma 50. Now to conclude, it is sufficient to notice that we
have XM = ψdom(φ1)(M), XN = ψdom(φ1)(N) and A1 = ψB(φ1)
and to rely on the hypothesis.

− (M 6=E N)φ2 can be shown similarly.

(⇐) Assume that φ1 6≈E φ2. We have that there exists a test (M,N)
such that (M =E N)φ1 and (M 6=E N)φ2 (or the converse). Thanks
to Lemma 57 and the fact that the frames are saturated, we can as-
sume that M,N ∈ T (Σ, dom(φ1)). Let XM = ψdom(φ1)(M) and XN =
ψdom(φ1)(N). We have

− XM · A1 = XN · A1. We have Mσ1 =E Nσ1, hence ψB(Mσ1) =
ψB(Nσ1). By Lemma 50, we have that ψdom(φ1)(M) · ψB(φ1) =
ψdom(φ1)(M) · ψB(φ1), i.e. XM ·A1 = XN ·A1.

− X · A2 6= Y ·A2 can be established in a similar way. 2

Going further. Thanks to Theorem 56, we give a way to decide static
equivalence in monoidal equational theories provided we can decide
whether two sets of linear equations over SE have the same set of solu-
tions. Actually, when SE is a ring or when we can extend the semiring
SE into a ring RE, the static equivalence problem is equivalent to the
problem of deciding whether the equality

{Z ∈ Rℓ
E | Z ·A1 = 0} = {Z ∈ Rℓ

E | Z · A2 = 0}

holds. When RE is commutative, it is equivalent to deciding whether
Ker(A1) = Ker(A2), where Ker(M) denotes the kernel of the matri-
ces M , i.e. the set {X | M ·X = 0}.

In particular, when E is a group theory, we can choose RE to be SE

since SE is actually a ring [31]. Otherwise, it might be possible to
extend the equational theory E with a new unary symbol − and the law
x+−(x) = 0 in order to obtain a theory E′ that is consistent with E,
i.e. for all u, v ∈ SE such that u =E′ v, we have also that u =E v. In such
a case, the ring RE is the semiring SE′ associated to E′ as explained in
Section 6.1.

Example 58. We have seen that the semiring associated to AG is
isomorphic to Z which is a commutative ring. Hence, we have that RE
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is isomorphic to Z. The associated semiring to the monoidal equational
theory ACU is isomorphic to N whereas its associated ring is Z.

Note that the transformation described above does not allow us to
associate a ring to any semiring. For instance, if we consider the the-
ory ACUI and the theory E′ obtained by the transformation described
above, we have that 0 =E′ (1 + 1) +−(1) =E′ 1 + (1 +−(1)) =E′ 1 whereas
this equality does not hold in ACUI.
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— PART III: Summary of decidability results —
In this part, we give an overview of existing results for deduction

and static equivalence for many relevant equational theories. Several
of them are obtained thanks to the techniques developed in the two
previous parts of this paper. A summary is given in Figure 1.

9. Monoidal theories

In this section, we show that several interesting monoidal equational
theories induce a ring or a semiring for which solving linear systems
or checking for equalities of sets of solutions of linear systems are
decidable.

Theory ACU. This equational theory is the simplest monoidal the-
ory. The semiring corresponding to this theory is N whereas its asso-
ciated ring is Z. This equational theory has been particularly studied.
Since the problem of solving linear equations over N is strongly NP-
complete, we obtain that deduction is a NP-complete problem. The
problem of static equivalence for this theory has been shown decidable
in [2]. Actually thanks to the algebraic characterization given in this
paper, this problem can be solved in polynomial time [35].

At first sight, it might seem surprising since it has been shown [2]
that deduction in a given theory E can be reduced in polynomial time to
static equivalence in E. However, this reduction required the presence
of a free function symbol and such a function symbol is not available in
the theory ACU. Hence, the polynomial reduction provided in [2] does
not apply in this setting.

Theories ACUI and ACUN (Exclusive Or). The semirings cor-
responding to these equational theories are respectively the Boolean
semiring B, which is finite, and the finite field Z/2Z. The theory ACUN

has already been studied in terms of deduction [19, 13] and static
equivalence [2]. Deduction and static equivalence are both decidable
in polynomial time. As far as we know the theory ACUI has only been
studied in term of deduction [22]. Actually, since its associated semiring
is finite, we easily deduce that deduction and static equivalence are
decidable.

Theory AG (Abelian Groups). The semiring associated to this
equational theory is in fact a ring, namely the ring Z of all integers.
There exist several algorithms to compute solutions of linear equations
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over Z and to compute a base of the set of solutions (see for in-
stance [35]). Hence, we easily deduce that both problems are decidable
in PTIME. Deduction for this theory has already been studied in [19]
and [12].

Theories ACUh, ACUNh and AGh. The semiring associated to ACUh

is N[h], the semiring of polynomials in one indeterminate over N, whereas
the ring associated to ACUh is Z[h]. For the theory ACUNh (resp. AGh)
the associated semiring is Z/2Z[h] (resp. Z[h]). Deduction for these
three equational theories has already been studied in [25, 21]. However,
results obtained on static equivalence are new.

1. ACUh and AGh: Deciding static equivalence for both these theories
is reducible to the problem of deciding whether Ker(A) = Ker(B)
where A and B are matrices built over N[h] in the case of ACUh and
Z[h] in the case of AGh. This problem has been solved by F. Baader
to obtain a unification algorithm for the theory AGh (see [5]). This
is done by the help of Gröbner Base methods in a more general
settings. Actually, he provides an algorithm even in the case of
several commuting homomorphisms.

2. ACUNh: Deciding static equivalence in ACUNh is reducible to the
problem of deciding whether Ker(A) = Ker(B) where A and B are
matrices built over Z/2Z[h]. This is achieved in [26] by using an
automata-theoretic approach.

Theory ACUIh. The semiring associated to ACUIh is B[h]. Deduction
for this theory has never been studied but is clearly decidable. Indeed,
to find a solution to A · X = b, it is easy to see that each component
of a solution to A · X = b has a degree smaller than the degree of
b. Hence, the question of deciding whether there exists X such that
A · X = b can be reduced to solving a system of linear equations
over B. Theorem 56 does not help us to provide an algorithm to solve
static equivalence. Note also that we cannot reduce the problem to the
problem of deciding whether Ker(A) = Ker(B) since, as for ACUI, we
are not able to associate a ring to this theory.

Adding more equations. A monoidal theory on a signature Σ may
contain arbitrary additional equalities over Σ. The only requirement is,
that at least the laws given in Definition 43 hold. Hence, the techniques
developed in Section 7 and 8 can be applied to many different theories.
We illustrate this by providing some examples.
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Example 59. Consider the theory E1 over Σ1 = {+, 0,−, h} which
consists of the equalities of AGh and the additional equality h(h(x)) = x
which states that h is an involution. The theory E1 is a monoidal theory
and its associated semiring SE1

that is actually a ring is isomorphic to
Z[h]/(h2−1), i.e. the ring Z[h] quotiented by the ideal generated by the

polynomial h2 − 1.

We can also consider more complex equational theories by simply as-
sociating each equation to a polynomial. This is illustrated in the next
example.

Example 60. Consider the signature Σ2 = {+, 0,−, h1, h2} and the
theory E2 made up of the axioms of AG extending by h1(h2(x)) =
h2(h1(x)), the following homomorphism laws

h1(x+ y) = h1(x) + h1(y) h1(0) = 0
h2(x+ y) = h2(x) + h2(y) h2(0) = 0

and the following axioms
h1(h1(h2(x))) + h2(h2(x)) = 0

h1(x) + h1(h2(h2(x))) = 0
The theory E2 is a monoidal theory and it is easy to see that its

associated semiring SE2
is isomorphic to Z[h1, h2]/(h2

1
h2+h2

2
,h1+h1h2

2
), i.e.

the ring Z[h] quotiented by the ideal generated by the polynomials h2
1h2+

h2
2 and h1 + h1h

2
2.

Thus decidability of deduction and static equivalence can be reduced
to solving linear equations in the corresponding semiring and deciding
the equalities of kernels of matrices in the corresponding ring. Hence, we
can reduce our problems to rather classical problems of Algebra, which
can often be solved using Gröbner basis for example. Moreover, existing
tools for solving algebraic problems can also be used to implement our
algorithms.

10. Combination of disjoint equational theories

Our combination results stated in the first part of this paper allows us to
combine any existing decidability results for deduction and static equiv-
alence provided the signatures of the equational theories are disjoint.
Those combination algorithms can be applied for instance to combine a
monoidal equational theory with any other equational theory for which
deduction and static equivalence are known to be decidable. In order
to give a complete picture of existing results in this area, we sum up
some of the results obtained by others.
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Subterm convergent equational theories. Deduction and static
equivalence are decidable in polynomial time (in the DAG-size of the
inputs) for any subterm convergent theory [2]. A subterm convergent
theory is an equational theory induced by a finite set of equations of
the form u = v where v is either a subterm of u or a constant, and such
that the associated rewriting system is convergent. For instance, Eenc

(see Example 2) is a subterm convergent theory.
Since we also know that deduction and static equivalence are decid-

able in polynomial time for the equational theory ACUN of the exclusive
or and also for the theory AG of Abelian group. Applying Theorems 26
and 32, we get for instance the following new decidability result.

Proposition 61. Let E be a subterm convergent theory. Deduction
and static equivalence are decidable in polynomial time for E ∪ ACUN

and E ∪ AG.

Blind signature. In [2], it has been shown that deduction and static
equivalence are also decidable for the theory of blind signature de-
scribed below.

open(commit(x, y), y) = x chksign(sgn(x, y), pk(y)) = x
getpk(host(x)) = x unblind(blind(x, y), y) = x

unblind(sgn(blind(x, y), z), y) = sign(x, z)
This theory has been introduced by S. Kremer and M. Ryan in order

to model blind signatures and related constructs in their analysis of an
electronic voting protocols [24].

Addition. This simple theory for addition is studied in [2]. They
show that deduction and static equivalence are decidable.

plus(x, s(y)) = plus(s(x), y) plus(x, 0) = x pred(s(x)) = x

Homomorphism encryption. In [2], they also consider the follow-
ing equational theory and show that deduction and static equivalence
are decidable.

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉 proj1(〈x, y〉) = x
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉 proj2(〈x, y〉) = y

dec(enc(x, y), y) = x
This theory represents an encryption scheme with a homomorphism

property. Several results have been obtained for similar theories from
the point of view of deduction. For instance, H. Comon-Lundh and
R. Treinen have investigated a very similar equational theory [20]. They
have shown that deduction is decidable in PTIME. There also exist
some results due to P. Lafourcade et al. (e.g. [27]) for deduction under
certain AC-like theories with distributive encryption.
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Theory E Deduction Static Equivalence

subterm convergent PTIME [2]

blind sign., addition,
decidable [2]

homo. encryption

ACU NP-complete
decidable [2]

PTIME (new)

ACUI decidable [22] decidable (new)

ACUN PTIME [13]
decidable [2]

PTIME (new)

AG PTIME [12] PTIME (new)

ACUh NP-complete [25] decidable (new)

ACUIh decidable (new) ?

ACUNh PTIME [21] decidable (new)

AGh PTIME [21] decidable (new)

AGh1 . . . hn decidable (new) decidable (new)

sub. conv. ⊎ ACUN PTIME (new)

sub. conv. ⊎ AG PTIME (new)

Thanks to Theorem 32, deduction and static equivalence are also
decidable for the union of any disjoint theories of this tabular.

Figure 1. Decidability results for deduction and static equivalence.

11. Conclusion

This paper provides many decidability and complexity results for de-
duction and static equivalence, two formal representations for knowl-
edge in the analysis of security protocols. We propose a general setting
for an important class of equational theories with associative and com-
mutative properties and we show that existing decidability results can
be combined for any disjoint equational theories.

The performance of the corresponding decision procedures obviously
depend on the choice of equational theory. However, our algorithms for
combining theories are polynomial (in the DAG-size of the inputs) and
efficient existing tools for solving algebraic problems can be used to
implement the algorithms for monoidal theories. Hence, as future work,
we consider implementing the procedures described in this paper.
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As further work, we also consider extending our combination result
for non disjoint theories. This would allow us to consider some frag-
ments of the modular exponentiation theory such as the Diffie-Hellman
one, i.e. the axioms exp(x, 1) = x and exp(exp(x, y), z) = exp(x, y × z)
where × is an Abelian group operator; or to take into account the
equation exp(x, y) · exp(x, z) = exp(x, y+ z). We might use for example
a notion of hierarchy between theories like in [16].

Lastly, as indicated in the introduction, deduction and static equiv-
alence are static notions. However, they play an important role in
analysis with respect to active attacks, and it is challenging to obtain
results in this case. For deduction, combination algorithms are given
in [14, 16] and algorithms for deciding deduction in monoidal theories
are provided in [22] (those works are described in the introduction).
However, these two problems are not yet solved for observational equiv-
alence. M. Baudet has proved that a notion of equivalence is decidable
under convergent subterm theories [10] in presence of active attackers.
It will be interesting to complete the picture of the active case and to
provide a combination algorithm and procedures for monoidal theories
in case of observational equivalence. This will allow us to decide the
existence of guessing attacks for a large class of equational theories.
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Appendix

A. Decidablity of the word problem vs the deduction
problem

While apparently simpler, the decidability of the word problem mod-
ulo E is not a consequence of the decidability of the deduction problem
modulo E. We provide below an example of a theory for which the
deduction problem is decidable while the word problem is not. This ex-
ample is based on the fact that the word problem might be undecidable
but each function symbol could be invertible, in which case any name
of a term would be accessible and thus any term could be deducible
from any set of terms.

More formally, consider the finitely presented group G introduced by
Collins [18]. This group is formed by the set of words on the alphabet

A = {a, b, c, d, e, p, q, r, t, k, a-1 , b-1, c-1, d-1, e-1, p-1, q-1, r-1, t-1, k-1}

quotiented by the relations

p10a = ap, pacqr = rpcaq, ra = ar
p10b = bp, p2adq2r = rp2daq2, rb = br
p10c = cp, p3bcq3r = rp3cbq3, rc = cr
p10d = dp, p4bdq4r = rp4dbq4, rd = dr
p10e = ep, p5ceq5r = rp5ecaq5, re = er
aq10 = qa, p6deq6r = rp6edbq6, pt = tp
bq10 = qb, p7cdcq7r = rp7cdceq7, qt = tq
cq10 = qc, p8ca3q8r = rp8a3q8,
dq10 = qd, p9da3q9r = rp9a3q9,
eq10 = qe, a-3ta3k = ka−3ta3,

where the straightforward equation αα-1 = α-1α = 1 (the empty word)
is implicitly assumed for any α ∈ A. Let

Σ = {a, b, c, d, e, p, q, r, t, k, a-1 , b-1, c-1, d-1, e-1, p-1, q-1, r-1, t-1, k-1}

be a set of unary symbols. To simplify the notations, we are using the
same symbols for letters and corresponding unary symbols. For each
relation above, of the form ai1 · · · aik = bj1 · · · bjl

, we consider the corre-
sponding equation ai1(· · · (aik(x))) = bj1(· · · (bjl

(x))) in addition to the
equations α(α-1(x)) = α-1(α(x)) = x for any α ∈ {a, b, c, d, e, p, q, r, t, k}.
We denote by EG the corresponding equational theory. The undecid-
ability of the word problem in EG is an immediate consequence of the
undecidability of the word problem inG [18]. Conversely, since any sym-
bol of Σ is invertible (due to the equations α(α-1(x)) = α-1(α(x)) = x),
an attacker can access any private name n ∈ ñ of a frame φ = νñ.σ as
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soon as n occurs in σ. Hence, a term M is deducible from φ if, and only
if, fn(M) ∩ ñ ⊆ fn(M1) ∪ . . . fn(Mℓ) where φ = νñ.{M1/x1

, . . . ,Mℓ/xℓ
}.

Therefore, the deduction problem modulo EG is decidable.

B. Proofs of Section 3

The proofs given in this appendix are similar to those provided in [15].
However, since we use a notion of factor that is slightly different from
the one introduced in [15], we have to adapt them.

Remark: Let E be a consistent equational theory and n be a name.
We necessarily have that n = n↓. Indeed, assume that n 6= n↓ and let
t = n↓. We distinguish two cases:

− either n 6∈ fn(t) and we easily deduce that E is inconsistent.

− or n ∈ fn(t) and by definition of ≺, we have that n ≺ t. Hence t
can not be the normal form of n.

In both case, we obtain a contradiction. Hence, we have that n = n↓.

Lemma 62. If E is a consistent equational theory then for any equa-
tion such that l =E r with l 6= r, if there exists a substitution τ such
that rτ ≺ lτ then l is not a variable.

Proof. By contradiction, assume that l is a variable and there exists
a substitution τ such that rτ ≺ lτ . By monotonicity of ≺, we have
that l 6∈ fv(r). Let n1, n2 be two different names. We can built two
substitutions τ1 and τ2 such that dom(τ1) = dom(τ2) = fv(r) ∪ {l},
lτ1 = n1, lτ2 = n2 and xτi = xτ for any x ∈ fv(r) (i = 1, 2). The
equation l = r implies that n1 =E rτ =E n2. By transitivity of the
equality, we obtain that n1 =E n2 which contradicts the fact that E is
consistent. 2

Lemma 63. Let M be a ground term such that sign(M) = Σ1 (resp.
Σ2) with all its factors in normal form. If M ′ is minimal for ≺ in the
set {N | M →O N} then

− either sign(M) = sign(M ′) and Fct(M ′) ⊆ Fct(M) ∪ {nmin},

− or sign(M) 6= sign(M ′) and M ′ ∈ Fct(M) ∪ {nmin}.

Moreover, we have that the equation l = r ∈ O involved in the step
M →O M ′ is such that l = r ∈ O1 (resp. l = r ∈ O2).
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Proof. Let M be a ground term with all its factors in normal form
and assume w.l.o.g. that sign(M) = Σ1. Let M ′ be the minimal term
for ≺ among the terms N such thatM →O N . Let l = r ∈ O be the rule
applied on M at position p with substitution σ in order to obtain M ′.

By minimality of the term M ′ and monotonicity of ≺, we have that
fv(r)σ ⊆ fv(l)σ ∪ {nmin}. Indeed, if there exists x ∈ fv(r) r fv(l), then
xσ = nmin by minimality of M ′. Moreover, by construction of O, we
have that l, r are terms (without names) both in T (Σ1,X ) or both in
T (Σ2,X ). Thanks to Lemma 62, we know that l is not a variable. Since
sign(M) = Σ1, we deduce that l, r are terms (without names) both in
T (Σ1,X ). Hence, we deduce that:

− Either sign(lσ) 6= sign(rσ). In such a case r is a variable and we
have that rσ ∈ Fct(lσ) ∪ {nmin};

− Or sign(lσ) = sign(rσ). In such a case Fct(rσ) ⊆ Fct(lσ) ∪ {nmin}.
Note that r can be a variable or not.

We distinguish two cases:

First case: p = ǫ and sign(lσ) 6= sign(rσ). In such a case, we have that
M = lσ and M ′ = rσ. Thus sign(M) 6= sign(M ′). We have shown that
rσ ∈ Fct(lσ) ∪ {nmin}, i.e. M ′ ∈ Fct(M) ∪ {nmin}. This allows us to
conclude for this case.

Second case: p 6= ǫ or sign(lσ) = sign(rσ). If p 6= ǫ, we have that
sign(M) = sign(M ′). Otherwise, we have that sign(lσ) = sign(rσ) and
thus we have also that sign(M) = sign(M ′). Hence, in both cases, we
have that sign(M) = sign(M ′). To conclude, it remains to show that
Fct(M ′) ⊆ Fct(M) ∪ {nmin}.

Since the factors of M are in normal form, the position p is above or
incomparable with any position corresponding to a factor of M . Thus
all positions p′ above p (including p) are labelled with f ∈ Σ1.

Let q be a position of a factor F of M ′. Either q is incomparable
with p, and thus F is also a factor of M at position q; or there exists
a variable x at a position p′ ∈ r such that p.p′ ≤ q. In such a case we
have that:

− Either sign(lσ) 6= sign(rσ). In such a case r has to be a variable
and F = rσ;

− Or sign(lσ) = sign(rσ). In such a case, we have that F ∈ Fct(rσ).

We distinguish three cases:

1. Case p = ǫ and sign(lσ) = sign(rσ). We have that M = lσ and
M ′ = rσ. We have that:

Fct(M ′) = Fct(rσ) ⊆ Fct(lσ) ∪ {nmin} = Fct(M) ∪ {nmin}.
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2. Case p 6= ǫ and sign(lσ) 6= sign(rσ). We have that Fct(M ′) ⊆
Fct(M)∪{rσ}. We have shown that rσ ∈ Fct(lσ)∪{nmin}. More-
over, we have that Fct(lσ) ⊆ Fct(M). Thus we conclude that
Fct(M ′) ⊆ Fct(M) ∪ {nmin}.

3. Case p 6= ǫ and sign(lσ) = sign(rσ). We have that Fct(M ′) ⊆
Fct(M) ∪ Fct(rσ). Hence, we have that

Fct(M ′) ⊆ Fct(M) ∪ Fct(lσ) ∪ {nmin} ⊆ Fct(M) ∪ {nmin}.

The last inclusion comes from the fact that Fct(lσ) ⊆ Fct(M). 2

Lemma 16. Let M be a ground term such that all its factors are in
normal form. Then

− either M↓ ∈ Fct(M) ∪ {nmin},

− or sign(M) = sign(M↓) and Fct(M↓) ⊆ Fct(M) ∪ {nmin}.

Proof. First of all, note that ifM is in normal form (this case includes
the case where M is a name), the result is straightforward. Otherwise,
we assume w.l.o.g. that sign(M) = Σ1 and we consider a derivation
normalising M such that at each step a minimal successor (w.r.t. ≺)
for the relation →O is chosen. We have

M = M1 →O M2 →O . . .→O Mn−1 →O Mn = M↓

By Lemma 63, we know that at each step, either sign(Mi) = sign(Mi+1)
or Mi+1 is in normal form. Hence we deduce that:

sign(M1) = . . . = sign(Mn−1) = Σ1.

Thanks to Lemma 63, we easily obtain that Fct(Mn−1) ⊆ Fct(M) ∪
{nmin}. Now, we distinguish two cases:

− Either sign(Mn−1) = sign(Mn), and thus sign(M) = sign(M↓). In
such a case, by Lemma 63, we deduce that Fct(Mn) ⊆ Fct(Mn−1)∪
{nmin} and thus Fct(M↓) ⊆ Fct(M) ∪ {nmin}.

− Or sign(Mn−1) 6= sign(Mn), and thus sign(M) 6= sign(M↓). In such
a case, by Lemma 63, we deduce that Mn ∈ Fct(Mn−1) ∪ {nmin}
and thus M↓ ∈ Fct(M) ∪ {nmin}. 2
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Corollary 17. Let M be a ground term: St(M↓) ⊆ St(M)↓∪{nmin}.

Proof. Let M be a ground term. We show this result by induction
on the number n of subterms of M that are different from M itself and
not in normal form, i.e.

n = #{N ∈ St(M) | N 6= M and N↓ 6= N}

Base case: n = 0. In such a case, we have that M is a term such that
all its factors are in normal form. Therefore, we can apply Lemma 16.
We distinghuish two cases:

− M↓ ∈ Fct(M) ∪ {nmin}. In such a case, we have that

St(M↓) ⊆ St(Fct(M)) ∪ {nmin} = St(M)↓ ∪ {nmin}

− sign(M) = sign(M↓) and Fct(M↓) ⊆ Fct(M) ∪ {nmin}. In such a
case, we have that

St(M↓) = {M↓} ∪ St(Fct(M↓))
⊆ {M↓, nmin} ∪ St(Fct(M)) = St(M)↓ ∪ {nmin}

In both cases, the last equality comes from the fact that terms in
Fct(M) are in normal form.

Induction step: n > 0. In such a case, there exists a ground term N ∈
St(M) that is not in normal form and such that all the factors of N
are in normal form. Actually, we have that M = M [N ]p with p 6= ǫ.
We can apply our induction hypothesis on:

− the term N : we obtain that St(N↓) ⊆ St(N)↓ ∪ {nmin}.

− the term M ′ = M [N↓]p: St(M ′↓) ⊆ St(M ′)↓ ∪ {nmin}.

Altogether, we have that

St(M↓) = St(M ′↓) ⊆ St(M ′)↓ ∪ {nmin}
= St(M [N↓]p)↓ ∪ {nmin}
⊆ St(M)↓ ∪ St(N↓)↓ ∪ {nmin}
⊆ St(M)↓ ∪ St(N)↓ ∪ {nmin} = St(M)↓ ∪ {nmin}

The last inclusion comes from the fact that N ∈ St(M). 2
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Lemma 19. Let M be a ground term such that sign(M) = Σi (i =
{1, 2}) and all its factors are in normal form. Then M↓ = M↓Ei

.

Proof. We consider a derivation normalising M such that at each
step a minimal successor (w.r.t. ≺) for the relation →O is chosen. We
also assume that sign(M) = Σ1. We have that

M = M1 →O M2 →O . . .→O Mn−1 →O Mn = M↓

By Lemma 63, we know that at each step, either sign(Mi) = sign(Mi+1)
or Mi+1 is in normal form. Hence we deduce that:

sign(M1) = . . . = sign(Mn−1) = Σ1.

Thanks to Lemma 63, we know that the equations l1 = r1, . . . , ln−1 =
rn−1 ∈ O involved in each step are such that li = ri ∈ O1. Hence, we
have M↓ = M↓E1

. 2

Lemma 20. Let M be a ground term such that all its factors are in
normal form. Let N ∈ Fct(M) and N ′ be a term alien to M . We have
that

(MδN,N ′)↓ = ((M↓)δN,N ′)↓.

Proof. Let M be a ground term such that all its factors are in normal
form. EitherM is a name. In such a case, we have that M↓ = M and we
easily conclude. Otherwise, we can assume w.l.o.g. that sign(M) = Σ1.
Thanks to Lemma 19, we have that M↓ = M↓E1

. Consider the sequence

M = M1 →O1
M2 →O1

. . .→O1
Mn−1 →O1

Mn = M↓.

The rule li = ri ∈ O1 is applied above (and without interfering with)
the factors of Mi. On the other hand the replacement is applied below
(or at the level of) the factors of Mi. Therefore the sequence M1 →O1

. . .→O1
Mn implies the equalities M1δN,N ′ =E1

. . . =E1
MnδN,N ′ , thus

MδN,N ′↓ = ((M↓)δN,N ′ )↓. 2

main.tex; 13/10/2010; 8:18; p.54



Decidability and combination results for two notions of knowledge 55

C. Proofs of Section 5

Lemma 40. Let φ = νñ.σ and ψ = νñ.σ′ be two frames in normal
form such that φ contains all its deducible subterms, ψ |= EqE1

(φ) and
ψ |= EqE2

(φ). Let (M,N) ∈ EqE(φ) be such that (fn(M)∪fn(N))∩ñ = ∅
and assume that for all terms M ′, N ′

(M ′, N ′) < (M,N) implies (M ′ =E N
′)φ⇒ (M ′ =E N

′)ψ.

If there exists ζ ∈ St(M) such that sign(ζσ) 6= sign(ζσ↓), then there
exists M1 such that |M1| < |M |, (M =E M1)φ and (M =E M1)ψ.

Proof. W.l.o.g. we assume |M | ≥ |N |. We prove this result by in-
duction on |M |. Note that when |M | = 0, i.e. M is a variable or a
nonce, the result is obvious. Indeed, we have nothing to show since
sign(ζσ) = sign(ζσ↓). Now, we know that that there exists ζ0, ζ1, . . . , ζℓ
(ℓ might be equal to 0) such that:

− M = ζ0[ζ1, . . . , ζℓ],

− ζ0 is built on Σi and in the remainder of the proof we assume
w.l.o.g. that i = 1. Moreover, we know that ζ0 is not reduced to a
variable or a name.

− ζ1, . . . , ζℓ are built on Σ and sign(ζi) 6= Σ1.

We distinguish three cases.

First case: There exists i (1 ≤ i ≤ ℓ) and ζ ′ ∈ St(ζi) such that
sign(ζ ′σ) 6= sign(ζ ′σ↓). By induction hypothesis we know that there
exists ζ ′i such that |ζ ′i| < |ζi|, (ζ ′i =E ζi)φ and (ζ ′i =E ζi)ψ. Let M1 =
ζ0[ζ1, . . . , ζ

′
i, . . . , ζℓ]. We have that |M1| < |M |, (M1 =E M)φ and

(M1 =E M)ψ.

Second case: There exists ζi such that sign(ζi) = Σ2 and ζiσ↓ ∈ St(φ).
This means that ζiσ↓ is a deducible subterm. Thus there exists x ∈
dom(φ) such that (x =E ζi)φ. Since (ζi, x) < (M,N), we deduce that
(ζi =E x)ψ. Let M ′

1 = ζ0[ζ1, . . . , x, . . . , ζℓ]. We have that |M ′
1| < |M |,

(M =E M
′
1)φ and (M =E M

′
1)ψ.

Now, the remaining of the proof is devoted to deal with this third case.

Third case: We know that sign(ζiσ) = sign(ζiσ↓) for every i such that
1 ≤ i ≤ ℓ. Moreover, if sign(ζi) 6= ⊥, we have that ζiσ↓ 6∈ St(φ) (note
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that this case includes the case where ℓ = 0 and M = ζ0 is built on
Σ1 only). In addition, since by hypothesis there exists ζ ∈ St(M) such
that sign(ζσ) 6= sign(ζσ↓), we must have ζ = M thus sign(Mσ) 6=
sign(Mσ↓). (The other cases are take into account by the previous
cases).

Now, either (Case (a)) there is no ζi such that sign(ζi) = Σ2 meaning
that Mσ has all its factor in normal form, thus applying Lemma 16,
we have Mσ↓ ∈ St(φ) ∪ {nmin} ⊆E φ since φ contains all its deducible
subterms. Hence, there exists x ∈ dom(φ) such that (M =E x)φ.
Thanks to Lemma 19, we deduce that (M =E1

x)φ and hence we have
that (M,x) ∈ EqE1

(φ). Since ψ |= EqE1
(φ), we have also (M =E1

x)ψ,
thus (M =E x)ψ. Let M1 = x, we easily conclude.

Otherwise (Case (b)), let ∆ = {ζiσ↓ | sign(ζi) = Σ2 and 1 ≤ i ≤ ℓ}.
Let t1, . . . , tk be the elements of ∆ ordered in such a way that if ti is a
syntactic subterm of tj then j < i. Let n1, . . . , nk be some new names
that do not appear in φ nor ψ. Let δi = δti,ni

for every i such that
1 ≤ i ≤ k.
By applying successively Lemma 20, we obtain

((ζ0[ζ1σ↓, . . . , ζℓσ↓]δ1) . . . δk)↓ = (((Mσ↓)δ1↓) . . .)δk↓ (8)

Let M ′ = ζ0[ζ ′1, . . . , ζ
′
ℓ] where ζ ′i = ζi if ζiσ↓ 6∈ ∆ and ζ ′i = nj if

ζiσ↓ = tj . We have that

((ζ0[ζ1σ↓, . . . , ζℓσ↓]δ1) . . . δk) = ζ0[ζ ′1σ↓, . . . , ζ
′
ℓσ↓] =E M

′σ.

Indeed, the replacements δj cannot affect ζjσ↓ when ζj is of sign ⊥.
Note that, in that case, ζi is a name or a variable and the terms in ∆
are not subterm of φ.

In addition, since sign(ζ0[ζ1σ↓, . . . , ζℓσ↓]) 6= sign(Mσ↓) and ζ0[ζ1σ↓, . . . , ζℓσ↓]
has all its factors in normal form, applying Lemma 16, we obtain that

Mσ↓ ∈ {ζ1σ↓, . . . , ζℓσ↓, nmin} ⊆ ∆ ∪ St(φ) ∪ {r1, . . . , rℓ}

where r1, . . . , rℓ are the public names of M .
From the equality (8), we can deduce that

− (Case 1) either Mσ↓ = tj for some tj (1 ≤ j ≤ k) and we have
(M ′ =E nj)φ,

− (Case 2) or Mσ↓ = rj for some rj (1 ≤ j ≤ ℓ) and we have
(M ′ =E rj)φ,

− (Case 3) or Mσ↓ ∈ St(φ) and in such a case, since φ contains all
its deducible subterms, we know that there exists x ∈ dom(φ) such
that Mσ↓ = xσ. Hence we have that:

(((Mσ↓)δ1↓) . . .)δk↓ = ((xσ)δ1↓) . . .)δk↓.
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Since ti 6∈ St(φ) for any 1 ≤ i ≤ k, we have that ((xσ)δ1↓) . . .)δk↓ = xσ.
Moreover, we have that

(((Mσ↓)δ1↓) . . .)δk↓ = ((ζ0[ζ1σ↓, . . . , ζℓσ↓]δ1) . . . δk)↓ =E M
′σ.

Hence, we have that (M ′ =E x)φ.

In every case, we obtain an equality in EqE1
(φ) and thanks to the

fact that ψ |= EqE1
(φ), we deduce that either (M ′ =E1

nj)ψ (Case 1),
or (M ′ =E1

rj)ψ (Case 2), or (M ′ =E1
x)ψ (Case 3). For every i such

that 1 ≤ i ≤ k, let ∆i = {ζj | ζjσ↓ = ti and 1 ≤ j ≤ ℓ} and let ζi ∈ ∆i

by any witness of ∆i. We denote by δ′ the following replacement:

δ′ = {n1 7→ ζ1σ′↓, . . . , nk 7→ ζkσ′↓}.

Claim: For every i such that 1 ≤ i ≤ ℓ, we have that (ζ ′iσ
′↓)δ′ = ζiσ

′↓.
Indeed either ζ ′i = ζi and we easily conclude. Otherwise we have that
ζ ′i = np for some p such that 1 ≤ p ≤ k and we know that (ζi =E ζ

p)φ.
By induction hypothesis, we deduce that (ζi =E ζ

p)ψ. Hence, we have
that (ζ ′iσ

′↓)δ′ = (npσ
′↓)δ′ = ζpσ′↓ = ζiσ

′↓. This ends the proof of the
claim.

(Case 1) We have that (M =E ζ
j)φ. Note also that |ζj| < |M |. Hence, it

remains to show that (M =E ζ
j)ψ. We have shown that (M ′ =E1

nj)ψ,
this means that ζ0[ζ ′1σ

′↓, . . . , ζ ′ℓσ
′↓] =E nj. Since E is closed by substi-

tutions of terms for names, we have that ζ0[(ζ ′1σ
′↓)δ′, . . . , (ζ ′1σ

′↓)δ′] =E

ζjσ′↓. Using our claim, we obtain that ζ0[ζ1σ
′↓, . . . , ζℓσ

′↓] =E ζjσ′↓.
Hence, we deduce that (M =E ζ

j)ψ.

(Case 2) We have that (M =E rj)φ. Since |rj| < |M |, it remains
to show that (M =E rj)ψ. We have shown that (M ′ =E1

rj)ψ, i.e.
ζ0[ζ ′1σ

′↓, . . . , ζ ′ℓσ
′↓] =E rj. Since E is closed by substitutions of terms

for names, we easily deduce that ζ0[(ζ ′1σ
′↓)δ′, . . . , (ζ ′1σ

′↓)δ′] =E rj. By
using our claim, we obtain that ζ0[ζ1σ

′↓, . . . , ζℓσ
′↓] =E rj. We deduce

that (M =E rj)ψ.

(Case 3) We have that (M =E x)φ. Since |x| < |M |, it remains to show
that (M =E x)ψ. We have shown that (M ′ =E1

x)ψ, i.e. ζ0[ζ ′1σ
′↓, . . . , ζ ′ℓσ

′↓] =E xσ
′.

Since E is closed by substitutions of terms for names, we easily deduce
that ζ0[(ζ ′1σ

′↓)δ′, . . . , (ζ ′1σ
′↓)δ′] =E xσ

′↓. By using our claim, we obtain
that ζ0[ζ1σ

′↓, . . . , ζℓσ
′↓] =E xσ

′↓. We deduce that (M =E x)ψ. 2

Proposition 39. Let φ and ψ be two frames in normal form such that
φ contains all its deducible subterms. We have that ψ |= EqE(φ) if and
only if ψ |= EqE1

(φ) and ψ |= EqE2
(φ).
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Proof. (⇒) Since EqE1
(φ) ⊆ EqE(φ) and EqE2

(φ) ⊆ EqE(φ) and
thanks to Lemma 19 we have that ψ |= EqE(φ) implies ψ |= EqEi

(φ) for
i ∈ {1, 2}.

(⇐) Conversely, let ψ = νñ.σ′ be a frame such that ψ |= EqE1
(φ) and

ψ |= EqE2
(φ). Let φ = νñ.σ for some substitution σ and (M,N ) ∈

EqE(φ). Let (M,N) obtained from (M,N) by renaming names in ñ by
fresh names (that do not occur in φ and ψ). Note that (M,N) ∈ EqE(φ).
We prove, by induction on the size of (M,N), that (M =E N)ψ. This
allows us to conclude that (M = N)ψ. Now, we assume w.l.o.g. that M
is such that |M | ≥ |N |.

Base case: |M | + |N | ≤ 1. This means that M and N are variables,
names or terms built only on Σ1 or Σ2 and onlyM can satisfy sign(M) 6= ⊥.
In such a case, either (M,N) ∈ EqE1

(φ) or (M,N) ∈ EqE2
(φ) and we

conclude by applying our hypothesis.

Induction step: We know that |M | ≥ 1. This means there exist ζ0
M , ζ

1
M , . . . , ζ

ℓ
M

such that

− M = ζ0
M [ζ1

M , . . . , ζ
ℓ
M ],

− ζ0
M is built on Σi and in the remainder of the proof we will assume

w.l.o.g. that i = 1,

− ζ1
M , . . . , ζ

ℓ
M are built on Σ and sign(ζi

M ) 6= Σ1 for i ∈ {1, . . . , ℓ}.

and we know also that there exist ζ0
N , ζ

1
N , . . . , ζ

p
N (p might be equal to 0

meaning that ζ0
N is reduced to a variable, a name, or N is built on one

signature only) such that

− N = ζ0
N [ζ1

N , . . . , ζ
p
N ],

− ζ0
N is built on Σi and in the remainder of the proof we will assume

that sign(ζ0
N ) = Σ1 or ζ0

N is a variable. Otherwise, we would have
sign(Mσ) 6= sign(Nσ) and we conclude thanks to Lemma 40,
by noticing that either sign(Mσ) 6= sign(Mσ↓) or sign(Nσ) 6=
sign(Nσ↓).

− ζ1
N , . . . , ζ

p
N are built on Σ and sign(ζi

N ) 6= Σ1 for i ∈ {1, . . . , p}.

Note that the sets {ζ1
M , . . . , ζ

ℓ
M} and {ζ1

N , . . . , ζ
p
N} might be empty.

We distinguish several cases.

Case 1: If there exists ζi
M (or ζi

N ) such that sign(ζi
Mσ) 6= sign(ζi

Mσ↓).
In such a case, we can apply Lemma 40 on ζi

M and deduce (M =E N)ψ.
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Case 2: If there exists ζi
M (or ζi

N ) such that sign(ζi
M ) = Σ2 and

ζi
Mσ↓ ∈ St(φ). This means that ζi

Mσ↓ is a deducible subterm. Thus
there exists x ∈ dom(φ) such that (ζi

M =E x)φ. LetM ′ = ζ0
M [ζ1

M , . . . , x, . . . , ζ
ℓ
M ].

We have (M =E M
′)φ and (M =E M

′)ψ. Now, we apply our induction
hypothesis on (M ′, N). We obtain that (M ′ =E N)ψ and we deduce
that (M =E N)ψ.

The remaining of the proof is devoted to this third case. Case 3: We
have that sign(ζi

Mσ) = sign(ζi
Mσ↓) for every i such that 1 ≤ i ≤ ℓ and

also that sign(ζi
Nσ) = sign(ζi

Nσ↓) for every i such that 1 ≤ i ≤ p. (Note
that this third case includes the cases where ℓ = 0 and/or p = 0 and
also the case where ζ0

N is a variable.) Moreover, if sign(ζi
M ) 6= ⊥ (resp.

sign(ζi
N ) 6= ⊥), we have that ζi

Mσ↓ 6∈ St(φ) (resp. ζi
Nσ↓ 6∈ St(φ)).

Consider among the ζi
M , ζj

N such that sign(ζi
M ) = Σ2, sign(ζj

N ) = Σ2,

one such that ζi
Mσ↓, ζ

j
Nσ↓ is maximal w.r.t. the syntactic subterm

ordering. Note that if such a ζi
M (or ζj

N ) does not exist then we have that
(M,N) ∈ EqE1

(φ) and we conclude using the fact that ψ |= EqE1
(φ). In

that case, we obtain (M =E1
N)ψ thus (M =E N)ψ. So, let ζX be such

a term.
Let ∆ = {ζ ∈ {ζ1

M , . . . , ζ
ℓ
M , ζ1

N , . . . , ζ
p
N} | ζσ↓ = ζXσ↓} and n be a

new name. Let M ′ = ζ0
M [ζ ′1M , . . . , ζ

′ℓ
M ] and N ′ = ζ0

N [ζ ′1N , . . . , ζ
′p
N ] where

− ζ ′iM is equal to n if ζi
M ∈ ∆ and to ζi

M otherwise, and

− ζ ′iN is equal to n if ζi
N ∈ ∆ and to ζi

N otherwise.

Let δ = δζXσ↓,n. Since Mσ↓ = Nσ↓, we have (Mσ↓)δ↓ = (Nσ↓)δ↓.
Moreover, thanks to Lemma 20, we have also that

− (ζ0
M [ζ1

Mσ↓, . . . , ζ
ℓ
Mσ↓])δ↓ = (Mσ↓)δ↓, i.e. M ′σ↓ = (Mσ↓)δ↓,

− (ζ0
N [ζ1

Nσ↓, . . . , ζ
p
Nσ↓])δ↓ = (Nσ↓)δ↓, i.e. N ′σ↓ = (Nσ↓)δ↓.

Hence, we have that (M ′, N ′) ∈ EqE(φ). Since (M ′, N ′) < (M,N), by
induction hypothesis, we obtain (M ′ =E N

′)ψ.

Let δ′ = δn,ζXσ′↓.

Claim: For every i such that 1 ≤ i ≤ ℓ (resp. 1 ≤ i ≤ p), we have that
(ζ ′iMσ

′↓)δ′ = ζi
Mσ

′↓ (resp. (ζ ′iNσ
′↓)δ′ = ζi

Nσ
′↓).

Indeed either ζ ′iM = ζi
M and we easily conclude. Otherwise we have that

ζ ′iM = n and we know that (ζi
M =E ζX)φ. By induction hypothesis and

since we have that (ζi
M , ζX) < (M,N), we deduce that (ζi

M =E ζX)ψ.
Hence we have (ζ ′iMσ

′↓)δ′ = ζXσ
′↓ = ζi

Mσ
′↓. This ends the proof of the

claim.
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Below, we assume that N ′, and thus N , are not reduced to a variable
but this case can be done in a similar way.

We have shown that (M ′ =E N
′)ψ. Hence we have that:

ζ0
M [ζ ′1Mσ

′↓, . . . , ζ ′ℓMσ
′↓] =E ζ

0
N [ζ ′1Nσ

′↓, . . . , ζ ′pNσ
′↓].

Since E is closed by substitutions of terms for names, we deduce that

ζ0
M [(ζ ′1Mσ

′↓)δ′, . . . , (ζ ′ℓMσ′↓)δ′] =E ζ
0
N [(ζ ′1Nσ

′↓)δ′, . . . , (ζ ′pNσ
′↓)δ′].

By using our claim, we obtain that

ζ0
M [ζ1

Mσ
′↓, . . . , ζℓ

Mσ
′↓] =E ζ

0
N [ζ1

Nσ
′↓, . . . , ζp

Nσ
′↓].

Hence we deduce that (M =E N)ψ. 2

Complexity. Assume that

− φ ⊢E M can be decided in f3(tdag(φ) + tdag(M)),

− a recipe ζ such that (ζ =E M)φ can be computed in f4(tdag(φ) +
tdag(M)) and that we control the size of the recipe tdag(ζ) ≤
f5(tdag(φ) + tdag(M))

− φ ≈Ei
ψ can be decided in fi(tdag(φ) + tdag(ψ)) for i ∈ {1, 2},

− M =E N can be decided in f0(tdag(M) + tdag(N)).

We also assume that the fi are non-decreasing functions.

Step 1. We first compute φ′1 = φ1
Π

and φ′2 = φ2
Π

where Π is a set
of recipes compatible with φ1 (and φ2) such that:

− St(Π) ⊆ Π ∪ dom(φi);

− {M | M ∈ St(φ1) and φ1 ⊢E M} ∪ {nmin} ⊆E {ζσ | ζ ∈ Π} ∪ φ1;

− {M | M ∈ St(φ2) and φ2 ⊢E M} ∪ {nmin} ⊆E {ζσ | ζ ∈ Π} ∪ φ2.

Π can be computed as follows: for each M ∈ St(φ1) (resp. M ∈
St(φ2)), we check whether φ1 ⊢E M (resp. φ2 ⊢E M) and obtain a
corresponding recipe ζ if any. The sequence Π is formed by all the
obtained recipes and is closed by subterm. Since each M ∈ St(φ1) ∪
St(φ2) is of size smaller than max(tdag(φ1), tdag(φ2)), the size of any ζ
of Π is controlled by: f5(2max(tdag(φ1), tdag(φ2))) and Π (and thus φ′1
and φ′2) can be computed in time

(tdag(φ1) + tdag(φ2))[f4(2max(tdag(φ1), tdag(φ2)))] (9)

The (dag) size of φ′i is controlled by
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− the initial dag size of φi, which is smaller than max(tdag(φ1), tdag(φ2)),

− plus the sum of the sizes of the added recipes ζ, which is itself
controlled by

(tdag(φ1) + tdag(φ2))f5(2max(tdag(φ1), tdag(φ2))),

− plus the number of added terms, that is at most tdag(φ1)+tdag(φ2).

We deduce that the (dag) size of φ′i is controlled by

A1 = max(tdag(φ1), tdag(φ2))+

(tdag(φ1)+tdag(φ2))f5(2max(tdag(φ1), tdag(φ2)))+tdag(φ1)+tdag(φ2).

Step 2. We then compute νñF2
.(φ′1↓)

ρ2 and νñF2
.(φ′2↓)

ρ2 (resp. νñF1
.(φ′1↓)

ρ1 ,
and νñF1

.(φ′2↓)
ρ1). As explained in the complexity analysis of the de-

cidability of the deduction problem, this can be computed (by possibly
duplicating some nodes) in time

A1
2 +A1

2 + (A1 +A1)f0(2(A1 +A1)) = 2A1(A1 + f0(4A1)) (10)

and the number of nodes of the dag representation of (φ′i↓)
ρj has at

most doubled compared to the initial frame φ′i. Thus the dag size of
each resulting frame (φ′i↓)

ρj is smaller than 2A1.
Checking νñF2

.(φ′1↓)
ρ2 ≈E1

νñF2
.(φ′2↓)

ρ2 and νñF1
.(φ′1↓)

ρ1 ≈E2
νñF1

.(φ′2↓)
ρ1

can therefore be done in time:

f1(2A1 + 2A1) + f2(2A1 + 2A1) = f1(4A1) + f2(4A1). (11)

Summing (9), (10), and (11), we conclude that checking φ1 ≈E φ2

can be done in time

(tdag(φ1) + tdag(φ2))[f4(2max(tdag(φ1), tdag(φ2)))]

+ 2A1(A1 + f0(4A1)) + f1(4A1) + f2(4A1).
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