
A method for proving observational equivalence
Véronique Cortier

LORIA, CNRS & INRIA Nancy Grand Est
France

Email: cortier@loria.fr

Stéphanie Delaune
LSV, ENS Cachan & CNRS & INRIA Saclay

France
Email: delaune@lsv.ens-cachan.fr

Abstract—Formal methods have proved their usefulness for
analyzing the security of protocols. Most existing results focus
on trace properties like secrecy (expressed as a reachability
property) or authentication. There are however several security
properties, which cannot be defined (or cannot be naturally de-
fined) as trace properties and require the notion of observational
equivalence. Typical examples are anonymity, privacy related
properties or statements closer to security properties used in
cryptography.

In this paper, we consider the applied pi calculus and we show
that for determinate processes, observational equivalence actually
coincides with trace equivalence, a notion simpler to reason with.
We exhibit a large class of determinate processes, called simple
processes, that capture most existing protocols and cryptographic
primitives. Then, for simple processes without replication nor
else branch, we reduce the decidability of trace equivalence
to deciding an equivalence relation introduced by M. Baudet.
Altogether, this yields the first decidability result of observational
equivalence for a general class of equational theories.

I. INTRODUCTION

Security protocols are paramount in today’s secure transac-
tions through public channels. It is therefore essential to obtain
as much confidence as possible in their correctness. Formal
methods have proved their usefulness for precisely analyzing
the security of protocols. In the case of a bounded number
of sessions, secrecy preservation is co-NP-complete [5], [24],
[25], and for an unbounded number of sessions, several
decidable classes have been identified (e.g. [23]). Many tools
have also been developed to automatically verify cryptographic
protocols (e.g. [9], [6]).

Most existing results focus on trace properties, that is, state-
ments that something bad never occurs on any execution trace
of a protocol. Secrecy and authentication are typical examples
of trace properties. There are however several security proper-
ties, which cannot be defined (or cannot be naturally defined)
as trace properties and require the notion of observational
equivalence. We focus here on the definition proposed in the
context of applied pi-calculus [2], which is well-suited for
the analysis of security protocols. Two processes P and Q
are observationally equivalent, denoted by P ≈ Q, if for any
process O the processes P | O and Q | O are equally able to
emit on a given channel and are (weakly) bisimilar. This means
that the process O cannot observe any difference between the
processes P and Q.

This work has been partially supported by the ANR-07-SESU-002 AVOTÉ.

Observational equivalence is crucial when specifying prop-
erties like anonymity that states that an observer cannot
distinguish the case where A is talking from the case where B
is talking (see [3]). Privacy related properties involved in
electronic voting protocols (e.g. [17]) also use equivalence
as a key notion and cannot be expressed in linear temporal
logic. Observational equivalence is also used for defining a
stronger notion of secrecy, called “strong secrecy” [10] or even
for defining authentication [4]. More generally, it is a notion
that allows to express flexible notions of security by requiring
observational equivalence between a protocol and an idealized
version of it, that magically realizes the desired properties.

Related work.: In contrast to the case of trace properties,
there are very few results on automating the analysis of
observational equivalence. Decidability results are limited to
fixed cryptographic primitives in spi-calculus (e.g. [21], [18]).
In applied-pi calculus, an alternative approach has been con-
sidered [16], [7], [11] for arbitrary cryptographic primitives.
The approach consists in designing stronger notions of equiv-
alences that imply observational equivalence. One of these
techniques has been implemented in ProVerif [11]. None of
these are however complete, that is, there exist observationally
equivalent processes that do not satisfy these stronger notions
of equivalences.

Our contributions.: One of the difficulties in proving
observational equivalence is the bisimulation property. Al-
though bisimulation-based equivalences may be simpler to
check than trace equivalences [22], in the context of cryp-
tographic protocols, it seems easier to simply check trace
equivalence, that is, equality of the set of execution traces
(modulo some equivalence relation between traces). In partic-
ular, most decision techniques have been developed for trace
properties only. However, it is well-known that this is not
sufficient to ensure observational equivalence. J. Engelfriet has
shown that observational equivalence and trace equivalence
actually coincide in a general model of parallel computation
with atomic actions, when processes are determinate [20].
Intuitively, a process P is determinate if after the same
experiment s, the resulting processes are equivalent, that is,
if P s⇒ P ′ and P s⇒ P ′′ then P ′ ≈ P ′′. Our first contribution
is to generalize this result to the applied pi-calculus, which
consists in the pi-calculus algebra enriched with terms and
equational theories on terms.

Then we show that a large class of processes enjoys
the determinacy property. More precisely, we design the
class of simple processes and show that simple processes
are determinate. Simple processes allow replication, else
branches and arbitrary term algebra modulo an equational
theory. Consequently, this class captures most existing security
protocols and cryptographic primitives. In addition, our simple
processes are close to the fragment considered in [14] for
which cryptographic guarantees can be deduced from obser-
vational equivalence. The class of processes defined in [14] is
however not determinate but we believe that their result could
be easily extended to our class of simple processes, yielding
to a decision technique for proving indistinguishability in
cryptographic models.

Our third contribution is a decidability result for simple pro-
cesses without replication nor else branch and for convergent
subterm theories. Convergent subterm theories capture a wide
array of functions, e.g. pairing, projections, various flavors of
encryption and decryption, digital signatures, one-way hash
functions, etc. We show that trace equivalence of simple
processes without replication can be reduced to deciding an
equivalence relation introduced by M. Baudet and which has
been shown decidable for convergent subterm theories in [7].

Putting our three contributions together, we obtain decid-
ability of observational equivalence for a large and interesting
class of processes of the applied pi-calculus. This is the first
decidability result for a general class of equational theories.
Some of the proofs are omitted but can be found in [15].

II. THE APPLIED PI CALCULUS

The applied pi calculus [2] is a derivative of the pi calcu-
lus that is specialized for modeling cryptographic protocols.
Participants in a protocol are modeled as processes, and
the communication between them is modeled by means of
message passing.

A. Syntax

To describe processes in the applied-pi calculus, one starts
with a set of names N = {a, b, . . . , sk, k, n, . . .}, which is
split into the set Nb of names of basic types and the set Ch
of names of channel type (which are used to name com-
munication channels). We also consider a set of variables
X = {x, y, . . .}, and a signature F consisting of a finite set
of function symbols. We rely on a sort system for terms. The
details of the sort system are unimportant, as long as base types
differ from channel types. We suppose that function symbols
only operate on and return terms of base type.

Terms are defined as names, variables, and function symbols
applied to other terms. For N ⊆ N and X ⊆ X , the set of terms
built from N and X by applying function symbols in F is
denoted by T (N,X). Of course function symbol application
must respect sorts and arities. We write fv(T) for the set
of variables occurring in T . The term T is said to be a
ground term if fv(T) = ∅. We shall use u, v, . . . to denote
metavariables that range over both names and variables.

Example 1: Consider the following signature

F = {enc/2, dec/2, pk/1, 〈 〉/2, π1/1, π2/1}

that contains function symbols for asymmetric encryption,
decryption and pairing, each of arity 2, as well as projection
symbols and the function symbol pk, each of arity 1. The
ground term pk(sk) represents the public counterpart of the
private key sk.

In the applied pi calculus, one has plain processes, denoted
P,Q,R and extended processes, denoted by A,B,C. Plain
processes are built up in a similar way to processes in pi
calculus except that messages can contain terms rather than
just names. Extended processes add active substitutions and
restriction on variables (see Figure 1).

The substitution {M/x} is an active substitution that re-
places the variable x with the term M . Active substitutions
generalize the “let” construct: νx.({M/x} | P) corresponds
exactly to

“let x = M in P ”.

As usual, names and variables have scopes, which are delim-
ited by restrictions and by inputs. We write fv(A), bv(A),
fn(A) and bn(A) for the sets of free and bound variables
and free and bound names of A, respectively. We say that an
extended process is closed if all its variables are either bound
or defined by an active substitution. An evaluation context
C[] is an extended process with a hole instead of an extended
process.

Active substitutions are useful because they allow us to map
an extended process A to its frame, denoted φ(A), by replacing
every plain process in A with 0. Hence, a frame is an extended
process built up from 0 and active substitutions by parallel
composition and restriction. The frame φ(A) accounts for the
set of terms statically known by the intruder (but does not
take into account for A’s dynamic behavior). The domain of
a frame ϕ, denoted by dom(ϕ), is the set of variables for
which ϕ defines a substitution (those variables x for which ϕ
contains a substitution {M/x} not under a restriction on x).

Example 2: Consider the following process A made up of
three components in parallel:

νs, sk, x1. (out(c1, x1)
| in(c1, y).out(c2, dec(y, sk))
| {enc(s,pk(sk))/x1}).

Its first component publishes the message enc(s, pk(sk))
stored in x1 by sending it on c1. The second receives a mes-
sage on c1, uses the secret key sk to decrypt it, and forwards
the result on c2. We have φ(A) = νs, sk, x1.{enc(s,pk(sk))/x1}
and dom(φ(A)) = ∅ (since x1 is under a restriction).

B. Semantics

We briefly recall the operational semantics of the applied pi
calculus (see [2] for details). First, we associate an equational

2

P,Q,R := 0 plain processes
P | Q
!P
νn.P
if M = N then P else Q
in(u, x).P
out(u,N).P

A,B,C := extended processes
P
A | B
νn.A
νx.A
{M/x}

where M and N are terms, n is a name, x a variable and u is a metavariable.

Fig. 1. Syntax of processes

theory E to the signature F . The equational theory is defined
by a set of equations M = N with M,N ∈ T (∅,X) and
induces an equivalence relation over terms: =E is the smallest
equivalence relation on terms, which contains all equations
M = N in E and that is closed under application of contexts
and substitution of terms for variables. Since the equations
in E do not contain any names, we have that E is also closed
by substitutions of terms for names.

Example 3: Consider the signature F of Example 1. We
define the equational theory Eenc by the following equations:

dec(enc(x, pk(y)), y) = x
πi(〈x1, x2〉) = xi for i ∈ {1, 2}.

We have that π1(dec(enc(〈n1, n2〉, pk(sk)), sk)) =Eenc n1.

Structural equivalence, noted ≡, is the smallest equiva-
lence relation on extended processes that is closed under α-
conversion of names and variables, by application of eval-
uation contexts, and satisfying some further basic structural
rules such as A | 0 ≡ A, associativity and commutativity of |,
binding-operator-like behavior of ν, and when M =E N the
equivalences:

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}

{M/x} | A ≡ {M/x} | A{M/x}.

Example 4: Let P be the following process:

νs, sk. (out(c1, enc(s, pk(sk)))
| in(c1, y).out(c2, dec(y, sk))).

The process P is structurally equivalent to the process A given
in Example 2. We have that φ(P) = 0 ≡ φ(A).

The operational semantics of processes in the applied pi
calculus is defined by structural rules defining two relations:
structural equivalence (described above) and internal reduc-
tion, noted τ−→. Internal reduction is the smallest relation on
extended processes closed under structural equivalence and
application of evaluation contexts such that:

out(a, x).P | in(a, x).Q τ−→ P | Q
ifM = M then P else Q

τ−→ P

ifM = N then P else Q
τ−→ Q

where M,N are ground terms such that M 6=E N

The operational semantics is extended by a labeled oper-
ational semantics enabling us to reason about processes that
interact with their environment. Labeled operational semantics
defines the relation `→ where ` is either an input or an
output. We adopt the following rules in addition to the internal
reduction rules. Below, the names a and c are channel names
whereas x is a variable of base type and y is a variable of any
type.

IN in(a, y).P
in(a,M)−−−−−→ P{M/y}

OUT-CH out(a, c).P
out(a,c)−−−−−→ P

OPEN-CH
A

out(a,c)−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)−−−−−−−→ A′

OUT-T out(a,M).P
νx.out(a,x)−−−−−−−→ P | {M/x}
x 6∈ fv(P) ∪ fv(M)

SCOPE
A

`−→ A′ u does not occur in `

νu.A
`−→ νu.A′

bn(`) ∩ fn(B) = ∅

PAR
A

`−→ A′ bv(`) ∩ fv(B) = ∅

A | B `−→ A′ | B

STRUCT
A ≡ B B

`−→ B′ B′ ≡ A′

A
`−→ A′

Note that the labeled transition is not closed under applica-
tion of evaluation contexts. Moreover the output of a term M
needs to be made “by reference” using a restricted variable
and an active substitution. The rules differ slightly from those
described in [2] but it has been shown in [16] that the two
underlying notions of observational equivalence coincide.

III. TRACE AND OBSERVATIONAL EQUIVALENCES

Let A be the alphabet of actions (in our case this alphabet
is infinite) where the special symbol τ ∈ A represents an
unobservable action. For every α ∈ A the relation α−→ has
been defined in Section II. For every w ∈ A∗ the relation
w−→ on extended processes is defined in the usual way. By

convention A ε−→ A where ε denotes the empty word.

3

For every s ∈ (A r {τ})∗, the relation s⇒ on extended
processes is defined by: A s⇒ B if, and only if, there exists
w ∈ A∗ such that A w−→ B and s is obtained from w by
erasing all occurrences of τ . Intuitively, A s⇒ B means that A
transforms into B by experiment s. We also consider the
relation A

w7→ B and A
sZ⇒ B that are the restriction of the

relations w−→ and s⇒ on closed extended processes.

A. Observational equivalence

Intuitively, two processes are observationally equivalent if
they cannot be distinguished by any active attacker represented
by any context.

We write A ⇓ c when A can send a message on c, that is,
when A →∗ C[out(c,M).P] for some evaluation context C
that does not bind c.

Definition 1: Observational equivalence is the largest sym-
metric relation R between closed extended processes with the
same domain such that A R B implies:

1) if A ⇓ c, then B ⇓ c;
2) if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′;
3) C[A] R C[B] for all closing evaluation contexts C.

Observational equivalence can be used to formalize many
interesting security properties, in particular privacy related
properties, such as those studied in [3], [17]. However, proofs
of observational equivalences are difficult because of the
universal quantification over all contexts. It has been shown
that observational equivalence coincides with labeled bisim-
ilarity [2]. This result was first proved in the context of
the spi-calculus [12]. Before defining the notion of labeled
bisimilarity, we introduce a notion of intruder’s knowledge
that has been extensively studied (e.g. [1]).

Definition 2 (static equivalence ∼): Two terms M and N
are equal in the frame φ, written (M =E N)φ, if there
exists ñ and a substitution σ such that φ ≡ νñ.σ, ñ∩(fn(M)∪
fn(N)) = ∅, and Mσ =E Nσ.

Two closed frames φ1 and φ2 are statically equivalent,
written φ1 ∼ φ2, when:
• dom(φ1) = dom(φ2), and
• for all terms M,N we have that

(M =E N)φ1 if and only if (M =E N)φ2.

Example 5: Consider the theory Eenc described in Exam-
ple 3, and the two frames
• ϕa = {enc(a,pk(sk))/x1}, and
• ϕb = {enc(b,pk(sk))/x1}.

We have that (dec(x1, sk) =Eenc a)ϕa whereas
(dec(x1, sk) 6=Eenc a)ϕb, thus we have that ϕa 6∼ ϕb.

However, we have that νsk.ϕ ∼ νsk.ϕ′. This is a non
trivial equivalence. Intuitively, there is no test that allows one
to distinguish the two frames since the decryption key and the
encryption key are not available.

Definition 3 (labeled bisimilarity ≈): Labeled bisimilarity
is the largest symmetric relation R on closed extended pro-
cesses such that A R B implies

1) φ(A) ∼ φ(B),
2) if A τ7→ A′, then B εZ⇒ B′ and A′ R B′ for some B′,
3) if A `7→ A′ and bn(`) ∩ fn(B) = ∅ then B

`Z⇒ B′ and
A′ R B′ for some B′.

Example 6: Consider the theory Eenc and the two processes
Pa = out(c, enc(a, pk(sk))) and Pb = out(c, enc(b, pk(sk))).
We have that νsk.Pa ≈ νsk.Pb whereas Pa 6≈ Pb. These
results are direct consequences of the static (in)equivalence
relations stated and discussed in Example 5.

B. Trace equivalence

For every closed extended process A we define its set of
traces, each trace consisting in a sequence of actions together
with the sequence of sent messages:

trace(A) = {(s, φ(B)) | A sZ⇒ B for some B}.

Note that, in the applied pi calculus, the sent messages are
exclusively stored in the frame and not in the sequence s (the
outputs are made by “reference”).

Definition 4 (trace inclusion vt): Let A and B be two
closed extended processes, A vt B if for every (s, ϕ) ∈
trace(A) such that bn(s)∩ fn(B) = ∅, there exists (s′, ϕ′) ∈
trace(B) such that s = s′ and ϕ ∼ ϕ′.

Definition 5 (trace equivalence ≈t): Let A and B be two
closed extended processes. They are trace equivalent, denoted
by A ≈t B, if A vt B and B vt A.

It is easy to see that observational equivalence (or labeled
bisimilarity) implies trace equivalence while the converse is
false in general (see Example 7).

Lemma 1: Let A and B be two closed extended processes:
A ≈ B implies A ≈t B.

Example 7: Consider the two following processes:

A = νc′.(out(c′, ok) | in(c′, x).out(c, a).out(c, b1)
| in(c′, x).out(c, a).out(c, b2))

B = out(c, a).νc′.(out(c′, ok) | in(c′, x).out(c, b1)
| in(c′, x).out(c, b2)).

We have that A ≈t B whereas A 6≈ B. Intuitively, after B’s
first move, B still has the choice of emitting b1 or b2, while A,
trying to follow B’s first move, is forced to choose between
two states from which it can only emit one of the two.

4

C. Determinacy

J. Engelfriet has shown that observational and trace equiva-
lence coincide for a process algebra with atomic actions, when
processes are determinate [20]. First, we define this notion in
the context of the applied pi calculus.

Definition 6 (determinacy): Let ∼= be an equivalence re-
lation on closed extended processes. A closed extended
process A is ∼=-determinate if A

sZ⇒ B, A
sZ⇒ B′ and

φ(B) ∼ φ(B′) implies B ∼= B′.

Fixing the equivalence relation yields to potentially different
notions of determinacy. We define two of them: observa-
tion determinacy (for ∼= := ≈) and trace determinacy (for
∼= := ≈t). By using the techniques of J. Engelfriet, we can
show that these two notions of determinacy actually coincide.
So we say that an extended process is determinate if it satisfies
any of these two notions.

Lemma 2: Let A be a closed extended process. The pro-
cess A is observation determinate if, and only if, it is trace
determinate.

Example 8: Consider for instance the closed extended pro-
cess A given in Example 7. We have that A τ7→ A1 and
A

τ7→ A2 for A1 and A2 given below:

A1 = νc′. (out(c, a).out(c, b1)
| in(c′, x).out(c, a).out(c, b2))

A2 = νc′. (in(c′, x).out(c, a).out(c, b1)
| out(c, a).out(c, b2)).

The process A1 can output the messages a and then b1 whereas
the process A2 can output a and then b2. Thus, the process A
is neither observation determinate, nor trace determinate.

Our first main contribution is to extend the result of J. En-
gelfriet [20] to processes of the applied-pi calculus, showing
that observational equivalence and trace equivalence coincide
when processes are determinate. The proof of this result is
relatively simple once the right definition of determinacy has
been fixed. In particular, the presence of equational theories
and active substitutions do not cause any change in the proof
scheme of [20] since the definition of determinacy already
captures their impact on processes.

Theorem 1: Let A and B be two closed extended pro-
cesses that are determinate.

A ≈t B implies A ≈ B.

Proof (sketch). Let A and B be two closed extended processes
that are determinate, and assume that A ≈t B. We consider the
relation R defined as follows:

A′ R B′ iff there exists s such that A sZ⇒ A′, B sZ⇒ B′, and
φ(A′) ∼ φ(B′).

We have that A R B. It remains to check that R satisfies
the three points of Definition 3. �

IV. AN EXPRESSIVE CLASS OF DETERMINATE PROCESSES

In what follows, we consider any signature and equational
theory. We do not need the full applied pi-calculus to represent
security protocols. For example, when it is assumed that
all communications are controlled by the attacker, private
channels between processes are not accurate (they should
rather be implemented using cryptography). In addition, the
attacker schedules the communications between processes thus
he knows exactly to whom he is sending messages and from
whom he is listening. Thus we assume that each process
communicates on a personal channel.

Formally, we consider the fragment of simple processes
built on basic processes. A basic process represents a session
of a protocol role where a party waits for a message of a
certain form or checks some equalities and outputs a message
accordingly. Then the party waits for another message or
checks for other equalities and so on.

Intuitively, any protocol whose roles have a deterministic
behavior can be modeled as a simple process. Most of the
roles are indeed deterministic since an agent should usually
exactly know what to do once he has received a message.
In particular, all protocols of the Clark and Jacob library [13]
can be modeled as simple processes. However, protocols using
abstract channels like private or authenticated channels do
not fall in our class. This is also the case of some e-voting
protocols that are divided in several phases [17]. This feature
can not be modeled in the class of simple processes.

Definition 7 (basic process): The set B(c,V) of basic
processes built from c ∈ Ch and V ⊆ X (variables of base
type) is the least set of processes that contains 0 and such that
• if B1, B2 ∈ B(c,V), M,N, s1, s2 ∈ T (Nb,V), then

if M = N then out(c, s1).B1 else out(c, s2).B2

∈ B(c,V).
• if B ∈ B(c,V] {x}), x of base type (x /∈ V), then

in(c, x) ·B ∈ B(c,V).

Intuitively, in a basic process, depending on the outcome
of the test, the process sends on its channel c a message
depending on its inputs. A basic process may also input
messages on its channel c.

Example 9: We consider a slightly simplified version of a
protocol given in [3] designed for transmitting a secret without
revealing its identity to other participants. In this protocol,
A is willing to engage in communication with B and wants
to reveal its identity to B. However, A does not want to
compromise its privacy by revealing its identity or the identity
of B more broadly. The participants A and B proceed as
follows:

A→ B : enc(〈Na, pub(A)〉, pub(B))
B → A : enc(〈Na, 〈Nb, pub(B)〉〉, pub(A))

First A sends to B a nonce Na and its public key encrypted
with the public key of B. If the message is of the expected

5

form then B sends to A the nonce Na, a freshly generated
nonce Nb and its public key, all of this being encrypted
with the public key of A. Otherwise, B sends out a “decoy”
message: enc(Nb, pub(B)). This message should basically
look like B’s other message from the point of view of an
outsider. This is important since the protocol is supposed to
protect the identity of the participants.

A session of role A played by agent a with b can be modeled
by the following basic process where true denotes a test that
is always satisfied and M = dec(x, ska). Note that A is not
given the value skb but is directly given the value pk(skb),
that is the public key corresponding to B’s private key.

A(a, b) def=
if true then

out(cA, enc(〈na, pk(ska)〉, pk(skb))).
in(cA, x).
if 〈π1(M), π2(π2(M))〉 = 〈na, pk(skb)〉 then 0

else 0
else 0.

Similarly, a session of role B played by agent b with a
can be modeled by the basic process B(b, a) where N =
dec(y, skb).

B(b, a) def= in(cB , y).
if π2(N) = pk(ska)then

out(cB , enc(〈π1(N), 〈nb, pk(skb)〉〉, pk(ska))).0
else out(cB , enc(nb, pk(skb))).0.

Intuitively, this protocol preserves anonymity if an attacker
cannot distinguish whether b is willing to talk to a (represented
by the process B(b, a)) or willing to talk to a′ (represented
by the process B(b, a′)), provided a, a′ and b are honest
participants. For illustration purposes, we also consider the
process B′(b, a) obtained from B(b, a) by replacing the else
branch by else 0. We will see that the “decoy” message
plays a crucial role to ensure privacy.

Definition 8 (simple process): A simple process is ob-
tained by composing and replicating basic processes and
frames, hiding some names:

νñ. (νñ1.(B1 | σ1) | !(νc′1, m̃1.out(p1, c
′
1).B′1) |

...
...

νñk.(Bk | σk) | !(νc′n, m̃n.out(pn, c′n).B′n))

where Bj ∈ B(cj , ∅), B′j ∈ B(c′j , ∅) and cj are channel names
that are pairwise distinct. The names p1, . . . , pn are distinct
channel names that do not appear elsewhere and σ1, . . . , σk
are frames without restricted names (i.e. substitutions).

Each basic process B′j first publishes its channel name c′j
on the public channel pj so that an attacker can communicate
with it. Intuitively the public channels p1, . . . , pn indicate from
which role the channel name c′i is emitted. Names of base
types may be shared between processes, this is the purpose
of ñ.

It is interesting to notice that protocols with deterministic
behavior are usually not modeled within our fragment (see
e.g. [2]) since a single channel is used for all communications.
We think however that using a single channel does not provide
enough information to the attacker since he is not able to
schedule exactly the messages to the processes and he does
not know from which process a message comes from while
this information is usually available (via e.g. IP adresses and
session ID). For example, a role emitting the constant a
twice would be modeled by P1 = out(c, a).out(c, a).0 while
two roles emitting each the constant a would be modeled
by P2 = out(c, a).0 | out(c, a).0. Then P1 and P2 are
observationally equivalent while the two protocols could be
distinguished in practice, which is reflected in our modeling
in simple processes.

Example 10: Continuing Example 9, a simple process rep-
resenting unbounded number of sessions in which a plays A
(with b) and b plays B with a is:

νska, skb. (!(νna, cA.out(pA, cA).A(a, b))
| !(νnb, cB .out(pB , cB).B(b, a)))

For modelling and verification purposes, we may want to
disclose the public keys in order to make them available to
the attacker. This can be done by means of an additional basic
process

K(a, b) = out(cK , pk(ska)) · out(cK , pk(skb)).0.

Simple processes is a large class of processes that are deter-
minate. Indeed, since each basic process has its own channel to
send and receive messages, all the communications are visible
to the attacker. Moreover, the attacker knows exactly who is
sending a message or from whom he is receiving a message.
Actually, given a simple process A a sequence of actions tr,
there is a unique process B (up to some internal reduction
steps) such that A trZ⇒ B.

Theorem 2: Any simple process is determinate.

Applying Theorems 1 and 2, we get that, on simple pro-
cesses, it is sufficient to check trace equivalence to prove
observational equivalence.

Corollary 1: Let A and B be two simple processes:
A ≈t B if, and only if, A ≈ B.

V. INTERMEDIATE CALCULUS

It is well-known that replication leads to undecidability (see
e.g. [19]) thus for the remaining of the paper, we consider
processes without replication. We also remove else branches
since we are only able to provide a decision procedure in this
restricted case (see Section VI). Decidability in presence of
else branches is left open. The fragment of simple processes
without replication nor else branch still allows to analyze all
protocols of the Clark and Jacob library [13], for a bounded
number of sessions.

6

Reasoning on processes of the applied-pi calculus is quite
involved since it requires one to consider all the rules defining
the labeled transition relation α→. Thus we use a simpli-
fied fragment of the class of intermediate processes, defined
in [16], that are easier to manipulate and such that trace
equivalence of simple processes without replication nor else
branch is equivalent to trace equivalence of their corresponding
intermediate processes.

A. Syntax

The grammar of the plain intermediate processes is as
follows:

P,Q,R := 0
if M1 = M2 then P else Q
in(c, x).P
out(c,N).P

where c ∈ Ch is channel name, M1,M2 are terms of base
type, x is a variable of base type, and N is a message of base
type. Terms M1,M2 and N can also use variables.

Definition 9 (intermediate process): An intermediate
process is a triple (E ;P; Φ) where:
• E is a set of names that represents the names restricted

in P;
• Φ = {w1 B t1, . . . , wn B tn} where t1, . . . , tn are

ground terms, and w1, . . . , wn are variables;
• P is a multiset of plain intermediate processes (defined

above) where null processes are removed and such that
fv(P) ⊆ {w1, . . . , wm}.

Additionally, we require intermediate processes to be variable
distinct, i.e. any variable is at most bound once.

Given a sequence Φ = {w1 B t1, . . . , wn B tn} where
t1, . . . , tn are terms, we also denote by Φ its associated frame,
i.e. {t1/w1} | . . . | {tn/wn

}.

Given a closed extended process A of the original applied
pi without replication, we can easily transform it into an in-
termediate process Ã = (E ;P; Φ) such that A ≈ νE .(P | Φ).
The idea is to rename names and variables to avoid clashes,
to apply the active substitutions (SUBST), to remove the
restrictions on variables (ALIAS), and finally to push the
restrictions on names in front of the process. We can also add
some restricted names not appearing in the process in front
of it. This will be useful to obtain two intermediate processes
with the same set of restricted names.

Example 11: Consider the extended process A described
below (M is a term such that n 6∈ fn(M)):

νsk.νx.(out(c, enc(x, pk(sk))).νn.out(c, n) | {M/x}).

An intermediate process A′ associated to A is:

A′ = (E ;P; Φ)
= ({sk, n}; out(c, enc(M, pk(sk))).out(c, n); ∅).

We have that A ≈ νE .(P | Φ). However, note that A and
νE .(P | Φ) are not in structural equivalence. Indeed, structural

equivalence does not allow one to push all the restrictions in
front of a process.

B. Semantics

From now on, we consider intermediate processes without
else branch, that is we assume that any sub-process of the
form if M = N then P else Q is such that Q = 0. The
semantics for intermediate processes (without else branch) is
given in Figure 2. Let Ai be the alphabet of actions for the
intermediate semantics. For every w ∈ A∗i the relation w−→i

on intermediate processes is defined in the usual way. For
s ∈ (Air{τ})∗, the relation s⇒i on intermediate processes is
defined by: A s⇒i B if, and only if there exists w ∈ A∗i such
that A w−→i B and s is obtained by erasing all occurrences of τ .
Note that by definition, intermediate processes are closed.

C. Equivalence

Let A = (E1;P1; Φ1) be an intermediate process. We define
the following set:

tracei(A) = {(s, νE2.Φ2) | (E1;P1; Φ1) s⇒i (E2;P2; Φ2)
for some (E2;P2; Φ2)}

Definition 10 (≈t for intermediate processes): Let A
and B be two intermediate processes having the same set of
restricted names, i.e. A = (E ;P1; Φ1) and B = (E ;P2; Φ2).

The processes A and B are intermediate trace equivalent,
denoted by A ≈t B, if for every (s, ϕ) ∈ tracei(A) there
exists (s′, ϕ′) ∈ tracei(B) such that s = s′ and ϕ ∼ ϕ′ (and
conversely).

Despite the differences between the two semantics, it can be
shown that the two notions of trace equivalence coincide [16].
For intermediate processes derived from simple processes, we
wish to obtain a similar result for a more detailed notion of
trace, called annotated trace.

Annotated traces are obtained by replacing the label τ of the
rule THENi in Figure 2 with testp where p is the identity of the
process, i.e. the name of its channel. If Ai

a1−→i . . .
an−−→i A

′
i,

we denote by a1 · . . . · an the trace obtained from a1 · . . . ·
an by replacing any testp by τ , recovering a trace for the
previous definition of trace. We can easily adapt the definition
of trace and trace equivalence, yielding to annotated trace and
annotated trace equivalence.

We show that on simple processes without else branch nor
replication, trace equivalence coincides with annotated trace
equivalence.

Proposition 1: Let A and B be two simple processes
without else branch nor replication. Let Ã = (E ;PA; ΦA)
and B̃ = (E ;PB ; ΦB) be the two associated intermediate
processes.

The processes A and B are trace equivalent (i.e. A ≈t B
in the original applied pi calculus semantics) if, and only if,
Ã and B̃ are annotated trace equivalent.

The proof relies on the result of [16] that states that two
processes are trace equivalent if and only if the corresponding

7

(E ; {if u = v then P else Q}] P; Φ) τ−→i (E ; {P}] P; Φ) if u =E v (Theni)

(E ; {in(p, x).P}] P; Φ)
in(p,M)−−−−−→i (E ; {P{x 7→ u}}] P; Φ) (Ini)

MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(p, u).P}] P; Φ)
νwn.out(p,wn)−−−−−−−−−→i (E ; {P}] P; Φ ∪ {wn B u}) (Out-Ti)

wn variable such that n = |Φ|+ 1

u, v and x are terms of base type whereas p is a channel name.

Fig. 2. Intermediate semantics of simple processes

intermediate processes are intermediate trace equivalent. We
then need to show that traces can be grouped following
the annotation, which is due to the determinism of simple
processes.

VI. A DECISION PROCEDURE FOR OBSERVATIONAL
EQUIVALENCE

The aim of the section is to provide a decision procedure for
trace equivalence and for a large class of processes (namely the
class of simple processes), for the class of convergent subterm
equational theories. Starting from intermediate processes that
are obtained from simple processes without else branch nor
replication, we reduce trace equivalence to equivalence of
constraint systems. We can then conclude by using the decision
procedure proposed in [7], [8] for constraint systems for the
class of convergent subterm equational theories.

A. Constraint system

Following the notations of [7], we consider a new set X 2 of
variables called second order variables X,Y, . . ., each variable
with an arity, denoted ar(X). We denote by var1(C) (resp.
var2(C)) the first order (resp. second order) variables of C,
that is var1(C) = fv(C) ∩ X (resp. var2(C) = fv(C) ∩ X 2).

A constraint system represents the possible executions of a
protocol once an interleaving has been fixed.

Definition 11 (constraint system [7]): A constraint sys-
tem is a triple (E ; Φ; C):
• E is a set of names (names that are initially unknown to

the attacker);
• Φ is a sequence of the form {w1 B t1, . . . , wn B tn}

where ti are terms and wi are variables. The ti represent
the terms sent on the network, their variables represent
messages sent by the attacker.

• C is a set of constraints of the form X B? x with
ar(X) ≤ n, or of the form s =?

E s
′ where s, s′ are first-

order terms. Intuitively, the constraint X B? x is meant
to ensure that x will be replaced by a deducible term.

The size of Φ, denoted |Φ| is its length n.

We also assume the following conditions:
1) for every x ∈ var1(C), there exists a unique X such that

(X B? x) ∈ C, and each variable X occurs at most once
in C.

2) for every 1 ≤ k ≤ n, for every x ∈ var1(tk), there exists
(X B? x) ∈ C such that ar(X) < k.

Given a term T with variables w1, . . . , wk and Φ = {w1 B
t1, . . . , wn B tn}, n ≥ k, TΦ denotes the term T where
each wi has been replaced by ti. The structure of (E ; Φ; C) is
given by E , |Φ| and var2(C) with their arity.

Example 12: The triple Σs = (Es; Φ0
s ∪ {w4 B t}; Cs)

where
Es = {ska, ska′, skb, na, nb},
Φ0
s = {w1 B pk(ska), w2 B pk(ska′), w3 B pk(skb)},

t = enc(〈π1(dec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska)),
Cs = {Y B? y, π2(dec(y, skb)) =?

E pk(ska)}, ar(Y) = 3

is a constraint system. We will see that it corresponds to the
execution of the process B′(b, a) presented in Example 9. We
consider three agents (a, a′ and b) so that the attacker can try
to learn whether b is willing to talk to a or to a′. Their public
keys are made available to the attacker.

Definition 12 (solution): A solution of a constraint system
Σ = (E ; Φ; C) is a substitution θ such that
• dom(θ) = var2(C), and
• Xθ ∈ T (Nb r {E},dom(Φ)) for any X ∈ dom(θ).

Moreover, we require that there exists a closed substitution λ
with dom(λ) = var1(C) such that:

1) for every (X B? x) ∈ C, (Xθ)(Φλ) = xλ;
2) for every (s =?

E s
′) ∈ C, sλ =E s

′λ;
The substitution λ is called first order solution of Σ associated
to θ. The set of solutions of a constraint system Σ is denoted
Sol(Σ).

Example 13: Continuing Example 12, a solution to Σs =
(Es; Φs; Cs) is θ where dom(θ) = {Y } and θ(Y) =
enc(〈ni, w1〉, w3) with ni a public name (i.e. ni 6∈ Es).
The first order-solution λ of Σs associated to θ is a sub-
stitution whose domain is {y} and such that λ(y) =
enc(〈ni, pk(ska)〉, pk(skb)).

A constraint system Σ is satisfiable if Sol(Σ) 6= ∅. Two
constraint systems Σ1 and Σ2 with the same structures are
equivalent if and only if Sol(Σ1) = Sol(Σ2). We further
define S-equivalence [7] that will be useful to capture static
equivalence.

8

Definition 13 (S-equivalence): Let Σ1 = (E ; Φ1; C1) and
Σ2 = (E ; Φ2; C2) be two constraint systems with the same
structure and consider x, y 6∈ var1(Ci) and X,Y 6∈ var2(Ci)
for i = 1, 2. The two systems Σ1 and Σ2 are S-equivalent if
the constraint systems:
• (E ; Φ1; C1 ∪ {X B? x, Y B? y, x =?

E y}), and
• (E ; Φ2; C2 ∪ {X B? x, Y B? y, x =?

E y})
are equivalent.

Example 14: Let Σ′s be the constraint system below:

(Es; Φ0
s ∪ {w4 B t

′};Y B? y, π2(dec(y, skb)) =?
E pk(ska′))

where t′ = enc(〈π1(dec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska′)),
and Es, Φ0

s are defined as in Example 12. We will see that this
system corresponds to the system obtained after a symbolic
execution of the process B′(b, a′) presented in Example 9.

The system Σs (given in Example 12) is not equivalent to
Σ′s. Indeed, the substitution θ given in Example 13 is such
that θ ∈ Sol(Σs) whereas θ 6∈ Sol(Σ′s). We conclude that
the constraint systems Σs and Σ′s are not equivalent, and thus
not in S-equivalence. Actually, this corresponds to the fact
that an attacker can distinguish between B′(b, a) and B′(b, a′)
by sending a message enc(〈n, pk(ska)〉, pk(skb)) and see
whether b answers or not.

B. Symbolic calculus

Following the approach of [8], we compute from an in-
termediate process P = (E ;P; Φ) the set of constraints
systems capturing the possible executions of P , starting from
Ps

def= (E ;P; Φ; ∅) and applying the rules defined in Figure 3.

Definition 14 (symbolic process): A symbolic process is
a tuple (E ;P; Φ; C) where:
• E is a set of names;
• P is a multiset of plain intermediate processes where null

processes are removed and such that fv(P) ⊆ {x | X B?

x ∈ C};
• (E ,Φ, C) is a constraint system.

The rules of Figure 3 define the semantics of symbolic
processes. The aim of this symbolic semantics is to avoid the
infinite branching due to the inputs of the environment. This
is achieved by keeping variables rather than the input terms.
The constraint system gives a finite representation of the value
that these variables are allowed to take.

The THENs (resp. INs) rule allows the process to pass a
test (resp. an input). The corresponding constraint is added in
the set of constraints C. When a process is ready to output a
term on a public channel p, the outputted term is added to the
frame Φ, which means that this term is made available to the
attacker.

Example 15: We consider one session of the protocol
presented in Example 9, in which b plays the role B′ (with

a) and a plays the role A with b. We consider the following
process K(a, a′, b) that models keys disclosure, i.e.

out(cK , pk(ska)).out(cK , pk(ska′)).out(cK , pk(skb)).

Let E be the set of names {ska, ska′, skb, na, nb}, and P sex
the following symbolic process:

P sex = (E ; {A(a, b), B′(b, a), K(a, a′, b)}; ∅; ∅).

We have that P sex
tr⇒s (Es;Ps; Φs; Cs) where

• tr = νw1.out(cK , w1) · νw2.out(cK , w2) ·
νw3.out(cK , w3) · in(cB , y) · νw4.out(cB , w4),

• Ps = {A(a, b)}, and
• (Es; Φs; Cs) is the constraint system Σs defined in Exam-

ple 12.

We show that the set of symbolic processes obtained from
an intermediate process (E ;P; Φ) without else branch exactly
captures the set of execution traces of (E ;P; Φ) though θ-
concretization.

Definition 15 (θ-concretization): Consider the
symbolic process (E1;P1; Φ1; C1) and let θ be a
substitution in Sol((E1; Φ1; C1)). The intermediate process
(E1;P1λθ; Φ1λθ) is the θ-concretization of (E1;P1; Φ1; C1)
where λθ is the first order solution of (E1; Φ1; C1) associated
to θ.

We now show soundness of αs−→s w.r.t. α−→i: whenever this
relation holds between two symbolic processes, the relation
in the intermediate semantics holds for each θ-concretization.
Actually, we need such a result for the more detailed notion of
annotated traces (see page 7): the label τ of the rules THENs
and THENi is replaced by testp where p is the identity of the
process, i.e. the name of its channel.

Proposition 2 (soundness): Let (E1;P1; Φ1; C1),
(E2;P2; Φ2; C2) be two symbolic processes such that
• (E1;P1; Φ1; C1) αs−→s (E2;P2; Φ2; C2), and
• θ2 ∈ Sol((E2; Φ2; C2)).

Let θ1 = θ2|var2(C1). We have that:
1) θ1 ∈ Sol((E1; Φ1; C1)), and
2) (E1;P ′1; Φ′1) αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1)

(resp. (E2;P ′2; Φ′2) is the θ1-concretization (resp. θ2) of
(E1;P1; Φ1; C1) (resp. (E2;P2; Φ2; C2)).

We also show completeness of the symbolic semantics
w.r.t. the intermediate one: each time a θ-concretization of a
symbolic process reduces to another intermediate process, the
symbolic process also reduces to a corresponding symbolic
process.

Proposition 3 (completeness): Let (E1;P1; Φ1; C1) be a
symbolic process, (E1;P ′1; Φ′1) its θ1-concretization where
θ1 ∈ Sol((E1; Φ1; C1)). Let (E ;P; Φ) be an intermediate
process such that (E1;P ′1; Φ′1) α−→i (E ;P; Φ). There exist a
symbolic process (E2;P2; Φ2; C2) and θ2 such that:

9

THENs (E ; {if u = v then P else 0}] P; Φ; C) τ−→s (E ; {P}] P; Φ; C ∪ {u =?
E v})

INs (E ; {in(p, x).P}] P; Φ; C) in(p,Y)−−−−→s (E ; {P{x 7→ y}}] P; Φ; C ∪ {Y B? y})
where Y, y are fresh variables, ar(Y) = |Φ|

OUT-Ts (E ; {out(p, u).P}] P; Φ; C) νwn.out(p,wn)−−−−−−−−−→s (E ; {P}] P; Φ ∪ {wn B u}; C)
where wn is a variable such that n = |Φ|+ 1

u, v, and x are terms of base type whereas p is a channel name.

Fig. 3. Symbolic execution of simple processes

1) (E1;P1; Φ1; C1) αs−→s (E2;P2; Φ2; C2);
2) θ2 ∈ Sol((E2; Φ2; C2));
3) the process (E ;P; Φ) is the θ2-concretization of

(E2;P2; Φ2; C2); and
4) αsθ2 = α.

C. Symbolic equivalence

Definition 16 (symbolic trace equivalence): Let A be a
simple process without else branch nor replication. We define
the set of its symbolic traces as follows:

traces(A) = {(tr,Σ) | As
tr⇒s (E ′;P ′; Φ′; C′) and

Σ = (E ′; Φ′; C′) satisfiable.}
Let A and B be two simple processes. They are in symbolic
trace equivalence if for every (tr,Σ) ∈ traces(A) there exists
(tr′,Σ′) ∈ traces(B) such that tr = tr′ and Σ, Σ′ are S-
equivalent (and conversely).

We show that symbolic trace equivalence exactly captures
trace equivalence.

Proposition 4: Let A = (E ;PA; ΦA) and B =
(E ;PB ; ΦB) be two intermediate processes derived from sim-
ple processes without else branch nor replication. We have
that A and B are in annotated trace equivalence if, and only
if, they are in annotated symbolic trace equivalence.

The proof relies on the fact that, when A ≈t B, execution
traces can be grouped in the same way for A and B, forming
symbolic traces with S-equivalent constraint systems.

The following proposition is an immediate consequence of
Proposition 1 and Proposition 4.

Proposition 5: Let A and B be two simple processes
without else branch nor replication: A ≈t B if, and only if A
and B are in annotated symbolic trace equivalence.

Example 16: Relying on our technique, we can now prove
that the two following processes Pex and P ′ex are not in
observational equivalence:
• Pex = νñ.[A(a, b) | B′(b, a) | K(a, a′, b)], and
• P ′ex = νñ.[A(a′, b) | B′(b, a′) | K(a, a′, b)].
Continuing Example 15, we have that (tr,Σs) ∈

traces(P sex) and Σs satisfiable (see Example 13). The only
constraint system reachable from

P ′sex = (E ; {A(a′, b), B′(b, a′), K(a, a′, b)}; ∅; ∅)

by the sequence tr is Σ′s as defined in Example 14. We have
seen that Σ′s is not in S-equivalence with Σs. This allows
us to conclude that the simple processes Pex and P ′ex are not
in symbolic trace equivalence, and thanks to Proposition 5,
Theorem 1 and Theorem 2, we conclude that Pex 6≈ P ′ex.

D. Decidability result

It remains to show how to decide symbolic trace equiva-
lence. We mainly rely on the result of [7] that ensures that
checking whether two constraints systems are S-equivalent is
NP-complete, for the class of convergent subterm theories.

An equational theory E is a convergent subterm theory if it
is generated by a convergent rewriting system R such that any
rule l → r ∈ R satisfies that either r is a strict subterm of l
or r is a closed term in normal form w.r.t. R. The equational
theory presented in Example 3 is a convergent subterm theory.
Many other examples can be found e.g. in [1].

Now, we are able to state our main result.

Theorem 3: Let E be a subterm convergent equational
theory. Let A and B be two simple processes without else
branch nor replication. The problem whether A and B are
observationally equivalent is co-NP-complete.

The decidability of observational equivalence follows from
Proposition 5 since there are a finite number of symbolic traces
and non S-equivalence of constraint systems is decidable [7].
Actually, since we consider annotated trace, we have that for
any simple process P and any annotated trace tr, there is at
most one Σ such that (tr,Σ) ∈ traces(P). We show that two
simple processes A and B without else branch nor replication
are in trace equivalence if, and only if, for any annotated trace
(tr,Σ) ∈ traces(A), there exists a (unique) annotated trace
(tr,Σ′) ∈ traces(B) such that Σ and Σ′ are S-equivalent.
We show this result in two steps: we go from applied pi
to the intermediate calculus (see Proposition 1) and then we
go from intermediate calculus to our symbolic calculus (see
Proposition 4).

Then the NP-TIME decision procedure for non observa-
tional equivalence works as follows:
• Guess a symbolic (annotated) trace tr;
• Compute (in polynomial time) Σ and Σ′ such that

(tr,Σ) ∈ traces(A) and (tr,Σ′) ∈ traces(B);
• check whether Σ and Σ′ are not S-equivalent.

10

Due to [7], we know that the last step can be done in NP-
TIME for convergent subterm theories thus we deduce that
the overall procedure is NP-TIME. NP-hardness is obtained
using the usual encoding [25].

VII. CONCLUSION

In this paper, we consider the class of determinate processes
and we show that observational equivalence actually coincides
with trace equivalence, a notion simpler to reason with. We
exhibit a large class of processes that are determinate and we
show how to reduce the decidability of trace equivalence to
deciding an equivalence relation introduced by M. Baudet. Al-
together, this yields the first decidability result of observational
equivalence for a general class of processes.

As future work, it would be interesting to extend this class
of processes in different ways. For example, we would like
to extend our decision result to else branches. This would
require adding disequality tests in set of constraints and adapt
the procedure of [7] accordingly. Moreover, some protocols
such as e-voting protocols are divided in several phases. It
does not seem difficult to add a “phase” operator to the
applied pi-calculus and obtain a corresponding decision result
for observational equivalence. It would be also interesting to
consider larger classes of equational theories such as those
considered for e-voting protocols [17].

Our class of simple processes is close to the fragment
of processes considered in [14] for proving cryptographic
indistinguishability using observational equivalence. However,
the fragment of [14] does not enjoy the determinacy property
(since it was not designed for it). We plan to extend their
result to our class of simple processes, yielding to a decision
technique for proving indistinguishability in cryptographic
models.

REFERENCES

[1] M. Abadi and V. Cortier. Deciding knowledge in security protocols
under equational theories. Theoretical Computer Science, 387(1-2):2–
32, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In Proc. 28th Symposium on Principles of Programming
Languages (POPL’01), pages 104–115. ACM Press, 2001.

[3] M. Abadi and C. Fournet. Private authentication. Theoretical Computer
Science, 322(3):427–476, 2004.

[4] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The
spi calculus. In Proc. 4th Conference on Computer and Communications
Security (CCS’97), pages 36–47. ACM Press, 1997.

[5] R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of
processes with cryptographic functions. Theoretical Computer Science,
290:695–740, 2002.

[6] A. Armando et al. The AVISPA Tool for the automated validation
of internet security protocols and applications. In Proc. 17th Int.
Conference on Computer Aided Verification (CAV’05), volume 3576 of
LNCS, pages 281–285. Springer, 2005.

[7] M. Baudet. Deciding security of protocols against off-line guessing
attacks. In Proc. 12th Conference on Computer and Communications
Security (CCS’05), pages 16–25. ACM Press, 2005.

[8] M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques
et calculatoires. Phd thesis, École Normale Supérieure de Cachan,
France, 2007.

[9] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In Proc. 14th Computer Security Foundations Workshop
(CSFW’01), pages 82–96. IEEE Comp. Soc. Press, 2001.

[10] B. Blanchet. Automatic proof of strong secrecy for security protocols. In
Proc. Symposium on Security and Privacy, pages 86–100. IEEE Comp.
Soc. Press, 2004.

[11] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and
Algebraic Programming, 75(1):3–51, 2008.

[12] M. Boreale, R. D. Nicola, and R. Pugliese. Proof techniques for
cryptographic processes. SIAM Journal on Computing, 31(3):947–986,
2002.

[13] J. Clark and J. Jacob. A survey of authentication
protocol literature. http://www.cs.york.ac.uk/̃ jac/
papers/drareviewps.ps, 1997.

[14] H. Comon-Lundh and V. Cortier. Computational soundness of ob-
servational equivalence. In Proc. 15th Conference on Computer and
Communications Security (CCS’08), pages 109–118. ACM Press, 2008.

[15] V. Cortier and S. Delaune. A method for proving observational
equivalence. Research Report LSV-09-04, Laboratoire Spécification et
Vérification, ENS Cachan, France, Feb. 2009. 22 pages.

[16] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for
the applied pi-calculus. In Proc. 27th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’07),
pages 133–145, 2007.

[17] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security,
2009. To appear.

[18] L. Durante, R. Sisto, and A. Valenzano. Automatic testing equivalence
verification of spi calculus specifications. ACM Transactions on Software
Engineering and Methodology, 12(2):222–284, 2003.

[19] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In Proc. Workshop on Formal Methods and
Security Protocols (FMSP’99), Trento (Italy), 1999.

[20] J. Engelfriet. Determinacy implies (observation equivalence = trace
equivalence). Theoretical Computer Science, 36:21–25, 1985.

[21] H. Hüttel. Deciding framed bisimulation. In Proc. 4th Int. Workshop on
Verification of Infinite State Systems (INFINITY’02), pages 1–20, 2002.

[22] P. C. Kanellakis and S. A. Smolka. Ccs expressions, finite state pro-
cesses, and three problems of equivalence. In ACM, editor, Proceedings
of the second annual ACM symposium on Principles of distributed
computing, pages 228–240, 1983.

[23] G. Lowe. Towards a completeness result for model checking of security
protocols. In Proc. 11th Computer Security Foundations Workshop
(CSFW’98), 1998.

[24] J. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proc. 8th ACM Conference on
Computer and Communications Security (CCS’01). ACM Press, 2001.

[25] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Proc. 14th Computer Security Founda-
tions Workshop (CSFW’01), pages 174–190. IEEE Comp. Soc. Press,
2001.

11

