
Automating security analysis: symbolic
equivalence of constraint systems ?

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. We consider security properties of cryptographic protocols,
that are either trace properties (such as confidentiality or authenticity)
or equivalence properties (such as anonymity or strong secrecy).

Infinite sets of possible traces are symbolically represented using de-
ducibility constraints. We give a new algorithm that decides the trace
equivalence for the traces that are represented using such constraints, in
the case of signatures, symmetric and asymmetric encryptions. Our al-
gorithm is implemented and performs well on typical benchmarks. This
is the first implemented algorithm, deciding symbolic trace equivalence.

1 Introduction

Security protocols are small distributed programs aiming at some security goal,
though relying on untrusted communication media. Formally proving that such
a protocol satisfies a security property (or finding an attack) is an important
issue, in view of the economical and social impact of a failure.

Starting in the 90s, several models and automated verification tools have
been designed. For instance both protocols, intruder capabilities and security
properties can be formalized within first-order logic and dedicated resolution
strategies yield relevant verification methods [18, 21, 6]. Another approach, ini-
tiated in [19], consists in symbolically representing the traces using deducibility
constraints. Both approaches were quite successful in finding attacks/proving
security protocols. There are however open issues, that concern the extensions
of the methods to larger classes of protocols/properties [11]. For instance, most
efforts and successes only concerned, until recently, trace properties, i.e., security
properties that can be checked on each individual sequence of messages corre-
sponding to an execution of the protocol. A typical example of a trace property
is the confidentiality, also called weak secrecy : a given message m should not be
deducible from any sequence of messages, that corresponds to an execution of
the protocol. Agreement properties, also called authenticity properties, are other
examples of trace properties.

There are however security properties that cannot be stated as properties of
a single trace. Consider for instance a voter casting her vote, encrypted with a
public key of a server. Since there are only a fixed, known, number of possible

? This work has been partially supported by the ANR project SeSur AVOTÉ.



2 Automating security analysis: symbolic equivalence of constraint systems

plaintexts, the confidentiality is not an issue. A more relevant property is the
ability to relate the voter’s identity with the plaintext of the message. This
is a property in the family of privacy (or anonymity) properties [15]. Another
example is the strong secrecy : m is strongly secret if replacing m with any m′ in
the protocol, would yield another protocol that is indistinguishable from the first
one: not only m itself cannot be deduced, but the protocol also does not leak
any piece of m. These two examples are not trace properties, but equivalence
properties: they can be stated as the indistinguishability of two processes. In
the present paper, we are interested in automating the proofs of equivalence
properties. As far as we know, there are only three series of works that consider
the automation of equivalence properties for security protocols1.

The first one [7] is an extension of the first-order logic encoding of the pro-
tocols and security properties. The idea is to overlap the two processes that are
supposedly equivalent, forming a bi-process, then formalize in first-order logic
the simultaneous moves (the single move of the bi-process) upon reception of a
message. This method checks a stronger equivalence than observational equiv-
alence, hence it fails on some simple (cook up) examples of processes that are
equivalent, but their overlapping cannot be simulated by the moves of a single
bi-process. The procedure might also not terminate or produce false attacks, but
considers an unbounded number of protocol instances.

The second one [3] (and [14]) assumes a fixed (bounded) number of sessions.
Because of the infinite number of possible messages forged by an attacker, the
number of possible traces is still infinite. The possible traces of the two processes
are symbolically represented by two deducibility constraints. Then [3] provides
with a decision procedure, roughly checking that the solutions, and the recipes
that yield the solutions are identical for both constraints. This forces to compute
the solutions and the associated recipes and yields an unpractical algorithm.

The third one [17, 9] is based on an extension of the small attack property
of [20]. They show that, if two processes are not equivalent, then there must exist
a small witness of non-equivalence. A decision of equivalence can be derived by
checking every possible small witness. As in the previous method, the main
problem is the practicality. The number of small witnesses is very large as all
terms of size smaller than a given bound have to be considered. Consequently,
neither this method nor the previous one have been implemented.

We propose in this paper another algorithm for deciding equivalence prop-
erties. As in [3, 9], we consider trace equivalence, which coincides with observa-
tional equivalence for determinate processes [14]. In that case, the equivalence
problem can be reduced to the symbolic equivalence of finitely many pairs of
deducibility constraints, each of which represents a set of traces (see [14]). We
consider signatures, pairing, symmetric and asymmetric encryptions, which is
slightly less general than [3, 9], who consider arbitrary subterm-convergent theo-
ries. The main idea of our method is to simultaneously solve pairs of constraints,
instead of solving each constraint separately and comparing the solutions, as
1 [16] gives a logical characterization of the equivalence properties. It is not clear if

this can be of any help in deriving automated decision procedures.



Automating security analysis: symbolic equivalence of constraint systems 3

in [3]. These pairs are successively split into several pairs of systems, while pre-
serving the symbolic equivalence: roughly, the father pair is in the relation if, and
only if, all the sons pairs are in the relation. This is not fully correct, since, for
termination purposes, we need to keep track of some earlier splitting, using ad-
ditional predicates. Such predicates, together with the constraint systems, yield
another notion of equivalence, which is preserved upwards, while the former is
preserved downwards. When a pair of constraints cannot be split any more, then
the equivalence can be trivially checked.

A preliminary version of the algorithm has been implemented and works
well (within a few seconds) on all benchmarks. The same implementation can
also be used for checking the static equivalence and for checking the constraints
satisfiability. We also believe that it is easier (w.r.t. [3, 9]) to extend the algorithm
to a more general class of processes (including disequality tests for instance) and
to avoid the detour through trace equivalence. This is needed to go beyond the
class of determinate processes.

We first state precisely the problem in Section 2, then we give the algorithm,
actually the transformation rules, in Section 3. We sketch the correctness and
termination proofs in Section 4 and provide with a short summary of the exper-
iments in Section 5. Detailed proofs of the results can be found in [8].

2 Equivalence properties and deducibility constraints

We use the following straightfoward example for illustrating some definitions:

Example 1. Consider the following very simple handshake protocol:

A→ B : enc(NA,KAB)
B → A : enc(f(NA),KAB)

The agent A sends a random message NA to B, encrypted with a key KAB ,
that is shared by A and B only. The agent B replies by sending f(NA) encrypted
with the same key. The function f is any function, for instance a hash function.

Consider only one session of this protocol: a sends enc(na, kab) and waits
for enc(f(na), kab). The agent b is expecting a message of the form enc(x, kab).
The variable x represents the fact that b does not know in advance what is this
randomly generated message. Then he replies by sending out enc(f(xσ), kab). All
possible executions are obtained by replacing x with any message xσ such that
the attacker can supply with enc(xσ, kab) and then with enc(f(na), kab). This is
represented by the following constraint:

C :=

 a, b, enc(na, kab)
?

` enc(x, kab)

a, b, enc(na, kab), enc(f(x), kab)
?

` enc(f(na), kab)

Actually, C has only one solution: x has to be replaced by na. There is no
other way for the attacker to forge a message of the form enc(x, kab).



4 Automating security analysis: symbolic equivalence of constraint systems

2.1 Function symbols and terms

We will use the set of function symbols F = N ∪ C ∪ D where:

– C = {enc, aenc, pub, sign, vk, 〈 〉} is the set of constructors;
– D = {dec, adec, check, proj1, proj2} is the set of destructors;
– N is a set of constants, called names.

In addition, X is a set of variables x, y, z,... The constructor terms (resp. ground
constructor terms) are built on C, N and X (resp. C,N ). The term rewriting
system below is convergent: we let t↓ be the normal form of t.

adec(aenc(x, pub(y)), y)→ x proj1(〈x, y〉)→ x dec(enc(x, y), y)→ x
check(sign(x, y), vk(y))→ x proj2(〈x, y〉)→ y

A (ground) recipe records the attacker’s computation. It is used as a witness
of how some deduction has been performed. Formally, it is a term built on
C,D and a set of special variables AX = {ax 1, . . . , axn, . . .}, that can be seen as
pointers to the hypotheses, or known messages. Names are excluded from recipes:
names that are known to the attacker must be given explicitly as hypotheses.

Example 2. Given enc(a, b) and b, the recipe ζ = dec(ax 1, ax 2) is a witness of
how to deduce a: ζ{ax 1 7→ enc(a, b); ax 2 7→ b}↓ = a.

The recipes are generalized, including possibly variables that range over
recipes: (general) recipes are terms built on C,D,AX and Xr, a set of recipe
variables, that are written using capital letters X,X1, X2, . . ..

We denote by var(u) is the set of variables of any kind that occur in u.

2.2 Frames

The frame records the messages that have been sent by the participants of
the protocol; it is a symbolic representation of a set of sequences of messages.
The frame is also extended to record some additional informations on attacker’s
deductions. Typically dec(X, ζ), i . u records that, using a decryption with the
recipe ζ, on top of a recipe X, allows to get u (at stage i). After recording this
information in the frame, we may forbid the attacker to use a decryption on top
of X, forcing him to use this “direct access” from the frame.

Definition 1. A frame φ is a sequence ζ1, i1.u1, . . . , ζn, in.un where u1, . . . , un

are constructor terms, i1, . . . , in ∈ N, and ζ1, . . . , ζn are general recipes. The
domain of the frame φ, denoted dom(φ), is the set {ζ1, . . . , ζn} ∩ AX . It must
be equal to {ax 1, . . . , axm} for some m that is called the size of φ. A frame is
closed when u1, . . . , un are ground terms and ζ1, . . . , ζn are ground recipes.

Example 3. The messages of Example 1 are recorded in a frame of size 4.

{ax 1, 1 . a, ax 2, 2 . b, ax 3, 3 . enc(na, kab), ax 4, 4 . enc(f(x), kab)}.

A frame φ defines a substitution {ax 7→ u | ax ∈ dom(φ), ax . u ∈ φ}. A
closed frame is consistent if, for every ζ . u ∈ φ, we have that ζφ↓ = u.



Automating security analysis: symbolic equivalence of constraint systems 5

2.3 Deducibility constraints

The following definitions are consistent with [12]. We generalize however the
usual definition, including equations between recipes, for example, in order to
keep track of some choices in our algorithm.

Definition 2. A deducibility constraint (sometimes called simply constraint in
what follows) is either ⊥ or consists of:

1. a subset S of X (the free variables of the constraint);
2. a frame φ, whose size is some m;

3. a sequence X1, i1
?

` u1; . . . ; Xn, in
?

` un where
– X1, . . . , Xn are distinct variables in Xr, u1, . . . , un are constructor terms,

and 0 ≤ i1 ≤ . . . ≤ in ≤ m.
– for every 0 ≤ k ≤ m, var(axkφ) ⊆

⋃
ij<k var(uj);

4. a conjunction E of equations and disequations between terms;
5. a conjunction E′ of equations and disequations between recipes.

The variables Xi represent the recipes that might be used to deduce the
right hand side of the deducibility constraint. The indices indicate which initial
segment of the frame can be used. We use this indirect representation, instead of
the seemingly simpler notation of Example 1, because the transformation rules
that will change the frame don’t need then to be reproduced on all relevant left
sides of deducibility constraints.

Example 4. Back to Example 1, the deducibility constraint is formally given by
S = {x, y}, E = E′ = ∅, the frame φ as in Example 3 and the sequence:

D = X1, 3
?

` enc(x, kab); X2, 4
?

` enc(f(na), kab).

For sake of simplicity, in what follows, we will forget about the first compo-
nent (the free variables). This is justified by an invariant of our transformation
rules: initially all variables are free and each time new variables are introduced,
their assignment is determined by an assignment of the free variables.

Definition 3. A solution of a deducibility constraint C = (φ,D,E,E′) consists
of a mapping σ from variables to ground constructor terms and a substitution θ
mapping Xr to ground recipes, such that:

– for every ζ, i . u ∈ φ, var(ζθ) ⊆ {ax 1, . . . , ax i} and ζθ(φσ)↓ = uσ↓ (i.e. the
frame is consistent after instanciating the variables);

– for every Xi, j
?

` ui in D, var(Xiθ) ⊆ {ax 1, . . . , ax j} and Xiθ(φσ)↓ = uiσ↓;

– for every equation u
?= v (resp. u

?

6= v) in E, uσ↓ = vσ↓ (resp. uσ↓ 6= vσ↓);

– for every equation ζ
?= ζ ′ (resp. ζ

?

6= ζ ′) in E′, ζθ = ζ ′θ (resp. ζθ 6= ζ ′θ).

Sol(C) is the set of solutions of C. By convention, Sol(⊥) = ∅.



6 Automating security analysis: symbolic equivalence of constraint systems

Example 5. Coming back to Example 4, a solution is (σ, θ) with:
– σ = {x 7→ na, y 7→ 〈a, enc(na, kab)〉}, and
– θ = {X1 7→ ax 3, X2 7→ ax 4, X3 7→ 〈ax 1, ax 3〉}.

Each solution of a constraint corresponds to a possible execution of the pro-
tocol, together with the attacker’s actions that yield this execution. For instance

an attack on the confidentiality of a term s can be modeled by adding X,m
?

` s
to the constraint system (X is a fresh variable and m is the size of the frame).
This represents the derivability of s from the messages sent so far. Note that
there might be several attacker’s recipes yielding the same trace.

Example 6. Consider another very simple example: the Encrypted Password
Transmission protocol [13], which is informally described by the rules:

A→ B : 〈NA, pub(KA)〉
B → A : aenc(〈NA, P 〉, pub(KA))

Assume that a first sends a message whereas b is waiting for a message of
the form 〈x, pub(ka)〉. Then b responds by sending aenc(〈x, p〉, pub(ka)). The
corresponding deducibility constraint is (S, φ,D,E,E′) where S = {x, y}, E =
E′ = ∅, and the sequences φ and D are as follows:

φ =

ax 1, 1 . pub(ka); ax 2, 2 . pub(kb);
ax 3, 3 . 〈na, pub(ka)〉;
ax 4, 4 . aenc(〈x, p〉, pub(ka))

D =

X1, 3
?

` 〈x, pub(ka)〉

X2, 4
?

` aenc(〈na, y〉, pub(ka))

There are several solutions. For instance, the “honest solution” (σh, θh) is
given by σh = {x 7→ na, y 7→ p} and θh = {X1 7→ ax 3, X2 7→ ax 4}. Another solu-
tion is (σ, θ) where σ = {x 7→ pub(ka), y 7→ na} and θ = {X1 7→ 〈ax 1, ax 1〉, X2 7→
aenc(〈proj1(ax 3), proj1(ax 3)〉, ax 1)}.

2.4 Static equivalence

Two sequences of terms are statically equivalent if, whatever an attacker observes
on the first sequence, the same observation holds on the second sequence [2]:
Definition 4. Two closed frames φ and φ′ having the same size m are statically
equivalent, which we write φ ∼s φ

′, if
1. for any ground recipe ζ such that var(ζ) ⊆ {ax 1, . . . , axm}, we have that

ζφ↓ is a constructor term if, and only if, ζφ′↓ is a constructor term
2. for any ground recipes ζ, ζ ′ such that var({ζ, ζ ′}) ⊆ {ax 1, . . . , axm}, and the

terms ζφ↓, ζ ′φ↓ are constructor terms, we have that
ζφ↓ = ζ ′φ↓ if, and only, if ζφ′↓ = ζ ′φ′↓.

Example 7. Consider the frames φ1 = {ax 1 . a, ax 2 . enc(a, b), ax 3 . b} and φ2 =
{ax 1 . a, ax 2 . enc(c, b), ax 3 . b}. φ1 6∼s φ2 since choosing ζ = dec(ax 2, ax 3) and
ζ ′ = ax 1 yields ζφ1↓ = ζ ′φ1↓ = a while ζφ2↓ 6= ζ ′φ2↓.

On the other hand, {ax 1 .a, ax 2 .enc(a, b)} ∼s {ax 1 .a, ax 2 .enc(c, b)} since,
intuitively, there is no way to open the ciphertexts or to construct them, hence
no information on the content may leak.



Automating security analysis: symbolic equivalence of constraint systems 7

2.5 Symbolic equivalence

Now we wish to check static equivalence on any possible trace. This is captured
by the following definition:

Definition 5. Let C and C ′ be two constraints whose corresponding frames
are φ and φ′. C is symbolically equivalent to C ′, C ≈s C

′, if:
- for all (θ, σ) ∈ Sol(C), there exists σ′ such that (θ, σ′) ∈ Sol(C ′), and φσ ∼s φ

′σ′,
- for all (θ, σ′) ∈ Sol(C ′), there exists σ such that (θ, σ) ∈ Sol(C), and φσ ∼s φ

′σ′.

Example 8. As explained for instance in [3], the security of the handshake pro-
tocol against offline guessing attacks can be modeled as an equivalence property
between two samples of the protocol instance, one in which, at the end of the
protocol, the key is revealed and the other in which a random number is revealed
instead. This amounts to check the symbolic equivalence of the two constraints:

– C1 = (φ ∪ {ax 5, 5 . kab}, D ∪ {X3, 5
?

` y}, ∅, ∅), and

– C2 = (φ ∪ {ax 5, 5 . k}, D ∪ {X3, 5
?

` y}, ∅, ∅)

where D is as in Example 4 and φ is as in Example 3.
The constraints C1 and C2 are not symbolically equivalent: considering the

assignment σ = {x 7→ na, y 7→ na}, there is a recipe X3θ = dec(ax 3, ax 5)
yielding this solution, while any solution σ′ of C2 maps x to na and, if X3θ =
dec(ax 3, ax 5), we must have yσ′↓ = dec(enc(na, kab), k), which is not possible
since this is not a constructor term.

Any trace equivalence problem can be expressed as an instance of the equiv-
alence of an initial pair of constraints, that is a pair of the form (φ1, D1, E1, E

′
1),

(φ2, D2, E2, E
′
2) in which:

– E′1 = E′2 = ∅, and E1, E2 only contain equations;

– φ1 = {ax 1, 1 . u1, . . . , axm,m . um}, and D1 = X1, i1
?

` s1; . . . ; Xn, in
?

` sn;

– φ2 = {ax 1, 1 . v1, . . . , axm.m . vm}, and D2 = X1, i1
?

` t1; . . . ; Xn, in
?

` tn.

Or else it is a pair as above, in which one of the components is replaced with ⊥.
In particular, the number of components in the frame and in the deducibility

part are respectively identical in the two constraints, when none of them is ⊥.
This will be an invariant in all our transformation rules. Hence we will always
assume this without further mention. This is unchanged by the transformations,
unless the constraint becomes ⊥. We keep the notation m for the size of the
frames. Finally, the consistency of the frame after instanciation (the first condi-
tion of Definition 3) is satisfied for all solutions of initial constraints and is again
an invariant, hence we will not care of this condition.

As explained in [14], such initial constraints are sufficient for our applications.
The case where one of the component is ⊥ solves the satisfiability problem for the
constraint: the constraint solving procedure of [12] solves this specific instance.



8 Automating security analysis: symbolic equivalence of constraint systems

3 Transformation rules

The main result of this paper is a decision procedure for symbolic equivalence
of an initial pair of constraints:

Theorem 1. Given an initial pair (C,C ′), it is decidable whether C ≈s C
′.

This result in itself is already known (e.g. [3, 9]), but, as claimed in the intro-
duction, the known algorithms cannot yield any reasonable implementation. We
propose here a new algorithm/proof, which is implemented. As pointed in [14],
this yields a decision algorithm for the observational equivalence of simple pro-
cesses without replication nor else branch. The class of simple processes captures
most existing protocols.

The decision algorithm works by rewriting pairs of constraints, until a trivial
failure or a trivial success is found. These rules are branching: they rewrite
a pair of constraints into two pairs of constraints. Transforming the pairs of
constraints therefore builds a binary tree. Termination requires to keep track
of some information, that is recorded using flags, which we describe first. In
Section 4, we show that the tree is then finite: the rules are terminating. The
transformation rules are also correct: if all leaves are success leaves, then the
original pair of constraints is equivalent. They are finally complete: if the two
original constraints are equivalent then any of two pairs of constraints resulting
from a rewriting steps are also equivalent.

3.1 Flags

The flags are additional constraints that restrict the recipes. We list them here,
together with (a sketch of) their semantics.

Constraints X, i
?

`F u may be indexed with a set F consisting of propositions
NoConsf where f is a constructor. Any solution (θ, σ) such that Xθ is headed
with f is then excluded. Expressions ζ, j .F u in a frame are indexed with a set F
consisting of:

– NoConsf (as above) discards the solutions (θ, σ) such that a subterm of a
recipe allows to deduce uσ using f as a last step.

– NoDestf (i) where f is a destructor and i ≤ m discards the solutions (θ, σ)

such that there existsX, j
?

` v with j ≤ i and ζ ′2, . . . , ζ
′
n where f(ζθ, ζ ′2, . . . , ζ

′
n)

occurs as a subterm in Xθ, unless we use a shortcut explicitly given in the
frame.

– NoUse. The corresponding elements of the frame cannot be used in any recipe,
and avoids shifting the indices.

3.2 The rules

The rules are displayed in Figure 1 for single constraints. We explain in Sec-
tion 3.3 how they are applied to pairs of constraints (an essential feature of our



Automating security analysis: symbolic equivalence of constraint systems 9

algorithm). A simple idea would be to guess the top function symbol of a recipe
and replace the recipe variable with the corresponding instance. When the head
symbol of a recipe is a constructor and the corresponding term is not a variable,
this is nice, since the constraint becomes simpler. This is the purpose of the rule
Cons. When the top symbol of a recipe is a destructor, the constraint becomes
more complex, introducing new terms, which yields non-termination.

Our strategy is different for destructors: we switch roughly from the top
position of the recipe to the redex position. Typically, in case of symmetric en-
cryption, if a ciphertext is in the frame, we will guess whether the decryption
key is deducible, and at which stage.

The Cons rule simply guesses whether the top symbol of the recipe is a
constructor f . Either it is, and then we can split the constraint, or it is not and
we add a flag forbidding this. The rule Axiom also guesses whether a trivial
recipe can be applied. If so, the constraint can simply be removed. Otherwise,
it means that the right-hand-side of the deducibility constraint is different from
the members of the frame. The Dest rule is more tricky. If v is a non-variable
member of the frame, that can be unified with a non variable subterm of a left
side of a rewrite rule (for instance v is a ciphertext), we guess whether the rule
can be applied to v. This corresponds to the equation u1

?= v, that yields an
instance of w, the right member of the rewrite rule, provided that the rest of

the left member is also deducible: we get constraints X2, i
?

` u2; . . . ;Xn, i
?

` un.
The flag NoDest is added in any case to the frame, since we either already
applied the destructor, and this application result is now recorded in the frame
by f(ζ,X2, . . . , Xn), i .w, or else it is assumed that f applied to v will not yield
a redex.

The remaining rules cover the comparisons that an attacker could perform
at various stages. The equality rules guess equalities between right sides of de-
ducibility constraints and/or members of the frame. If a member of the frame is
deducible at an early stage, then this message does not bring any new informa-
tion to the attacker: it becomes useless, hence the NoUse flag.

Finally, the last rule is the only rule that is needed to get in addition a static
equivalence decision algorithm, as in [1]. Thanks to this rule, if a subterm of the
frame is deducible, then there will be a branch in which it is deduced.

3.3 How to use the transformation rules

In the previous section we gave rules that apply on a single constraint. We explain
here how they are extended to pairs of constraints. If one of the constraint is ⊥,
then we proceed as if there was a single constraint. Otherwise, the indices i
(resp. i1, i2) and the recipes X, ζ (resp. X1, X2, ζ1, ζ2) matching the left side of
the rules must be identical in both constraints: we apply the rules at the same
positions in both constraints.

We have to explain now what happens when, on a given pair (C,C ′) a rule
can be applied on C and not on C ′ (or the converse).



10 Automating security analysis: symbolic equivalence of constraint systems

Cons : X, i
?

`F f(t1, . . . , tn)��
��:

XXXXz

X1, i
?

`F t1; · · · ;Xn, i
?

`F tn;X
?
= f(X1, . . . , Xn)

X, i
?

`F+NoConsf f(t1, . . . , tn)

If NoConsf /∈ F and X1, . . . Xn are fresh variables.

Axiom : X, i
?

`F v��
��:

XXXXz

u
?
= v; X

?
= ζ

X, i
?

`F v; X
?

6= ζ

If v 6∈ X , φ contains ζ, j .G u with NoUse /∈ G, and i ≥ j.

Dest : ζ, y .G v��
��:

XXXXz

X2, i
?

` u2; · · · ; Xn, i
?

` un; u1
?
= v; ζ, j .G+NoDestf (m) v;

f(ζ,X2, . . . , Xn), i . w

ζ, j .G+NoDestf (i) v

If v /∈ X , NoUse /∈ G, there is a rewrite rule f(u1, . . . , un) → w, k < i whenever

NoDestf (k) ∈ G and i is minimal such that j ≤ i and there is some constraint X, i
?

` w
(i = m if there is no such constraint).

Eq-left-left : ζ1, i1 .F1 u1; ζ2, i2 .F2 u2
���

�:
XXXXz

ζ1, i1 .F1 u1; ζ2, i2 .F2 u1; u1
?
= u2

ζ1, i1 .F1 u1; ζ2, i2 .F2 u2; u1

?

6= u2
If NoUse /∈ F1 ∪ F2 and i1 ≤ i2.

Eq-right-right : X2, i2
?

` u2
���

�:
XXXXz

X1 = X2; u1
?
= u2

X2, i2
?

` u2; u1

?

6= u2

If X1, i1
?

` u1; and i1 ≤ i2.

Eq-left-right : ζ, j .G v��
��:

XXXXz

ζ, j .G+NoUse u; u
?
= v

ζ, j .G v; u
?

6= v

If X, i
?

`F u;, NoUse /∈ G and j > i.

Ded-subterms : ζ, i .F f(u1, . . . , un)��
��:

XXXXz

X1,m
?

` u1; · · · ; Xn,m
?

` un;
ζ, i .F+NoConsf u

ζ, i .F+NoConsf f(u1, . . . , un)

If NoConsf , NoUse /∈ F and X1, . . . , Xn are fresh variables.

All rules assume that the equations have a mgu and that this mgu is eagerly applied to
the resulting constraint without yielding any trivial disequation.

Fig. 1. Transformation rules



Automating security analysis: symbolic equivalence of constraint systems 11

Example 9. Let C = (φ,D,E,E′) and C ′ = (φ,D′, E,E′) where E = E′ = ∅,

φ = ax 1, 1 . a, D = X, 1
?

` enc(x1, x2), and D′ = X, 1
?

` x. The rule Cons can
be applied on C and not on C ′. However, we have to consider solutions where
enc(x1, x2)σ and xσ′ are both obtained by a construction. Hence, it is important
to enable this rule on both sides. For this, we first apply the substitution x 7→
enc(y1, y2) where y1, y2 are fresh variables. This yields the two pairs of constraints
(C1, C

′
1) and (C2, C

′
2) (forgetting about equations):

– C1 = (φ,X1, 1
?

` x1;X2, 1
?

` x2) and C ′1 = (φ,X1, 1
?

` y1; X2, 1
?

` y2);

– C2 = (φ,X, 1
?

`NoConsenc enc(x1, x2)) and C ′2 = (φ,X, 1
?

`NoConsenc x).

Therefore, the rule Cons, (this is similar for Ded-subterms), when applied
to pairs of constraints comes in three versions: either the rule is applied on both

sides or, if X, i
?

` f(t1, . . . , tn) (resp. ζ . f(t1, . . . , tn)) is in C, and X, i
?

` x (resp.
ζ . x) is in C ′, we may apply the rule on the pair of constraints, adding to C ′

the equation x
?= f(x1, . . . , xn) where x1, . . . , xn are fresh variables. The third

version is obtained by switching C and C ′. This may introduce new variables,
that yield a termination issue, which we discuss in Section 4.1. Similarly, the
rules Axiom and Dest assume that v /∈ X . This has to be satisfied by C or C ′.
In case of the rule Dest, this means that the variables of the rewrite rule might
not be immediately eliminated: this may also introduce new variables. For the
rules Eq-left-left, Eq-right-right and Eq-left-right, we require that at
least one new non-trivial equality (or disequality) is added to one of the two
constraints (otherwise there is a trivial loop).

For all rules, if a rule is applicable on one constraint and not the other, we do
perform the transformation, however replacing a constraint with ⊥ when a con-
dition becomes false or meaningless. Furthermore, we also replace a constraint C
with ⊥ when:

– the rule Dest cannot be applied on C; and

– C contains a constraint X, i
?

` v such that v is not a variable and the rules
Cons and Axiom cannot be applied to it.

Altogether this yields a transformation relation (C,C ′)→ (C1, C
′
1), (C2, C

′
2)

on pairs of constraints: a node labeled (C,C ′) has two sons, respectively la-
beled (C1, C

′
1) and (C2, C

′
2).

Our algorithm can be stated as follows:

– Construct, from an initial pair of constraints (C0, C
′
0) a tree, by applying as

long as possible a transformation rule to a leaf of the tree.
– If, at some point, there is a leaf to which no rule is applicable and that is

labeled (C,⊥) or (⊥, C) where C 6=⊥, then we stop with C0 6≈s C
′
0.

– Otherwise, if the construction of the tree stops without reaching such a
failure, return C0 ≈s C

′
0.



12 Automating security analysis: symbolic equivalence of constraint systems

Our algorithm can also be used to decide static equivalence of frames, as well
as the (un)satisfiability of a constraint. Furthermore, in case of failure, a witness
of the failure can be returned, using the equations of the non-⊥ constraint.

4 Correctness, completeness and termination

4.1 Termination

In general, the rules might not terminate, as shown by the following example:

Example 10. Consider the initial pair of contraints (C,C ′) given below:

C =

 a
?

` enc(x1, x2)

a, b
?

` x1

C ′ =

 a
?

` y1
a, b

?

` enc(y1, y2)
We may indeed apply Cons yielding (on one branch):

C1 =


a

?

` x1

a
?

` x2

a, b
?

` x1

C ′1 =


a

?

` z1
a

?

` z2 and y1
?= enc(z1, z2)

a, b
?

` enc(enc(z1, z2), y2)
Then, again using Cons, we get back as a subproblem the original constraints.

Fortunately, there is a simple complete strategy that avoids this behavior, by
breaking the symmetry between the two constraints components. We assume in
the following that, applying

– Cons to (C,C ′) where X, i
?

` x ∈ C and X, i
?

` f(t1, . . . , tn) ∈ C ′,
– Ded-subterms to (C,C ′) where ζ, j . x ∈ C and ζ, j . f(t1, . . . , tn) ∈ C ′,

– Dest to (C,C ′) where X, i
?

` u; ζ, j . x ∈ C and X, i
?

` u′; ζ, j . v′ ∈ C ′

are only allowed when no other rule can be applied.
There is however no such restriction, when we switch the elements of the pair.

If we come back to Example 10, we still apply the same transformation rule to
the pair (C,C ′), but we cannot apply Cons to (C1, C

′
1) since Eq-right-right

can be applied to the constraint C1, yielding a failure: C 6≈s C
′.

Lemma 1. With the above strategy, the transformation rules are terminating
on any initial pair of constraint systems.

Idea of the proof: as long as no new first-order variable is introduced, the set of
first-order terms appearing in the constraint is roughly bounded by the subterms
of the constraint. (This relies on the properties of the rewrite system). Loops
are then prevented by the flags. Now, because of the eager application of sub-
stitutions, the only cases in which new first-order variables are introduced are
the above cases of applications of Cons, Ded-subterms and Dest. Until new
variables are introduced in the right constraints, the above argument applies:



Automating security analysis: symbolic equivalence of constraint systems 13

the sequence of transformations is finite. Then, according to the strategy, when
new variables are introduced on the right constraint, no other rule may apply.
This implies that the left constraint (considered in isolation) is irreducible: it

is of the form X1, i1
?

` x1, . . . , Xn, in
?

` xn, ... where x1, . . . xn are distinct vari-
ables (which we call a solved constraint). From this point onwards, the rules
Dest,Ded-subterms will never be applicable and therefore, no element will
be added to the frames. Then, either usable elements of the frames are strictly
decreasing (using a Eq-left-right) or else we preserve the property of be-
ing solved on the left. In the latter case, the first termination argument can be
applied to the right constraint.

4.2 Correctness

The transformation rules yield a finite tree labeled with pairs of constraints.

Lemma 2. If all leaves of a tree, whose root is labeled with (C0, C
′
0) (a pair

of initial constraints), are labeled either with (⊥,⊥) or with some (C,C ′) with
C 6=⊥, C ′ 6=⊥, then C0 ≈s C

′
0.

The idea of the proof is to first analyse the structure of the leaves. We intro-
duce a restricted symbolic equivalence ≈r

s such that C ≈r
s C
′ for any leaf whose

two label components are distinct from ⊥. Roughly, this restricted equivalence
will only consider the recipes that satisfied the additional constraints induced
by the flags. Then we show that ≈r

s is preserved upwards in the tree: for any
transformation rule, if the two pairs of constraints labeling the sons of a node
are respectively in ≈r

s, then the same property holds for the father. Finally, ≈r
s

coincides with ≈s on the initial constraints (that contain no flag).

4.3 Completeness

We prove that the symbolic equivalence is preserved by the transformation rules,
which yields:

Lemma 3. If (C0, C
′
0) is a pair of initial constraints such that C0 ≈s C

′
0, then

all leaves of a tree, whose root is labeled with (C0, C
′
0), are labeled either with

(⊥,⊥) or with some (C,C ′) with C 6=⊥ and C ′ 6=⊥.

5 Implementation and experiments

An Ocaml implementation of an early version of the procedure described in this
paper, as well as several examples, are available at http://www.lsv.ens-cachan.
fr/∼cheval/programs/index.php (around 5000 lines of Ocaml). Our imple-
mentation closely follows the transformation rules that we described. For effi-
ciency reasons, a strategy on checking the rules applicability has been designed
in addition.



14 Automating security analysis: symbolic equivalence of constraint systems

We checked the implementation on examples of static equivalence problems,
on examples of satisfiability problems, and on symbolic equivalence problems
that come from actual protocols. On all examples the tool terminates in less
than a second (on a standard laptop). Note that the input of the algorithm
is a pair of constraints: checking the equivalence of protocols would require in
addition an interleaving step, that could be expensive.

We have run our tool on the following family of examples presented in [5]:

φn = {ax 1 . t
0
n, ax 2 . c0, ax 3 . c1} and φ′n = {ax 1 . t

1
n, ax 2 . c0, ax 3 . c1}

where ti0 = ci and tin+1 = 〈enc(tin, k
i
n), ki

n〉, i ∈ {0, 1}. In these examples, the size
of the distinguishing tests increase exponentially while the sizes of the frames
grow linearly. As KiSs [10], our tool outperforms YAPA [4] on such examples.

For symbolic equivalences, we cannot compare with other tools (there is no
such tools); we simply tested the program on some home made benchmarks as
well as on the handshake protocol, several versions of the encrypted password
transmission protocol, the encrypted key exchange protocol [13], each for the
offline guessing attack property. We checked also the strong secrecy for the cor-
rected Dennin-Sacco key distribution protocol. Unfortunately we cannot (yet)
check anonymity properties for e-voting protocols, as we would need to consider
more cryptographic primitives.

6 Conclusion

We presented a new algorithm for deciding symbolic equivalence, which performs
well in practice. There is still some work to do for extending the results and the
tool. First, we use trace equivalence, which requires to consider all interleavings
of actions; for each such interleaving, a pair of constraints is generated, which is
given to our algorithm. This requires an expensive overhead (which is not imple-
mented), that might be unnecessary. Instead, we wish to extend our algorithm,
considering pairs of sets of constraints and use a symbolic bisimulation. This
looks feasible and would avoid the detour through trace equivalence. This would
also allow drop the determinacy assumption on the protocols and to compare
our method with ProVerif [7].

We considered only positive protocols; we wish to extend the algorithm to
non-positive protocols, allowing disequality constraints from the start. Finally,
we need to extend the method to other cryptographic primitives, typically blind
signatures and zero-knowledge proofs.

Acknowledgments. We wish to thank Sergiu Bursuc for fruitful discussions.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 367(1–2):2–32, 2006.



Automating security analysis: symbolic equivalence of constraint systems 15

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communica-
tion. In Proc. of 28th ACM Symposium on Principles of Programming Languages
(POPL’01), 2001.

3. M. Baudet. Deciding security of protocols against off-line guessing attacks. In
Proc. of 12th ACM Conference on Computer and Communications Security, 2005.

4. M. Baudet. YAPA (Yet Another Protocol Analyzer), 2008. http://www.lsv.

ens-cachan.fr/∼baudet/yapa/index.html.
5. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing

intruder knowledge. In Proc. of 20th International Conference on Rewriting Tech-
niques and Application (RTA’09), LNCS, 2009.

6. B. Blanchet. An automatic security protocol verifier based on resolution theorem
proving (invited tutorial). In Proc. of 20th International Conference on Automated
Deduction (CADE’05), 2005.

7. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

8. V. Cheval, H. Comon-Lundh, and S. Delaune. Automating security analysis:
symbolic equivalence of constraint systems. Technical report, http://www.lsv.

ens-cachan.fr/∼cheval/programs/technical-report.pdf, 2010.
9. Y. Chevalier and M. Rusinowitch. Decidability of symbolic equivalence of deriva-

tions. Unpublished draft, 2009.
10. Ş. Ciobâcă. KiSs, 2009. http://www.lsv.ens-cachan.fr/∼ciobaca/kiss.
11. H. Comon-Lundh. Challenges in the automated verification of security protocols. In

Proc. of 4th International Joint Conference on Automated Reasoning (IJCAR’08),
volume 5195 of LNAI, pages 396–409, Sydney, Australia, 2008. Springer-Verlag.

12. H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties of
cryptographic protocols. application to key cycles. Transaction on Computational
Logic, 11(2), 2010.

13. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against
off-line dictionary attacks. Electr. Notes Theor. Comput. Sci., 121:47–63, 2005.

14. V. Cortier and S. Delaune. A method for proving observational equivalence. In
Proc. of 22nd Computer Security Foundations Symposium (CSF’09), pages 266–
276. IEEE Comp. Soc. Press, 2009.

15. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

16. U. Fendrup, H. Hüttel, and J. N. Jensen. Modal logics for cryptographic processes.
Theoretical Computer Science, 68, 2002.

17. H. Huttel. Deciding framed bisimulation. In 4th International Workshop on Veri-
fication of Infinite State Systems INFINITY’02, pages 1–20, 2002.

18. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-
ming, 26(2):113–131, 1996.

19. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. of 8th ACM Conference on Computer and Communi-
cations Security, 2001.

20. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is np-complete. In Proc. of 14th Computer Security Foundations Workshop, 2001.

21. C. Weidenbach. Towards an automatic analysis of security protocols in first-order
logic. In Proc. of 16th Conference on Automated Deduction, volume 1632, pages
314–328. LNCS, 1999.


