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Abstract. Recent results show that the current implementation of He-
lios, a practical e-voting protocol, does not ensure independence of the
cast votes, and demonstrate the impact of this lack of independence on
vote privacy. Some simple fixes seem to be available and security of the
revised scheme has been studied with respect to symbolic models.
In this paper we study the security of Helios using computational models.
Our first contribution is a model for the property known as ballot privacy
that generalizes and extends several existing ones.
Using this model, we investigate an abstract voting scheme (of which
the revised Helios is an instantiation) built from an arbitrary encryp-
tion scheme with certain functional properties. We prove, generically,
that whenever this encryption scheme falls in the class of voting-friendly
schemes that we define, the resulting voting scheme provably satisfies
ballot privacy.
We explain how our general result yields cryptographic security guaran-
tees for the revised version of Helios (albeit from non-standard assump-
tions).
Furthermore, we show (by giving two distinct constructions) that it is
possible to construct voting-friendly encryption, and therefore voting
schemes, using only standard cryptographic tools. We detail an instan-
tiation based on ElGamal encryption and Fiat-Shamir non-interactive
zero-knowledge proofs that closely resembles Helios and which provably
satisfies ballot privacy.

1 Introduction

Electronic voting protocols have the potential to offer efficient and sound tallying
with the added convenience of remote voting. It is therefore not surprising that
their use has started to gain ground in practice: USA, Norway and Estonia are
examples of countries where e-voting protocols have been, at the very least,
trialled in elections on a national scale.

Due to the sensitive nature of elections, security of e-voting protocols is
crucial and has been investigated extensively. Among the security properties
that have been identified for e-voting, perhaps the most desirable one is that
users’ votes should remain confidential. Three levels of confidentiality have been
identified. These are (in increasing strength) the following.



– Ballot privacy: A voter’s vote is not revealed to anyone.
– Receipt–freeness: A voter cannot obtain information which can prove to a

coercer how she voted.
– Coercion resistance: Even a voter who collaborates with a coercer cannot

obtain information that proves how she voted.

Other important properties that are desirable include ballot independence [12]
(the ballots cast do not depend on each other) and end-to-end verifiability [23, 28,
38] (it is possible to verify that the election process has been followed honestly).

This paper is motivated by recent developments regarding the security of
the Helios voting scheme [45]. Starting from version 2.0 [35], Helios has been
using a variant of a classical protocol by Cramer et al. [14] incorporating tweaks
proposed by Benaloh [29], and has been used in real-world elections, for example
by the International Association for Cryptographic Research (IACR) to elect
its 2010 board [36], by Princeton University to elect the undergraduate student
government [46] and to elect the president of the Université Catholique de Lou-
vain [35]. Helios aims to achieve only ballot privacy and explicitly discards the
stronger confidentiality notions (which it does not satisfy) in favor of efficiency.
It turns out that the current implementation of Helios does not enforce ballot
independence (contrary to the original protocol of Cramer et al. [14]) and, as
a result, Cortier and Smyth [37, 42] have exhibited several attacks against the
ballot privacy property of Helios. (The property is called “ballot secrecy” in
Cortier and Smyth’s papers.) The attacks range from simple ballot copying to
subtle reuse of parts of existing ballots, however they can all be detected (and
prevented) by public algorithms. A revised scheme has been proved secure in
a symbolic model but its security in the stronger, computational sense has not
been assessed.

Contributions. We start by providing a computational security model for ballot
privacy (Section 2). In a sense, our model generalizes and strengthens the model
of [24, 26] where an attacker tries to distinguish when two ballots are swapped.
Here, we ask that the adversary cannot detect whether the ballots cast are
ballots for votes that the adversary has chosen or not. In doing so, the adversary
is allowed to control arbitrarily many players and see the result of the election.
Our model uses cryptographic games and thus avoids imposing the more onerous
constraints that other definitional styles (in particular simulability) require from
protocols.

Next we turn our attention to the revised version of Helios. Our analysis
follows a somewhat indirect route: instead of directly analysing the scheme as
it has been implemented, we analyze an abstract version of Helios that follows
the same basic architecture, but where the concrete primitives are replaced with
more abstract versions. Of course, the version we analyze implements the sug-
gested weeding of ballots. We present this abstract scheme as a generic construc-
tion of a voting scheme starting from encryption scheme with specific functional
and security properties (Section 3).

Focusing on this more abstract version brings important benefits. Firstly, we
pin-down more clearly the requirements that the underlying primitives should



satisfy. Specifically, we identify a class of voting-friendly encryption schemes
which when plugged in our construction yield voting schemes with provable
ballot privacy. Roughly speaking, such encryption schemes are IND-CCA2 secure
and have what we call a homomorphic embedding (parts of the ciphertexts can
be seen as ciphertexts of a homomorphic encryption scheme). Secondly, our
analysis applies to all voting schemes obtained as instantiations of our generic
construction. Although we analyze and propose constructions which for efficiency
reasons resort to random oracles, our generic approach also invites other (non-
random oracle based) instantiations.

Next, we show how to construct voting-friendly encryption schemes using
standard cryptographic tools (Section 4). We discuss two distinct designs. The
first construction starts from an arbitrary (IND-CPA) homomorphic encryption
scheme and attaches to its ciphertexts a zero-knowledge proof of knowledge of the
plaintext. We refer to this construction as the Enc+PoK construction. Despite
its intuitive appeal, we currently do not know how to prove that the above
design leads to an IND-CCA2 secure encryption scheme (a proprety demanded
by voting-friendliness). We therefore cannot conclude the security of our generic
scheme when implemented with an arbitrary Enc+PoK scheme. Nevertheless,
an investigation into this construction is important since the instantiation where
Enc is the ElGamal scheme and PoK is obtained using the Fiat-Shamir paradigm
applied to a Schnorr-like protocol corresponds precisely to the encryption scheme
currently used in Helios. The security of this specific construction has been
analyzed in prior work. Tsiounis and Yung [17] and Schnorr and Jakobsson [19]
demonstrate that the scheme is IND-CCA2 secure, but their proofs rely on highly
non-standard assumptions. Nevertheless, in conjunction with the security of our
main construction, one can conclude that the current implementation of Helios
satisfies ballot privacy based on either the assumption in [17] or those of [19].

We then take a closer look at the Enc+PoK construction and revisit a tech-
nical reason that prevents an IND-CCA2 security proof, first studied by Shoup
and Gennaro [16]. Very roughly, the problem is that the knowledge extractor
associated to the proof of knowledge may fail if used multiple times since its
associated security guarantees are only for constant (or logarithmically many)
uses. With this in mind, we note that a security proof is possible if the proof
of knowledge has a so called straight line extractor [22]. This type of extractor
can be reused polynomially many times. In this case, the Enc+PoK construc-
tion leads to a voting-friendly encryption scheme, whenever Enc is an arbitrary
IND-CPA homomorphic encryption scheme.

The second design uses the well-known Naor-Yung transformation [7]. We
show that if the starting scheme is an arbitrary (IND-CPA) homomorphic en-
cryption scheme then the result of applying the NY transform is a voting-friendly
encryption scheme. Applied generically, the transform may lead to non-efficient
schemes (one of its components is a simulation-sound zero-knowledge proof of
membership [18]). We present a related construction (where the proof of mem-
bership is replaced by a proof of knowledge) which can be efficiently instantiated
in the random oracle model. In the final section of the paper (Section 5) we pro-



pose adopting an instantiation of Helios where the encryption-friendly scheme
is implemented as above. The computational overhead for this scheme is rea-
sonable (and can be further improved through specific optimization) and the
scheme comes with the formal guarantees offered by the results of this paper.

Related work. Chevallier-Mames et al. [27] present an unconditional definition
of ballot privacy but Helios cannot be expected to satisfy this definition due
to its reliance on computational assumptions. Chevallier-Mames additionally
show that their definition of unconditional ballot privacy is incompatible with
universal verifiability; however, ballot privacy and universal verifiability have
been shown to coexist under weaker assumptions, for example as witnessed by
Juels, Catalano & Jakobsson [23]. Computational definitions of ballot privacy
have been considered by Benaloh et al. [2, 4, 5]. These definitions however do
not come with a general characterization of the properties that an encryption
scheme should satisfy in order to ensure that they are satisfied (the corresponding
security notions did not exist at that time either). Wikström [34] considered the
general problem of secure submission of inputs with applications to mixnet-based
voting protocols. His definitions and constructions are the most closely related
to ours, and will be discussed below. Other definitions for voting systems have
been proposed in terms of UC realization of ideal voting functionalities, starting
with Groth [21], which capture privacy as part of the functionality behavior.

In addition, receipt-freeness has been considered by Benaloh & Tuinstra [11]
and Moran & Naor [25] and coercion resistance has been studied by Juels, Cata-
lano & Jakobsson [23], Küsters, Truderung & Vogt [40] and Unruh & Müller-
Quade [39]. These definitions can be used to show ballot privacy because it is
believed to be a weaker condition [11, 26]; however, they are too strong for pro-
tocols which only provide ballot privacy and in particular, they cannot be used
to analyse ballot privacy in Helios. Ballot privacy has also been formalized in the
symbolic model (for example, [26, 33]) but the symbolic model suffers a serious
weakness: In general, a correct security proof does not imply the security of the
protocol. Cortier & Smyth [37, 42] present an attack against ballot privacy in He-
lios and propose a variant of Helios which aims to prevent the attack by weeding
ballots. Their solution has been shown to satisfy ballot privacy in the symbolic
model but Cortier & Smyth acknowledge that a thorough cryptographic analysis
of the solution is necessary.

2 Ballot privacy

Notation Throughout this paper, we use the following notation. Assignment and
input/output of algorithms are both denoted by a left-facing arrow←. Picking a
value x uniformly at random from a set S is denoted by x

R← S. The expression
C

+← c appends c to the list C, () on its own is an empty list. We use “C” style
returns in algorithms, i.e. “Return a = b” to mean return 1 if a = b, otherwise 0.
A function f is called negligible if for any polynomial P , there exists η0 such
that ∀η ≥ η0, f(η) ≤ 1

P (η) .



2.1 Voting Schemes

In this section we fix a general syntax for the class of voting schemes that we
treat in this paper. In particular, our syntax encompasses several variations of
the Helios protocol.

We consider schemes for votes in a non-empty set V, and we assume ⊥ to be
a special symbol not in V that indicates that the voter has abstained. The result
of an election is then an arbitrary function ρ that takes a list of votes as input
and returns the election result. Elections are stateful, so the algorithms that we
define next use such a state. Since often, and in particular in the case of Helios,
this state is a bulletin board, in the definition below we write BB for this state
(and even refer to it as a bulletin board).

Definition 1 (Voting scheme). Algorithms (Setup,Vote,ProcessBallot,Tally)
define a voting scheme as follows.

Setup The setup algorithm takes a security parameter 1λ as input and returns secret
information x, public information y, and initializes the state BB. We write
(x, y, BB) ← Setup(1λ) for this process. We assume the public information
is available to all subsequent algorithms.

Vote The voting algorithm takes a vote v ∈ V as input and produces as output a
ballot b (that encodes the vote). We write b← Vote(v) for this process.

ProcessBallot The ballot processing algorithm takes a candidate ballot b and a bulletin board
BB, checks the ballot for correctness (e.g. that it is well formed, it is not a
duplicate, etc.) and returns a result (accept/reject) and the new state of the
bulletin board. We write (a,BB) ← ProcessBallot(BB, b) for this process.
Here a is either accept or reject.

Tally The tallying algorithm takes the secret information x and the bulletin board
BB and produces the election result.

For correctness of the scheme, we demand two conditions: 1) ballot tallying
corresponds to evaluating the function ρ on the underlying votes; and 2) correctly
constructed votes will be accepted by the ballot processing algorithm. Both con-
ditions should hold with overwhelming probability and can be captured by the
experiment described in Figure 1. In this experiment, an adversary repeatedly
submits votes v1, v2, . . . ∈ V and each vote is used to construct a ballot which
is then processed. The game outputs 1 (the adversary wins) if the ProcessBallot
algorithm rejects some ballot or the result of the election does not correspond
to the votes cast. The voting scheme is correct if the algorithm outputs 1 with
at most negligible probability.

2.2 Security Model

Informally, ballot privacy is satisfied if an adversary in control of arbitrarily
many voters cannot learn anything about the votes of the remaining, honest
voters beyond what can be inferred from the election result. The adversary can
read the (public) bulletin board and the communication channels between the



Expcorr
Π (A)

(x, y, BB)← Setup
V = ()
repeat

(a, v)← A
b← Vote(v)
(r, BB)← ProcessBallot(BB, b)

V
+← v

until a = stop or r = reject
if r =“reject” or Tally(x, BB) 6= ρ(V ) then return 1 else return 0

Fig. 1. Experiment for defining the correctness of a voting scheme.

honest parties and the bulletin board (in other words, we assume them to be
authentic but not secret). Ballot privacy requires that the adversary is unable
to distinguish between real ballots and fake ballots, where ballots are replaced
by ballots for some fixed vote ε chosen by the adversary.

Formally, we consider an adversary that can issue two types of queries, vote
and ballot, to an oracle O. The oracle maintains two bulletin boards initialized
via the setup algorithm: BB is visible to the adversary and BB′ always contains
ballots for the real votes. A vote query causes a ballot for the given vote to be
placed on the hidden BB′. In the real world, the same ballot is placed on BB; in
the fake one a ballot for ε is placed on BB instead. A ballot query always causes
the submitted ballot to be processed on both boards. This process is defined
formally in Figure 2. The experiment on the right of Figure 2 is used to define
ballot privacy. The selection of β corresponds to the real world (β = 0) or the
fake world (β = 1). Throughout the experiment the adversary has access to BB,
but tallying is done using BB′.

Definition 2 (Ballot Privacy). We define the advantage of adversary A in
defeating ballot privacy for voting scheme Π by:

AdvBS
Π (A) = Pr[ExpBS

Π (A) = 1]− 1
2

and say that Π ensures ballot privacy if for any efficient adversary its advantage
is negligible.

We make a few remarks regarding the security model that we propose. Firstly,
we use cryptographic games rather than a simulation based definition. The for-
mer offer well-accepted levels of security, are more flexible, and allow for more
efficient implementations. Second, we model directly the more relaxed notion
of vote privacy and not stronger notions like receipt-freeness or coercion resis-
tance [26]. While stronger notions are certainly desirable, they are more dif-
ficult to achieve leading to rather inefficient protocols. Indeed, Helios deliber-
ately trades these stronger notions for efficiency. Finally, we emphasize that our
computational definition does not mirror existing security definitions in more



vote(v)
b′ ← Vote(v)
if β = 0 then b← b′

else b← Vote(ε)
(r, BB)← ProcessBallot(b, BB)
(r′, BB′)← ProcessBallot(b′, BB′)
return (r, BB, b)

ballot(b)
(r, BB)← ProcessBallot(b, BB)
if r = accept then

(r′, BB′)← ProcessBallot(b, BB′)
return (r, BB)

ExpBS
Π (A)

(x, y, BB)← Setup(1λ)
BB′ ← BB
(ε, st)← A(y)
β ← {0, 1}
st← AO(st)
result← Tally(x, BB′)

β̂ ← A(st, result)

return β = β̂

Fig. 2. The algorithms on the left explain how the oracle processes adversary’s queries.
The experiment on the right is used to define ballot privacy.

abstract models, e.g. [24]. It turns out that the direct extension of that defini-
tion to computational models seems strictly weaker than the definition that we
provide. We comment more on this point later in the paper.

3 A generic construction of voting schemes with ballot
privacy

In this section we present a generic construction of a voting scheme starting
from any encryption scheme with certain properties. We first fix this class of
encryption schemes (which we call voting-friendly), then give our construction
and prove its security.

3.1 Voting-Friendly Encryption

In a nutshell, a voting-friendly encryption scheme is a “(threshold) checkable
provable IND-CCA2 secure public key encryption scheme with key derivation
and a homomorphic embedding”. These rather convoluted looking requirements
are in fact not too onerous. We explain informally each of the requirements in
turn and give formal definitions. For simplicity, the presentation in this section is
for the non-threshold case, that is decryption is carried out using a single key by
a single party, as opposed to implementing decryption via an interactive process
where several parties share the keys.

Non-Interactive Zero Knowledge Proof Systems. Here we recall some basic no-
tions regarding non-interactive zero-knowledge proof systems [6]. Given language
LR defined by NP relation R we write (w, x) ∈ R if w is the witness that x ∈ LR.
A proof system for LR is given by a pair of algorithms (Prover,Verifier) called



prover and verifier, respectively. We distinguish between proof systems in the
common reference string model (in this situation, an additional algorithm Setup
produces a common reference string accessible to both the prover and the ver-
ifier) and the random oracle model (where the setup is not required, but all
algorithms in the system have access to a random oracle). In a standard execu-
tion of the proof system, the prover and the verifier both have an element x ∈ LR

as input and in addition, the prover has as input a witness w that x ∈ LR (i.e.
R(w, x) = 1). The prover sends a single message π to the verifier who outputs
the decision to accept/reject. We call π a proof for the statement x ∈ LR. Typ-
ical requirements for such proof systems are that they should be sound (if the
input x is not in LR then the verifier rejects π with overwhelming probability)
and complete (if x is in the language then the verifier accepts π with probability
1). We write π ← Prover for the process of producing proof π when the state-
ment x and the witness w are clear from the context. A non-interactive proof
system is zero-knowledge if there exists a simulator Sim that is able to produce
transcripts indistinguishable from those of a normal execution of the protocol.
The simulator may use a trapdoor in the common reference string model, or can
program the random oracle in the random oracle model. We occasionally write
(Prover,Verifier) : R to indicate that the proof system is for the language LR.

We assume the reader is familiar with public key encryption and its associated
security notions. We write (Gen,Enc,Dec) for the key generation, encryption, and
decryption algorithms of a public key encryption scheme.

Homomorphic encryption. We also briefly recall the notion of homomorphic
encryption. An encryption scheme is homomorphic if the plaintext space is a
group and there exists an algorithm Add that takes two ciphertexts for messages
m0 and m1 and produces a ciphertext for m0◦m1 (where ◦ is the group operation
on plaintexts).

Embeddable Encryption. A crucial property for the encryption schemes that are
the focus of this section is that they have a homomorphic embedding. Informally,
this property means that it is possible to identify part(s) of the ciphertexts as
forming a ciphertext for some other encryption scheme, and this second encryp-
tion scheme is homomorphic. The ElGamal+PoK construction sketched in the
previous section is an example of an encryption scheme with an homomorphic
embedding. Indeed the e component of a ciphertext (e, π) is a ciphertext for
an homomorphic encryption scheme (ElGamal). The next definition makes this
discussion more precise.

Definition 3 (Homomorphic Embedding). We say that the homomorphic
encryption scheme Π = (EGen,EEnc,EDec,EAdd) is embedded in encryption
scheme Π ′ = (Gen,Enc,Dec), or alternatively that encryption scheme Π ′ has Π
as a homomorphic embedding if there are algorithms ExtractKey,Extract such
that for all m, pk, sk, c

EGen() = ExtractKey(Gen())



EEnc(m,ExtractKey(pk)) = Extract(Enc(m, pk))

Dec(c, sk) = EDec(Extract(c), sk)

Essentially, the ExtractKey algorithm maps keys (or key pairs) for the “larger”
scheme to keys for the embedded one, and the Extract algorithm extracts the
ciphertext for the embedded scheme out of ciphertext for the larger one, while
performing validity verifications at the same time.

The Extract algorithm must, by definition, produce a ciphertext that decrypts
to the same value as the input that it is given; in particular it must produce a
“ciphertext” that decrypts to ⊥ if and only if its input does. However, the Extract
algorithm does not take any secret keys as input. This implies that anyone can
check whether a ciphertext is valid (in the sense that it decrypts to something
other than ⊥) without knowing the secret key. This property forms the basis for
combining homomorphic and IND-CCA2 secure encryption in our construction.

We note that an IND-CCA2 secure cryptosystem with homomorphic embed-
ding is actually very close to a submission secure augmented (SSA) cryptosystem
as defined by Wikström [34]. Some important differences appear, though. The
most important one is that SSA cryptosystems do not require public verifiability
of the ciphertexts: it might be necessary to publish a private key augmentation
to be able to perform ciphertext validity checks. While this feature enables ef-
ficient solutions that are secure in the standard model, it is however often not
desirable in practice: it is quite useful to be able to dismiss invalid votes as soon
as they are submitted (and to resolve potential conflicts at that time) rather
than needing to wait for some partial key to be revealed. Besides, in order to
mitigate this inconvenience, SSA cryptosystems allow multiple independent aug-
mentations, which enables updating an augmentation and revealing the previous
one in order to be able to check the validity of previously submitted ciphertexts.
Our requirement of immediate public verifiability property makes this feature
unnecessary for our purpose.

We also note that in concurrent work, Persiano [44] and Smart [41] define
similar embedding concepts.

S2P Key Derivation. This property simply requires that if a key pair is produced
by the key generation algorithm of an encryption scheme then it is possible to
compute the public key from the secret key. This property will allow us to use
proofs of knowledge of the secret key corresponding to the public key.

Definition 4 (S2P Key Derivation). An encryption scheme has the S2P key
derivation property if there is an algorithm DeriveKey such that (x, y) ← Gen
implies y = DeriveKey(x).

Provable Encryption. In our generic construction voters need to certify that
various encryptions in the ballots that they produce satisfy some desirable prop-
erties (e.g. that a ciphertext encrypts 0 or 1, and not something else), and such
certification can be done via zero-knowledge proofs of knowledge. Since all of the



statements that we are interested in are NP statements, the existence of appro-
priate proof systems follows from general results [9]. Here, we make more precise
the statements for which we demand the existence of such proof systems and
introduce some useful notation for the proof systems associated to the various
languages that we define.

In particular, it should be possible to prove knowledge of the secret key cor-
responding to the public key, knowledge of the plaintext underlying a ciphertext,
as well as proving that a certain plaintext has been obtained by decrypting with
the key associated to the public key. To avoid complex nomenclature, we call a
scheme for which this is possible a scheme with provable encryption.

Definition 5 (Provable Encryption). An encryption scheme (Gen,Enc,Dec)
is provable if it has the S2P key derivation property and the following non-
interactive zero-knowledge proof systems exist:

1. (ProveGen,VerifyGen): R1(x, y) := y
?= DeriveKey(x)

2. (ProveEnc,VerifyEnc): R2((m, r), c) := c
?= Enc(m; r)

3. (ProveDec,VerifyDec): R3(x, (c, y, d)) := y
?= DeriveKey(x) ∧ d

?= Dec(x, c)

The above definition is for standard encryption schemes. For the case when
the encryption scheme that we need is embedded, we demand in addition the
existence of proof systems for the following two properties. The first requires that
one can prove a statement that involves plaintexts underlying several ciphertexts,
and secondly, one should be able to prove that the keys for the embedded schemes
in use have been correctly obtained from the keys of the embedding one. This
latter condition is a simple adaptation of provability as defined above.

Definition 6 (Provable Embedding). An encryption scheme (Gen,Enc,Dec)
for message space M with embedded scheme (EGen,EEnc,EDec) has embedded
provability for M ′ ⊆ MN (for some N ∈ N) if the following zero-knowledge
proof-systems exist:

1. (ProveGen,VerifyGen): R4(x, y) := y
?= DeriveKey(x)

2. (ProveEnc,VerifyEnc): R5((m1,m2, . . . ,mN , r1, r2, . . . , rN ), (c1, c2, . . . , cN )) :=

N∧
i=1

ci
?= Enc(mi; ri) ∧ (m1, . . . ,mN ) ∈M ′

3. (ProveEDec,VerifyEDec): R6(x, (y, d, c)) :=

y
?= DeriveKey(x) ∧ (x′, y′)← ExtractKey(x, y) ∧ d

?= EDec(x′, c)

In the last relation, the second conjunct is not a boolean condition, but simply
indicates that the keypair (x′, y′) is derived from (x, y) using the ExtractKey
algorithm.

The following definition states all the properties that we require from an
encryption scheme in order to be able to implement our generic voting scheme.



Definition 7 (Voting-Friendly Encryption). A voting-friendly encryption
scheme for vote space V is a public-key scheme for message space M with V ⊆
MN such that it is IND-CCA2 secure and has S2P key derivation, an embedded
homomorphic scheme and embedded provability for V.

Note that voting-friendly encryption requires security guarantees of both the
encryption scheme and the contained proof systems.

3.2 Our Generic Construction

In this section we describe a voting scheme based on an arbitrary voting-friendly
encryption scheme. The design idea is similar to that of Helios.

The scheme handles elections with multiple candidates. In an election with
three candidates a vote is a triple (a, b, c) such that a, b, c ∈ {0, 1} and a+b+c =
1. A ballot is then simply formed by individually encrypting each component of
the list with an IND-CCA scheme that has an homomorphic embedding, and
proving in zero-knowledge that the individual plaintexts in a ballot satisfy the
desired relation. To prevent an adversary from casting a vote somehow related
to that of an honest voter, we ensure that each ballot cast does not contain
any ciphertexts that are duplicates of ones in the ballots already on the bulletin
board. This condition is checked while processing ballots.

More formally, denote the set of ciphertexts contained in a ballot b by
Cipher(b) and the set of all ciphertexts on the bulletin board BB by Cipher(BB),
that is Cipher(BB) =

⋃
b′∈BB Cipher(b′). When submitting a ballot b, we check

that Cipher(b) ∩ Cipher(BB) = ∅.

Definition 8 (Abstract Voting Scheme). Let Π be a voting-friendly encryp-
tion scheme. The abstract voting scheme V (Π) is the construction consisting of
algorithms 1–4.

In our construction, V is the set of voters, Z is a party representing “the
public” (elements sent to Z are published) which also functions as a trusted
party for generating the initial setup parameters and T is the trustee of the
election (that receives the decryption keys).

If M is the message space of the voting-friendly encryption scheme we con-
sider the space of votes to be V ⊆MN for some N ∈ N.

We consider result functions of the form ρ : V∗ →M∗ where V∗ := ∪i∈N0Vi

(this allows us to tally an arbitrary number of votes) and each component of
the range of ρ can be described by a sum of the form ρk =

∑
i∈N ai,k · vi for

constants ai,k ∈ N. This covers the class of result functions that can be com-
puted homomorphically, including normal and weighted sums of votes but also
the special case of revealing all the votes and allows us to exploit the homo-
morphism in the tallying operation: The same operation can be performed on
homomorphic ciphertexts using the EAdd algorithm, for which we write ⊕ i.e.
a ⊕ b := EAdd(a, b). Furthermore, we can define scalar multiplication ⊗ on the
ciphertexts i.e. 2⊗ a := EAdd(a, a).



Algorithm 1 Setup(1λ)
Z :

params ← Setup(1λ). These parameters are implicitly available to all further algo-
rithms.
BB ← ()

T :

(x, y)← Gen(1λ)
πGen ← ProveGen(x, y)
Z ← (y, πGen)

Z :

VerifyGen(y, πGen)
?
= 1 or abort with failure.

Algorithm 2 Vote((v1, v2, . . . , vN ))
∀j ∈ {1, 2, . . . , N}

cj ← Enc(y, vj)
πb

j ← ProveEnc(y, vj , cj)
bj ← (cj , π

b
j)

output b

Algorithm 3 ProcessBallot(b, BB)
if VerifyEnc(b) = 0 then return (“reject”, BB) end if
for all c ∈ Cipher(b) do

if Extract(c) = ⊥ then return (“reject”, BB) end if
if Cipher(b) ∩ Cipher(BB) 6= ∅ then return (“reject”, BB) end if

end for
BB

+← b
return (“accept”, BB)

Algorithm 4 Tally(BB)
for all cj ∈ BB (j ∈ V) do e′j ← Extract(cj) end for
for all k do

e′′k ←
L

j∈V(aj,k ⊗ e′j) {I.e. use EAdd to compute ciphertexts for the results.}
rk ← EDec(x, e′′k)
πDec

k ← ProveEDec(x, e′′k , rk)
end for
Z ← (rk, πDec

k )k



Algorithm 5 Verification

Z performs the following, aborting if any of the checks (denoted by
?
=) fail. The ordering

on V is a slight abuse of notation; it represents the order the ballots were received in.
If successful, the result of the election is r.

VerifyGen(y, πGen)
?
= 1

for all j ∈ V do
(cj , π

b
j)← bj

VerifyEnc(bj)
?
= 1

(cj /∈ (cj′)j′∈V,j′<j)
?
= 1

e′j ← Extract(cj)

e′j
?

6= ⊥
end for
e′ ← EAdd(ρ, (e′j)j∈V)

VerifyEDec(r, πDec, e′)
?
= 1

We also provide a public verification algorithm as Algorithm 5 although we
do not define this property formally.

We only prove ballot privacy of our construction formally; correctness follows
from the correctness of the voting-friendly encryption scheme. The following
theorem states that ballot privacy relies entirely on the security of the underlying
voting-friendly scheme.

Theorem 1. Let Π be a voting-friendly encryption scheme. Then V (Π) has
ballot privacy.

To prove the theorem we proceed in two steps. First, we strip the voting scheme
of the unnecessary details that concern verifiability, resulting in a scheme that we
call “mini-voting”. We prove that ballot privacy for this latter scheme only relies
on the IND-CCA2 security of the encryption scheme employed (which highlights
IND-CCA2 security as the crucial property needed from the underlying building
block). We then explain how to adapt the proof to show the security of V (Π).

The full proof can be found in the full version of this paper.

4 Constructions for voting–friendly schemes

In the previous section we gave a generic construction of a voting scheme with
ballot privacy starting from an arbitrary voting-friendly encryption scheme. In
this section we show that such schemes can be easily constructed using standard
cryptographic tools in both the standard and the random oracle models. We
discuss three different possibilities.

Encrypt + PoK. This construction does not lead immediately to a voting-
friendly scheme but its security is highly relevant to that of Helios, and the
design idea forms the basis of a construction that we discuss later.



Under this paradigm, one attempts to construct an IND-CCA2 scheme start-
ing from an IND-CPA scheme and adding to the ciphertext a non-interactive
proof of knowledge of the underlying plaintext. Intuitively, this ensures that an
adversary cannot make use of a decryption oracle (since he must know the un-
derlying plaintext of any ciphertext) hence the security of the scheme only relies
on IND-CPA security. Unfortunately, this intuition fails to lend itself to a rigor-
ous proof, and currently the question whether Enc+PoK yields an IND-CCA2
scheme is widely open. A detailed treatment of the problem first appeared in
[16].

Yet, the question is important for the security of Helios: the current im-
plementation is essentially an instantiation of our generic construction with
an Enc+PoK encryption scheme. More precisely the encryption scheme Enc
is ElGamal, and the proof of knowledge is obtained by applying the Fiat-Shamir
transform to a Schnorr proof. Per the above discussion, no general results imply
that the resulting ElGamal+PoK scheme is IND-CCA2 secure (a requirement for
voting-friendliness) and our generic result does not apply. However, if one is pre-
pared to accept less standard assumptions, two existing results come in handy.
The security of the particular construction that employs ElGamal encryption
and Fiat-Shamir zero-knowledge proofs of knowledge has been investigated by
Tsiounis & Yung [17] and Schnorr & Jakobsson [19]. Both works support the
conjecture that the construction is IND-CCA2 but neither result is fully satisfac-
tory. Tsiounis & Yung make a knowledge assumption that essentially sidesteps
a crucial part in the security proof, whereas the proof of Schnorr & Jakobs-
son assumes both generic groups [13] and random oracles [10]. Nevertheless,
since using either assumption we can show that ElGamal+PoK construction is a
voting-friendly scheme, we conclude that Helios satisfies ballot privacy under the
same assumptions. Unfortunately, the security of the construction under stan-
dard assumptions is a long-standing open question. This observation motivates
the search for alternative constructions of voting-friendly schemes.

Straight-line Extractors. To motivate the construction that we discuss now, it is
instructive to explain why a proof that Enc+PoK is IND-CCA2 fails. In such a
proof, when reducing the security of the scheme to that of the underlying prim-
itive, a challenger would need to answer the decryption queries of the adversary.
Since the underlying encryption scheme is only IND-CPA secure, the only pos-
sibility is to use the proof of knowledge to extract the plaintext underlying the
queried ciphertexts. Unfortunately here the proof gets stuck. Current definitions
and constructions for proofs of knowledge only consider single statements and
the knowledge extractor works for polylogarithmically many proofs but it may
break down (run in exponential time [19]) for polynomially many. Since the IND-
CCA2 adversary is polynomially bounded answering all of its decryption queries
may thus not be feasible.

A construction that gets around this problem employs a zero-knowledge
proof of knowledge with a straight-line extractor. Such extractors do not need
to rewind the prover and in this case the Enc+PoK construction yields an IND-
CCA2 encryption scheme. This notion of extraction and a variation of the Fiat-



Shamir transform that turns a sigma-protocol into a non-interactive proof of
knowledge with a straight-line extractor in the random oracle model has recently
been proposed by Fischlin [22]. As above, starting with a homomorphic encryp-
tion scheme would yield a voting friendly encryption scheme. Unfortunately the
construction in that paper is not suffficiently efficient to yield a practical en-
cryption scheme.

The Naor-Yung Transformation. This transformation starts from any IND-CPA
secure encryption scheme. An encryption of message m is simply two distinct
encryptions c1 and c2 of m under the original scheme, together with a simulation-
sound zero-knowledge proof π that c1 and c2 encrypt the same message with an
extra property that we call unique applicability. Formally, we have the following
definition.

Definition 9 (Naor-Yung Transformation). Let E = (EGen,EEnc,EDec) be
a public-key encryption system. Let P = (Prove,Verify,Sim) be a non-interactive
zero-knowledge proof scheme for proving (in Camenisch’s notation [15])

PoK{(m, r1, r2) : c1 = Enc(y1,m; r1) ∧ c2 = Enc(y2,m; r2)}

with uniquely applicable proofs. Assume the input to Prove is given in the form
(m, y1, y2, r1, r2, c1, c2).

The Naor-Yung transformation [7] NY (E,P ) of the encryption system is the
public-key cryptosystem defined in Algorithm 6.

Algorithm 6 Naor-Yung Transformation
Gen

(x1, y1)← EGen
(x2, y2)← EGen
return ((x1, x2), (y1, y2))

Enc((y1, y2), m; (r1, r2))

c1 ← Enc(y1, m; r1)
c2 ← Enc(y2, m; r2)
π ← Prove(m, y1, y2, r1, r2, c1, c2)
return (c1, c2, π)

Dec(c1, c2, π)

if Verify(c1, c2, π) = 1 then return EDec(x1, c2) else return ⊥ end if

Sahai [18] showed that the above transformation yields an IND-CCA2 en-
cryption scheme if the starting scheme is IND-CPA and the proof system is
simulation-sound and has uniquely applicable proofs (essentially each proof can
only be used to prove one statement).

Theorem 2 (Sahai[18]). If the zero-knowledge proof system P has uniquely
applicable proofs then the Naor-Yung transformation NY (E,P ) of an IND-CPA
secure scheme E gives IND-CCA2 security.



It turns out that if the starting encryption scheme is homomorphic, then the
resulting construction is a voting-friendly encryption scheme. Indeed, the result-
ing scheme has a homomorphic embeding (given either the first or the second
component of the ciphertext) and it is checkable (the checking algorithm only
needs to verify the validity of π). As explained earlier, the required proof-systems
for provability of the embeding exist, from general results. One can therefore ob-
tain voting schemes with provable ballot privacy in the standard model starting
from any homomorphic encryption scheme that is IND-CPA secure in the stan-
dard model.

In general, the above construction may not be very efficient (the simulation-
sound zero-knowledge proof and associated required proof-systems may be rather
heavy). In the random oracle model one can implement the above idea efficiently
by replacing the simulation-sound zero-knowledge proof (of membership) with a
zero-knowledge proof of knowledge of the message that underlies the two cipher-
texts. Interestingly, one may regard the NY transform as providing the under-
lying encryption scheme with a straight-line extractor (so our previous results
already apply).

The following theorem is a variation of the basic Naor-Yung transform applied
to our setting.

Theorem 3. If E is an IND-CPA secure homomorphic encryption scheme with
S2P key derivation and P is a zero-knowledge proof of knowledge system with
uniquely applicable proofs, then NY (E,P ) is a voting friendly encryption scheme.

5 Application to the Helios protocol

We propose an enhanced version of Helios 3.0 which is an instantiation of our
generic voting scheme with a voting-friendly encryption scheme obtained from
ElGamal encryption [1] via the NY transform [7]. The required proof of knowl-
edge is obtained via the Fiat-Shamir transform [3] applied to generalized Schnorr
proofs. In this scheme duplicate ballots would be rejected as defined in the Pro-
cessBallot procedure (Algorithm 3). We can further improve the efficiency by
reusing some components as described by [20].

Thanks to Theorems 1 and 3, we deduce that the enhanced version of Helios
3.0 (provably) preserves ballot privacy. The modification of Helios we propose
does not change the architecture nor the trust assumption of Helios and can be
easily implemented. The computational overhead is reasonable (both the length
of the messages and the time of computation would at most double and some
optimizations can be foreseen). In exchange, we get the formal guarantee that
Helios does preserve ballot privacy, a very crucial property in the context of
electronic voting. For concreteness, we prove the details of the construction, as
well as a proof of security in the full version of this paper.

We emphasize that our results go beyond proving ballot privacy of a partic-
ular e-voting protocol. We have identified IND-CCA2 as a sufficient condition
for constructing voting schemes satisfying our notion of ballot privacy and have



given an abstract construction of a Helios-type voting scheme from IND-CPA
secure homomorphic threshold encryption and non-interactive zero-knowledge
proofs of knowledge. Our construction is independent of any hardness assump-
tions or security models (in particular, the random oracle model). We have for-
malized the concept of embeddable encryption and showed how to construct
IND-CCA2 secure encryption with homomorphic embedding, despite the known
impossibility of homomorphic IND-CCA2 secure encryption.

As further work, we plan to extend the definitions and proofs for threshold
encryption scheme in order to have a fully complete proof for Helios. We are
confident that our proof techniques will apply in a straightforward way. We also
wish to investigate the possibility of defining ballot privacy in a more general
way, e.g. allowing the current voting algorithm to be replaced by a protocol.
Indeed, it could the case that casting a vote or tallying the vote require more
than one step.
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33. M. Backes, C. Hriţcu and M. Maffei. Automated Verification of Remote Electronic
Voting Protocols in the Applied Pi-calculus. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSF’08), pages 195–209, 2008.

34. D. Wikström. Simplified Submission of Inputs to Protocols. In: Security and
Cryptography for Networks, 6th International Conference, SCN 2008, pages 293–
308, 2008.

35. B. Adida, O. de Marneffe, O. Pereira and J.-J. Quisquater. Electing a univer-
sity president using open-audit voting: Analysis of real-world use of Helios. In:
Proceedings of the 2009 conference on Electronic voting technology/workshop on
trustworthy elections.

36. International association for cryptologic research. Election page at http://www.
iacr.org/elections/2010

37. V. Cortier and B. Smyth. Attacking and fixing Helios: An analysis of bal-
lot secrecy. Website with description and video at http://www.bensmyth.

com/publications/10-attacking-helios/ Cryptology ePrint Archive, Report
2010/625.

38. S. Kremer, M. D. Ryan and B. Smyth. Election verifiability in electronic voting
protocols. In: Proceedings of the 15th European Symposium on Research in
Computer Security (ESORICS’10), pages 389–404, 2010.

39. D. Unruh and J. Müller-Quade. Universally Composable Incoercibility. In: Pro-
ceedings of the 30th International Cryptology Conference (CRYPTO’10), pages
411–428, 2010.
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A Details of our construction

We give a detailed description of our proposed construction of a provably secure
extension of Helios.

A.1 Choice of groups

Let λ be a security parameter. Pick primes p, q such that p − 1 = kq for some
k ∈ Z and q ≈ λ . Pick an element g ∈ (Z∗

p,×) of order q. This defines a cyclic
group of prime order q which we will call G. The group operation is integer
multiplication with reduction mod p.

Occasionally we need the group (Zq,+) directly. In this group the operation
is integer addition with reduction mod q. Although these groups are isomorphic,
for security we rely on the fact that we have a homomorphism Zq → G and the
conjecture that it is hard to find one in the opposite direction.

The choice of these groups and parameters can be done as in existing Helios
implementations. We summarize these groups in the following table.

Group Order Op. Modulus Neutral Generator
G q × p 1 g
Zq q + q 0 1

A.2 Key generation

An election is created by a number of trustees who each hold a share of the
decryption/tallying key. To create an election for s trustees, each trustee Ti

picks two secrets x(i,0), x(i,1)
R← Zq where i← 1 . . . s. Each trustee then computes

two values y(i,b) = gx(i,b) mod p for b ∈ {0, 1} and publishes these values. The
election public key is the pair(

y0 =
s∏

i=1

y(i,0), y1 =
s∏

i=1

y(i,1)

)
A trustee must also prove knowledge of his secrets with a proof of knowledge

of a discrete logarithm. Although the proof of correct decryption of the election
result will also include a proof of knowledge of the trustees’ secret keys, voters
must be able to verify that the election public keys are well-formed before they
use them to encrypt their votes. The proof can be done as follows by trustee Ti

and repeated for both j = 0 and j = 1. It is a straightforward Schnorr proof:

1. αj
R← Zq.

2. βj ← gαj mod p.
3. γj ← H(βj).
4. δj ← αj + γj · x(i,j) mod q.

The proof is the tuple (β0, δ0, β1, δ1) and can be checked by ensuring βj ∈
G, δj ∈ Zq and gδj = βj · y

γj

(i,j) mod p for j ∈ {0, 1}.



A.3 Creating a ballot

A ballot encodes a number of votes. The election parameters describe

– The number nV of votes each voter must cast.
– For each vote i in 1 . . . nV , a range (mini,maxi) that the vote must lie in.
– A range (minV ,maxV ) that the sum of all votes must lie in.

To create a ballot for votes v1 . . . vnV
satisfying these conditions, a voter

performs the following algorithm. In the interest of readability, we split the
algorithm into several distinct procedures as is good practice in programming
and give comments and pre/postconditions for each.

create-ballot This is the main algorithm that takes a list of votes and creates a
ballot.
Input: Number of votes nV , votes v1 . . . vnV

, ranges (mini,maxi)nV
i=1, range (minV ,maxV ),

public key (y0, y1).
Preconditions: nV ≥ 1, for all i ∈ 1 . . . nV we have mini ≤ maxi, minV ≤∑nV

i=1 mini ≤
∑nV

i=1 maxi ≤ maxV .
Output: Valid ballot for v1 . . . vnV

.

1. For i← 1 . . . nV :
(a) ri

R← Zq.
(b) ei ← encrypt-vote(y0, y1, vi, ri).
(c) πi,NY ← create-NY-proof(y0, y1, ri, ei).
(d) πi,R ← create-range-proof(y0, y1, ri, vi, ei,mini,maxi).

2. πV ← create-sum-proof(y0, y1, (ei, ri, vi)nV
i=1,minV ,maxV ).

3. Return the ballot
((ei, πi,NY , πi,R)nV

i=1, πV )

encrypt-vote This procedure creates a 3-element ElGamal encryption of a vote.
Input: Vote v, randomness r, public keys y0, y1.
Preconditions: None.
Output: Encrypted vote e = (a, b, c).

Compute
(a← gr, b← gvyr

0, c← gvyr
1) mod p

and return e← (a, b, c).

create-NY-proof This procedure takes an encrypted vote e and the underlying
randomness r and produces a proof that both encryptions are for the same
message under the same randomness.
Input: Public keys y0, y1, randomness r, encrypted vote e.
Preconditions: e is a valid encryption of a vote with randomness r under public
keys y0, y1.
Output: Non-interactive zero-knowledge proof π.



1. α1, α2
R← Zq.

2. (β1 ← gα2 , β2 ← gα1yα2
0 , β3 ← gα1yα2

1 ) mod p.
3. γ ← H(β1‖β2‖β3).
4. δ1 ← α1 + γ ·m mod q, δ2 ← α2 + γ · r mod q.
5. Return π ← (β1, β2, β3, δ1, δ2).

create-range-proof This procedure produces a zero-knowledge proof that a vote
lies in a given range. Note that we only consider the first public key which is
sufficient as the zero-knowledge proof of equality guarantees that the second
encryption will be in the same range.
Input: Public keys y0, y1, encrypted vote e, vote v, randomness r, range of valid
votes (min,max).
Preconditions: e is the encryption of v under public keys y0, y1 and randomness
r and v ∈ [min,max] .
Output: Zero-knowledge proof π.

1. Parse e as (a, b, c).
2. For j ← [min,max] \ {v}, create a simulated proof:

(a) γj , δj
R← Zq.

(b) ∆j,1 ← gδj mod p, ∆j,2 ← y
δj

0 mod p.
(c) βj,1 ← ∆j,1 − γi · a mod p, βj,2 ← ∆j,2 − γi · (b/gj) mod p.

3. αv
R← Zq.

4. βv,0 ← gαv mod p, βv,1 ← yαv
0 mod p.

5. γ ← H(βmin,1‖βmin,2‖βmin +1,1‖βmin +1,2‖ . . . ‖βmax,1‖βmax,2).
6. γv ← γ −

∑max
j=min,j 6=v γj mod q.

7. δv ← αv + γv · r.
8. Return (βj,1, βj,2, γj , δj)max

j=min.

create-sum-proof This procedure produces a zero-knowledge proof that the sum
of all votes (v1, . . . , vnV

) underlying a single ballot lies in the range [minV ,maxV ].
This is done by homomorphically adding all votes and then producing a range
proof on the sum. Sum proofs, like range proofs, need only be done on one of
the two encryption.
Input: Public keys y0, y1, encrypted votes, underlying randomness and plain
votes (ei, ri, vi)nV

i=1, range (minV ,maxV ).
Preconditions: Valid encrypted votes for given public keys, plain votes and ran-
domness; sum of all plain votes lies in range [minV ,maxV ].
Output: Zero-knowledge proof π.

1. Parse each encrypted vote as (ai, bi, ci).
2. (a, b)← (

∏nV

i=1 ai mod p,
∏nV

i=1 bi mod p).
3. (r, v)← (

∑nV

i=1 ri mod q,
∑nV

i=1 vi mod q).
4. Return create-range-proof(y0, y1, r, v, (a, b,⊥),minV ,maxV ).



A.4 Verifying a ballot

When a ballot is cast, the entity responsible for collecting ballots must check its
validity and publish it if found valid. This process must be publicly verifiable,
indeed anyone must be able to check ballot validity without access to any secret
information.

Ballot authentication is out of scope of this discussion, for simplicity we
may assume authentic channels from all voters to the ballot casting centre. We
explicitly include checks that all elements are in the required groups.

verify-ballot This algorithm takes a ballot and returns 1 if it is deemed to be
valid, otherwise 0.
Input: A claimed ballot of the form ((ei, πi,NY , πi,R)nV

i=1, πV ).
Preconditions: None (we are checking if the input is valid, after all).
Output: 0 or 1.

Wherever “check” is written, the algorithm immediately aborts returning 0
if a check fails.

1. Check that the number of elements is correct.
2. For i← 1 . . . nV

(a) Parse ei as (a, b, c). Check all three elements are in G.
(b) Check verify-NY(y0, y1, ei, πi,NY ).
(c) Check verify-range(y0, y1, ei, πi,R).

3. (a′, b′)← (
∏nV

i=1 ai,
∏nV

i=1 bi) mod p.
4. Check verify-range(y0, y1, (a′, b′,⊥), πV ).

verify-NY This procedure verifies a Naor-Yung transformation proof that two
encryptions share the same message and randomness.
Input: Public key (y0, y1), encrypted vote e = (a, b, c), Naor-Yung proof π =
(β1, β2, β3, δ1, δ2).
Preconditions: a, b, c ∈ G.
Output: 0 or 1.

1. Check that β1 ∈ G, β2 ∈ G, β3 ∈ G, δ1 ∈ Zq, δ2 ∈ Zq or return 0 if this fails.
2. ∆1 ← gδ2 mod p, ∆2 ← gδ1yδ2

0 mod p, ∆3 ← gδ1yδ2
1 mod p.

3. γ ← H(β1‖β2‖β3).
4. Return 1 if the following checks pass, otherwise 0:

– ∆1
?= β1 · aγ mod p.

– ∆2
?= β2 · bγ mod p.

– ∆3
?= β3 · cγ mod p.



verify-range This procedure verifies a zero-knowledge proof that an encrypted
vote lies within a given range.

Input: Public key (y0, y1), encrypted vote (a, b, c), disjunctive proof (βj,1, βj,2, γj , δj)max
j=min.

Preconditions: a, b, c ∈ G, encrypted vote NY-verified.
Output: 0 or 1.

1. For j ← min, . . . ,max:
(a) Check that βj,1 ∈ G, βj,2 ∈ G, γj ∈ Zq, δj ∈ Zq or return 0 if this fails.
(b) ∆j,1 ← gδj mod p, ∆j,2 ← y

δj

0 mod p.
(c) Return 0 if any of the following two checks fail:

– ∆j,1
?= βj,1 · aγj mod p.

– ∆j,2
?= βj,2 · (b/gj)γj mod p.

2. γ ← H(βmin,1‖βmin,2‖βmin +1,1‖βmin +1,2‖ . . . ‖βmax,1‖βmax,2).

3. Check that γ
?=
∑max

j=min γj . Return 1 if this succeeds, otherwise 0.

A.5 Computing a Tally

A group of trustees each hold a share of the decryption key. Once voting is over,
they must each verify all ballots and reject any that fail the checks. It is also
advisable that they check for duplicate proofs among all valid ballots. After this
stage, all zero-knowledge proofs and even the third elements of triples forming
encrypted votes can be discarded.

Each trustee should independently compute the sum of all votes. Specifically,
if the ballot of voter i contains the nV encryptions (ai,j , bi,j)nV

j=1 then the trustees
should compute (

aj ←
n∏

i=1

ai,j , bj ←
n∏

i=1

bi,j

)nV

j=1

Although this must be publicly computable to verify the election, it is important
that each trustee does not apply his decryption key to anything until he is sure
it is the correct sum.

The trustees can each compute a partial decryption by applying their secret
key share: The trustee holding xk (which we can take to be x(k,0)) computes
(dj,k ← (aj)xk mod p)nV

j=1 and publishes this value along with a proof of knowl-
edge attesting to the fact that they decrypted correctly. Such a proof (to be
repeated for j ← 1 . . . nV ) takes the form

PoK{(xk) : dj,k = axk
j mod p ∧ yk = gxk mod p}

and is computed as follows.

1. α
R← Zq

2. (β1, β2)← (aα
j , gα) mod p.

3. γ ← H(β1‖β2).
4. δ ← α + γ · xk mod q.



The proof consists of the elements (β1, β2, δ) and verification involves check-
ing the following three conditions.

1. β1 and β2 are in G and δ in Zq.
2. (aj)δ = β1 · dH(β1‖β2)

j,k mod p.

3. gδ = β2 · yH(β1‖β2)
k mod p.

The decrypted tally is then (dj ← bj/
∏nK

k=1 dj,k)nV

j=1
where nK is the number

of key shares. This will satisfy the equation (dj = gmj mod p) where mj is the
sum of all jth votes (for j ← 1 . . . nV ). The actual result mj can be recovered
by computing powers of g modulo p until all values dj are found.

A.6 Simulating a Tally

In the ballot privacy game for b = 1, we need to simulate these proofs. The
values dj,k must be computed correctly and the proof simulated as follows.

1. γ
R← Zq, δ

R← Zq

2. β1 ← (aj)δ/(dj,k)γ mod p
3. β2 ← (g)δ/(yk)γ mod p
4. Patch H at input (β1‖β2) to equal γ.

A.7 Verifying the Election

Anyone can publicly perform the following verification steps.

– Check each published ballot for validity.
– Check there are no duplicate proofs among published ballots.
– Compute the encryption of the tally from the ballots using the homomorphic

property of the ElGamal encryption.
– Check the proofs of correct partial decryption.
– Compute the tally from the partial decryptions.

B Ballot Privacy for the Mini–Voting Scheme

For the proof, we first consider a “mini-voting” scheme (in Theorem 4) that
removes all the extra zero-knowledge proofs concerning verifiability and show
that ballot privacy follows from IND-CCA2 security of the encryption scheme.
Then, we extend this proof to our construction (in Theorem 1).

We stress that we do not require any additional conditions on the zero-
knowledge proofs (for verifiability); in particular, they need not be non-malleable.

Theorem 4. Let (Gen,Enc,Dec) be an IND-CCA2 secure encryption scheme
for message space V. Then the mini-voting scheme in Algorithm 7 is a voting
scheme with ballot privacy.



Algorithm 7 Mini-Voting Scheme
Setup

(x, y)← Gen
Z ← y
BB ← ()

Vote(v)

b← Enc(v)

ProcessBallot(c, BB)

if b /∈ BB then
BB

+← b
return (“accept”, BB)

else
return (“reject”, BB)

end if

Tally(x, BB)

for all bj ∈ BB do v′j ← Dec(bj) end for

r ← ρ((v′j)
|BB|
j=1 )

Proof (Theorem 4). SupposeA is an adversary that has non-negligible advantage
in winning the ballot privacy game.

Let n be an upper bound on the number of vote calls the adversary makes.
Let (Hk)n

k=0 be the sequence of games where in game Hk, the first k calls to
vote are answered as if β = 0 and all from the k + 1st onwards are answered as
if β = 1. We note that H0 is equivalent to the ballot privacy game for β = 0 and
Hn for β = 1.

Using the triangular inequality, if any adversary can distinguish H0 from Hn

with non-negligible advantage then there is a value k such that the adversary
can distinguish the pair of hybrids (Hk,Hk+1) with non-negligible advantage.

Given such a k, we construct a reduction to IND-CCA2 of the underlying
scheme. We assume w.l.o.g. that in the k + 1st call to vote, the vote is not ε or
else the two hybrids would be identical. Let C be a challenger for IND-CCA2
of the encryption scheme. We construct an adpater B which will play against C
using A as follows.

Setup B receives a public key y from C, performs the setup of the voting scheme
and hands the public key and parameters to A.

vote

queries 1 . . . k: B processes these as in the ballot privacy game with β = 0.
query k + 1: Let v∗ be the input to this query. If it is ⊥, B does nothing. If

not, it stores v∗ and forwards the pair (v∗, ε) to C and gets a ciphertext c∗

back. It processes c∗ onto BB and creates a new ciphertext c′ = Vote(v∗)
which it processes onto BB′. Finally, B returns the new state of BB to
A.

queries ≥ k + 2: B processes these as in the ballot privacy game with β = 1.



ballot
For all queries before the k + 1st vote query (when B obtains the IND-
CCA2 challenge), it passes the ballot to the decryption oracle and stores
the plaintext and ballot. B then handles the query like the ballot privacy
experiment.

Tallying As long as c∗ does not appear on BB′, B decrypts all ballots on BB′

(using the decryption oracle of C) to get the votes, evaluates ρ on these votes
and returns the result to A. We deal with the case that c∗ is on BB′ below.

Guess B forwards the bit β̂ it receives from A to C.

As long as c∗ does not appear on BB′, the adversary’s view when interacting
with B will be identically distributed to that when he is interacting with Hk+β

where β is the bit chosen by C and therefore B wins against C with the same
advantage as A has in distinguishing the two hybrids.

Suppose c∗ appears on BB′ and consider the following cases. In each case, we
show that B obtains the plaintext of c∗ and can therefore guess β with probability
1 as we assumed v∗ 6= ε.

1. c∗ was added while processing a ballot command before the challenge query.
In this case, B has decrypted c∗ and stored the plaintext/ciphertext pair
while processing the command.

2. c∗ was added while processing a ballot command after the challenge query.
This is impossible as c∗ is definitely on BB after the challenge query and so
further calls to ballot(c∗) would reject before trying to process c∗ onto BB′.

3. c∗ was added while processing a vote query.
In this case, B knows the plaintext because it receives it as input.

Therefore, B has at least as high an advantage against C as A has of distin-
guishing Hk from Hk+1. ut

Proof (Theorem 1). We will prove the theorem by a sequence of “game hops”.
Starting with the mini-voting scheme, we modify the voting scheme in each hop
and argue how the proof needs to be adapted.

Let Scheme 2 be the mini-voting scheme where each voter may cast k votes.
Duplicate checking is performed as in our full voting scheme, i.e. we extract the
list of ciphertexts from each ballot and reject if any of them is a duplicate. For
n voters, this gives us a total of N := n · k encrypted votes and we simply run
the same hybrid argument (with N hybrids).

Next, we add the proofs of knowledge everywhere to obtain Scheme 3. In the
security reduction, we perform two hybrid arguments. The first one replaces the
zero-knowledge proofs by simulated ones, one step at a time. The second one
switches votes to ε as before. If the adversary can detect a difference between any
two consecutive hybrids, he can either attack the encryption (as argued earlier)
or distinguish a real from a simulated zero-knowledge proof.

Finally, we switch the tallying operation to perform checking, extraction,
homomorphic tallying and decryption of the result only to obtain our proposed
scheme. (If ρ is not homomorphically computable, we skip this step as our scheme



cannot tally homomorphically either.) We extend our sequence of games by 1,
where the first hop is switching from homomorphic decryption back to decrypting
all ballots. The adversary will not notice any difference between the two games
as he is not involved in the decryption and tallying process, so ballot privacy
still holds.

ut

C Security proof of the Naor-Yung transformation

C.1 The Naor-Yung Transformation

We prove security of the Naor-Yung transformation [7].
Naor and Yung originally used zero-knowledge proofs of language member-

ship yet their technique and proof can easily be adapted to proofs of knowledge.
This adaptation also removes a substantial amount of the complexities they had
to deal with in their original paper.

Naor and Yung proved IND-CCA1 of their transformation. Sahai [18] realized
that this transformation even gives an IND-CCA2 secure encryption scheme if
the zero-knowledge proof system satisfies a few extra conditions. All of these
hold trivially for proofs of knowledge except the one he called uniquely applicable
proofs; we will have to show that this holds for our proposed scheme.

We prove IND-CCA2 security of the Naor-Yung transformation two steps.
First, we prove Naor and Yung’s theorem [7] giving us IND-CCA1 security.
The original theorem concerned zero-knowledge proofs of language membership
and used specific definitions and propositions concerned with such proofs. Our
version omits all these as we deal with the simpler case of proofs of knowledge.
The main ideas in the proof remain unchanged although we use techniques from
[20] to simplify the presentation.

Proof (Naor-Yung). Let C be a challenger for the IND-CPA game of the original
encryption and A be an adversary for the IND-CCA1 game of the Naor-Yung
transformed scheme. We construct an algorithm B that attacks C using A.

When B is invoked by A, it acts as follows.

Setup
1. Receive a public key y from C.
2. Create a key pair (x′, y′) using Gen.
3. Pick a bit b′

R← {0, 1}.
4. If b′ = 0, let (y1, y2) ← (y, y′). Otherwise, let (y1, y2) ← (y′, y) i.e. b′

determines the order of the keys.
5. Send (y1, y2) to A.

Dec(c) Parse c as (c0, c1, π). Check π is valid for c0, c1 and abort returning ⊥ if
this fails. Decrypt c1−b′ with x′ and return the result m.

Chal(m0,m1)
1. Pass (m0,m1) to the Chal interface of C and get a ciphertext c back.
2. Create a new ciphertext c′ ← Enc(y′,mb′).



3. If b′ = 0, let (c0, c1) ← (c, c′). If b′ = 1, swap the order of ciphertexts:
(c0, c1)← (c′, c).

4. Simulate a proof π ← Sim(c0, c1).
5. Return (c0, c1, π) to the adversary.

Result When A produces a result d ∈ {0, 1} forward this to C.

The public keys in Setup are distributed identically to those in the Naor-Yung
transformed encryption scheme. The decryption oracle will work correctly for A
as long as he does not manage to forge a proof and submit an invalid ciphertext;
the probability of this happening is negligible as we assume the proof system to
be sound.

Consider the distributions A sees based on the bits b of C and b′ of B. For
x, y ∈ {0, 1} define the distribution

δ(x, y) := (Enc(y0,mx),Enc(y1,my))

over the random choices in both encryptions, assuming the public keys and
messages are fixed. A sees two elements (c0, c1) and a proof π in response to his
Chal query. The distribution of these ciphertexts will be

b = 0 b = 1
b′ = 0 δ(0, 0) δ(1, 0)
b′ = 1 δ(1, 0) δ(1, 1)

The advantage of A against IND-CCA1 security of the Naor-Yung trans-
formed scheme is his advantage in distinguishing δ(0, 0) from δ(1, 1). If this is
non-negligible, then by the triangular inequality his advantage between two suc-
cessive distributions in the sequence

δ(0, 0) − δ(1, 0) − δ(1, 1)

will also be non-negligible. In fact, as B chooses b′ uniformly at random from
{0, 1} we can estimate

AdvCPA(B) ≥ 1
2
·AdvCCA1(A)−AdvP(A)

Where AdvP is the probability that A can attack the zero-knowledge proof,
either by forging a proof for an incorrect encryption or by distinguishing a real
proof from a simulated one (on a correct or incorrect encryption). Assuming the
proof system is sound and zero-knowledge, this quantity is negligible. ut

We now prove Sahai’s version of the theorem that gives us IND-CCA2 se-
curity. Sahai proved the theorem directly whereas we just need to extend from
IND-CCA1 to IND-CCA2 security. Sahai used proofs of language membership,
as we consider proofs of knowledge we can again omit many of the technicalities.
The central argument remains the same, namely showing that the adversary
cannot ask for a decryption of an invalid ciphertext.



Proof (Sahai). We claim that for any triple (c0, c1, π) submitted to the decryp-
tion oracle, if the proof verifies then with overwhelming probability both c0 and
c1 are encryptions of the same message.

There is only one case when the adversary sees a proof he has not created
himself (so we cannot use the extractor of the proof of knowledge to get a
contradiction) and that is the proof returned from the challenge query.

Uniquely applicable proofs give us that the adversary cannot create a triple
(c∗0, c

∗
1, π) distinct from the response of the challenge oracle, passing verification

using the same proof π. In the definition of IND-CCA2, the adversary is not
allowed to ask for a decryption of the triple he got from the challenge oracle
either.

For any triple with a proof π∗ 6= π distinct from that we returned from
the challenge query, if the underlying statement is false then the adversary has
produced a forgery which we assume can happen with at most negligible prob-
ability. ut

(The property that the adversary may not prove a false statement even after
seeing a proof for a false statement is called simulation-soundness in the litera-
ture. For a proof of knowledge with uniquely applicable proofs, this is trivial.)

We can now prove our theorem that we get a voting-friendly scheme.

Proof (Theorem 3). IND-CCA2 follows from Sahai’s theorem. The ExtractKey
and Extract algorithms extract the first key pair and ciphertext respectively; this
yields the embedding property. EAdd is just the homomorphic addition algorithm
of the original scheme which clearly can still be applied.

D Reusing randomness

Recall that a homomorphic ElGamal ciphertext is a pair of the form (gr, gmyr)
mod p. For the Naor-Yung construction, we could simply use a 4-tuple of the
form

(gr1 , gmyr1
1 , gr2 , gmyr2

2 ) mod p

but in fact we can do better thanks to a theorem of Bellare, Boldyreva and
Staddon [20] which allows us to reuse the random value r.

We state the crucial condition for randomness reuse and the theorem infor-
mally and without proof, as it covers a much more general case than we require.

An encryption scheme is said to be reproducible if there is an efficient al-
gorithm Reproduce that, on input a public key and an encryption of some un-
known message under this public key together with a new message and a new
public/secret key pair, produces an encryption of the new message under the
new public key using the same randomness as the old encryption.

More formally, let Enc(pk, m; r) denote the deterministic encryption function,
where r is the randomness. Then we demand ∀(pk, sk),m, r, (pk′, sk′) where
(pk, sk) and (pk′, sk′) are valid key pairs

c = Enc(pk, m; r)→ Reproduce(pk, c, m′, pk′, sk′) = Enc(pk′,m′; r)



ElGamal is reproducible: Given a ciphertext c = (a, b) we can reproduce one
for a new key as

Reproduce(pk, c, m′, pk′, sk′) := (a, gm′
ask′

)

Writing a = gr, b = gmpkr we find that the new element is gm′
(gr)sk′

=
gm′

(pk′)r as required.
Informally, the relevant theorem in [20] states that if a public-key encryption

is reproducible and IND-CPA, CCA1 or CCA2 then it retains this security if
encryption is performed with the same randomness for multiple keys. Their
definition of multi-recipient IND-CPA/CCA also takes into account that the
adversary may be a legitimate participant in the system and know some of the
decryption keys too. We refer to the original paper for the precise definitions
and the full proof, we do not require these for our construction.

An encryption of message m with randomness r under keys y1, y2 will be the
triple

(gr, gmyr
1, g

myr
2) mod p

Apart from reducing bandwidth and computation required for the actual en-
cryption compared to two separate encryptions, this also allows us to construct
an easier zero-knowledge proof for the Naor-Yung transformation.

The proof of the Naor-Yung transformation is almost identical when reusing
randomness, the only change is that we use Randomize in the challenge oracle to
create the second ciphertext.

E Encryption

E.1 Public-Key Encryption

A public-key encryption scheme is a triple of probabilistic algorithms

(Gen,Enc,Dec)

satisfying the correctness condition for all messages m in the message space with
probability 1.

The algorithms and their input/output values are as follows.

Gen(1λ) The key-generation algorithm takes a security parameter λ and gener-
ates a secret key x and a public key y.

Enc(y, m) The encryption algorithm takes a public key y and a message m and
outputs a ciphertext c.

Dec(x, c) The decryption algorithm takes a secret key x and a ciphertext c and
outputs a decryption d.

The scheme is IND-CPA, IND-CCA1 or IND-CCA2 secure if no efficient
adversary can win the security game with non-negligible advantage, defined as

Adv(A) =
∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣



Algorithm 8 Correctness of Public-Key Encryption
Parameters: m

(x, y)← Gen
c← Enc(y, m)
m′ ← Dec(x, c)
return m = m′

The idea underlying all three is that the adversary may pick any two plaintexts
and submit them to a challenge oracle, receiving an encryption of one of the
two in return. He must then decide which of the two messages the encryption
represents. The difference between the three notions lies in when the adversary
may make decryption queries:

Game Before challenge call After challenge call
IND-CPA no no

IND-CCA1 yes no
IND-CCA2 yes yes (*)

(*) The adversary may not ask for a decryption of the ciphertext he got from
the challenge call.

Algorithm 9 Security of Public-Key Encryption
Adversary: A

(x, y)← Gen
A ← y
if IND-CCA1 or IND-CCA2 then

while c← A do A ← Dec(c) end while
end if
(m0, m1)← A
b

R← {0, 1}
c∗ ← Enc(y, mb)
A ← c∗

if IND-CCA2 then
while c← A do

if c = c∗ then A ← ⊥ else A ← Dec(c) end if
end while

end if
b′ ← A
return b = b′

Security in any of these three models implies a probabilistic encryption func-
tion (and sufficient entropy), otherwise the adversary could just recompute en-
cryptions of the two messages he sent to the challenge oracle himself and compare
these with the ciphertext he received from it.



E.2 Homomorphic Encryption

A homomorphic public-key encryption scheme consists of four algorithms

(Gen,Enc,Dec,Add)

such that the message space is a group (denote the group operation by ⊕), the
first three algorithms are a public-key encryption scheme and the fourth takes
two ciphertexts and produces a ciphertext for the message corresponding to the
group operation evaluated on the original two plaintexts, without access to the
secret key. More formally, for any messages m0,m1 the additional correctness
property is satisfied with probability 1.

Algorithm 10 Correctness of Homomorphic Encryption
Parameters: m0, m1

(x, y)← Gen
c0 ← Enc(y, m0)
c1 ← Enc(y, m1)
c← Add(c0, c1)
m′ ← Dec(x, c)
return m′ = m0 ⊕m1

A homomorphic encryption scheme can never be IND-CCA2 secure. If the
adversary chooses m0,m1 as his two challenge messages and gets a ciphertext
c as a result, in a homomorphic scheme he can always pick any m′ that is not
the unit of the group, create c′ ← Enc(y, m′) and c′′ ← Add(c, c′). He can then
send c′′ to the decryption oracle (as the underlying plaintext differs from that
of c, so must the ciphertext) to get m′′ back and check if m′′ = m0 + m′ or
m′′ = m1 + m′ holds.

E.3 Threshold Decryption

A public-key encryption scheme with threshold decryption for t out of n shares
consists of algorithms

(Setup,GenShare,CombineKey,Enc,DecShare,Combine)

for a given threshold t out of a number n of shares.

Setup The setup algorithm takes a security parameter as input and creates pub-
lic parameters params which are implicitly available to all further algo-
rithms.

GenShare This generates a pair (x, y) consisting of a secret key share and a public
key share.

CombineKey This algorithm takes a list of n public key shares (yi)n
i=1 as input

and returns a public key y.



Enc The encryption algorithm is identical to normal public-key encryption.
DecShare The shared decryption algorithm takes a private key share xi and a

ciphertext c as input and produces a partial decryption di.
Combine This takes a ciphertext c and a list of t partial decryptions and produces

a plaintext.

The correctness game must return 1 with probability 1 for any message m
and any set T of exactly t indices to use for decryption.

Algorithm 11 Correctness of Threshold Public-Key Encryption
Parameters: m, T ⊆ {1, . . . , n} with |T | = t

params← Setup
for i← 1 . . . n do (xi, yi)← GenShare end for
y ← combineKey((yi)

n
i=1)

c← Enc(y, m)
for all i ∈ T do di ← DecShare(xi, c) end for
m′ ← Combine(c, (di, i)i∈T )
return m = m′

For security, we allow the adversary to obtain any t−1 decryption key shares
and give him partial decryption oracles for the others. The security notions are
IND-TCPA, IND-TCCA1 and IND-TCCA2 where we demand that no efficient
adversary can gain a non-negligible advantage in the game.

Definition 10 (Threshold Homomorphic Embedding). A threshold scheme

(Setup,GenShare,CombineKey,Enc,DecShare,Combine)

has threshold homomorphic embedding

(ESetup,EGenShare,ECombineKey,EEnc,EDecShare,ECombine,EAdd)

if there are algorithms

(ExtractShare,ExtractKey,Extract,EDecShare,ECombine,EAdd)

such that
EGenShare = ExtractShare ◦ GenShare

ECombineKey = ExtractKey ◦ CombineKey

EEnc = Extract ◦ Enc

Dec = EDec ◦ Extract



Algorithm 12 Security of Threshold Public-Key Encryption
Adversary: A

params← Setup
A ← params
for i← 1 . . . n do (xi, yi)← GenShare end for
y ← CombineKey((yi)

n
i=1)

A ← (y, (yi)
n
i=1)

for i← 1 . . . t do
τ ← A
A ← xτ

end for
if IND-TCCA1 or IND-TCCA2 then

while (c, τ)← A do A ← DecShare(xτ , c) end while
end if
(m0, m1)← A
b

R← {0, 1}
c∗ ← Enc(y, mb)
A ← c∗

if IND-TCCA2 then
while (c, τ)← A do

if c = c∗ then A ← ⊥ else A ← DecShare(xτ , c) end if
end while

end if
b′ ← A
return b = b′



E.4 Homomorphic Threshold ElGamal

Given a cyclic group G with generator g, the following is the threshold homo-
morphic ElGamal encryption scheme.

Setup Create a cyclic group G of prime order q (where q is approximately the
size of the security parameter) and a generator g.

GenShare Pick x
R← Zq and compute y = gx in G.

CombineKey Given a list of public key shares (yi)i∈I , compute y =
∏

i∈I yi.

Enc Given a message m, pick a random r
R← Zq and compute a = gr and

b = gmyr. The ciphertext is c = (a, b).
DecShare Given c = (a, b) and x, compute d = ax.
Combine Given c = (a, b), (xi)i∈I compute h = b/(

∏
i∈I xi) which will be gm

if everything was done correctly. Use a discrete-logarithm finding algorithm
(for small m) to extract m.

Add Given a1 = gr1 , b1 = gm1yr1 and a2 = gr2 , b2 = gm2yr2 , compute a =
a1 · a2, b = b1 · b2.


