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Abstract

In this paper we study the link between formal and cryptographic models for
security protocols in the presence of passive adversaries. In contrast to other
works, we do not consider a fixed set of primitives but aim at results for arbi-
trary equational theories. We define a framework for comparing a cryptographic
implementation and its idealization with respect to various security notions. In
particular, we concentrate on the computational soundness of static equivalence,
a standard tool in cryptographic pi calculi. We present a soundness criterion,
which for many theories is not only sufficient but also necessary. Finally, to
illustrate our framework, we establish the soundness of static equivalence for
the exclusive OR and a theory of ciphers and lists.

1. Introduction

Today’s ubiquity of computer networks increases the need for theoretic foun-
dations for cryptographic protocols. For more than twenty years now, two com-
munities separately developed two families of models. Both views have been
very useful in increasing the understanding and quality of security protocol de-
sign. On the one hand formal or logical models have been developed, based on
the seminal work of Dolev and Yao [2]. These models view cryptographic oper-
ations in a rather abstract and idealized way. On the other hand cryptographic
or computational models [3] are closer to implementations: cryptographic op-
erations are modeled as algorithms manipulating bit-strings. Those models
cover a large class of attacks, namely all those implementable by a probabilistic
polynomial-time Turing machine.

The advantage of formal models is that security proofs are generally simpler
and suitable for automatic procedures, even for complex protocols. Unfortu-
nately, the high degree of abstraction and the limited adversary power raise
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questions regarding the security offered by such proofs. Potentially, justifying
symbolic proofs with respect to standard computational models has tremendous
benefits: protocols can be analyzed using automated tools and still benefit from
the security guarantees of the computational model.

For the past few years, a significant research effort has been directed at link-
ing these two approaches. In their seminal work [4], Abadi and Rogaway prove
the computational soundness of formal (symmetric) encryption in the case a
passive attacker. Since then, many results have been obtained. Each of these
results considers a fixed set of primitives, for instance symmetric or public-
key encryption. In this paper, we aim at presenting general results for arbitrary
equational theories, such as encryption, but also less studied ones, such as groups
or exclusive OR. The interest of our approach is not only to develop a general
and unified framework for the treatment of cryptographic primitives. Conceptu-
ally, it also offers a better understanding of the use of equational theories when
modeling the algebraic properties of the primitives. Indeed, for several years,
formal models have considered equational theories like the theory of exclusive
OR, abelian groups or homomorphic encryption (for a survey on algebraic prop-
erties see for instance [5, 6]) in order to model some cryptographic aspects. But
it is a priori unclear whether “enough” equations have been considered to pro-
vide realistic security guarantees. A real attacker might still exploit additional
properties of a cryptographic primitive that have not been modeled. Here, we
propose a setting and some proof techniques that allow us to formally define
and prove that “enough” equations have been considered.

We concentrate on static equivalence, a now standard notion originating
from the applied pi calculus [7]. Intuitively, static equivalence asks whether an
attacker can distinguish between two tuples of messages—later called frames—
by exhibiting a relation which holds on one tuple but not on the other. Static
equivalence provides an elegant means to express security properties on pieces
of data, for instance those observed by a passive attacker during the run of a
protocol. In the context of active attackers, static equivalence has also been
used to characterize process equivalences [7] and off-line guessing attacks [8, 9].
There now exist exact [10] and approximate [11] algorithms to decide static
equivalence for a large family of equational theories.

Our first contribution is a general framework for comparing formal and com-
putational models in the presence of a passive attacker. We define the notions
of soundness and faithfulness of a cryptographic implementation with respect
to equality, static equivalence and (non-)deducibility. Soundness holds when
a formal notion of security has a computational interpretation. For instance,
statically equivalent tuples of messages (frames) should be computationally in-
distinguishable. Conversely, faithfulness holds when every formal attack on a
given notion of security can be mapped to an efficient computational attacker.
As an illustration, we consider an equational theory modeling Abelian groups
with exponents taken over a commutative ring. We show that the soundness of
static equivalence implies the hardness of several classical problems in cryptog-
raphy, notably the decisional Diffie-Hellmann and the RSA problem. Although
not completely surprising, this results illustrate well the expressive power of
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static equivalence defined over tailored equational theories.
Our second contribution is a sufficient criterion for soundness with respect to

static equivalence: intuitively the usual computational semantics of terms has to
be indistinguishable to an idealized one. We also define and study a useful class
of frames, called transparent frames, for arbitrary equational theories. Infor-
mally, a frame is transparent if every secret in use is deducible from the frame
itself. Transparent frames enjoy notable properties such as a simple charac-
terization of static equivalence and—in the case of uniform distributions—the
fact that two statically equivalent transparent frames always yield the same
concrete distribution, that is, are indistinguishable in the sense of information
theory. This study of transparent frames allows us to exhibit a class of equa-
tional theories for which our soundness criterion is necessary.

Our third contribution consists in applying our framework to obtain two
first soundness results for static equivalence. The first equational theory that
we consider deals with the exclusive OR. This simple but important primitive
has been largely used in cryptographic constructions such as the One-Time
Pad and in protocols (see [6] for examples). Interestingly, our proof of sound-
ness reflects the unconditional security (in the information-theoretic sense) of
the One-Time Pad [12]. Second we consider a theory of symmetric encryption
and lists. The result is similar in spirit to the one of Abadi and Rogaway [4].
However, we consider deterministic, length-preserving, symmetric encryption
schemes—also known as pseudo-random permutations or ciphers, while Abadi
and Rogaway consider probabilistic, symmetric encryption. This choice is mo-
tivated by famous examples of ciphers such as DES or AES. In both examples,
the specificity of our work is to prove the soundness of a standard formal notion,
static equivalence, rather than that of a specialized relation.

Related work.. The study of the link between the formal and the computational
approaches for cryptographic protocols started with the seminal work of Abadi
and Rogaway [4], in a passive setting. There have been many extensions to the
work of Abadi and Rogaway in the passive case, such as studying complete-
ness [13], considering deterministic encryption [14] (a more detailed comparison
is provided below), One-Time pad, length-revealing and same-key revealing en-
cryption [12] or allowing composed keys [15] and key-cycles [16].

The first results in an active setting were achieved by Backes, Pfitzmann,
and Waidner [17, 18, 19]. These works prove the soundness of a rich language
including digital signatures, public-key and symmetric key encryption in the
presence of an active attacker for several kind of security properties. Quite sim-
ilar results were established in more abstract and classical Dolev-Yao models for
asymmetric encryption and signatures [20, 21]. While more easily amendable
to full automation, these results do not offer universal composability guarantees
like the previous ones. However, Canetti and Herzog [22] have recently ob-
tained a similar soundness theorem for a restricted class of protocols—mutual
authentication and key exchange protocols using only public-key encryption—
which does offer strong composability properties in the universal composability
framework. Laud [23] presents an automated procedure for computationally
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sound proofs of confidentiality in the case of an active attacker and symmetric
encryption when the number of sessions is bounded. Datta et al. [24] introduce
a symbolic logic that allows cryptographically sound security proof. Recently,
Blanchet [25] proposed a computationally sound mechanized prover that relies
directly on games transformations, a proof technique commonly used in the
cryptographic setting.

Except [25], the previously mentioned results are all dedicated to some fixed
set of cryptographic primitives. Here, our goal is not restricted to obtaining
some particular soundness result for a given set of primitives and security prop-
erties. Rather, we aim at developing a general setting to reason about the
adequacy of abstract functional symbols equipped with an equational theory
and their corresponding cryptographic implementations. To the best of our
knowledge, this approach is new and distinct from existing work. We now dis-
cuss some related work concerning the two theories (exclusive OR as well as
ciphers and lists) that we have considered to illustrate our framework.

Regarding the soundness of exclusive OR, Backes and Pfitzmann [26] have
independently shown an impossibility result in the framework of reactive simu-
latability, in the presence of an active adversary. They also present a soundness
result in the presence of a passive adversary. While we consider the application
of exclusive OR only to pure random values, Backes and Pfitzmann deal with
arbitrary payloads. It is however not clear how the framework of reactive sim-
ulatability in the presence of a passive adversary compares to our framework
based on static equivalence.

Concerning the theory of ciphers and list, Laud [14] presents soundness re-
sults in the style of Abadi and Rogaway for ciphers. While these results are close
to ours, Laud’s notion of formal equivalence is apparently more pessimistic than
ours regarding the secrecy of encryption keys. For instance, as opposed to [14],
we consider that the encryption of a fresh random value by a known key is
indistinguishable from a random value—that is, formally, the pair (enc(n, k), k)
is indistinguishable from (n′, k). The reason is that, in the absence of tags,
each encryption key of a cipher yields a permutation on the space of values.
Therefore, if n follows the uniform distribution, such as in our implementation
(Section 5.2), so does the term enc(n, k). Provided a suitable set of equations,
static equivalence naturally accounts for this property, whereas there seems to
be no natural and immediate way to express the same equivalences using pat-
terns in the style of Abadi and Rogaway. In some sense, the work of Abadi and
Warinschi [27] can be seen as an attempt to do so on a fragment of equivalences
modeling guessing attacks. Recently, the techniques developed in the present
paper have been applied successfully by Abadi, Baudet, and Warinschi [28] to
generalize the ideas of [27] and justify a modeling of guessing attacks purely
based on static equivalence.

In [14], Laud provides a computationally sound proof system handling both
ciphers and exclusive OR in the presence of a passive attacker. This proof system
is used to prove the security of several encryption modes including CBC. This
approach differs from the one developed here as it aims at direct cryptographic
proofs of security (much as in [23, 25]). In comparison, our approach (as in [4,
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12, 15, 16, 17, 18, 19, 13, 20, 21]) aims to exhibit a class of protocols for which
the absence of formal attacks entails the existence of a computational proof of
security.

Further related work.. Since the publication of a preliminary version [1] of this
article, several papers have addressed the computational soundness of static
equivalence. As already mentioned, Abadi, Baudet, and Warinschi [28] study
resistance against offline guessing attacks modelled in terms of static equivalence
and use the framework developed in this paper to show the soundness of an equa-
tional theory including ciphers, symmetric and asymmetric encryption. In [29],
Bana, Mohassel and Stegers argue that the notion of static equivalence is too
coarse and not sound for many interesting equational theories. They introduce
a general notion of formal indistinguishability relation. This highlights that
soundness of static equivalence only holds for a restricted set of well-formed
frames (in the same vein Abadi and Rogaway used restrictions to forbid key
cycles). They illustrate the unsoundness of static equivalence for modular ex-
ponentiation. More recently, Kremer and Mazaré [30] use our framework to
define soundness of static equivalence in the presence of an adaptive, rather
than purely passive, adversary. They show soundness results of static equiva-
lence for an equational theory modelling modular exponentiation (for a class of
well-formed frames, hence not contradicting [29]), as well as symmetric encryp-
tion with composed keys which can be computed using modular exponentiation
or exclusive or.

The active version of static equivalence is the observational equivalence rela-
tion introduced by Milner and Hoare in the early 80s. Intuitively, two processes
are equivalent if an observer cannot tell the difference between the two pro-
cesses. The observer can in particular intercept and send messages to the pro-
cesses. Comon-Lundh and Cortier [31] have recently shown that observational
equivalence between processes in a fragment of the applied pi-calculus [32] im-
plies cryptographic indistinguishability against active attackers, in the context
of symmetric encryption. They use an extended version of soundness of static
equivalence (called tree soundness) as a key step in their proof.

Outline of the paper.. In the next section, we introduce our abstract and con-
crete models together with the notions of indistinguishability. We then define
the notions of soundness and faithfulness and illustrate some consequences of
soundness with respect to static equivalence on groups. In Section 4, we de-
fine the ideal semantics of abstract terms, present our soundness criterion, and
prove it necessary for a large family of equational theories. As an illustration
(Section 5), we prove the soundness for the theories modeling exclusive OR, as
well as ciphers and lists. We then conclude in Section 6. An appendix contains
detailed proofs of formal lemmas related to static equivalence.

2. Modeling cryptographic primitives with abstract algebras

In this section we introduce some notations and set our abstract and concrete
models.
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2.1. Abstract algebras
Our abstract models—called abstract algebras—consist of term algebras de-

fined over a many-sorted first-order signature and equipped with equational
theories.

Specifically, a signature (S,F) is made of a set of sorts S, with elements
denoted by s, s1 . . ., and a set F of symbols, written f , f1 . . ., together with
arities of the form ar(f) = s1 × . . .× sk → s (k ≥ 0). Symbols that take k = 0
arguments are called constants; their arity is simply written s. We fix a set
N of names, written a, b . . ., and a set X of variables x, y . . . We assume that
names and variables are given with sorts, and that an infinite number of names
and variables are available for each sort. The set of terms of sort s is defined
inductively by

T ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(T1, . . . , Tk) application of symbol f ∈ F

where for the last case, we further require that Ti is a term of some sort si

and ar(f) = s1 × . . . × sk → s. We write var(T ) and names(T ) for the set of
variables and names occurring in T , respectively. A term T is ground or closed
iff var(T ) = ∅. We may write var(T1, . . . , Tk) instead of var({T1, . . . , Tk}) and
similarly for names.

A context C is a term with holes, or (more formally) a term with distin-
guished variables. When C is a context with n distinguished variables x1, . . . ,
xn, we may write C[x1, . . . , xn] instead of C in order to show the variables, and
when T1, . . . , Tn are terms we may also write C[T1, . . . , Tn] for the result of
replacing each variable xi with the corresponding term Ti.

Substitutions are written σ = {x1 7→ T1, . . . , xn 7→ Tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-sorted substitutions, that is, substitu-
tions σ = {x1 7→ T1, . . . , xn 7→ Tn} for which xi and Ti have the same sort.
Such a σ is closed iff all of the Ti are closed. We let var(σ) =

⋃
i var(Ti),

names(σ) =
⋃

i names(Ti), and extend the notations var(.) and names(.) to tu-
ples and sets of terms and substitutions in the obvious way. The application
of a substitution σ to a term T is written σ(T ) = Tσ. If p is a position of T ,
the expression T |p denotes the subterm of T at the position p. The expression
T [T ′]p denotes the term obtained after replacing the subterm in position p of T
with T ′.

Symbols in F are intended to model cryptographic primitives, whereas names
in N are used to model secrets, that is, concretely random numbers. The
intended behavior of the primitives is described by an equational theory E,
that is, an equivalence relation on terms (also written =E) compatible with
applications of symbols and well-sorted substitutions:

• for every k-ary symbol f and terms t1, . . . , tk, t′1, . . . , t′k of the appropriate
sorts, ∀i, ti =E t′i implies that f(t1, . . . , fk) =E f(t′1, . . . , f

′
k);
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• for every well-sorted substitution σ and terms t, t′, if t =E t′ then tσ =E

t′σ.

In the sequel we further require that E is stable under (well-sorted) sub-
stitution of names. All the equational theories that we consider in this pa-
per satisfy these properties. For instance, symmetric and deterministic en-
cryption is modeled by the theory Eenc generated by the classical equation
Eenc = {dec(enc(x, y), y) = x}.

A symbol f is free with respect to an equational theory E iff there exists a
set of equations F generating E such that f does not occur in F . A sort s is
degenerated in E iff all terms of sort s are equal modulo E.

It is often useful to orient equations and work with rewriting rules instead of
the equational theory. Formally, a rewriting rule is an expression l→ r where l
and r are two terms of the same sort. Given a set of rewriting rules R (called
rewriting system), we write T →R T ′ if there exists a rule l→ r ∈ R, a position
p and a (well-sorted) substitution σ such that T |p = lσ and T ′ = T [rσ]p. We
write→∗

R for the reflexive and transitive closure of→R, and =R for its reflexive,
symmetric and transitive closure.

Given an equational theory E and a rewriting system R, we write →R/E

for the relation =E→R=E . We define →∗
R/E and =R/E similarly as above. R

is E-terminating iff →R/E admits no infinite sequence of reductions T0 →R/E

T1 →R/E . . . Tn →R/E . . .. It is E-confluent iff for every T →∗
R/E T1 and

T →∗
R/E T2, there exist T ′1 and T ′2 such that T1 →∗

R/E T ′1, T2 →∗
R/E T ′2,

and T ′1 =E T ′2. Finally, R is E-convergent iff it is both E-terminating and
E-confluent. When E is the syntactic equality, this yields the usual notions of
termination, confluence and convergence.

2.2. Frames, deducibility and static equivalence
We use frames [7, 10] to represent sequences of messages observed by an

attacker, for instance during the execution of a protocol. Formally, a (closed)
frame is an expression ϕ = νã.{x1 = T1, . . . , xn = Tn} where ã is a set of bound
(or restricted) names, and for each i, Ti is a closed term of the same sort as xi.

For simplicity, we only consider (closed) frames ϕ = νã.{x1 = T1, . . . , xn =
Tn} which restrict every name in use, that is, for which ã = names(T1, . . . , Tn).
A name a may still be disclosed explicitly by adding a mapping xa = a to the
frame. Thus we tend to assimilate such frames ϕ to their underlying substitutions
σ = {x1 7→ T1, . . . , xn 7→ Tn}.

Definition 1 (Deducibility). A (closed) term T is deducible from a frame ϕ
in an equational theory E, written ϕ `E T , iff there exists a term M such that
var(M) ⊆ dom(ϕ), names(M) ∩ names(ϕ) = ∅, and Mϕ =E T .

In what follows, again for simplicity, we only consider deducibility problems
ϕ `E T such that names(T ) ⊆ names(ϕ).

Consider for instance the theory Eenc and the frame ϕ1 = νk1, k2, k3, k4. {x1 =
enc(k1, k2), x2 = enc(k4, k3), x3 = k3}: the name k4 is deducible from ϕ1 since
dec(x2, x3)ϕ1 =Eenc k4 but neither k1 nor k2 are deducible.
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Deducibility is not always sufficient to account for the knowledge of an at-
tacker. For instance, it lacks partial information on secrets. Indeed, if we
consider a naive vote protocol where agents simply send their vote (0 or 1) en-
crypted under some key, the security problem is not whether an attacker can
learn the values of 0 or 1, but rather whether an attacker can tell the difference
between a message that contains the vote 0 and a message that contains the vote
1. That is why another classical notion in formal methods is static equivalence.

Definition 2 (Static equivalence). Two frames ϕ1 and ϕ2 are statically equiv-
alent in a theory E, written ϕ1 ≈E ϕ2, iff dom(ϕ1) = dom(ϕ2), and for all terms
M and N such that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩names(ϕ1, ϕ2) =
∅, Mϕ1 =E Nϕ1 if and only if Mϕ2 =E Nϕ2.

For instance, the two frames νk. {x = enc(0, k)} and νk. {x = enc(1, k)} are
statically equivalent with respect to Eenc. However the two frames

νk.{x = enc(0, k), y = k} and νk.{x = enc(1, k), y = k}

are not (consider the test dec(x, y) ?
=0), although the set of terms that can be

deduced from both frames is the same (0 and 1 are two constants known by the
attacker).

2.3. Concrete semantics
We now give terms and frames a concrete semantics, parameterized by an

implementation of the primitives. Provided a set of sorts S and a set of symbols
F as above, a (S,F)-computational algebra A consists of

• a non-empty set of bit-strings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S;

• an effective procedure implementing a function [[f ]]A : [[s1]]A×. . .×[[sk]]A →
[[s]]A for each symbol f ∈ F with ar(f) = s1 × . . .× sk → s;

• an effective procedure for deciding a congruence =A,s for each sort s, in
order to check the equality of elements in [[s]]A (the same element may be
represented by different bit-strings); by congruence, we mean a reflexive,
symmetric, transitive relation such that e1 =A,s1 e

′
1, . . . , ek =A,sk

e′k ⇒
[[f ]]A(e1, . . . , ek) =A,s [[f ]]A(e′1, . . . , e

′
k) (in the remaining we often omit s

and write =A for =A,s);

• an effective procedure to draw random elements from [[s]]A; we denote
such a drawing by x

R←− [[s]]A; the drawing may not follow a uniform
distribution, but no =A,s-equivalence class should have probability 0.

Assume a fixed (S,F)-computational algebraA. We associate to each (closed)
frame ϕ = {x1 = T1, . . . , xn = Tn} a distribution ψ = [[ϕ]]A, of which the draw-
ings ψ̂ R←− ψ are computed as follows:

1. for each name a of sort s appearing in T1, . . . , Tn, draw a value â R←− [[s]]A;
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2. for each xi (1 ≤ i ≤ n) of sort si, compute T̂i ∈ [[si]]A recursively on the
structure of terms: ̂f(T ′1, . . . , T ′m) = [[f ]]A(T̂ ′1, . . . , T̂ ′m); using the values â
defined at step 1 for names.

3. return the value ψ̂ = {x1 = T̂1, . . . , xn = T̂n}.

Such values φ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [[.]]A to tuples of closed terms in the natural
way: e1, . . . , en

R←− [[T1, . . . , Tn]]A denotes the drawing

{x1 = e1, . . . , xn = en}
R←− [[{x1 = T1, . . . , xn = Tn}]]A

for appropriate variables x1, . . . , xn. We also generalize the notation to (tu-
ples of) terms with variables, by specifying a concrete value for each of them:
[[.]]A,{x1=e1,...,xn=en}. Notice that when a term or a frame contains no names,
the translation is deterministic; in this case, we use the same notation to denote
the distribution and its unique value.

In the rest of the paper we focus on asymptotic notions of cryptographic
security and consider families of computational algebra (Aη) indexed by a com-
plexity parameter η ≥ 0. (This parameter η might be thought as the size of
keys and other secret values.) The concrete semantics of a frame ϕ is a family
of distributions over concrete frames ([[ϕ]]Aη ). We only consider families of com-
putational algebras (Aη) such that the algebraic operations (i.e. the functions
associated to symbols, the congruence relation =A,s, and the drawing func-
tions) are computable by uniform, probabilistic polynomial-time algorithms in
the complexity parameter η. This ensures that the concrete semantics of every
(fixed) term or frame is efficiently computable (in the same sense).

Families of distributions (ensembles) over concrete frames benefit from the
usual notion of cryptographic indistinguishability. Intuitively, two families of
distributions (ψη) and (ψ′η) are indistinguishable, written (ψη) ≈ (ψ′η), iff no
probabilistic polynomial-time adversary A can guess whether he is given a sam-
ple from ψη or ψ′η with a probability significantly greater than 1

2 . Formally, we
ask the advantage of A,

AdvIND(A, η, ψη, ψ
′
η) = P[ψ̂ R←− ψη : A(η, ψ̂) = 1]− P[ψ̂ R←− ψ′η : A(η, ψ̂) = 1]

to be a negligible function of η. We recall that a function f is said negligible
if for any integer n > 0, there exists η0 such that f(η) ≤ η−n for any η ≥ η0.
(Note that we regard negative functions as negligible here.)

A function f(η) is overwhelming iff 1 − f(η) is negligible. A family of dis-
tributions (ψη) is collision-free (with respect to the family of congruences =Aη )
iff the probability of collision between two random elements from ψη, that is,

P[ e1, e2
R←− ψη : e1 =Aη

e2], is a negligible function of η. Note that, by classical
properties of probability, this is equivalent to requiring that the probability of
sampling any given e0 from ψη (modulo =Aη

) is negligible, that is, the function

supe0
P

[
e

R←− ψη : e =Aη e0

]
is bounded by a negligible function of η.
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By convention, the adversaries considered in this paper are given access
implicitly to the complexity parameter η and to as many fresh random coins as
needed.

3. Comparing abstract and computational algebras

In the previous section we have defined abstract and computational algebras.
We now relate formal notions such as equality, (non-)deducibility and static
equivalence to their computational counterparts, that is, equality, one-wayness
and indistinguishability.

3.1. Soundness and faithfulness
We introduce the notions of sound and faithful computational algebras with

respect to the formal relations studied here: equality, static equivalence and
deducibility.

Let E be an equational theory. A family of computational algebras (Aη) is

• =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2

implies that P[ e1, e2
R←− [[T1, T2]]Aη

: e1 =Aη
e2] is overwhelming;

• =E-faithful iff for every closed terms T1, T2 of the same sort, T1 6=E T2

implies that P[ e1, e2
R←− [[T1, T2]]Aη

: e1 =Aη
e2] is negligible;

• ≈E-sound iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 ≈E ϕ2

implies that ([[ϕ1]]Aη ) ≈ ([[ϕ2]]Aη );

• ≈E-faithful iff for every frames ϕ1, ϕ2 of the same domain, ϕ1 6≈E ϕ2

implies that there exists a polynomial-time adversary A for distinguishing
concrete frames, such that AdvIND(A, η, [[ϕ1]]Aη

, [[ϕ2]]Aη
) is overwhelming;

• 6`E-sound iff for every frame ϕ and closed term T such that names(T ) ⊆
names(ϕ), ϕ 6`E T implies that for each polynomial-time adversary A,
P[φ, e R←− [[ϕ, T ]]Aη : A(φ) =Aη e] is negligible;

• 6`E-faithful iff for every frame ϕ and closed term T such that names(T ) ⊆
names(ϕ), ϕ `E T implies that there exists a polynomial-time adversary
A such that P[φ, e R←− [[ϕ, T ]]Aη : A(φ) =Aη e] is overwhelming.

Sometimes, it is possible to prove stronger notions of soundness that hold
without restriction on the computational power of adversaries. In particular,
(Aη) is

• unconditionally =E-sound iff for every closed terms T1, T2 of the same
sort, T1 =E T2 implies that P[ e1, e2

R←− [[T1, T2]]Aη
: e1 =Aη

e2] = 1;

• unconditionally ≈E-sound iff for every frames ϕ1, ϕ2 with the same do-
main, ϕ1 ≈E ϕ2 implies ([[ϕ1]]Aη ) = ([[ϕ2]]Aη );
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• unconditionally 6`E-sound iff for every frame ϕ and closed term T such
that names(T ) ⊆ names(ϕ) and ϕ 6`E T , the drawings for ϕ and T

are independent: for all φ0, e0, P[φ0, e0
R←− [[ϕ, T ]]Aη ] = P[φ0

R←− [[ϕ]]Aη ] ×
P[e0

R←− [[T ]]Aη ], and the drawing ( R←− [[T ]]Aη ) is collision-free.

The fact that the first two unconditional notions are stronger than their com-
putational counterparts is clear from the definitions. As for the unconditional
6`E-soundness, observe that if the drawings for ϕ and T are independent, and
the drawing ( R←− [[T ]]Aη

) is collision-free, then any adversary A has negligible
probability of retrieving the value of T :

P[φ, e R←− [[ϕ, T ]]Aη : A(φ) =Aη e]

= P[φ R←− [[ϕ]]Aη
, e

R←− [[T ]]Aη
: A(φ) =Aη

e]

≤ sup
e0

P[e R←− [[T ]]Aη
: e =Aη

e0]

Generally, (unconditional) =E-soundness is given by construction. Indeed
true formal equations correspond to the expected behavior of primitives and
should hold in the concrete world with overwhelming probability. The other
criteria are however more difficult to fulfill. Therefore it is often interesting to
restrict frames to well-formed ones in order to achieve soundness or faithfulness:
for instance Abadi and Rogaway [4] do forbid encryption cycles (see Section 5.2).

It is worth noting that the notions of soundness and faithfulness introduced
above are not independent.

Proposition 1. Let (Aη) be a =E-sound family of computational algebras. Then

1. (Aη) is 6`E-faithful;

2. if (Aη) is also =E-faithful, (Aη) is ≈E-faithful.

Proof.

1. Suppose names(T ) ⊆ names(ϕ) and ϕ `E T , that is, there exists M such
that var(M) ⊆ dom(ϕ), names(M) ∩ names(ϕ) = ∅, and Mϕ =E T . We
define an adversary A which can deduce [[T ]] from [[ϕ]] as follows: given
the concrete frame φ = {xi = ei}, A returns a sample e R←− [[M ]]Aη,φ.
As (Aη)η≥0 is =E-sound and names(T ) ⊆ names(ϕ), A’s probability of
success is greater than 1 minus a negligible function.

2. Suppose ϕ1 6≈E ϕ2: there exist two termsM andN such that var(M,N) ⊆
dom(ϕ1), names(M,N) ∩ names(ϕ1, ϕ2) = ∅, and for instance Mϕ1 =E

Nϕ1 whereas Mϕ2 6=E Nϕ2. Let A be the adversary that tests, given η
and φ, whether [[M ]]Aη,φ =Aη [[N ]]Aη,φ, and returns the result of the test.
A runs in polynomial-time and by =E-soundness and =E-faithfulness, its
advantage is 1 minus a negligible function. �
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For many theories, we have that ≈E-soundness implies all the other notions
of soundness and faithfulness. This emphasizes the importance of ≈E-soundness
and provides an additional motivation for its study. As an illustration, let us
consider an arbitrary theory which includes keyed hash functions.

Proposition 2. Let (Aη) be a family of ≈E-sound computational algebras. As-
sume that free binary symbols hs : s × Key → Hash are available for every
sort s, where the sort Key is not degenerated in E, and the drawing of random
elements for the sort Hash, ( R←− [[Hash]]Aη ), is collision-free. Then

1. (Aη) is =E-faithful;

2. (Aη) is 6`E-sound;

3. Assume the implementations for the symbols hs are collision-resistant, that
is, assume that for all T1, T2 of sort s, given a fresh name k of sort Key,
the quantity

P
[
e1, e2, e

′
1, e

′
2

R←− [[T1, T2, hs(T1, k), hs(T2, k)]]Aη : e1 6=Aη e2, e
′
1 =Aη e

′
2

]
is negligible. Then (Aη) is =E-sound, 6`E-faithful and ≈E-faithful.

Proof.

1. Let T1, T2 be two terms of sort s such that T1 6=E T2. Consider the frame
ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)} where k is a fresh name of sort
Key . As T1 6=E T2 and hs is free, we have ϕ ≈E {x1 = n, x2 = n′}
where n, n′ are two distinct fresh names of sort Hash (Proposition 17 of
Appendix A). By assumption, this entails [[ϕ]] ≈ [[{x1 = n, x2 = n′}]]. In
particular, since ( R←− [[Hash]]Aη

) is collision-free, the quantity

P
[
e1, e2

R←− [[T1, T2]]Aη : e1 =Aη e2

]
≤ P

[
e′1, e

′
2

R←− [[hs(T1, k), hs(T2, k)]]Aη : e′1 =Aη e
′
2

]
is negligible.

2. Let ϕ be a frame and T a closed term of sort s such that names(T ) ⊆
names(ϕ) and ϕ 6`E T . We let ϕ0 = ϕ ∪ {x = hs(T, k), y = k} and
ϕ1 = ϕ∪{x = n, y = k} where x, y are fresh variables, k is a fresh name of
sort Key , n is a fresh name of sort Hash. As ϕ 6`E T , we have ϕ0 ≈E ϕ1

(Proposition 18 of Appendix A). Thus by assumption, [[ϕ0]] ≈ [[ϕ1]].

By contradiction, suppose that there exists a polynomial-time adversary
A able to deduce [[T ]] from [[ϕ]] concretely with non-negligible probability
of success. We build an adversary B that distinguishes between [[ϕ0]] and
[[ϕ1]] as follows: let φ be the sample from [[ϕb]]η to be analyzed, where
b ∈ {0, 1}. Let T̂ be the answer of A when given the restriction of φ

12



to dom(ϕ). B returns 0 if xφ =Aη [[hs]]Aη (T̂ , yφ), and 1 otherwise. By
definition, the advantage of B is

P[φ R←− [[ϕ0]]η : B(η, φ) = 0]− P[φ R←− [[ϕ1]]η : B(η, φ) = 0]

= P[φ R←− [[ϕ0]]η; T̂ R←− A(φ|dom(ϕ)) : xφ =Aη [[hs]]Aη (T̂ , yφ)]

− P[φ R←− [[ϕ1]]η; T̂ R←− A(φ|dom(ϕ)) : xφ =Aη [[hs]]Aη (T̂ , yφ)]

≥ P[φ, e R←− [[ϕ0, T ]]η; T̂ R←− A(φ|dom(ϕ)) : T̂ = e)]

− P[φ R←− [[ϕ1]]η; T̂ R←− A(φ|dom(ϕ)) : xφ =Aη [[hs]]Aη (T̂ , yφ)]

In the last probability expression, observe that xφ is drawn from the dis-
tribution ( R←− [[Hash]]Aη

) independently from T̂ and yφ. Hence, as the

distribution ( R←− [[Hash]]Aη ) is collision-free, the advantage of B is non-
negligible; contradiction.

3. Let T1 and T2 be two terms of sort s such that T1 =E T2. Consider the
same frame as before: ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)}. As T1 =E T2

and hs is free, we have ϕ ≈E {x1 = n, x2 = n} where n is a fresh name
of sort Hash (Proposition 19 of Appendix A). By assumption this entails
that [[ϕ]] ≈ [[{x1 = n, x2 = n}]] thus

P
[
e′1, e

′
2

R←− [[hs(T1, k), hs(T2, k)]]Aη : e′1 =Aη e
′
2

]
≥ 1− εη

where εη is a negligible function. As the implementation of hs is collision-
resistant, we deduce that

P
[
e1, e2

R←− [[T1, T2]]Aη : e1 6=Aη e2

]
is negligible. Other properties follow from Proposition 1. �

3.2. ≈E-soundness implies classical assumptions on groups
In this section we present some interesting consequences of ≈E-soundness.

Inspired by the work of Hohenberger and Rivest on pseudo-freeness [33, 34], we
prove that several standard cryptographic assumptions on groups are implied
by the soundness of static equivalence. We concentrate on abelian groups as
these are more relevant for cryptographic applications. We believe that similar
techniques would apply for non-commutative groups as well.

We model an abelian group G with exponents taken over a commutative
ring A by an abstract algebra over the following signature:

∗ : G×G→ G
1G : G
+ : A×A→ A
0 : A

− : A→ A
· : A×A→ A

1A : A
exp : G×A→ G

13



We use the infix notation for the operators ∗, ·, +, and write ga to denote
exp(g, a). Note that the inverse operation on G is represented here by g 7→
exp(g,−(1A)) = g−(1A). We consider the equational theory EG generated by the
following equations (where x, y, z are variables of sort G, and u, v, w variables
of sort A):

u+ v = v + u
u+ (v + w) = (u+ v) + w

u+ 0A = u
u+ (−u) = 0A

u · v = v · u
u · (v · w) = (u · v) · w

u · 1A = u
(u+ v) · w = u · w + v · w

x ∗ y = y ∗ x
x ∗ (y ∗ z) = (x ∗ y) ∗ z

x ∗ 1G = x

(xu)v = x(u·v)

xu ∗ xv = xu+v

x1A = x
x0A = 1G

(x ∗ y)u = xu ∗ yu

We now recall several classical problems on groups. For cryptographic ap-
plications, it is desirable that these problems be hard, that is, not feasible by
any probabilistic polynomial-time adversary:

• discrete logarithm (DL) problem: given g and g′, find a, such that ga = g′;

• computational Diffie-Hellman (CDH) problem: given g, ga and gb, find
gab;

• decisional Diffie-Hellman (DDH) problem: given g, ga and gb, distinguish
gab from a random element gc;

• RSA problem: given elements a and ga, find g.

A more detailed presentation of these hard problems can be found in [35].
Assume a family of computational algebras (Aη) over the signature above

such that (Aη) is ≈EG
-sound, at least for some subset of well-formed frames

WF . Consider the two frames

ϕ1 = νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = ga·b} and
ϕ2 = νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}.

and assume that ϕ1, ϕ2 ∈ WF . Then no probabilistic polynomial-time adver-
sary A can solve the DDH problem in (Aη) with non-negligible probability.

Indeed, as suggested in [7], the question of (computationally) distinguishing
these two frames exactly encodes the DDH problem. Given the equational the-
ory EG, we prove the formal equivalence ϕ1 ≈EG

ϕ2 (Lemma 21 of Appendix B).
Thus, by ≈EG

-soundness, the DDH problem is hard in (Aη).
Clearly, if one can solve the DL problem, one can also solve the CDH prob-

lem, which itself allows us to solve the DDH problem. Therefore, the hardness
of DDH implies the hardness of the two other problems.

In a similar way, we see that ≈EG
-soundness on an augmented signature

implies the hardness of RSA. Instead of directly encoding the RSA problem,
we introduce a slightly weaker decision problem, whose hardness implies the

14



hardness of RSA. The encoding of this problem requires the extension of the
signature by a unary function symbol h : G→ Hash, adding no equation to the
theory. Consider the two frames

ϕ3 = νg, a.{x1 = ga, x2 = a, x3 = h(g)} and
ϕ4 = νg, a, h.{x1 = ga, x2 = a, x3 = h}.

We prove that ϕ3 ≈EG
ϕ4 in Lemma 22 of Appendix B. As above, if an im-

plementation (Aη) is ≈EG
-sound of for some subset of well-formed frames WF

including ϕ3 and ϕ4, then the RSA problem cannot be efficiently solved in (Aη).
Indeed, any adversary A to the RSA-problem can be turned to an (equally effi-
cient) adversary against ([[ϕ3]]Aη

) ≈ ([[ϕ4]]Aη
) simply as follows: given a sample

{x1 = e1, x2 = e2, x3 = e3} from either side, let e be the result of A applied on
η, e1 and e2; return 1 (“left-hand side”) if [[h]]Aη (e) equals to e3, 0 otherwise.

An interesting open question is whether ≈EG
-soundness implies or is implied

by Rivest’s notion of pseudo-free groups [34], or equivalently [36], the strong
RSA property. We conjecture that the two notions are in fact incomparable.
Indeed, on the one hand, our notion implies the hardness of DDH, which remains
an open question for strong RSA. On the other hand, pseudo-freeness and strong
RSA deal with a form of adaptive attackers while our model is purely non-
adaptive.

4. A sufficient (and often necessary) criterion for ≈E-soundness

We now present useful results for proving ≈E-soundness properties in gen-
eral. Notably, we provide a sufficient criterion for ≈E-soundness in Section 4.1
and prove it necessary under additional assumptions in Section 4.2.

4.1. Ideal semantics and ≈E-soundness criterion
Given an implementation of the primitives, we have defined in Section 2.3

the concrete semantics [[ϕ]]Aη associated to every frame ϕ . We now define the
ideal semantics of a frame ϕ, intuitively as the conditional distribution over
all the concrete values (in the appropriate space) that pass every formal test
satisfied by ϕ.

Specifically, for every frame ϕ, we define the tests of ϕ to be

test(ϕ) = {(M,N) | var(M,N) ⊆ dom(ϕ), names(M,N) ∩ names(ϕ) = ∅}.

We let eqE(ϕ) be the set of tests that are true in ϕ:

eqE(ϕ) = {(M,N) ∈ test(ϕ) |Mϕ =E Nϕ}

Note that, by definition, ϕ ≈E ϕ′ iff eqE(ϕ) ∩ test(ϕ′) = eqE(ϕ′) ∩ test(ϕ).
Let (Aη) be a family of computational algebras, ϕ = {x1 = T1, . . . , xn = Tn}

be a frame, and si be the sort of xi. We define the set of eligible, well-formed
values for ϕ by

ValAη (ϕ) =
{
{x1 = e1, . . . , xn = en} | (e1, . . . , en) ∈ [[s1]]Aη × · · · × [[sn]]Aη

}
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and write φ R←− [[ϕ]]valAη
for the process of drawing a random value φ = {x1 =

e1, . . . , xn = en} from ValAη
(ϕ) using the drawings ei

R←− [[si]]Aη
in the natural

way.
Consider the following subset of concrete frames, intuitively, that pass all

the valid tests of ϕ:

Val′Aη
(ϕ) =

{
φ ∈ ValAη (ϕ) | ∀(M,N) ∈ eqE(ϕ),

P
[
u, v

R←− [[M,N ]]Aη,{x1=e1,...,xn=en} : u = v
]

= 1
}

Note that, provided that (Aη) is unconditionally =E-sound, Val′Aη
(ϕ) is non-

empty as it contains at least the values given by the usual semantics of ϕ.

Definition 3 (Ideal semantics). Let (Aη) be an unconditionally =E-sound
family of computational algebras and ϕ be a frame. The ideal semantics of ϕ
is the family of the distributions [[ϕ]]ideal

Aη
obtained by conditionning each distri-

bution [[ϕ]]valAη
to the set of values Val′Aη

(ϕ). In other words, the probability to
draw φ ∈ ValAη

(ϕ) is

P[φ← [[ϕ]]ideal
Aη

] =

{
0 if φ 6∈ Val′Aη

(ϕ)
1
V P[φ R←− [[ϕ]]valAη

] otherwise

where V = P[φ0
R←− [[ϕ]]valAη

: φ0 ∈ Val′(ϕ)].

We say that (Aη) has uniform distributions if and only if for every η and
every sort s, [[s]]Aη is a finite set, =Aη,s is the usual equality, and the distribution
associated to s by Aη is the uniform one over [[s]]Aη .

By classical property of conditional probabilities, we note that in the case of
uniform distributions, the ideal semantics of a frame ϕ coincides with the family
of uniform distributions over the (finite, non-empty) sets Val′Aη

(ϕ).
For instance, let ϕ = νn1, n2.{x1 = n1, x2 = n2} with n1 and n2 of sort s.

Then, given that E is stable by substitution of names, we have that eqE(ϕ) =
{(M,N) ∈ test(ϕ) | M =E N}. By unconditional =E-soundness, we deduce
that [[ϕ]]ideal

Aη
is simply the uniform distribution over [[s]]Aη × [[s]]Aη .

We now state our ≈E-soundness criterion: intuitively, the two semantics,
concrete and ideal, should be indistinguishable.

Proposition 3 (≈E-soundness criterion). Let (Aη) be an unconditionally
=E-sound family of computational algebras. Assume that for every frame ϕ
it holds that ([[ϕ]]Aη ) ≈ ([[ϕ]]ideal

Aη
). Then (Aη) is ≈E-sound.

Proof. Let ϕ1 ≈E ϕ2. The equality eqE(ϕ1) ∩ test(ϕ2) = eqE(ϕ2) ∩ test(ϕ1)
entails Val′Aη

(ϕ1) = Val′Aη
(ϕ2), thus the distributions [[ϕ1]]ideal

Aη
and [[ϕ2]]ideal

Aη
are

equal. We use the transitivity of the indistinguishability relation ≈ to conclude:
([[ϕ1]]Aη

) ≈ ([[ϕ1]]ideal
Aη

) = ([[ϕ2]]ideal
Aη

) ≈ ([[ϕ2]]Aη
). �
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4.2. Transparent frames
In this section we show that our soundness criterion is necessary for a general

class of equational theories, called transparent theories. In those theories, each
frame can be associated to an equivalent transparent frame (defined below),
which is easier to analyze.

Definition 4 (Transparent frames). A frame ϕ is transparent for an equa-
tional theory E if each of its subterms is deducible from ϕ in E.

Example 1. In the theory Eenc, the frame ϕ1 = {x1 = enc(enc(k4, k3), k1), x2 =
enc(k1, k2), x3 = k2} is not transparent, as neither k3 nor k4 are deducible, but
the frame ϕ1 = {x1 = enc(n1, k1), x2 = enc(k1, k2), x3 = k2} is.

The following proposition finitely characterizes the equations verified by a
transparent frame.

Proposition 4. Let ϕ be a transparent frame for E. Then, ϕ is of the form

ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]}

where C1, . . . , Cn are (not necessarily linear) contexts such that names(C1, . . . , Cn) =
∅, C1[a1, . . . , am], . . . , Cn[a1, . . . , am] are closed and, a1, . . . , am are distinct de-
ducible names: ϕ `E ai.

For each ai, let Mai be a term such that var(Mai) ⊆ {x1, . . . , xn}, names(Mai)∩
names(ϕ) = ∅ and Maiϕ =E ai. Then every equation which holds in ϕ is a log-
ical consequence of E and the equations xj = Cj [Ma1 , . . . ,Mam ], written

E ∪ {xj = Cj [Ma1 , . . . ,Mam
] | 1 ≤ j ≤ n} |= eqE(ϕ).

By logical consequence, we refer to the usual first-order theory of equality, where
the variables x1, . . . , xn are considered here as constants.

Proof. Let (M,N) ∈ eqE(ϕ). By definition, we have Mϕ =E Nϕ, that is,
M{xj 7→ Cj [a1, . . . , am]}1≤j≤n =E N{xj 7→ Cj [a1, . . . , am]}1≤j≤n. Since E is
stable by substitution of names, we obtain

M{xj 7→ Cj [Ma1 , . . . ,Mam
]}1≤j≤n =E N{xj 7→ Cj [Ma1 , . . . ,Mam

]}1≤j≤n.

Using the equalities xj = Cj [Ma1 , . . . ,Mam ] and by transitivity, we obtain {xj =
Cj [Ma1 , . . . ,Mam ] | 1 ≤ j ≤ n} ∪ E |= M = N . �

Another nice and useful property of transparent frames is that their concrete
and ideal semantics coincide.

Proposition 5. Let (Aη) be an unconditionally =E-sound family of computa-
tional algebras, having uniform distributions. Let ϕ be a transparent frame. The
concrete and the ideal semantics of ϕ yield the same family of distributions: for
all η, [[ϕ]]Aη = [[ϕ]]ideal

Aη
.
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Proof. Let ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]}, withMiϕ =E

ai (1 ≤ i ≤ m) as above. Let si be the sort of ai, s′j be the sort of xj and η a
given complexity parameter.

The usual concrete semantics of ϕ consists in mapping every drawing of
names from the set E = [[s1]]Aη × · · · × [[sm]]Aη to a value in F = ValAη (ϕ). Let
us note α : E → F this function, defined by:

α(e1, . . . , em) =
{
x1 = [[C1[y1, . . . , ym]]]{y1=e1,...,ym=em}, . . . ,

xn = [[Cn[y1, . . . , ym]]]{y1=e1,...,ym=em}

}
where the yi are fresh variables respectively of sort si, and we omit the subscript
Aη for sake of clarity.

Using the Mi, we can also define a function β : F → E :

β(φ) =
(
[[M1]]φ, . . . , [[Mm]]φ

)
We note that the distribution of [[Miϕ]] equals to that of [[Mi]]φ where φ R←−

[[ϕ]], or equivalently, of [[Mi]]α(e1,...,en) where (e1, . . . , en) R←− E . As Miϕ =E ai,
(Aη) is unconditionally =E-sound, and no element of E has probability 0, we
obtain that β ◦α = I dE . Thus α is injective and yields a bijection from E to its
image G = α(E). By assumption, E is equipped with the uniform distribution,
therefore the concrete semantics of ϕ is the uniform distribution on G.

Moreover G satisfies:

G = {φ ∈ F | α(β(φ)) = φ}

=
{
φ ∈ F | ∀j, [[Cj [y1, . . . , ym]]]{y1=[[M1]]φ,...,ym=[[Mi]]φ}

= [[xj ]]φ
}

=
{
φ ∈ F | ∀j, [[Cj [M1, . . . ,Mm]]]φ = [[xj ]]φ

}
As ϕ is transparent, by Proposition 4, eqE(ϕ) is implied by the equations
Cj [M1, . . . ,Mm] = xj and E. By unconditional =E-soundness, we deduce that
the values in G pass all the tests in eqE(ϕ); in other words, G ⊆ Val′Aη

(ϕ).
Conversely, every element of Val′Aη

(ϕ) is trivially in G; therefore G = Val′Aη
(ϕ).

Since F is equipped with uniform distribution, we obtain that the ideal seman-
tics of ϕ coincides with the uniform distribution on G, and therefore with its
concrete semantics. �

A noticeable consequence of Proposition 5 is that, in the case of uniform
distributions, two statically-equivalent transparent frames are always indistin-
guishable. (The argument is similar to that of Proposition 3.) This motivates
the following definition, for the purpose of studying ≈E-soundness or a converse
to Proposition 3.

Definition 5. An equational theory E is transparent if and only if for every
frame ϕ, there exists a (not necessarily unique) transparent frame ϕ such that
ϕ ≈E ϕ.
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Transparent frames and theories are related to the notion of patterns intro-
duced by Abadi and Rogaway [4] and used in subsequent work [13, 12] so as
to define computationally sound formal equivalences. There, messages are first
mapped to patterns by replacing non-deducible subterms with boxes �. By
definition, two messages are then equivalent if and only if they yield the same
pattern (up to renaming of names). For example, if {M}K denotes the proba-
bilistic encryption of M by a key K, the message ({{K4}K3}K1 , {K1}K2 , K2) is
mapped to the pattern ({�}K1 , {K1}K2 , K2). (Compare with example 1 where
we have ϕ1 ≈Eenc ϕ1.)

However, the notion of transparent frames is defined for any equational the-
ory. Also, it might be the case that a frame corresponds to several transparent
frames. For example, consider the theory of the exclusive OR (given in Sec-
tion 5.1) and the frame:

ϕ = {x1 = n1 ⊕ n2, x2 = n2 ⊕ n3, x3 = n1 ⊕ n3}.

There are several transparent frames equivalent to ϕ, for instance {x1 = n1 ⊕
n2, x2 = n1, x3 = n2}, {x1 = n1, x2 = n1 ⊕ n2, x3 = n2} and {x1 = n1, x2 =
n2, x3 = n1 ⊕ n2}.

We believe that the notion of transparent frames is relevant in many theories
useful in cryptography. As a matter of fact, the two theories of exclusive OR
and ciphers considered in Section 5 are transparent. However, the notion of
transparent frames does not subsume that of patterns, defined by Abadi and
Rogaway. In particular, for the theory of probabilistic symmetric encryption,
that is,

Esenc = {sdec(senc(x, y, z), y) = x, sdec success(senc(x, y, z), y) = ok},

it is unclear how to associate an equivalent transparent frame to the frame
νn, k, r.{x = senc(n, k, r), y = k}, although it is arguably a pattern in the sense
of Abadi and Rogaway (once cast into our syntax). The reason is that the
random coin r is not deducible, but the term senc(n, k, r) cannot be replaced
with a fresh name because of the visible equation sdec success(x, y) = ok. We
might exclude r from being a subterm by modifying the notion of subterms (for
example, in Abadi and Rogaway’s work, the random factor does not appear
explicitely in terms). However, this would undermine the properties of trans-
parent frames mentioned above. Thus, we regard the notions of patterns and
transparent frames as complementary.

Note that we have proved en passant that ≈E is decidable for transparent
theories E for which =E is decidable, provided that the reduction to equiva-
lent transparent frames is effective. Indeed, given two frames ϕ1 and ϕ2, we
associate to each of them one of its statically equivalent transparent frame ϕ1

and ϕ2, respectively. It is then straightforward to check whether ϕ1 and ϕ2 are
equivalent using the finite characterization of eqE(ϕi) by Proposition 4.

Finally, we establish a completeness result for our soundness criterion in the
cases of transparent theories.
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Theorem 6. Assume a transparent theory E. Let (Aη) be a family of com-
putational algebras such that (Aη) has uniform distributions, is ≈E-sound and
unconditionally =E-sound. Then the soundness criterion of Proposition 3 is
satisfied: for every frame ϕ, ([[ϕ]]Aη ) ≈ ([[ϕ]]ideal

Aη
).

Proof. Since E is transparent, there exists a transparent frame ϕ such that
ϕ ≈E ϕ. By ≈E-soundness, we deduce ([[ϕ]]Aη ) ≈ ([[ϕ]]Aη ). By Proposition 5,
we have that ([[ϕ]]Aη ) = ([[ϕ]]ideal

Aη
). Altogether, we conclude that ([[ϕ]]Aη ) ≈

([[ϕ]]ideal
Aη

) since ϕ ≈E ϕ implies ([[ϕ]]ideal
Aη

) = ([[ϕ]]ideal
Aη

) as before. �

5. Examples

We now apply the framework of Sections 3 and 4 to establish two ≈E-
soundness results, concerning the theory of exclusive OR and that of ciphers
and lists.

5.1. Exclusive OR
We study the soundness and faithfulness problems for the natural theory

and implementation of the exclusive OR (XOR), together with constants and
(pure) random numbers.

The formal model consists of a single sort Data, an infinite number of names,
the infix symbol ⊕ : Data ×Data → Data and two constants 0, 1 : Data. Terms
are equipped with the equational theory E⊕ generated by:

(x⊕ y)⊕ z = x⊕ (y ⊕ z)
x⊕ y = y ⊕ x

x⊕ x = 0
x⊕ 0 = x

As an implementation, we define the computational algebras Aη, η ≥ 0:

• the concrete domain [[Data]]Aη is the set of bit-strings of length η, {0, 1}η,
equipped with the uniform distribution;

• ⊕ is interpreted by the usual XOR function over {0, 1}η;

• [[0]]Aη
= 0η and [[1]]Aη

= 1η.

In this setting, statically equivalent frames enjoy an algebraic characteri-
zation. Let AC be the equational theory corresponding to the two left-hand
equations for associativity and commutativity. We use the other two equations
as a rewriting system R⊕

x⊕ x → 0
x⊕ 0 → x

where we allow arbitrary AC-manipulations before and after each rewriting
step. It is easy to show that R⊕ is AC-convergent. Specifically, a term T is
in R⊕/AC-normal form (or simply normal form in the following) if and only if
each name, variable and constant 1 occur at most once in T , and 0 does not
occur in T unless T = 0.
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Let a1, . . . , an be distinct names. Using the rewriting system R⊕/AC,
every closed term T with names(T ) ⊆ {a1, . . . , an} can be written T =E⊕

β0 ⊕
⊕n

j=1 βj aj where βj ∈ {0, 1}, the aj are mutually distinct, and we use
the convention 0aj = 0 and 1aj = aj . In the following, we see {0, 1} as the
two-element field F2; thus terms modulo =E⊕ form a F2-vector space.

Similarly a frame ϕ with names(ϕ) ⊆ {a1, . . . , an} is written

ϕ =E⊕

x1 = α1,0 ⊕
n⊕

j=1

α1,j aj , . . . , xm = αm,0 ⊕
n⊕

j=1

αm,j aj


where αi,j ∈ F2. Let us group the coefficients into a (m + 1) × (n + 1)-matrix
α = (αi,j) over F2. Then, ϕ is described by the formal relation

1
x1

...
xm

 =


1 0 . . . 0
α1,0 α1,1 . . . α1,n

...
...

αm,0 αm,1 . . . αm,n


︸ ︷︷ ︸

α

·


1
a1

...
an



We now characterize the set eqE⊕
(ϕ) of equations valid in ϕ. Let M and

N be two terms such that var(M,N) ⊆ dom(φ),names(M,N) ∩ names(ϕ) = ∅.
First note that Mϕ =E⊕ Nϕ if and only if (M ⊕ N)ϕ =E⊕ 0. Therefore we
only study the case where N = 0.

Assume M in normal form. Mϕ =E⊕ 0 and names(M) ∩ names(ϕ) = ∅
implies names(M) = ∅. Let M =AC β0⊕

⊕m
i=1 βi xi. The condition Mϕ =E⊕ 0

is equivalent to the vectorial equation

(β0, . . . , βm) · α = 0

that is, (β0, . . . , βm) belongs to the co-kernel of α, noted coker(α).
Finally let ϕ and ϕ′ be two frames with names(ϕ,ϕ′) ⊆ {a1, . . . , an} and

dom(ϕ) = dom(ϕ′) = {x1, . . . , xm}. Let α and α′ be the two corresponding
(m+ 1)× (n+ 1)-matrices defined as above. From the previous discussion, we
deduce that

ϕ ≈E⊕ ϕ′ ⇔ coker(α) = coker(α′)

that is, if we write im(α) = {α · γ} the image of α, we have by duality

ϕ ≈E⊕ ϕ′ ⇔ im(α) = im(α′). (1)

This characterization is the key point of our main result for the theory of
XOR.

Theorem 7. The implementation of XOR for the considered signature, (Aη),
is unconditionally =E⊕-, ≈E⊕- and 6`E⊕-sound. It is also =E⊕-, ≈E⊕- and
6`E⊕-faithful.
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Proof. The unconditional =E⊕ -soundness is clear, hence the 6`E⊕ -faithfulness
(Proposition 1).

Let us show that (Aη) is =E⊕ -faithful. Assume that T1 and T2 are two terms
such that T1 6=E⊕ T2. This is equivalent to T1 ⊕ T2 6=E⊕ 0. Thus it is sufficient
to consider the case where T 6= 0 is a closed term in normal form. The semantics
of T is either the constant 1η (if T = 1) or the uniform distribution (if T 6= 1)
on {0, 1}η. Thus P

[
[[T ]]Aη = 0

]
is negligible. Hence the =E⊕ -faithfulness holds

and by proposition 1, so does the ≈E⊕ -faithfulness.
We now address the unconditional ≈E⊕ -soundness. Let ϕ be a frame, and

α = (αi,j) its (m + 1) × (n + 1)-matrix associated as before. Let us see α as a
F2-linear function from (F2)n+1 to (F2)m+1.

For simplicity, let us fix the order of variables in dom(ϕ) and assimilate the
possible concrete values of ϕ, ValAη

(ϕ), to the set F = {1η}× (F2)mη where the
first η 1-bits are added for technical reasons.

The usual concrete semantics of ϕ consists in drawing a random vector uni-
formly from E = {1η} × (F2)nη for the value of names, and then applying a
F2-linear function α̂ : (F2)(n+1)η → (F2)(m+1)η to it. Specifically, if we see
(F2)(n+1)η as F2

η × . . .× F2
η︸ ︷︷ ︸

n+1

and similarly for (F2)(m+1)η, the function α̂ is

defined by

α̂ (f0, . . . , fn) =

 n⊕
j=0

α0,j fj , . . . ,

n⊕
j=0

αm,j fj


Since α̂ is linear, all the inverse images α̂−1({x}), x ∈ im(α̂), have the same

cardinal. Hence, the concrete semantics of ϕ is also the uniform distribution
over α̂(E) = im(α̂) ∩ F .

Assume a second frame ϕ′ such that ϕ ≈E⊕ ϕ′. Define α′ and α̂′ similarly
as above. By equation 1, we have im(α) = im(α′).

Now, if we see (F2)(m+1)η as F2
m+1 × . . .× F2

m+1︸ ︷︷ ︸
η

, we may write α̂ =

α× . . .× α︸ ︷︷ ︸
η

and similarly for α′. Thus,

im(α̂) = im(α)× . . .× im(α)︸ ︷︷ ︸
η

= im(α′)× . . .× im(α′)︸ ︷︷ ︸
η

= im(α̂′)

which implies that ϕ and ϕ′ have the same concrete semantics. Thus E⊕ is
unconditionally ≈E⊕ -sound.

Last, we prove the unconditional 6`E⊕ -soundness. Let ϕ be a frame and T
a term, both in normal form, such that ϕ 6`E⊕ T and names(T ) ⊆ names(ϕ) =
{a1, . . . , an}. Let α be associated to ϕ as before and T =AC β0 ⊕

⊕n
j=1 βj aj .

Let γ be the (m+ 2)× (n+ 1)-matrix obtained by augmenting α with a last
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row equal to β = (β0, . . . , βn):

γ =


1 0 . . . 0
α1,0 α1,1 . . . α1,n

...
...

αm,0 αm,1 . . . αm,n

β0 β1 . . . βn0


Since ϕ 6`E⊕ T , in particular there exists no M in normal form such that
names(M) = ∅ and Mϕ =E⊕ T . In other words, β is linearly independent from
the other rows in the matrix γ above.

In particular, it is independent from the first row (1, 0, . . . , 0), that is, there
exists j ≥ 1 such that βj 6= 0. We deduce that the distribution ( R←− [[T ]]Aη

) is
the uniform one over {0, 1}η, thus it is collision-free.

As for the first condition of unconditional 6`E-soundness, by a similar rea-
soning as before, we have that the concrete semantics of (ϕ, T ) is the uniform
distribution over the image of E = {1η} × (F2)nη by γ̂ (defined similarly as α̂
above). Let us see β a linear function from (F2)n+1 to F2 and define β̂ as pre-
viously. Next we prove that the image γ̂(E) is the cartesian product of the two
sets α̂(E) and β̂(E). It follows that the drawings for ϕ and T are independent.

The inclusion γ̂(E) ⊆ α̂(E) × β̂(E) is trivial. As β is independent from the
rows of α, there exists a vector u ∈ (F2)n+1 such that β(u) = 1 and α(u) = 0
(otherwise ker(β) ⊇ ker(α) implies β ∈ coim(β) ⊆ coim(α)). Let x, y ∈ E .
We prove that there exists z ∈ E such that α̂(z) = α̂(x) ∈ (F2)(m+1)η and
β̂(z) = β̂(y) ∈ (F2)η.

Indeed, let us see E as ({1} × (F2)n)η. Using the corresponding bases, let
x = (x1, . . . , xη) and y = (y1, . . . , yη) with xi, yi ∈ {1} × (F2)n. We let zi =
xi + (β(yi)− β(xi)) · u and z = (z1, . . . , zη). Thus, α̂(z) = (α(z1), . . . , α(zη)) =
(α(x1), . . . , α(xη)) = α̂(x) and β̂(z) = (β(z1), . . . , β(zη)) = (β(y1), . . . , β(yη)) =
β̂(y). Besides, α(u) = 0 implies that the first coordinate of u is 0, thus the first
coordinate of each zi is 1, that is, z ∈ E . �

We conclude this section by a proof that the E⊕ is transparent as announced
in Section 4.

Proposition 8. The equational theory E⊕ is transparent.

Proof. Indeed, let ϕ be frame and α be its associated (m+1)× (n+1)-matrix
as before. Let d be the dimension of im(α). There exists a (m + 1) × d sub-
matrix α′ of α such that α′ is injective and im(α′) = im(α) (consider a maximal
independent set of columns of α). As the first column of α is independent from
the others (it starts with a 1 whereas the others start with a 0), we may assume
without loss of generality that the first column of α′ is that of α. (In particular
d ≥ 1.)
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Let a′1 . . . a
′
d−1 be distinct names. We let ϕ′ be the frame associated to α′,

described by the relation 
1
x1

...
xm

 = α′ ·


1
a′1
...

a′d−1

 .

As im(α′) = im(α), we have ϕ′ ≈E⊕ ϕ. Besides, since α′ is injective, there
exists α′′ such that α′′ · α′ is the identity d× d-matrix. This entails that every
a′i is deducible from ϕ′, that is, ϕ′ is transparent. �

5.2. Symmetric, deterministic, length-preserving encryption and lists
We now detail the example of symmetric, deterministic and length-preserving

encryption schemes. Such schemes, also known as pseudo-random permutations
or ciphers [37], are widely used in practice, the most famous examples (for
fixed-length inputs) being DES and AES.

Our formal model consists of a set of sorts S = {Data,List0,List1 . . .Listn . . .},
an infinite number of names for every sort Data and Listn, and the following
symbols (for every n ≥ 0):

encn, decn : Listn ×Data → Listn encryption, decryption
consn : Data × Listn → Listn+1 list constructor
headn : Listn+1 → Data head of a list
tailn : Listn+1 → Listn tail of a list

nil : List0 empty list
0, 1 : Data constants

We consider the equational theory Esym generated by the following equations
(for every n ≥ 0 and for every name a0 of sort List0):

decn(encn(x, y), y) = x
encn(decn(x, y), y) = x
headn(consn(x, y)) = x
tailn(consn(x, y)) = y

consn(headn(x), tailn(x)) = x

enc0(nil, x) = nil
dec0(nil, x) = nil

tail0(x) = nil
a0 = nil

where x, y are variables of the appropriate sorts in each case. The effect of the
last four equations is that the sort List0 is degenerated in Esym, that is, all terms
of sort List0 are equal. When oriented from left to right, the equations above
form a convergent rewriting system written R.

Notice that each term has a unique sort. As the subscripts n of function
symbols are redundant with sorts, we tend to omit them in terms. For instance,
if k, k′ : Data, we may write enc(cons(k, nil), k′) instead of enc1(cons0(k, nil), k′).

The concrete meaning of sorts and symbols is given by the computational
algebras Aη, η > 0, defined as follows:
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• the carrier sets are [[Data]]Aη
= {0, 1}η and [[Listn]]Aη

= {0, 1}nη equipped
with the uniform distribution and the usual equality relation;

• encn, decn are implemented by a cipher for data of size nη and keys of size
η; (we discuss the required cryptographic assumptions later);

• [[nil]]Aη
is the empty bit-string, [[consn]]Aη

is the usual concatenation, [[0]]Aη
=

0η, [[1]]Aη = 1η, [[headn]]Aη returns the η first digits of bit-strings (of size
(n+ 1)η) whereas [[tailn]]Aη returns the last nη digits.

We emphasize that no tags are added to messages. Tags—and in particular tags
under encryption—would be harmful to the ≈Esym-soundness. Indeed we expect
that the formal equivalence νa, b.{x = enc(a, b), y = b} ≈Esym νa, b, c.{x =
enc(a, b), y = c} also holds in the computational world; but this would not be
the case if a is tagged before encryption. In case a was tagged before encryption,
an adversary could use the tag to check the success of decrypting enc(a, b) with
b.

For simplicity we assume without loss of generality that encryption keys
have the same size η as blocks of data. We also assume that keys are generated
according to the uniform distribution.

It is not difficult to prove that the above implementation is unconditionally
=Esym-sound (by induction on the structure of terms and equational proofs), that
is, every true formal equality holds with probability 1 in the concrete world. We
note that the equation encn(decn(x, y), y) = x is satisfied because encryption by
a given key is length-preserving and injective, hence also surjective.

Before studying the≈Esym-soundness, we need to characterize statically equiv-
alent frames. Specifically, we show that this theory is transparent.

Proposition 9. Let ϕ be a closed frame. There exists a transparent frame ϕ
such that ϕ ≈Esym ϕ.

The proof of Proposition 9 relies on the following Lemma 10, that is used
stepwise to rewrite a frame into a transparent frame.

Lemma 10. Let ϕ be a closed frame in R-normal form. Let T be a subterm of
ϕ of the form T = enc(U, V ), T = dec(U, V ), T = head(V ) or, T = tail(V ) and
n a fresh name of the same sort than T . Assume that V is not deducible from
ϕ, that is, ϕ 6`Esym V . Then we have that

ϕ ≈Esym ϕ
′

where ϕ′ = ϕ{T 7→ n} is obtained by replacing every occurrence of T in ϕ
with n.

The proof of Lemma 10 is given in Appendix C. We prove Proposition 9 by
applying this lemma repeatedly on an initial frame ϕ. The procedure terminates
as each rewriting step decreases the total size of non-deducible subterms in the
frame. Besides, the resulting frame ϕ is transparent. Indeed, by contradiction,

25



suppose that ϕ is not transparent; define T as the father of the largest non-
deducible subterm of ϕ; it is easy to see that T is necessarily of the form T =
enc(U, V ), T = dec(U, V ), T = head(V ) or T = tail(V ) with ϕ 6`Esym V ; thus
Lemma 10 applies.

Note that for any subterm W , ϕ 6`Esym W implies ϕ{T 7→ n} 6`Esym W{T 7→
n}. As a consequence, the procedure above yields a unique transparent frame ϕ
(modulo renaming), no matter in which order the subterms T are substituted.

Provided that `Esym is decidable1, the above procedure for associating trans-
parent frames to frames is effective. Thus, as noticed in Section 4.2, we obtain
another proof of the decidability of ≈Esym using Proposition 4. Notice that
statically equivalent transparent frames may not be equal modulo renaming:
consider for instance {x = enc(a, b), y = b} ≈Esym {x = c, y = b}.

We now study the ≈Esym-soundness problem under classical cryptographic
assumptions. Standard assumptions on ciphers include the notions of super
pseudo-random permutation (SPRP) and several notions of indistinguishability
(IND-Pi-Cj, i, j = 0, 1, 2). In particular, IND-P1-C1 denotes the indistinguisha-
bility against lunchtime chosen-plaintext and chosen-ciphertext attacks. These
notions and the relations between them have been studied notably in [37].

Initially, the SPRP and IND-P1-C1 assumptions apply to (block) ciphers
specialized to plaintexts of a given size. Interestingly, this is not sufficient
to imply ≈Esym-soundness for frames which contain plaintexts of heterogeneous
sizes, encrypted under the same key. Thus we introduce a strengthened version
of IND-P1-C1, applying to a collection of ciphers (Eη,n,Dη,n), where η is the
complexity parameter and n ≥ 0 is the number of blocks of size η contained
in plaintexts and ciphertexts. One may note that there exist operation modes
which turn a fixed size block cipher realizing SPRP into a cipher which handles
variable length inputs while preserving SPRP. We refer the reader to [38] for an
example of such a mode and further references.

We define the ω-IND-P1-C1 assumption by considering the following exper-
iment Gη with a 2-stage adversary A = (A1,A2):

• first a key k is randomly chosen from {0, 1}η;

• (Stage 1) A1 is given access to the encryption oracles Eη,n(·, k) and the
decryption oracles Dη,n(·, k); it outputs two plaintexts m0,m1 ∈ {0, 1}n0η

for some n0, and possibly some data d;

• (Stage 2) a random bit b ∈ {0, 1} is drawn; A2 receives the data d, the
challenge ciphertext c = Eη,n0(mb, k) and outputs a bit b′;

• A is successful in Gη iff b = b′ and it has never submitted m0 or m1 to an
encryption oracle, nor c to a decryption oracle.

1A classical characterization of deducibility, entailing its decidability, is detailed in
Lemma 23 of Appendix C.
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Define the advantage of A as

Advω-IND-P1-C1
A (η) = 2× P [A is successful in Gη]− 1 (2)

The ω-IND-P1-C1 assumption holds for (Eη,n,Dη,n) iff the advantage of any
probabilistic polynomial-time adversary is negligible. It holds for the inverse of
the encryption scheme iff it holds for the collection of ciphers (Dη,n, Eη,n).

As in previous work [4, 13, 18, 23], we restrict frames to those with only
atomic keys and no encryption cycles. Specifically, a closed frame ϕ has only
atomic keys if for all subterms encn(u, v) and decn(u, v) of ϕ, v is a name. Given
two (atomic) keys k1 and k2, we say that k1 encrypts k2 in ϕ, written k1 >ϕ k2,
iff there exists a subterm U of ϕ of the form U = encn(T, k1) or U = decn(T, k1)
such that k2 appears in T not used as a key, that is, k2 appears in T at a position
which is not the right-hand argument of a encn′ or a decn′ . An encryption cycle
is a tuple k1 . . . km such that k1 >ϕ . . . >ϕ km >ϕ k1.

The effect of the condition “not used as a key” is to allow considering more
terms as free of encryption cycles, for instance encn(encn(a, k), k). This im-
provement is already suggested in [4].

We now state our ≈Esym-soundness theorem. A closed frame is well-formed
iff its R-normal form has only atomic keys, contains no encryption cycles and
uses no head and tail symbols.

Theorem 11 (≈Esym-soundness). Let ϕ1 and ϕ2 be two well-formed frames of
the same domain. Assume that the concrete implementations for the encryption
and its inverse satisfy both the ω-IND-P1-C1 assumption. If ϕ1 ≈Esym ϕ2 then
([[ϕ1]]Aη ) ≈ ([[ϕ2]]Aη ).

Before proving Theorem 11, we establish a computational counterpart to
Lemma 10.

Lemma 12. Let ϕ be a closed frame in R-normal form, with only atomic keys
and no encryption cycles. Let T be a subterm of ϕ of the form T = enc(U, k)
(respectively T = dec(U, k)), with k name of sort Data, and n a fresh name of
the same sort as T . Assume that

• the only occurrences of k in ϕ are in the positions of an encryption or
decryption key: enc(., k) or dec(., k);

• T itself does not appear under an encryption or a decryption with k;

• the concrete implementations for the encryption and its inverse satisfy
both the ω-IND-P1-C1 assumption.

Then we have that
([[ϕ]]Aη ) ≈ ([[ϕ′]]Aη )

where ϕ′ = ϕ{T 7→ n} is obtained by replacing every occurrence of T in ϕ
with n.
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Notice that the hypothesis of Lemma 12 are stronger than its formal version,
Lemma 10. For instance the encryption key k is required to be atomic; the
first condition on k implies that k is not deducible from ϕ. Also nothing is said
about head and tail symbols.

Proof (of Lemma 12). Before proving the lemma, let us consider the exam-
ple of a well-formed frame ϕ1 = {x1 = enc(T1, k), x2 = enc(T2, k)}, where k
does not appear in T1, T2, and T1 6=Esym T2. This frame is statically equivalent
to ϕ2 = {x1 = n1;x2 = n2}. Our problem here is to prove that [[ϕ1]] and [[ϕ2]]
are actually indistinguishable. It is not hard to see that this will be the case if
and only if the probability that T1 and T2 have the same concrete value is neg-
ligible. A consequence of this phenomenon is intuitively that we need to prove
Lemma 12 and—at least—a limited form of =Esym-faithfulness at the same time.

Formally, let us write |ϕ|e and |T |e for the number of distinct subterms with
head symbols enc or dec, occurring respectively in a frame ϕ and a term T . Let
Pn and Qn be the two properties:

(Pn) Lemma 12 holds provided that |ϕ|e ≤ n :
For every R-normal, closed frame ϕ containing only atomic keys,
no encryption cycles, and such that |ϕ|e ≤ n, for every maximal
subterm T of ϕ of the form T = enc(U, k) or T = dec(U, k), for every
fresh name n of the appriopriate sort, if the only occurrences of k
in ϕ are in key positions (i.e. enc(., k) or dec(., k)), then ([[ϕ]]Aη

) ≈
([[ϕ{T 7→ n}]]Aη ).

(Qn) For all R-normal terms T1, T2 of the same sort such that:
T1, T2 have only atomic keys, the frame ϕ = {x = T1, y = T2}
has no encryption cycles, T1 6= T2 and |ϕ|e ≤ n, the probability
P

[
e1, e2 ← [[T1, T2]]Aη ; e1 = e2

]
is negligible.

We prove Pn and Qn by mutual induction on n, that is, more precisely we
prove the four statements: (S1) P0, (S2) Pn+1 ⇐ Qn, (S3) Q0, (S4) Qn+1 ⇐
(Pn+1 and Qn).

(S1) P0 is vacuously true.
(S2) Pn+1 ⇐ Qn. Let T 0 = encn0(U, k) be a subterm of ϕ, k and n two

names all satisfying the conditions of Lemma 12. (Naturally, the case of T 0 =
decn0(U, k) is similar.) Let ϕ = {x1 = T 0

1 , . . . , xn = T 0
n}.

Provided an adversary A able to distinguish ([[ϕ]]Aη ) and ([[ϕ′]]Aη ), we build
an adversary B against the ω-IND-P1-C1 assumption on encryption, described
as follows:

1. for each name a of sort s appearing in ϕ, draw a value â R←− [[s]]Aη ;

2. draw a value â0
R←− [[s]]Aη

for some fresh name a0 of sort Listn0 ;

3. for each xi (1 ≤ i ≤ n) of sort si, compute T̂ 0
i ∈ [[si]]A recursively as
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follows:

̂encn(T, k) = En(T̂ ) if T 6= U

̂encn0(U, k) = E∗(Û , â0)
̂decn(T, k) = Dn(T̂ )

̂f(T1, . . . , Tn) = [[f ]]Aη (T̂1, . . . , T̂n) in the remaining cases

where we have written En(.) and Dn(.) for the encryption and decryp-
tion oracles of the ω-IND-P1-C1 game, and E∗(Û , â0) for the challenge
ciphertext, obtained after submitting the two plaintexts Û and â0. Since
T 0 = encn0(U, k) is not a subterm of an encryption or a decryption with
k, we may assume that E∗(Û , â0) is computed only once, after every call
to En(.) and Dn(.);

4. submit the concrete frame {x1 = T̂1, . . . , xn = T̂n} to A and return the
same answer.

The distribution computed by B and submitted to A equals either ([[ϕ]]Aη ) or
([[ϕ′]]Aη

) depending on whichever E∗(Û , â0) is the encryption of Û , or respec-
tively, that of â0 (in the latter case E∗(Û , â0) = En0(â0) is simply a random
number). Thus the probability that B guesses the right answer is the same
as A. Now it may happen that B does not meet the second requirement for
winning the ω-IND-P1-C1 game, that is: (i) there exists a subterm encn0(T, k)
such that T 6= U and T̂ ∈ {Û , â0} or (ii) there exists a subterm decn0(T, k) such
that T̂ = E∗(Û , â0).

For (i), the probability that T̂ = â0 is negligible by construction. Moreover,
as T and T 0 = encn0(U, k) are two subterms of ϕ and T 0 is not a subterm of T ,
the frame ϕ′ = {x = T, y = U} has no encryption cycles and |ϕ′|e < |ϕ|e = n+1.
The induction hypothesisQn implies that the probability for T̂ = Û is negligible.

As for (ii), if the challenge ciphertext E∗(Û , â0) is the encryption of its second
argument, that is En0(â0), then the probability for T̂ = E∗(Û , â0) is negligible;
otherwise E∗(Û , â0) = En0(Û). Recall that T 0 = encn0(U, k) is in R-normal
form, thus U 6= decn0(T, k). As T 0 and decn0(T, k) are two subterms of ϕ and
T 0 is not a subterm of decn0(T, k), the frame ϕ′ = {x = U, y = decn0(T, k)} has
no encryption cycles and |ϕ′|e < |ϕ|e = n + 1, hence the induction hypothesis
Qn implies that the probability for T̂ = En0(Û) is negligible.

To simplify the case analysis of (S3) and (S4), it is convenient to introduce
the following lemma:

Lemma 13. Let T1, T2 be two terms of sort Listj. Define for each 1 ≤ i ≤ j,
the i-th projection of a term T of sort Listj, by:

πi(T ) = head(tail(. . . tail︸ ︷︷ ︸
i−1 times

(T )))
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Then (i) T1 =Esym T2 iff for all 1 ≤ i ≤ j, πi(T1) =Esym πi(T2) and moreover
(ii) P

[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
is negligible iff for all 1 ≤ i ≤ j,

P
[
ei
1, e

i
2 ← [[πi(T1) ↓R, πi(T2) ↓R]]Aη ; ei

1 = ei
2

]
is negligible.

(The notation T ↓R stands for the R-normal form of T .)

Thanks to this lemma, it is sufficient to prove (S3) and (S4) for T1 and T2 of
sort Data and in R-normal form. (Indeed notice that if ϕ = {x = T1, y = T2}
has no encryption cycles, then ϕ′ = {x′ = πi(T1) ↓R, y′ = πi(T2) ↓R} has no
encryption cycles and |ϕ′|e ≤ |ϕ|e.)

Given the sorting system and the rewriting rules, a R-reduced term T of
sort Data may only be of the following forms:

1. a constant: 0 or 1,

2. a name of sort Data: T = a,

3. a projection of name of sort Listj : T = πi(a) (1 ≤ i ≤ j),

4. a projection of a encryption/decryption of sort Listj : T = πi(enc(U, V ))
with U 6∈ {dec(T ′, V )} or T = πi(dec(U, V )) with U 6∈ {enc(T ′, V )}.

(S3) Q0. As T1 and T2 contain no encryption/decryption symbol, only the
cases 1–3 of the case analysis above can occur; the property follows directly.

(S4) Qn+1 ⇐ (Pn+1 and Qn). Let T1 and T2 be two distinct closed normal
terms and ϕ = {x = T1, y = T2}. Assume that ϕ has no encryption cycles nor
composed keys, and |ϕ|e = n+ 1.

1. If one of the two terms—say T1— is of the form 1 (constant), 2 (name)
or 3 (projection of a name). Then T2 is of the form 4, for instance T2 =
πi(enc(U, k)) with U 6∈ {dec(T ′, k)}.

(a) If T1 6= k, by Pn+1, we have ([[ϕ]]Aη ) ≈ ([[{x = T1, y = πi(a)}]]Aη )
for some fresh name a. In particular, the probability for the two
components x and y to be equal is negligible.

(b) If T1 = k, assume that T1 and T2 yields the same concrete value with
significant probability. Let Listn0 be the sort of U . We build an
adversary A to the ω-IND-P1-C1 game as follows:

i. for each name a of sort s appearing in T2, draw a value â R←−
[[s]]Aη ;

ii. draw a value â0
R←− [[s]]Aη for some fresh name a0 of sort Listn0 ;

iii. compute T̂2 recursively as follows:

̂encn(T, k) = En(T̂ ) if T 6= U

̂encn0(U, k) = E∗(Û , â0)
̂decn(T, k) = Dn(T̂ )

̂f(V1, . . . , Vn) = [[f ]]Aη (V̂1, . . . , V̂n) in the remaining cases
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using the same conventions as before;
iv. if En0(Û , T̂2) = E∗(Û , â0)), return 0, otherwise return 1.

A guesses the correct answer with non-negligible probability. As
before, we use the property Qn to conclude that its advantage is
non-negligible.

2. Suppose T1 = πi1(enc(u1, k1)) and T2 = πi2(enc(u2, k2)) (the 3 other cases
with decryption symbols are similar). As ϕ has no encryption cycle, we
may assume for instance that k1 is maximal for <ϕ. Let T be a maximal
subterm of the form enc(U, k1) or dec(U, k1) in ϕ. By Pn+1, we have
([[ϕ]]Aη ) ≈ ([[ϕ′]]Aη ) where ϕ′ = ϕ{T 7→ a} = {x = T ′1, y = T ′2} for some
fresh name a. We then apply Qn to T ′1 and T ′2. �

Proof (of Lemma 13). Point (i) is easily shown by induction on i, using the
equations of Esym. For (ii), notice that:

P
[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
≤

j∑
i=1

P
[
ei
1, e

i
2 ← [[πi(T1), πi(T2)]]Aη ; ei

1 = ei
2

]
and

∀i, P
[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
≥ P

[
ei
1, e

i
2 ← [[πi(T1), πi(T2)]]Aη ; ei

1 = ei
2

]
Besides it is clear from the unconditional =Esym-soundness, that for any T1, T2:

P
[
e1, e2← [[T1, T2]]Aη ; e1 = e2

]
= P

[
e1, e2← [[T1 ↓R, T2 ↓R]]Aη ; e1 = e2

]
�

Proof (of Theorem 11). Thanks to the (unconditional) =Esym-soundness, it
is enough to prove the property on frames in R-normal form.

We begin by proving the following lemma:

Lemma 14. Assume that the concrete implementations for the encryption and
its inverse satisfy both the ω-IND-P1-C1 assumption. For every well-formed R-
normal frame ϕ, ([[ϕ]]Aη ) ≈ ([[ϕ]]Aη ) where ϕ is the transparent frame associated
to ϕ following the algorithmic proof of Proposition 9 (this transparent frame is
uniquely defined modulo renaming of names.).

Now recall that by Proposition 5 and since ϕ ≈ ϕ, we have:

[[ϕ]]Aη = [[ϕ]]ideal
Aη

= [[ϕ]]ideal
Aη

Therefore the soundness criterion holds for well-formed R-normal frames
and we conclude by Proposition 3. �

Notice that the use of the ideal semantics could not be easily avoided as two
statically equivalent transparent frames may not be equal modulo renaming of
bound names.
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Proof (of Lemma 14). We prove the property by induction on the number
m of encryptions and decryptions by non-deducible keys in ϕ.

If m = 0, by the well-formedness condition, ϕ is already a transparent frame.
Suppose that m > 0. As ϕ has no encryption cycle, we choose a non-

deducible (atomic) key k appearing in ϕ, such that k is maximal for the encryp-
tion relation >ϕ.

As k is not deducible, is maximal for >ϕ and ϕ contains no head and tail
symbols, the only occurrences of k in ϕ are as encryption or decryption keys.
Let T be a maximal subterm of ϕ of the form T = enc(U, k) or T = dec(U, k).
We apply Lemma 12 on ϕ and T and conclude by induction hypothesis on the
obtained frame ϕ′. �

Note on the cryptographic assumptions.. Cryptographic assumptions of Theo-
rem 11 may appear strong compared to existing work on passive adversaries [4,
13]. This seems unavoidable when we allow frames to contain both encryption
and decryption symbols.

In the case where the two frames to be compared contain no decryption
symbols, our proofs are easily adapted to work when the encryption scheme
is ω-IND-P1-C0 only, where ω-IND-P1-C0 is defined similarly to ω-IND-P1-
C1 except that the adversary has no access to the decryption oracle. Such an
assumption is realizable in practice using a variable-input-length cipher [39, 38].

Finally, it should be possible to recover the classical assumption IND-P1-
C1 by modeling the ECB mode (Electronic Code Book). Consider two new
symbols enc : Data × Data → Data and dec : Data × Data → Data, and define
the symbols encn and decn (formally and concretely) recursively by

encn+1(x, y) = consn(enc(headn(x), y), encn(tailn(x), y)) and
decn+1(x, y) = consn(dec(headn(x), y), decn(tailn(x), y))

together with the equations

dec(enc(x, y), y) = x

enc(dec(x, y), y) = y

Define well-formed frames as those of which the normal forms contain no en-
cryption cycles. Then, similar techniques can be applied to show that ≈Esym-
soundness holds for well-formed frames as soon as the implementations for enc
and dec are both IND-P1-C1, or equivalently [37], enc is SPRP.

Note on the well-formedness assumptions.. We may also note that it is possible
to slightly relax the assumptions of well-formedness of frames. In particular we
could allow encryption cycles on deducible keys and for instance allow the frame
{x = enc(k1, k2), y = enc(k2, k1), z = k1} which is currently discarded. As
these extensions are not essential for our results we prefer to avoid unnecessary
clutter and keep the definitions simple.
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6. Conclusion and future work

In this paper we developed a general framework for relating formal and com-
putational models of security protocols in the presence of a passive attacker.
These are the first results on abstract models allowing arbitrary equational
theories. We define the soundness and faithfulness of cryptographic implemen-
tations with respect to abstract models. We also provide a soundness criterion
which is not only sufficient but also necessary for many theories. Finally, we
provide new soundness results for the exclusive OR and a theory of ciphers and
lists.

A direction for further work is to study the soundness of other theories.
An interesting case is the combination of the two theories considered in this
paper, that is modeling the exclusive OR, ciphers and lists. Another interesting
open problem is to generalize the notion of transparent frames so as to include
probabilistic encryption, while retaining the essential properties of transparent
frames. Finally, an ambitious extension is to consider the case of an active
attacker in presence of general equational theories.
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References

[1] M. Baudet, V. Cortier, S. Kremer, Computationally sound implementa-
tions of equational theories against passive adversaries, in: Proc. 32nd
International Colloquium on Automata, Languages and Programming
(ICALP’05), Vol. 3580 of LNCS, Springer, 2005, pp. 652–663.

[2] D. Dolev, A. C. Yao, On the security of public key protocols, IEEE Trans-
actions on Information Theory IT-29 (12) (1983) 198–208.

[3] S. Goldwasser, S. Micali, Probabilistic encryption, Journal of Computer
and System Sciences 28 (1984) 270–299.

[4] M. Abadi, P. Rogaway, Reconciling two views of cryptography (the compu-
tational soundness of formal encryption), in: Proc. 1st IFIP International
Conference on Theoretical Computer Science (IFIP–TCS’00), Vol. 1872 of
LNCS, 2000, pp. 3–22.

[5] H. Comon, V. Shmatikov, Is it possible to decide whether a cryptographic
protocol is secure or not?, Journal of Telecommunications and Information
Technology (4/2002) 5–15.

[6] V. Cortier, S. Delaune, P. Lafourcade, A survey of algebraic properties used
in cryptographic protocols, Journal of Computer Security 14 (1) (2006) 1–
43.

33



[7] M. Abadi, C. Fournet, Mobile values, new names, and secure communica-
tions, in: Proc. 28th Annual ACM Symposium on Principles of Program-
ming Languages (POPL’01), 2001, pp. 104–115.

[8] R. Corin, J. Doumen, S. Etalle, Analysing password protocol security
against off-line dictionary attacks, in: Proc. 2nd International Work-
shop on Security Issues with Petri Nets and other Computational Models
(WISP’04), Vol. 121 of ENTCS, 2005, pp. 47–63.

[9] M. Baudet, Deciding security of protocols against off-line guessing attacks,
in: Proc. 12th ACM Conference on Computer and Communications Secu-
rity (CCS’05), ACM Press, 2005, pp. 16–25.

[10] M. Abadi, V. Cortier, Deciding knowledge in security protocols under equa-
tional theories, in: Proc. 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP’04), Vol. 3142 of LNCS, 2004, pp. 46–58.

[11] B. Blanchet, Automatic proof of strong secrecy for security protocols, in:
Proc. 25th IEEE Symposium on Security and Privacy (SSP’04), 2004, pp.
86–100.

[12] P. Adão, G. Bana, A. Scedrov, Computational and information-theoretic
soundness and completeness of formal encryption, in: Proc. 18th IEEE
Computer Security Foundations Workshop (CSFW’05), 2005, pp. 170–184.

[13] D. Micciancio, B. Warinschi, Completeness theorems for the Abadi-
Rogaway logic of encrypted expressions, Journal of Computer Security
12 (1) (2004) 99–129.

[14] P. Laud, Computationally secure information flow, Ph.D. thesis, Univer-
sität des Saarlandes (2002).

[15] P. Laud, R. Corin, Sound computational interpretation of formal encryp-
tion with composed keys, in: Proc. 6th International Conference on Infor-
mation Security and Cryptology (ICISC’03), Vol. 2971 of LNCS, 2004, pp.
55–66.

[16] P. Adão, J. Herzog, G. Bana, A. Scedrov, Soundness of formal encryption
in the presence of key-cycles, in: Proc. 10th European Symposium on Re-
search in Computer Security (ESORICS’05), Vol. 3679 of LNCS, 2005, pp.
374–396.

[17] M. Backes, B. Pfitzmann, M. Waidner, A composable cryptographic library
with nested operations, in: Proc. 10th ACM Conference on Computer and
Communications Security (CCS’03), ACM Press, 2003, pp. 220–230.

[18] M. Backes, B. Pfitzmann, Symmetric encryption in a simulatable Dolev-
Yao style cryptographic library, in: Proc. 17th IEEE Computer Science
Foundations Workshop (CSFW’04), 2004, pp. 204–218.

34



[19] M. Backes, B. Pfitzmann, M. Waidner, Symmetric authentication within
simulatable cryptographic library, in: Proc. 8th European Symposium on
Research in Computer Security (ESORICS’03), LNCS, 2003, pp. 271–290.

[20] V. Cortier, B. Warinschi, Computationally sound, automated proofs for
security protocols, in: Proc. 14th European Symposium on Programming
(ESOP’05), Vol. 3444 of LNCS, 2005, pp. 157–171.

[21] R. Janvier, Y. Lakhnech, L. Mazaré, Completing the picture: Soundness
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A. General results on static equivalence

We prove here some general properties of static equivalence concerning free
symbols. We first establish a useful interpolation lemma.

Given a term U = f(U1, . . . , Un) where f is a free symbol (see Section 2.1)
and a name a of the same sort as U , the cutting function cutU,a is defined
recursively as follows: cutU,a(u) = u if u is a variable or a name, and

cutU,a(g(T1, . . . , Tk)) =
{
a if g = f , k = n and ∀1 ≤ i ≤ n, Ui =E Ti

g(cutU,a(T1), . . . , cutU,a(Tk)) otherwise

Thus, the effect of function cutU,a(T ) is to substitute some (but not all) subterms
of T equal to U modulo E with a.
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Lemma 15. Let U = f(U1, . . . , Un) be a term such that f is a free symbol. Let
a be a name of the same sort as U . For any two terms M and N ,

M =E N implies cutU,a(M) =E cutU,a(N).

Proof. By Birkhoff’s theorem, M =E N means that there exist n ≥ 0 and
M0, . . . , Mn such that M = M0 ↔E M1 ↔E Mn = N where ↔E denotes one
step of rewriting along one equation in (the generating set of) E, oriented in
either direction.

To prove the property by induction on n, it suffices to consider the case
n = 1. More precisely, assume that there exists an equation l = r in E, a
position p and a substitution θ such that M |p = lθ and N = M [rθ]p. By
definition of free symbols, we may assume that f does not occur in l and r.
We consider two cases depending on whether the cutting function cutU,a cuts a
subterm above p or not.

• Either there exists a proper prefix p′ of p such that M |p′ = f(T1, . . . , Tk)
and for all i, Ui =E Ti. We consider the smallest p′ that satisfies this
property. Thus p = p′ · i · p′′ and N = M [f(T1, . . . , Ti[rθ]p′′ , . . . , Tn)p′ ].
Both terms f(T1, . . . , Tk) and f(T1, . . . , Ti[rθ]p′′ , . . . , Tn) are substituted
with a, thus cutU,a(M) = cutU,a(N).

• Or no such cutting position p′ is a proper prefix of p. This means that
cutU,a(M [x]p) = cutU,a(N [x]p) and cutU,a(M) = cutU,a(M [x]p)[cutU,a(lθ)]p,
where x is a fresh variable. Moreover, cutU,a(lθ) = lcutU,a(θ) and cutU,a(rθ) =
rcutU,a(θ) since f is free. We deduce

cutU,a(M) = cutU,a(M [x]p)[cutU,a(lθ)]p
= cutU,a(N [x]p)[lcutU,a(θ)]p

=E cutU,a(N [x]p)[rcutU,a(θ)]p
= cutU,a(N)

Using this lemma, we establish two simple properties of free symbols.

Corollary 16. Let f be a free symbol and f(T1, . . . , Tn) a term of a non-
degenerated type τ .

1. For every U1, . . . , Un of the appropriate sort,

f(T1, . . . Tn) =E f(U1, . . . , Un) iff ∀i, Ti =E Ui.

2. Let U be a term of sort τ such that f does not appear in U . Then

f(T1, . . . , Tn) 6=E U.

Proof.
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1. The right-to-left implication is trivial. Let T = f(T1, . . . Tn) and U =
f(U1, . . . , Un). By contradiction, assume that there exists an i such that
Ti 6=E Ui. Let a1, a2 be two fresh names of sort τ . We apply Lemma 15
on the equation T =E U successively with cutT,a1 and cutU ′,a2 where
U ′ = cutT,a1(U) = f(cutT,a1(U1), . . . cutT,a1(Un)). We obtain a1 =E a2,
hence τ is degenerated; contradiction.

2. Assume f(T1, . . . , Tn) =E U . Then by Lemma 15, since f does not occur
in U , we obtain a =E U for some fresh name a, hence τ is degenerated;
contradiction.

We are now ready to prove our propositions.

Proposition 17. Let T1, T2 be two terms of sort s such that T1 6=E T2. Assume
a free symbol hs : s × Key → Hash such that the sort Key is not degenerated.
Consider the frame ϕ1 = {x1 = hs(T1, k), x2 = hs(T2, k)} where k is a fresh
name. Let ϕ2 = {x1 = n, x2 = n′} where n, n′ are two distinct fresh names of
sort Hash. Then we have ϕ1 ≈E ϕ2.

Proof. Let M and N be two terms such that var(M,N) ⊆ dom(ϕ) and
names(M,N) ∩ names(ϕ) = ∅.

Assume Mϕ2 =E Nϕ2. Let θ be the substitution {n 7→ hs(T1, k), n′ 7→
hs(T2, k)}. Since the equational theory E is stable by substitution of names, we
have Mϕ2θ =E Nϕ2θ, hence, Mϕ1 =E Nϕ1 as n, n′ are fresh names.

Conversely, assume Mϕ1 =E Nϕ1. Let U1 = hs(T1, k). By Lemma 15, we
have cutU1,n(Mϕ1) =E cutU1,n(Nϕ1). Since k does not appear in M nor N , by
Corollary 16, it holds that cutU1,n(Mϕ1) = McutU1,n(ϕ1) and cutU1,n(Nϕ1) =
NcutU1,n(ϕ1). Now, using T1 6=E T2, we prove cutU1,n(ϕ1) = {x1 = n, x2 =
hs(T2, k)}. Indeed, we have cutU1,n(hs(T2, k)) = hs(cutU1,n(T2), k) since T1 6=E

T2. Besides, as k does not appear in T2, by Corollary 16, we have cutU1,n(T2) =
T2. Similarly, by applying cutU2,n′ with U2 = hs(T2, k), we obtain

McutU2,n′(cutU1,n(ϕ1)) =E NcutU2,n′(cutU1,n(ϕ1)),

that is, Mϕ2 =E Nϕ2. �

Proposition 18. Let ϕ be a frame and T a term of sort s. Assume a free
symbol hs : s × Key → Hash such that the sort Key is not degenerated. Let
ϕ1 = ϕ ∪ {x = hs(T, k), y = k} and ϕ2 = ϕ ∪ {x = n, y = k} where x, y are
fresh variables, k is a fresh name of sort Key, n is a fresh name of sort Hash.
If ϕ 6`E T , then ϕ1 ≈E ϕ2.

Proof. Let M and N be two terms such that var(M,N) ⊆ dom(ϕ) and
names(M,N) ∩ names(ϕ) = ∅. We prove that Mϕ2 =E Nϕ2 implies Mϕ1 =E

Nϕ1 similarly as for Proposition 17.
Conversely, assume Mϕ1 =E Nϕ1. Let U = hs(T, k). By Lemma 15,

we have cutU,n(Mϕ1) =E cutU,n(Nϕ1). Let us prove that cutU,n(Mϕ1) =
McutU,n(ϕ1).
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Indeed, otherwise, there exists a subterm M1 of M such that M1 is not a
variable and M1ϕ1 = hs(T ′, T ′′) with T ′ =E T and T ′′ =E k. Since M1 is not
a variable, M1 is of the form M1 = hs(M ′

1,M
′′
1 ) with M ′

1ϕ1 = T ′ =E T , which
implies that T is deducible; contradiction.

We deduce that cutU,n(Mϕ1) = McutU,n(ϕ1), and similarly cutU,n(Nϕ1) =
NcutU,n(ϕ1). Thus McutU,n(ϕ1) =E NcutU,n(ϕ1). By Corollary 16, as k does
not appear in ϕ, we have that cutU,n(ϕ) = ϕ, hence cutU,n(ϕ1) = ϕ2 and
Mϕ2 =E Nϕ2. �

Proposition 19. Let T1, T2 be two terms of sort s such that T1 =E T2. Assume
a free symbol hs : s × Key → Hash such that Key is not degenerated. Let
ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)}. Then, ϕ ≈E {x1 = n, x2 = n} where n
is a fresh name of sort Hash.

Proof. Let M and N be two terms such that var(M,N) ⊆ dom(ϕ) and
names(M,N) ∩ names(ϕ) = ∅. We prove that Mϕ2 =E Nϕ2 implies Mϕ1 =E

Nϕ1 similarly as for Proposition 17.
Conversely, assume Mϕ1 =E Nϕ1. Let U = hs(T1, k). By Lemma 15,

we have cutU,n(Mϕ1) =E cutU,n(Nϕ1). Since k does not appear in M nor
N , by Corollary 16, we have cutU,n(Mϕ1) = McutU,n(ϕ1) and cutU,n(Nϕ1) =
NcutU,n(ϕ1). Now, since T1 =E T2, we obtain cutU,n(ϕ1) = {x1 = n, x2 =
n} = ϕ2. Thus we have Mϕ2 =E Nϕ2. �

B. Static equivalence in groups

We establish some properties of static equivalence in the equational theory
of Abelian groups EG defined in Section 3.2. For this purpose we characterize
equivalence classes in EG by a representation lemma.

Let XA (XG and XHash respectively) be the set of variables of sort A (G
and Hash respectively). Let NA (NG and NHash respectively) be the set of
names of sort A (G and Hash respectively). Let AC be the equational theory
corresponding to the subset of equations from EG, modeling the associativity
and commutativity of the three operators ·, + and ∗.

We call unitary monomial of sort A a function β : XA ∪ NA → N almost
everywhere zero, i.e., except for a finite number of entries. Such a function β
can be considered as a term of sort A (modulo AC):

β =AC

∏
a∈NA, β(a) 6=0

aβ(a) ·
∏

u∈XA, β(u) 6=0

uβ(u)

where empty products are considered to be the term 1A, and aβ(a) (β(a) 6= 0)
denotes the term a · . . . · a︸ ︷︷ ︸

β(a) times

. We denote MA the set of all unitary monomials of

sort A.
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A canonical form of sort A is a function α : MA → Z almost everywhere
zero. We consider such a function α as a term of sort A (modulo AC):

α =AC

∑
β∈MA, α(β) 6=0

α(β) · β

where empty sums are considered to be the term 0A, and integers are naturally
represented as 0A, 1A + . . .+ 1A or −(1A + . . .+ 1A) of sort A.

A canonical form of sort G is a function γ, mapping terms in XN ∪ NN to
canonical forms of sort A, almost everywhere zero, i.e., the function evaluates
to the constant 0 except for a finite number of entries. We consider a canonical
form γ to be a term of sort G (modulo AC):

γ =AC

∏
g∈NG, γ(g) 6=0

gγ(g) ∗
∏

x∈XG, γ(x) 6=0

xγ(x)

where empty products are considered to be equal to 1G.
A canonical form of sort Hash, denoted ι, is either a variable of sort Hash :

ι = z ∈ XHash , a name of sort Hash : ι = h ∈ NHash or a canonical form γ of
sort G considered to be a term ι = h(γ).

Lemma 20. For any term T of sort A (G, Hash, respectively), there exists a
unique canonical form αT (γT , ιT , respectively) such that

T =EG
αT

(T =EG
γT , T =EG

ιT , respectively).

Proof (Sketch). We show the existence of a canonical form of a term T by
induction on the structure of T . For instance, given T = T1 ∗ T2, and two
canonical forms αT1 and αT2 , we obtain the canonical form of T by rearranging
the product αT1 ∗ αT2 modulo EG (and if necessary the induction hypthesis
is also used on the exponents). To show the uniqueness of the normal form,
it is sufficient to show that whenever two canonical terms are equal as terms
modulo EG, they are also equal “mathematically”. Formally this is established
by studying the AC normal form of each canonical form with respect to the
following AC-convergent rewriting system.

u+ 0A → u
u+ (−u) → 0A

u · 1A → u
(u+ v) · w → u · w + v · w

u · 0A → 0A

−(u+ v) → (−u) + (−v)
(−u) · v → −(u · v)
−(−u) → u
−0A → 0A

x ∗ 1G → x
(xu)v → x(u·v)

xu ∗ xv → xu+v

x1A → x
x0A → 1G

(x ∗ y)u → xu ∗ yu

x ∗ x → x(1A+1A)

x ∗ xu → xu+1A

(1G)u → 1G
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This rewriting system has been obtained by orienting and completing the
equations generating EG, except AC, using the tool Cime [40]. �

Proposition 21. Let ϕ1 = νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = ga·b} and
ϕ2 = νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}. We have that ϕ1 ≈EG

ϕ2.

Proof. Let M,N be two terms of the same sort such that var(M,N) ⊆
dom(ϕ1) and names(M,N) ∩ names(ϕ1, ϕ2) = ∅.

Assume Mϕ2 =EG
Nϕ2. Let θ be the substitution {c 7→ a · b}. Since the

equational theory E is stable by substitution of names, we have Mϕ2θ =E

Nϕ2θ, that is, Mϕ1 =EG
Nϕ1 since c 6∈ names(M,N).

Conversely, assume Mϕ1 =EG
Nϕ1. If M and N are of sort A, then

var(M,N) = ∅ and hence Mϕ2 = Mϕ1 =E Nϕ1 = Nϕ2.
Otherwise, M and N are of sort G. As Mϕ1 =EG

Nϕ1 is equivalent to
Mϕ1 ∗ (Nϕ1)−1A = 1G, we suppose that N = 1G.

As var(M) ⊆ dom(ϕ1) and names(M) ∩ names(ϕ1, ϕ2) = ∅, the canonical
form γ of M is of the form

M =EG

∏
g′ 6=g

g′
γ(g′) ∗ xγ(x1)

1 ∗ . . . ∗ xγ(x4)
4

where γ(g′) and γ(xi) represent closed terms with disjoint names {a, b, c}.
Hence, we have that

Mϕ1 =EG

∏
g′ 6=g

g′
γ(g′) ∗ gγ(x1) + γ(x2)·a + γ(x3)·b + γ(x4)a·b =EG

1G

and we conclude that for any i, γ(xi) = 0A and for any g′, γ(g′) = 0A, i.e.,
M = 1G. �

Proposition 22. Let the frame ϕ1 = νg, a.{x1 = ga, x2 = a, x3 = h(g)} and
the frame ϕ2 = νg, a, h.{x1 = ga, x2 = a, x3 = h}. We have that ϕ1 ≈EG

ϕ2.

Proof. LetM,N be two terms such that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩
names(ϕ1, ϕ2) = ∅.

Assume Mϕ2 =E Nϕ2. Let θ be the substitution {h 7→ h(g)}. Since the
equational theory E is stable by substitution of names, we have Mϕ2θ =E

Nϕ2θ, hence, as h 6∈ names(M,N), Mϕ1 =E Nϕ1.
Conversely, assume that Mϕ1 =EG

Nϕ1. If M and N are of sort A or G,
then var(M,N) ⊆ {x1, x2} and hence Mϕ2 = Mϕ1 =E Nϕ1 = Nϕ2.

Otherwise, M and N are of sort Hash. We suppose that M = x3 and
N = h(N ′) where var(N ′) ⊆ {x1, x2} (other cases are trivial). As h is a free
symbol, by Corollary 16, Mϕ1 =EG

Nϕ1 is equivalent to N ′ϕ1 =EG
g.

Given that var(N ′) ⊆ {x1, x2} and names(N ′) ∩ names(ϕ1, ϕ2) = ∅, the
canonical form γ of N ′ is of the form

N ′ =EG

∏
g′ 6=g

g′
γ(g′) ∗ xγ(x1)

1
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where γ(g′) and γ(x1) are terms that have no variable other than x2 and do not
contain a. Hence we have

N ′ϕ1 =EG

∏
g′ 6=g

g′
γ(g′){x2 7→a} ∗ gγ(x1)·a

which contradicts N ′ϕ1 =EG
g. �

C. Static equivalence in ciphers and lists

Before proving Lemma 10, we first introduce a handy lemma to characterize
deducible terms.

Lemma 23. Let ϕ = νñ.σ be a closed frame in R-normal form and T a term in
R-normal form. If ϕ `Esym T then T = C[T1, . . . , Tk] where the Ti are deducible
subterms of ϕ and C is a context that does not contain private names that is
names(C) ∩ ñ = ∅.

Proof. By definition, ϕ `Esym T if and only if there exists a term M such that
names(M) ∩ names(ϕ) = ∅ and Mϕ =Esym T , that is, Mϕ →∗

R T . We prove
Lemma 23 by induction on the size of M . The base case M = xi is trivial.

If M = f(M1, . . . ,Mk). We only consider the case where M = dec(M1,M2)
since the other cases are similar. We haveM1 →∗

R T1 andM2 →∗
R T2. By apply-

ing the induction hypothesis to M1 and M2, we obtain that T1 = C1[T ′1, . . . , T
′
k]

and T2 = C2[T ′1, . . . , T
′
k] where the T ′i are deducible subterms of ϕ and C1, C2

are contexts that do not contain names. We have Mϕ →∗
R dec(T1, T2). Either

dec(T1, T2) is in R-normal form. In that case and by convergence of R, we have
T = dec(T1, T2), hence the result. Or dec(T1, T2) is not in R-normal form. By
convergence, we have dec(T1, T2)→R T . Since T1 and T2 are already in normal
form, we must have T1 = enc(T ′1, T2) and T = T ′1. Either C1 = enc(C ′1, C

′′
1 ) and

we have T = C ′1[T
′
1, . . . , T

′
k]. Or C1 = , which means that T1 is a deducible

subterm of ϕ. We deduce that T is a deducible subterm of ϕ, hence the result.
�

We can now start the proof of Lemma 10.

Proof. In what follows, we say that a term or a context is public if it does
not contain the names occurring in ϕ. Since ϕ = ϕ′{n 7→ T} and Esym is
stable by substitutions of names, we have eqEsym

(ϕ′) ⊆ eqEsym
(ϕ). To prove

eqEsym
(ϕ) ⊆ eqEsym

(ϕ′), we introduce the following lemma. We set θ to be
{n 7→ T}. Let n1, . . . , np be the names occurring in ϕ′.

Lemma 24. Let C1 be a context such that we have ϕ′ `Esym C1[n1, . . . , np]
and C1[n1, . . . , np]θ →R T . Then there exists a public context C2 such that
C1 →R C2 and T = C2[n1, . . . , np]θ.
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The lemma is proved by inspection of the rules of R. The reduction occurs
at some position p: the reduction C1[n1, . . . , np]|pθ →R T occurs in head.
Let C ′1[n1, . . . , np] = C1[n1, . . . , np]|p If C ′1 is itself an instance of the left-
hand-side of a rule of R, than we clearly have that C ′1 →R C ′2 such that
T = C2[n1, . . . , np]θ, where C2 is obtained from C1 by replacing C ′1 with C ′2
at position p. If C ′1 is not an instance of the left-hand-side of a rule of R
and since T is already in R-normal form, there are only four possibilities for
C ′1[n1, . . . , np].

• C ′1[n1, . . . , np] = enc(ni, C
′′
1 [n1, . . . , np]). It must be the case that ni = n,

T is of the form dec(U, V ) and V = C ′′1 [n1, . . . , np]. From Lemma 23 and
since ϕ′ `Esym C1[n1, . . . , np], either C ′1[n1, . . . , np] is subterm of ϕ′ or ni

and C ′′1 [n1, . . . , np] are deducible. In both cases, we obtain a contradic-
tion. Indeed, if C ′1[n1, . . . , np] is subterm of ϕ′ then C ′1[n1, . . . , np]θ =
enc(dec(U, V ), nj) is a subterm of ϕ, which contradicts that ϕ is in nor-
mal form. If ni and C ′′1 [n1, . . . , np] are deducible then this contradicts
ϕ 6`Esym V .

• C ′1[n1, . . . , np] = dec(ni, nj). This case is very similar to the previous one.

• C ′1[n1, . . . , np] = cons(ni, C
′′
1 [n1, . . . , np]). It must be the case that ni = n,

T is of the form head(V ) and C ′′1 [n1, . . . , np] = tail(V ). From Lemma 23
and since ϕ′ `Esym C1[n1, . . . , np], either C ′1[n1, . . . , np] is subterm of ϕ′ or
ni and C ′′1 [n1, . . . , np] are deducible. As previously, in both cases, we ob-
tain a contradiction. if C ′1[n1, . . . , np] is subterm of ϕ′ then C ′1[n1, . . . , np]θ =
cons(head(V ), tail(V )) is a subterm of ϕ, which contradicts that ϕ is in nor-
mal form. If ni and C ′′1 [n1, . . . , np] are deducible then both n and tail(V )
are deducible in ϕ′, which means that both head(V ) and tail(v) are de-
ducible in ϕ, thus V is deducible in ϕ, contradiction.

• C ′1[n1, . . . , np] = cons(C ′′1 [n1, . . . , np], ni). This case is very similar to the
previous one.

Now, let (M = N) ∈ eqEsym
(ϕ) and let us show that (M = N) ∈ eqEsym

(ϕ′).
We have Mϕ =Esym Nϕ, that is, Mϕ′θ =Esym Nϕ′θ. By convergence of R,
there exists a term T such that Mϕ′θ →∗

R T and Nϕ′θ →∗
R T . By applying

repeatedly Lemma 24, we obtain that Mϕ′ →∗
R T1 such that T = T1θ and

Nϕ′ →∗
R T2 such that T = T2θ. Assume that we have proved that T1 = T2.

Then we have Mϕ′ =Esym Nϕ
′, that is, (M = N) ∈ eqEsym

(ϕ′), which concludes
the proof. It remains for us to prove the following lemma.

Lemma 25. Let T1 and T2 be two terms such that each Ti is either deducible
from ϕ′, that is, ϕ′ `Esym Ti, or Ti is a subterm of ϕ′. Then T1θ = T2θ implies
T1 = T2.

The lemma is proved by induction on the sum of the size of T1 and T2. First
notice that, by Lemma 23, any subterm T ′ of one of the Ti verifies that T ′ is
deducible from ϕ′ or T ′ is a subterm of ϕ′.
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• The base case is trivial.

• If none of T1 or T2 is n: T1 = f(T ′1, . . . , T
′
k) and T2 = f(T ′′1 , . . . , T

′′
k ). We

must have T ′iθ = T ′′i θ for every 1 ≤ i ≤ k. By applying the induction
hypothesis, we obtain T ′i = T ′′i thus T1 = T2.

• The most difficult case is when T1 = n and T2 = f(T ′1, . . . , T
′
k). We first

notice that since nθ = f(T ′1, . . . , T
′
k)θ, n cannot occur in T2, thus T2 = T2θ.

Either T2 is a subterm of ϕ′, which is impossible by construction of ϕ′ or T2

deducible. Since T2 is not a subterm of ϕ′ and applying again Lemma 23,
we get that the immediate subterms of T2 are deducible in ϕ′ (thus in ϕ),
which contradicts the choice of T . �
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