
Deducibility constraints ⋆

Sergiu Bursuc1, Hubert Comon-Lundh1,2, and Stéphanie Delaune1

1 LSV, CNRS & ENS Cachan & INRIA project SECSI
2 AIST, Tokyo

Abstract. In their work on tractable deduction systems, D. McAllester
and later D. Basin and H. Ganzinger have identified a property of infer-
ence systems (the locality property) that ensures the tractability of the
Entscheidungsproblem.
On the other hand, deducibility constraints are sequences of deduction
problems in which some parts (formulas) are unknown. The problem
is to decide their satisfiability and to represent the set of all possible
solutions. Such constraints have also been used for deciding some security
properties of cryptographic protocols.
In this paper we show that local inference systems (actually a slight mod-
ification of such systems) yield not only a tractable deduction problem,
but also decidable deducibility constraints. Our algorithm not only al-
lows to decide the existence of a solution, but also gives a representation
of all solutions.

1 Introduction

Deciding whether a given statement can be derived from hypotheses, using a set
of formal inference rules, is one of the famous issues in proof theory, known as the
Entscheidungsproblem. This is undecidable for first-order logic and untractable
for propositional logic. There are however several formal proof systems for which
the problem is tractable, for instance Horn propositional logic, but also the so-
called Dolev-Yao intruder deduction rules. D. McAllester [13] observed that any
inference system which is local yields a tractable Entscheidungsproblem. D. Basin
and H. Ganzinger [1] proved that locality is equivalent to a saturation property
of the set of inference rules.

The Dolev-Yao inference system is local (and saturated with respect to the
subterm ordering). This is why deciding whether a message can be computed
by an attacker from a finite set of messages can be performed in polynomial
(actually linear) time in this formal proof system. Now, if we consider an active
attacker, we need not only to solve the Entscheidungsproblem, but a more general
problem in which some statements and proofs are unknown: this corresponds to
the attacker’s choices. This was formalized in [14], using deducibility constraints.
There are many historical examples of deducibility constraints in mathematics:
Fermat gave a proof of his famous theorem, in which parts were missing; filling
the holes amounts to solve a deducibility constraint (in formal arithmetic).

⋆ This work has been partially supported by the ANR-07-SESU-002 AVOTÉ

The starting point of the present work is the problem of lifting the results
of D. McAllester, D. Basin and H. Ganzinger from deducibility to deducibility
constraints. For the security protocols, this corresponds to moving from a passive
adversary to an active adversary.

We consider formal inference systems without AC-symbols (as in [1]). We also
assume that there is a single unary predicate symbol (this corresponds to the
attacker knowledge in security protocols). Then we prove that, for any inference
system that is saturated in some suitable way (we call it good), the deducibility
constraints are decidable. Actually, we prove more: we provide with a constraint
simplification algorithm that yields solved forms. This allows not only to decide
the existence of a solution, but also to represent all solutions. Such a feature is
used in [7] for deciding trace properties such as authentication and key cycles in
security protocols, and also in [11] for deciding game-theoretic security properties
such as abuse-freeness. Our results generalize [7] to any good inference system.
Finally, we claim that our transformation rules are simple: we simply guess the
last inference step and reflect this on the constraint solving. The difficult part is
then the design of a complete and terminating strategy.

As in [1], an advantage of our approach is the ability to complete the original
inference system; if the inference system is not good (hence we cannot apply
directly our results), we may run a saturation procedure, that will yield a good
inference system. Of course, such a procedure may not terminate, in which case
we can still use our results on the limit (infinite) inference system, but getting
an effective algorithm for solving deducibility constraints requires more work,
which is out of the scope of this paper.

Related work. The present work is a strict extension of [7]: we consider a class
of inference systems instead of a particular one. The intruder theories that are
described by a subterm convergent rewriting system can also be casted as good
inference systems (but the converse is false). Hence, as far as trace properties are
concerned, we also generalize [2, 4]. Note however that [2] also considers equiva-
lence properties, that are not covered (yet) by our work. There are also several
examples of formal (intruder) proof systems that yield decidable deducibility
constraints [16, 8, 6, 5, 10]. All these works consider AC-symbols and are incom-
parable with our results.

Structure of the paper. In Section 2, we introduce good inference systems and
their properties. Then, in Section 3, we introduce deducibility constraints. In
Section 4, we provide with a set of constraint transformation rules, that is
parametrized by any good inference system and that we prove both sound and
complete: the solutions of the constraint are the same as the solutions of the
solved forms that are obtained by applying the transformation rules. In Sec-
tion 5, we give a complete and terminating strategy. Due to a lack of space, the
proofs are given in [3].

2 Preliminaries

In what follows, we assume that F is a (ranked) alphabet of function symbols.
Terms are built on this set of function symbols and a set of variables X . Ground
terms are terms without variables. For any term t (and, by extension, set of
terms or any formal expression), var(t) is the set of variable symbols occurring
in t and st(t) denotes the set of subterms of t defined as usual.

2.1 Inference systems

We use a natural deduction style for inference systems. An inference rule consists
in a finite set of terms {u1, . . . , un}, the premises, and a term u, the conclusion
such that var(u) ⊆ var({u1, . . . , un}). It is displayed

u1 · · · un

u
It may also be convenient to use a deducibility predicate symbol I, in which case
the inference rules are simply Horn clauses I(u1), . . . , I(un) → I(u).

Example 1. Consider the signature F = {enc/3, pub/1, priv/1, 〈 , 〉/2}. The
symbols enc and 〈 , 〉 represent respectively probabilistic encryption and pairing,
pub (resp. priv) represents the public key (resp. private key) construction. A
possible set of “Dolev-Yao” inference rules for public-key encryption is:

(E)
x y z

enc(x, y, z)
(D)

enc(pub(y), x, z) priv(y)

x
(K)

x

pub(x)

(P)
x y

〈x, y〉
(Proj1)

〈x, y〉

x
(Proj2)

〈x, y〉

y

Other relevant examples of inference systems are obtained by adding signa-
ture schemes, hash functions, symmetric encryption . . .

A proof, with hypotheses H and conclusion t is a tree, whose nodes are labeled
with terms and such that, if a node is labeled s and its sons are labeled s1, . . . , sn,
then either n = 0 (this is a leaf node), and s ∈ H, or else there is an inference
rule whose premises are u1, . . . , un and conclusion is u and a substitution θ such
that uθ = s and, for every i, uiθ = si. We write H ⊢ t when there exists a proof
with hypotheses H and conclusion t.

We let step(π) be the set of terms labeling the proof π and leaves(π) be the
multiset of the terms that labels the leaves of π. If π is a proof, we let last(π)
be the last inference step in π, premises(π) be the proofs of the premises of
last(π) and conc(π) be its conclusion. More formally,

if π =
π1 · · · πn

u
then

last(π) =
conc(π1) · · · conc(πn)

u
premises(π) = {π1, . . . , πn}

conc(π) = u

Example 2. Consider the following proof tree π. Actually, π is a proof in the
Dolev-Yao inference system presented in Example 1.

enc(pub(k), a, r)

〈priv(k), a〉
(Proj1)

priv(k)
(D)

a

We have that premises(π) = {enc(pub(k), a, r),
〈priv(k), a〉

priv(k)
}, conc(π) = a,

last(π) =
enc(pub(k), a, r) priv(k)

a
, leaves(π) = {enc(pub(k), a, r), 〈priv(k), a〉}.

2.2 Good inference systems

In the following definitions, we introduce our notion of saturation. Informally, if
there is a proof such that some intermediate step is too large (we call this a bad
proof and the large step is called a bad pattern), then there must be a simpler
proof of the same statement.

If R =
s1 · · · sn

s0

is an inference rule, we let Max(R) be the multiset of the

maximal terms si, w.r.t. the subterm ordering ⊳.

Definition 1 (bad proof / pattern). A bad proof is a proof π of the form:

u1 · · · un

v1 · · · vm
R1

un+1 un+2 · · · un+k
R2

v

such that R1 =
s1 · · · sm

s
, R2 =

t1 · · · tn+k

t
, s ∈ Max(R1) and tn+1 ∈ Max(R2).

A bad pattern in a proof π is a subproof of π of the form:

π1
2 · · · πi−1

2

π1
1 · · · πm

1
R1

conc(πi
2) πi+1

2 · · · πn
2

R2
v

such that the following proof is a bad proof.

conc(π1
2) · · · conc(πi−1

2)

conc(π1
1) · · · conc(πm

1)

conc(πi
2) conc(πi+1

2) · · · conc(πn
2)

v

If π = Rθ is an instance of an inference rule R and Max(R) = {s1, . . . , sk}, then
µ(π) is the multiset {s1θ, . . . , skθ}. If π is a proof, µ(π) is defined as the multiset
of µ(π′) for all inference steps π′ of π. Formally, if premises(π) = {π1, . . . , πn},
we have that:

µ(π) = µ(π1) ⊎ · · · ⊎ µ(πn) ⊎ µ(last(π)).

Multisets are ordered using the multiset extensions of their elements: if � is an
ordering, we let �m be its multiset extension.

Definition 2 (good inference system). An inference system is good if there
is a total well-founded extension ≺ of the subterm ordering ⊳ such that, for
any bad proof π, there is a proof π′ of leaves(π) ⊢ conc(π) with leaves(π′) ⊆
leaves(π) (multiset inclusion), µ(π′) (≺m)m µ(π), and µ(π′) 6= µ(π).

Example 3. The Dolev-Yao inference system described in Example 1 is good.
Indeed, all bad proofs are of one of the following forms

pub(u1) u2 u3

enc(pub(u1), u2, u3) priv(u1)

u2

u1 u2

〈u1, u2〉

ui

i = 1, 2

Obviously, for all such π there is a smaller, trivial, proof π′ of leaves(π) ⊢ conc(π)
such that leaves(π′) ⊆ leaves(π) and µ(π′) (≺m)m µ(π) for any total well-
founded extension ≺ of the subterm ordering.

Now, we give another example in which the inference system is no longer
finite. We consider blind signatures, as described in [9], that are used in some
e-voting protocols. The inference system is not good. However, we may complete
it and get an infinite, yet recursive, good inference system.

Example 4. We add the following rules to the system of Example 1:

(S)
x y

sign(x, y)
(C)

sign(x, y)

x

(B)
x y

blind(x, y)
(UB1)

blind(x, y) y

x
(UB2)

sign(blind(x, y), z) y

sign(x, z)

Because of the rule (UB2), the system not good. The following proof π is bad:

sign(blind(blind(x, x1), x2), y) x2

sign(blind(x, x1), y) x1

sign(x, y)

There is no other proof π′ of leaves(π) ⊢ sign(x, y) such that leaves(π′) ⊆
leaves(π). Thus, for any total well-founded extension ≺ of ⊳, there is no
proof π′ of leaves(π) ⊢ sign(x, y) such that leaves(π′) ⊆ leaves(π) and
µ(π′) (≺m)m µ(π). However, we may add all shortcuts that correspond to
bad proofs. Let bn(x, x1, . . . , xn) be defined by b1(x, x1) = blind(x, x1) and
bn+1(x, x1, . . . , xn+1) = blind(bn(x, x1, . . . , xn), xn+1). We add the following
rules (for every n ≥ 1) and the resulting system is a good inference system.

sign(bn(x, x1, . . . , xn), y) x1 . . . xn

sign(x, y)

2.3 Some properties of good inference systems

Definition 3 (simple proof). Let H1 ⊆ H2 ⊆ · · · ⊆ Hn. A proof π of Hi ⊢ u
is left-minimal if for any j < i such that Hj ⊢ u, π is a proof of Hj ⊢ u. A
proof is simple if it does not contain any bad pattern and all its subproofs are
left-minimal.

Example 5. Consider the Dolev-Yao inference system given in Example 1. Let
H1 = {enc(pub(k), a, r), priv(k), a}, H2 = H1 ∪ {〈a, b〉}. We have that H2 ⊢ a.
Indeed, the proofs π1, π2 and π3 described below are witnesses of this fact:

〈a, b〉

a

enc(pub(k), a, r) priv(k)

a

a a

〈a, a〉

a
The proofs π2 is simple whereas π1 and π3 are not. Note that proof of H2 ⊢ a
reduced to a leaf is also a simple proof.

Lemma 1. Consider a good inference system. Let H1 ⊆ H2 ⊆ · · · ⊆ Hn be an
increasing sequence of sets of terms and i ∈ {1, . . . , n}. If π is a proof of Hi ⊢ u
then there is a simple proof of Hi ⊢ u.

From now on, we only consider good inference systems. The rules of such
systems can be divided in three sets.

– The composition rules whose conclusion is the only maximal term. Any rule
I(x1), . . . , I(xn) → I(f(x1, . . . , xn)) is a composition, e.g. (P), (E), (S).

– The decomposition rules whose all maximal terms are premises, e.g. (D).
– The versatile rules whose both the conclusion and some premises are maxi-

mal, e.g. (UB2).

In what follows, we also assume that:

1. any composition rule has a conclusion f(x1, . . . , xn) where x1, . . . , xn are
variables. This is the case in our application area: each function symbol is
either public (and there is such a rule) or private.

2. any versatile rule satisfies the following properties:
(a) each strict subterm of the conclusion is a subterm of some premise.
(b) each premise that is not maximal in the rule is a strict subterm of another

premise of that rule.

These conditions are satisfied in Examples 1 and 4. Besides these examples,
any intruder theory that can be presented by a finite subterm-convergent rewrite
system satisfies our hypotheses. These hypotheses might not be necessary for our
result, but we use them in our proof.
We now classify the proofs, according to the type of the last proof step. This
generalizes the classical composition/decomposition classification:

Lemma 2 (locality). Let π be a proof of H ⊢ u without bad pattern, one of
the following occurs:

– last(π) is a composition and step(π) ⊆ st(H ∪ {u});
– π is reduced to a leaf or last(π) is a decomposition and step(π) ⊆ st(H);
– last(π) is (an instance of) a versatile rule and step(π′) ⊆ st(H) for any

strict subproof π′ of π.

This is proved by observing that any proof in which a maximal conclusion
is also a maximal premise of the next rule can be simplified, according to the
definition of good inference systems.

3 Deducibility constraints

The following definition of (deducibility) constraints has been proved to be rel-
evant in the context of security protocols verification (see, e.g. [15, 16, 7]).

Definition 4. A constraint system D is a formula of the form ∃z̃.[[C | E]] where:

– z̃ is a sequence of variables;
– E(D) = E is a set of equations in solved form, identified to a substitution θE;
– C is a conjunction of deducibility constraints H1 u1 ∧ . . .∧Hn un where

var(C) ∩ dom(θE) = ∅, H1, . . . , Hn are finite sets of terms, u1, . . . , un are
terms, and such that monotony and origination are satisfied:
• Monotony: ∅ 6= H1 ⊆ H2 ⊆ . . . ⊆ Hn;
• Origination: var(Hi) ⊆ var({uj | Hj (Hi}) for 1 ≤ i ≤ n.

We let fvar(D) = var(D) r z̃ and LH(D) = {H1, . . . , Hn}.

Definition 5 (solution). Given an inference system, a solution of a constraint
system D = ∃z̃.[[C | E]] is a ground substitution σ with dom(σ) = fvar(D) such
that there is a ground substitution τ with dom(τ) = z̃ such that:

– H(σ ∪ τ) ⊢ u(σ ∪ τ) for every H u ∈ C, and
– u(σ ∪ τ) = v(σ ∪ τ) for every u = v ∈ E.

We let Sol(D) be the set of solutions of D.

In the context of security protocols, any solution will correspond to a choice
of messages that are constructed by the attacker and that are accepted by the
honest parties.

Example 6. We consider the Dolev-Yao inference system given in Example 1.

D :=

{

H1 = a x0 ∧ a x1

H2 = enc(x0, 〈b, x1〉, r), priv(a), a b

H1 ⊆ H2 and the variables x0, x1 occur first on the right. Thus, D is a constraint
system. σ = {x0 7→ pub(a), x1 7→ 〈a, a〉} is a solution of D. Here, there are no
bounded variables nor equations. This is the case for constraint systems that
represent the security protocol executions. Bounded variables and equations may
however be introduced by our constraint solving rules.

Putting together Definitions 4 and 5, we get the following problem, whose
decision is the subject of this paper:

Given an inference system and a constraint system D, does there exist a
substitution σ such that σ ∈ Sol(D) ? We also want to find an effective
representation of all solutions.

Notation. Let D = ∃z̃.[[C | E]] be a constraint system. For every variable x ∈
var(D), we let Hx be the smallest set H ∈ LH(D) such that there is a constraint
H u ∈ D with x ∈ var(u) r var(H). In other words, Hx is the left hand side
of the deducibility constraint that introduced the variable x for the first time.
By origination and monotony, this is defined for all x ∈ var(C). By convention,
Hx = ∅ when x does not occur in C.

4 Transformation of deducibility constraints

We show here that we can solve deducibility constraints in such a way that we
do not miss any solution (as in [7]). The basic idea of the transformation rules
is very straightforward, and that is what makes it appealing: we simply guess
the last step of the proof, performing a backwards proof search together with
narrowing the variables of the constraint. If R = I(u1), . . . , I(un) → I(u) is
guessed as the last rule in the proof of Hσ ⊢ vσ, we simply perform:

∃z̃.[[C ∧ H v | E]] ∃z̃′.[[Cθ ∧ Hθ u1θ ∧ . . . ∧ Hθ unθ | E′]]

where z̃′ = z̃ ∪ var(R), θ = mgu(u, v) and E′ = E ∪ θ.

This hardly terminates, even for very simple proof systems and ground goals.
Consider the rule (Proj1) only. We get:

H v ∃x1, x2.[[H 〈v, x2〉 | x1 = v]]
 ∃x1, x2, y1, y2.[[H 〈〈v, x2〉, y2〉 | x1 = v ∧ y1 = 〈v, x2〉]] . . .

And similarly for (P) (below, we assume that H is a ground set of terms):

H x ∃x1, x2.[[H x1 ∧ H x2 | x = 〈x1, x2〉]] . . .

First, we do not aim at explictly enumerating all possible solutions, but only
compute solved forms, that are a convenient representation of all these solutions.
Typically, H v will be solved when v is a variable. This rules out the second
above non-terminating example.

For decomposition or versatile rules, we may still get the first non-terminating
behavior. That is where we use locality: we control the application of such rules,
roughly requesting that maximal premises are subterms of H. This is however
not complete, as Lemma 2 shows only that, in case of a versatile or decomposition
rule, the premises are subterms of the hypotheses at the ground level. In other

words, if we guessed that the last rule, in the proof of an instance σ of H v,
is a decomposition, we only know that the premises of the last proof step are
in st(Hσ). We use then the property of subterms: st(Hσ) = st(H)σ ∪ st(σ). If
the premises are in st(H)σ, everything is fine: we can guess subterms of H that
are the premises. Otherwise, it is not so straightforward, as σ is unknown. That
is where we need some additional strategies.

Another difficulty comes from the introduction of variables. If we keep on in-
troducing variables and equations, the left hand sides of deducibility constraints
may grow, hence their subterms too. Then guessing a subterm of H as a premise
does not necessarily yield a bounded number of terms.

4.1 Transformation rules

The rules of Figure 1 are applied non-deterministically. When new variables are
introduced (in the Dec rule) they are assumed to be fresh, by renaming.

(Axiom) ∃z̃.[[C ∧ H u | σ]] ∃z̃.[[Cθ | σ ∪ θ]]
where θ = mgu(u, v), v ∈ H and u 6∈ X

(Triv) ∃z̃.[[C ∧ H x ∧ H ′
 x | σ]] ∃z̃.[[C ∧ H x | σ]]

when H ⊆ H ′

(Comp) ∃z̃.[[C ∧ H f(u1, . . . , un) | σ]] ∃z̃.[[C ∧ H u1 ∧ . . . ∧ H un | σ]]
if f is a public symbol

(Dec) ∃z̃.[[C ∧ H v | σ]] ∃z̃ ∪ x̃.[[Cθ ∧ Hθ w1θ ∧ . . . Hθ wnθ | σ ∪ θ]]
∧H ′θ v1θ ∧ . . . ∧ H ′θ vmθ

where:

– R =
v1 . . . vm w1 . . . wn

w
is a decomposition or a versatile rule such that

Max(R) ⊆ {w1, . . . , wn} and x̃ = var(R);
– θ = mgu(〈w, w1, . . . , wn〉, 〈v, u1, . . . , un〉), u1, . . . , un ∈ st(H) r X , and v 6∈ X ;
– H ′ is a left member of a deducibility constraint such that H ′ (H.

Fig. 1. Transformation of deducibility constraints

The Dec rule deserves some explanation. We guessed here a versatile or de-
composition rule. The premises w1, . . . , wn will be those whose instances cor-
respond to a term in st(H)σ: we can guess the corresponding terms in st(H),
namely u1, . . . , un. The other premises (that are then subterms in the substi-
tution part) are constrained to be proved with strictly less hypotheses. We will
show that this can always be assumed, hence that we get completeness.

Example 7. Consider the constraint system D given in Example 6. First, con-
sidering the rule (Proj1) and applying Dec to the third constraint yields:

∃x′, y′.[[a x0, a x1, enc(x0, 〈b, x1〉, r), priv(a), a 〈b, x1〉 | {x′ 7→ b, y′ 7→ x1}]].

Now, considering (D) and applying again Dec to the third constraint yields:

D′ =

∃x, y, z, x′, y′.[[a x0θ, a x1θ
H2θ enc(x0θ, 〈b, x1θ〉, r)
H2θ priv(a) | θ ∪ {x′ 7→ b, y′ 7→ x1}]]

where θ = mgu(〈x, enc(pub(y), x, z), priv(y)〉, 〈〈b, x1〉, enc(x0, 〈b, x1〉, r), priv(a)〉)
= {x 7→ 〈b, x1〉, y 7→ a, z 7→ r, x0 7→ pub(a)}.

Lemma 3 (soundness). Let D be a constraint system such that D D′, then D′

is a constraint system and Sol(D′) ⊆ Sol(D).

The transformation rules of Figure 1 also preserve the following invariant.

Definition 6 (uniquely determined). Let D = ∃z̃.[[C | E]] be a constraint
system. D is uniquely determined if for any ground substitution σ such that
dom(σ) = fvar(D), there are ground terms u1, . . . , uℓ such that either mgu(Eσ) =
⊥ or mgu(Eσ) = {z1 = u1, . . . , zℓ = uℓ} where z̃ = {z1, . . . , zℓ}. In that case we
let σ be σ ∪ mgu(Eσ). (σ is a solution of the constraint system [[C | E]].)

Example 8. Let D′ be the constraint system given in Example 7. We have that
fvar(D) = {x0, x1}. Once values are assigned to x0, x1, there is a unique substi-
tution τ that satisfies the equations in E(D′).

Lemma 4. Let D be a constraint system that is uniquely determined and D′ be
such that D D′. Then D′ is uniquely determined.

Using our transformation rules, solving deducibility constraint systems can
be reduced to solving simpler constraint systems that we call solved.

Definition 7. A constraint system D = ∃z̃.[[H1 x1 ∧ . . . ∧ Hn xn | E]] is in
solved form when x1, . . . , xn are distinct variables.

Solved deducibility constraint systems are particulary simple since they al-
ways have a solution.

Lemma 5. A solved form has always at least one solution.

4.2 Completeness

Let H1 ⊆ H2 ⊆ . . . ⊂ Hnbe a sequence of sets of terms. Let π be a proof of Hi ⊢ u
for some i (1 ≤ i ≤ n). We associate to π, the minimal set Hyp(π) ∈ {H1, . . . , Hn}
containing the leaves of π. Note that Hyp(π) ⊆ Hi. Given a constraint sys-
tem D = ∃z̃.[[C | E]] that is uniquely determined and a solution σ, a simple proof
w.r.t. D is a simple proof w.r.t. the sequence of sets of terms LH(D)σ .

We first show that either the subterms occurring in proofs are subterms of
the hypotheses, or else their simple proofs end with a composition or a versatile
rule.

Lemma 6. Let D be a constraint system of the form [[C | E]]. Let H ∈ LH(D) be
such that for every y ∈ var(H) there is a constraint Hy y ∈ D. Let σ be a
solution of D and v be a term such that Hσ ⊢ v. Let u ∈ st(v). Then:

1. either u ∈ (st(H) r X)σ;
2. or Hσ ⊢ u and any simple proof π of Hσ ⊢ u ends with a composition or a

versatile rule.

To prove this lemma, we consider the set Π of simple proofs of Hσ ⊢ v and
we prove the lemma by induction on the pair (H, d) where d is the size of a
minimal proof in Π.

Now, we define the complexity of the proofs witnessing that σ is a solution
of D and show that there is always a rule yielding a strictly smaller complexity,
until we reach a solved form. Let D = ∃z̃.[[C | E]] be a uniquely determined
constraint system and σ be a solution of D.

– If H u ∈ C then PS(H u, σ) is the size (i.e. number of nodes) of a simple
proof of Hσ ⊢ uσ that has a minimal size.

– If LH(D) = {H1, . . . , Hn} with H1 (. . . (Hn, then the level lev(H u, D)
of a deducibility constraint H u ∈ C is the index i such that H = Hi.

The measure PS is extended to constraint systems by letting, for any solution σ
of D, PS(D, σ) be the multiset of pairs (lev(H u, D), PS(H u, σ)) for all
deducibility constraints H u ∈ D. The multisets PS(D, σ) are compared using
the multiset extension of the lexicographic composition of the orderings.

Note that the number of different levels in a constraint system might decrease,
but it may never increase.

Lemma 7. If D is a constraint system that is uniquely determined and σ ∈
Sol(D), then either D is in solved form or else there is a D′ such that D D′,
σ ∈ Sol(D′), and PS(D, σ) > PS(D′, σ).

Proof. (sketch) If D is not in solved form, there must be a constraint H u ∈ D
such that u is not a variable. We consider such a constraint, with a minimal left
hand side. Then, depending on the last rule of a minimal size simple proof of
Hσ ⊢ uσ, we may apply some transformation, that yields a smaller PS:

– If the proof is reduced to a leaf, then we use the Axiom rule.
– If the last rule is a composition, then we apply Comp to D, yielding a

smaller PS.
– If the last rule is versatile or a decomposition, we have to show that the

conditions of Dec are met in order to conclude. To prove this, we rely on
Lemma 2 and Lemma 6. ⊓⊔

Then, we prove the following lemma by induction on PS(D, σ), applying
Lemma 7 for the induction step. Lemma 4 allows us to ensure that the resulting
constraint system is uniquely determined and to apply our induction hypothesis.

Lemma 8 (completeness). If D is a constraint system that is uniquely de-
termined and σ ∈ Sol(D), then there is a solved deducibility constraint D′ such
that D ∗ D′ and σ ∈ Sol(D′).

(Active) ∃z̃.[[A | F | E]] 7→A ∃z̃ ∪ x̃.[[A′ | F | E ∪ θ]]

if A ∃x̃.[[A′ | θ]] using Axiom, Triv, Comp; or Dec on H v and there exists
x ∈ var(v) such that lev(x, A) = lev(H, A).We assume that mgu(E ∪ θ) 6= ⊥.

(Freeze) ∃z̃.[[A ∧ H v | F | E]] 7→ ∃z̃ ∪ x̃.[[A ∧ H u1 ∧ . . . H un |
F ∧ H ′

 v1 ∧ . . . ∧ H ′
 vm | E ∪ θ]]

where:

– R =
v1 . . . vm w1 . . . wn

w
is a decomposition or a versatile rule such that

Max(R) ⊆ {w1, . . . , wn} and x̃ = var(R);
– θ = mgu(〈w,w1, . . . , wn〉, 〈v, u1, . . . , un〉), u1, . . . , un ∈ st(H) r X , and v 6∈ X ;
– H ′ is a left member of a deducibility constraint in A such that H ′ (H;
– mgu(E∪ θ) 6= ⊥ and lev(x, A∧H v) < lev(H, A∧H v) for any x ∈ var(v).

(Open) ∃z̃.[[A | F | E]] 7→O ∃z̃.[[(A ∪ F)θ | ∅ | θ]]
when A in solved form and θ = mgu(E)

Fig. 2. Transformation of extended constraint systems

5 Termination

In order to get termination, we add some control on the transformation rules.

5.1 Our strategy

For every variable x and constraint system D, the level lev(x, D) of x is the level
of Hx in D, if x ∈ var(D), and is 0 otherwise. The deducibility constraints of D
are split into an active part Act(D) and a frozen part Fr(D).

Definition 8 (extended constraint system). An extended constraint sys-
tem D is a formula ∃z̃.[[A | F | E]] where:

– z̃ is a sequence of variables;

– E(D)
def
= E is a set of equations (not necessarily in solved form) with mgu(E) 6= ⊥;

– Act(D)
def
= A, the active part of D, and Fr(D)

def
= F, the frozen part of D, are

sets of deducibility constraints; A and (A∪F)mgu(E) are constraint systems.

Let θ = mgu(E). A solution of ∃z̃.[[A | F | E]] is a solution of ∃z̃.[[(A ∪ F)θ | θ]].
The system D is in solved form when Fr(D) = ∅ and Act(D)θ is in solved form.

The rules are described in Figure 2. The transformation relation defined by
these rules is denoted 7→. Sometimes, we use 7→A/F instead of 7→A ∪ 7→F.

In the initial constraint system, nothing is frozen. All rules only apply to the
active part and all rules (except Dec) only modify the active part.

– When the rule Dec is applied to a constraint H v such that, for some
variable x ∈ var(v), we have that lev(x, Act(D)) = lev(H, Act(D)), it also
contributes only to the active part.

– Otherwise, when for all x ∈ var(v), lev(x, Act(D)) < lev(H, Act(D)), then
only the constraints H u1 ∧ . . . ∧ H un are kept in the active part, and
the remainder falls in the frozen part.

When Act(D) is in solved form (and only then), we open the fridge and pour
the frozen part into the active one, performing all necessary replacements.

First, we have to establish the soundness of the transformation rules. The
main point is to show that the active part remains a constraint system.

Lemma 9 (soundness). Let D be an extended constraint system such that
D 7→ D′ then D′ is an extended constraint system and Sol(D′) ⊆ Sol(D).

If there is a loop on the active part by using only Active and Freeze, i.e.
D 7→∗ D1 7→∗

A/F
D2 and Act(D1) = Act(D2), we remove all the branches that

begin with this prefix. We will show that this strategy is both:

– complete: for any D, for any σ ∈ Sol(D), there is a sequence D 7→∗ D′

authorized by the strategy such that σ ∈ Sol(D′) and D′ is in solved form.
– terminating : there are no infinite transformation sequences.

5.2 Termination of our strategy

Now, we clarify the role of the fridge, by showing that the level of a variable in
the active part is never increasing. Moreover, if new variables are introduced in
the active part, their level is strictly smaller than the level of an older variable,
whose respective level strictly decreased.

Lemma 10. If D 7→A/F D′, then:

1. lev(x, Act(D′)) ≤ lev(x, Act(D)) for every x ∈ var(Act(D)).
2. Let M = var(Act(D′)) r var(Act(D)). If M 6= ∅ then there exists x ∈

var(Act(D)) such that lev(z, Act(D′)) < lev(x, Act(D)) for any z ∈ M ∪ {x}.

Now, we get a first termination lemma:

Lemma 11. There is no infinite transformation sequence without opening the
fridge.

The reason for this is that either we do not introduce variables in which
case there must be a loop (this is forbidden by the strategy) or else, thanks to
Lemma 10, there is a level ℓ such that the level of some variable at level ℓ strictly
decreases, while all new variables have a strictly smaller level than ℓ.

Finally, we cannot open very often the fridge:

Lemma 12. Let D be an extended constraint system such that E(D) = Fr(D) = ∅.
In any transformation sequence starting with D, we can open at most 2|LH(D)|+
|MLH(D)| times the fridge – MLH(D) is the maximal set of hypotheses in LH(D).

The idea is that the maximal level variables x occur in a constraint H x
when we are about to open the fridge. Furthermore, in the fridge, all variables
have a strictly smaller level. It follows that H x will not participate any more
in any transformation: further transformations only take place at lower levels.
More precisely, we show that between two openings, the number of levels or the
number of distinct terms in the maximal left hand side decreases; otherwise in
the resulting system further transformations only take place at lower levels.

From the previous lemmas, we derive the following corollary.

Corollary 1 (termination). Our strategy is strongly terminating: there is no
infinite transformation sequence of (extended) deducibility constraints.

5.3 Completeness of our strategy

For an extended constraint system D = ∃z̃.[[A | F | E]], we let:

Open(D) = ∃z̃.[[(A ∪ F)mgu(E) | mgu(E)]]

and we say that D is uniquely determined if Open(D) is uniquely determined.
Note that by definition of Open, we have that Sol(D) = Sol(Open(D)) and
“uniquely determined” is preserved by 7→.

The following corollary ensures that PS is decreasing on the active part.

Corollary 2 (of Lemma 7). Let D be a uniquely determined extended con-
straint system such that Act(D) is not in solved form and σ ∈ Sol(D). Then
there is a D′ such that D 7→A/F D′ and σ ∈ Sol(D′).

Moreover, PS(A, σ|
var(A)) > PS(A′, σ|

var(A′)) where A = Act(D), A′ = Act(D′)
and σ is the extension of σ w.r.t. D′.

Thanks to this, if there is a loop on the active part, we can close the branch,
still having a complete strategy:

Lemma 13. Our strategy is complete.

6 Conclusion

We gave a simple set of transformation rules that allows to derive a complete and
effective representation of all solutions of a deducibility constraint. This works
for any good inference system that satisfies some additional syntactic conditions.
We believe that this is the starting point of several further works:

1. It would be nice to remove the additional syntactic restrictions (or to prove
that they are necessary)

2. Getting a full generalization of [1], requires to introduce predicate symbols.
3. We need to enrich the syntax of constraints, in order to get effective algo-

rithms for infinite (recursive) good inference systems.

4. Our transformation rules are not only preserving all solutions, but also all
simple proofs, i.e. some witnesses that they are indeed solutions. This sug-
gests that the same transformation rules can be used for the decision of the
symbolic equivalence of constraint systems.

5. Covering all current decision results requires an extension that includes AC-
symbols.

References

1. D. Basin and H. Ganzinger. Automated complexity analysis based on ordered
resolution. Journal of the ACM, 48(1):70–109, 2001.

2. M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc.
12th ACM Conference on Computer and Communications Security (CCS’05),
pages 16–25, Alexandria, Virginia, USA, 2005. ACM Press.

3. S. Bursuc, H. Comon-Lundh, and S. Delaune. Deducibility constraints. Research
Report LSV-09-17, LSV, ENS Cachan, France, 2009. 36 pages.

4. Y. Chevalier and M. Kourjieh. Key substitution in the symbolic analysis of cryp-
tographic protocols. In Proc. 27th International Conference on Foundations of
Software Technology and Theoretical Computer Science (FTS&TCS’07), volume
4855 of LNCS. Springer, 2007.

5. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In
Proc. 23th International Conference on Foundations of Software Technology and
Theoretical Computer Science (FTS&TCS’03), volume 2914 of LNCS, 2003.

6. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision pro-
cedure for protocol insecurity with xor. In Kolaitis [12].

7. H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties of
cryptographic protocols. application to key cycles. Transaction on Computational
Logic, 2009. To appear.

8. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in preence of exclusive or. In Kolaitis [12].

9. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

10. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis
for monoidal equational theories. Information and Computation, 206(2-4), 2008.

11. D. Kähler and R. Küsters. Constraint Solving for Contract-Signing Protocols. In
Proc. 16th International Conference on Concurrency Theory (CONCUR 2005),
volume 3653 of LNCS, pages 233–247. Springer, 2005.

12. P. Kolaitis, editor. 18th Annual IEEE Symposium on Logic in Computer Science.
IEEE Comp. Soc., 2003.

13. D. McAllester. Automatic recognition of tractability in inference relations. Journal
of the ACM, 40(2), 1993.

14. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. 8th ACM Conference on Computer and Communica-
tions Security (CCS’01), 2001.

15. J. Millen and V. Shmatikov. Symbolic protocol analysis with products and Diffie-
Hellman exponentiation. In Proc. 16th Computer Security Foundation Workshop
(CSFW’03), pages 47–62. IEEE Comp. Soc. Press, 2003.

16. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions, composed keys is NP-complete. Theoretical Computer Science, 1-3, 2003.

